1
|
Bošković J, Dobričić V, Keta O, Korićanac L, Žakula J, Dinić J, Jovanović Stojanov S, Pavić A, Čudina O. Unveiling Anticancer Potential of COX-2 and 5-LOX Inhibitors: Cytotoxicity, Radiosensitization Potential and Antimigratory Activity against Colorectal and Pancreatic Carcinoma. Pharmaceutics 2024; 16:826. [PMID: 38931946 PMCID: PMC11207729 DOI: 10.3390/pharmaceutics16060826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Apart from cytotoxicity, inhibitors of the COX-2 enzyme have demonstrated additional effects important for cancer treatment (such as radiosensitization of tumor cells and cell antimigratory effects); however, the relationship between the inhibition of other inflammation-related enzyme 5-LOX inhibitors and anticancer activity is still not well understood. In our study, the cytotoxicity of thirteen COX-2 and 5-LOX inhibitors previously presented by our group (1-13) was tested on three cancer cell lines (HCT 116, HT-29 and BxPC-3) and one healthy cell line (MRC-5). Compounds 3, 5, 6 and 7 showed moderate cytotoxicity, but good selectivity towards cancer cell lines. IC50 values were in the range of 22.99-51.66 µM (HCT 116 cell line), 8.63-41.20 µM (BxPC-3 cell line) and 24.78-81.60 µM (HT-29 cell line; compound 7 > 100 µM). In comparison to tested, commercially available COX-2 and 5-LOX inhibitors, both cytotoxicity and selectivity were increased. The addition of compounds 6 and 7 to irradiation treatment showed the most significant decrease in cell proliferation of the HT-29 cell line (p < 0.001). The antimigratory potential of the best dual COX-2 and 5-LOX inhibitors (compounds 1, 2, 3 and 5) was tested by a wound-healing assay using the SW620 cell line. Compounds 1 and 3 were singled out as compounds with the most potent effect (relative wound closure was 3.20% (24 h), 5,08% (48 h) for compound 1 and 3.86% (24 h), 7.68% (48 h) for compound 3). Considering all these results, compound 3 stood out as the compound with the most optimal biological activity, with the best dual COX-2 and 5-LOX inhibitory activity, good selectivity towards tested cancer cell lines, significant cell antimigratory potential and a lack of toxic effects at therapeutic doses.
Collapse
Affiliation(s)
- Jelena Bošković
- Department of Pharmaceutical Chemistry, University of Belgrade–Faculty of Pharmacy, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - Vladimir Dobričić
- Department of Pharmaceutical Chemistry, University of Belgrade–Faculty of Pharmacy, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - Otilija Keta
- Laboratory for Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, Vinca, 11351 Belgrade, Serbia
| | - Lela Korićanac
- Laboratory for Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, Vinca, 11351 Belgrade, Serbia
| | - Jelena Žakula
- Laboratory for Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, Vinca, 11351 Belgrade, Serbia
| | - Jelena Dinić
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”, National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia
| | - Sofija Jovanović Stojanov
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”, National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia
| | - Aleksandar Pavić
- Laboratory for Microbial Molecular Genetics and Ecology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Olivera Čudina
- Department of Pharmaceutical Chemistry, University of Belgrade–Faculty of Pharmacy, Vojvode Stepe 450, 11000 Belgrade, Serbia
| |
Collapse
|
2
|
Alam MM, Alsenani NI, Abdelhamid AA, Ahmad A, Baothman OA, Hosawi SA, Altayeb H, Nadeem MS, Ahmad V, Nazreen S, Elhenawy AA. New paracetamol hybrids as anticancer and COX-2 inhibitors: Synthesis, biological evaluation and docking studies. Arch Pharm (Weinheim) 2024; 357:e2300340. [PMID: 37880869 DOI: 10.1002/ardp.202300340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/31/2023] [Accepted: 09/28/2023] [Indexed: 10/27/2023]
Abstract
Drug repurposing is an emerging field in drug development that has provided many successful drugs. In the current study, paracetamol, a known antipyretic and analgesic agent, was chemically modified to generate paracetamol derivatives as anticancer and anticyclooxygenase-2 (COX-2) agents. Compound 11 bearing a fluoro group was the best cytotoxic candidate with half-maximal inhibitory concentration (IC50 ) values ranging from 1.51 to 6.31 μM and anti-COX-2 activity with IC50 = 0.29 μM, compared to the standard drugs, doxorubicin and celecoxib. The cell cycle and apoptosis studies revealed that compound 11 possesses the ability to induce cell cycle arrest in the S phase and apoptosis in colon Huh-7 cells. These results were strongly supported by docking studies, which showed strong interactions with the amino acids of the COX-2 protein, and in silico pharmacokinetic predictions were found to be favorable for these newly synthesized paracetamol derivatives. It can be concluded that compound 11 could block cell growth and proliferation by inhibiting the COX-2 enzyme in cancer therapy.
Collapse
Affiliation(s)
- Mohammad Mahboob Alam
- Department of Chemistry, Faculty of Science, Al-Baha University, Al-Baha, Kingdom of Saudi Arabia
| | - Nawaf I Alsenani
- Department of Chemistry, Faculty of Science, Al-Baha University, Al-Baha, Kingdom of Saudi Arabia
| | - Antar A Abdelhamid
- Department of Chemistry, Faculty of Science, Al-Baha University, Al-Baha, Kingdom of Saudi Arabia
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, Egypt
| | - Abrar Ahmad
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Othman A Baothman
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Salman A Hosawi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Hisham Altayeb
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Mohammad Shahid Nadeem
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Varish Ahmad
- Department of Health Information Technology, Faculty of Applied Studies, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Syed Nazreen
- Department of Chemistry, Faculty of Science, Al-Baha University, Al-Baha, Kingdom of Saudi Arabia
| | - Ahmed A Elhenawy
- Department of Chemistry, Faculty of Science, Al-Baha University, Al-Baha, Kingdom of Saudi Arabia
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
3
|
Ma S, Xia W, Wu B, Sun C, Jiang Y, Liu H, Lowe S, Zhou Z, Xie P, Gao J, Feng L, Guo X, Qu G, Sun Y. Effect of aspirin on incidence, recurrence, and mortality in prostate cancer patients: integrating evidence from randomized controlled trials and real-world studies. Eur J Clin Pharmacol 2023; 79:1475-1503. [PMID: 37648741 DOI: 10.1007/s00228-023-03556-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
PURPOSE Aspirin has been suggested to reduce the risk of cancer. However, previous studies have been inconsistent regarding the relationship between aspirin use and the risk of occurrence of prostate cancer (PCa). The purpose of this study was to assess the effect of aspirin on clinical outcomes in patients with PCa in a meta-analysis and to explore the possible dose-response relationship. METHODS A systematic literature search was conducted in 10 electronic databases and 4 registries. The combined relative risks (RRs) were calculated using a random-effects model with 95% confidence interval (CIs) to assess the effect of aspirin on the risk of PCa. Relevant subgroup analyses and sensitivity analyses were performed. RESULTS The across studies results show that aspirin use associated with lower incidence of PCa (RR: 0.96, 95% CI: 0.95-0.98), and reduced mortality (RR: 0.88, 95% CI: 0.82-0.95). The results of the subgroup analysis indicated that both cohort and population studies in the Americas showed a reduction in PCa incidence and mortality with aspirin use. A linear correlation was observed between dosage/duration of aspirin use and its protective effect. Additionally, post-diagnosis aspirin use was associated with decreased risk of PCa mortality. CONCLUSIONS This meta-analysis revealed an independent correlation between the use of aspirin and reductions in both the incidence and mortality rates of PCa. However, randomized controlled trials did not find any association between aspirin use and PCa. Furthermore, the impact of aspirin on PCa occurrence was found to be dependent on both dosage and duration.
Collapse
Affiliation(s)
- Shaodi Ma
- Department of Epidemiology and Health Statistics, School of Public Health Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Weihang Xia
- Department of Epidemiology and Health Statistics, School of Public Health Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Birong Wu
- Department of Epidemiology and Health Statistics, School of Public Health Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Chenyu Sun
- Department of General Surgery, the Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230032, Anhui, China
- AMITA Health Saint Joseph Hospital Chicago, 2900 N. Lake Shore Drive, Chicago, IL, 60657, USA
| | - Yuemeng Jiang
- Department of Infectious Diseases, the First Affiliated Hospital of Anhui Medical University North District, No. 100 Huaihai Avenue, Hefei, 230032, Anhui, China
| | - Haixia Liu
- Department of Epidemiology and Health Statistics, School of Public Health Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Scott Lowe
- College of Osteopathic Medicine, Kansas City University, 1750 Independence Ave, Kansas City, MO, 64106, USA
| | - Zhen Zhou
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - Peng Xie
- Department of Epidemiology and Health Statistics, School of Public Health Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Juan Gao
- Department of Epidemiology and Health Statistics, School of Public Health Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Linya Feng
- Department of Epidemiology and Health Statistics, School of Public Health Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xianwei Guo
- Department of Epidemiology and Health Statistics, School of Public Health Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Guangbo Qu
- Department of Epidemiology and Health Statistics, School of Public Health Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yehuan Sun
- Department of Epidemiology and Health Statistics, School of Public Health Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- Chaohu Hospital, Anhui Medical University, No. 64 Chaohubei Road, Hefei, 238000, Anhui, China.
- Center for Evidence-Based Practice, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
4
|
Vijay K, Ambedkar R, Sowmya PRR, Ramaiah S, Ranga Rao A, Gundamaraju R, Hanumanthappa M, Malarvili MB, Manikam R, Lakshminarayana R. Prevention of aspirin-mediated secondary toxicity by combined treatment of carotenoids in macrophages. 3 Biotech 2023; 13:223. [PMID: 37292139 PMCID: PMC10244315 DOI: 10.1007/s13205-023-03632-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 04/26/2023] [Indexed: 06/10/2023] Open
Abstract
Upon understanding the boosting role of carotenoids on the endogenous anti-inflammatory system, it is vital to explore their role in reducing the use of high doses of non-steroidal anti-inflammatory drug (NSAIDs), and their mediated secondary toxicity during the treatment of chronic diseases. The current study investigates the carotenoids potential on inhibition of secondary complications induced by NSAIDs, aspirin (ASA) against lipopolysaccharide (LPS) stimulated inflammation. Initially, this study evaluated a minimal cytotoxic dose of ASA and carotenoids (β-carotene, BC/lutein, LUT/astaxanthin, AST/fucoxanthin FUCO) in Raw 264.7, U937, and peripheral blood mononuclear cells (PBMCs). In all three cells, carotenoids + ASA treatment reduced the LDH release, NO, and PGE2 efficiently than an equivalent dose of carotenoid or ASA treated alone. Based on cytotoxicity and sensitivity results, RAW 264.7 cells were selected for further cell-based assay. Among carotenoids, FUCO + ASA exhibited an efficient reduction of LDH release, NO, and PGE2 than the other carotenoids (BC + ASA, LUT + ASA, and AST + ASA) treatment. FUCO + ASA combination decreased LPS/ASA induced oxidative stress, pro-inflammatory mediators (iNOS, COX-2, and NF-κB), and cytokines (IL-6, TNF-α, and IL-1β) efficiently. Further, apoptosis was inhibited by 69.2% in FUCO + ASA, and 46.7% in ASA than LPS treated cells. A drastic decrease in intracellular ROS generation with the increase in GSH was observed in FUCO + ASA compared to LPS/ASA groups. The results documented on the low dose of ASA with a relative physiological concentration of FUCO suggested greater importance for alleviating secondary complications and optimize prolonged chronic disease treatments with NSAID's associated side effects. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03632-w.
