1
|
Pandey B, S S, Chatterjee A, Mangala Prasad V. Role of surface glycans in enveloped RNA virus infections: A structural perspective. Proteins 2025; 93:93-104. [PMID: 37994197 DOI: 10.1002/prot.26636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/16/2023] [Accepted: 10/30/2023] [Indexed: 11/24/2023]
Abstract
Enveloped RNA viruses have been causative agents of major pandemic outbreaks in the recent past. Glycans present on these virus surface proteins are critical for multiple processes during the viral infection cycle. Presence of glycans serves as a key determinant of immunogenicity, but intrinsic heterogeneity, dynamics, and evolutionary shifting of glycans in heavily glycosylated enveloped viruses confounds typical structure-function analysis. Glycosylation sites are also conserved across different viral families, which further emphasizes their functional significance. In this review, we summarize findings regarding structure-function correlation of glycans on enveloped RNA virus proteins.
Collapse
Affiliation(s)
- Bhawna Pandey
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Srividhya S
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Ananya Chatterjee
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Vidya Mangala Prasad
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, India
- Center for Infectious Disease Research, Indian Institute of Science, Bengaluru, Karnataka, India
| |
Collapse
|
2
|
Iglhaut C, Pečerska J, Gil M, Anisimova M. Please Mind the Gap: Indel-Aware Parsimony for Fast and Accurate Ancestral Sequence Reconstruction and Multiple Sequence Alignment Including Long Indels. Mol Biol Evol 2024; 41:msae109. [PMID: 38842253 PMCID: PMC11221656 DOI: 10.1093/molbev/msae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024] Open
Abstract
Despite having important biological implications, insertion, and deletion (indel) events are often disregarded or mishandled during phylogenetic inference. In multiple sequence alignment, indels are represented as gaps and are estimated without considering the distinct evolutionary history of insertions and deletions. Consequently, indels are usually excluded from subsequent inference steps, such as ancestral sequence reconstruction and phylogenetic tree search. Here, we introduce indel-aware parsimony (indelMaP), a novel way to treat gaps under the parsimony criterion by considering insertions and deletions as separate evolutionary events and accounting for long indels. By identifying the precise location of an evolutionary event on the tree, we can separate overlapping indel events and use affine gap penalties for long indel modeling. Our indel-aware approach harnesses the phylogenetic signal from indels, including them into all inference stages. Validation and comparison to state-of-the-art inference tools on simulated data show that indelMaP is most suitable for densely sampled datasets with closely to moderately related sequences, where it can reach alignment quality comparable to probabilistic methods and accurately infer ancestral sequences, including indel patterns. Due to its remarkable speed, our method is well suited for epidemiological datasets, eliminating the need for downsampling and enabling the exploitation of the additional information provided by dense taxonomic sampling. Moreover, indelMaP offers new insights into the indel patterns of biologically significant sequences and advances our understanding of genetic variability by considering gaps as crucial evolutionary signals rather than mere artefacts.
Collapse
Affiliation(s)
- Clara Iglhaut
- Institute of Computational Life Science, Zurich University of Applied Science, Wädenswil, Switzerland
- Faculty of Mathematics and Science, University of Zurich, Zürich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jūlija Pečerska
- Institute of Computational Life Science, Zurich University of Applied Science, Wädenswil, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Manuel Gil
- Institute of Computational Life Science, Zurich University of Applied Science, Wädenswil, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Maria Anisimova
- Institute of Computational Life Science, Zurich University of Applied Science, Wädenswil, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
3
|
Kumar S, Bajpai P, Joyce C, Kabra SK, Lodha R, Burton DR, Briney B, Luthra K. B cell repertoire sequencing of HIV-1 pediatric elite-neutralizers identifies multiple broadly neutralizing antibody clonotypes. Front Immunol 2024; 15:1272493. [PMID: 38433846 PMCID: PMC10905035 DOI: 10.3389/fimmu.2024.1272493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 02/02/2024] [Indexed: 03/05/2024] Open
Abstract
Introduction A limited subset of HIV-1 infected adult individuals typically after at least 2-3 years of chronic infection, develop broadly neutralizing antibodies (bnAbs), suggesting that highly conserved neutralizing epitopes on the HIV-1 envelope glycoprotein are difficult for B cell receptors to effectively target, during natural infection. Recent studies have shown the evolution of bnAbs in HIV-1 infected infants. Methods We used bulk BCR sequencing (BCR-seq) to profile the B cell receptors from longitudinal samples (3 time points) collected from a rare pair of antiretroviralnaïve, HIV-1 infected pediatric monozygotic twins (AIIMS_329 and AIIMS_330) who displayed elite plasma neutralizing activity against HIV-1. Results BCR-seq of both twins revealed convergent antibody characteristics including V-gene use, CDRH3 lengths and somatic hypermutation (SHM). Further, antibody clonotypes with genetic features similar to highly potent bnAbs isolated from adults showed ongoing development in donor AIIMS_330 but not in AIIMS_329, corroborating our earlier findings based on plasma bnAbs responses. An increase in SHM was observed in sequences of the IgA isotype from AIIMS_330. Discussion This study suggests that children living with chronic HIV-1 can develop clonotypes of HIV-1 bnAbs against multiple envelope epitopes similar to those isolated from adults, highlighting that such B cells could be steered to elicit bnAbs responses through vaccines aimed to induce bnAbs against HIV-1 in a broad range of people including children.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, United States
- Center for Viral Systems Biology, The Scripps Research Institute, La Jolla, CA, United States
- International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, United States
| | - Prashant Bajpai
- International Centre for Genetic Engineering and Biotechnology (ICGEB)-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi, India
| | - Collin Joyce
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, United States
- Center for Viral Systems Biology, The Scripps Research Institute, La Jolla, CA, United States
- International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, United States
| | - Sushil Kumar Kabra
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Rakesh Lodha
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Dennis R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, United States
- Center for Viral Systems Biology, The Scripps Research Institute, La Jolla, CA, United States
- International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, United States
| | - Bryan Briney
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, United States
- Center for Viral Systems Biology, The Scripps Research Institute, La Jolla, CA, United States
- Multi-omics Vaccine Evaluation Consortium, The Scripps Research Institute, La Jolla, CA, United States
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
4
|
Ott JA, Mitchell C, Sheppard M, Deiss TC, Horton JMC, Haakenson JK, Huang R, Kelley AR, Davis BW, Derr JN, Smider VV, Criscitiello MF. Evolution of immunogenetic components encoding ultralong CDR H3. Immunogenetics 2023; 75:323-339. [PMID: 37084012 PMCID: PMC10119515 DOI: 10.1007/s00251-023-01305-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/03/2023] [Indexed: 04/22/2023]
Abstract
The genomes of most vertebrates contain many V, D, and J gene segments within their Ig loci to construct highly variable CDR3 sequences through combinatorial diversity. This nucleotide variability translates into an antibody population containing extensive paratope diversity. Cattle have relatively few functional VDJ gene segments, requiring innovative approaches for generating diversity like the use of ultralong-encoding IGHV and IGHD gene segments that yield dramatically elongated CDR H3. Unique knob and stalk microdomains create protracted paratopes, where the antigen-binding knob sits atop a long stalk, allowing the antibody to bind both surface and recessed antigen epitopes. We examined genomes of twelve species of Bovidae to determine when ultralong-encoding IGHV and IGHD gene segments evolved. We located the 8-bp duplication encoding the unique TTVHQ motif in ultralong IGHV segments in six Bovid species (cattle, zebu, wild yak, domestic yak, American bison, and domestic gayal), but we did not find evidence of the duplication in species beyond the Bos and Bison genera. Additionally, we analyzed mRNA from bison spleen and identified a rich repertoire of expressed ultralong CDR H3 antibody mRNA, suggesting that bison use ultralong IGHV transcripts in their host defense. We found ultralong-encoding IGHD gene segments in all the same species except domestic yak, but again not beyond the Bos and Bison clade. Thus, the duplication event leading to this ultralong-encoding IGHV gene segment and the emergence of the ultralong-encoding IGHD gene segment appears to have evolved in a common ancestor of the Bos and Bison genera 5-10 million years ago.
Collapse
Affiliation(s)
- Jeannine A Ott
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Christian Mitchell
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Morgan Sheppard
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Thad C Deiss
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - J M Cody Horton
- Department of Veterinary Integrative Sciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Jeremy K Haakenson
- Applied Biomedical Science Institute, San Diego, CA, 92127, USA
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Ruiqi Huang
- Applied Biomedical Science Institute, San Diego, CA, 92127, USA
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | | | - Brian W Davis
- Department of Veterinary Integrative Sciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - James N Derr
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Vaughn V Smider
- Applied Biomedical Science Institute, San Diego, CA, 92127, USA
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Michael F Criscitiello
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA.
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, Bryan, TX, 77807, USA.
| |
Collapse
|
5
|
Kumar S, Singh S, Luthra K. An Overview of Human Anti-HIV-1 Neutralizing Antibodies against Diverse Epitopes of HIV-1. ACS OMEGA 2023; 8:7252-7261. [PMID: 36873012 PMCID: PMC9979333 DOI: 10.1021/acsomega.2c07933] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/06/2023] [Indexed: 06/01/2023]
Abstract
In this Review, we have addressed some recent developments in the discovery and applications of anti-human immunodeficiency virus type- 1 (HIV-1) broadly neutralizing antibodies (bnAbs) isolated from infected adults and children. The recent developments in human antibody isolation technologies have led to the discovery of several highly potent anti-HIV-1 bnAbs. Herein, we have discussed the characteristics of recently identified bnAbs directed at distinct epitopes of HIV-1, in addition to the existing antibodies, from adults and children and have shed light on the benefits of multispecific HIV-1 bnAbs and their role in the design of polyvalent vaccines.
Collapse
|
6
|
Sehgal A, Mehta S, Sahay K, Martynova E, Rizvanov A, Baranwal M, Chandy S, Khaiboullina S, Kabwe E, Davidyuk Y. Hemorrhagic Fever with Renal Syndrome in Asia: History, Pathogenesis, Diagnosis, Treatment, and Prevention. Viruses 2023; 15:v15020561. [PMID: 36851775 PMCID: PMC9966805 DOI: 10.3390/v15020561] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/30/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Hemorrhagic Fever with Renal Syndrome (HFRS) is the most frequently diagnosed zoonosis in Asia. This zoonotic infection is the result of exposure to the virus-contaminated aerosols. Orthohantavirus infection may cause Hemorrhagic Fever with Renal Syndrome (HRFS), a disease that is characterized by acute kidney injury and increased vascular permeability. Several species of orthohantaviruses were identified as causing infection, where Hantaan, Puumala, and Seoul viruses are most common. Orthohantaviruses are endemic to several Asian countries, such as China, South Korea, and Japan. Along with those countries, HFRS tops the list of zoonotic infections in the Far Eastern Federal District of Russia. Recently, orthohantavirus circulation was demonstrated in small mammals in Thailand and India, where orthohantavirus was not believed to be endemic. In this review, we summarized the current data on orthohantaviruses in Asia. We gave the synopsis of the history and diversity of orthohantaviruses in Asia. We also described the clinical presentation and current understanding of the pathogenesis of orthohantavirus infection. Additionally, conventional and novel approaches for preventing and treating orthohantavirus infection are discussed.
Collapse
Affiliation(s)
- Ayushi Sehgal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Sanya Mehta
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Kritika Sahay
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Ekaterina Martynova
- OpenLab “Gene and Cell Technologies”, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Albert Rizvanov
- OpenLab “Gene and Cell Technologies”, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Sara Chandy
- Childs Trust Medical Research Foundation, Kanchi Kamakoti Childs Trust Hospital, Chennai 600034, India
| | - Svetlana Khaiboullina
- OpenLab “Gene and Cell Technologies”, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Emmanuel Kabwe
- OpenLab “Gene and Cell Technologies”, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
- Kazan Research Institute of Epidemiology and Microbiology, Kazan 420012, Russia
| | - Yuriy Davidyuk
- OpenLab “Gene and Cell Technologies”, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
- Correspondence:
| |
Collapse
|
7
|
Carter EP, Ang CG, Chaiken IM. Peptide Triazole Inhibitors of HIV-1: Hijackers of Env Metastability. Curr Protein Pept Sci 2023; 24:59-77. [PMID: 35692162 PMCID: PMC11660822 DOI: 10.2174/1389203723666220610120927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 11/22/2022]
Abstract
With 1.5 million new infections and 690,000 AIDS-related deaths globally each year, HIV- 1 remains a pathogen of significant public health concern. Although a wide array of effective antiretroviral drugs have been discovered, these largely target intracellular stages of the viral infectious cycle, and inhibitors that act at or before the point of viral entry still require further advancement. A unique class of HIV-1 entry inhibitors, called peptide triazoles (PTs), has been developed, which irreversibly inactivates Env trimers by exploiting the protein structure's innate metastable nature. PTs, and a related group of inhibitors called peptide triazole thiols (PTTs), are peptide compounds that dually engage the CD4 receptor and coreceptor binding sites of Env's gp120 subunit. This triggers dramatic conformational rearrangements of Env, including the shedding of gp120 (PTs and PTTs) and lytic transformation of the gp41 subunit to a post-fusion-like arrangement (PTTs). Due to the nature of their dual receptor site engagement, PT/PTT-induced conformational changes may elucidate mechanisms behind the native fusion program of Env trimers following receptor and coreceptor engagement, including the role of thiols in fusion. In addition to inactivating Env, PTT-induced structural transformation enhances the exposure of important and conserved neutralizable regions of gp41, such as the membrane proximal external region (MPER). PTT-transformed Env could present an intriguing potential vaccine immunogen prototype. In this review, we discuss the origins of the PT class of peptide inhibitors, our current understanding of PT/PTT-induced structural perturbations and viral inhibition, and prospects for using these antagonists for investigating Env structural mechanisms and for vaccine development.
