1
|
Ventayol-Guirado M, Torres L, Asensio-Landa V, Pérez-Granero Á, Madrid MI, Hernandez-Rodriguez J, Llull-Alberti MV, Lumbreras J, Escribà S, Pons M, Roldan J, Martínez-López I, Heine-Suñer D, Santos-Simarro F. Atypical noncontiguous TSC2/PKD1 gene deletions presenting as tuberous sclerosis/polycystic kidney disease contiguous gene syndrome. Am J Med Genet A 2024; 194:e63830. [PMID: 39095963 DOI: 10.1002/ajmg.a.63830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/05/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024]
Abstract
Tuberous sclerosis complex (TSC) and autosomal dominant polycystic kidney disease (ADPKD) are genetically distinct disorders typically associated with pathogenic variants in TSC1 and TSC2 for the former and PKD1 and PKD2 for the latter. TSC2 and PKD1 lie adjacent to each other, and large deletions comprising both genes lead to TSC2/PKD1 contiguous gene deletion syndrome (CGS). In this study, we describe a young female patient exhibiting symptoms of TSC2/PKD1 CGS in which genetic analysis disclosed two noncontiguous partial gene deletions in TSC2 and PKD1 that putatively are responsible for the manifestations of the syndrome. Further analysis revealed that both deletions appear to be de novo on the maternal chromosome, presumably with a germline origin. Despite extensive analysis, no maternal chromosomal rearrangement triggering these pathogenic variants was detected. This case elucidates a unique pathogenesis for TSC2/PKD1 CGS, diverging from the common contiguous deletions typically observed, marking the first reported instance of TSC2/PKD1 CGS caused by independent, functionally significant partial gene deletions.
Collapse
Affiliation(s)
- Marc Ventayol-Guirado
- Health Research Institute of the Balearic Islands (IdISBa), Genomics of Health research group, Palma, Spain
| | - Laura Torres
- Health Research Institute of the Balearic Islands (IdISBa), Genomics of Health research group, Palma, Spain
- Hospital Universitari Son Espases, Unit of Molecular Diagnostics and Clinical Genetics, Palma, Spain
| | - Victor Asensio-Landa
- Health Research Institute of the Balearic Islands (IdISBa), Genomics of Health research group, Palma, Spain
- Hospital Universitari Son Espases, Unit of Molecular Diagnostics and Clinical Genetics, Palma, Spain
| | - Ángeles Pérez-Granero
- Hospital Universitari Son Espases, Unit of Molecular Diagnostics and Clinical Genetics, Palma, Spain
| | - Maria Isabel Madrid
- Hospital Universitari Son Espases, Unit of Molecular Diagnostics and Clinical Genetics, Palma, Spain
| | - Jessica Hernandez-Rodriguez
- Health Research Institute of the Balearic Islands (IdISBa), Genomics of Health research group, Palma, Spain
- Hospital Universitari Son Espases, Unit of Molecular Diagnostics and Clinical Genetics, Palma, Spain
| | | | - Javier Lumbreras
- Pediatrics Department, Hospital Universitari Son Espases, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Multidisciplinary Pediatric Research Group, Palma, Spain
| | - Silvia Escribà
- Pediatrics Department, Hospital Universitari Son Espases, Palma, Spain
| | - Monserrat Pons
- Pediatrics Department, Hospital Universitari Son Espases, Palma, Spain
| | - Jordi Roldan
- Radiology Department, Hospital Universitari Son Espases, Palma, Spain
| | - Iciar Martínez-López
- Health Research Institute of the Balearic Islands (IdISBa), Genomics of Health research group, Palma, Spain
- Hospital Universitari Son Espases, Unit of Molecular Diagnostics and Clinical Genetics, Palma, Spain
| | - Damian Heine-Suñer
- Health Research Institute of the Balearic Islands (IdISBa), Genomics of Health research group, Palma, Spain
- Hospital Universitari Son Espases, Unit of Molecular Diagnostics and Clinical Genetics, Palma, Spain
| | - Fernando Santos-Simarro
- Health Research Institute of the Balearic Islands (IdISBa), Genomics of Health research group, Palma, Spain
- Hospital Universitari Son Espases, Unit of Molecular Diagnostics and Clinical Genetics, Palma, Spain
| |
Collapse
|
2
|
Lv J, Lan B, Fu L, He C, Zhou W, Wang X, Zhou C, Mao Z, Chen Y, Mei C, Xue C. EZH2 inhibition or genetic ablation suppresses cyst growth in autosomal dominant polycystic kidney disease. J Transl Med 2024; 22:979. [PMID: 39472935 PMCID: PMC11520870 DOI: 10.1186/s12967-024-05785-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a prevalent genetic disorder characterized by the formation of renal cysts leading to kidney failure. Despite known genetic underpinnings, the variability in disease progression suggests additional regulatory layers, including epigenetic modifications. METHODS We utilized various ADPKD models, including Pkd1 and Ezh2 conditional knockout (Pkd1delta/delta:Ezh2delta/delta) mice, to explore the role of Enhancer of Zeste Homolog 2 (EZH2) in cystogenesis. Pharmacological inhibition of EZH2 was performed using GSK126 or EPZ-6438 across multiple models. RESULTS EZH2 expression was significantly upregulated in Pkd1-/- cells, Pkd1delta/delta mice, and human ADPKD kidneys. EZH2 inhibition attenuates cyst development in MDCK cells and a mouse embryonic kidney cyst model. Both Ezh2 conditional knockout and GSK126 treatment suppressed renal cyst growth and protected renal function in Pkd1delta/delta mice. Mechanistically, cAMP/PKA/CREB pathway increased EZH2 expression. EZH2 mediated cystogenesis by enhancing methylation and activation of STAT3, promoting cell cycle through p21 suppression, and stimulating non-phosphorylated β-catenin in Wnt signaling pathway. Additionally, EZH2 enhanced ferroptosis by inhibiting SLC7A11 and GPX4 in ADPKD. CONCLUSION Our findings elucidate the pivotal role of EZH2 in promoting renal cyst growth through epigenetic mechanisms and suggest that EZH2 inhibition or ablation may serve as a novel therapeutic approach for managing ADPKD.
Collapse
Affiliation(s)
- Jiayi Lv
- Kidney Institute, Division of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University (Naval Medical University), 415 Fengyang Road, Shanghai, 200003, China
| | - Bingxue Lan
- Center for Clinical Laboratories, Affiliated Hospital of Guizhou Medical University, Guiyang City, Guizhou Province, China
- Department of Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China
| | - Lili Fu
- Kidney Institute, Division of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University (Naval Medical University), 415 Fengyang Road, Shanghai, 200003, China
| | - Chaoran He
- Department of Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China
| | - Wei Zhou
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, China
| | - Xi Wang
- Institute of Infectious Diseases, Beijing Key Laboratory of Emerging Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Beijing Institute of Infectious Diseases, Beijing, 100015, China
| | - Chenchen Zhou
- Outpatient Department, Yangpu Third Military Retreat, Shanghai, China
| | - Zhiguo Mao
- Kidney Institute, Division of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University (Naval Medical University), 415 Fengyang Road, Shanghai, 200003, China.
| | - Yupeng Chen
- Department of Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China.
| | - Changlin Mei
- Kidney Institute, Division of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University (Naval Medical University), 415 Fengyang Road, Shanghai, 200003, China.
| | - Cheng Xue
- Kidney Institute, Division of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University (Naval Medical University), 415 Fengyang Road, Shanghai, 200003, China.
| |
Collapse
|
3
|
Rai V, Singh M, Holthoff JH. New Mutation Associated with Polycystic Kidney Disease Type I: A Case Report. Genes (Basel) 2024; 15:1262. [PMID: 39457385 PMCID: PMC11507877 DOI: 10.3390/genes15101262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/17/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
INTRODUCTION Autosomal dominant polycystic kidney disease (ADPKD) is one of the most prevalent heritable disorders, characterized by the progressive development of kidney cysts leading to renal failure. It is primarily caused by mutations in the PKD1 and PKD2 genes, which account for approximately 85% and 15% of cases, respectively. This case report describes a previously unreported mutation in the PKD1 gene, identified in a family involving an aunt and her niece with ADPKD. CASE PRESENTATION The index case, a 56-year-old female with chronic kidney disease stage 3b secondary to ADPKD and hypertension, exhibited a strong family history of polycystic kidney disease (PKD). Initial genetic evaluations did not identify any recognized pathogenic mutations, leading to a more detailed investigation which revealed a novel mutation in the PKD1 gene. This mutation was also found in her niece, who presented with early-onset disease. CONCLUSIONS The identification of a heterozygous six-nucleotide deletion, c.2084_2089del, resulting in the in-frame deletion of two amino acids, p.Pro695_Ala696del, in the PKD1 gene, has been linked with ADPKD in these patients. This report emphasizes the need for continuous updates to genetic data for a deeper understanding of the diagnosis and prognosis of ADPKD that could potentially aid in targeted therapy.