Collapse
Affiliation(s)
- Kariyappa Vijay
- Department of Microbiology and Biotechnology, Jnana Bharathi Campus, Bangalore University, Bangalore, 560 056 India
| | - Rudrappa Ambedkar
- Department of Microbiology and Biotechnology, Jnana Bharathi Campus, Bangalore University, Bangalore, 560 056 India
| | | | - Suresh Ramaiah
- Department of Statistics, Jnana Bharathi Campus, Bangalore University, Bangalore, 560 056 India
| | - Ambati Ranga Rao
- Department of Biotechnology, Vignan’s Foundation of Science, Technology and Research (Deemed to be University), Vadlamudi, Guntur, Andhra Pradesh 522213 India
| | - Rohit Gundamaraju
- ER Stress and Mucosal Immunology Lab, School of Health Sciences, University of Tasmania, Launceston, TAS 7248 Australia
| | - Manjunatha Hanumanthappa
- Department of Biochemistry, Jnana Bharathi Campus, Bangalore University, Bangalore, 560 056 India
| | - M. B. Malarvili
- Trauma and Emergency, University of Malaya, Kuala Lumpur, Malaysia
| | - Rishya Manikam
- School of Biomedical and Health Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru Malaysia
| | - Rangaswamy Lakshminarayana
- Department of Microbiology and Biotechnology, Jnana Bharathi Campus, Bangalore University, Bangalore, 560 056 India
| |
Collapse
|
5
|
Shi M, Liu X, Pan W, Li N, Tang B. Anti-inflammatory strategies for photothermal therapy of cancer. J Mater Chem B 2023. [PMID: 37326239 DOI: 10.1039/d3tb00839h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
High temperature generated by photothermal therapy (PTT) can trigger an inflammatory response at the tumor site, which not only limits the efficacy of PTT but also increases the risk of tumor metastasis and recurrence. In light of the current limitations posed by inflammation in PTT, several studies have revealed that inhibiting PTT-induced inflammation can significantly improve the efficacy of cancer treatment. In this review, we summarize the research progress made in combining anti-inflammatory strategies to enhance the effectiveness of PTT. The goal is to offer valuable insights for developing better-designed photothermal agents in clinical cancer therapy.
Collapse
Affiliation(s)
- Mingwan Shi
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Xiaohan Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
- Laoshan Laboratory, Qingdao 266237, P. R. China
| |
Collapse
|
6
|
Haycock PC, Borges MC, Burrows K, Lemaitre RN, Burgess S, Khankari NK, Tsilidis KK, Gaunt TR, Hemani G, Zheng J, Truong T, Birmann BM, OMara T, Spurdle AB, Iles MM, Law MH, Slager SL, Saberi Hosnijeh F, Mariosa D, Cotterchio M, Cerhan JR, Peters U, Enroth S, Gharahkhani P, Le Marchand L, Williams AC, Block RC, Amos CI, Hung RJ, Zheng W, Gunter MJ, Smith GD, Relton C, Martin RM. The association between genetically elevated polyunsaturated fatty acids and risk of cancer. EBioMedicine 2023; 91:104510. [PMID: 37086649 PMCID: PMC10148095 DOI: 10.1016/j.ebiom.2023.104510] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 04/24/2023] Open
Abstract
BACKGROUND The causal relevance of polyunsaturated fatty acids (PUFAs) for risk of site-specific cancers remains uncertain. METHODS Using a Mendelian randomization (MR) framework, we assessed the causal relevance of PUFAs for risk of cancer in European and East Asian ancestry individuals. We defined the primary exposure as PUFA desaturase activity, proxied by rs174546 at the FADS locus. Secondary exposures were defined as omega 3 and omega 6 PUFAs that could be proxied by genetic polymorphisms outside the FADS region. Our study used summary genetic data on 10 PUFAs and 67 cancers, corresponding to 562,871 cases and 1,619,465 controls, collected by the Fatty Acids in Cancer Mendelian Randomization Collaboration. We estimated odds ratios (ORs) for cancer per standard deviation increase in genetically proxied PUFA exposures. FINDINGS Genetically elevated PUFA desaturase activity was associated (P < 0.0007) with higher risk (OR [95% confidence interval]) of colorectal cancer (1.09 [1.07-1.11]), esophageal squamous cell carcinoma (1.16 [1.06-1.26]), lung cancer (1.06 [1.03-1.08]) and basal cell carcinoma (1.05 [1.02-1.07]). There was little evidence for associations with reproductive cancers (OR = 1.00 [95% CI: 0.99-1.01]; Pheterogeneity = 0.25), urinary system cancers (1.03 [0.99-1.06], Pheterogeneity = 0.51), nervous system cancers (0.99 [0.95-1.03], Pheterogeneity = 0.92) or blood cancers (1.01 [0.98-1.04], Pheterogeneity = 0.09). Findings for colorectal cancer and esophageal squamous cell carcinoma remained compatible with causality in sensitivity analyses for violations of assumptions. Secondary MR analyses highlighted higher omega 6 PUFAs (arachidonic acid, gamma-linolenic acid and dihomo-gamma-linolenic acid) as potential mediators. PUFA biosynthesis is known to interact with aspirin, which increases risk of bleeding and inflammatory bowel disease. In a phenome-wide MR study of non-neoplastic diseases, we found that genetic lowering of PUFA desaturase activity, mimicking a hypothetical intervention to reduce cancer risk, was associated (P < 0.0006) with increased risk of inflammatory bowel disease but not bleeding. INTERPRETATION The PUFA biosynthesis pathway may be an intervention target for prevention of colorectal cancer and esophageal squamous cell carcinoma but with potential for increased risk of inflammatory bowel disease. FUNDING Cancer Resesrch UK (C52724/A20138, C18281/A19169). UK Medical Research Council (MR/P014054/1). National Institute for Health Research (NIHR202411). UK Medical Research Council (MC_UU_00011/1, MC_UU_00011/3, MC_UU_00011/6, and MC_UU_00011/4). National Cancer Institute (R00 CA215360). National Institutes of Health (U01 CA164973, R01 CA60987, R01 CA72520, U01 CA74806, R01 CA55874, U01 CA164973 and U01 CA164973).
Collapse
Affiliation(s)
- Philip C Haycock
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, University of Bristol, Bristol, United Kingdom.
| | - Maria Carolina Borges
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Kimberley Burrows
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Rozenn N Lemaitre
- Department of Medicine, Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
| | | | - Nikhil K Khankari
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Konstantinos K Tsilidis
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK; Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Tom R Gaunt
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Gibran Hemani
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Jie Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Therese Truong
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, Team "Exposome, Heredity, Cancer and Health", CESP, Villejuif, France
| | - Brenda M Birmann
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Tracy OMara
- Genetics and Computational Biology Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; School of Medicine, Faculty of Health Sciences, University of Queensland, Australia
| | - Amanda B Spurdle
- Genetics and Computational Biology Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; School of Medicine, Faculty of Health Sciences, University of Queensland, Australia
| | - Mark M Iles
- Leeds Institute for Data Analytics, University of Leeds, Leeds, UK; NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Matthew H Law
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia; School of Biomedical Sciences, Faculty of Health, and Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Susan L Slager
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | - Daniela Mariosa
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Michelle Cotterchio
- Dalla Lana School of Public Health, University of Toronto, Canada; Prevention and Cancer Control, Cancer Care Ontario, Ontario Health, Toronto, ON, Canada
| | - James R Cerhan
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, USA; Department of Epidemiology, School of Public Health, University of Washington, Seattle, USA
| | - Stefan Enroth
- Department of Immunology, Genetics, and Pathology, Biomedical Center, Science for Life Laboratory (SciLifeLab) Uppsala, Uppsala University, Uppsala, Sweden
| | - Puya Gharahkhani
- Statistical Genetics Lab, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston QLD, 4006, Australia
| | | | - Ann C Williams
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Robert C Block
- Department of Public Health Sciences, University of Rochester, NY, USA
| | - Christopher I Amos
- Dan L Duncan Comprehensive Cancer Center Baylor College of Medicine, USA
| | - Rayjean J Hung
- Lunenfeld-Tanenbaum Research Institute Mount Sinai Hospital and University of Toronto, Canada
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Marc J Gunter
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, Lyon, France
| | - George Davey Smith
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Caroline Relton
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Richard M Martin
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, University of Bristol, Bristol, United Kingdom; The National Institute for Health Research (NIHR) Bristol Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust and University of Bristol, Bristol, United Kingdom; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
7
|
Rai N, Gupta P, Verma A, Tiwari RK, Madhukar P, Kamble SC, Kumar A, Kumar R, Singh SK, Gautam V. Ethyl Acetate Extract of Colletotrichum gloeosporioides Promotes Cytotoxicity and Apoptosis in Human Breast Cancer Cells. ACS OMEGA 2023; 8:3768-3784. [PMID: 36743019 PMCID: PMC9893742 DOI: 10.1021/acsomega.2c05746] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
Fungal endophytes are known to be a paragon for producing bioactive compounds with a variety of pharmacological importance. The current study aims to elucidate the molecular alterations induced by the bioactive compounds produced by the fungal endophyte Colletotrichum gloeosporioides in the tumor microenvironment of human breast cancer cells. GC/MS analysis of the ethyl acetate (EA) extract of C. gloeosporioides revealed the presence of bioactive compounds with anticancer activity. The EA extract of C. gloeosporioides exerted potential plasmid DNA protective activity against hydroxyl radicals of Fenton's reagent. The cytotoxic activity further revealed that MDA-MB-231 cells exhibit more sensitivity toward the EA extract of C. gloeosporioides as compared to MCF-7 cells, whereas non-toxic to non-cancerous HEK293T cells. Furthermore, the anticancer activity demonstrated by the EA extract of C. gloeosporioides was studied by assessing nuclear morphometric analysis and induction of apoptosis in MDA-MB-231 and MCF-7 cells. The EA extract of C. gloeosporioides causes the alteration in cellular and nuclear morphologies, chromatin condensation, long-term colony inhibition, and inhibition of cell migration and proliferation ability of MDA-MB-231 and MCF-7 cells. The study also revealed that the EA extract of C. gloeosporioides treated cells undergoes apoptosis by increased production of reactive oxygen species and significant deficit in mitochondrial membrane potential. Our study also showed that the EA extract of C. gloeosporioides causes upregulation of pro-apoptotic (BAX, PARP, CASPASE-8, and FADD), cell cycle arrest (P21), and tumor suppressor (P53) related genes. Additionally, the downregulation of antiapoptotic genes (BCL-2 and SURVIVIN) and increased Caspase-3 activity suggest the induction of apoptosis in the EA extract of C. gloeosporioides treated MDA-MB-231 and MCF-7 cells. Overall, our findings suggest that the bioactive compounds present in the EA extract of C. gloeosporioides promotes apoptosis by altering the genes related to the extrinsic as well as the intrinsic pathway. Further in vivo study in breast cancer models is required to validate the in vitro observations.
Collapse
Affiliation(s)
- Nilesh Rai
- Centre
of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Priyamvada Gupta
- Centre
of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Ashish Verma
- Centre
of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Rajan Kumar Tiwari
- Department
of Zoology, Institute of Science, Banaras
Hindu University, Varanasi, 221005, India
| | - Prasoon Madhukar
- Infectious
Disease Research Laboratory, Department of Medicine, Institute of
Medical Sciences, Banaras Hindu University, Varanasi221005, India
| | - Swapnil C. Kamble
- Department
of Technology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - Ajay Kumar
- Department
of Zoology, Institute of Science, Banaras
Hindu University, Varanasi, 221005, India
| | - Rajiv Kumar
- Centre
of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Santosh Kumar Singh
- Centre
of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Vibhav Gautam
- Centre
of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
8
|
Dharshini LCP, Rasmi RR, Kathirvelan C, Kumar KM, Saradhadevi KM, Sakthivel KM. Regulatory Components of Oxidative Stress and Inflammation and Their Complex Interplay in Carcinogenesis. Appl Biochem Biotechnol 2022; 195:2893-2916. [PMID: 36441404 DOI: 10.1007/s12010-022-04266-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 11/29/2022]
Abstract
Cancer progression is closely linked to oxidative stress (OS) inflammation. OS is caused by an imbalance between the amount of reactive oxygen species produced and antioxidants present in the body. Excess ROS either oxidizes biomolecules or activates the signaling cascade, resulting in inflammation. Immune cells secrete cytokines and chemokines when inflammation is activated. These signaling molecules attract a wide range of immune cells to the site of infection or oxidative stress. Similarly, increased ROS production by immune cells at the inflamed site causes oxidative stress in the affected area. A review on the role of oxidative stress and inflammation in cancer-related literature was conducted to obtain data. All of the information gathered was focused on the current state of oxidative stress and inflammation in various cancers. After gathering all relevant information, a narrative review was created to provide a detailed note on oxidative stress and inflammation in cancer. Proliferation, differentiation, angiogenesis, migration, invasion, metabolic changes, and evasion of programmed cell death are all aided by OS and inflammation in cancer. Imbalance between reactive oxygen species (ROS) and antioxidants lead to oxidative stress that damages macromolecules (nucleic acids, lipids and proteins). It causes breakdown of the biological signaling cascade. Prolonged oxidative stress causes inflammation by activating transcription factors (NF-κB, p53, HIF-1α, PPAR-γ, Nrf2, AP-1) that alter the expression of many other genes and proteins, including growth factors, tumor-suppressor genes, oncogenes, and pro-inflammatory cytokines, resulting in cancer cell survival. The present review article examines the complex relationship between OS and inflammation in certain types of cancer (colorectal, breast, lung, bladder, and gastric cancer).
