1
|
Facchini N, Wernli L, Rieken M, Bonkat G, Wirz D, Braissant O. Again and Again-Survival of Candida albicans in Urine Containing Antifungals. Pharmaceutics 2024; 16:605. [PMID: 38794267 PMCID: PMC11124869 DOI: 10.3390/pharmaceutics16050605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Relapse of Candida albicans urinary tract infection (UTI) is frequent despite appropriate treatment, as commonly used antifungals such fluconazole and flucytosine are only fungistatics. To improve treatment of Candida UTI and decrease relapses, understanding the long-term metabolic activity and survival of C. albicans in urine containing antifungals at minimal inhibitory concentration (MIC) is needed. METHODS we monitored the survival, metabolic activity and consumption of glucose and proteins by C. albicans using conventional methods and isothermal microcalorimetry (IMC). We also investigated the influence of dead Candida cells on the growth of their living counterparts. RESULTS For 33 days, weak activity was observed in samples containing antifungals in which C. albicans growth rate was reduced by 48%, 60% and 88%, and the lag increased to 172 h, 168 h and 6 h for amphotericin, flucytosine and fluconazole, respectively. The metabolic activity peaks corresponded to the plate counts but were delayed compared to the exhaustion of resources. The presence of dead cells promoted growth in artificial urine, increasing growth rate and reducing lag in similar proportions. CONCLUSIONS Even with antifungal treatment, C. albicans relapses are possible. The low metabolic activity of surviving cells leading to regrowth and chlamydospore formation possibly supported by autophagy are likely important factors in relapses.
Collapse
Affiliation(s)
- Nevio Facchini
- Department of Biomedical Engineering, University of Basel, Hegenheimermattweg 167B/C, 4123 Allschwil, Switzerland; (N.F.)
- Faculty of Medicine, University of Basel, Klingelbergstrasse 61, 4056 Basel, Switzerland
| | - Lukas Wernli
- Department of Biomedical Engineering, University of Basel, Hegenheimermattweg 167B/C, 4123 Allschwil, Switzerland; (N.F.)
- Department of Urology, Kantonsspital Baselland, Rheinstrasse 26, 4410 Liestal, Switzerland
| | - Malte Rieken
- Faculty of Medicine, University of Basel, Klingelbergstrasse 61, 4056 Basel, Switzerland
- alta uro AG, Centralbahnplatz 6, 4051 Basel, Switzerland
| | - Gernot Bonkat
- Faculty of Medicine, University of Basel, Klingelbergstrasse 61, 4056 Basel, Switzerland
- alta uro AG, Centralbahnplatz 6, 4051 Basel, Switzerland
| | - Dieter Wirz
- Department of Biomedical Engineering, University of Basel, Hegenheimermattweg 167B/C, 4123 Allschwil, Switzerland; (N.F.)
| | - Olivier Braissant
- Department of Biomedical Engineering, University of Basel, Hegenheimermattweg 167B/C, 4123 Allschwil, Switzerland; (N.F.)
| |
Collapse
|
2
|
Shah MKA, Azad AK, Nawaz A, Ullah S, Latif MS, Rahman H, Alsharif KF, Alzahrani KJ, El-Kott AF, Albrakati A, Abdel-Daim MM. Formulation Development, Characterization and Antifungal Evaluation of Chitosan NPs for Topical Delivery of Voriconazole In Vitro and Ex Vivo. Polymers (Basel) 2021; 14:polym14010135. [PMID: 35012154 PMCID: PMC8747354 DOI: 10.3390/polym14010135] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
This study aims to develop chitosan-based voriconazole nanoparticles (NPs) using spray-drying technique. The effect of surfactants and polymers on the physicochemical properties, in vitro release, and permeation of NPs was investigated. The prepared NPs containing various surfactants and polymers (e.g., Tween 20 (T20), Tween 80 (T80), sodium lauryl sulfate (SLS), propylene glycol (PG), and Polyethylene glycol-4000 (PEG-4000)) were physiochemically evaluated for size, zeta potential, drug content, percent entrapment efficiency, in vitro release, and permeation across rats' skin. A Franz diffusion cell was used for evaluating the in vitro release and permeation profile. The voriconazole-loaded NPs were investigated for antifungal activity against Candida albicans (C. albicans). The prepared NPs were in the nano range (i.e., 160-500 nm) and positively charged. Images taken by a scanning electron microscope showed that all prepared NPs were spherical and smooth. The drug content of NPs ranged from 75% to 90%. Nanoparticle formulations exhibited a good in vitro release profile and transport voriconazole across the rat's skin in a slow control release manner. The NPs containing SLS, T80, and PG exhibited the best penetration and skin retention profile. In addition, the formulation exhibited a potential antifungal effect against C. albicans. It was concluded that the development of chitosan NPs has a great potential for the topical delivery of voriconazole against fungal infection.
Collapse
Affiliation(s)
- Muhammad Khurshid Alam Shah
- Advanced Drug Delivery Lab, Gomal Center of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (M.K.A.S.); (A.N.); (S.U.); (M.S.L.)
| | - Abul Kalam Azad
- Pharmaceutical Technology Unit, Faculty of Pharmacy, AIMST University, Bedong 08100, Kedah, Malaysia
- Correspondence: (A.K.A.); (M.M.A.-D.)
| | - Asif Nawaz
- Advanced Drug Delivery Lab, Gomal Center of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (M.K.A.S.); (A.N.); (S.U.); (M.S.L.)
| | - Shafi Ullah
- Advanced Drug Delivery Lab, Gomal Center of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (M.K.A.S.); (A.N.); (S.U.); (M.S.L.)
| | - Muhammad Shahid Latif
- Advanced Drug Delivery Lab, Gomal Center of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (M.K.A.S.); (A.N.); (S.U.); (M.S.L.)
| | - Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea;
| | - Khalaf F. Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (K.F.A.); (K.J.A.)
| | - Khalid J. Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (K.F.A.); (K.J.A.)
| | - Attalla F. El-Kott
- Biology Department, Faculty of Science, King Khalid University, Abha 61421, Saudi Arabia;
- Zoology Department, Faculty of Science, Damanhour University, Damanhour 22511, Egypt
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Mohamed M. Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
- Correspondence: (A.K.A.); (M.M.A.-D.)
| |
Collapse
|
3
|
Curto MÁ, Butassi E, Ribas JC, Svetaz LA, Cortés JCG. Natural products targeting the synthesis of β(1,3)-D-glucan and chitin of the fungal cell wall. Existing drugs and recent findings. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 88:153556. [PMID: 33958276 DOI: 10.1016/j.phymed.2021.153556] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/12/2021] [Accepted: 03/21/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND During the last three decades systemic fungal infections associated to immunosuppressive therapies have become a serious healthcare problem. Clinical development of new antifungals is an urgent requirement. Since fungal but not mammalian cells are encased in a carbohydrate-containing cell wall, which is required for the growth and viability of fungi, the inhibition of cell wall synthesizing machinery, such as β(1,3)-D-glucan synthases (GS) and chitin synthases (CS) that catalyze the synthesis of β(1-3)-D-glucan and chitin, respectively, represent an ideal mode of action of antifungal agents. Although the echinocandins anidulafungin, caspofungin and micafungin are clinically well-established GS inhibitors for the treatment of invasive fungal infections, much effort must still be made to identify inhibitors of other enzymes and processes involved in the synthesis of the fungal cell wall. PURPOSE Since natural products (NPs) have been the source of several antifungals in clinical use and also have provided important scaffolds for the development of semisynthetic analogues, this review was devoted to investigate the advances made to date in the discovery of NPs from plants that showed capacity of inhibiting cell wall synthesis targets. The chemical characterization, specific target, discovery process, along with the stage of development are provided here. METHODS An extensive systematic search for NPs against the cell wall was performed considering all the articles published until the end of 2020 through the following scientific databases: NCBI PubMed, Scopus and Google Scholar and using the combination of the terms "natural antifungals" and "plant extracts" with "fungal cell wall". RESULTS The first part of this review introduces the state of the art of the structure and biosynthesis of the fungal cell wall and considers exclusively those naturally produced GS antifungals that have given rise to both existing semisynthetic approved drugs and those derivatives currently in clinical trials. According to their chemical structure, natural GS inhibitors can be classified as 1) cyclic lipopeptides, 2) glycolipids and 3) acidic terpenoids. We also included nikkomycins and polyoxins, NPs that inhibit the CS, which have traditionally been considered good candidates for antifungal drug development but have finally been discarded after enduring unsuccessful clinical trials. Finally, the review focuses in the most recent findings about the growing field of plant-derived molecules and extracts that exhibit activity against the fungal cell wall. Thus, this search yielded sixteen articles, nine of which deal with pure compounds and seven with plant extracts or fractions with proven activity against the fungal cell wall. Regarding the mechanism of action, seven (44%) produced GS inhibition while five (31%) inhibited CS. Some of them (56%) interfered with other components of the cell wall. Most of the analyzed articles refer to tests carried out in vitro and therefore are in early stages of development. CONCLUSION This report delivers an overview about both existing natural antifungals targeting GS and CS activities and their mechanisms of action. It also presents recent discoveries on natural products that may be used as starting points for the development of potential selective and non-toxic antifungal drugs.