Collapse
Affiliation(s)
- Erik P. Carter
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Charles G. Ang
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Irwin M. Chaiken
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
8
|
Kraft JC, Pham MN, Shehata L, Brinkkemper M, Boyoglu-Barnum S, Sprouse KR, Walls AC, Cheng S, Murphy M, Pettie D, Ahlrichs M, Sydeman C, Johnson M, Blackstone A, Ellis D, Ravichandran R, Fiala B, Wrenn S, Miranda M, Sliepen K, Brouwer PJM, Antanasijevic A, Veesler D, Ward AB, Kanekiyo M, Pepper M, Sanders RW, King NP. Antigen- and scaffold-specific antibody responses to protein nanoparticle immunogens. Cell Rep Med 2022; 3:100780. [PMID: 36206752 PMCID: PMC9589121 DOI: 10.1016/j.xcrm.2022.100780] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/27/2022] [Accepted: 09/22/2022] [Indexed: 11/29/2022]
Abstract
Protein nanoparticle scaffolds are increasingly used in next-generation vaccine designs, and several have established records of clinical safety and efficacy. Yet the rules for how immune responses specific to nanoparticle scaffolds affect the immunogenicity of displayed antigens have not been established. Here we define relationships between anti-scaffold and antigen-specific antibody responses elicited by protein nanoparticle immunogens. We report that dampening anti-scaffold responses by physical masking does not enhance antigen-specific antibody responses. In a series of immunogens that all use the same nanoparticle scaffold but display four different antigens, only HIV-1 envelope glycoprotein (Env) is subdominant to the scaffold. However, we also demonstrate that scaffold-specific antibody responses can competitively inhibit antigen-specific responses when the scaffold is provided in excess. Overall, our results suggest that anti-scaffold antibody responses are unlikely to suppress antigen-specific antibody responses for protein nanoparticle immunogens in which the antigen is immunodominant over the scaffold.
Collapse
Affiliation(s)
- John C Kraft
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Minh N Pham
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Laila Shehata
- Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | - Mitch Brinkkemper
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection and Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Seyhan Boyoglu-Barnum
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kaitlin R Sprouse
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Alexandra C Walls
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Suna Cheng
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Mike Murphy
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Deleah Pettie
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Maggie Ahlrichs
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Claire Sydeman
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Max Johnson
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Alyssa Blackstone
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Daniel Ellis
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Rashmi Ravichandran
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Brooke Fiala
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Samuel Wrenn
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Marcos Miranda
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Kwinten Sliepen
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection and Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Philip J M Brouwer
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection and Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Aleksandar Antanasijevic
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marion Pepper
- Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | - Rogier W Sanders
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection and Immunity Institute, 1105 AZ Amsterdam, the Netherlands; Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Neil P King
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
9
|
Collantes TMA, Clark CM, Musarrat F, Jambunathan N, Jois S, Kousoulas KG. Predicted Structure and Functions of the Prototypic Alphaherpesvirus Herpes Simplex Virus Type-1 UL37 Tegument Protein. Viruses 2022; 14:2189. [PMID: 36298744 PMCID: PMC9608200 DOI: 10.3390/v14102189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
The alphaherpesvirus UL37 tegument protein is a highly conserved, multi-functional protein. Mutagenesis analysis delineated the UL37 domains necessary for retrograde transport and viral replication. Specifically, the amino-terminal 480 amino acids are dispensable for virus replication in epithelial cell culture, but it is unknown whether this amino-terminal deletion affects UL37 structure and intracellular transport in epithelial cells and neurons. To investigate the structure and function of UL37, we utilized multiple computational approaches to predict and characterize the secondary and tertiary structure and other functional features. The structure of HSV-1 UL37 and Δ481N were deduced using publicly available predictive algorithms. The predicted model of HSV-1 UL37 is a stable, multi-functional, globular monomer, rich in alpha helices, with unfolded regions within the linker and the C-tail domains. The highly flexible C-tail contains predicted binding sites to the dynein intermediate chain, as well as DNA and RNA. Predicted interactions with the cytoplasmic surface of the lipid membrane suggest UL37 is a peripheral membrane protein. The Δ481N truncation did not alter the predicted structure of the UL37 C-terminus protein and its predicted interaction with dynein. We validated these models by examining the replication kinetics and transport of the Δ481N virus toward the nuclei of infected epithelial and neuronal cells. The Δ481N virus had substantial defects in virus spread; however, it exhibited no apparent defects in virus entry and intracellular transport. Using computational analyses, we identified several key features of UL37, particularly the flexible unstructured tail; we then demonstrated that the UL37 C-terminus alone is sufficient to effectively transport the virus towards the nucleus of infected epithelial and neuronal cells.
Collapse
Affiliation(s)
- Therese Marie A. Collantes
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
- College of Veterinary Medicine, University of the Philippines Los Baños, Los Baños, Laguna 4031, Philippines
| | - Carolyn M. Clark
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Farhana Musarrat
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | - Seetharama Jois
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Konstantin G. Kousoulas
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
10
|
Pesenti T, Domingo-Lopez D, Gillon E, Ibrahim N, Messaoudi S, Imberty A, Nicolas J. Degradable Glycopolyester-like Nanoparticles by Radical Ring-Opening Polymerization. Biomacromolecules 2022; 23:4015-4028. [PMID: 35971824 DOI: 10.1021/acs.biomac.2c00851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A small library of degradable polyester-like glycopolymers was successfully prepared by the combination of radical ring-opening copolymerization of 2-methylene-1,3-dioxepane as a cyclic ketene acetal (CKA) with vinyl ether (VE) derivatives and a Pd-catalyzed thioglycoconjugation. The resulting thioglycopolymers were formulated into self-stabilized thioglyconanoparticles, which were stable up to 4 months and were enzymatically degraded. Nanoparticles and their degradation products exhibited a good cytocompatibility on two healthy cell lines. Interactions between thioglyconanoparticles and lectins were investigated and highlighted the presence of both specific carbohydrate/lectin interactions and nonspecific hydrophobic interactions. Fluorescent thioglyconanoparticles were also prepared either by encapsulation of Nile red or by the functionalization of the polymer backbone with rhodamine B. Such nanoparticles were used to prove the cell internalization of the thioglyconanoparticles by lung adenocarcinoma (A549) cells, which underlined the great potential of P(CKA-co-VE) copolymers for biomedical applications.
Collapse
Affiliation(s)
- Théo Pesenti
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Daniel Domingo-Lopez
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Emilie Gillon
- Université Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| | - Nada Ibrahim
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Samir Messaoudi
- Université Paris-Saclay, CNRS, BioCIS, 92296 Châtenay-Malabry, France
| | - Anne Imberty
- Université Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| | - Julien Nicolas
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France
| |
Collapse
|
11
|
Martí-Marí O, Martínez-Gualda B, Fernández-Barahona I, Mills A, Abdelnabi R, Noppen S, Neyts J, Schols D, Camarasa MJ, Herranz F, Gago F, San-Félix A. Organotropic dendrons with high potency as HIV-1, HIV-2 and EV-A71 cell entry inhibitors. Eur J Med Chem 2022; 237:114414. [DOI: 10.1016/j.ejmech.2022.114414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 11/26/2022]
|
12
|
Abstract
PURPOSE OF REVIEW Anti-HIV-1 broadly neutralizing antibodies (bNAbs) are promising agents in the fight against the AIDS epidemic. Multiple bNAbs have been already evaluated in clinical trials with encouraging results. This review discusses the use of bNAbs for the prevention and treatment of HIV-1 infection, focusing on manufactured products that have been evaluated in clinical settings. RECENT FINDINGS More than 17 bNAbs have been evaluated for safety and pharmacokinetics in humans. The vast majority presented a well tolerated profile and were generally well tolerated. Serum half-life varied from 12 to 73.5 days and can be improved by the addition of mutations to the Fc regions. Results from the antibody-mediated prevention (AMP) study show that VRC01, a CD4-binding-site bNAb, was effective at preventing the acquisition of sensitive HIV-1 strains but did not prevent the acquisition of strains whose in vitro sensitivity to the antibody had an IC80 of more than 1 μg/ml. New bNAb combinations to improve coverage are currently being evaluated. SUMMARY In this review, we discuss the current landscape of HIV-1 bNAbs in clinical development. We also present the current strategies employed to improve the breadth, potency, serum half-life, effector function and administration of these compounds.
Collapse
|
13
|
Evolution of Multiple Domains of the HIV-1 Envelope Glycoprotein during Coreceptor Switch with CCR5 Antagonist Therapy. Microbiol Spectr 2022; 10:e0072522. [PMID: 35727047 PMCID: PMC9431240 DOI: 10.1128/spectrum.00725-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HIV-1 uses CD4 as a receptor and chemokine receptors CCR5 and/or CXCR4 as coreceptors. CCR5 antagonists are a class of antiretrovirals used to inhibit viral entry. Phenotypic prediction algorithms such as Geno2Pheno are used to assess CCR5 antagonist eligibility, for which the V3 region is screened. However, there exist scenarios where the algorithm cannot give an accurate prediction of tropism. The current study examined coreceptor shift of HIV-1 from CCR5-tropic strains to CXCR4-tropic or dual-tropic strains among five subjects in a clinical trial of the CCR5 antagonist vicriviroc. Envelope gene amplicon libraries were constructed and subjected to next-generation sequencing, as well as single-clone sequencing and functional analyses. Approximately half of the amplified full-length single envelope-encoding clones had no significant activity for infection of cells expressing high levels of CD4 and CCR5 or CXCR4. Functional analysis of 9 to 21 individual infectious clones at baseline and at the time of VF were used to construct phylogenetic trees and sequence alignments. These studies confirmed that specific residues and the overall charge of the V3 loop were the major determinants of coreceptor use, in addition to specific residues in other domains of the envelope protein in V1/V2, V4, C3, and C4 domains that may be important for coreceptor shift. These results provide greater insight into the viral genetic determinants of coreceptor shift. IMPORTANCE This study is novel in combining single-genome sequence analysis and next-generation sequencing to characterize HIV-1 quasispecies. The work highlights the importance of mutants present at frequencies of 1% or less in development of drug resistance. This study highlights a critical role of specific amino acid substitutions outside V3 that contribute to coreceptor shift as well as important roles of the V1/V2, V4, C3, and C4 domain residues.
Collapse
|
14
|
Cale EM, Driscoll JI, Lee M, Gorman J, Zhou T, Lu M, Geng H, Lai YT, Chuang GY, Doria-Rose NA, Mothes W, Kwong PD, Mascola JR. Antigenic analysis of the HIV-1 envelope trimer implies small differences between structural states 1 and 2. J Biol Chem 2022; 298:101819. [PMID: 35283191 PMCID: PMC9006658 DOI: 10.1016/j.jbc.2022.101819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 11/20/2022] Open
Abstract
The conformationally dynamic HIV-1 envelope trimer (Env) is the target of broadly neutralizing antibodies (bnAbs) that block viral entry. Single-molecule Förster resonance energy transfer (smFRET) has revealed that HIV-1 Env exists in at least three conformational states on the virion. Prior to complete host-receptor engagement (State 3), Env resides most prevalently in the smFRET-defined State 1, which is preferentially recognized by most bnAbs that are elicited by natural infection. smFRET has also revealed that soluble trimers containing prefusion-stabilizing disulfide and isoleucine-to-proline substitutions reside primarily in State 2, which is a required intermediate between States 1 and 3. While high-resolution Env structures have been determined for States 2 and 3, the structure of these trimers in State 1 is unknown. To provide insight into the State 1 structure, here we characterized antigenic differences between smFRET-defined states and then correlated these differences with known structural differences between States 2 and 3. We found that cell surface-expressed Env was enriched in each state using state-enriching antibody fragments or small-molecule virus entry inhibitors and then assessed binding to HIV-1 bnAbs preferentially binding different states. We observed small but consistent differences in binding between Env enriched in States 1 and 2, and a more than 10-fold difference in binding to Env enriched in these states versus Env enriched in State 3. We conclude that structural differences between HIV-1 Env States 1 and 3 are likely more than 10-fold greater than those between States 1 and 2, providing important insight into State 1.