Collapse
Affiliation(s)
| | - Rajan Radha Rasmi
- Department of Biotechnology, PSG College of Arts and Science, Civil Aerodrome Post, Coimbatore, 641 014, Tamil Nadu, India
| | - Chinnadurai Kathirvelan
- Department of Animal Nutrition, Veterinary College and Research Institute, Tamil Nadu Veterinary and Animal Sciences University (TANUVAS), Namakkal, 637 002, Tamil Nadu, India
| | - Kalavathi Murugan Kumar
- School of Lifescience, Department of Bioinformatics, Pondicherry University, Pondicherry, 605014, India
| | - K M Saradhadevi
- Department of Biochemistry, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Kunnathur Murugesan Sakthivel
- Department of Biochemistry, PSG College of Arts and Science, Civil Aerodrome Post, Coimbatore, 641 014, Tamil Nadu, India.
| |
Collapse
|
9
|
Bitorina AV, Oligschlaeger Y, Ding L, Yadati T, Westheim A, Houben T, Vaes RDW, Olde Damink SWM, Theys J, Shiri-Sverdlov R. OxLDL as an Inducer of a Metabolic Shift in Cancer Cells. J Cancer 2021; 12:5817-5824. [PMID: 34475995 PMCID: PMC8408103 DOI: 10.7150/jca.56307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 06/24/2021] [Indexed: 01/01/2023] Open
Abstract
Recent evidence established a link between disturbed lipid metabolism and increased risk for cancer. One of the most prominent features related to disturbed lipid metabolism is an increased production of oxidized low-density-lipoproteins (oxLDL), which results from elevated oxidative stress. OxLDL is known to have detrimental effects on healthy cells and plays a primary role in diseases related to the metabolic syndrome. Nevertheless, so far, the exact role of oxLDL in cancer cell metabolism is not yet known. To examine changes in metabolic profile induced by oxLDL, pancreatic KLM-1 cells were treated with oxLDL in a concentration- (25 or 50 µg/ml) and/or time-dependent (4 hr or 8 hr) manner and the impact of oxLDL on oxygen consumption rates (OCR) as well as extracellular acidification rates (ECAR) was analyzed using Seahorse technology. Subsequently, to establish the link between oxLDL and glycolysis, stabilization of the master regulator hypoxia-inducible factor 1-alpha (HIF-1α) was measured by means of Western blot. Furthermore, autophagic responses were assessed by measuring protein levels of the autophagosomal marker LC3B-II. Finally, the therapeutic potential of natural anti-oxLDL IgM antibodies in reversing these effects was tested. Incubation of KLM-1 cells with oxLDL shifted the energy balance towards a more glycolytic phenotype, which is an important hallmark of cancer cells. These data were supported by measurement of increased oxLDL-mediated HIF-1α stabilization. In line, oxLDL incubation also increased the levels of LC3B-II, suggesting an elevated autophagic response. Importantly, antibodies against oxLDL were able to reverse these oxLDL-mediated metabolic effects. Our data provides a novel proof-of-concept that oxLDL induces a shift in energy balance. These data not only support a role for oxLDL in the progression of cancer but also suggest the possibility of targeting oxLDL as a therapeutic option in cancer.
Collapse
Affiliation(s)
- Albert V Bitorina
- Department of Molecular Genetics, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Yvonne Oligschlaeger
- Department of Molecular Genetics, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Lingling Ding
- Department of Molecular Genetics, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Tulasi Yadati
- Department of Molecular Genetics, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Annemarie Westheim
- Department of Precision Medicine, School for Oncology & Developmental Biology (GROW), Maastricht University Medical Centre, Maastricht, Netherlands
| | - Tom Houben
- Department of Molecular Genetics, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Rianne D W Vaes
- Department of Surgery, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Steven W M Olde Damink
- Department of Surgery, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Jan Theys
- Department of Precision Medicine, School for Oncology & Developmental Biology (GROW), Maastricht University Medical Centre, Maastricht, Netherlands
| | - Ronit Shiri-Sverdlov
- Department of Molecular Genetics, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
10
|
Genomic instability in chronic obstructive pulmonary disease and lung cancer: A systematic review and meta-analysis of studies using the micronucleus assay. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 787:108344. [PMID: 34083053 DOI: 10.1016/j.mrrev.2020.108344] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/22/2022]
Abstract
Respiratory tissues are highly susceptible to diseases due to the constant exposure to physical and chemical airborne pollutants. Chronic obstructive pulmonary disease (COPD) and lung cancer are among the most common causes of serious illness and death worldwide. The inflammatory environment associated with these respiratory diseases has long been accepted as the major player in the development of airway abnormalities. The presence and relevance of DNA damage and genomic instability makes the micronucleus assay a suitable candidate to quantitatively estimate these early pathogenetic events. A systematic review and meta-analysis were planned to determine underlying common mechanisms that can explain the relationships between COPD and lung cancer. A total of 17 studies from Jan 1999 to Dec 2019 comparing micronucleus frequency in patients affected by respiratory diseases vs healthy controls were analysed. Our results confirmed the presence of significant association between MN frequency and the diseases investigated, and suggested a circle of events linking inflammation induced oxidative stress to the risk of disease through genomic instability and hypoxia. Therefore, using non-invasive, robust and cost effective genomic instability assays such as the micronucleus assay, would allow us to capture unique phenotypic and biological changes that would allow the identification of subjects at high risk of developing lung diseases and improve early detection strategies.
Collapse
|
11
|
Saeedi-Boroujeni A, Mahmoudian-Sani MR, Bahadoram M, Alghasi A. COVID-19: A Case for Inhibiting NLRP3 Inflammasome, Suppression of Inflammation with Curcumin? Basic Clin Pharmacol Toxicol 2020; 128:37-45. [PMID: 33099890 DOI: 10.1111/bcpt.13503] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/05/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023]
Abstract
Curcumin is the effective ingredient of turmeric, sometimes used as a painkiller in traditional medicine. It has extensive biological properties such as anti-inflammatory and antioxidant activities. SARS-CoV-2 is a betacoronavirus developing severe pneumonitis. Inflammasome is one of the most important components of innate immunity, which exacerbates inflammation by increasing IL-1β and IL-18 production. Studies on viral infections have shown overactivity of inflammasome and thus the occurrence of destructive and systemic inflammation in patients. NLRP3 inflammasome has been shown to play a key role in the pathogenesis of viral diseases. The proliferation of SARS-CoV-2 in a wide range of cells can be combined with numerous observations of direct and indirect activation of inflammasome by other coronaviruses. Activation of the inflammasome is likely to be involved in the formation of cytokine storm. Curcumin regulates several molecules in the intracellular signal transduction pathways involved in inflammation, including IBB, NF-kBERK1,2, AP-1, TGF-β, TXNIP, STAT3, PPARγ, JAK2-STAT3, NLRP3, p38MAPK, Nrf2, Notch-1, AMPK, TLR-4 and MyD-88. Due to anti-inflammatory and anti-inflammasome properties without any special side effects, curcumin can potentially play a role in the treatment of COVID-19 infection along with other drug regimens.
Collapse
Affiliation(s)
- Ali Saeedi-Boroujeni
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Abadan School of Medical Sciences, Abadan, Iran.,ImmunologyToday, Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammad-Reza Mahmoudian-Sani
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Bahadoram
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Arash Alghasi
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
12
|
Paar V, Jirak P, Gruber S, Prodinger C, Cadamuro J, Wernly B, Motloch LJ, Haschke-Becher E, Hoppe UC, Lichtenauer M. Influence of dabigatran on pro-inflammatory cytokines, growth factors and chemokines - Slowing the vicious circle of coagulation and inflammation. Life Sci 2020; 262:118474. [PMID: 32961229 DOI: 10.1016/j.lfs.2020.118474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/08/2020] [Accepted: 09/16/2020] [Indexed: 12/14/2022]
Abstract
AIMS Blood coagulation is one of the most important host-defending mechanisms in vivo by maintaining the blood pressure after injury. However, besides maintaining homeostasis, blood coagulation and the contributing factors are directly linked to pathological conditions, such as thromboembolism and inflammation, leading to cardiovascular diseases, among others. As anti-inflammatory drugs may reduce cardiovascular events, we hypothesized in this study that the direct thrombin inhibitor dabigatran may reduce cytokine, growth factor and chemokine expression in vitro. MAIN METHODS Initially, human whole blood was incubated in tubes for serum, EDTA plasma, and heparinized plasma. Furthermore, human PBMCs were isolated and incubated under different culture conditions, including the treatment with human serum or thrombin, respectively. The effect of the oral anticoagulant dabigatran on pro-inflammatory cytokines, growth factors and chemokines was investigated by ELISA. KEY FINDINGS Conditioned serum resulted in a significant alteration of the secretome's protein levels after 24 h. However, solely ANG showed a dose-dependent increment by the addition of serum (79.8 ± 9.2 ng/mL) in comparison to baseline (0.2 ± 0.2 ng/mL), as it was in trend for thrombin treatment. Furthermore, the pre-treatment of PBMCs with different doses of dabigatran significantly lowered supernatant protein levels measured. Moreover, dabigatran was shown to decrease most notably the growth factor and chemokine levels in the PBMC's secretome that were treated with 200 ng/mL thrombin in a dose-dependent manner. SIGNIFICANCE In conclusion, novel oral anticoagulants, such as dabigatran, could help to reduce not only procoagulatory effects in inflammatory conditions but could also reduce proinflammatory stimuli via reduced expression of cytokines and chemokines.
Collapse
Affiliation(s)
- Vera Paar
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University of Salzburg, Salzburg, Austria.
| | - Peter Jirak
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Susanne Gruber
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Christine Prodinger
- Department of Dermatology, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Janne Cadamuro
- Department of Laboratory Medicine, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Bernhard Wernly
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Lukas J Motloch
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | | | - Uta C Hoppe
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Michael Lichtenauer
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University of Salzburg, Salzburg, Austria.
| |
Collapse
|
13
|
Daniel Pedro-Hernández L, Hernández-Montalbán C, Martínez-Klimova E, Ramírez-Ápan T, Martínez-García M. Synthesis and anticancer activity of open-resorcinarene conjugates. Bioorg Med Chem Lett 2020; 30:127275. [PMID: 32527536 DOI: 10.1016/j.bmcl.2020.127275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/12/2020] [Accepted: 05/16/2020] [Indexed: 11/17/2022]
Abstract
The first example of conjugation of open-resorcinarenes with chlorambucil, ibuprofen, naproxen and indomethacin are presented. The cytotoxic properties of the obtained conjugates were tested against the cancer cell lines U-251, PC-3, K-562, HCT-15, MCF-7 and SKLU-1. It was found that the conjugate with chlorambucil, naproxen or indomethacin (having 8 moieties) was toxic towards cancer cell lines U-251 and K-562, with no activity against non-cancerous COS-7 cells. The conjugates with naproxen and indomethacin showed high selectivity towards U-251 tumor cells.