Collapse
Affiliation(s)
- M Ángeles Curto
- Instituto de Biología Funcional y Genómica and Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Salamanca, Spain
| | - Estefanía Butassi
- Área Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Juan C Ribas
- Instituto de Biología Funcional y Genómica and Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Salamanca, Spain
| | - Laura A Svetaz
- Área Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina.
| | - Juan C G Cortés
- Instituto de Biología Funcional y Genómica and Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Salamanca, Spain.
| |
Collapse
|
4
|
Chopra A, Avadhani V, Tiwari A, Riemer EC, Sica G, Judson MA. Granulomatous lung disease: clinical aspects. Expert Rev Respir Med 2020; 14:1045-1063. [PMID: 32662705 DOI: 10.1080/17476348.2020.1794827] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Granulomatous lung diseases (GLD) are heterogeneous group of diseases that can be broadly categorized as infectious or noninfectious. This distinction is extremely important, as the misdiagnosis of a GLD can have serious consequences. In this manuscript, we describe the clinical manifestations, histopathology, and diagnostic approach to GLD. We propose an algorithm to distinguish infectious from noninfectious GLD. AREAS COVERED We have searched PubMed and Medline database from 1950 to December 2019, using multiple keywords as described below. Major GLDs covered include those caused by mycobacteria and fungi, sarcoidosis, hypersensitivity pneumonitis, and vasculidities. EXPERT OPINION The cause of infectious GLD is usually identified through microbiological culture and molecular techniques. Most noninfectious GLD are diagnosed by clinical and laboratory criteria, often with exclusion of infectious pathogens. Further understanding of the immunopathogenesis of the granulomatous response may allow improved diagnosis and treatment of GLD.
Collapse
Affiliation(s)
- Amit Chopra
- Department of Medicine, Pulmonary and Critical Care Medicine, Albany Medical Center , NY, USA
| | - Vaidehi Avadhani
- Department of Pathology and Laboratory Medicine, Emory University , Atlanta, USA
| | - Anupama Tiwari
- Department of Medicine, Pulmonary and Critical Care Medicine, Albany Medical Center , NY, USA
| | - Ellen C Riemer
- Department of Pathology, Medical University of South Carolina , SC, USA
| | - Gabriel Sica
- Department of Pathology and Laboratory Medicine, Emory University , Atlanta, USA
| | - Marc A Judson
- Department of Medicine, Pulmonary and Critical Care Medicine, Albany Medical Center , NY, USA
| |
Collapse
|
5
|
Niu CH, Xu H, Gao LL, Nie YM, Xing LP, Yu LP, Wu SL, Wang Y. Population Pharmacokinetics of Caspofungin and Dosing Optimization in Children With Allogeneic Hematopoietic Stem Cell Transplantation. Front Pharmacol 2020; 11:184. [PMID: 32194415 PMCID: PMC7061854 DOI: 10.3389/fphar.2020.00184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/10/2020] [Indexed: 01/12/2023] Open
Abstract
Caspofungin is the first echinocandin antifungal agent that licented for pediatric use in invasive candidiasis and aspergillosis. In this study, we evaluated the population pharmacokinetics of caspofungin and investigate appropriate dosing optimization against Candida spp. in children with allogeneic hematopoietic stem cell transplantation (allo-HSCT) in order to improve therapeutic efficacy. All participants received a recommended caspofungin 70 mg/m2 loading dose followed by 50 mg/m2 maintenance dose. A one-compartment model with first-order elimination was best fitted the data from 48 pediatric patients. Body surface area and aspartate aminotransferase had significant influence on caspofungin clearance from covariate analysis. Our results reviewed that dose adjustment is not necessary in patients with mild liver dysfunction. Monte Carlo simulations were performed using pharmacokinetic data from our study to evaluate the probability of target attainment (PTA) of caspofungin regimen in terms of AUC24/MIC targets against Candida spp. The results of simulations predicted that a caspofungin 70 mg/m2 at first dose, 50 mg/m2 of daily dose may have a high probability of successful outcome against C. albicans and C. glabrata whilst 60 mg/m2 maintenance dose was required for fungistatic target against C. parapsilosis but may be not sufficient to achieve optimal fungicidal activity. Caspofungin standard regimen had high probability of successful outcome against C. albicans (MIC ⩽ 0.25 mg/L) and C. glabrata (MIC ⩽ 0.5 mg/L) but insufficient for C. parapsilosis with MIC > 0.25 mg/L. That may provide an evidence based support to caspofungin individualized administration and decrease the risk of therapeutic failure in allo-HSCT pediatric patients.
Collapse
Affiliation(s)
- Chang-He Niu
- Department of Clinical Pharmacy, Wuhan Children's Hospital, Wuhan Maternal and Child Healthcare Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Hua Xu
- Department of Clinical Pharmacy, Wuhan Children's Hospital, Wuhan Maternal and Child Healthcare Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Liu-Liu Gao
- Department of Clinical Pharmacy, Wuhan Children's Hospital, Wuhan Maternal and Child Healthcare Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Ying-Ming Nie
- Department of Cell Therapy and Transplantation Medicine, Wuhan Children' Hospital, Wuhan, China
| | - Li-Peng Xing
- Department of Clinical Pharmacy, Wuhan Children's Hospital, Wuhan Maternal and Child Healthcare Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Li-Peng Yu
- Department of Clinical Pharmacy, Wuhan Children's Hospital, Wuhan Maternal and Child Healthcare Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - San-Lan Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology (HUST), Wuhan, China
| | - Yang Wang
- Department of Clinical Pharmacy, Wuhan Children's Hospital, Wuhan Maternal and Child Healthcare Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| |
Collapse
|
6
|
Abstract
Candida albicans has remained the main etiological agent of candidiasis, challenges clinicians with high mortality and morbidity. The emergence of resistance to antifungal drugs, toxicity and lower efficacy have all contributed to an urgent need to develop alternative drugs aiming at novel targets in C. albicans. Targeting the production of virulence factors, which are essential processes for infectious agents, represents an attractive substitute for the development of newer anti-infectives. The present review highlights the recent developments made in the understanding of the pathogenicity of C. albicans. Production of hydrolytic enzymes, morphogenesis and biofilm formation, along with their molecular and metabolic regulation in Candida are discussed with regard to the development of novel antipathogenic drugs against candidiasis. Over the last decade, candidiasis has remained a major problematic disease worldwide. In spite of the existence of many antifungal drugs, the treatment of such diseases has still remained unsuccessful due to drug inefficacy. Therefore, there is a need to discover antifungals with different modes of action, such as antipathogenic drugs against Candida albicans. Here, we describe how various types of virulence factors such as proteinase, phospholipase, hemolysin, adhesion, morphogenesis and biofilm formation, could be targeted to develop novel therapeutics. We can inhibit production of these virulence factors by controlling their molecular/metabolic regulation.
Collapse
|
7
|
de Oliveira FFM, Paredes V, de Sousa HR, D'Áurea Moura ÁN, Riasco-Palacios J, Casadevall A, Felipe MSS, Nicola AM. Thioredoxin Reductase 1 Is a Highly Immunogenic Cell Surface Antigen in Paracoccidioides spp., Candida albicans, and Cryptococcus neoformans. Front Microbiol 2020; 10:2930. [PMID: 31993026 PMCID: PMC6964600 DOI: 10.3389/fmicb.2019.02930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/05/2019] [Indexed: 11/16/2022] Open
Abstract
The increasing number of immunocompromised people has made invasive fungal infections more common. The antifungal armamentarium, in contrast, is limited to a few classes of drugs, with frequent toxicity and low efficacy pointing to the need for new agents. Antibodies are great candidates for novel antifungals, as their specificity can result in lower toxicity. Additionally, the immunomodulatory activity of antibodies could treat the underlying cause of many invasive mycoses, immune disfunction. In a previous comparative genomics study, we identified several potential targets for novel antifungals. Here we validate one of these targets, thioredoxin reductase (TRR1), to produce antibodies that could be useful therapeutic tools. Recombinant TRR1 proteins were produced by heterologous expression in Escherichia coli of genes encoding the proteins from Candida albicans, Cryptococcus neoformans, and Paracoccidioides lutzii. These proteins were then used to immunize mice, followed by detection of serum antibodies against them by ELISA and western blot. A first set of experiments in which individual mice were immunized repeatedly with TRR1 from a single species showed that all three were highly immunogenic, inducing mostly IgG1 antibodies, and that antibodies produced against one species cross-reacted with the others. In a second experiment, individual mice were immunized three times, each with the protein from a different species. The high titers of antibodies confirmed the presence of antigenic epitopes that were conserved in fungi but absent in humans. Immunofluorescence with sera from these immunized mice detected the protein in the cytoplasm and on the cell surface of fungi from all three species. These results validate TRR1 as a good target for potentially broad-spectrum antifungal antibodies.