Collapse
Affiliation(s)
- Vanya Rai
- Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA;
| | - Manisha Singh
- Department of Nephrology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Joseph H. Holthoff
- Department of Nephrology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| |
Collapse
|
4
|
Ross KG, Alvarez Zepeda S, Auwal MA, Garces AK, Roman S, Zayas RM. The Role of Polycystic Kidney Disease-Like Homologs in Planarian Nervous System Regeneration and Function. Integr Org Biol 2024; 6:obae035. [PMID: 39364443 PMCID: PMC11448475 DOI: 10.1093/iob/obae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/01/2024] [Accepted: 09/06/2024] [Indexed: 10/05/2024] Open
Abstract
Planarians are an excellent model for investigating molecular mechanisms necessary for regenerating a functional nervous system. Numerous studies have led to the generation of extensive genomic resources, especially whole-animal single-cell RNA-seq resources. These have facilitated in silico predictions of neuronal subtypes, many of which have been anatomically mapped by in situ hybridization. However, our knowledge of the function of dozens of neuronal subtypes remains poorly understood. Previous investigations identified that polycystic kidney disease (pkd)-like genes in planarians are strongly expressed in sensory neurons and have roles in mechanosensation. Here, we examine the expression and function of all the pkd genes found in the Schmidtea mediterranea genome and map their expression in the asexual and hermaphroditic strains. Using custom behavioral assays, we test the function of pkd genes in response to mechanical stimulation and in food detection. Our work provides insight into the physiological function of sensory neuron populations and protocols for creating inexpensive automated setups for acquiring and analyzing mechanosensory stimulation in planarians.
Collapse
Affiliation(s)
- K G Ross
- Department of Biology, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182, USA
| | - S Alvarez Zepeda
- Department of Biology, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182, USA
| | - M A Auwal
- Department of Biology, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182, USA
| | - A K Garces
- Department of Biology, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182, USA
| | - S Roman
- Department of Biology, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182, USA
| | - R M Zayas
- Department of Biology, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182, USA
| |
Collapse
|
5
|
First Rosenberg L, Schwartz D, Schwartz IF, Baruch R, Goykhman Y, Raz MA, Shashar M, Cohen-Hagai K, Nacasch N, Kliuk Ben-Bassat O, Grupper A. Long-Term Outcomes of Nephrectomy Before Kidney Transplantation in Patients With Polycystic Kidney Disease. Transplant Proc 2024; 56:1556-1562. [PMID: 39153947 DOI: 10.1016/j.transproceed.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/06/2024] [Accepted: 07/06/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Polycystic kidney disease (PKD) is the most common hereditary kidney disorder. In most patients, the disease progresses to end stage kidney disease, which is treated preferably by kidney transplantation. In certain clinical circumstances, a pretransplant nephrectomy is indicated. Data regarding long-term outcomes of pretransplant nephrectomy are limited. In this study, we aimed to compare patient and graft survival, as well as other long-term outcomes of kidney transplantation, between patients with PKD who had a pretransplant nephrectomy and those who have not. METHODS A retrospective analysis of 112 adult kidney transplant recipients with PKD, 36 (32.14%) of which underwent a pretransplant nephrectomy. RESULTS In a mean follow-up period of 79 and 129 months (for patients who underwent nephrectomy and patients who did not, respectively), no significant differences were found in patient and graft survival, after adjustment to age and donor type. In addition, rate of hospitalizations, urinary tract infections requiring hospitalization, diabetes mellitus, and erythrocytosis post-transplant were similar in both cohorts. CONCLUSIONS Pretransplant nephrectomy in patients with PKD is not associated with increased risk of mortality and other long-term complications following kidney transplantation.
Collapse
Affiliation(s)
| | - Doron Schwartz
- Faculty of Medical and Health sciences, Tel Aviv university, Tel Aviv, Israel; Nephrology Department, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Idit F Schwartz
- Faculty of Medical and Health sciences, Tel Aviv university, Tel Aviv, Israel; Nephrology Department, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Roni Baruch
- Faculty of Medical and Health sciences, Tel Aviv university, Tel Aviv, Israel; Nephrology Department, Tel Aviv Medical Center, Tel Aviv, Israel; Organ Transplantation Unit, Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Yaacov Goykhman
- Faculty of Medical and Health sciences, Tel Aviv university, Tel Aviv, Israel; Organ Transplantation Unit, Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Michal Ariela Raz
- Faculty of Medical and Health sciences, Tel Aviv university, Tel Aviv, Israel; Nephrology Department, Tel Aviv Medical Center, Tel Aviv, Israel; Organ Transplantation Unit, Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Moshe Shashar
- Nephrology Section, Laniado Hospital, Netanya, Israel
| | - Keren Cohen-Hagai
- Faculty of Medical and Health sciences, Tel Aviv university, Tel Aviv, Israel; Department of Nephrology and Hypertension, Meir Medical Center, Kfar Saba, Israel
| | - Naomi Nacasch
- Faculty of Medical and Health sciences, Tel Aviv university, Tel Aviv, Israel; Department of Nephrology and Hypertension, Meir Medical Center, Kfar Saba, Israel
| | - Orit Kliuk Ben-Bassat
- Faculty of Medical and Health sciences, Tel Aviv university, Tel Aviv, Israel; Nephrology Department, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Ayelet Grupper
- Faculty of Medical and Health sciences, Tel Aviv university, Tel Aviv, Israel; Nephrology Department, Tel Aviv Medical Center, Tel Aviv, Israel; Organ Transplantation Unit, Tel-Aviv Medical Center, Tel-Aviv, Israel.
| |
Collapse
|
6
|
Tran U, Streets AJ, Smith D, Decker E, Kirschfink A, Izem L, Hassey JM, Rutland B, Valluru MK, Bräsen JH, Ott E, Epting D, Eisenberger T, Ong AC, Bergmann C, Wessely O. BICC1 Interacts with PKD1 and PKD2 to Drive Cystogenesis in ADPKD. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.608867. [PMID: 39253489 PMCID: PMC11383298 DOI: 10.1101/2024.08.27.608867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Background Autosomal dominant polycystic kidney disease (ADPKD) is primarily of adult-onset and caused by pathogenic variants in PKD1 or PKD2 . Yet, disease expression is highly variable and includes very early-onset PKD presentations in utero or infancy. In animal models, the RNA-binding molecule Bicc1 has been shown to play a crucial role in the pathogenesis of PKD. Methods To study the interaction between BICC1, PKD1 and PKD2 we combined biochemical approaches, knockout studies in mice and Xenopus, genetic engineered human kidney cells as well as genetic association studies in a large ADPKD cohort. Results We first demonstrated that BICC1 physically binds to the proteins Polycystin-1 and -2 encoded by PKD1 and PKD2 via distinct protein domains. Furthermore, PKD was aggravated in loss-of-function studies in Xenopus and mouse models resulting in more severe disease when Bicc1 was depleted in conjunction with Pkd1 or Pkd2 . Finally, in a large human patient cohort, we identified a sibling pair with a homozygous BICC1 variant and patients with very early onset PKD (VEO-PKD) that exhibited compound heterozygosity of BICC1 in conjunction with PKD1 and PKD2 variants. Genome editing demonstrated that these BICC1 variants were hypomorphic in nature and impacted disease-relevant signaling pathways. Conclusions These findings support the hypothesis that BICC1 cooperates functionally with PKD1 and PKD2 , and that BICC1 variants may aggravate disease severity highlighting RNA metabolism as an important new concept for disease modification in ADPKD.
Collapse
|
7
|
Becker K. Retrospective analysis on the occurrence of kidney cysts in mice in a central animal facility in the years 2009-2019. Lab Anim 2024:236772241242538. [PMID: 39102530 DOI: 10.1177/00236772241242538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Kidney cysts in humans are mainly caused by inheritable polycystic kidney disease. Although they are a regular finding in laboratory mice, their occurrence upon dissection has not been systematically investigated, yet. Therefore, the aim of this report was to investigate on prevalence, phenotype and aetiology of spontaneously occurring kidney cysts in mice by retrospectively analysing the laboratory-receipt tables of the in-house laboratory of a central animal facility in North Rhine-Westphalia, Germany, years 2009-2019. A percentage of 0.4% of dissected mice displayed kidney cysts, with more male than female animals affected and average age equal to that of all dissected animals. Preliminary report in half of the cases was distended abdomen, and a few individuals displayed additional pathologic alterations of kidneys, most commonly dilated renal pelvis, or extrarenal comorbidities. Kidney cysts occurred independently of a renal phenotype of the transgenic strain or presence of infectious agents in health monitoring. To conclude, kidney cysts were characterized as harmless for affected mice but, as inheritability is suggested according with the literature, affected animals should be excluded from breeding.