Collapse
Affiliation(s)
- Luis Daniel Pedro-Hernández
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior, Coyoacán, C.P 04510 México, D.F., Mexico
| | - Carlos Hernández-Montalbán
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior, Coyoacán, C.P 04510 México, D.F., Mexico
| | - Elena Martínez-Klimova
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Interior, Coyoacán, C.P 04510 México, D.F., Mexico
| | - Teresa Ramírez-Ápan
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior, Coyoacán, C.P 04510 México, D.F., Mexico
| | - Marcos Martínez-García
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior, Coyoacán, C.P 04510 México, D.F., Mexico.
| |
Collapse
|
14
|
Wu L, Wang W, Dai M, Li H, Chen C, Wang D. PPARα ligand, AVE8134, and cyclooxygenase inhibitor therapy synergistically suppress lung cancer growth and metastasis. BMC Cancer 2019; 19:1166. [PMID: 31791289 PMCID: PMC6889744 DOI: 10.1186/s12885-019-6379-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 11/19/2019] [Indexed: 12/19/2022] Open
Abstract
Background Lung cancer (LC) is one of the leading causes of death worldwide, which highlights the urgent need for better therapies. Peroxisome proliferator-activated nuclear receptor alpha (PPARα), known as a key nuclear transcription factor involved in glucose and lipid metabolism, has been also implicated in endothelial proliferation and angiogenesis. However, the effects and potential mechanisms of the novel PPARα ligand, AVE8134, on LC growth and progression remain unclear. Methods A subcutaneous tumour was established in mice by injecting TC-1 lung tumour cells (~ 1 × 106 cells) into their shaved left flank. These mice were treated with three different PPARα ligands: AVE8134 (0.025% in drinking water), Wyeth-14,643 (0.025%), or Bezafibrate (0.3%). Tumour sizes and metastasis between treated and untreated mice were then compared by morphology and histology, and the metabolites of arachidonic acid (AA) were detected by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Inhibition of either Cyp2c44 expression by genetic disruption or cyclooxygenase (COX) activity by indomethacin was used to test the mechanisms by which AVE8134 affects tumour growth. Results The pharmacodynamics effects of AVE8134, Wyeth-14,643, and Bezafibrate on lipids control were similar. However, their effects on tumour suppression were different. Eicosanoid profile analysis showed that all PPARα ligands reduced the production of AA-derived epoxyeicosatrienoic acids (EETs) and increased the hydroxyl product, 11-hydroxyeicosatetraenoic acids (11-HETE). Moreover, increased 11-HETE promoted endothelial proliferation, angiogenesis, and subsequent tumour deterioration in a dose-dependent manner possibly via activating the AKT/extracellular signal-regulated kinase (ERK) pathway. The increased 11-HETE partly neutralized the benefits provided by the Cyp2c44-EETs system inhibited by PPARα ligands in tumour-bearing mice. AVE8134 treatment worsened the tumour phenotype in Cyp2c44 knockout mice, indicating that AVE8134 has contradictory effects on tumour growth. The COX inhibitor indomethacin strengthened the inhibitory actions of AVE8134 on tumour growth and metastasis by inhibiting the 11-HETE production in vivo and in vitro. Conclusion In this study, we found that the degrees of inhibition on LC growth and metastasis by PPARα ligands depended on their bidirectional regulation on EETs and 11-HETE. Considering their safety and efficacy, the novel PPARα ligand, AVE8134, is a potentially ideal anti-angiogenesis drug for cancer treatment when jointly applied with the COX inhibitor indomethacin.
Collapse
Affiliation(s)
- Lujin Wu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Meiyan Dai
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Huihui Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Daowen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China. .,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
15
|
Berardi R, Santoni M, Rinaldi S, Bower M, Tiberi M, Morgese F, Caramanti M, Savini A, Ferrini C, Torniai M, Fiordoliva I, Newsom-Davis T. Pre-treatment systemic immune-inflammation represents a prognostic factor in patients with advanced non-small cell lung cancer. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:572. [PMID: 31807553 DOI: 10.21037/atm.2019.09.18] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background Inflammation plays an important role in pathogenesis, development and progression of lung cancer. The aim of the study is to assess the prognostic role of Systemic Immune-Inflammation Index (SII), obtained by analyzing the neutrophil, lymphocyte and platelet counts, and to design prognostic models for patients receiving first-line chemo- or targeted therapy for advanced non-small cell lung cancer (NSCLC). Methods We conducted an analysis on 311 patients with advanced NSCLC, treated with first line chemo- or targeted therapy till June 2015 at our Institution. Patients were stratified in two groups with SII ≥1,270 (Group A) vs. SII <1,270 (Group B). Progression free survival (PFS) and overall survival (OS) were estimated using Kaplan-Meier method. The best SII cutoff was identified by X-tiles program. A Cox regression model was carried out for univariate and multivariate analyses. Results At baseline, 179 patients had SII ≥1,270 (Group A), whilst 132 had lower SII (Group B). The median OS was 12.4 months in Group A and 21.7 months in Group B (P<0.001), whilst the median PFS was 3.3 and 5.2 months, respectively (P=0.029). At multivariate analysis, male gender, ECOG-PS ≥2 and SII >1,270 were predictors of worst OS, whilst IV tumor stage was only slightly significant (P=0.08). Otherwise, only wild-type EGFR status and SII ≥1,270 were independent prognostic factors for worst PFS. Conclusions Pre-treatment SII is an independent prognostic factor for patients with advanced NSCLC treated with first-line therapies.
Collapse
Affiliation(s)
- Rossana Berardi
- Clinica Oncologica, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti Umberto I, GM Lancisi, G Salesi di Ancona, Italy
| | - Matteo Santoni
- Clinica Oncologica, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti Umberto I, GM Lancisi, G Salesi di Ancona, Italy
| | - Silvia Rinaldi
- Clinica Oncologica, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti Umberto I, GM Lancisi, G Salesi di Ancona, Italy
| | - Marc Bower
- Chelsea & Westminster Hospital, London, UK
| | - Michela Tiberi
- Chirurgia Toracica, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti Umberto I, GM Lancisi, G Salesi di Ancona, Italy
| | - Francesca Morgese
- Clinica Oncologica, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti Umberto I, GM Lancisi, G Salesi di Ancona, Italy
| | - Miriam Caramanti
- Clinica Oncologica, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti Umberto I, GM Lancisi, G Salesi di Ancona, Italy
| | - Agnese Savini
- Clinica Oncologica, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti Umberto I, GM Lancisi, G Salesi di Ancona, Italy
| | - Consuelo Ferrini
- Clinica Oncologica, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti Umberto I, GM Lancisi, G Salesi di Ancona, Italy
| | - Mariangela Torniai
- Clinica Oncologica, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti Umberto I, GM Lancisi, G Salesi di Ancona, Italy
| | - Ilaria Fiordoliva
- Clinica Oncologica, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti Umberto I, GM Lancisi, G Salesi di Ancona, Italy
| | | |
Collapse
|
16
|
Balakrishnan K, Panneerpandian P, Devanandan HJ, Sekar BT, Rayala SK, Ganesan K. Salt-mediated transcriptional and proteasomal dysregulations mimic the molecular dysregulations of stomach cancer. Toxicol In Vitro 2019; 61:104588. [PMID: 31279909 DOI: 10.1016/j.tiv.2019.104588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 06/21/2019] [Accepted: 07/01/2019] [Indexed: 11/16/2022]
Affiliation(s)
- Karthik Balakrishnan
- Unit of Excellence in Cancer Genetics, Department of Genetics, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, Tamilnadu, India
| | - Ponmathi Panneerpandian
- Unit of Excellence in Cancer Genetics, Department of Genetics, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, Tamilnadu, India
| | - Helen Jemimah Devanandan
- Unit of Excellence in Cancer Genetics, Department of Genetics, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, Tamilnadu, India
| | - Balaji T Sekar
- Unit of Excellence in Cancer Genetics, Department of Genetics, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, Tamilnadu, India
| | - Suresh Kumar Rayala
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, Tamilnadu, India
| | - Kumaresan Ganesan
- Unit of Excellence in Cancer Genetics, Department of Genetics, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, Tamilnadu, India.
| |
Collapse
|
17
|
Jordan P, Gonçalves V, Matos P. A New Twist to Ibuprofen: Alternative Action in Alternative Splicing. EUROPEAN MEDICAL JOURNAL 2019. [DOI: 10.33590/emj/10311656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Ibuprofen is a nonsteroidal anti-inflammatory drug (NSAID) and is a widely used medication. One indication of NSAID use is long-term chemoprevention to decrease the risk of developing various types of cancer, in particular colorectal cancer. The molecular mechanism behind the antitumour properties of NSAID has been largely attributed to inhibition of the enzyme cyclooxygenase. In this review article, the authors highlight that additional mechanisms of NSAID, especially ibuprofen, action exist that are related to cell signalling and the modulation of gene expression, including alternative splicing. For example, the authors describe how ibuprofen inhibits expression of the tumour-related splicing variant RAC1b, which is overexpressed in a specific subset of colorectal tumours. The mechanism involves changes in the phosphorylation of splicing factors that regulate this alternative splicing event. According to recent studies, ibuprofen interferes with signal transmission via protein kinases, a process which is frequently altered in cancer cells.
Collapse
Affiliation(s)
- Peter Jordan
- Department of Human Genetics, National Health Institute ‘Dr Ricardo Jorge’, Lisbon, Portugal; Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Vânia Gonçalves
- Department of Human Genetics, National Health Institute ‘Dr Ricardo Jorge’, Lisbon, Portugal; Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Paulo Matos
- Department of Human Genetics, National Health Institute ‘Dr Ricardo Jorge’, Lisbon, Portugal; Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal; Department of Chemistry and Biochemistry, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
18
|
Tolan DA, Abdel-Monem YK, El-Nagar MA. Anti-tumor platinum (IV) complexes bearing the anti-inflammatory drug naproxen in the axial position. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4763] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Dina A. Tolan
- Department of Chemistry, Faculty of Science; Menoufia University; Shebin El-Kom Egypt
| | - Yasser K. Abdel-Monem
- Department of Chemistry, Faculty of Science; Menoufia University; Shebin El-Kom Egypt
| | - Mohamed A. El-Nagar
- Department of Chemistry, Faculty of Science; Menoufia University; Shebin El-Kom Egypt
| |
Collapse
|
19
|
Morgillo F, Dallio M, Della Corte CM, Gravina AG, Viscardi G, Loguercio C, Ciardiello F, Federico A. Carcinogenesis as a Result of Multiple Inflammatory and Oxidative Hits: a Comprehensive Review from Tumor Microenvironment to Gut Microbiota. Neoplasia 2018; 20:721-733. [PMID: 29859426 PMCID: PMC6014569 DOI: 10.1016/j.neo.2018.05.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/30/2018] [Accepted: 05/01/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Floriana Morgillo
- Oncologia Medica, Dipartimento di Internistica Clinica e Sperimentale "F.Magrassi", Università della Campania "Luigi Vanvitelli", Naples, Italy.
| | - Marcello Dallio
- Gastroenterologia, Dipartimento di Internistica Clinica e Sperimentale "F.Magrassi", Università della Campania "Luigi Vanvitelli", Naples, Italy
| | - Carminia Maria Della Corte
- Oncologia Medica, Dipartimento di Internistica Clinica e Sperimentale "F.Magrassi", Università della Campania "Luigi Vanvitelli", Naples, Italy
| | - Antonietta Gerarda Gravina
- Gastroenterologia, Dipartimento di Internistica Clinica e Sperimentale "F.Magrassi", Università della Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe Viscardi
- Oncologia Medica, Dipartimento di Internistica Clinica e Sperimentale "F.Magrassi", Università della Campania "Luigi Vanvitelli", Naples, Italy
| | - Carmelina Loguercio
- Gastroenterologia, Dipartimento di Internistica Clinica e Sperimentale "F.Magrassi", Università della Campania "Luigi Vanvitelli", Naples, Italy
| | - Fortunato Ciardiello
- Oncologia Medica, Dipartimento di Internistica Clinica e Sperimentale "F.Magrassi", Università della Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessandro Federico
- Gastroenterologia, Dipartimento di Internistica Clinica e Sperimentale "F.Magrassi", Università della Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
20
|
Ngoua-Meye-Misso RL, Ndong JDLC, Sima-Obiang C, Ondo JP, Ndong-Atome GR, Ovono Abessolo F, Obame-Engonga LC. Phytochemical studies, antiangiogenic, anti-inflammatory and antioxidant activities of Scyphocephalium ochocoa Warb. (Myristicaceae), medicinal plant from Gabon. CLINICAL PHYTOSCIENCE 2018. [DOI: 10.1186/s40816-018-0075-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
21
|
Therapeutic dosages of aspirin counteract the IL-6 induced pro-tumorigenic effects by slowing down the ribosome biogenesis rate. Oncotarget 2018; 7:63226-63241. [PMID: 27557515 PMCID: PMC5325359 DOI: 10.18632/oncotarget.11441] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 08/13/2016] [Indexed: 02/07/2023] Open
Abstract
Chronic inflammation is a risk factor for the onset of cancer and the regular use of aspirin reduces the risk of cancer development. Here we showed that therapeutic dosages of aspirin counteract the pro-tumorigenic effects of the inflammatory cytokine interleukin(IL)-6 in cancer and non-cancer cell lines, and in mouse liver in vivo. We found that therapeutic dosages of aspirin prevented IL-6 from inducing the down-regulation of p53 expression and the acquisition of the epithelial mesenchymal transition (EMT) phenotypic changes in the cell lines. This was the result of a reduction in c-Myc mRNA transcription which was responsible for a down-regulation of the ribosomal protein S6 expression which, in turn, slowed down the rRNA maturation process, thus reducing the ribosome biogenesis rate. The perturbation of ribosome biogenesis hindered the Mdm2-mediated proteasomal degradation of p53, throughout the ribosomal protein-Mdm2-p53 pathway. P53 stabilization hindered the IL-6 induction of the EMT changes. The same effects were observed in livers from mice stimulated with IL-6 and treated with aspirin. It is worth noting that aspirin down-regulated ribosome biogenesis, stabilized p53 and up-regulated E-cadherin expression in unstimulated control cells also. In conclusion, these data showed that therapeutic dosages of aspirin increase the p53-mediated tumor-suppressor activity of the cells thus being in this way able to reduce the risk of cancer onset, either or not linked to chronic inflammatory processes.