Collapse
Affiliation(s)
- Fabiana Freire Mendes de Oliveira
- Faculty of Medicine, University of Brasília, Brasília, Brazil.,Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Verenice Paredes
- Faculty of Medicine, University of Brasília, Brasília, Brazil.,Karan Technologies Research and Development, Brasília, Brazil
| | | | - Ágata Nogueira D'Áurea Moura
- Department of Microbiology, Institute of Biomedical Sciences II, University of São Paulo, São Paulo, Brazil.,Department of Dermatology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Maria Sueli Soares Felipe
- Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília, Brazil
| | - André Moraes Nicola
- Faculty of Medicine, University of Brasília, Brasília, Brazil.,Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States.,Karan Technologies Research and Development, Brasília, Brazil.,Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília, Brazil
| |
Collapse
|
8
|
Body Surface Area-Based Dosing Regimen of Caspofungin in Children: a Population Pharmacokinetics Confirmatory Study. Antimicrob Agents Chemother 2019; 63:AAC.00248-19. [PMID: 30988148 DOI: 10.1128/aac.00248-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 04/10/2019] [Indexed: 11/20/2022] Open
Abstract
We evaluated the population pharmacokinetics of caspofungin in children (2 to 12 years of age). The real-world data from 48 children were best fit by a two-compartment model with first-order elimination. Subsequent covariate analysis demonstrated that body surface area had a significant correlation with caspofungin pharmacokinetics, compared to body weight. The population pharmacokinetics of caspofungin confirmed that adjustment of caspofungin dosage based on body surface area is most appropriate for pediatric use.
Collapse
|
9
|
Chevalier M, Doglio A, Rajendran R, Ramage G, Prêcheur I, Ranque S. Inhibition of adhesion-specific genes by Solidago virgaurea extract causes loss of Candida albicans biofilm integrity. J Appl Microbiol 2019; 127:68-77. [PMID: 31013388 DOI: 10.1111/jam.14289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 01/11/2019] [Accepted: 04/17/2019] [Indexed: 11/28/2022]
Abstract
AIMS Candida albicans biofilms are commonly associated with severe oral infections. We previously discovered that a crude extract from the Solidago virgaurea plant (SV extract) was a potent inhibitor of C. albicans biofilm formation. Here, we further investigate the mechanisms underlying C. albicans biofilm inhibition by the SV extract. METHODS AND RESULTS The SV extract was shown to inhibit laboratory and clinical C. albicans isolates adherence and hyphal transition on inert support and epithelial human cells, without affecting viability and growth of planktonic yeasts. Interestingly, RT-PCR-based experiments demonstrated that some key genes involved in adhesion and hyphal morphological switch (e.g. Hwp1p, Ece1p, Als3p) were strongly down-regulated by the SV extract. Moreover, antimicrobial synergy testing (checkerboard assay) demonstrated that antifungal effects of miconazole, nystatin or a common antiseptic mouthwash were synergistically improved when used in combination with the SV extract. CONCLUSIONS The SV extract prevents C. albicans biofilm formation through direct inhibition of key adherence and hyphae-associated genes. SIGNIFICANCE AND IMPACT OF THE STUDY Biofilm is considered as a key virulence factor of C. albicans infection. Our discovery of an inhibitor specifically acting on genes involved in biofilm formation paves the way for the future development of a new class of antifungal product.
Collapse
Affiliation(s)
- M Chevalier
- Micoralis, UFR Odontologie, Université Côte d'Azur, Nice, France.,AP-HM, IRD, VITROME, IHU Méditerranée Infection, Université Aix-Marseille, Marseille, France
| | - A Doglio
- Micoralis, UFR Odontologie, Université Côte d'Azur, Nice, France.,Unité de Thérapie Cellulaire et Génique (UTCG), Centre Hospitalier Universitaire de Nice, Nice, France
| | - R Rajendran
- Infection and Immunity Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - G Ramage
- Infection and Immunity Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - I Prêcheur
- Micoralis, UFR Odontologie, Université Côte d'Azur, Nice, France.,Pôle Odontologie, Centre Hospitalier Universitaire de Nice, Nice, France
| | - S Ranque
- AP-HM, IRD, VITROME, IHU Méditerranée Infection, Université Aix-Marseille, Marseille, France
| |
Collapse
|
10
|
Qurt MS, Esentürk İ, Birteksöz Tan S, Erdal MS, Araman A, Güngör S. Voriconazole and sertaconazole loaded colloidal nano-carriers for enhanced skin deposition and improved topical fungal treatment. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.09.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Kottom TJ, Hebrink DM, Jenson PE, Ramirez-Prado JH, Limper AH. Characterization of N-Acetylglucosamine Biosynthesis in Pneumocystis species. A New Potential Target for Therapy. Am J Respir Cell Mol Biol 2017; 56:213-222. [PMID: 27632412 DOI: 10.1165/rcmb.2016-0155oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
N-acetylglucosamine (GlcNAc) serves as an essential structural sugar on the cell surface of organisms. For example, GlcNAc is a major component of bacterial peptidoglycan, it is an important building block of fungal cell walls, including a major constituent of chitin and mannoproteins, and it is also required for extracellular matrix generation by animal cells. Herein, we provide evidence for a uridine diphospho (UDP)-GlcNAc pathway in Pneumocystis species. Using an in silico search of the Pneumocystis jirovecii and P. murina (Pm) genomic databases, we determined the presence of at least four proteins implicated in the Saccharomyces cerevisiae UDP-GlcNAc biosynthetic pathway. These genes, termed GFA1, GNA1, AGM1, and UDP-GlcNAc pyrophosphorylase (UAP1), were either confirmed to be present in the Pneumocystis genomes by PCR, or, in the case of Pm uap1 (Pmuap1), functionally confirmed by direct enzymatic activity assay. Expression analysis using quantitative PCR of Pneumocystis pneumonia in mice demonstrated abundant expression of the Pm uap1 transcript. A GlcNAc-binding recombinant protein and a novel GlcNAc-binding immune detection method both verified the presence of GlcNAc in P. carinii (Pc) lysates. Studies of Pc cell wall fractions using high-performance gas chromatography/mass spectrometry documented the presence of GlcNAc glycosyl residues. Pc was shown to synthesize GlcNAc in vitro. The competitive UDP-GlcNAc substrate synthetic inhibitor, nikkomycin Z, suppressed incorporation of GlcNAc by Pc preparations. Finally, treatment of rats with Pneumocystis pneumonia using nikkomycin Z significantly reduced organism burdens. Taken together, these data support an important role for GlcNAc generation in the cell surface of Pneumocystis organisms.