Collapse
Affiliation(s)
- Evan M Cale
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jefferson I Driscoll
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Myungjin Lee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Maolin Lu
- Department of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut, USA; Department of Cellular and Molecular Biology, University of Texas Health Science Center, Tyler, Texas, USA
| | - Hui Geng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Yen-Ting Lai
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Walther Mothes
- Department of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
15
|
Cook JD, Khondker A, Lee JE. Conformational plasticity of the HIV-1 gp41 immunodominant region is recognized by multiple non-neutralizing antibodies. Commun Biol 2022; 5:291. [PMID: 35361878 PMCID: PMC8971491 DOI: 10.1038/s42003-022-03235-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 03/08/2022] [Indexed: 12/17/2022] Open
Abstract
The early humoral immune response to acute HIV-1 infection is largely non-neutralizing. The principal target of these antibodies is the primary immunodominant region (PID) on the gp41 fusion protein. The PID is a highly conserved 15-residue region displayed on the surface of HIV-1 virions. In this study, we analyzed the humoral determinants of HIV-1 gp41 PID binding using biophysical, structural, and computational methods. In complex with a patient-derived near-germline antibody fragment, the PID motif adopts an elongated random coil, whereas the PID bound to affinity-matured Fab adopts a strand-turn-helix conformation. Molecular dynamics simulations showed that the PID is structurally plastic suggesting that the PID can form an ensemble of structural states recognized by various non-neutralizing antibodies, facilitating HIV-1 immunodominance observed in acute and chronic HIV-1 infections. An improved understanding of how the HIV-1 gp41 PID misdirects the early humoral response should guide the development of an effective HIV-1 vaccine. The 15-amino-acid primary immunodominant (PID) region on HIV-1 gp41 adopts an ensemble of conformational states. This conformational plasticity is suggested to misdirect the early humoral immune response.
Collapse
Affiliation(s)
- Jonathan D Cook
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Adree Khondker
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Jeffrey E Lee
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
16
|
Timofeeva A, Sedykh S, Nevinsky G. Post-Immune Antibodies in HIV-1 Infection in the Context of Vaccine Development: A Variety of Biological Functions and Catalytic Activities. Vaccines (Basel) 2022; 10:384. [PMID: 35335016 PMCID: PMC8955465 DOI: 10.3390/vaccines10030384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 12/14/2022] Open
Abstract
Unlike many other viruses, HIV-1 is highly variable. The structure of the viral envelope changes as the infection progresses and is one of the biggest obstacles in developing an HIV-1 vaccine. HIV-1 infection can cause the production of various natural autoantibodies, including catalytic antibodies hydrolyzing DNA, myelin basic protein, histones, HIV-integrase, HIV-reverse transcriptase, β-casein, serum albumin, and some other natural substrates. Currently, there are various directions for the development of HIV-1 vaccines: stimulation of the immune response on the mucous membranes; induction of cytotoxic T cells, which lyse infected cells and hold back HIV-infection; immunization with recombinant Env proteins or vectors encoding Env; mRNA-based vaccines and some others. However, despite many attempts to develop an HIV-1 vaccine, none have been successful. Here we review the entire spectrum of antibodies found in HIV-infected patients, including neutralizing antibodies specific to various viral epitopes, as well as antibodies formed against various autoantigens, catalytic antibodies against autoantigens, and some viral proteins. We consider various promising targets for developing a vaccine that will not produce unwanted antibodies in vaccinated patients. In addition, we review common problems in the development of a vaccine against HIV-1.
Collapse
Affiliation(s)
- Anna Timofeeva
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia; (S.S.); (G.N.)
| | - Sergey Sedykh
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia; (S.S.); (G.N.)
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Georgy Nevinsky
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia; (S.S.); (G.N.)
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
17
|
van Heuvel Y, Schatz S, Rosengarten JF, Stitz J. Infectious RNA: Human Immunodeficiency Virus (HIV) Biology, Therapeutic Intervention, and the Quest for a Vaccine. Toxins (Basel) 2022; 14:toxins14020138. [PMID: 35202165 PMCID: PMC8876946 DOI: 10.3390/toxins14020138] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 11/16/2022] Open
Abstract
Different mechanisms mediate the toxicity of RNA. Genomic retroviral mRNA hijacks infected host cell factors to enable virus replication. The viral genomic RNA of the human immunodeficiency virus (HIV) encompasses nine genes encoding in less than 10 kb all proteins needed for replication in susceptible host cells. To do so, the genomic RNA undergoes complex alternative splicing to facilitate the synthesis of the structural, accessory, and regulatory proteins. However, HIV strongly relies on the host cell machinery recruiting cellular factors to complete its replication cycle. Antiretroviral therapy (ART) targets different steps in the cycle, preventing disease progression to the acquired immunodeficiency syndrome (AIDS). The comprehension of the host immune system interaction with the virus has fostered the development of a variety of vaccine platforms. Despite encouraging provisional results in vaccine trials, no effective vaccine has been developed, yet. However, novel promising vaccine platforms are currently under investigation.
Collapse
Affiliation(s)
- Yasemin van Heuvel
- Research Group Pharmaceutical Biotechnology, Faculty of Applied Natural Sciences, TH Köln—University of Applied Sciences, Chempark Leverkusen, Kaiser-Wilhelm-Allee, 51368 Leverkusen, Germany; (Y.v.H.); (S.S.); (J.F.R.)
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 3-9, 30167 Hannover, Germany
| | - Stefanie Schatz
- Research Group Pharmaceutical Biotechnology, Faculty of Applied Natural Sciences, TH Köln—University of Applied Sciences, Chempark Leverkusen, Kaiser-Wilhelm-Allee, 51368 Leverkusen, Germany; (Y.v.H.); (S.S.); (J.F.R.)
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 3-9, 30167 Hannover, Germany
| | - Jamila Franca Rosengarten
- Research Group Pharmaceutical Biotechnology, Faculty of Applied Natural Sciences, TH Köln—University of Applied Sciences, Chempark Leverkusen, Kaiser-Wilhelm-Allee, 51368 Leverkusen, Germany; (Y.v.H.); (S.S.); (J.F.R.)
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 3-9, 30167 Hannover, Germany
| | - Jörn Stitz
- Research Group Pharmaceutical Biotechnology, Faculty of Applied Natural Sciences, TH Köln—University of Applied Sciences, Chempark Leverkusen, Kaiser-Wilhelm-Allee, 51368 Leverkusen, Germany; (Y.v.H.); (S.S.); (J.F.R.)
- Correspondence:
| |
Collapse
|
18
|
Zhao J, Song E, Huang Y, Yu A, Mechref Y. Variability in the Glycosylation Patterns of gp120 Proteins from Different Human Immunodeficiency Virus Type 1 Isolates Expressed in Different Host Cells. J Proteome Res 2021; 20:4862-4874. [PMID: 34448591 DOI: 10.1021/acs.jproteome.1c00587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The mature HIV-1 envelope (Env) glycoprotein is composed of gp120, the exterior subunit, and gp41, the transmembrane subunit assembled as trimer by noncovalent interaction. There is a great body of literature to prove that gp120 binds to CD4 first, then to the coreceptor. Binding experiments and functional assays have demonstrated that CD4 binding induces conformational changes in gp120 that enable or enhance its interaction with a coreceptor. Previous studies provided different glycomic maps for the HIV-1 gp120. Here, we build on previous work to report that the use of LC-MS/MS, in conjunction with hydrophilic interaction liquid chromatography (HILIC) enrichment to glycosylation sites, associated with the assorted neutralizing or binding events of glycosylation targeted antibodies from different clades or strains. In this study, the microheterogeneity of the glycosylation from 4 different clades of gp120s is deeply investigated. Aberrant glycosylation patterns were detected on gp120 that originated from different clades, viral sequences, and host cells. The results of this study may help provide a better understanding of the mechanism of how the glycans participate in the antibody neutralizing process that targets glycosylation sites.
Collapse
Affiliation(s)
- Jingfu Zhao
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Ehwang Song
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Yifan Huang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Aiying Yu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
19
|
A reversed phase HPLC method for the quantification of HIV gp145 glycoprotein levels from cell culture supernatants. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1167:122562. [PMID: 33571843 DOI: 10.1016/j.jchromb.2021.122562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 02/08/2023]
Abstract
A reversed phase high performance liquid chromatography (RP-HPLC) method was developed for the quantitative determination of recombinant HIV-1 gp145 produced in CHO-K1 cells, as measured directly from culture supernatants. Samples were diluted in 50% D-PBS and 50% PowerCHO-2 (PC2) spent medium, and resolved on a Zorbax 300SB-C8 Rapid Resolution (2.1 × 50 mm, 3.5 µm) column, fitted with a C8 guard column (Zorbax 300SB-C8, 2.1 × 12.5 mm, 5 µm), using 0.1% TFA and 2% n-propanol in LC-MS water as mobile phase A and 0.1% TFA, 70% isopropanol, and 20% acetonitrile in LC-MS water as mobile phase B. The column temperature was 80 °C, the flow rate was 0.4 mL/min and the absorbance was monitored at 280 nm. The procedures and capabilities of the method were evaluated against the criteria for linearity, limit of detection (LOD), accuracy, repeatability, and robustness as defined by the International Conference on Harmonization (ICH) 2005 Q2(R1) guidelines. Two different variants of the HIV-1 envelope protein (Env), CO6980v0c22 gp145 and SF162 gp140, were analyzed and their retention times were found to be different. The method showed good linearity (R2 = 0.9996), a lower LOD of 2.4 µg/mL, and an average recovery of 101%. The analysis includes measurements of accuracy, inter-user precision, and robustness. Overall, we present a RP-HPLC method that could be applied for the quantitation of cell culture titers for this and other variants of HIV Env following ICH guidelines.
Collapse
|
20
|
Li H, Omange RW, Liang B, Toledo N, Hai Y, Liu LR, Schalk D, Crecente-Campo J, Dacoba TG, Lambe AB, Lim SY, Li L, Kashem MA, Wan Y, Correia-Pinto JF, Seaman MS, Liu XQ, Balshaw RF, Li Q, Schultz-Darken N, Alonso MJ, Plummer FA, Whitney JB, Luo M. Vaccine targeting SIVmac251 protease cleavage sites protects macaques against vaginal infection. J Clin Invest 2021; 130:6429-6442. [PMID: 32853182 DOI: 10.1172/jci138728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/20/2020] [Indexed: 01/03/2023] Open
Abstract
After over 3 decades of research, an effective anti-HIV vaccine remains elusive. The recently halted HVTN702 clinical trial not only further stresses the challenge to develop an effective HIV vaccine but also emphasizes that unconventional and novel vaccine strategies are urgently needed. Here, we report that a vaccine focusing the immune response on the sequences surrounding the 12 viral protease cleavage sites (PCSs) provided greater than 80% protection to Mauritian cynomolgus macaques against repeated intravaginal SIVmac251 challenges. The PCS-specific T cell responses correlated with vaccine efficacy. The PCS vaccine did not induce immune activation or inflammation known to be associated with increased susceptibility to HIV infection. Machine learning analyses revealed that the immune microenvironment generated by the PCS vaccine was predictive of vaccine efficacy. Our study demonstrates, for the first time to our knowledge, that a vaccine which targets only viral maturation, but lacks full-length Env and Gag immunogens, can prevent intravaginal infection in a stringent macaque/SIV challenge model. Targeting HIV maturation thus offers a potentially novel approach to developing an effective HIV vaccine.
Collapse
Affiliation(s)
- Hongzhao Li
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Robert W Omange
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Binhua Liang
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada.,Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nikki Toledo
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Yan Hai
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lewis R Liu
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Dane Schalk
- Scientific Protocol Implementation Unit, Wisconsin National Primate Research Center, Madison, Wisconsin, USA
| | - Jose Crecente-Campo
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Tamara G Dacoba
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | | | - So-Yon Lim
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Lin Li
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Mohammad Abul Kashem
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Yanmin Wan
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Jorge F Correia-Pinto
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Xiao Qing Liu
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Obstetrics, Gynecology and Reproductive Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Robert F Balshaw
- Centre for Healthcare Innovation, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Qingsheng Li
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Nancy Schultz-Darken
- Scientific Protocol Implementation Unit, Wisconsin National Primate Research Center, Madison, Wisconsin, USA
| | - Maria J Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Francis A Plummer
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada.,National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - James B Whitney
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.,Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Ma Luo
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada.,National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| |
Collapse
|
21
|
Abstract
The innate immune system is comprised of both cellular and humoral players that recognise and eradicate invading pathogens. Therefore, the interplay between retroviruses and innate immunity has emerged as an important component of viral pathogenesis. HIV-1 infection in humans that results in hematologic abnormalities and immune suppression is well represented by changes in the CD4/CD8 T cell ratio and consequent cell death causing CD4 lymphopenia. The innate immune responses by mucosal barriers such as complement, DCs, macrophages, and NK cells as well as cytokine/chemokine profiles attain great importance in acute HIV-1 infection, and thus, prevent mucosal capture and transmission of HIV-1. Conversely, HIV-1 has evolved to overcome innate immune responses through RNA-mediated rapid mutations, pathogen-associated molecular patterns (PAMPs) modification, down-regulation of NK cell activity and complement receptors, resulting in increased secretion of inflammatory factors. Consequently, epithelial tissues lining up female reproductive tract express innate immune sensors including anti-microbial peptides responsible for forming primary barriers and have displayed an effective potent anti-HIV activity during phase I/II clinical trials.