Collapse
|
22
|
Zhang C, Chu M. Leflunomide: A promising drug with good antitumor potential. Biochem Biophys Res Commun 2018; 496:726-730. [PMID: 29357281 DOI: 10.1016/j.bbrc.2018.01.107] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 01/16/2018] [Indexed: 01/01/2023]
Abstract
Leflunomide, an inhibitor of dihydroorotase dehydrogenase and thereby pyrimidine synthesis, was approved for treatment of rheumatoid arthritis in 1998. During the following years, leflunomide was used in various preclinical studies as a potential cancer treatment; at the same time, more mechanisms underlying the anticancer effect of leflunomide were identified. Thus, leflunomide has been identified as a potent anticancer drug. This article summarizes the mechanisms as well as results of leflunomide in the evolving field of cancer therapy.
Collapse
Affiliation(s)
- Chunying Zhang
- Department of Urology, The Second Affiliated Hospital, Harbin Medical University, 246 Xuefu St., Nan Gang District, Harbin, China
| | - Maolin Chu
- Department of Urology, The Second Affiliated Hospital, Harbin Medical University, 246 Xuefu St., Nan Gang District, Harbin, China.
| |
Collapse
|
23
|
Sterile Inflammation Enhances ECM Degradation in Integrin β1 KO Embryonic Skin. Cell Rep 2018; 16:3334-3347. [PMID: 27653694 DOI: 10.1016/j.celrep.2016.08.062] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 07/14/2016] [Accepted: 08/18/2016] [Indexed: 01/02/2023] Open
Abstract
Epidermal knockout of integrin β1 results in complete disorganization of the basement membrane (BM), resulting in neonatal lethality. Here, we report that this disorganization is exacerbated by an early embryonic inflammatory response involving the recruitment of tissue-resident and monocyte-derived macrophages to the dermal-epidermal junction, associated with increased matrix metalloproteinase activity. Remarkably, the skin barrier in the integrin β1 knockout animals is intact, suggesting that this inflammatory response is initiated in a sterile environment. We demonstrate that the molecular mechanism involves de novo expression of integrin αvβ6 in the basal epidermal cells, which activates a TGF-β1 driven inflammatory cascade resulting in upregulation of dermal NF-κB in a Tenascin C-dependent manner. Importantly, treatment of β1 KO embryos in utero with small molecule inhibitors of TGF-βR1 and NF-κB results in marked rescue of the BM defects and amelioration of immune response, revealing an unconventional immuno-protective role for integrin β1 during BM remodeling.
Collapse
|
24
|
Dandah O, Najafzadeh M, Isreb M, Linforth R, Tait C, Baumgartner A, Anderson D. Aspirin and ibuprofen, in bulk and nanoforms: Effects on DNA damage in peripheral lymphocytes from breast cancer patients and healthy individuals. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 826:41-46. [DOI: 10.1016/j.mrgentox.2017.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/19/2017] [Accepted: 12/07/2017] [Indexed: 11/17/2022]
|
25
|
Berardi R, Rinaldi S, Santoni M, Newsom-Davis T, Tiberi M, Morgese F, Caramanti M, Savini A, Ferrini C, Torniai M, Fiordoliva I, Bower M, Cascinu S. Prognostic models to predict survival in patients with advanced non-small cell lung cancer treated with first-line chemo- or targeted therapy. Oncotarget 2018; 7:26916-24. [PMID: 27029035 PMCID: PMC5042025 DOI: 10.18632/oncotarget.8309] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 03/07/2016] [Indexed: 12/16/2022] Open
Abstract
Background We aimed to assess the prognostic role of neutrophilia, lymphocytopenia and the neutrophil-to-lymphocyte ratio (NLR), and to design models to define the prognosis of patients receiving first-line chemo- or targeted therapy for advanced non-small cell lung cancer (NSCLC). Materials and Methods We retrospectively analysed 401 consecutive patients with advanced NSCLC treated with first line chemo- or targeted therapy. Patients were stratified into two groups with pre-treatment NLR ≥ 3.7 (Group A) vs. < 3.7 (Group B). The best NLR cut-off was identified by ROC curve analysis. Results At baseline 264 patients had NLR≥3.7 (Group A), whilst 137 had lower NLR (Group B). Median OS was 10.8 months and 19.4 months in the two groups (p < 0.001), while median PFS was 3.6 months and 5.6 months, respectively (p = 0.012). At multivariate analysis, ECOG-PS≥2, stage IV cancer, non-adenocarcinoma histology, EGFR wild-type status and NLR were predictors of worse OS. Stage IV cancer, wild type EGFR status and NLR≥3.7 were independent prognostic factors for worse PFS. Patients were stratified according to the presence of 0-1 prognostic factors (8%), 2-3 factors (73%) and 4-5 factors (19%) and median OS in these groups was 33.7 months, 14.6 months and 6.6 months, respectively (p < 0.001). Similarly, patients were stratified for PFS based on the presence of 0-1 prognostic factor (15%), 2 factors (41%) and 3 factors (44%). The median PFS was 8.3 months, 4.6 months and 3.3 months respectively (p < 0.001). Conclusion Pre-treatment NLR is an independent prognostic factor for patients with advanced NSCLC treated with first-line therapies.
Collapse
Affiliation(s)
- Rossana Berardi
- Clinica di Oncologia Medica, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti Umberto I - GM Lancisi - G Salesi di Ancona, Ancona, Italy
| | - Silvia Rinaldi
- Clinica di Oncologia Medica, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti Umberto I - GM Lancisi - G Salesi di Ancona, Ancona, Italy
| | - Matteo Santoni
- Clinica di Oncologia Medica, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti Umberto I - GM Lancisi - G Salesi di Ancona, Ancona, Italy
| | | | - Michela Tiberi
- Chirurgia Toracica, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti Umberto I - GM Lancisi - G Salesi di Ancona, Ancona, Italy
| | - Francesca Morgese
- Clinica di Oncologia Medica, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti Umberto I - GM Lancisi - G Salesi di Ancona, Ancona, Italy
| | - Miriam Caramanti
- Clinica di Oncologia Medica, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti Umberto I - GM Lancisi - G Salesi di Ancona, Ancona, Italy
| | - Agnese Savini
- Clinica di Oncologia Medica, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti Umberto I - GM Lancisi - G Salesi di Ancona, Ancona, Italy
| | - Consuelo Ferrini
- Clinica di Oncologia Medica, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti Umberto I - GM Lancisi - G Salesi di Ancona, Ancona, Italy
| | - Mariangela Torniai
- Clinica di Oncologia Medica, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti Umberto I - GM Lancisi - G Salesi di Ancona, Ancona, Italy
| | - Ilaria Fiordoliva
- Clinica di Oncologia Medica, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti Umberto I - GM Lancisi - G Salesi di Ancona, Ancona, Italy
| | - Marc Bower
- Chelsea and Westminster Hospital, London, United Kingdom
| | - Stefano Cascinu
- Clinica di Oncologia Medica, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti Umberto I - GM Lancisi - G Salesi di Ancona, Ancona, Italy.,Oncologia Medica-Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| |
Collapse
|
26
|
Wang T, Cook I, Leyh TS. The NSAID allosteric site of human cytosolic sulfotransferases. J Biol Chem 2017; 292:20305-20312. [PMID: 29038294 PMCID: PMC5724015 DOI: 10.1074/jbc.m117.817387] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/04/2017] [Indexed: 11/06/2022] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are among the most commonly prescribed drugs worldwide-more than 111 million prescriptions were written in the United States in 2014. NSAIDs allosterically inhibit cytosolic sulfotransferases (SULTs) with high specificity and therapeutically relevant affinities. This study focuses on the interactions of SULT1A1 and mefenamic acid (MEF)-a potent, highly specific NSAID inhibitor of 1A1. Here, the first structure of an NSAID allosteric site-the MEF-binding site of SULT1A1-is determined using spin-label triangulation NMR. The structure is confirmed by site-directed mutagenesis and provides a molecular framework for understanding NSAID binding and isoform specificity. The mechanism of NSAID inhibition is explored using molecular dynamics and equilibrium and pre-steady-state ligand-binding studies. MEF inhibits SULT1A1 turnover through an indirect (helix-mediated) stabilization of the closed form of the active-site cap of the enzyme, which traps the nucleotide and slows its release. Using the NSAID-binding site structure of SULT1A1 as a comparative model, it appears that 11 of the 13 human SULT isoforms harbor an NSAID-binding site. We hypothesize that these sites evolved to enable SULT isoforms to respond to metabolites that lie within their metabolic domains. Finally, the NSAID-binding site structure offers a template for developing isozyme-specific allosteric inhibitors that can be used to regulate specific areas of sulfuryl-transfer metabolism.
Collapse
Affiliation(s)
- Ting Wang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461-1926
| | - Ian Cook
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461-1926
| | - Thomas S Leyh
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461-1926.
| |
Collapse
|
27
|
Yang J, Guo X, Wang M, Ma X, Ye X, Lin P. Pre-treatment inflammatory indexes as predictors of survival and cetuximab efficacy in metastatic colorectal cancer patients with wild-type RAS. Sci Rep 2017; 7:17166. [PMID: 29215037 PMCID: PMC5719445 DOI: 10.1038/s41598-017-17130-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 11/22/2017] [Indexed: 02/05/2023] Open
Abstract
This study aims at evaluating the prognostic significance of neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), lymphocyte-to-monocyte ratio (LMR), and systemic immune-inflammation indexes (SII) in metastatic colorectal cancer (mCRC) patients treated with cetuximab. Ninety-five patients receiving cetuximab for mCRC were categorized into the high or low NLR, PLR, LMR, and SII groups based on their median index values. Univariate and multivariate survival analysis were performed to identify the indexes’ correlation with progression-free survival (PFS) and overall survival (OS). In the univariate analysis, ECOG performance status, neutrphil counts, lymphocyte counts, monocyte counts, NLR, PLR, and LDH were associated with survival. Multivariate analysis showed that ECOG performance status of 0 (hazard ratio [HR] 3.608, p < 0.001; HR 5.030, p < 0.001, respectively), high absolute neutrophil counts (HR 2.837, p < 0.001; HR 1.922, p = 0.026, respectively), low lymphocyte counts (HR 0.352, p < 0.001; HR 0.440, p = 0.001, respectively), elevated NLR (HR 3.837, p < 0.001; HR 2.467, p = 0.006) were independent predictors of shorter PFS and OS. In conclusion, pre-treatment inflammatory indexes, especially NLR were potential biomarkers to predict the survival of mCRC patients with cetuximab therapy.