Collapse
Affiliation(s)
- Theodore J Kottom
- 1 Thoracic Diseases Research Unit, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota; and
| | - Deanne M Hebrink
- 1 Thoracic Diseases Research Unit, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota; and
| | - Paige E Jenson
- 1 Thoracic Diseases Research Unit, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota; and
| | - Jorge H Ramirez-Prado
- 2 Unidad de Biotecnologia, Centro de Investigacion Cientifica de Yucatan, Asociación Civil, Merida, Yucatan, Mexico
| | - Andrew H Limper
- 1 Thoracic Diseases Research Unit, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota; and
| |
Collapse
|
12
|
Desoubeaux G, Cray C. Rodent Models of Invasive Aspergillosis due to Aspergillus fumigatus: Still a Long Path toward Standardization. Front Microbiol 2017; 8:841. [PMID: 28559881 PMCID: PMC5432554 DOI: 10.3389/fmicb.2017.00841] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 04/24/2017] [Indexed: 01/09/2023] Open
Abstract
Invasive aspergillosis has been studied in laboratory by the means of plethora of distinct animal models. They were developed to address pathophysiology, therapy, diagnosis, or miscellaneous other concerns associated. However, there are great discrepancies regarding all the experimental variables of animal models, and a thorough focus on them is needed. This systematic review completed a comprehensive bibliographic analysis specifically-based on the technical features of rodent models infected with Aspergillus fumigatus. Out the 800 articles reviewed, it was shown that mice remained the preferred model (85.8% of the referenced reports), above rats (10.8%), and guinea pigs (3.8%). Three quarters of the models involved immunocompromised status, mainly by steroids (44.4%) and/or alkylating drugs (42.9%), but only 27.7% were reported to receive antibiotic prophylaxis to prevent from bacterial infection. Injection of spores (30.0%) and inhalation/deposition into respiratory airways (66.9%) were the most used routes for experimental inoculation. Overall, more than 230 distinct A. fumigatus strains were used in models. Of all the published studies, 18.4% did not mention usage of any diagnostic tool, like histopathology or mycological culture, to control correct implementation of the disease and to measure outcome. In light of these findings, a consensus discussion should be engaged to establish a minimum standardization, although this may not be consistently suitable for addressing all the specific aspects of invasive aspergillosis.
Collapse
Affiliation(s)
- Guillaume Desoubeaux
- Division of Comparative Pathology, Department of Pathology and Laboratory Medicine, Miller School of Medicine, University of MiamiMiami, FL, USA.,Service de Parasitologie-Mycologie-Médecine tropicale, Centre Hospitalier Universitaire de ToursTours, France.,Centre d'Etude des Pathologies Respiratoires (CEPR) Institut National de la Santé et de la Recherche Médicale U1100/Équipe 3, Université François-RabelaisTours, France
| | - Carolyn Cray
- Division of Comparative Pathology, Department of Pathology and Laboratory Medicine, Miller School of Medicine, University of MiamiMiami, FL, USA
| |
Collapse
|
13
|
Guilhelmelli F, Vilela N, Smidt KS, de Oliveira MA, da Cunha Morales Álvares A, Rigonatto MCL, da Silva Costa PH, Tavares AH, de Freitas SM, Nicola AM, Franco OL, Derengowski LDS, Schwartz EF, Mortari MR, Bocca AL, Albuquerque P, Silva-Pereira I. Activity of Scorpion Venom-Derived Antifungal Peptides against Planktonic Cells of Candida spp. and Cryptococcus neoformans and Candida albicans Biofilms. Front Microbiol 2016; 7:1844. [PMID: 27917162 PMCID: PMC5114273 DOI: 10.3389/fmicb.2016.01844] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 11/02/2016] [Indexed: 11/13/2022] Open
Abstract
The incidence of fungal infections has been increasing in the last decades, while the number of available antifungal classes remains the same. The natural and acquired resistance of some fungal species to available therapies, associated with the high toxicity of these drugs on the present scenario and makes an imperative of the search for new, more efficient and less toxic therapeutic choices. Antimicrobial peptides (AMPs) are a potential class of antimicrobial drugs consisting of evolutionarily conserved multifunctional molecules with both microbicidal and immunomodulatory properties being part of the innate immune response of diverse organisms. In this study, we evaluated 11 scorpion-venom derived non-disulfide-bridged peptides against Cryptococcus neoformans and Candida spp., which are important human pathogens. Seven of them, including two novel molecules, showed activity against both genera with minimum inhibitory concentration values ranging from 3.12 to 200 μM and an analogous activity against Candida albicans biofilms. Most of the peptides presented low hemolytic and cytotoxic activity against mammalian cells. Modifications in the primary peptide sequence, as revealed by in silico and circular dichroism analyses of the most promising peptides, underscored the importance of cationicity for their antimicrobial activity as well as the amphipathicity of these molecules and their tendency to form alpha helices. This is the first report of scorpion-derived AMPs against C. neoformans and our results underline the potential of scorpion venom as a source of antimicrobials. Further characterization of their mechanism of action, followed by molecular optimization to decrease their cytotoxicity and increase antimicrobial activity, is needed to fully clarify their real potential as antifungals.
Collapse
Affiliation(s)
- Fernanda Guilhelmelli
- Laboratory of Molecular Biology, Department of Cellular Biology, Institute of Biological Sciences, University of Brasília Brasília, Brazil
| | - Nathália Vilela
- Laboratory of Molecular Biology, Department of Cellular Biology, Institute of Biological Sciences, University of Brasília Brasília, Brazil
| | - Karina S Smidt
- Laboratory of Applied Immunology, Department of Cellular Biology, Institute of Biological Sciences, University of Brasília Brasília, Brazil
| | - Marco A de Oliveira
- Laboratory of Molecular Biology, Department of Cellular Biology, Institute of Biological Sciences, University of Brasília Brasília, Brazil
| | - Alice da Cunha Morales Álvares
- Laboratory of Molecular Biophysics, Department of Cellular Biology, Institute of Biological Sciences, University of Brasília Brasília, Brazil
| | - Maria C L Rigonatto
- Laboratory of Applied Immunology, Department of Cellular Biology, Institute of Biological Sciences, University of Brasília Brasília, Brazil
| | - Pedro H da Silva Costa
- Laboratory of Applied Immunology, Department of Cellular Biology, Institute of Biological Sciences, University of Brasília Brasília, Brazil
| | - Aldo H Tavares
- Laboratory of Applied Immunology, Department of Cellular Biology, Institute of Biological Sciences, University of Brasília Brasília, Brazil
| | - Sônia M de Freitas
- Laboratory of Molecular Biophysics, Department of Cellular Biology, Institute of Biological Sciences, University of Brasília Brasília, Brazil
| | - André M Nicola
- Faculty of Medicine, University of Brasília Brasília, Brazil
| | - Octávio L Franco
- Center of Proteomic and Biochemistry Analysis, Post Graduation in Biotechnology and Genomic Sciences, Catholic University of Brasília Brasília, Brazil
| | - Lorena da Silveira Derengowski
- Laboratory of Molecular Biology, Department of Cellular Biology, Institute of Biological Sciences, University of Brasília Brasília, Brazil
| | - Elisabeth F Schwartz
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília Brasília, Brazil
| | - Márcia R Mortari
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília Brasília, Brazil
| | - Anamélia L Bocca
- Laboratory of Applied Immunology, Department of Cellular Biology, Institute of Biological Sciences, University of Brasília Brasília, Brazil
| | - Patrícia Albuquerque
- Laboratory of Molecular Biology, Department of Cellular Biology, Institute of Biological Sciences, University of BrasíliaBrasília, Brazil; Faculty of Ceilândia, University of BrasíliaBrasília, Brazil
| | - Ildinete Silva-Pereira
- Laboratory of Molecular Biology, Department of Cellular Biology, Institute of Biological Sciences, University of Brasília Brasília, Brazil
| |
Collapse
|
14
|
Synthesis and studies of the antifungal activity of 2-anilino-/2,3-dianilino-/2-phenoxy- and 2,3-diphenoxy-1,4-naphthoquinones. RESEARCH ON CHEMICAL INTERMEDIATES 2016. [DOI: 10.1007/s11164-016-2732-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Kopecká M. Microtubules and Actin Cytoskeleton of Cryptococcus neoformans as Targets for Anticancer Agents to Potentiate a Novel Approach for New Antifungals. Chemotherapy 2015; 61:117-21. [PMID: 26650399 DOI: 10.1159/000437134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 06/23/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND We investigated the targeting of microtubules (MT) and F-actin cytoskeleton (AC) of the human pathogenic yeast Cryptococcus neoformans with agents for cancer therapy, in order to examine whether this yeast cytoskeleton could become a new antifungal target for the inhibition of cell division. METHODS Cells treated with 10 cytoskeleton inhibitors in yeast extract peptone dextrose medium were investigated by phase-contrast and fluorescence microscopy, and growth inhibition was estimated by cell counts using a Bürker chamber and measuring absorbance for 6 days. RESULTS Docetaxel, paclitaxel, vinblastine sulfate salt, cytochalasin D and chlorpropham [isopropyl N-(3-chlorophenyl) carbamate] did not inhibit proliferation. The MT inhibitors methyl benzimidazole-2-ylcarbamate (BCM), nocodazole, thiabendazole (TBZ) and vincristine (VINC) disrupted MT and inhibited mitoses, but anucleated buds emerged on cells that increased in size, vacuolated and seemed to die after 2 days. The response of the cells to the presence of the actin inhibitor latrunculin A (LA) included the disappearance of actin patches, actin cables and actin rings; this arrested budding and cell division. However, in 3-4 days, resistant budding cells appeared in all 5 inhibitors. Disruption of the MT and AC and inhibition of cell division and budding persisted only when the MT and AC inhibitors were combined, i.e. VINC + LA, BCM + LA or TBZ + LA. CONCLUSION The MT and AC of C. neoformans are new antifungal targets for the persistent inhibition of cell division by combined F-actin and MT inhibitors.