Collapse
Affiliation(s)
- Katrin Becker
- Cardiovascular Research Laboratory, Division of Cardiology, Pulmonary Diseases and Vascular Medicine, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
- Institute for Cardiovascular Sciences, University Hospital Bonn, University Bonn, Germany
| |
Collapse
|
8
|
Mizuno H, Besse W, Sekine A, Long KT, Kurihara S, Oba Y, Yamanouchi M, Hasegawa E, Suwabe T, Sawa N, Ubara Y, Somlo S, Hoshino J. Genetic Analysis of Severe Polycystic Liver Disease in Japan. KIDNEY360 2024; 5:1106-1115. [PMID: 38689396 PMCID: PMC11371350 DOI: 10.34067/kid.0000000000000461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
Key Points Among patients with severe polycystic liver disease (PLD) (height-adjusted total liver volume of <1800 ml/m), PKD2 variants were found in 34%. Three patients with PKD1 or PKD2 variants are reported with severe PLD but normal-sized kidneys (hTKV of < 250 ml/m). Background Polycystic liver disease (PLD) is present in most patients with autosomal dominant polycystic kidney disease (ADPKD). PLD can alternatively be found with few, if any, kidney cysts as a diagnosis of isolated PLD (autosomal dominant PLD [ADPLD]). Several genes are identified as causative for this spectrum of phenotypes; however, the relative incidence of genetic etiologies among patients with severe PLD is unknown. Methods Patients with ADPKD or ADPLD having severe PLD defined as height-adjusted total liver volume (hTLV) >1800 ml/m were recruited. Subsequent clinical care was followed. Genetic analysis was performed using whole exome sequencing. Results We enrolled and sequenced 49 patients (38 women, 11 men). Pathogenic or suspected pathogenic variants in polycystic disease genes were found in 44 of 49 patients (90%). The disease gene was PKD1 in 20 of 44 patients (45%), PKD2 in 15 of 44 patients (34%), PRKCSH in 5 of 44 patients (11%), GANAB in 2 of 44 patients (5%), SEC63 in 1 of 44 patients (2%), and ALG8 in 1 of 44 patients (2%). The median hTLV was no different between genetically defined ADPKD and ADPLD groups (4431 [range, 1817–9148] versus 3437 [range, 1860–8211]) ml, P = 0.77), whereas height-adjusted kidney volume was larger as expected in ADPKD than in ADPLD (607 [range, 190–2842] versus 179 [range, 138–234] ml/m, P < 0.01). Of the clinically defined ADPKD patients, 20 of 38 patients (53%) were PKD1 , 15 of 38 (39%) were PKD2 , and 3 (8%) remained genetically unsolved. Among patients with a pathogenic PKD1 or PKD2 variant, we found three patients with a liver-dominant ADPKD (severe PLD with height-adjusted total kidney volume <250 ml/m). Conclusions ADPLD-related genes represent 20% of patients with severe PLD in our cohort. Of those enrolled with ADPKD, we observed a higher frequency of PKD2 carriers than in any previously reported ADPKD cohorts. Although there was no significant difference in the hTLV between patients with PKD1 and PKD2 in this cohort, our data suggest that enrollment on the basis of severe PLD may enrich for patients with PKD2 .
Collapse
Affiliation(s)
- Hiroki Mizuno
- Nephrology Center Toranomon Hospital Kajigaya, Kawasaki, Japan
- Nephrology Center Toranomon Hospital, Tokyo, Japan
- Okinaka Memorial Institute for Medical Research, Tokyo, Japan
| | - Whitney Besse
- Section of Nephrology, Yale University School of Medicine, New Haven, Connecticut
| | - Akinari Sekine
- Nephrology Center Toranomon Hospital, Tokyo, Japan
- Okinaka Memorial Institute for Medical Research, Tokyo, Japan
| | - Kelly T. Long
- Section of Nephrology, Yale University School of Medicine, New Haven, Connecticut
| | | | - Yuki Oba
- Nephrology Center Toranomon Hospital Kajigaya, Kawasaki, Japan
| | | | | | - Tatsuya Suwabe
- Nephrology Center Toranomon Hospital Kajigaya, Kawasaki, Japan
| | - Naoki Sawa
- Nephrology Center Toranomon Hospital Kajigaya, Kawasaki, Japan
| | - Yoshifumi Ubara
- Nephrology Center Toranomon Hospital Kajigaya, Kawasaki, Japan
| | - Stefan Somlo
- Section of Nephrology, Yale University School of Medicine, New Haven, Connecticut
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut
| | - Junichi Hoshino
- Nephrology Center Toranomon Hospital, Tokyo, Japan
- Department of Nephrology, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
9
|
Ha K, Mundt-Machado N, Bisignano P, Pinedo A, Raleigh DR, Loeb G, Reiter JF, Cao E, Delling M. Cilia-enriched oxysterol 7β,27-DHC is required for polycystin ion channel activation. Nat Commun 2024; 15:6468. [PMID: 39085216 PMCID: PMC11291729 DOI: 10.1038/s41467-024-50318-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 06/28/2024] [Indexed: 08/02/2024] Open
Abstract
Polycystin-1 (PC-1) and PC-2 form a heteromeric ion channel complex that is abundantly expressed in primary cilia of renal epithelial cells. This complex functions as a non-selective cation channel, and mutations within the polycystin complex cause autosomal dominant polycystic kidney disease (ADPKD). The spatial and temporal regulation of the polycystin complex within the ciliary membrane remains poorly understood. Using both whole-cell and ciliary patch-clamp recordings, we identify a cilia-enriched oxysterol, 7β,27-dihydroxycholesterol (DHC), that serves as a necessary activator of the polycystin complex. We further identify an oxysterol-binding pocket within PC-2 and showed that mutations within this binding pocket disrupt 7β,27-DHC-dependent polycystin activation. Pharmacologic and genetic inhibition of oxysterol synthesis reduces channel activity in primary cilia. In summary, our findings reveal a regulator of the polycystin complex. This oxysterol-binding pocket in PC-2 may provide a specific target for potential ADPKD therapeutics.
Collapse
Affiliation(s)
- Kodaji Ha
- Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Nadine Mundt-Machado
- Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Paola Bisignano
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Aide Pinedo
- Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - David R Raleigh
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA
| | - Gabriel Loeb
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Erhu Cao
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Markus Delling
- Department of Physiology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
10
|
Ross KG, Zepeda SA, Auwal MA, Garces AK, Roman S, Zayas RM. The role of polycystic kidney disease-like homologs in planarian nervous system regeneration and function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.17.603829. [PMID: 39091889 PMCID: PMC11291080 DOI: 10.1101/2024.07.17.603829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Planarians are an excellent model for investigating molecular mechanisms necessary for regenerating a functional nervous system. Numerous studies have led to the generation of extensive genomic resources, especially whole-animal single-cell RNA-seq resources. These have facilitated in silico predictions of neuronal subtypes, many of which have been anatomically mapped by in situ hybridization. However, our knowledge of the function of dozens of neuronal subtypes remains poorly understood. Previous investigations identified that polycystic kidney disease (pkd)-like genes in planarians are strongly expressed in sensory neurons and have roles in mechanosensation. Here, we examine the expression and function of all the pkd genes found in the Schmidtea mediterranea genome and map their expression in the asexual and hermaphroditic strains. Using custom behavioral assays, we test the function of pkd genes in response to mechanical stimulation and in food detection. Our work provides insight into the physiological function of sensory neuron populations and protocols for creating inexpensive automated setups for acquiring and analyzing mechanosensory stimulation in planarians.