Collapse
Affiliation(s)
- Jing Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Xinli Guo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Manni Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Xuelei Ma
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| | - Xiaoyang Ye
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Panpan Lin
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| |
Collapse
|
28
|
Vanamala JKP, Massey AR, Pinnamaneni SR, Reddivari L, Reardon KF. Grain and sweet sorghum (Sorghum bicolor L. Moench) serves as a novel source of bioactive compounds for human health. Crit Rev Food Sci Nutr 2017; 58:2867-2881. [PMID: 28662339 DOI: 10.1080/10408398.2017.1344186] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Grain sorghum is an important staple food crop grown globally while sweet sorghum is increasingly considered as a promising biofuel feedstock. Biofuels are the major economic products from the processing of large quantities of biomass, which is currently being utilized to make value-added products in the biorefinery approach. To date, these value-added products are typically commodity chemicals and waste materials used in agriculture. However, there are opportunities to generate high-value bioactive compounds from sorghum grain and biomass. Chronic diseases, such as cancers, are the top causes for morbidity and mortality in developed nations and are promoted by inflammation and oxidative stress. Globally, colorectal cancer results in approximately one-half million deaths annually. It is estimated that as much as 80% of colorectal cancer cases can be attributed to environmental and dietary factors. The sorghum grain and ligno-cellulosic biomass generated for biofuel production has been reported to be high in bioactive compounds, including phenolic acids and flavonoids, with antioxidant and anti-inflammatory properties. This review focuses on the bioactive compounds of grain and sweet sorghum (Sorghum bicolor L. Moench), for their anti-inflammatory, antioxidant, anti-colon cancer, and immune modulator functions. The review summarizes previous efforts to identify and quantify bioactive compounds in sorghum and documents their anti-cancer biological activities. Finally, this review discusses bioactive compound extraction methodologies and technologies as well as considerations for incorporating these technologies into current biorefining practices.
Collapse
Affiliation(s)
- Jairam K P Vanamala
- a Food Science , Pennsylvania State University , University Park , Pennsylvania , USA
| | - Aaron R Massey
- b Colorado State University , Fort Collins , Colorado , USA
| | | | - Lavanya Reddivari
- d Life Sciences , Pennsylvania State University , University Park , Pennsylvania , USA
| | - Kenneth F Reardon
- e Chemical and Biological Engineering , Colorado State University , Fort Collins , Colorado , USA
| |
Collapse
|
29
|
Zinger A, Cho WC, Ben-Yehuda A. Cancer and Aging - the Inflammatory Connection. Aging Dis 2017; 8:611-627. [PMID: 28966805 PMCID: PMC5614325 DOI: 10.14336/ad.2016.1230] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/30/2016] [Indexed: 12/13/2022] Open
Abstract
Aging and cancer are highly correlated biological phenomena. Various cellular processes such as DNA damage responses and cellular senescence that serve as tumor suppressing mechanisms throughout life result in degenerative changes and contribute to the aging phenotype. In turn, aging is considered a pro-tumorigenic state, and constitutes the single most important risk factor for cancer development. However, the causative relations between aging and cancer is not straight forward, as these processes carry contradictory hallmarks; While aging is characterized by tissue degeneration and organ loss of function, cancer is a state of sustained cellular proliferation and gain of new functions. Here, we review the molecular and cellular pathways that stand in the base of aging related cancer. Specifically, we deal with the inflammatory perspective that link these two processes, and suggest possible molecular targets that may be exploited to modify their courses.
Collapse
Affiliation(s)
- Adar Zinger
- 1Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - William C Cho
- 2Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Arie Ben-Yehuda
- 1Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
30
|
Gkretsi V, Zacharia LC, Stylianopoulos T. Targeting Inflammation to Improve Tumor Drug Delivery. Trends Cancer 2017; 3:621-630. [PMID: 28867166 PMCID: PMC5614424 DOI: 10.1016/j.trecan.2017.07.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/21/2017] [Accepted: 07/24/2017] [Indexed: 12/17/2022]
Abstract
Inefficient delivery of drugs is a main cause of chemotherapy failure in hypoperfused tumors. To enhance perfusion and drug delivery in these tumors, two strategies have been developed: vascular normalization, aiming at normalizing tumor vasculature and blood vessel leakiness, and stress alleviation, aiming at decompressing tumor vessels. Vascular normalization is based on anti-angiogenic drugs, whereas stress alleviation is based on stroma-depleting agents. We present here an alternative approach to normalize tumor vasculature, taking into account that malignant tumors tend to develop at sites of chronic inflammation. Similarly to tumor vessel leakiness, inflammation is also characterized by vascular hyperpermeability. Therefore, testing the ability of anti-inflammatory agents, such as non-steroidal anti-inflammatory drugs (NSAIDs) or inflammation resolution mediators, as an alternative means to increase tumor drug delivery might prove promising.
Collapse
Affiliation(s)
- Vasiliki Gkretsi
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus.
| | - Lefteris C Zacharia
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus.
| |
Collapse
|
31
|
Jia PT, Zhang XL, Zuo HN, Lu X, Li L. Articular cartilage degradation is prevented by tanshinone IIA through inhibiting apoptosis and the expression of inflammatory cytokines. Mol Med Rep 2017; 16:6285-6289. [PMID: 28849083 DOI: 10.3892/mmr.2017.7340] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 06/14/2017] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate the effect of tanshinone IIA on the degradation of articular cartilage in a rat model of osteoarthritis (OA). The OA rat model was established by anterior cruciate ligament transection (ACLT) and medial meniscus resection (MMx). The animals were treated for 28 days with 0.25‑0.5 mg/kg doses of tanshinone IIA following ACLT + MMx. The knee joints of the rats in the ACLT + MMx group exhibited marked alterations in articular cartilage histopathology and higher Mankin scores, compared with those in the normal group. Tanshinone IIA treatment at a dose of 0.5 mg/kg significantly inhibited cartilage degradation and improved Mankin scores in the OA rat model (P<0.002). Tanshinone IIA treatment completely inhibited the ACLT + MMx‑induced accumulation of inflammatory cells and disintegration of synovial lining in the rats. An increase in the dose of tanshinone IIA between 0.25 and 0.5 mg/kg reduced the proportion of apoptotic chrondrocytes from 41 to 2% on day 29. Treatment of the rats in the ACLT + MMx group with 0.5 mg/kg doses of tanshinone IIA markedly inhibited the expression level of matrix metalloproteinase and increased the expression of tissue inhibitor of metalloproteinase in the rat articular cartilage tissues. Tanshinone IIA treatment significantly reduced the levels of inflammatory cytokines, including interleukin‑1β, tumor necrosis factor‑α and nitric oxide in rat serum samples. The protein expression levels of bone morphogenetic protein and transforming growth factor‑β were significantly increased by tanshinone IIA in the ACLT + MMx rats. Therefore, tanshinone IIA inhibited articular cartilage degradation through inhibition of apoptosis and expression levels of inflammatory cytokines, offering potential for use in the treatment of OA.
Collapse
Affiliation(s)
- Pei-Tong Jia
- Department of Orthopedics, Yantaishan Hospital, Yantai, Shandong 264001, P.R. China
| | - Xing-Lin Zhang
- Department of Orthopedics, Yantaishan Hospital, Yantai, Shandong 264001, P.R. China
| | - Hai-Ning Zuo
- Department of Orthopedics, Yantaishan Hospital, Yantai, Shandong 264001, P.R. China
| | - Xing Lu
- Department of Orthopedics, Yantaishan Hospital, Yantai, Shandong 264001, P.R. China
| | - Lin Li
- Department of Orthopedics, Shandong Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| |
Collapse
|
32
|
Abstract
PURPOSE Colorectal cancer (CRC) is the third most common cancer diagnosed in men and women in the United States. Given the availability of effective screening, most tumors are found early enough to offer patients substantial long-term survival. Thus there is a resulting significant population of CRC survivors for whom modifiable risk factors for recurrence and survival would be of interest. METHODS We conducted a population-based retrospective cohort study among patients enrolled in 2 large Midwestern health plans for which claims data, including pharmacy fill data, and medical record data were available. Men and women who were 40 years of age or older at the time of CRC diagnosis with disease less than stage IV and no history of Crohn disease, ulcerative colitis, and irritable bowel syndrome were included. CRC cases diagnosed between January 1, 1990 and December 31, 2000 were included if they met the inclusion criteria. Adjusted Cox proportional hazard models were used with exposure modeled as a time-dependent covariate. We assessed progression-free survival, defined as an aggressive polyp or invasive disease, and overall survival. RESULTS After adjustment for age at diagnosis, sex, race, body mass index, stage, side of initial tumor, and tumor histology, we found that current users of nonsteroidal anti-inflammatory drugs had a 3-fold decreased risk of recurrence and a >7-fold decreased risk of death. Our results are statistically significant with P-values <0.05. CONCLUSIONS Our results suggest that current use of nonsteroidal anti-inflammatory drugs provides significant improvements in CRC outcomes.
Collapse
|
33
|
Xu M, Liu X, Xu Y, Zhu S, Gao Y. Co‑expression of Axin and APC gene fragments inhibits colorectal cancer cell growth via regulation of the Wnt signaling pathway. Mol Med Rep 2017; 16:3783-3790. [PMID: 28731177 PMCID: PMC5646956 DOI: 10.3892/mmr.2017.7049] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/26/2017] [Indexed: 12/17/2022] Open
Abstract
Adenomatous polyposis coli (APC) and Axin interactions serve an important role in colorectal cancer (CRC) pathogenesis. The aim of the present study was to assess the combined effects of Axin and APC co-expression in CRC cells, and to determine the underlying mechanisms involved. SW480 cells were divided into the following groups: Untransfected (SW480 group), transfected with pEGFP-N3plus pCS2-MT (SW480/vector-vector), transfected with pEGFP-N3-APC5 (SW480/APC5), and transfected with pEGFP-N3-APC5 pluspCS2-MT-Axin (SW480/APC5-Axin). APC5 and Axin mRNA levels were determined by reverse transcription-polymerase chain reaction. MTT assays and flow cytometry analysis were performed to assess cell growth and cell cycle distribution, respectively. Quantitative PCR and western blot analyses were conducted to evaluate the mRNA and protein levels, respectively, of Wnt signaling effectors, including β-catenin, c-myc and survivin. Successful transfection of SW480 cells was determined with APC and APC-Axin plasmids as indicated by the green fluorescence signals. Notably, SW480/APC5 cell growth was inhibited by 40.33%, and cells co-expressing APC5 and Axin demonstrated 61.27% inhibition of cell growth compared with SW480 control cells. The results demonstrate that APC5 may induce G1/S arrest in SW480 cells, and Axin may enhance cell growth arrest induced by APC5. The mRNA and protein levels of β-catenin, c-myc and survivin were significantly reduced in SW480/APC-Axin cells when compared with the SW480/APC group. In conclusion, co-expression of APC5 and Axin genes significantly downregulated Wnt signaling in human SW480 CRC cells and inhibited cell growth, when compared with cells transfected with APC5 alone. These results may provide experimental evidence to support combined gene therapy in CRC.
Collapse
Affiliation(s)
- Meili Xu
- Department of Gerontology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Xianling Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Yan Xu
- Department of Gerontology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Shicong Zhu
- Department of Gerontology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Yawen Gao
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
34
|
Anticancer activity of salicin and fenofibrate. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:1061-1071. [DOI: 10.1007/s00210-017-1407-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 07/12/2017] [Indexed: 12/12/2022]
|
35
|
Bombardo M, Malagola E, Chen R, Rudnicka A, Graf R, Sonda S. Ibuprofen and diclofenac treatments reduce proliferation of pancreatic acinar cells upon inflammatory injury and mitogenic stimulation. Br J Pharmacol 2017; 175:335-347. [PMID: 28542719 DOI: 10.1111/bph.13867] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 05/03/2017] [Accepted: 05/11/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Nonsteroidal anti-inflammatory drugs (NSAIDs) are administered to manage the pain typically found in patients suffering from pancreatitis. NSAIDs also display anti-proliferative activity against cancer cells; however, their effects on normal, untransformed cells are poorly understood. Here, we evaluated whether NSAIDs inhibit the proliferation of pancreatic acinar cells during the development of acute pancreatitis. EXPERIMENTAL APPROACH The NSAIDs ibuprofen and diclofenac were administered to C57BL/6 mice after induction of pancreatitis with serial injections of cerulein. In addition, ibuprofen was administered concomitantly with 3,5,3-L-tri-iodothyronine (T3), which induces acinar cell proliferation in the absence of tissue inflammation. The development of pancreatic inflammation, acinar de-differentiation into metaplastic lesions and acinar proliferation were quantified by histochemical, biochemical and RT-PCR approaches. KEY RESULTS Therapeutic ibuprofen treatment selectively reduced pancreatic infiltration of activated macrophages in vivo, and M1 macrophage polarization and pro-inflammatory cytokine expression both in vivo and in vitro. Reduced macrophage activation was accompanied by reduced acinar de-differentiation into acinar-to-ductal metaplasia. Acinar proliferation was significantly impaired in the presence of ibuprofen and diclofenac, as demonstrated at both the level of proliferation markers and expression of cell cycle regulators. Ibuprofen also reduced acinar cell proliferation induced by mitogenic stimulation with T3, a treatment that does not elicit pancreatic inflammation. CONCLUSIONS AND IMPLICATIONS Our study provides evidence that the NSAIDs ibuprofen and diclofenac inhibit pancreatic acinar cell division. This suggests that prolonged treatment with these NSAIDs may negatively affect the regeneration of the pancreas and further studies are needed to confirm these findings in a clinical setting. LINKED ARTICLES This article is part of a themed section on Inventing New Therapies Without Reinventing the Wheel: The Power of Drug Repurposing. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.2/issuetoc.