Collapse
Affiliation(s)
- Marie Kopecká
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
16
|
Li X, Liu C, Tang S, Wu Q, Hu H, Zhao Q, Zou Y. Synthesis,In VitroBiological Evaluation, and Molecular Docking of New Triazoles as Potent Antifungal Agents. Arch Pharm (Weinheim) 2015; 349:42-9. [DOI: 10.1002/ardp.201500313] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 11/03/2015] [Accepted: 11/06/2015] [Indexed: 11/05/2022]
Affiliation(s)
- Xiang Li
- Department of Organic Chemistry, College of Pharmacy; Second Military Medical University; Shanghai People's Republic of China
| | - Chao Liu
- Department of Organic Chemistry, College of Pharmacy; Second Military Medical University; Shanghai People's Republic of China
| | - Sheng Tang
- Department of Organic Chemistry, College of Pharmacy; Second Military Medical University; Shanghai People's Republic of China
| | - Qiuye Wu
- Department of Organic Chemistry, College of Pharmacy; Second Military Medical University; Shanghai People's Republic of China
| | - Honggang Hu
- Department of Organic Chemistry, College of Pharmacy; Second Military Medical University; Shanghai People's Republic of China
| | - Qingjie Zhao
- Department of Organic Chemistry, College of Pharmacy; Second Military Medical University; Shanghai People's Republic of China
| | - Yan Zou
- Department of Organic Chemistry, College of Pharmacy; Second Military Medical University; Shanghai People's Republic of China
| |
Collapse
|
17
|
Kopecká M. Effects of Microtubule and Actin Inhibitors on Cryptococcus neoformans Examined by Scanning and Transmission Electron Microscopy. Chemotherapy 2015; 60:99-106. [PMID: 25720843 DOI: 10.1159/000371413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 12/08/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND Cryptococcus neoformans is one of the most important human fungal pathogens. Its cells contain rich microtubules required for nuclear division and rich F-actin cytoskeletons for cell division. Disruption of microtubules by a microtubule inhibitor should block nuclear division, and disruption of F-actin by an actin inhibitor should block cell division. We investigated the effects of microtubule and actin inhibitors to find out whether the cytoskeletons of C. neoformans can become a new anti-fungal target for the inhibition of cell division, when examined at the ultrastructural level. METHODS Cells treated with the microtubule inhibitors vincristine (VIN) and methyl benzimidazole-2-ylcarbamate (BCM) and the actin inhibitor latrunculin A (LA), in yeast extract peptone dextrose medium, were examined by scanning (SEM) and transmission electron microscopy (TEM), and the cell number was counted using a Bürker chamber. RESULTS After 2 days of inhibition with VIN, BCM or LA, the cells did not divide, but later, resistant, proliferating cells appeared in all samples. With combined microtubule and actin inhibitors (VIN + LA or BCM + LA), cells did not divide during 6 or even 14 days, and no resistant cells originated. TEM showed that the inhibited cells were without cytoplasm and were dead; only empty cell walls persisted with reduced capsules, shown on SEM. CONCLUSION Combined microtubule and actin inhibitors (VIN + LA or BCM + LA), have lethal effects on C. neoformans cells and no resistant cells originate.
Collapse
Affiliation(s)
- Marie Kopecká
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
18
|
Allen D, Wilson D, Drew R, Perfect J. Azole antifungals: 35 years of invasive fungal infection management. Expert Rev Anti Infect Ther 2015; 13:787-98. [DOI: 10.1586/14787210.2015.1032939] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Kopecká M, Yamaguchi M, Kawamoto S. The effects of the F-actin inhibitor latrunculin A on the pathogenic yeast Cryptococcus neoformans. Chemotherapy 2015; 60:185-90. [PMID: 25823986 DOI: 10.1159/000377619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 02/02/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND This basic research aimed to investigate the effects of the actin inhibitor latrunculin A (LA) on the human pathogen Cryptococcus neoformans, by freeze-substitution (FS) and electron microscopy (EM), to determine whether the actin cytoskeleton can become a new antifungal target for inhibition of cell division. METHODS Cells treated with LA for 20 h in yeast-extract peptone dextrose medium were investigated by phase-contrast and fluorescent microscopy, FS and transmission EM, counted in a Bürker chamber and the absorbance was then measured. RESULTS The disappearance of actin patches, actin cables and actin rings demonstrated the response of the cells of C. neoformans to the presence of the actin inhibitor LA. The removal of actin cables and patches arrested proliferation and led to the production of cells that had ultrastructural disorder, irregular morphology of the mitochondria and thick aberrant cell walls. Budding cells lysed in the buds and septa. CONCLUSION LA exerts fungistatic, fungicidal and fungilytic effects on the human pathogenic yeast C. neoformans.
Collapse
Affiliation(s)
- Marie Kopecká
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | | | | |
Collapse
|
20
|
A monoclonal antibody against glycoproteins of Aspergillus fumigatus shows anti-adhesive potential. Microb Pathog 2015; 79:24-30. [DOI: 10.1016/j.micpath.2015.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 01/06/2015] [Accepted: 01/07/2015] [Indexed: 11/18/2022]
|
21
|
Ulbricht C. An Evidence-Based Systematic Review of Beta-Glucan by the Natural Standard Research Collaboration. J Diet Suppl 2014; 11:361-475. [DOI: 10.3109/09286586.2014.975066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
22
|
Hohl TM. Overview of vertebrate animal models of fungal infection. J Immunol Methods 2014; 410:100-12. [PMID: 24709390 DOI: 10.1016/j.jim.2014.03.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/17/2014] [Accepted: 03/24/2014] [Indexed: 01/27/2023]
Abstract
Fungi represent emerging infectious threats to human populations worldwide. Mice and other laboratory animals have proved invaluable in modeling clinical syndromes associated with superficial and life-threatening invasive mycoses. This review outlines salient features of common vertebrate animal model systems to study fungal pathogenesis, host antifungal immune responses, and antifungal compounds.
Collapse
Affiliation(s)
- Tobias M Hohl
- Department of Medicine, Infectious Diseases Service, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, Box 9, New York, NY 10075, United States.
| |
Collapse
|
23
|
Abstract
Invasive fungal infections are an important cause of morbidity and mortality in hematopoietic stem cell transplant and solid organ transplant recipients. Evolving transplant modalities and techniques, complex and extensive immunosuppressant strategies, and the increased use of broad spectrum antifungal prophylaxis has greatly impacted the epidemiology and temporal pattern of invasive fungal infections in the transplant population. The goal of this article is to provide an up-to-date review of the most commonly encountered invasive fungal infections seen in transplant recipients, including epidemiology, risk factors, clinical features, diagnostic dilemmas, management and their overall influence on outcomes.
Collapse
Affiliation(s)
- Jose A. Vazquez
- Division of Infectious Diseases, Department of Medicine, Henry Ford Hospital, 2799 West Grand Blvd, CFP-202, Detroit, MI 48202, USA
| |
Collapse
|
24
|
Müller C, Staudacher V, Krauss J, Giera M, Bracher F. A convenient cellular assay for the identification of the molecular target of ergosterol biosynthesis inhibitors and quantification of their effects on total ergosterol biosynthesis. Steroids 2013; 78:483-93. [PMID: 23454215 DOI: 10.1016/j.steroids.2013.02.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 01/25/2013] [Accepted: 02/11/2013] [Indexed: 11/19/2022]
Abstract
Increasing resistance of clinically relevant fungi is causing major problems in anti-mycotic therapy. Particularly for immunosuppressed patients fungal infections are of concern and increasing resistance against clinically used antimycotic drugs is hampering successful treatment. In the search for new antifungals ergosterol biosynthesis still is the most prominent target. However, several pitfalls in the bioactivity testing of such substances remain. Two of the major drawbacks certainly are the membrane association of most enzymes participating in ergosterol biosynthesis, and the difficulty to selectively associate growth inhibitory effects with the target pathway (ergosterol biosynthesis). Here we describe a GC-MS based cellular assay for target identification and selective potency determination of test components. In the qualitative part of the assay GC-MS analysis of cell lysates allows target identification by analysis of the changes in the sterol pattern. The quantitative part of the assay makes use of 13C-acetate feeding combined with GC-MS analysis allowing the selective quantification of a compound's effect on total ergosterol biosynthesis. The described cellular assay was analytically and biologically validated and used to characterize the novel ergosterol biosynthesis inhibitor JK-250.