Collapse
|
22
|
Jain S, Batra H, Yadav P, Chand S. COVID-19 Vaccines Currently under Preclinical and Clinical Studies, and Associated Antiviral Immune Response. Vaccines (Basel) 2020; 8:vaccines8040649. [PMID: 33153096 PMCID: PMC7711779 DOI: 10.3390/vaccines8040649] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/17/2020] [Accepted: 10/29/2020] [Indexed: 01/10/2023] Open
Abstract
With a death toll of over one million worldwide, the COVID-19 pandemic caused by SARS-CoV-2 has become the most devastating humanitarian catastrophe in recent decades. The fear of acquiring infection and spreading to vulnerable people has severely impacted society's socio-economic status. To put an end to this growing number of infections and deaths as well as to switch from restricted to everyday living, an effective vaccine is desperately needed. As a result, enormous efforts have been made globally to develop numerous vaccine candidates in a matter of months. Currently, over 30 vaccine candidates are under assessment in clinical trials, with several undergoing preclinical studies. Here, we reviewed the major vaccine candidates based on the specific vaccine platform utilized to develop them. We also discussed the immune responses generated by these candidates in humans and preclinical models to determine vaccine safety, immunogenicity, and efficacy. Finally, immune responses induced in recovered COVID-19 patients and their possible vaccine development implications were also briefly reviewed.
Collapse
Affiliation(s)
- Swati Jain
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA; (S.J.); (H.B.)
| | - Himanshu Batra
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA; (S.J.); (H.B.)
| | - Poonam Yadav
- CHI Health, Department of Pulmonary Medicine, Creighton University Medical Center, Omaha, NE 68131, USA;
| | - Subhash Chand
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Correspondence: ; Tel.: +1-402-559-8017
| |
Collapse
|
23
|
Probing the Structure of the HIV-1 Envelope Trimer Using Aspartate Scanning Mutagenesis. J Virol 2020; 94:JVI.01426-20. [PMID: 32817217 DOI: 10.1128/jvi.01426-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/11/2020] [Indexed: 12/20/2022] Open
Abstract
HIV-1 envelope (Env) glycoprotein gp160 exists as a trimer of heterodimers on the viral surface. In most structures of the soluble ectodomain of trimeric HIV-1 envelope glycoprotein, the regions from 512 to 517 of the fusion peptide and from 547 to 568 of the N-heptad repeat are disordered. We used aspartate scanning mutagenesis of subtype B strain JRFL Env as an alternate method to probe residue burial in the context of cleaved, cell surface-expressed Env, as buried residues should be intolerant to substitution with Asp. The data are inconsistent with a fully disordered 547 to 568 stretch, as residues 548, 549, 550, 555, 556, 559, 562, and 566 to 569 are all sensitive to Asp substitution. In the fusion peptide region, residues 513 and 515 were also sensitive to Asp substitution, suggesting that the fusion peptide may not be fully exposed in native Env. gp41 is metastable in the context of native trimer. Introduction of Asp at residues that are exposed in the prefusion state but buried in the postfusion state is expected to destabilize the postfusion state and any intermediate states where the residue is buried. We therefore performed soluble CD4 (sCD4)-induced gp120 shedding experiments to identify Asp mutants at residues 551, 554 to 559, 561 to 567, and 569 that could prevent gp120 shedding. We also observed similar mutational effects on shedding for equivalent mutants in the context of clade C Env from isolate 4-2J.41. These substitutions can potentially be used to stabilize native-like trimer derivatives that are used as HIV-1 vaccine immunogens.IMPORTANCE In most crystal structures of the soluble ectodomain of the HIV-1 Env trimer, some residues in the fusion and N-heptad repeat regions are disordered. Whether this is true in the context of native, functional Env on the virion surface is not known. This knowledge may be useful for stabilizing Env in its prefusion conformation and will also help to improve understanding of the viral entry process. Burial of the charged residue Asp in a protein structure is highly destabilizing. We therefore used Asp scanning mutagenesis to probe the burial of apparently disordered residues in native Env and to examine the effect of mutations in these regions on Env stability and conformation as probed by antibody binding to cell surface-expressed Env, CD4-induced shedding of HIV-1 gp120, and viral infectivity studies. Mutations that prevent shedding can potentially be used to stabilize native-like Env constructs for use as vaccine immunogens.
Collapse
|
24
|
Kumar S, Batra H, Singh S, Chawla H, Singh R, Katpara S, Hussain AW, Das BK, Lodha R, Kabra SK, Luthra K. Effect of combination antiretroviral therapy on human immunodeficiency virus 1 specific antibody responses in subtype-C infected children. J Gen Virol 2020; 101:1289-1299. [PMID: 32915123 DOI: 10.1099/jgv.0.001480] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protective antibody responses to human immunodeficiency virus (HIV)-1 infection evolve only in a fraction of infected individuals by developing broadly neutralizing antibodies (bnAbs) and/or effector functions such as antibody-dependent cellular cytotoxicity (ADCC). HIV-1 chronically infected adults and children on combination antiretroviral therapy (cART) showed a reduction in ADCC activity and improvement in HIV-1 specific neutralizing antibody (nAb) responses. Early initiation of cART in infected adults is found to be beneficial in reducing the viral load and delaying disease progression. Herein, we longitudinally evaluated the effect of cART on HIV-1 specific plasma ADCC and nAb responses in a cohort of 20 perinatally HIV-1 subtype-C infected infants and children ≤2 years of age, pre-cART and up to 1 year post-cART initiation. Significant reductions in HIV-1 specific plasma ADCC responses to subtype-C and subtype-B viruses and improvement in HIV-1 neutralization were observed in HIV-1 infected children 1 year post-cART initiation. A positive correlation between reduction in viral load and the loss of ADCC response was observed. This study provides information aiding the understanding of the effects of early initiation of cART on antibody effector functions and viral neutralization in HIV-1 infected children, which needs to be further evaluated in large cohorts of HIV-1 infected children on cART to plan future intervention strategies.
Collapse
Affiliation(s)
- Sanjeev Kumar
- ICGEB-Emory Vaccine Centre, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.,Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Himanshu Batra
- Department of Biology, Catholic University of America, Washington, DC, USA.,Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Swarandeep Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Himanshi Chawla
- Present address: Biological Sciences and the Institute for Life Sciences, University of Southampton, Southampton, UK.,Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Ravinder Singh
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Sanket Katpara
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Abdul Wahid Hussain
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Bimal Kumar Das
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Rakesh Lodha
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Sushil Kumar Kabra
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
25
|
Li Y, Deng L, Liang J, Dong GH, Xia YL, Fu YX, Liu SQ. Molecular dynamics simulations reveal distinct differences in conformational dynamics and thermodynamics between the unliganded and CD4-bound states of HIV-1 gp120. Phys Chem Chem Phys 2020; 22:5548-5560. [PMID: 32119016 DOI: 10.1039/c9cp06706j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The entry of human immunodeficiency virus type I (HIV-1) into host cells is initiated by binding to the cell-surface receptor CD4, which induces a conformational transition of the envelope (Env) glycoprotein gp120 from the closed, unliganded state to the open, CD4-bound state. Despite many available structures in these two states, detailed aspects on the dynamics and thermodynamics of gp120 remain elusive. Here, we performed microsecond-scale (μs-scale) multiple-replica molecular dynamics (MD) simulations to explore the differences in the conformational dynamics, protein motions, and thermodynamics between the unliganded and CD4-bound/complexed forms of gp120. Comparative analyses of MD trajectories reveal that CD4 binding promotes the structural deviations/changes and conformational flexibility, loosens the structural packing, and complicates the molecular motions of gp120. Comparison of the constructed free energy landscapes (FELs) reveals that the CD4-complexed gp120 has more conformational substates, larger conformational entropy, and lower thermostability than the unliganded form. Therefore, the unliganded conformation represents a structurally and energetically stable "ground state" for the full-length gp120. The observed great increase in the mobility of V1/V2 and V3 along with their more versatile movement directions in the CD4-bound gp120 compared to the unliganded form suggests that their orientations with respect to each other and to the structural core determine the differences in the conformational dynamics and thermodynamics between the two gp120 forms. The results presented here provide a basis by which to better understand the functional and immunological properties of gp120 and, furthermore, to deploy appropriate strategies for the development of anti-HIV-1 drugs or vaccines.
Collapse
Affiliation(s)
- Yi Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan & School of Life Sciences, Yunnan University, Kunming 650091, China. and College of Mathematics and Computer Science, Dali University, Dali 671003, China
| | - Lei Deng
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan & School of Life Sciences, Yunnan University, Kunming 650091, China.
| | - Jing Liang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan & School of Life Sciences, Yunnan University, Kunming 650091, China.
| | - Guang-Heng Dong
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan & School of Life Sciences, Yunnan University, Kunming 650091, China.
| | - Yuan-Ling Xia
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan & School of Life Sciences, Yunnan University, Kunming 650091, China.
| | - Yun-Xin Fu
- Human Genetics Center and Division of Biostatistics, School of Public Health, The University of Texas Health Science Center, Houston, USA.
| | - Shu-Qun Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan & School of Life Sciences, Yunnan University, Kunming 650091, China.
| |
Collapse
|
26
|
Bi J, Li F, Zhang M, Wang H, Lu J, Zhang Y, Ling H, Wang J, Gao F, Kong W, Yu B, Yu X. An HIV-1 vaccine based on bacterium-like particles elicits Env-specific mucosal immune responses. Immunol Lett 2020; 222:29-39. [PMID: 32173375 DOI: 10.1016/j.imlet.2020.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/12/2020] [Accepted: 03/11/2020] [Indexed: 01/26/2023]
Abstract
Although many vaccines have been designed to induce effective mucosal immune responses against HIV-1, designing an effective HIV-1 vaccine remains a challenge. Bacterium-like particles (BLPs) are a new type of vector used to induce mucosal immune responses, and have already been used for some vaccines against respiratory tract viruses. In this study, we designed a mucosal vaccine against HIV-1 based on BLPs. The vaccine was used to immunize both mice and guinea pigs via intramuscular (i.m.) injection or intranasal (i.n.) drip. We found that gp120 trimers bound to BLPs delivered via i.n. drip successfully induced Env-specific secretory IgA (sIgA) at mucosal sites in mice. Furthermore, nasal washes from guinea pigs immunized via i.n. drip showed neutralizing activity against HIV-1 tier 1 pseudoviruses. Thus, gp120 trimers bound to BLPs may be an effective vaccine strategy against HIV-1.
Collapse
Affiliation(s)
- Jinpeng Bi
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Fangshen Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Mo Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Huaiyu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jingcai Lu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Hong Ling
- Department of Parasitology, Harbin Medical University, 194 Xuefu Road, Harbin, 150081, China
| | - Jiaye Wang
- Key Lab of Heilongjiang Province for infection and Immunity, Harbin, Heilongjiang 150081, China; Key Lab of Heilongjiang Province Education Bureau for Etiology, Harbin, Heilongjiang 150081, China
| | - Feng Gao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
27
|
Sasaki M, Kotaki T, Khairunisa SQ, Tachibana S, Ophinni Y, Hayashi Y, Nasronudin, Kameoka M. Characterization of HIV-1 CRF01_AE env Genes Derived from Recently Infected Indonesian Individuals. AIDS Res Hum Retroviruses 2020; 36:242-247. [PMID: 31580700 DOI: 10.1089/aid.2019.0179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To eradicate human immunodeficiency virus type 1 (HIV-1) infection, a comprehensive strategy including preventive vaccine development is needed. Envelope glycoproteins (Env) play a central role in viral infection and are the major targets of humoral immune responses. Therefore, Env is a candidate vaccine antigen, and its characterization is necessary for vaccine development. The characterization of the transmitted/founder (T/F; i.e., recently infected) virus that is responsible for the establishment of infection and induction of primary anti-HIV-1 immune responses is important. We herein established HIV-1 env clones derived from recently infected Indonesian individuals. All env genes were classified into CRF01_AE. The immunological characterization of env clones was performed by neutralization tests using a series of broadly neutralizing antibodies. The present study is the first to immunologically characterize the CRF01_AE T/F virus circulating in Indonesia.