Collapse
Affiliation(s)
- Marta Bombardo
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital of Zurich, Zurich, Switzerland
| | - Ermanno Malagola
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital of Zurich, Zurich, Switzerland
| | - Rong Chen
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital of Zurich, Zurich, Switzerland
| | - Alina Rudnicka
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital of Zurich, Zurich, Switzerland
| | - Rolf Graf
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital of Zurich, Zurich, Switzerland.,Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Sabrina Sonda
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital of Zurich, Zurich, Switzerland.,Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.,Biomedical Science, School of Health Sciences, Faculty of Health, University of Tasmania, Newnham Campus, Launceston, TAS, Australia
| |
Collapse
|
36
|
Mohamadkhani A, Pourshams A, Viti J, Cellai F, Mortazavi K, Sharafkhah M, Sotoudeh M, Malekzadeh R, Boffetta P, Peluso M. Pancreatic Cancer is Associated with Peripheral Leukocyte Oxidative DNA Damage. Asian Pac J Cancer Prev 2017; 18:1349-1355. [PMID: 28612585 PMCID: PMC5555546 DOI: 10.22034/apjcp.2017.18.5.1349] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Background: DNA damage accumulation has been linked to the cancer phenotype. The purpose of this study was to compare the levels of DNA base 8-hydroxy-2’-deoxyguanosine (8-OHdG) and C-reactive protein (CRP) inflammatory markers in healthy controls and pancreatic cancer patients from a hospital-based case-control study. Materials and Methods: Fifty-five pancreatic cancer patients and 55 healthy controls were enrolled from a pool of patients referred to the Endoscopic Ultrasound (EUS) center. Analysis of DNA content of peripheral blood cells was conducted for 8-OHdG with the 32P-postlabelling assay. Serum CRP levels were measured by high-sensitivity assays and demographic data for comparison were collected from individual medical records. Results: The group of cases showed significant increased median (IQR) 8-OHdG DNA adducts/106 nucleotides and CRP compared to the controls (208.8 (138.0-340.8) vs 121.8 (57.7-194.8) RAL value; P<0.001) and (3.5 (1.5-8.6) vs 0.5 (0.2-1.5) mg/L P<0.001). A number of conditional regression models confirmed associations of pancreatic cancer with oxidative DNA damage in peripheral leukocytes. Conclusions: Our findings suggest the importance of leukocyte 8-OHdG adducts as an indicator for systemic oxidative DNA damage in pancreatic cancer patients. In addition to increase in the CRP inflammatory marker, this supports the impact of inflammation in the occurrence of pancreatic cancer as well as inflammatory responses during cancer development.
Collapse
Affiliation(s)
- Ashraf Mohamadkhani
- Liver and Pancreatobiliary Diseases Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran. ,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Bilani N, Bahmad H, Abou-Kheir W. Prostate Cancer and Aspirin Use: Synopsis of the Proposed Molecular Mechanisms. Front Pharmacol 2017; 8:145. [PMID: 28377721 PMCID: PMC5359278 DOI: 10.3389/fphar.2017.00145] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/07/2017] [Indexed: 12/18/2022] Open
Abstract
Background: Prostate cancer (PCa) is a critical health burden, impacting the morbidity and mortality of millions of men around the world. Most of the patients with PCa have their disease at first sensitive to androgen deprivation treatments, but later they develop resistance to therapy and eventually die of metastatic castration-resistant prostate cancer (CRPC). Although the newly developed anti-androgen therapies are effectively alleviating symptoms and prolonging lives of patients, there are still no curable treatments for CRPC. Recently, statistical studies have shown that the chronic use of aspirin might be significantly associated with better outcomes in PCa patients. Through this review, we aim to identify the different proposed molecular mechanisms relating aspirin to the pathobiology of PCa neoplasms, with a major focus on basic research done in this context. Methods: Articles were retrieved via online database searching of PubMed and MEDLINE between 1946 and September 2016. Keywords and combinations related to PCa and aspirin were used to perform the search. Abstracts of the articles were studied by two independent reviewers and then data extraction was performed on the relevant articles that met our review objectives. Results: Aspirin, a non-steroidal anti-inflammatory drug (NSAID), affects the proliferation, apoptosis, resistance and metastasis of PCa cell lines, through both COX-dependent and COX-independent mechanisms. It also lowers levels of the PCa diagnostic marker prostate specific antigen (PSA), suggesting that clinicians need to at least be aware if their patients are using Aspirin chronically. Conclusion: This review strongly warrants further consideration of the signaling cascades activated by aspirin, which may lead to new knowledge that might be applied to improve diagnosis, prognosis and treatment of PCa.
Collapse
Affiliation(s)
- Nadeem Bilani
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut Beirut, Lebanon
| | - Hisham Bahmad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut Beirut, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut Beirut, Lebanon
| |
Collapse
|
38
|
Abstract
Now clear evidences are available to support the hypothesis that inflammation accelerates the conditions including events and molecules that reach to various types of cancers. Inflammation is a normal response to infection containing the innate and adaptive immune systems. However, when allowed to continue, unresolved, perturbation of cellular microenvironment takes place; therefore, it leads to adaptations in genes that are linked to cancer. In addition, a lot of data are accessible confirming the concept that tumour microenvironment is orchestrated by various inflammatory cells and goes to neoplastic process and finally invasion, migration and metastasis. However, infiltrations of leucocytes lead to angiogenesis, propagation and invasion. An inflammatory microenvironment that perhaps fostering impact of angiogenesis include cytokines, chemokines, enzymes and growth factors that play key role for expansion and invasion of cancer cells. This insight highlights the pathogenesis of inflammation-associated cancers and also touches and fosters the role of acetamides for the treatment and chemoprevention of carcinomas that are allied with inflammation.
Collapse
Affiliation(s)
- Priyanka Rani
- a Department of Chemistry , School of Sciences, IFTM University Moradabad , Uttar Pradesh , India
| | - Dilipkumar Pal
- b Department of Pharmaceutical Sciences , Guru Ghasidas Vishwavidyalaya (A Central University) , Koni, Bilaspur , CG , India
| | - Rahul Rama Hegde
- c Department of Pharmaceutics , School of Pharmaceutical Sciences, IFTM University Moradabad , Uttar Pradesh , India
| | - Syed Riaz Hashim
- d Department of Chemistry , School of Pharmaceutical Sciences, IFTM University Moradabad , Uttar Pradesh , India
| |
Collapse
|
39
|
Tumor Microenvironment, a Paradigm in Hepatocellular Carcinoma Progression and Therapy. Int J Mol Sci 2017. [PMID: 28216578 DOI: 10.3390/ijms18020405.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is among the most lethal and prevalent cancers in the human population. Different etiological factors such as hepatitis B and C virus, alcohol and diabetes cause liver injury followed by inflammation, necrosis and hepatocytes proliferation. Continuous cycles of this destructive-regenerative process culminates in liver cirrhosis which is characterized by regenerating nodules that progress to dysplastic nodules and ultimately HCC. Despite its significance, there is only an elemental understanding of the pathogenetic mechanisms, and there are only limited therapeutic options. Therefore, the study of the involved molecular mechanisms can open a new insight to define more effective treatment strategies. A variety of alterations have been reported in HCC patients, particularly the cancer-associated microenvironment components including immune cells, fibroblast cells, endothelial cells and extracellular matrix can support the neoplastic cells to proliferate, growth and invade. This review summarizes the current state of knowledge and highlights the principal challenges that are relevant to controlling this milieu.
Collapse
|
40
|
Tahmasebi Birgani M, Carloni V. Tumor Microenvironment, a Paradigm in Hepatocellular Carcinoma Progression and Therapy. Int J Mol Sci 2017; 18:ijms18020405. [PMID: 28216578 PMCID: PMC5343939 DOI: 10.3390/ijms18020405] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/02/2017] [Accepted: 02/08/2017] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is among the most lethal and prevalent cancers in the human population. Different etiological factors such as hepatitis B and C virus, alcohol and diabetes cause liver injury followed by inflammation, necrosis and hepatocytes proliferation. Continuous cycles of this destructive–regenerative process culminates in liver cirrhosis which is characterized by regenerating nodules that progress to dysplastic nodules and ultimately HCC. Despite its significance, there is only an elemental understanding of the pathogenetic mechanisms, and there are only limited therapeutic options. Therefore, the study of the involved molecular mechanisms can open a new insight to define more effective treatment strategies. A variety of alterations have been reported in HCC patients, particularly the cancer-associated microenvironment components including immune cells, fibroblast cells, endothelial cells and extracellular matrix can support the neoplastic cells to proliferate, growth and invade. This review summarizes the current state of knowledge and highlights the principal challenges that are relevant to controlling this milieu.
Collapse
Affiliation(s)
- Maryam Tahmasebi Birgani
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 63461, Iran.
| | - Vinicio Carloni
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, Florence 50134, Italy.
| |
Collapse
|
41
|
Kishiki T, Masaki T, Mastuoka H, Abe N, Mori T, Sugiyama M. New Prognostic Scoring System for Incurable Stage IV Colorectal Cancer. Asian Pac J Cancer Prev 2017; 17:597-601. [PMID: 26925649 DOI: 10.7314/apjcp.2016.17.2.597] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Components of the systemic inflammatory response, combined to form inflammation-based prognostic scores (mGPS, NLR, PLR, PI, PNI) have been associated with overall survival. The aim of the present study was to compare various prognostic factors including many previously established parameters and such systemic inflammation-based prognostic scores in a series of incurable stage IV colorectal cancer (CRC) patients. MATERIALS AND METHODS Patients (n=167) with stage IV CRC undergoing surgical procedures between 2005 and 2013 were enrolled. Preoperatively (7-30 days before surgery), routine laboratory examinations were performed on the same day. We calculated scores using these data and analyzed the association with cancer specific survival (CSS) statistically. RESULTS Univariate analysis revealed significant associations between CSS and WBC, albumin, CRP, CEA values, mGPS, PNI, and PI values among preoperative factors. On multivariate analysis, high mGPS and high CEA independently predicted shorter CSS (p=0.001 and p=0.018). A new scoring system was constructed using mGPS and CEA. When patients were separated into three categorized using this system, the new score accurately predicted CSS (p < 0.001). CONCLUSIONS The present study indicates that a new scoring system, consisting of mGPS and CEA, is a simple and useful tool in predicting the survival of patients with incurable stage IV CRC, and should be included in the routine assessment of these patients for decision making of appropriate treatment.