Collapse
Affiliation(s)
- Christoph Müller
- Department für Pharmazie, Zentrum für Pharmaforschung, Ludwig-Maximilians-Universität, München, Butenandtstr. 5-13, 81377 Munich, Germany.
| | | | | | | | | |
Collapse
|
25
|
Morrow CA, Valkov E, Stamp A, Chow EWL, Lee IR, Wronski A, Williams SJ, Hill JM, Djordjevic JT, Kappler U, Kobe B, Fraser JA. De novo GTP biosynthesis is critical for virulence of the fungal pathogen Cryptococcus neoformans. PLoS Pathog 2012; 8:e1002957. [PMID: 23071437 PMCID: PMC3469657 DOI: 10.1371/journal.ppat.1002957] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Accepted: 08/26/2012] [Indexed: 01/01/2023] Open
Abstract
We have investigated the potential of the GTP synthesis pathways as chemotherapeutic targets in the human pathogen Cryptococcus neoformans, a common cause of fatal fungal meningoencephalitis. We find that de novo GTP biosynthesis, but not the alternate salvage pathway, is critical to cryptococcal dissemination and survival in vivo. Loss of inosine monophosphate dehydrogenase (IMPDH) in the de novo pathway results in slow growth and virulence factor defects, while loss of the cognate phosphoribosyltransferase in the salvage pathway yielded no phenotypes. Further, the Cryptococcus species complex displays variable sensitivity to the IMPDH inhibitor mycophenolic acid, and we uncover a rare drug-resistant subtype of C. gattii that suggests an adaptive response to microbial IMPDH inhibitors in its environmental niche. We report the structural and functional characterization of IMPDH from Cryptococcus, revealing insights into the basis for drug resistance and suggesting strategies for the development of fungal-specific inhibitors. The crystal structure reveals the position of the IMPDH moveable flap and catalytic arginine in the open conformation for the first time, plus unique, exploitable differences in the highly conserved active site. Treatment with mycophenolic acid led to significantly increased survival times in a nematode model, validating de novo GTP biosynthesis as an antifungal target in Cryptococcus.
Collapse
Affiliation(s)
- Carl A. Morrow
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Eugene Valkov
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Anna Stamp
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Eve W. L. Chow
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - I. Russel Lee
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Ania Wronski
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Simon J. Williams
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Justine M. Hill
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
- Centre for Advanced Imaging, University of Queensland, Brisbane, Queensland, Australia
| | - Julianne T. Djordjevic
- Centre for Infectious Diseases and Microbiology, Westmead Millennium Institute, University of Sydney at Westmead Hospital, Sydney, New South Wales, Australia
| | - Ulrike Kappler
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Bostjan Kobe
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - James A. Fraser
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
- * E-mail:
| |
Collapse
|
26
|
Devrekanli A, Foltman M, Roncero C, Sanchez-Diaz A, Labib K. Inn1 and Cyk3 regulate chitin synthase during cytokinesis in budding yeasts. J Cell Sci 2012; 125:5453-66. [PMID: 22956544 DOI: 10.1242/jcs.109157] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The chitin synthase that makes the primary septum during cell division in budding yeasts is an important therapeutic target with an unknown activation mechanism. We previously found that the C2-domain of the Saccharomyces cerevisiae Inn1 protein plays an essential but uncharacterised role at the cleavage site during cytokinesis. By combining a novel degron allele of INN1 with a point mutation in the C2-domain, we screened for mutations in other genes that suppress the resulting defect in cell division. In this way, we identified 22 dominant mutations of CHS2 (chitin synthase II) that map to two neighbouring sites in the catalytic domain. Chs2 in isolated cell membranes is normally nearly inactive (unless protease treatment is used to bypass inhibition); however, the dominant suppressor allele Chs2-V377I has enhanced activity in vitro. We show that Inn1 associates with Chs2 in yeast cell extracts. It also interacts in a yeast two-hybrid assay with the N-terminal 65% of Chs2, which contains the catalytic domain. In addition to compensating for mutations in the Inn1 C2-domain, the dominant CHS2 alleles suppress cytokinesis defects produced by the lack of the Cyk3 protein. Our data support a model in which the C2-domain of Inn1 acts in conjunction with Cyk3 to regulate the catalytic domain of Chs2 during cytokinesis. These findings suggest novel approaches for developing future drugs against important fungal pathogens.
Collapse
Affiliation(s)
- Asli Devrekanli
- Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
| | | | | | | | | |
Collapse
|
27
|
Kristan K, Rižner TL. Steroid-transforming enzymes in fungi. J Steroid Biochem Mol Biol 2012; 129:79-91. [PMID: 21946531 DOI: 10.1016/j.jsbmb.2011.08.012] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 07/27/2011] [Accepted: 08/19/2011] [Indexed: 11/24/2022]
Abstract
Fungal species are a very important source of many different enzymes, and the ability of fungi to transform steroids has been used for several decades in the production of compounds with a sterane skeleton. Here, we review the characterised and/or purified enzymes for steroid transformations, dividing them into two groups: (i) enzymes of the ergosterol biosynthetic pathway, including data for, e.g. ERG11 (14α-demethylase), ERG6 (C-24 methyltransferase), ERG5 (C-22 desaturase) and ERG4 (C-24 reductase); and (ii) the other steroid-transforming enzymes, including different hydroxylases (7α-, 11α-, 11β-, 14α-hydroxylase), oxidoreductases (5α-reductase, 3β-hydroxysteroid dehydrogenase/isomerase, 17β-hydroxysteroid dehydrogenase, C-1/C-2 dehydrogenase) and C-17-C-20 lyase. The substrate specificities of these enzymes, their cellular localisation, their association with protein super-families, and their potential applications are discussed. Article from a special issue on steroids and microorganisms.
Collapse
Affiliation(s)
- Katja Kristan
- Institute of Biochemistry, University of Ljubljana, Ljubljana, Slovenia.
| | | |
Collapse
|
28
|
Rajeshkumar R, Sundararaman M. Emergence of Candida spp. and exploration of natural bioactive molecules for anticandidal therapy--status quo. Mycoses 2011; 55:e60-73. [PMID: 22118661 DOI: 10.1111/j.1439-0507.2011.02156.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The opportunistic yeast pathogen Candida albicans and the emerging non-albicans Candida spp. cause life-threatening infections in immuno-compromised patients, leading to an increase in mortality rate. At present, the emergence of non-albicans Candida spp. causes serious infections that are difficult to treat the human populations worldwide. The available, synthetic antifungal drugs show high toxicity to host tissues causing adverse effects. Many metabolites of terrestrial and marine plants, microbes, algae, etc., contain a rich source of unexplored novel leads of different types, which are under use to treat various diseases. Such natural drugs are less expensive and have lower toxicity to host tissues. The patent search on identified and potential anticandidal-lead molecules, from various patent databases, has been described in this review. Furthermore, this article consolidates the trends in the development of anticandidal drug discovery worldwide. Most of the investigations on natural, bioactive molecules against candidiasis are in various phases of clinical trials, of which, two drugs Caspofungin acetate and Micafungin sodium were approved by the U.S. FDA. In conclusion, the exploration of drugs from natural resources serves as a better alternative source in anticandidal therapeutics, having great scope for drug discovery in the future.
Collapse
Affiliation(s)
- Radhakrishnan Rajeshkumar
- Department of Marine Biotechnology, National Facility for Marine Cyanobacteria, Bharathidasan University, Tiruchirappalli, India
| | | |
Collapse
|
29
|
Liu Y, Liu Z, Cao X, Liu X, He H, Yang Y. Design and synthesis of pyridine-substituted itraconazole analogues with improved antifungal activities, water solubility and bioavailability. Bioorg Med Chem Lett 2011; 21:4779-83. [DOI: 10.1016/j.bmcl.2011.06.062] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 06/13/2011] [Accepted: 06/14/2011] [Indexed: 10/18/2022]
|
30
|
The Mycobacterium tuberculosis cytochromes P450: physiology, biochemistry & molecular intervention. Future Med Chem 2011; 2:1339-53. [PMID: 21426022 DOI: 10.4155/fmc.10.216] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The human pathogen Mycobacterium tuberculosis (Mtb) encodes 20 cytochrome P450 (P450) enzymes. Gene essentiality for viability or host infection was demonstrated for Mtb P450s CYP128, CYP121 and CYP125. Structure/function studies on Mtb P450s revealed key roles contributing to bacterial virulence and persistence in the host. Various azole-class drugs bind with high affinity to the Mtb P450 heme and are potent Mtb antibiotics. This paper reviews the current understanding of the biochemistry of Mtb P450s, their interactions with azoles and their potential as novel Mtb drug targets. Mtb multidrug resistance is widespread and novel therapeutics are desperately needed. Simultaneous drug targeting of several Mtb P450s crucial to bacterial viability/persistence could offer a new route to effective antibiotics and minimize the development of drug resistance.