Collapse
Affiliation(s)
- Maho Sasaki
- Department of Public Health, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Tomohiro Kotaki
- Department of Public Health, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Siti Qamariyah Khairunisa
- Indonesia-Japan Collaborative Research Centre for Emerging and Re-Emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Shingo Tachibana
- Department of Public Health, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Youdiil Ophinni
- Division of Molecular Medicine & Medical Genetics, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshitake Hayashi
- Division of Molecular Medicine & Medical Genetics, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Nasronudin
- Indonesia-Japan Collaborative Research Centre for Emerging and Re-Emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
- Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Airlangga Hospital, Surabaya, Indonesia
| | - Masanori Kameoka
- Department of Public Health, Kobe University Graduate School of Health Sciences, Kobe, Japan
| |
Collapse
|
28
|
Mekkaoui L, Ferrari M, Mattiuzzo G, Ma B, Nannini F, Onuoha S, Kotsopoulou E, Takeuchi Y, Pule M. Generation of a neutralizing antibody against RD114-pseudotyped viral vectors. J Gen Virol 2019; 101:1008-1018. [PMID: 31702531 DOI: 10.1099/jgv.0.001309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The feline endogenous RD114 glycoprotein has proved to be an attractive envelope to pseudotype both retroviral and lentiviral vectors. As a surface protein, its detection on packaging cells as well as viral particles would be useful in different fields of its use. To address this, we generated a monoclonal antibody against RD114 by immunization of rats, termed 22F10. Once seroconversion was confirmed, purified 22F10 was cloned into murine Fc and characterized with a binding affinity of 10nM. The antibody was used to detect RD114 and its variant envelopes on different stable viral packaging cell lines (FLYRD18 and WinPac-RD). 22F10 was also shown to prevent the infections of different strains of RD-pseudotyped vectors but not related envelope glycoproteins by blocking cell surface receptor binding. We are the first to report the neutralization of viral particles by a monoclonal αRD114 antibody.
Collapse
Affiliation(s)
- L Mekkaoui
- UCL Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, WC1E 6BT, London, UK
| | - M Ferrari
- Autolus Limited, Forest House, 58 Wood Lane, W12 7RZ, UK
| | - G Mattiuzzo
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, EN6 3QC, UK
| | - B Ma
- Autolus Limited, Forest House, 58 Wood Lane, W12 7RZ, UK
| | - F Nannini
- UCL Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, WC1E 6BT, London, UK
| | - S Onuoha
- Autolus Limited, Forest House, 58 Wood Lane, W12 7RZ, UK
| | - E Kotsopoulou
- Autolus Limited, Forest House, 58 Wood Lane, W12 7RZ, UK
| | - Y Takeuchi
- Division of Infection and Immunity, University College London, Cruciform Building, Gower Street, WC1E 6BT, UK.,National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, EN6 3QC, UK
| | | |
Collapse
|
29
|
Anasir MI, Poh CL. Structural Vaccinology for Viral Vaccine Design. Front Microbiol 2019; 10:738. [PMID: 31040832 PMCID: PMC6476906 DOI: 10.3389/fmicb.2019.00738] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 03/25/2019] [Indexed: 12/12/2022] Open
Abstract
Although vaccines have proven pivotal against arrays of infectious viral diseases, there are still no effective vaccines against many viruses. New structural insights into the viral envelope, protein conformation, and antigenic epitopes can guide the design of novel vaccines against challenging viruses such as human immunodeficiency virus (HIV), hepatitis C virus, enterovirus A71, and dengue virus. Recent studies demonstrated that applications of this structural information can solve some of the vaccine conundrums. This review focuses on recent advances in structure-based vaccine design, or structural vaccinology, for novel and innovative viral vaccine design.
Collapse
Affiliation(s)
- Mohd Ishtiaq Anasir
- Centre for Virus and Vaccine Research, Sunway University, Bandar Sunway, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, Sunway University, Bandar Sunway, Malaysia
| |
Collapse
|
30
|
Ivan B, Sun Z, Subbaraman H, Friedrich N, Trkola A. CD4 occupancy triggers sequential pre-fusion conformational states of the HIV-1 envelope trimer with relevance for broadly neutralizing antibody activity. PLoS Biol 2019; 17:e3000114. [PMID: 30650070 PMCID: PMC6351000 DOI: 10.1371/journal.pbio.3000114] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/29/2019] [Accepted: 01/04/2019] [Indexed: 12/18/2022] Open
Abstract
During the entry process, the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) trimer undergoes a sequence of conformational changes triggered by both CD4 and coreceptor engagement. Resolving the conformation of these transient entry intermediates has proven challenging. Here, we fine-mapped the antigenicity of entry intermediates induced by increasing CD4 engagement of cell surface–expressed Env. Escalating CD4 triggering led to the sequential adoption of different pre-fusion conformational states of the Env trimer, up to the pre-hairpin conformation, that we assessed for antibody epitope presentation. Maximal accessibility of the coreceptor binding site was detected below Env saturation by CD4. Exposure of the fusion peptide and heptad repeat 1 (HR1) required higher CD4 occupancy. Analyzing the diverse antigenic states of the Env trimer, we obtained key insights into the transitions in epitope accessibility of broadly neutralizing antibodies (bnAbs). Several bnAbs preferentially bound CD4-triggered Env, indicating a potential capacity to neutralize both pre- and post-CD4 engagement, which needs to be explored. Assessing binding and neutralization activity of bnAbs, we confirm antibody dissociation rates as a driver of incomplete neutralization. Collectively, our findings highlight a need to resolve Env conformations that are neutralization-relevant to provide guidance for immunogen development. Comprehensive mapping of conformational stages adopted by the HIV‐1 envelope glycoprotein trimer during entry into the cell reveals the preference of broadly neutralizing antibodies for distinct pre-fusion states of the trimer. The trimeric human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) mediates HIV-1 entry into its target cells. Entry is initiated by sequential triggering of Env upon interaction with its primary receptor CD4 and a coreceptor on target cells. The ensuing structural rearrangements of the Env trimer bring the viral membrane in close vicinity of the cellular membrane, enabling fusion. Resolving the structural differences between the consecutive conformations Env adopts during the entry process is of high interest, as different antigenic domains are exposed, which may affect the capacity of neutralizing antibodies to bind to Env and inhibit entry. Here, we compared the conformation of unliganded closed Env with the transitional CD4-bound Env forms by studying the antigenicity of cell surface–expressed Env with and without CD4 triggering. We show that incremental triggering by soluble CD4 allows the capture of the full continuum of conformational changes, including events that follow coreceptor interaction. Thus, the setup we introduce here turns a simple binding assay into a powerful tool to study transitional conformation changes in HIV-1 Env. Analyzing the capacity of Env-reactive antibodies to recognize the diverse Env stages, our study reveals novel aspects of the binding preferences of neutralizing antibodies that affect their inhibitory activity.
Collapse
Affiliation(s)
- Branislav Ivan
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Zhaozhi Sun
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Harini Subbaraman
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Nikolas Friedrich
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
31
|
Kozlowski PA, Aldovini A. Mucosal Vaccine Approaches for Prevention of HIV and SIV Transmission. CURRENT IMMUNOLOGY REVIEWS 2019; 15:102-122. [PMID: 31452652 PMCID: PMC6709706 DOI: 10.2174/1573395514666180605092054] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 04/19/2018] [Accepted: 05/30/2018] [Indexed: 02/06/2023]
Abstract
Optimal protective immunity to HIV will likely require that plasma cells, memory B cells and memory T cells be stationed in mucosal tissues at portals of viral entry. Mucosal vaccine administration is more effective than parenteral vaccine delivery for this purpose. The challenge has been to achieve efficient vaccine uptake at mucosal surfaces, and to identify safe and effective adjuvants, especially for mucosally administered HIV envelope protein immunogens. Here, we discuss strategies used to deliver potential HIV vaccine candidates in the intestine, respiratory tract, and male and female genital tract of humans and nonhuman primates. We also review mucosal adjuvants, including Toll-like receptor agonists, which may adjuvant both mucosal humoral and cellular immune responses to HIV protein immunogens.
Collapse
Affiliation(s)
- Pamela A. Kozlowski
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Anna Aldovini
- Department of Medicine, and Harvard Medical School, Boston Children’s Hospital, Department of Pediatrics, Boston MA, 02115, USA
| |
Collapse
|
32
|
Vidyavijayan KK, Cheedarala N, Babu H, Precilla LK, Sathyamurthi P, Chandrasekaran P, Murugavel KG, Swaminathan S, Tripathy SP, Hanna LE. Cross Type Neutralizing Antibodies Detected in a Unique HIV-2 Infected Individual From India. Front Immunol 2018; 9:2841. [PMID: 30619250 PMCID: PMC6304510 DOI: 10.3389/fimmu.2018.02841] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/19/2018] [Indexed: 11/13/2022] Open
Abstract
Background: Infection with HIV-2, a retrovirus that is closely related to HIV-1, is characterized by slower disease progression and transmission, longer latency period and low or undetectable viremia. Host immunity, including production of potent neutralizing antibodies, may be one of the possible contributors to the distinction between the two infections. In an attempt to understand whether HIV-2 infection results in production of neutralizing antibodies and to characterize the nature of the neutralization response we screened plasma of 37 HIV-2 infected individuals for the presence of broadly neutralizing antibodies. Materials and Methods: Thirty seven asymptomatic, ART-naïve, HIV-2 infected individuals were recruited for the study. Plasma obtained from these individuals were screened for the presence of broadly cross reactive neutralizing antibodies (BCNabs) using the standard neutralization screening protocol with a panel of HIV-1 and HIV-2 pseudoviruses. Plasma exhibiting broad neutralization activity were assessed for their potency employing a titration assay. Further, an attempt was made to characterize the neutralization specificity of the plasma exhibiting broad and potent neutralization activity. Result: While majority of the samples tested were capable of neutralizing HIV-2 pseudoviruses with high to moderate potency, one unique sample demonstrated broad cross clade and cross type neutralization with ability to strongly neutralize the vast majority of both HIV-1 and HIV-2 viruses tested (19/20). Preliminary analyses indicate the possible presence of antibodies with multiple glycan epitope binding specificities. Conclusion: The study identified a unique HIV-2 sample with exceptional ability to neutralize HIV-2 viruses and cross-neutralize HIV-1 viruses with great breadth and potency. This sample holds promise for isolation of novel monoclonal antibodies that may exploited as potential therapeutic tools for HIV infection.
Collapse
Affiliation(s)
- K K Vidyavijayan
- Division of HIV/AIDS, Department of Clinical Research, National Institute for Research in Tuberculosis (ICMR), Chennai, India
| | - Narayanaiah Cheedarala
- Division of HIV/AIDS, Department of Clinical Research, National Institute for Research in Tuberculosis (ICMR), Chennai, India
| | - Hemalatha Babu
- Division of HIV/AIDS, Department of Clinical Research, National Institute for Research in Tuberculosis (ICMR), Chennai, India
| | - Lucia K Precilla
- Division of HIV/AIDS, Department of Clinical Research, National Institute for Research in Tuberculosis (ICMR), Chennai, India
| | - Pattabiraman Sathyamurthi
- Division of HIV/AIDS, Department of Clinical Research, National Institute for Research in Tuberculosis (ICMR), Chennai, India
| | | | - Kailapuri G Murugavel
- Department of Infectious Diseases Laboratory, Y.R. Gaitonde Centre for AIDS Research and Education (YRG CARE), Chennai, India
| | - Soumya Swaminathan
- Division of HIV/AIDS, Department of Clinical Research, National Institute for Research in Tuberculosis (ICMR), Chennai, India
| | - Srikanth P Tripathy
- Division of HIV/AIDS, Department of Clinical Research, National Institute for Research in Tuberculosis (ICMR), Chennai, India
| | - Luke Elizabeth Hanna
- Division of HIV/AIDS, Department of Clinical Research, National Institute for Research in Tuberculosis (ICMR), Chennai, India
| |
Collapse
|
33
|
Zhou JO, Ton T, Morriss JW, Nguyen D, Fera D. Structural Insights from HIV-Antibody Coevolution and Related Immunization Studies. AIDS Res Hum Retroviruses 2018; 34:760-768. [PMID: 29984587 DOI: 10.1089/aid.2018.0097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) is a rapidly evolving pathogen that causes acquired immunodeficiency syndrome (AIDS) in humans. There are ∼30-35 million people infected with HIV around the world, and ∼25 million have died since the first reported cases in 1981. In addition, each year 2-3 million people become newly infected, and >1 million die of AIDS. An HIV-1 vaccine would help halt an AIDS pandemic, and efforts to develop a vaccine have focused on targeting the HIV-1 envelope, Env, found on the surface of the virus. A number of chronically infected individuals have been shown to produce antibodies, called broadly neutralizing antibodies (bnAbs), that target many strains of HIV-1 by binding to Env, thus suggesting promise for HIV-1 vaccine development. BnAbs take years to develop, and have a number of traits that inhibit their production; thus, a number of researchers are trying to understand the pathways that result in bnAb production, so that they can be elicited more rapidly by vaccination. This review discusses results and implications from two HIV-1-infected individuals studied longitudinally who produced bnAbs against two different sites on HIV-1 Env, and immunization studies that used Envs derived from those individuals.