Collapse
Affiliation(s)
- Kelly G. Ross
- Department of Biology, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182-4614, USA
| | - Sarai Alvarez Zepeda
- Department of Biology, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182-4614, USA
| | - Mohammad A. Auwal
- Department of Biology, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182-4614, USA
| | - Audrey K. Garces
- Department of Biology, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182-4614, USA
| | - Sydney Roman
- Department of Biology, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182-4614, USA
| | - Ricardo M. Zayas
- Department of Biology, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182-4614, USA
| |
Collapse
|
11
|
Yamaguchi S, Sedaka R, Kapadia C, Huang J, Hsu JS, Berryhill TF, Wilson L, Barnes S, Lovelady C, Oduk Y, Williams RM, Jaimes EA, Heller DA, Saigusa T. Rapamycin-encapsulated nanoparticle delivery in polycystic kidney disease mice. Sci Rep 2024; 14:15140. [PMID: 38956234 PMCID: PMC11219830 DOI: 10.1038/s41598-024-65830-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024] Open
Abstract
Rapamycin slows cystogenesis in murine models of polycystic kidney disease (PKD) but failed in clinical trials, potentially due to insufficient drug dosing. To improve drug efficiency without increasing dose, kidney-specific drug delivery may be used. Mesoscale nanoparticles (MNP) selectively target the proximal tubules in rodents. We explored whether MNPs can target cystic kidney tubules and whether rapamycin-encapsulated-MNPs (RapaMNPs) can slow cyst growth in Pkd1 knockout (KO) mice. MNP was intravenously administered in adult Pkd1KO mice. Serum and organs were harvested after 8, 24, 48 or 72 h to measure MNP localization, mTOR levels, and rapamycin concentration. Pkd1KO mice were then injected bi-weekly for 6 weeks with RapaMNP, rapamycin, or vehicle to determine drug efficacy on kidney cyst growth. Single MNP injections lead to kidney-preferential accumulation over other organs, specifically in tubules and cysts. Likewise, one RapaMNP injection resulted in higher drug delivery to the kidney compared to the liver, and displayed sustained mTOR inhibition. Bi-weekly injections with RapaMNP, rapamycin or vehicle for 6 weeks resulted in inconsistent mTOR inhibition and little change in cyst index, however. MNPs serve as an effective short-term, kidney-specific delivery system, but long-term RapaMNP failed to slow cyst progression in Pkd1KO mice.
Collapse
Affiliation(s)
- Shinobu Yamaguchi
- Division of Nephrology, Department of Medicine, Section of Cardio-Renal Physiology and Medicine, McCallum Basic Health Science Building, University of Alabama at Birmingham, Room 533, 1918 University Blvd, Birmingham, AL, 35233, USA
| | - Randee Sedaka
- Division of Nephrology, Department of Medicine, Section of Cardio-Renal Physiology and Medicine, McCallum Basic Health Science Building, University of Alabama at Birmingham, Room 533, 1918 University Blvd, Birmingham, AL, 35233, USA
| | | | - Jifeng Huang
- Division of Nephrology, Department of Medicine, Section of Cardio-Renal Physiology and Medicine, McCallum Basic Health Science Building, University of Alabama at Birmingham, Room 533, 1918 University Blvd, Birmingham, AL, 35233, USA
| | - Jung-Shan Hsu
- Division of Nephrology, Department of Medicine, Section of Cardio-Renal Physiology and Medicine, McCallum Basic Health Science Building, University of Alabama at Birmingham, Room 533, 1918 University Blvd, Birmingham, AL, 35233, USA
| | - Taylor F Berryhill
- Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Landon Wilson
- Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stephen Barnes
- Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Caleb Lovelady
- Division of Nephrology, Department of Medicine, Section of Cardio-Renal Physiology and Medicine, McCallum Basic Health Science Building, University of Alabama at Birmingham, Room 533, 1918 University Blvd, Birmingham, AL, 35233, USA
| | | | - Ryan M Williams
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Edgar A Jaimes
- Department of Medicine, Renal Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel A Heller
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Takamitsu Saigusa
- Division of Nephrology, Department of Medicine, Section of Cardio-Renal Physiology and Medicine, McCallum Basic Health Science Building, University of Alabama at Birmingham, Room 533, 1918 University Blvd, Birmingham, AL, 35233, USA.
| |
Collapse
|
12
|
Ciantar N, Zahra G, Delicata J, Sammut F, Calleja-Agius J, Farrugia E, Said E. Genotype-phenotype of autosomal dominant polycystic kidney disease in Malta. Eur J Med Genet 2024; 69:104934. [PMID: 38537868 DOI: 10.1016/j.ejmg.2024.104934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/14/2024] [Accepted: 03/10/2024] [Indexed: 04/01/2024]
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the development of multiple renal cysts causing kidney enlargement and end-stage renal disease (ESRD) in half the patients by 60 years of age. The aim of the study was to determine the genetic aetiology in Maltese patients clinically diagnosed with ADPKD and correlate the clinical features. METHODS A total of 60 patients over 18 years of age clinically diagnosed with ADPKD were studied using a customized panel of genes that had sufficient evidence of disease diagnosis using next generation sequencing (NGS). The genes studied were PKD1, PKD2, GANAB, DNAJB11, PKHD1 and DZIP1L. Selected variants were confirmed by bidirectional Sanger sequencing with specifically designed primers. Cases where no clinically significant variant was identified by the customized gene panel were then studied by Whole Exome Sequencing (WES). Microsatellite analysis was performed to determine the origin of an identified recurrent variant in the PKD2 gene. Clinical features were studied for statistical correlation with genetic results. RESULTS Genetic diagnosis was reached in 49 (82%) of cases studied. Pathogenic/likely pathogenic variants PKD1 and PKD2 gene were found in 25 and in 23 cases respectively. The relative proportion of genetically diagnosed PKD1:PKD2 cases was 42:38. A pathogenic variant in the GANAB gene was identified in 1 (2%) case. A potentially significant heterozygous likely pathogenic variant was identified in PKHD1 in 1 (2%) case. Potentially significant variants of uncertain significance were seen in 4 (7%) cases of the study cohort. No variants in DNAJB11 and DZIP1L were observed. Whole exome sequencing (WES) added the diagnostic yield by 10% over the gene panel analysis. Overall no clinically significant variant was detected in 6 (10%) cases of the study population by a customized gene panel and WES. One recurrent variant the PKD2 c.709+1G > A was observed in 19 (32%) cases. Microsatellite analysis showed that all variant cases shared the same haplotype indicating that their families may have originated from a common ancestor and confirmed it to be a founder variant in the Maltese population. The rate of decline in eGFR was steeper and progression to ESRD was earlier in cases with PKD1 variants when compared to cases with PKD2 variants. Cases segregating truncating variants in PKD1 showed a significantly earlier onset of ESRD and this was significantly worse in cases with frameshift variants. Overall extrarenal manifestations were commoner in cases segregating truncating variants in PKD1. CONCLUSIONS This study helps to show that a customized gene panel is the first-line method of choice for studying patients with ADPKD followed by WES which increased the detection of variants present in the PKD1 pseudogene region. A founder variant in the PKD2 gene was identified in our Maltese cohort with ADPKD. Phenotype of patients with ADPKD is significantly related to the genotype confirming the important role of molecular investigations in the diagnosis and prognosis of polycystic kidney disease. Moreover, the findings also highlight the variability in the clinical phenotype and indicate that other factors including epigenetic and environmental maybe be important determinants in Autosomal Dominant Polycystic Kidney Disease.
Collapse
Affiliation(s)
- Natalie Ciantar
- Department of Anatomy, Faculty of Medicine & Surgery, University of Malta,Malta
| | - Graziella Zahra
- Department of Pathology, Molecular Diagnostics Laboratory, Mater Dei Hospital, Malta
| | - Julian Delicata
- Department of Medicine, Nephrology and General Medicine Division, Mater Dei Hospital, Malta
| | - Fiona Sammut
- Department of Statistics and Operations Research, Faculty of Science, University of Malta, Malta
| | - Jean Calleja-Agius
- Department of Anatomy, Faculty of Medicine & Surgery, University of Malta,Malta
| | - Emanuel Farrugia
- Department of Medicine, Nephrology and General Medicine Division, Mater Dei Hospital, Malta
| | - Edith Said
- Department of Anatomy, Faculty of Medicine & Surgery, University of Malta,Malta; Section of Medical Genetics, Department of Pathology, Mater Dei Hospital, Malta.
| |
Collapse
|
13
|
Su L, Chen T, Hu H, Xu Z, Luan X, Fu K, Ren Y, Sun D, Sun Y, Guo D. Notch3 as a novel therapeutic target for the treatment of ADPKD by regulating cell proliferation and renal cyst development. Biochem Pharmacol 2024; 224:116200. [PMID: 38604258 DOI: 10.1016/j.bcp.2024.116200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/22/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a common monogenic kidney disease. Emerging research indicates that the Notch signaling pathway plays an indispensable role in the pathogenesis of numerous kidney diseases, including ADPKD. Herein, we identified that Notch3 but not other Notch receptors was overexpressed in renal tissues from mice with ADPKD and ADPKD patients. Inhibiting Notch3 with γ-secretase inhibitors, which block a proteolytic cleavage required for Notch3 activation, or shRNA knockdown of Notch3 significantly delayed renal cyst growth in vitro and in vivo. Subsequent mechanistic study elucidated that the cleaved intracellular domain of Notch3 (N3ICD) and Hes1 could bind to the PTEN promoter, leading to transcriptional inhibition of PTEN. This further activated the downstream PI3K-AKT-mTOR pathway and promoted renal epithelial cell proliferation. Overall, Notch3 was identified as a novel contributor to renal epithelial cell proliferation and cystogenesis in ADPKD. We envision that Notch3 represents a promising target for ADPKD treatment.