Collapse
|
31
|
Abadio AKR, Kioshima ES, Teixeira MM, Martins NF, Maigret B, Felipe MSS. Comparative genomics allowed the identification of drug targets against human fungal pathogens. BMC Genomics 2011; 12:75. [PMID: 21272313 PMCID: PMC3042012 DOI: 10.1186/1471-2164-12-75] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 01/27/2011] [Indexed: 11/16/2022] Open
Abstract
Background The prevalence of invasive fungal infections (IFIs) has increased steadily worldwide in the last few decades. Particularly, there has been a global rise in the number of infections among immunosuppressed people. These patients present severe clinical forms of the infections, which are commonly fatal, and they are more susceptible to opportunistic fungal infections than non-immunocompromised people. IFIs have historically been associated with high morbidity and mortality, partly because of the limitations of available antifungal therapies, including side effects, toxicities, drug interactions and antifungal resistance. Thus, the search for alternative therapies and/or the development of more specific drugs is a challenge that needs to be met. Genomics has created new ways of examining genes, which open new strategies for drug development and control of human diseases. Results In silico analyses and manual mining selected initially 57 potential drug targets, based on 55 genes experimentally confirmed as essential for Candida albicans or Aspergillus fumigatus and other 2 genes (kre2 and erg6) relevant for fungal survival within the host. Orthologs for those 57 potential targets were also identified in eight human fungal pathogens (C. albicans, A. fumigatus, Blastomyces dermatitidis, Paracoccidioides brasiliensis, Paracoccidioides lutzii, Coccidioides immitis, Cryptococcus neoformans and Histoplasma capsulatum). Of those, 10 genes were present in all pathogenic fungi analyzed and absent in the human genome. We focused on four candidates: trr1 that encodes for thioredoxin reductase, rim8 that encodes for a protein involved in the proteolytic activation of a transcriptional factor in response to alkaline pH, kre2 that encodes for α-1,2-mannosyltransferase and erg6 that encodes for Δ(24)-sterol C-methyltransferase. Conclusions Our data show that the comparative genomics analysis of eight fungal pathogens enabled the identification of four new potential drug targets. The preferred profile for fungal targets includes proteins conserved among fungi, but absent in the human genome. These characteristics potentially minimize toxic side effects exerted by pharmacological inhibition of the cellular targets. From this first step of post-genomic analysis, we obtained information relevant to future new drug development.
Collapse
|
32
|
Suarez F, Olivier G, Garcia-Hermoso D, Randriamalala E, Ghez D, Bruneau J, Kauffmann-Lacroix C, Bougnoux ME, Lortholary O. Breakthrough Hormographiella aspergillata infections arising in neutropenic patients treated empirically with caspofungin. J Clin Microbiol 2011; 49:461-5. [PMID: 21068290 PMCID: PMC3020423 DOI: 10.1128/jcm.01213-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 08/31/2010] [Accepted: 10/29/2010] [Indexed: 11/20/2022] Open
Abstract
Hormographiella aspergillata, a filamentous basidiomycete, has rarely been involved in human infections. We describe 2 febrile neutropenic patients who developed a severe pulmonary infection due to H. aspergillata while receiving empirical caspofungin therapy for presumed fungal pneumonia. After introduction of liposomal amphotericin B, one patient, who had neutrophil recovery, presented a favorable outcome, while the other, who remained neutropenic throughout the course of infection, died. Resistant fungi, including basidiomycetes, may emerge during empirical treatment with caspofungin in febrile neutropenic patients. A rapid switch to any other potent antifungal should be rapidly considered in case of failure of caspofungin in this setting.
Collapse
Affiliation(s)
- Felipe Suarez
- Université Paris Descartes, Service d'Hématologie Adultes, Hôpital Necker-Enfants Malades, AP-HP, 149 Rue de Sèvres, 75743 Paris Cedex 15, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Wang JL, Chang CH, Young-Xu Y, Chan KA. Systematic review and meta-analysis of the tolerability and hepatotoxicity of antifungals in empirical and definitive therapy for invasive fungal infection. Antimicrob Agents Chemother 2010; 54:2409-19. [PMID: 20308378 PMCID: PMC2876415 DOI: 10.1128/aac.01657-09] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2009] [Revised: 12/29/2009] [Accepted: 03/10/2010] [Indexed: 01/13/2023] Open
Abstract
To evaluate the tolerability and liver safety profiles of the systemic antifungal agents commonly used for the treatment of invasive fungal infection, we conducted a systematic review and meta-analysis of randomized controlled trials published before 31 August 2009. Two reviewers independently applied selection criteria, performed quality assessment, and extracted data. We used the beta-binomial model to account for variation across studies and the maximum likelihood method to estimate the pooled risks. We identified 39 studies with more than 8,000 enrolled patients for planned comparisons. The incidence rates of treatment discontinuation due to adverse reactions and liver injury associated with antifungal therapy ranged widely. The pooled risks of treatment discontinuation due to adverse reactions were above 10% for amphotericin B formulations and itraconazole, whereas they were 2.5% to 3.8% for fluconazole, caspofungin, and micafungin. We found that 1.5% of the patients stopped itraconazole treatment due to hepatotoxicity. Furthermore, 19.7% of voriconazole users and 17.4% of itraconazole users had elevated serum liver enzyme levels, although they did not require treatment discontinuation, whereas 2.0% or 9.3% of fluconazole and echinocandin users had elevated serum liver enzyme levels but did not require treatment discontinuation. The results were similar when we stratified the data by empirical or definitive antifungal therapy. Possible explanations for antifungal agent-related hepatotoxicity were confounded by antifungal prescription to patients with a high risk of liver injury, the increased chance of detection of hepatotoxicity due to prolonged treatment, or the pharmacological entity.
Collapse
Affiliation(s)
- Jiun-Ling Wang
- Department of Internal Medicine, E-Da Hospital/I-Shou University, Kaohsiung, Taiwan, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan, Institute of Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan, EpiPatterns, Haverhill, New Hampshire, Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts
| | - Chia-Hsuin Chang
- Department of Internal Medicine, E-Da Hospital/I-Shou University, Kaohsiung, Taiwan, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan, Institute of Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan, EpiPatterns, Haverhill, New Hampshire, Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts
| | - Yinong Young-Xu
- Department of Internal Medicine, E-Da Hospital/I-Shou University, Kaohsiung, Taiwan, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan, Institute of Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan, EpiPatterns, Haverhill, New Hampshire, Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts
| | - K. Arnold Chan
- Department of Internal Medicine, E-Da Hospital/I-Shou University, Kaohsiung, Taiwan, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan, Institute of Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan, EpiPatterns, Haverhill, New Hampshire, Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts
| |
Collapse
|
35
|
Minagawa N, Uehara M, Seki S, Nitta A, Kogawara K. [Effects of combined addition of atovaquone and lithium on the in vitro cell growth of the pathogenic yeast Candida albicans]. YAKUGAKU ZASSHI 2010; 130:247-51. [PMID: 20118649 DOI: 10.1248/yakushi.130.247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Atovaquone, an analog of ubiquinone, binds tightly to the ubiquinol oxidation site (Qo site) of parasite cytochrome bc(1) complex to inhibit electron transport at concentrations far lower than those at which the mammalian system is affected. The mode of action is thought similar to that of myxothiazol. To treat Pneumocystis jirovecii and Plasmodium falciparum infections, atovaquone has been used worldwide whereas it is unapproved in Japan. Since the pathogenic Candida species fungi seem resistant to atovaquone, this drug is not clinically available for candidosis, particularly deep mycosis. We examined the effects of atovaquone on cellular respiration and in vitro growth of C. albicans to explore a new therapeutic possibility for fungal infections. Atovaquone strongly inhibited glucose-dependent cellular respiration similarly to antimycin A, stigmatellin, and myxothiazol, specific bc(1) complex inhibitors. However, atovaquone suppressed glucose-dependent cell growth to a much lesser extent versus the comparator agents. When added alone, lithium exerted slight growth inhibition. The combined addition of lithium with atovaquone showed a significant increase in inhibition of growth. Although the way lithium acts synergistically with atovaquone remains to be elucidated, our results suggest a new therapeutic possibility of this combination for the treatment of candidosis.