Collapse
Affiliation(s)
- Jeffrey O. Zhou
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania
| | - Therese Ton
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania
| | - Julia W. Morriss
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania
| | - Diep Nguyen
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania
| | - Daniela Fera
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania
| |
Collapse
|
34
|
Moyo T, Ereño-Orbea J, Jacob RA, Pavillet CE, Kariuki SM, Tangie EN, Julien JP, Dorfman JR. Molecular Basis of Unusually High Neutralization Resistance in Tier 3 HIV-1 Strain 253-11. J Virol 2018; 92:e02261-17. [PMID: 29618644 PMCID: PMC6026760 DOI: 10.1128/jvi.02261-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 02/26/2018] [Indexed: 01/06/2023] Open
Abstract
Understanding the mechanisms used by HIV-1 to evade antibody neutralization may contribute to the design of a high-coverage vaccine. The tier 3 virus 253-11 is poorly neutralized by subtype-matched and subtype C sera, even compared to other tier 3 viruses, and is also recognized poorly by V3/glycan-targeting monoclonal antibodies (MAbs). We found that sequence polymorphisms in the V3 loop and N-linked glycosylation sites contribute only minimally to the high neutralization resistance of 253-11. Interestingly, the 253-11 membrane-proximal external region (MPER) is rarely recognized by sera in the context of the wild-type virus but is commonly recognized in the context of an HIV-2 chimera, suggesting steric or kinetic hindrance of binding to MPER in the native envelope (Env). Mutations in the 253-11 MPER, which were previously reported to increase the lifetime of the prefusion Env conformation, affected the resistance of 253-11 to antibodies targeting various epitopes on HIV-1 Env, presumably destabilizing its otherwise stable, closed trimer structure. To gain insight into the structure of 253-11, we constructed and crystallized a recombinant 253-11 SOSIP trimer. The resulting structure revealed that the heptad repeat helices in gp41 are drawn in close proximity to the trimer axis and that gp120 protomers also showed a relatively compact disposition around the trimer axis. These observations give substantial insight into the molecular features of an envelope spike from a tier 3 virus and into possible mechanisms that may contribute to its unusually high neutralization resistance.IMPORTANCE HIV-1 isolates that are highly resistant to broadly neutralizing antibodies could limit the efficacy of an antibody-based vaccine. We studied 253-11, which is highly resistant to commonly elicited neutralizing antibodies. To further understand its resistance, we made mutations that are known to delay fusion and thus increase the time that the virus spends in the open conformation following CD4 binding. Interestingly, we found that these mutations affect the 253-11 envelope (Env) spike before CD4 binding, presumably by destabilizing the trimer structure. To gain further information about the structure of the 253-11 Env trimer, we generated a recombinant 253-11 SOSIP trimer. The crystal structure of the SOSIP trimer revealed that the gp41 helices and the gp120 protomers were drawn in toward the center of the molecule compared to most solved HIV-1 Env structures. These observations provide insight into the distinct molecular features of a tier 3 envelope spike.
Collapse
Affiliation(s)
- Thandeka Moyo
- Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - June Ereño-Orbea
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Rajesh Abraham Jacob
- Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
| | - Clara E Pavillet
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Samuel Mundia Kariuki
- Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
- Department of Biological Science, University of Eldoret, Eldoret, Kenya
| | - Emily N Tangie
- Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
| | - Jean-Philippe Julien
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey R Dorfman
- Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
- Division of Immunology, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
35
|
Human IgM monoclonal antibodies block HIV-transmission to immune cells in cervico-vaginal tissues and across polarized epithelial cells in vitro. Sci Rep 2018; 8:10180. [PMID: 29977063 PMCID: PMC6033918 DOI: 10.1038/s41598-018-28242-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 06/19/2018] [Indexed: 12/20/2022] Open
Abstract
The importance of natural IgM antibodies in protection against infections is still emerging and these antibodies have a potential role in the maintenance of homeostasis through clearance of apoptotic bodies, complement-dependent mechanisms, inflammation and exclusion of misfolded proteins. Natural IgM act as a first line of defence against unknown hazardous factors and are present in most vertebrates. We investigated the functional capacity of anti-HIV-1 IgM monoclonal antibodies, from a combinatorial Fab library derived from healthy individuals, and evaluated their protective role in inhibiting HIV-1 in vitro when passing across the human mucosal epithelial barrier. Primary HIV-1 isolates were efficiently transmitted over the tight polarized epithelial cells when added to their apical surface. Efficient inhibition of HIV-1 transmission was achieved when anti-HIV-1 IgM monoclonal antibodies were added to the basolateral side of the cells. Two of these human IgM MoAbs had the ability to neutralize HIV and reduced infection of dendritic cells in primary cervico-vaginal tissue biopsies in vitro. This indicates a potential role of natural IgM antibodies in the reduction of HIV-1 transmission in mucosal tissues and improve our understanding of how natural IgM antibodies against a neutralizing epitope could interfere with viral transmission.
Collapse
|
36
|
An Immunodominant Region of the Envelope Glycoprotein of Small Ruminant Lentiviruses May Function as Decoy Antigen. Viruses 2018; 10:v10050231. [PMID: 29724026 PMCID: PMC5977224 DOI: 10.3390/v10050231] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 04/28/2018] [Accepted: 04/30/2018] [Indexed: 02/04/2023] Open
Abstract
(1) Background: Small ruminant lentiviruses (SRLV) persist in infected goats that mount a strong humoral immune response characterized by low neutralizing titers. In this study, we characterized the antibody response to SU5, a variable, immunodominant epitope of the envelope glycoprotein of SRLV. We tested the working hypothesis that the variability of SU5 reflects escape from neutralizing antibody. (2) Methods: Affinity purified anti-SU5 antibody were tested for their neutralizing activity to the homologous lentivirus. Virus culture supernatant—in native form or following sonication and filtration—was used to test the ability of free envelope glycoproteins to compete for binding in a SU5-peptide-ELISA. (3) Results: Anti-SU5 antibodies are not neutralizing, strongly suggesting that they do not bind intact viral particles. In contrast, shed envelope glycoproteins efficiently compete for binding in a SU5-ELISA, providing convincing evidence that the SU5 epitope is exposed only on shed envelope glycoproteins. (4) Conclusions: Our results show that the antibody engaging SU5 is not neutralizing and does not appear to bind to SU expressed at the surface of virus particles. We propose that SU5 is a potential decoy epitope exposed on shaded envelope glycoproteins, luring the humoral immune response in committing an original antigenic sin to a functionally irrelevant epitope.
Collapse
|
37
|
Wen Y, Trinh HV, Linton CE, Tani C, Norais N, Martinez-Guzman D, Ramesh P, Sun Y, Situ F, Karaca-Griffin S, Hamlin C, Onkar S, Tian S, Hilt S, Malyala P, Lodaya R, Li N, Otten G, Palladino G, Friedrich K, Aggarwal Y, LaBranche C, Duffy R, Shen X, Tomaras GD, Montefiori DC, Fulp W, Gottardo R, Burke B, Ulmer JB, Zolla-Pazner S, Liao HX, Haynes BF, Michael NL, Kim JH, Rao M, O’Connell RJ, Carfi A, Barnett SW. Generation and characterization of a bivalent protein boost for future clinical trials: HIV-1 subtypes CR01_AE and B gp120 antigens with a potent adjuvant. PLoS One 2018; 13:e0194266. [PMID: 29698406 PMCID: PMC5919662 DOI: 10.1371/journal.pone.0194266] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/28/2018] [Indexed: 01/23/2023] Open
Abstract
The RV144 Phase III clinical trial with ALVAC-HIV prime and AIDSVAX B/E subtypes CRF01_AE (A244) and B (MN) gp120 boost vaccine regime in Thailand provided a foundation for the future development of improved vaccine strategies that may afford protection against the human immunodeficiency virus type 1 (HIV-1). Results from this trial showed that immune responses directed against specific regions V1V2 of the viral envelope (Env) glycoprotein gp120 of HIV-1, were inversely correlated to the risk of HIV-1 infection. Due to the low production of gp120 proteins in CHO cells (2–20 mg/L), cleavage sites in V1V2 loops (A244) and V3 loop (MN) causing heterogeneous antigen products, it was an urgent need to generate CHO cells harboring A244 gp120 with high production yields and an additional, homogenous and uncleaved subtype B gp120 protein to replace MN used in RV144 for the future clinical trials. Here we describe the generation of Chinese Hamster Ovary (CHO) cell lines stably expressing vaccine HIV-1 Env antigens for these purposes: one expressing an HIV-1 subtype CRF01_AE A244 Env gp120 protein (A244.AE) and one expressing an HIV-1 subtype B 6240 Env gp120 protein (6240.B) suitable for possible future manufacturing of Phase I clinical trial materials with cell culture expression levels of over 100 mg/L. The antigenic profiles of the molecules were elucidated by comprehensive approaches including analysis with a panel of well-characterized monoclonal antibodies recognizing critical epitopes using Biacore and ELISA, and glycosylation analysis by mass spectrometry, which confirmed previously identified glycosylation sites and revealed unknown sites of O-linked and N-linked glycosylations at non-consensus motifs. Overall, the vaccines given with MF59 adjuvant induced higher and more rapid antibody (Ab) responses as well as higher Ab avidity than groups given with aluminum hydroxide. Also, bivalent proteins (A244.AE and 6240.B) formulated with MF59 elicited distinct V2-specific Abs to the epitope previously shown to correlate with decreased risk of HIV-1 infection in the RV144 trial. All together, these results provide critical information allowing the consideration of these candidate gp120 proteins for future clinical evaluations in combination with a potent adjuvant.
Collapse
Affiliation(s)
- Yingxia Wen
- Novartis Vaccines and Diagnostics, Cambridge, MA, United States of America
| | - Hung V. Trinh
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry Jackson Foundation for the Advancement of Military Medicine, Silver Spring, MD, United States of America
| | | | | | | | | | - Priyanka Ramesh
- Novartis Vaccines and Diagnostics, Cambridge, MA, United States of America
| | - Yide Sun
- Novartis Vaccines and Diagnostics, Cambridge, MA, United States of America
| | - Frank Situ
- Novartis Vaccines and Diagnostics, Cambridge, MA, United States of America
| | | | - Christopher Hamlin
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry Jackson Foundation for the Advancement of Military Medicine, Silver Spring, MD, United States of America
| | - Sayali Onkar
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry Jackson Foundation for the Advancement of Military Medicine, Silver Spring, MD, United States of America
| | - Sai Tian
- GSK, Rockville, MD, United States of America
| | - Susan Hilt
- Novartis Vaccines and Diagnostics, Cambridge, MA, United States of America
| | - Padma Malyala
- Novartis Vaccines and Diagnostics, Cambridge, MA, United States of America
| | - Rushit Lodaya
- Novartis Vaccines and Diagnostics, Cambridge, MA, United States of America
| | - Ning Li
- GSK, Rockville, MD, United States of America
| | - Gillis Otten
- Novartis Vaccines and Diagnostics, Cambridge, MA, United States of America
| | - Giuseppe Palladino
- Novartis Vaccines and Diagnostics, Cambridge, MA, United States of America
| | | | - Yukti Aggarwal
- Novartis Vaccines and Diagnostics, Cambridge, MA, United States of America
| | - Celia LaBranche
- Department of Surgery, Duke University Medical Center, Durham, NC, United States of America
| | - Ryan Duffy
- Duke Human Vaccine Institute, Duke University, Durham, NC, United States of America
| | - Xiaoying Shen
- Duke Human Vaccine Institute, Duke University, Durham, NC, United States of America
| | - Georgia D. Tomaras
- Department of Surgery, Duke University Medical Center, Durham, NC, United States of America
- Duke Human Vaccine Institute, Duke University, Durham, NC, United States of America
| | - David C. Montefiori
- Department of Surgery, Duke University Medical Center, Durham, NC, United States of America
| | - William Fulp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Brian Burke
- Novartis Vaccines and Diagnostics, Cambridge, MA, United States of America
| | - Jeffrey B. Ulmer
- GSK, Rockville, MD, United States of America
- * E-mail: (SWB); (AC); (JBU)
| | - Susan Zolla-Pazner
- Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Hua-Xin Liao
- Duke Human Vaccine Institute, Duke University, Durham, NC, United States of America
- Biomedine Institute, College of Life Science, Jinan University, Guangzhou, China
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Duke University, Durham, NC, United States of America
| | - Nelson L. Michael
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Jerome H. Kim
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Mangala Rao
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Robert J. O’Connell
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Andrea Carfi
- GSK, Rockville, MD, United States of America
- * E-mail: (SWB); (AC); (JBU)
| | - Susan W. Barnett
- GSK, Rockville, MD, United States of America
- * E-mail: (SWB); (AC); (JBU)
| |
Collapse
|
38
|
Han SY, Antoine A, Howard D, Chang B, Chang WS, Slein M, Deikus G, Kossida S, Duroux P, Lefranc MP, Sebra RP, Smith ML, Fofana IBF. Coupling of Single Molecule, Long Read Sequencing with IMGT/HighV-QUEST Analysis Expedites Identification of SIV gp140-Specific Antibodies from scFv Phage Display Libraries. Front Immunol 2018; 9:329. [PMID: 29545792 PMCID: PMC5837965 DOI: 10.3389/fimmu.2018.00329] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 02/06/2018] [Indexed: 12/20/2022] Open
Abstract
The simian immunodeficiency virus (SIV)/macaque model of human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome pathogenesis is critical for furthering our understanding of the role of antibody responses in the prevention of HIV infection, and will only increase in importance as macaque immunoglobulin (IG) gene databases are expanded. We have previously reported the construction of a phage display library from a SIV-infected rhesus macaque (Macaca mulatta) using oligonucleotide primers based on human IG gene sequences. Our previous screening relied on Sanger sequencing, which was inefficient and generated only a few dozen sequences. Here, we re-analyzed this library using single molecule, real-time (SMRT) sequencing on the Pacific Biosciences (PacBio) platform to generate thousands of highly accurate circular consensus sequencing (CCS) reads corresponding to full length single chain fragment variable. CCS data were then analyzed through the international ImMunoGeneTics information system® (IMGT®)/HighV-QUEST (www.imgt.org) to identify variable genes and perform statistical analyses. Overall the library was very diverse, with 2,569 different IMGT clonotypes called for the 5,238 IGHV sequences assigned to an IMGT clonotype. Within the library, SIV-specific antibodies represented a relatively limited number of clones, with only 135 different IMGT clonotypes called from 4,594 IGHV-assigned sequences. Our data did confirm that the IGHV4 and IGHV3 gene usage was the most abundant within the rhesus antibodies screened, and that these genes were even more enriched among SIV gp140-specific antibodies. Although a broad range of VH CDR3 amino acid (AA) lengths was observed in the unpanned library, the vast majority of SIV gp140-specific antibodies demonstrated a more uniform VH CDR3 length (20 AA). This uniformity was far less apparent when VH CDR3 were classified according to their clonotype (range: 9–25 AA), which we believe is more relevant for specific antibody identification. Only 174 IGKV and 588 IGLV clonotypes were identified within the VL sequences associated with SIV gp140-specific VH. Together, these data strongly suggest that the combination of SMRT sequencing with the IMGT/HighV-QUEST querying tool will facilitate and expedite our understanding of polyclonal antibody responses during SIV infection and may serve to rapidly expand the known scope of macaque V genes utilized during these responses.