Collapse
Affiliation(s)
- Limin Su
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Ting Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Hongtao Hu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Zifan Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Xiande Luan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Kequan Fu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Ying Ren
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Dong Sun
- Department of Urology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China.
| | - Ying Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| | - Dong Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| |
Collapse
|
14
|
Schueler J, Kuenzel J, Thuesing A, Pion E, Behncke RY, Haegerling R, Fuchs D, Kraus A, Buchholz B, Huang B, Merhof D, Werner JM, Schmidt KM, Hackl C, Aung T, Haerteis S. Ultra high frequency ultrasound enables real-time visualization of blood supply from chorioallantoic membrane to human autosomal dominant polycystic kidney tissue. Sci Rep 2024; 14:10063. [PMID: 38698187 PMCID: PMC11066115 DOI: 10.1038/s41598-024-60783-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 04/26/2024] [Indexed: 05/05/2024] Open
Abstract
Ultra high frequency (UHF) ultrasound enables the visualization of very small structures that cannot be detected by conventional ultrasound. The utilization of UHF imaging as a new imaging technique for the 3D-in-vivo chorioallantoic membrane (CAM) model can facilitate new insights into tissue perfusion and survival. Therefore, human renal cystic tissue was grafted onto the CAM and examined using UHF ultrasound imaging. Due to the unprecedented resolution of UHF ultrasound, it was possible to visualize microvessels, their development, and the formation of anastomoses. This enabled the observation of anastomoses between human and chicken vessels only 12 h after transplantation. These observations were validated by 3D reconstructions from a light sheet microscopy image stack, indocyanine green angiography, and histological analysis. Contrary to the assumption that the nutrient supply of the human cystic tissue and the gas exchange happens through diffusion from CAM vessels, this study shows that the vasculature of the human cystic tissue is directly connected to the blood vessels of the CAM and perfusion is established within a short period. Therefore, this in-vivo model combined with UHF imaging appears to be the ideal platform for studying the effects of intravenously applied therapeutics to inhibit renal cyst growth.
Collapse
Affiliation(s)
- Jan Schueler
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053, Regensburg, Germany
| | - Jonas Kuenzel
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053, Regensburg, Germany
| | - Anna Thuesing
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053, Regensburg, Germany
| | - Eric Pion
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053, Regensburg, Germany
| | - Rose Yinghan Behncke
- Research Group 'Lymphovascular Medicine and Translational 3D-Histopathology', Institute of Medical and Human Genetics, Charité-Universitätsmedizin Berlin, 13353, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies, 13353, Berlin, Germany
| | - Rene Haegerling
- Research Group 'Lymphovascular Medicine and Translational 3D-Histopathology', Institute of Medical and Human Genetics, Charité-Universitätsmedizin Berlin, 13353, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies, 13353, Berlin, Germany
- Research Group 'Development and Disease', Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Academy, Clinician Scientist Program, 10117, Berlin, Germany
| | - Dieter Fuchs
- FUJIFILM VisualSonics, Inc., 1114 AB, Amsterdam, The Netherlands
| | - Andre Kraus
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Bjoern Buchholz
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Boqiang Huang
- Institute of Image Analysis and Computer Vision, Faculty of Informatics and Data Science, University of Regensburg, 93053, Regensburg, Germany
| | - Dorit Merhof
- Institute of Image Analysis and Computer Vision, Faculty of Informatics and Data Science, University of Regensburg, 93053, Regensburg, Germany
| | - Jens M Werner
- Department of Surgery, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Katharina M Schmidt
- Department of Surgery, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Christina Hackl
- Department of Surgery, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Thiha Aung
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053, Regensburg, Germany
- Faculty of Applied Healthcare Science, Deggendorf Institute of Technology, 94469, Deggendorf, Germany
| | - Silke Haerteis
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
15
|
Cersonsky TE, Roth J. A Midsummer Night's Gene: The familial Neurological Illness of Felix Mendelssohn. JOURNAL OF MEDICAL BIOGRAPHY 2024; 32:264-272. [PMID: 34636685 DOI: 10.1177/09677720211046584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Felix Mendelssohn Bartholdy (1805-1847) is widely regarded as one of the musical geniuses of the Romantic period. A prodigy akin to Mozart, Mendelssohn composed piano works, symphonies, and concertos at an early age but died young, at 38. His death has been attributed to neurological disease, but the mystery of his diagnosis is amplified by the fact that his sisters died under similar circumstances, including the renowned composer, Fanny Mendelssohn Hensel. Mendelssohn died after years of suffering from headaches, earaches, and mood disturbances. In the final year of his life, his acute decline was marked by stepwise, progressive neurologic deficits: gait disturbance, loss of sensation in the hands, partial paralysis, and, finally, loss of consciousness. The similar pattern of disease within his family suggests an underlying genetic link, though this may be multifactorial in nature. We present a thorough, posthumous differential diagnosis for Mendelssohn's illness, given his medical history, the familial pattern, and hints from within his music. Possible diagnoses include ruptured cerebral aneurysm with resultant subarachnoid hemorrhage, familial cerebral cavernous malformation, and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Continued research into Mendelssohn's life may yield more information about his illness, death, and possibly true diagnosis.
Collapse
Affiliation(s)
- Tess Ek Cersonsky
- Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Julie Roth
- Warren Alpert Medical School of Brown University, Providence, RI, USA
- Department of Neurology, Rhode Island Hospital, Providence, RI, USA
| |
Collapse
|
16
|
Salehi O, Mack H, Colville D, Lewis D, Savige J. Ocular manifestations of renal ciliopathies. Pediatr Nephrol 2024; 39:1327-1346. [PMID: 37644229 PMCID: PMC10942941 DOI: 10.1007/s00467-023-06096-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 08/31/2023]
Abstract
Renal ciliopathies are a common cause of kidney failure in children and adults, and this study reviewed their ocular associations. Genes affected in renal ciliopathies were identified from the Genomics England Panels. Ocular associations were identified from Medline and OMIM, and the genes additionally examined for expression in the human retina ( https://www.proteinatlas.org/humanproteome/tissue ) and for an ocular phenotype in mouse models ( http://www.informatics.jax.org/ ). Eighty-two of the 86 pediatric-onset renal ciliopathies (95%) have an ocular phenotype, including inherited retinal degeneration, oculomotor disorders, and coloboma. Diseases associated with pathogenic variants in ANK6, MAPKBP1, NEK8, and TCTN1 have no reported ocular manifestations, as well as low retinal expression and no ocular features in mouse models. Ocular abnormalities are not associated with the most common adult-onset "cystic" kidney diseases, namely, autosomal dominant (AD) polycystic kidney disease and the AD tubulointerstitial kidney diseases (ADTKD). However, other kidney syndromes with cysts have ocular features including papillorenal syndrome (optic disc dysplasia), Hereditary Angiopathy Nephropathy, Aneurysms and muscle Cramps (HANAC) (tortuous retinal vessels), tuberous sclerosis (retinal hamartomas), von Hippel-Lindau syndrome (retinal hemangiomas), and Alport syndrome (lenticonus, fleck retinopathy). Ocular abnormalities are associated with many pediatric-onset renal ciliopathies but are uncommon in adult-onset cystic kidney disease. However the demonstration of ocular manifestations may be helpful diagnostically and the features may require monitoring or treatment.
Collapse
Affiliation(s)
- Omar Salehi
- Department of Medicine (Melbourne Health and Northern Health), The University of Melbourne, Royal Melbourne Hospital, Parkville, VIC, 3050, Australia
| | - Heather Mack
- University Department of Surgery (Ophthalmology), Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, 3002, Australia
| | - Deb Colville
- University Department of Surgery (Ophthalmology), Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, 3002, Australia
| | - Debbie Lewis
- Nephrology Department, The Children's Hospital at Westmead, Westmead, NSW, 2145, Australia
| | - Judy Savige
- Department of Medicine (Melbourne Health and Northern Health), The University of Melbourne, Royal Melbourne Hospital, Parkville, VIC, 3050, Australia.
| |
Collapse
|
17
|
Nigro E, Mallardo M, Amicone M, D’Arco D, Riccio E, Marra M, Pasanisi F, Pisani A, Daniele A. Exploring Adiponectin in Autosomal Dominant Kidney Disease: Insight and Implications. Genes (Basel) 2024; 15:484. [PMID: 38674417 PMCID: PMC11050174 DOI: 10.3390/genes15040484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a common monogenic disorder characterized by renal cysts and progressive renal failure. In kidney diseases, adipose tissue undergoes functional changes that have been associated with increased inflammation and insulin resistance mediated by release of adipokines. Adiponectin is involved in various cellular processes, such as energy and inflammatory and oxidative processes. However, it remains to be determined whether adiponectin is involved in the concomitant metabolic dysfunctions present in PKD. In this scenario, we aimed to analyze: (a) PPARγ, ADIPOQ, ADIPOR1 and ADIPOR2 gene variations in 92 ADPKD patients through PCR-Sanger sequencing; and (b) adiponectin levels and its oligomerization state by ELISA and Western Blot. Our results indicated that: (a) 14 patients carried the PPARγ SNP, 29 patients carried the ADIPOQ SNP rs1501299, and 25 patients carried the analyzed ADIPOR1 SNPs. Finally, 82 patients carried ADIPOR2 SNPs; and (b) Adiponectin is statistically lower in ADPKD patients compared to controls, and further statistically lower in ESRD than in non-ESRD patients. An inverse relationship between adiponectin and albumin and between adiponectin and creatinine and a direct relationship between adiponectin and eGFR were found. Interestingly, significantly lower levels of adiponectin were found in patients bearing the ADIPOQ rs1501299 SNP and associated with low levels of eGFR. In conclusion, adiponectin levels and the presence of ADIPOQ rs1501299 genotype are significantly associated with a worse ADPKD phenotype, indicating that both could potentially provide important insights into the disease. Further studies are warranted to understand the pathophysiological role of adiponectin in ADPKD patients.