Collapse
Affiliation(s)
- Nobuko Minagawa
- Department of Biochemistry, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan.
| | | | | | | | | |
Collapse
|
36
|
Volmer AA, Szpilman AM, Carreira EM. Synthesis and biological evaluation of amphotericin B derivatives. Nat Prod Rep 2010; 27:1329-49. [DOI: 10.1039/b820743g] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
37
|
Perkhofer S, Lass-Flörl C. Anidulafungin and voriconazole in invasive fungal disease: pharmacological data and their use in combination. Expert Opin Investig Drugs 2009; 18:1393-404. [DOI: 10.1517/13543780903160658] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
38
|
Chandrasekar P. Invasive mold infections: recent advances in management approaches. Leuk Lymphoma 2009; 50:703-15. [DOI: 10.1080/10428190902777434] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
39
|
Abstract
PURPOSE OF REVIEW: We will focus separately on infectious, drug-induced and caustic injury of the esophagus and their possible complications such as stricture and perforation. RECENT FINDINGS: There has been a decrease in opportunistic esophageal infection in HIV-positive patients, in particular candidiasis, which remains an important cause of inpatient charges, length of stay and total hospital costs, and new antifungal therapy are currently explored. As far as drug-induced esophageal injury is concerned, more than 1000 cases of all cases due to nearly 100 different medications have been described during the last 10 years. However, the estimated case frequency is probably much higher and the related literature is of low quality, as cases are reported selectively and stimulated by clustering of cases, newly implicated pills or unusual complications. Finally, in the field of caustic ingestion-related injury, there has been greater understanding of geographical differences in prevalence and more frequently involved substances, choice of optimal timing for endoscopy, relationship between symptoms and severity of lesions and appropriate role of steroids and other therapies, such as the topical application of mytomicin C. SUMMARY: This update covers the most relevant papers published on the three areas of interest during the last year.
Collapse
|
40
|
Abstract
Candida spp. are currently the fourth most common cause of bloodstream infections in US hospitals, and the third most common cause of bloodstream infections in the intensive care unit. Over the last 2 decades there has been a shift towards a greater involvement of non-Candida albicans spp. as the cause of candidemia. Several of these non-albicans spp. (e.g., C. glabrata and C. krusei ) exhibit resistance to traditional triazole antifungals like fluconazole, and cross-resistance with newer triazoles, focusing attention on the first-line use of antifungals such as the echinocandins, which possess improved activity against fluconazole-resistant strains. Recent treatment guidelines from the Infectious Diseases Society of America (IDSA) recommend an echinocandin as primary therapy for nonneutropenic or neutropenic patients with moderately severe to severe candidiasis and for patients at risk for infection with a triazole-resistant strain. However, further improvement in candidemia-associated mortality will only be attainable with the development and validation of new diagnostic tools that will allow earlier detection, discrimination, and treatment of invasive candidiasis. Clinicians should remain vigilant to wider emergence of Candida spp. with echinocandin resistance.
Collapse
Affiliation(s)
- Russell E Lewis
- Department of Clinical Sciences and Administration, University of Houston College of Pharmacy, Houston, TX, USA.
| |
Collapse
|
41
|
Studies on peptidyl nucleoside antibiotics: synthesis and antifungal evaluation of pyranosyl nucleoside analogs of nikkomycin. Future Med Chem 2009; 1:379-89. [DOI: 10.4155/fmc.09.18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: The Streptomyces-derived nikkomycins are a unique class of peptidyl nucleoside natural products, with potent antifungal activity against a variety of pathogenic fungi. Results: In continuation of our structure–activity relationship studies on the nikkomycins, this paper describes the strategic design, synthesis and biological evaluation of a ‘doubly modified’ generation of nikkomycin analogs. The structural modifications included a ring-expanded carbohydrate core and a simplified peptidyl side chain. Biological screening of these novel analogs against clinical isolates of various human pathogenic fungi indicated that the described modifications of the structural features of nikkomycin could be a potentially beneficial strategy towards optimizing the antifungal potency of this class of peptidyl nucleoside antibiotics. Conclusion: Continued investigation of the pyranosyl nikkomycin analogs is warranted to fully explore and optimize the structural features of this novel lead for the desired development of a new class of therapeutically useful antifungal drugs.
Collapse
|
42
|
Wilson DT, Drew RH, Perfect JR. Antifungal Therapy for Invasive Fungal Diseases in Allogeneic Stem Cell Transplant Recipients: An Update. Mycopathologia 2009; 168:313-27. [DOI: 10.1007/s11046-009-9193-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Accepted: 03/03/2009] [Indexed: 11/30/2022]
|
43
|
Ghannoum MA, Chen A, Buhari M, Chandra J, Mukherjee PK, Baxa D, Golembieski A, Vazquez JA. Differential in vitro activity of anidulafungin, caspofungin and micafungin against Candida parapsilosis isolates recovered from a burn unit. Clin Microbiol Infect 2009; 15:274-9. [PMID: 19210699 DOI: 10.1111/j.1469-0691.2008.02660.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recent studies suggest that differences in antifungal activity among echinocandins may exist. In this study, the activities of three echinocandins (anidulafungin, caspofungin, and micafungin) against Candida parapsilosis isolates from burn unit patients, healthcare workers and the hospital environment were determined. Additionally, the effect of these echinocandins on the cell morphology of caspofungin-susceptible and caspofungin-non-susceptible isolates was assessed using scanning electron microscopy (SEM). The C. parapsilosis isolates obtained from patients were susceptible to anidulafungin, but were less so to caspofungin and micafungin. Isolates obtained from healthcare workers or environmental sources were susceptible to all antifungals. SEM data demonstrated that although anidulafungin and caspofungin were equally active against a caspofungin-susceptible C. parapsilosis strain, they differed in their ability to damage a caspofungin-non-susceptible strain, for which lower concentrations of anidulafungin (1 mg/L) than of caspofungin (16 mg/L) were needed to induce cellular damage and distortion of the cellular morphology. To determine whether the difference in the antifungal susceptibility of C. parapsilosis isolates to anidulafungin as compared to the other two echinocandins could be due to different mutations in the FKS1 gene, the sequences of the 493-bp region of this gene associated with echinocandin resistance were compared. No differences in the corresponding amino acid sequences were observed, indicating that differences in activity between anidulafungin and the other echinocandins are not related to mutations in this region. The results of this study provide evidence that differences exist between the activities of anidulafungin and the other echinocandins.
Collapse
Affiliation(s)
- M A Ghannoum
- Center for Medical Mycology, University Hospitals of Cleveland, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Hematopoietic SCT from partially HLA-mismatched (HLA-haploidentical) related donors. Bone Marrow Transplant 2008; 42:365-77. [PMID: 18679375 DOI: 10.1038/bmt.2008.215] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Hematopoietic SCT from a partially HLA-mismatched (HLA-haploidentical) first-degree relative offers the benefits of rapid and near universal donor availability but also the risks that result from traversing the HLA barrier; namely, graft failure, severe GVHD and prolonged immunodeficiency. Improvements over the last 10 years in conditioning regimens, graft engineering and pharmacological immunoprophylaxis of GVHD have substantially reduced the morbidity and mortality of HLA-haploidentical SCT. Highly immunosuppressive but nonmyeloablative conditioning extends the availability of HLA-haploidentical SCT to elderly hematologic malignancy patients lacking HLA-matched donors and permits recovery of autologous hematopoiesis in the event of graft failure. Current regimens for HLA-haploidentical SCT are associated with a 2-year non-relapse mortality of 20+/-5%, relapse of 35+/-15% and overall survival of 50+/-20%. Major developmental areas include harnessing natural killer cell alloreactivity to reduce the risk of disease relapse and improving immune reconstitution by delayed infusions of lymphocytes selectively depleted of alloreactive cells. Hematologic malignancy patients who lack suitably matched related or unrelated donors can now be treated with HLA-haploidentical related donor or unrelated umbilical cord blood SCT. Future clinical trials will assess the relative risks and benefits of these two graft sources.
Collapse
|
45
|
|