Collapse
Affiliation(s)
- Seung Yub Han
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Alesia Antoine
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, Icahn Institute of Genomics and Multiscale Biology, New York, NY, United States
| | - David Howard
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Bryant Chang
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Woo Sung Chang
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Matthew Slein
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Gintaras Deikus
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, Icahn Institute of Genomics and Multiscale Biology, New York, NY, United States
| | - Sofia Kossida
- The international ImMunoGeneTics information system® (IMGT®), Laboratoire d'ImmunoGénétique Moléculaire (LIGM), Institut de Génétique Humaine (IGH), UMR CNRS, Montpellier University, Montpellier, France
| | - Patrice Duroux
- The international ImMunoGeneTics information system® (IMGT®), Laboratoire d'ImmunoGénétique Moléculaire (LIGM), Institut de Génétique Humaine (IGH), UMR CNRS, Montpellier University, Montpellier, France
| | - Marie-Paule Lefranc
- The international ImMunoGeneTics information system® (IMGT®), Laboratoire d'ImmunoGénétique Moléculaire (LIGM), Institut de Génétique Humaine (IGH), UMR CNRS, Montpellier University, Montpellier, France
| | - Robert P Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, Icahn Institute of Genomics and Multiscale Biology, New York, NY, United States
| | - Melissa L Smith
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, Icahn Institute of Genomics and Multiscale Biology, New York, NY, United States
| | | |
Collapse
|
39
|
Kumar S, Kumar R, Khan L, Makhdoomi MA, Thiruvengadam R, Mohata M, Agarwal M, Lodha R, Kabra SK, Sinha S, Luthra K. CD4-Binding Site Directed Cross-Neutralizing scFv Monoclonals from HIV-1 Subtype C Infected Indian Children. Front Immunol 2017; 8:1568. [PMID: 29187855 PMCID: PMC5694743 DOI: 10.3389/fimmu.2017.01568] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/01/2017] [Indexed: 12/12/2022] Open
Abstract
Progression of human immunodeficiency virus type-1 (HIV-1) infection in children is faster than adults. HIV-1 subtype C is responsible for more than 50% of the infections globally and more than 90% infections in India. To date, there is no effective vaccine against HIV-1. Recent animal studies and human Phase I trials showed promising results of the protective effect of anti-HIV-1 broadly neutralizing antibodies (bnAbs). Interaction between CD4 binding site (CD4bs) on the HIV-1 envelope glycoprotein and CD4 receptor on the host immune cells is the primary event leading to HIV-1 infection. The CD4bs is a highly conserved region, comprised of a conformational epitope, and is a potential target of bnAbs such as VRC01 that is presently under human clinical trials. Recombinant scFvs can access masked epitopes due to their small size and have shown the potential to inhibit viral replication and neutralize a broad range of viruses. Pediatric viruses are resistant to many of the existing bnAbs isolated from adults. Therefore, in this study, pooled peripheral blood mononuclear cells from 9 chronically HIV-1 subtype C infected pediatric cross-neutralizers whose plasma antibodies exhibited potent and cross-neutralizing activity were used to construct a human anti-HIV-1 scFv phage library of 9 × 108 individual clones. Plasma mapping using CD4bs-specific probes identified the presence of CD4bs directed antibodies in 4 of these children. By extensive biopanning of the library with CD4bs-specific antigen RSC3 core protein, we identified two cross-neutralizing scFv monoclonals 2B10 and 2E4 demonstrating a neutralizing breadth and GMT of 77%, 17.9 µg/ml and 32%, 51.2 µg/ml, respectively, against a panel of 49 tier 1, 2 and 3 viruses. Both scFvs competed with anti-CD4bs bnAb VRC01 confirming their CD4bs epitope specificity. The 2B10 scFv was effective in neutralizing the 7 subtype C and subtype A pediatric viruses tested. Somatic hypermutations in the VH gene of scFvs (10.1–11.1%) is comparable with that of the adult antibodies. These cross-neutralizing CD4bs-directed scFvs can serve as potential reagents for passive immunotherapy. A combination of cross-neutralizing scFvs of diverse specificities with antiretroviral drugs may be effective in suppressing viremia at an early stage of HIV-1 infection and prevent disease progression.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Rajesh Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Lubina Khan
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | | | | | - Madhav Mohata
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Mudit Agarwal
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Rakesh Lodha
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Sushil Kumar Kabra
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Subrata Sinha
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
40
|
Yaseen MM, Abuharfeil NM, Alqudah MA, Yaseen MM. Mechanisms and Factors That Drive Extensive Human Immunodeficiency Virus Type-1 Hypervariability: An Overview. Viral Immunol 2017; 30:708-726. [PMID: 29064351 DOI: 10.1089/vim.2017.0065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The extensive hypervariability of human immunodeficiency virus type-1 (HIV-1) populations represents a major barrier against the success of currently available antiretroviral therapy. Moreover, it is still the most important obstacle that faces the development of an effective preventive vaccine against this infectious virus. Indeed, several factors can drive such hypervariability within and between HIV-1 patients. These factors include: first, the very low fidelity nature of HIV-1 reverse transcriptase; second, the extremely high HIV-1 replication rate; and third, the high genomic recombination rate that the virus has. All these factors together with the APOBEC3 proteins family and the immune and antiviral drugs pressures drive the extensive hypervariability of HIV-1 populations. Studying these factors and the mechanisms that drive such hypervariability will provide valuable insights that may guide the development of effective therapeutic and preventive strategies against HIV-1 infection in the near future. To this end, in this review, we summarized recent advances in this area of HIV-1 research.
Collapse
Affiliation(s)
- Mahmoud Mohammad Yaseen
- 1 Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Jordan University of Science and Technology , Irbid, Jordan
| | - Nizar Mohammad Abuharfeil
- 2 Department of Applied Biological Sciences, College of Science and Arts, Jordan University of Science and Technology , Irbid, Jordan
| | - Mohammad Ali Alqudah
- 3 Department of Clinical Pharmacy, College of Pharmacy, Jordan University of Science and Technology , Irbid, Jordan
| | - Mohammad Mahmoud Yaseen
- 4 Department of Public Health, College of Medicine, Jordan University of Science and Technology , Irbid, Jordan
| |
Collapse
|
41
|
Structure of Simian Immunodeficiency Virus Envelope Spikes Bound with CD4 and Monoclonal Antibody 36D5. J Virol 2017; 91:JVI.00134-17. [PMID: 28539445 DOI: 10.1128/jvi.00134-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/14/2017] [Indexed: 01/29/2023] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1)/simian immunodeficiency virus (SIV) envelope spike (Env) mediates viral entry into host cells. The V3 loop of the gp120 component of the Env trimer contributes to the coreceptor binding site and is a target for neutralizing antibodies. We used cryo-electron tomography to visualize the binding of CD4 and the V3 loop monoclonal antibody (MAb) 36D5 to gp120 of the SIV Env trimer. Our results show that 36D5 binds gp120 at the base of the V3 loop and suggest that the antibody exerts its neutralization effect by blocking the coreceptor binding site. The antibody does this without altering the dynamics of the spike motion between closed and open states when CD4 is bound. The interaction between 36D5 and SIV gp120 is similar to the interaction between some broadly neutralizing anti-V3 loop antibodies and HIV-1 gp120. Two conformations of gp120 bound with CD4 are revealed, suggesting an intrinsic dynamic nature of the liganded Env trimer. CD4 binding substantially increases the binding of 36D5 to gp120 in the intact Env trimer, consistent with CD4-induced changes in the conformation of gp120 and the antibody binding site. Binding by MAb 36D5 does not substantially alter the proportions of the two CD4-bound conformations. The position of MAb 36D5 at the V3 base changes little between conformations, indicating that the V3 base serves as a pivot point during the transition between these two states.IMPORTANCE Glycoprotein spikes on the surfaces of SIV and HIV are the sole targets available to the immune system for antibody neutralization. Spikes evade the immune system by a combination of a thick layer of polysaccharide on the surface (the glycan shield) and movement between spike domains that masks the epitope conformation. Using SIV virions whose spikes were "decorated" with the primary cellular receptor (CD4) and an antibody (36D5) at part of the coreceptor binding site, we visualized multiple conformations trapped by the rapid freezing step, which were separated using statistical analysis. Our results show that the CD4-induced conformational dynamics of the spike enhances binding of the antibody.
Collapse
|
42
|
Duan LW, Zhang H, Zhao MT, Sun JX, Chen WL, Lin JP, Liu XQ. A non-canonical binding interface in the crystal structure of HIV-1 gp120 core in complex with CD4. Sci Rep 2017; 7:46733. [PMID: 28429756 PMCID: PMC5399459 DOI: 10.1038/srep46733] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 03/24/2017] [Indexed: 01/25/2023] Open
Abstract
Numerous crystal structures of HIV gp120 have been reported, alone or with receptor CD4 and cognate antibodies; however, no sole gp120/CD4 complex without stabilization by an antibody is available. Here, we report a crystal structure of the gp120/CD4 complex without the aid of an antibody from HIV-1 CRF07_BC, a strain circulating in China. Interestingly, in addition to the canonical binding surface, a second interacting interface was identified. A mutagenesis study on critical residues revealed that the stability of this interface is important for the efficiency of Env-mediated membrane fusion. Furthermore, we found that a broad neutralizing antibody, ibalizumab, which targets CD4 in the absence of gp120, occupies the same binding surface as the second interface identified here on gp120. Therefore, we identified the possibility of the involvement of a second gp120-CD4 interaction interface during viral entry, and also provided a reasonable explanation for the broad activity of neutralizing antibody ibalizumab.
Collapse
Affiliation(s)
- Liang-Wei Duan
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
- Research Center for Immunology, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang 453000, China
| | - Hui Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Meng-Ting Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ji-Xue Sun
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Wen-Li Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jian-Ping Lin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Xin-Qi Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
43
|
Mikulak J, Di Vito C, Zaghi E, Mavilio D. Host Immune Responses in HIV-1 Infection: The Emerging Pathogenic Role of Siglecs and Their Clinical Correlates. Front Immunol 2017; 8:314. [PMID: 28386256 PMCID: PMC5362603 DOI: 10.3389/fimmu.2017.00314] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/06/2017] [Indexed: 11/25/2022] Open
Abstract
A better understanding of the mechanisms employed by HIV-1 to escape immune responses still represents one of the major tasks required for the development of novel therapeutic approaches targeting a disease still lacking a definitive cure. Host innate immune responses against HIV-1 are key in the early phases of the infection as they could prevent the development and the establishment of two hallmarks of the infection: chronic inflammation and viral reservoirs. Sialic acid-binding immunoglobulin-like lectins (Siglecs) belong to a family of transmembrane proteins able to dampen host immune responses and set appropriate immune activation thresholds upon ligation with their natural ligands, the sialylated carbohydrates. This immune-modulatory function is also targeted by many pathogens that have evolved to express sialic acids on their surface in order to escape host immune responses. HIV-1 envelope glycoprotein 120 (gp120) is extensively covered by carbohydrates playing active roles in life cycle of the virus. Indeed, besides forming a protecting shield from antibody recognition, this coat of N-linked glycans interferes with the folding of viral glycoproteins and enhances virus infectivity. In particular, the sialic acid residues present on gp120 can bind Siglec-7 on natural killer and monocytes/macrophages and Siglec-1 on monocytes/macrophages and dendritic cells. The interactions between these two members of the Siglec family and the sialylated glycans present on HIV-1 envelope either induce or increase HIV-1 entry in conventional and unconventional target cells, thus contributing to viral dissemination and disease progression. In this review, we address the impact of Siglecs in the pathogenesis of HIV-1 infection and discuss how they could be employed as clinic and therapeutic targets.