Collapse
Affiliation(s)
- Ersilia Nigro
- CEINGE-Biotecnologie Avanzate Scarl “Franco Salvatore”, Via G. Salvatore 486, 80145 Naples, Italy; (E.N.); (D.D.)
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche, Farmaceutiche, Università della Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Marta Mallardo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi “Federico II”, Via Pansini 5, 80131 Naples, Italy;
| | - Maria Amicone
- Unità di Nefrologia, Dipartimento di Sanità Pubblica, Università di Napoli “Federico II”, Via Pansini 5, 80131 Naples, Italy; (M.A.); (E.R.); (A.P.)
| | - Daniela D’Arco
- CEINGE-Biotecnologie Avanzate Scarl “Franco Salvatore”, Via G. Salvatore 486, 80145 Naples, Italy; (E.N.); (D.D.)
| | - Eleonora Riccio
- Unità di Nefrologia, Dipartimento di Sanità Pubblica, Università di Napoli “Federico II”, Via Pansini 5, 80131 Naples, Italy; (M.A.); (E.R.); (A.P.)
| | - Maurizio Marra
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (M.M.); (F.P.)
| | - Fabrizio Pasanisi
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (M.M.); (F.P.)
| | - Antonio Pisani
- Unità di Nefrologia, Dipartimento di Sanità Pubblica, Università di Napoli “Federico II”, Via Pansini 5, 80131 Naples, Italy; (M.A.); (E.R.); (A.P.)
| | - Aurora Daniele
- CEINGE-Biotecnologie Avanzate Scarl “Franco Salvatore”, Via G. Salvatore 486, 80145 Naples, Italy; (E.N.); (D.D.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi “Federico II”, Via Pansini 5, 80131 Naples, Italy;
| |
Collapse
|
18
|
Grlić S, Gregurović V, Martinić M, Davidović M, Kos I, Galić S, Fištrek Prlić M, Vuković Brinar I, Vrljičak K, Lamot L. Single-Center Experience of Pediatric Cystic Kidney Disease and Literature Review. CHILDREN (BASEL, SWITZERLAND) 2024; 11:392. [PMID: 38671609 PMCID: PMC11048964 DOI: 10.3390/children11040392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/28/2024] [Accepted: 03/18/2024] [Indexed: 04/28/2024]
Abstract
INTRODUCTION Pediatric cystic kidney disease (CyKD) includes conditions characterized by renal cysts. Despite extensive research in this field, there are no reliable genetics or other biomarkers to estimate the phenotypic consequences. Therefore, CyKD in children heavily relies on clinical and diagnostic testing to predict the long-term outcomes. AIM A retrospective study aimed to provide a concise overview of this condition and analyze real-life data from a single-center pediatric CyKD cohort followed during a 12-year period. METHODS AND MATERIALS Medical records were reviewed for extensive clinical, laboratory, and radiological data, treatment approaches, and long-term outcomes. RESULTS During the study period, 112 patients received a diagnosis of pediatric CyKD. Male patients were more involved than female (1:0.93). Fifty-six patients had a multicystic dysplastic kidney; twenty-one of them had an autosomal dominant disorder; fifteen had an isolated renal cyst; ten had been diagnosed with autosomal recessive polycystic kidney disease; three had the tuberous sclerosis complex; two patients each had Bardet-Biedl, Joubert syndrome, and nephronophthisis; and one had been diagnosed with the trisomy 13 condition. Genetic testing was performed in 17.9% of the patients, revealing disease-causing mutations in three-quarters (75.0%) of the tested patients. The most commonly presenting symptoms were abdominal distension (21.4%), abdominal pain (15.2%), and oligohydramnios (12.5%). Recurrent urinary tract infections (UTI) were documented in one-quarter of the patients, while 20.5% of them developed hypertension during the long-term follow-up. Antibiotic prophylaxis and antihypertensive treatment were the most employed therapeutic modalities. Seventeen patients progressed to chronic kidney disease (CKD), with thirteen of them eventually reaching end-stage renal disease (ESRD). The time from the initial detection of cysts on an ultrasound (US) to the onset of CKD across the entire cohort was 59.0 (7.0-31124.0) months, whereas the duration from the detection of cysts on an US to the onset of ESRD across the whole cohort was 127.0 (33.0-141.0) months. The median follow-up duration in the cohort was 3.0 (1.0-7.0) years. The patients who progressed to ESRD had clinical symptoms at the time of initial clinical presentation. CONCLUSION This study is the first large cohort of patients reported from Croatia. The most common CyKD was the multicystic dysplastic kidney disease. The most common clinical presentation was abdominal distention, abdominal pain, and oliguria. The most common long-term complications were recurrent UTIs, hypertension, CKD, and ESRD.
Collapse
Affiliation(s)
- Sara Grlić
- Department of Pediatrics, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.G.); (I.V.B.); (L.L.)
| | - Viktorija Gregurović
- Department of Pediatrics, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.G.); (I.V.B.); (L.L.)
| | - Mislav Martinić
- Department of Pediatrics, University Hospital Center Zagreb, 10000 Zagreb, Croatia; (M.M.); (M.D.); (I.K.); (S.G.); (K.V.)
| | - Maša Davidović
- Department of Pediatrics, University Hospital Center Zagreb, 10000 Zagreb, Croatia; (M.M.); (M.D.); (I.K.); (S.G.); (K.V.)
| | - Ivanka Kos
- Department of Pediatrics, University Hospital Center Zagreb, 10000 Zagreb, Croatia; (M.M.); (M.D.); (I.K.); (S.G.); (K.V.)
| | - Slobodan Galić
- Department of Pediatrics, University Hospital Center Zagreb, 10000 Zagreb, Croatia; (M.M.); (M.D.); (I.K.); (S.G.); (K.V.)
| | - Margareta Fištrek Prlić
- Department of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, 10000 Zagreb, Croatia;
| | - Ivana Vuković Brinar
- Department of Pediatrics, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.G.); (I.V.B.); (L.L.)
- Department of Internal Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Kristina Vrljičak
- Department of Pediatrics, University Hospital Center Zagreb, 10000 Zagreb, Croatia; (M.M.); (M.D.); (I.K.); (S.G.); (K.V.)
| | - Lovro Lamot
- Department of Pediatrics, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.G.); (I.V.B.); (L.L.)
- Department of Pediatrics, University Hospital Center Zagreb, 10000 Zagreb, Croatia; (M.M.); (M.D.); (I.K.); (S.G.); (K.V.)
| |
Collapse
|
19
|
Wang Z, Chen M, Su Q, Morais TDC, Wang Y, Nazginov E, Pillai AR, Qian F, Shi Y, Yu Y. Molecular and structural basis of the dual regulation of the polycystin-2 ion channel by small-molecule ligands. Proc Natl Acad Sci U S A 2024; 121:e2316230121. [PMID: 38483987 PMCID: PMC10962963 DOI: 10.1073/pnas.2316230121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/12/2024] [Indexed: 03/19/2024] Open
Abstract
Mutations in the PKD2 gene, which encodes the polycystin-2 (PC2, also called TRPP2) protein, lead to autosomal dominant polycystic kidney disease (ADPKD). As a member of the transient receptor potential (TRP) channel superfamily, PC2 functions as a non-selective cation channel. The activation and regulation of the PC2 channel are largely unknown, and direct binding of small-molecule ligands to this channel has not been reported. In this work, we found that most known small-molecule agonists of the mucolipin TRP (TRPML) channels inhibit the activity of the PC2_F604P, a gain-of-function mutant of the PC2 channel. However, two of them, ML-SA1 and SF-51, have dual regulatory effects, with low concentration further activating PC2_F604P, and high concentration leading to inactivation of the channel. With two cryo-electron microscopy (cryo-EM) structures, a molecular docking model, and mutagenesis results, we identified two distinct binding sites of ML-SA1 in PC2_F604P that are responsible for activation and inactivation, respectively. These results provide structural and functional insights into how ligands regulate PC2 channel function through unusual mechanisms and may help design compounds that are more efficient and specific in regulating the PC2 channel and potentially also for ADPKD treatment.