Collapse
Affiliation(s)
- Tomokazu Kishiki
- Surgery, Kyorin University School of Medicine, Tokyo, Japan E-mail :
| | | | | | | | | | | |
Collapse
|
42
|
Enjoji S, Ohama T. [The role of protein phosphatase 2A in inflammation and cancer]. Nihon Yakurigaku Zasshi 2017; 149:208-212. [PMID: 28484102 DOI: 10.1254/fpj.149.208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
|
43
|
Manrique-Moreno M, Heinbockel L, Suwalsky M, Garidel P, Brandenburg K. Biophysical study of the non-steroidal anti-inflammatory drugs (NSAID) ibuprofen, naproxen and diclofenac with phosphatidylserine bilayer membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2123-2131. [DOI: 10.1016/j.bbamem.2016.06.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/19/2016] [Accepted: 06/10/2016] [Indexed: 11/27/2022]
|
44
|
Zhao M, Huang Y, Chen Y, Xu J, Li S, Guo X. PEG-Fmoc-Ibuprofen Conjugate as a Dual Functional Nanomicellar Carrier for Paclitaxel. Bioconjug Chem 2016; 27:2198-205. [DOI: 10.1021/acs.bioconjchem.6b00415] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Min Zhao
- School
of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yixian Huang
- Center
for Pharmacogenetics, Department of Pharmaceutical Sciences, School
of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Yichao Chen
- Center
for Pharmacogenetics, Department of Pharmaceutical Sciences, School
of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Jieni Xu
- Center
for Pharmacogenetics, Department of Pharmaceutical Sciences, School
of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Song Li
- Center
for Pharmacogenetics, Department of Pharmaceutical Sciences, School
of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Xingjie Guo
- School
of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
45
|
Matos P, Gonçalves V, Jordan P. Targeting the serrated pathway of colorectal cancer with mutation in BRAF. Biochim Biophys Acta Rev Cancer 2016; 1866:51-63. [DOI: 10.1016/j.bbcan.2016.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/15/2016] [Accepted: 06/19/2016] [Indexed: 12/19/2022]
|
46
|
Schemeth D, Kappacher C, Rainer M, Thalinger R, Bonn GK. Comprehensive evaluation of imidazole-based polymers for the enrichment of selected non-steroidal anti-inflammatory drugs. Talanta 2016; 153:177-85. [DOI: 10.1016/j.talanta.2016.03.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 11/16/2022]
|
47
|
Yamada S, Fujii T, Yabusaki N, Murotani K, Iwata N, Kanda M, Tanaka C, Nakayama G, Sugimoto H, Koike M, Fujiwara M, Kodera Y. Clinical Implication of Inflammation-Based Prognostic Score in Pancreatic Cancer: Glasgow Prognostic Score Is the Most Reliable Parameter. Medicine (Baltimore) 2016; 95:e3582. [PMID: 27149487 PMCID: PMC4863804 DOI: 10.1097/md.0000000000003582] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A variety of systemic inflammation-based prognostic scores have been explored; however, there has been no study to clarify which score could best reflect survival in resected pancreatic cancer patients.Between 2002 and 2014, 379 consecutive patients who underwent curative resection of pancreatic cancer were enrolled. The Glasgow Prognostic Score (GPS), modified GPS (mGPS), neutrophil to lymphocyte ratio (NLR), platelet to lymphocyte ratio (PLR), prognostic index (PI), and prognostic nutritional index (PNI) scores for each patient were calculated. Survival of each score was evaluated, and correlations between the score selected on the basis of the prognostic significance and various clinicopathological factors were analyzed.In the analysis of the GPS, the median survival time (MST) was 28.1 months for score 0, 25.6 for score 1, and 17.0 for score 2. As for mGPS, the MST was 25.8 months for score 0, 27.7 for score 1, and 17.0 for score 2. Both scores were found to be significant. On the contrary, there were no statistical differences in MST between various scores obtained using the NLR, PLR, PI, or PNI. Multivariate analysis revealed that lymph node metastasis, positive peritoneal washing cytology, and a GPS score of 2 were significant prognostic factors. There was also statistically significant correlation between the GPS score and tumor location (head), tumor size (≥2.0 cm), bile duct invasion, and duodenal invasion.Our study demonstrated that the GPS could be an independent predictive marker and was superior to other inflammation-based prognostic scores in patients with resected pancreatic cancer.
Collapse
Affiliation(s)
- Suguru Yamada
- From the Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine (SY, TF, NY, NI, MK, CT, GN, HS, MK, MF, YK), and Center for Advanced Medicine and Clinical Research (KM), Nagoya University Hospital, Aichi, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Procalcitonin as a biomarker for infection-related mortality in cancer patients. Curr Opin Support Palliat Care 2016; 9:168-73. [PMID: 25872114 DOI: 10.1097/spc.0000000000000142] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW Infectious diseases are the second leading cause of death following direct cancer-related complications in the field of oncology. Clinical studies using the classic inflammatory biomarkers, C-reactive protein, erythrocyte sedimentation rate, leukocytosis, and thrombocytosis fail to show a significant correlation between these biomarkers and infection-related mortality. It is therefore crucial to define new biomarkers that are not affected by the primary cancer and precisely show the severity of the infection to help in the decision-making process. RECENT FINDINGS A significant increase in the number of cancer patients in the past decades has created an exponential increase in the number of immunocompromised patients. Preemptive and typically unnecessary usage of broad-spectrum antibiotics is common during the treatment of these patients and may result in an increase in multidrug-resistant microbial strains. Recent clinical studies suggest that a significant reduction in antibiotic consumption may be achieved by procalcitonin-guided algorithms without sacrificing the outcome of patients with severe infection. SUMMARY In this article, we focus on procalcitonin and its potential role in differentiating cancer and infection-induced inflammation. Using this strategy may significantly reduce the usage of empirical broad-spectrum antibiotics and result in earlier discharge of patients.
Collapse
|
49
|
Izano M, Wei EK, Tai C, Swede H, Gregorich S, Harris TB, Klepin H, Satterfield S, Murphy R, Newman AB, Rubin SM, Braithwaite D. Chronic inflammation and risk of colorectal and other obesity-related cancers: The health, aging and body composition study. Int J Cancer 2015; 138:1118-28. [PMID: 26413860 DOI: 10.1002/ijc.29868] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 09/01/2015] [Indexed: 01/24/2023]
Abstract
Evidence of the association between chronic inflammation and the risk of colorectal cancer (CRC) and other obesity-related cancers (OBRC) remains inconsistent, possibly due to a paucity of studies examining repeated measures of inflammation. In the Health ABC prospective study of 2,490 adults aged 70-79 years at baseline, we assessed whether circulating levels of three markers of systemic inflammation, IL-6, CRP and TNF-α, were associated with the risk of CRC and OBRC, a cluster including cancers of pancreas, prostate, breast and endometrium. Inflammatory markers were measured in stored fasting blood samples. While only baseline measures of TNF-α were available, IL-6 and CRP were additionally measured at Years 2, 4, 6 and 8. Multivariable Cox models were fit to determine whether tertiles and log-transformed baseline, updated and averaged measures of CRP and IL-6 and baseline measures of TNF-α were associated with the risk of incident cancer(s). During a median follow-up of 11.9 years, we observed 55 and 172 cases of CRC and OBRC, respectively. The hazard of CRC in the highest tertile of updated CRP was more than double that in the lowest tertile (HR = 2.29; 95% CI: 1.08-4.86). No significant associations were seen between colorectal cancer and IL-6 or TNF-α. Additionally, no significant associations were found between obesity-related cancers and the three inflammatory markers overall, but we observed a suggestion of effect modification by BMI and NSAID use. In summary, in this population, higher CRP levels were associated with increased risk of CRC, but not of OBRC. The findings provide new evidence that chronically elevated levels of CRP, as reflected by repeated measures of this marker, may play a role in colorectal carcinogenesis in older adults.
Collapse
Affiliation(s)
- Monika Izano
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA.,School of Public Health, University of California, Berkeley, CA
| | - Esther K Wei
- California Pacific Medical Center Research Institute, San Francisco, CA
| | - Caroline Tai
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA
| | - Helen Swede
- Department of Community Medicine & Health Care, University of Connecticut Health Center, Farmington, CT
| | - Steven Gregorich
- Division of General Internal Medicine, University of California, San Francisco, CA
| | - Tamara B Harris
- National Institutes of Health, National Institute on Aging, National Institutes of Health, Bethesda, MD
| | - Heidi Klepin
- Wake Forest School of Medicine, Winston-Salem, NC
| | - Suzanne Satterfield
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN
| | - Rachel Murphy
- National Institutes of Health, National Institute on Aging, National Institutes of Health, Bethesda, MD
| | - Anne B Newman
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PN
| | - Susan M Rubin
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA
| | - Dejana Braithwaite
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA
| | | |
Collapse
|
50
|
Scrimini S, Pons J, Agustí A, Clemente A, Sallán MC, Bauçà JM, Soriano JB, Cosio BG, Lopez M, Crespi C, Sauleda J. Expansion of myeloid-derived suppressor cells in chronic obstructive pulmonary disease and lung cancer: potential link between inflammation and cancer. Cancer Immunol Immunother 2015; 64:1261-70. [PMID: 26122358 PMCID: PMC11029165 DOI: 10.1007/s00262-015-1737-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 06/15/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a risk factor for lung cancer (LC). Myeloid-derived suppressor cells (MDSCs) down-regulate the T cell receptor ζ chain (TCR ζ) through L-arginine deprivation and lead to T cell dysfunction and deficient antitumor immunity. We hypothesized that abnormally high levels of MDSCs in COPD patients may alter tumor immunosurveillance. METHODS We compared the proportion of circulating MDSCs (Lin-HLA-DR-/CD33+/CD11b+) (by flow cytometry), arginase I (ARG I) serum levels (by ELISA), and expression levels of TCR ζ on circulating lymphocytes (by flow cytometry) in 28 patients with LC, 62 subjects with COPD, 41 patients with both LC and COPD, 40 smokers with normal spirometry and 33 non-smoking controls. T cell proliferation assays were performed in a subgroup of participants (CFSE dilution protocol). RESULTS We found that: (1) circulating MDSCs were up-regulated in COPD and LC patients (with and without COPD); (2) MDSCs expansion was associated with TCR ζ down-regulation in the three groups; (3) in LC patients, these findings were independent of COPD and tobacco smoking exposure; (4) TCR ζ down-regulation correlates with T cell hyporesponsiveness in COPD and LC patients. CONCLUSIONS These results suggest that tumor immunosurveillance might be impaired in COPD and may contribute to the increased risk of LC reported in these patients.
Collapse
Affiliation(s)
- Sergio Scrimini
- Instituto de Investigación Sanitaria de Palma, (IdISPa), Hospital Universitari Son Espases, C/Valldemossa 79, Planta 0, Mod. C, 07010 Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Palma de Mallorca, Spain
- Servicio de Neumología, Hospital Universitari Son Espases, Palma de Mallorca, Spain
| | - Jaume Pons
- Instituto de Investigación Sanitaria de Palma, (IdISPa), Hospital Universitari Son Espases, C/Valldemossa 79, Planta 0, Mod. C, 07010 Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Palma de Mallorca, Spain
- Servicio de Inmunología, Hospital Universitari Son Espases, Palma de Mallorca, Spain
| | - Alvar Agustí
- Instituto de Investigación Sanitaria de Palma, (IdISPa), Hospital Universitari Son Espases, C/Valldemossa 79, Planta 0, Mod. C, 07010 Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Palma de Mallorca, Spain
- Institut Clínic del Tòrax, Hospital Clinic, Institut D’investigacions Biomdiques August PI i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Antonio Clemente
- Instituto de Investigación Sanitaria de Palma, (IdISPa), Hospital Universitari Son Espases, C/Valldemossa 79, Planta 0, Mod. C, 07010 Palma de Mallorca, Spain
- Servicio de Inmunología, Hospital Universitari Son Espases, Palma de Mallorca, Spain
| | - Marta Crespí Sallán
- Instituto de Investigación Sanitaria de Palma, (IdISPa), Hospital Universitari Son Espases, C/Valldemossa 79, Planta 0, Mod. C, 07010 Palma de Mallorca, Spain
| | - Josep Miquel Bauçà
- Servicio de Análisis Clínicos, Hospital Universitari Son Espases, Palma de Mallorca, Spain
| | - Joan B. Soriano
- Instituto de Investigación Sanitaria de Palma, (IdISPa), Hospital Universitari Son Espases, C/Valldemossa 79, Planta 0, Mod. C, 07010 Palma de Mallorca, Spain
| | - Borja G. Cosio
- Instituto de Investigación Sanitaria de Palma, (IdISPa), Hospital Universitari Son Espases, C/Valldemossa 79, Planta 0, Mod. C, 07010 Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Palma de Mallorca, Spain
- Servicio de Neumología, Hospital Universitari Son Espases, Palma de Mallorca, Spain
| | - Meritxel Lopez
- Instituto de Investigación Sanitaria de Palma, (IdISPa), Hospital Universitari Son Espases, C/Valldemossa 79, Planta 0, Mod. C, 07010 Palma de Mallorca, Spain
- Servicio de Neumología, Hospital Universitari Son Espases, Palma de Mallorca, Spain
| | - Catalina Crespi
- Instituto de Investigación Sanitaria de Palma, (IdISPa), Hospital Universitari Son Espases, C/Valldemossa 79, Planta 0, Mod. C, 07010 Palma de Mallorca, Spain
| | - Jaume Sauleda
- Instituto de Investigación Sanitaria de Palma, (IdISPa), Hospital Universitari Son Espases, C/Valldemossa 79, Planta 0, Mod. C, 07010 Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Palma de Mallorca, Spain
- Servicio de Neumología, Hospital Universitari Son Espases, Palma de Mallorca, Spain
| |
Collapse
|