Collapse
Affiliation(s)
- Joanna Mikulak
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Italy; Istituto di Ricerca Genetica e Biomedica, UOS di Milano, Consiglio Nazionale delle Ricerche (UOS/IRGB/CNR), Rozzano, Italy
| | - Clara Di Vito
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center , Rozzano , Italy
| | - Elisa Zaghi
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center , Rozzano , Italy
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Italy; Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| |
Collapse
|
44
|
Riley JL, Montaner LJ. Cell-Mediated Immunity to Target the Persistent Human Immunodeficiency Virus Reservoir. J Infect Dis 2017; 215:S160-S171. [PMID: 28520969 PMCID: PMC5853458 DOI: 10.1093/infdis/jix002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Effective clearance of virally infected cells requires the sequential activity of innate and adaptive immunity effectors. In human immunodeficiency virus (HIV) infection, naturally induced cell-mediated immune responses rarely eradicate infection. However, optimized immune responses could potentially be leveraged in HIV cure efforts if epitope escape and lack of sustained effector memory responses were to be addressed. Here we review leading HIV cure strategies that harness cell-mediated control against HIV in stably suppressed antiretroviral-treated subjects. We focus on strategies that may maximize target recognition and eradication by the sequential activation of a reconstituted immune system, together with delivery of optimal T-cell responses that can eliminate the reservoir and serve as means to maintain control of HIV spread in the absence of antiretroviral therapy (ART). As evidenced by the evolution of ART, we argue that a combination of immune-based strategies will be a superior path to cell-mediated HIV control and eradication. Available data from several human pilot trials already identify target strategies that may maximize antiviral pressure by joining innate and engineered T cell responses toward testing for sustained HIV remission and/or cure.
Collapse
Affiliation(s)
- James L Riley
- Department of Microbiology and Center for Cellular Immunotherapies, University of Pennsylvania, and
| | - Luis J Montaner
- HIV-1 Immunopathogenesis Laboratory, Wistar Institute, Philadelphia, Pennsylvania
| |
Collapse
|
45
|
Poosarla VG, Li T, Goh BC, Schulten K, Wood TK, Maranas CD. Computational de novo design of antibodies binding to a peptide with high affinity. Biotechnol Bioeng 2017; 114:1331-1342. [PMID: 28059445 DOI: 10.1002/bit.26244] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/23/2016] [Accepted: 01/05/2017] [Indexed: 12/24/2022]
Abstract
Antibody drugs play a critical role in infectious diseases, cancer, autoimmune diseases, and inflammation. However, experimental methods for the generation of therapeutic antibodies such as using immunized mice or directed evolution remain time consuming and cannot target a specific antigen epitope. Here, we describe the application of a computational framework called OptMAVEn combined with molecular dynamics to de novo design antibodies. Our reference system is antibody 2D10, a single-chain antibody (scFv) that recognizes the dodecapeptide DVFYPYPYASGS, a peptide mimic of mannose-containing carbohydrates. Five de novo designed scFvs sharing less than 75% sequence similarity to all existing natural antibody sequences were generated using OptMAVEn and their binding to the dodecapeptide was experimentally characterized by biolayer interferometry and isothermal titration calorimetry. Among them, three scFvs show binding affinity to the dodecapeptide at the nM level. Critically, these de novo designed scFvs exhibit considerably diverse modeled binding modes with the dodecapeptide. The results demonstrate the potential of OptMAVEn for the de novo design of thermally and conformationally stable antibodies with high binding affinity to antigens and encourage the targeting of other antigen targets in the future. Biotechnol. Bioeng. 2017;114: 1331-1342. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Venkata Giridhar Poosarla
- Department of Chemical Engineering, University Park, Pennsylvania, 16802.,Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, 16802
| | - Tong Li
- Department of Chemical Engineering, University Park, Pennsylvania, 16802
| | - Boon Chong Goh
- Department of Physics and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| | - Klaus Schulten
- Department of Physics and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| | - Thomas K Wood
- Department of Chemical Engineering, University Park, Pennsylvania, 16802.,Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, 16802
| | - Costas D Maranas
- Department of Chemical Engineering, University Park, Pennsylvania, 16802
| |
Collapse
|
46
|
Nakamura KJ, Heath L, Sobrera ER, Wilkinson TA, Semrau K, Kankasa C, Tobin NH, Webb NE, Lee B, Thea DM, Kuhn L, Mullins JI, Aldrovandi GM. Breast milk and in utero transmission of HIV-1 select for envelope variants with unique molecular signatures. Retrovirology 2017; 14:6. [PMID: 28122636 PMCID: PMC5267468 DOI: 10.1186/s12977-017-0331-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 01/12/2017] [Indexed: 01/06/2023] Open
Abstract
Background Mother-to-child transmission of human immunodeficiency virus-type 1 (HIV-1) poses a serious health threat in developing countries, and adequate interventions are as yet unrealized. HIV-1 infection is frequently initiated by a single founder viral variant, but the factors that influence particular variant selection are poorly understood. Results Our analysis of 647 full-length HIV-1 subtype C and G viral envelope sequences from 22 mother–infant pairs reveals unique genotypic and phenotypic signatures that depend upon transmission route. Relative to maternal strains, intrauterine HIV transmission selects infant variants that have shorter, less-glycosylated V1 loops that are more resistant to soluble CD4 (sCD4) neutralization. Transmission through breastfeeding selects for variants with fewer potential glycosylation sites in gp41, are more sensitive to the broadly neutralizing antibodies PG9 and PG16, and that bind sCD4 with reduced cooperativity. Furthermore, experiments with Affinofile cells indicate that infant viruses, regardless of transmission route, require increased levels of surface CD4 receptor for productive infection. Conclusions These data provide the first evidence for transmission route-specific selection of HIV-1 variants, potentially informing therapeutic strategies and vaccine designs that can be tailored to specific modes of vertical HIV transmission. Electronic supplementary material The online version of this article (doi:10.1186/s12977-017-0331-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kyle J Nakamura
- Division of Infectious Diseases, Children's Hospital Los Angeles, Los Angeles, CA, USA.,Systems Biology and Disease Program, USC Keck School of Medicine, Los Angeles, CA, USA
| | - Laura Heath
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Edwin R Sobrera
- Division of Infectious Diseases, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Thomas A Wilkinson
- Division of Infectious Diseases, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Katherine Semrau
- Division of Global Health Equity, Brigham and Women's Hospital, Harvard Medical School, and Ariadne Labs, Boston, MA, USA
| | - Chipepo Kankasa
- University Teaching Hospital, University of Zambia, Lusaka, Zambia
| | - Nicole H Tobin
- Division of Pediatric Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, CA, USA
| | - Nicholas E Webb
- Division of Pediatric Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, CA, USA
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Donald M Thea
- Division of Global Health Equity, Brigham and Women's Hospital, Harvard Medical School, and Ariadne Labs, Boston, MA, USA
| | - Louise Kuhn
- Department of Epidemiology, Columbia University, New York, NY, USA
| | - James I Mullins
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Grace M Aldrovandi
- Division of Pediatric Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
47
|
Jaworski JP, Vendrell A, Chiavenna SM. Neutralizing Monoclonal Antibodies to Fight HIV-1: On the Threshold of Success. Front Immunol 2017; 7:661. [PMID: 28123384 PMCID: PMC5225137 DOI: 10.3389/fimmu.2016.00661] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 12/16/2016] [Indexed: 12/21/2022] Open
Abstract
Anti-human immunodeficiency virus type-1 (anti-HIV-1) neutralizing monoclonal antibodies are broadening the spectrum of pre- and post-exposure treatment against HIV-1. A better understanding of how these antibodies develop and interact with particular regions of the viral envelope protein is guiding a more rational structure-based immunogen design. The aim of this article is to review the most recent advances in the field, from the development of these particular antibodies during natural HIV-1 infection, to their role preventing infection, boosting endogenous immune responses and clearing both free viral particles and persistently infected cells.
Collapse
Affiliation(s)
- Juan Pablo Jaworski
- National Scientific and Technical Research Council, Buenos Aires, Argentina; Institute of Virology, National Institute of Agricultural Technology, Castelar, Buenos Aires, Argentina
| | - Alejandrina Vendrell
- Pharmacological and Botanical Study Center, School of Medicine, University of Buenos Aires , Buenos Aires , Argentina
| | | |
Collapse
|
48
|
Ernst JD. Antigenic Variation and Immune Escape in the MTBC. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1019:171-190. [PMID: 29116635 DOI: 10.1007/978-3-319-64371-7_9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Microbes that infect other organisms encounter host immune responses, and must overcome or evade innate and adaptive immune responses to successfully establish infection. Highly successful microbial pathogens, including M. tuberculosis, are able to evade adaptive immune responses (mediated by antibodies and/or T lymphocytes) and thereby establish long-term chronic infection. One mechanism that diverse pathogens use to evade adaptive immunity is antigenic variation, in which structural variants emerge that alter recognition by established immune responses and allow those pathogens to persist and/or to infect previously-immune hosts. Despite the wide use of antigenic variation by diverse pathogens, this mechanism appears to be infrequent in M. tuberculosis, as indicated by findings that known and predicted human T cell epitopes in this organism are highly conserved, although there are exceptions. These findings have implications for diagnostic tests that are based on measuring host immune responses, and for vaccine design and development.
Collapse
Affiliation(s)
- Joel D Ernst
- Division of Infectious Diseases and Immunology, Departments of Medicine, Microbiology, and Pathology, New York University School of Medicine, Smilow Building, 9th floor, Rooms 901-907, 522 First Avenue, New York, NY, 10016, USA.
| |
Collapse
|
49
|
Verkoczy L. Humanized Immunoglobulin Mice: Models for HIV Vaccine Testing and Studying the Broadly Neutralizing Antibody Problem. Adv Immunol 2017; 134:235-352. [PMID: 28413022 PMCID: PMC5914178 DOI: 10.1016/bs.ai.2017.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A vaccine that can effectively prevent HIV-1 transmission remains paramount to ending the HIV pandemic, but to do so, will likely need to induce broadly neutralizing antibody (bnAb) responses. A major technical hurdle toward achieving this goal has been a shortage of animal models with the ability to systematically pinpoint roadblocks to bnAb induction and to rank vaccine strategies based on their ability to stimulate bnAb development. Over the past 6 years, immunoglobulin (Ig) knock-in (KI) technology has been leveraged to express bnAbs in mice, an approach that has enabled elucidation of various B-cell tolerance mechanisms limiting bnAb production and evaluation of strategies to circumvent such processes. From these studies, in conjunction with the wealth of information recently obtained regarding the evolutionary pathways and paratopes/epitopes of multiple bnAbs, it has become clear that the very features of bnAbs desired for their function will be problematic to elicit by traditional vaccine paradigms, necessitating more iterative testing of new vaccine concepts. To meet this need, novel bnAb KI models have now been engineered to express either inferred prerearranged V(D)J exons (or unrearranged germline V, D, or J segments that can be assembled into functional rearranged V(D)J exons) encoding predecessors of mature bnAbs. One encouraging approach that has materialized from studies using such newer models is sequential administration of immunogens designed to bind progressively more mature bnAb predecessors. In this review, insights into the regulation and induction of bnAbs based on the use of KI models will be discussed, as will new Ig KI approaches for higher-throughput production and/or altering expression of bnAbs in vivo, so as to further enable vaccine-guided bnAb induction studies.
Collapse
Affiliation(s)
- Laurent Verkoczy
- Duke University Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States.
| |
Collapse
|
50
|
Mattiacio JL, Brewer M, Dewhurst S. Display of HIV-1 Envelope Protein on Lambda Phage Scaffold as a Vaccine Platform. Methods Mol Biol 2017; 1581:245-253. [PMID: 28374253 DOI: 10.1007/978-1-4939-6869-5_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The generation of a strong antibody response to target antigens is a major goal for vaccine development. Here we describe the display of the human immunodeficiency virus (HIV) envelope spike protein (Env) on a virus-like scaffold provided by the lambda phage capsid. Phage vectors, in general, have advantages over mammalian virus vectors due to their genetic tractability, inexpensive production, suitability for scale-up, as well as their physical stability, making them an attractive vaccine platform.
Collapse
Affiliation(s)
| | - Matt Brewer
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA
| | - Stephen Dewhurst
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA
| |
Collapse
|