Collapse
Affiliation(s)
- Zhifei Wang
- Department of Biological Sciences, St. John’s University, Queens, NY11375
| | - Mengying Chen
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang province310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang province310024, China
- Beijing Frontier Research Center for Biological Structures, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Qiang Su
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang province310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang province310024, China
| | - Tiago D. C. Morais
- Department of Biological Sciences, St. John’s University, Queens, NY11375
| | - Yan Wang
- Department of Biological Sciences, St. John’s University, Queens, NY11375
| | - Elianna Nazginov
- Department of Biological Sciences, St. John’s University, Queens, NY11375
| | - Akhilraj R. Pillai
- Department of Biological Sciences, St. John’s University, Queens, NY11375
| | - Feng Qian
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD21201
| | - Yigong Shi
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang province310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang province310024, China
- Beijing Frontier Research Center for Biological Structures, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Yong Yu
- Department of Biological Sciences, St. John’s University, Queens, NY11375
| |
Collapse
|
20
|
Chen PL, Chen CF, Lin HYH, Riley DJ, Chen Y. The Link between Autosomal Dominant Polycystic Kidney Disease and Chromosomal Instability: Exploring the Relationship. Int J Mol Sci 2024; 25:2936. [PMID: 38474184 PMCID: PMC10932443 DOI: 10.3390/ijms25052936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
In autosomal dominant polycystic kidney disease (ADPKD) with germline mutations in a PKD1 or PKD2 gene, innumerable cysts develop from tubules, and renal function deteriorates. Second-hit somatic mutations and renal tubular epithelial (RTE) cell death are crucial features of cyst initiation and disease progression. Here, we use established RTE lines and primary ADPKD cells with disease-associated PKD1 mutations to investigate genomic instability and DNA damage responses. We found that ADPKD cells suffer severe chromosome breakage, aneuploidy, heightened susceptibility to DNA damage, and delayed checkpoint activation. Immunohistochemical analyses of human kidneys corroborated observations in cultured cells. DNA damage sensors (ATM/ATR) were activated but did not localize at nuclear sites of damaged DNA and did not properly activate downstream transducers (CHK1/CHK2). ADPKD cells also had the ability to transform, as they achieved high saturation density and formed colonies in soft agar. Our studies indicate that defective DNA damage repair pathways and the somatic mutagenesis they cause contribute fundamentally to the pathogenesis of ADPKD. Acquired mutations may alternatively confer proliferative advantages to the clonally expanded cell populations or lead to apoptosis. Further understanding of the molecular details of aberrant DNA damage responses in ADPKD is ongoing and holds promise for targeted therapies.
Collapse
Affiliation(s)
- Phang-Lang Chen
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA; (P.-L.C.); (C.-F.C.)
| | - Chi-Fen Chen
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA; (P.-L.C.); (C.-F.C.)
| | - Hugo Y.-H. Lin
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Daniel J. Riley
- Department of Medicine, Division of Nephrology, University of Texas Health, San Antonio, TX 78245, USA;
| | - Yumay Chen
- Department of Medicine, Division of Endocrinology, University of California, Irvine, CA 92697, USA
| |
Collapse
|
21
|
Padhy B, Amir M, Xie J, Huang CL. Leucine-Rich Repeat in Polycystin-1 Suppresses Cystogenesis in a Zebrafish ( Danio rerio) Model of Autosomal-Dominant Polycystic Kidney Disease. Int J Mol Sci 2024; 25:2886. [PMID: 38474131 PMCID: PMC10932423 DOI: 10.3390/ijms25052886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/25/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Mutations of PKD1 coding for polycystin-1 (PC1) account for most cases of autosomal-dominant polycystic kidney disease (ADPKD). The extracellular region of PC1 contains many evolutionarily conserved domains for ligand interactions. Among these are the leucine-rich repeats (LRRs) in the far N-terminus of PC1. Using zebrafish (Danio rerio) as an in vivo model system, we explored the role of LRRs in the function of PC1. Zebrafish expresses two human PKD1 paralogs, pkd1a and pkd1b. Knockdown of both genes in zebrafish by morpholino antisense oligonucleotides produced phenotypes of dorsal-axis curvature and pronephric cyst formation. We found that overexpression of LRRs suppressed both phenotypes in pkd1-morphant zebrafish. Purified recombinant LRR domain inhibited proliferation of HEK cells in culture and interacted with the heterotrimeric basement membrane protein laminin-511 (α5β1γ1) in vitro. Mutations of amino acid residues in LRRs structurally predicted to bind laminin-511 disrupted LRR-laminin interaction in vitro and neutralized the ability of LRRs to inhibit cell proliferation and cystogenesis. Our data support the hypothesis that the extracellular region of PC1 plays a role in modulating PC1 interaction with the extracellular matrix and contributes to cystogenesis of PC1 deficiency.
Collapse
Affiliation(s)
| | | | | | - Chou-Long Huang
- Department of Internal Medicine, Division of Nephrology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA (J.X.)
| |
Collapse
|
22
|
Thompson WS, Babayev SN, McGowan ML, Kattah AG, Wick MJ, Bendel-Stenzel EM, Chebib FT, Harris PC, Dahl NK, Torres VE, Hanna C. State of the Science and Ethical Considerations for Preimplantation Genetic Testing for Monogenic Cystic Kidney Diseases and Ciliopathies. J Am Soc Nephrol 2024; 35:235-248. [PMID: 37882743 PMCID: PMC10843344 DOI: 10.1681/asn.0000000000000253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/03/2023] [Indexed: 10/27/2023] Open
Abstract
There is a broad phenotypic spectrum of monogenic polycystic kidney diseases (PKDs). These disorders often involve cilia-related genes and lead to the development of fluid-filled cysts and eventual kidney function decline and failure. Preimplantation genetic testing for monogenic (PGT-M) disorders has moved into the clinical realm. It allows prospective parents to avoid passing on heritable diseases to their children, including monogenic PKD. The PGT-M process involves embryo generation through in vitro fertilization, with subsequent testing of embryos and selective transfer of those that do not harbor the specific disease-causing variant(s). There is a growing body of literature supporting the success of PGT-M for autosomal-dominant and autosomal-recessive PKD, although with important technical limitations in some cases. This technology can be applied to many other types of monogenic PKD and ciliopathies despite the lack of existing reports in the literature. PGT-M for monogenic PKD, like other forms of assisted reproductive technology, raises important ethical questions. When considering PGT-M for kidney diseases, as well as the potential to avoid disease in future generations, there are regulatory and ethical considerations. These include limited government regulation and unstandardized consent processes, potential technical errors, high cost and equity concerns, risks associated with pregnancy for mothers with kidney disease, and the impact on all involved in the process, including the children who were made possible with this technology.
Collapse
Affiliation(s)
- Whitney S. Thompson
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
- Biomedical Ethics Research Program, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota
- Division of Neonatal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Samir N. Babayev
- Division of Reproductive Endocrinology and Infertility, Mayo Clinic, Rochester, Minnesota
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, Minnesota
| | - Michelle L. McGowan
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
- Biomedical Ethics Research Program, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Andrea G. Kattah
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Myra J. Wick
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, Minnesota
| | | | - Fouad T. Chebib
- Division of Nephrology and Hypertension, Mayo Clinic, Jacksonville, Florida
| | - Peter C. Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Neera K. Dahl
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Vicente E. Torres
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Christian Hanna
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
- Division of Pediatric Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
23
|
Liu M, Zhang C, Gong X, Zhang T, Lian MM, Chew EGY, Cardilla A, Suzuki K, Wang H, Yuan Y, Li Y, Naik MY, Wang Y, Zhou B, Soon WZ, Aizawa E, Li P, Low JH, Tandiono M, Montagud E, Moya-Rull D, Rodriguez Esteban C, Luque Y, Fang M, Khor CC, Montserrat N, Campistol JM, Izpisua Belmonte JC, Foo JN, Xia Y. Kidney organoid models reveal cilium-autophagy metabolic axis as a therapeutic target for PKD both in vitro and in vivo. Cell Stem Cell 2024; 31:52-70.e8. [PMID: 38181751 DOI: 10.1016/j.stem.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/15/2023] [Accepted: 12/06/2023] [Indexed: 01/07/2024]
Abstract
Human pluripotent stem cell-derived kidney organoids offer unprecedented opportunities for studying polycystic kidney disease (PKD), which still has no effective cure. Here, we developed both in vitro and in vivo organoid models of PKD that manifested tubular injury and aberrant upregulation of renin-angiotensin aldosterone system. Single-cell analysis revealed that a myriad of metabolic changes occurred during cystogenesis, including defective autophagy. Experimental activation of autophagy via ATG5 overexpression or primary cilia ablation significantly inhibited cystogenesis in PKD kidney organoids. Employing the organoid xenograft model of PKD, which spontaneously developed tubular cysts, we demonstrate that minoxidil, a potent autophagy activator and an FDA-approved drug, effectively attenuated cyst formation in vivo. This in vivo organoid model of PKD will enhance our capability to discover novel disease mechanisms and validate candidate drugs for clinical translation.
Collapse
Affiliation(s)
- Meng Liu
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore
| | - Chao Zhang
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore
| | - Ximing Gong
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore
| | - Tian Zhang
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore
| | - Michelle Mulan Lian
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore; Human Genetics, Genome Institute of Singapore, Agency for Science, Technology and Research, A∗STAR, Singapore 138672, Singapore
| | - Elaine Guo Yan Chew
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore; Human Genetics, Genome Institute of Singapore, Agency for Science, Technology and Research, A∗STAR, Singapore 138672, Singapore
| | - Angelysia Cardilla
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore
| | - Keiichiro Suzuki
- Institute for Advanced Co-Creation Studies, Osaka University, Toyonaka 560-8531, Osaka, Japan; Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Osaka, Japan; Graduate School of Frontier Bioscience, Osaka University, Suita 560-8531, Osaka, Japan
| | - Huamin Wang
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore
| | - Yuan Yuan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore; Institute of Special Environmental Medicine, Nantong University, Nantong 226019, Jiangsu, China
| | - Yan Li
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore
| | - Mihir Yogesh Naik
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore
| | - Yixuan Wang
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore
| | - Bingrui Zhou
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore
| | - Wei Ze Soon
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore
| | - Emi Aizawa
- Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Osaka, Japan
| | - Pin Li
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore
| | - Jian Hui Low
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore
| | - Moses Tandiono
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore; Human Genetics, Genome Institute of Singapore, Agency for Science, Technology and Research, A∗STAR, Singapore 138672, Singapore
| | - Enrique Montagud
- Hospital Clinic of Barcelona, Career Villarroel, 170, 08036 Barcelona, Spain
| | - Daniel Moya-Rull
- Pluripotency for Organ Regeneration (PR Lab), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | | | - Yosu Luque
- Hospital Clinic of Barcelona, Career Villarroel, 170, 08036 Barcelona, Spain
| | - Mingliang Fang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Chiea Chuen Khor
- Human Genetics, Genome Institute of Singapore, Agency for Science, Technology and Research, A∗STAR, Singapore 138672, Singapore; Duke-National University of Singapore Medical School, 8 College Road, Singapore 169857, Singapore; Singapore Eye Research Institute, 20 College Road Discovery Tower, Level 6 The Academia, Singapore 169856, Singapore
| | - Nuria Montserrat
- Pluripotency for Organ Regeneration (PR Lab), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; University of Barcelona, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys, 23, 08010 Barcelona, Spain; Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Josep M Campistol
- Hospital Clinic of Barcelona, Career Villarroel, 170, 08036 Barcelona, Spain
| | | | - Jia Nee Foo
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore; Human Genetics, Genome Institute of Singapore, Agency for Science, Technology and Research, A∗STAR, Singapore 138672, Singapore.
| | - Yun Xia
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore.
| |
Collapse
|
24
|
Cheng T, Agwu C, Shim K, Wang B, Jain S, Mahjoub MR. Aberrant centrosome biogenesis disrupts nephron and collecting duct progenitor growth and fate resulting in fibrocystic kidney disease. Development 2023; 150:dev201976. [PMID: 37982452 PMCID: PMC10753588 DOI: 10.1242/dev.201976] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
Mutations that disrupt centrosome biogenesis or function cause congenital kidney developmental defects and fibrocystic pathologies. Yet how centrosome dysfunction results in the kidney disease phenotypes remains unknown. Here, we examined the consequences of conditional knockout of the ciliopathy gene Cep120, essential for centrosome duplication, in the nephron and collecting duct progenitor niches of the mouse embryonic kidney. Cep120 loss led to reduced abundance of both cap mesenchyme and ureteric bud populations, due to a combination of delayed mitosis, increased apoptosis and premature differentiation of progenitor cells. These defects resulted in dysplastic kidneys at birth, which rapidly formed cysts, displayed increased interstitial fibrosis and decline in kidney function. RNA sequencing of embryonic and postnatal kidneys from Cep120-null mice identified changes in the pathways essential for development, fibrosis and cystogenesis. Our study defines the cellular and developmental defects caused by centrosome dysfunction during kidney morphogenesis and identifies new therapeutic targets for patients with renal centrosomopathies.
Collapse
Affiliation(s)
- Tao Cheng
- Department of Medicine, Division of Nephrology, Washington University in St Louis, St. Louis, MO 63110, USA
| | - Chidera Agwu
- Department of Medicine, Division of Nephrology, Washington University in St Louis, St. Louis, MO 63110, USA
| | - Kyuhwan Shim
- Department of Medicine, Division of Nephrology, Washington University in St Louis, St. Louis, MO 63110, USA
| | - Baolin Wang
- Department of Genetic Medicine, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Sanjay Jain
- Department of Medicine, Division of Nephrology, Washington University in St Louis, St. Louis, MO 63110, USA
| | - Moe R. Mahjoub
- Department of Medicine, Division of Nephrology, Washington University in St Louis, St. Louis, MO 63110, USA
- Department of Cell Biology and Physiology, Washington University in St Louis, St. Louis, MO 63110, USA
| |
Collapse
|
25
|
Smith AO, Frantz WT, Preval KM, Edwards YJK, Ceol CJ, Jonassen JA, Pazour GJ. The Tumor-Associated Calcium Signal Transducer 2 (TACSTD2) oncogene is upregulated in pre-cystic epithelial cells revealing a new target for polycystic kidney disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.04.23299387. [PMID: 38106222 PMCID: PMC10723484 DOI: 10.1101/2023.12.04.23299387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Polycystic kidney disease (PKD) is an important cause of end stage renal disease, but treatment options are limited. While later stages of the disease have been extensively studied, mechanisms driving the initial conversion of renal tubules into cysts are not understood. To identify factors that promote the initiation of cysts we deleted polycystin-2 ( Pkd2 ) in mice and surveyed transcriptional changes before and immediately after cysts developed. We identified 74 genes which we term cyst initiation candidates (CICs). To identify conserved changes with relevance to human disease we compared these murine CICs to single cell transcriptomic data derived from patients with PKD and from healthy controls. Tumor-associated calcium signal transducer 2 ( Tacstd2 ) stood out as an epithelial-expressed gene whose levels were elevated prior to cystic transformation and further increased with disease progression. Human tissue biopsies and organoids show that TACSTD2 protein is low in normal kidney cells but is elevated in cyst lining cells. While TACSTD2 has not been studied in PKD, it has been studied in cancer where it is highly expressed in solid tumors while showing minimal expression in normal tissue. This property is being exploited by antibody drug conjugates that target TACSTD2 for the delivery of cytotoxic drugs. Our finding that Tacstd2 is highly expressed in cysts, but not normal tissue, suggests that it should be explored as a candidate for drug development in PKD. More immediately, our work suggests that PKD patients undergoing TACSTD2 treatment for cancer should be monitored for kidney effects. One Sentence Summary The oncogene, tumor-associated calcium signal transducer 2 (Tacstd2) mRNA increased in abundance shortly after Pkd2 loss and may be a driver of cyst initiation in polycystic kidney disease.
Collapse
|
26
|
Liu J, Xie H, Wu M, Hu Y, Kang Y. The role of cilia during organogenesis in zebrafish. Open Biol 2023; 13:230228. [PMID: 38086423 PMCID: PMC10715920 DOI: 10.1098/rsob.230228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/03/2023] [Indexed: 12/18/2023] Open
Abstract
Cilia are hair-like organelles that protrude from the surface of eukaryotic cells and are present on the surface of nearly all human cells. Cilia play a crucial role in signal transduction, organ development and tissue homeostasis. Abnormalities in the structure and function of cilia can lead to a group of human diseases known as ciliopathies. Currently, zebrafish serves as an ideal model for studying ciliary function and ciliopathies due to its relatively conserved structure and function of cilia compared to humans. In this review, we will summarize the different types of cilia that present in embryonic and adult zebrafish, and provide an overview of the advantages of using zebrafish as a vertebrate model for cilia research. We will specifically focus on the roles of cilia during zebrafish organogenesis based on recent studies. Additionally, we will highlight future prospects for ciliary research in zebrafish.
Collapse
Affiliation(s)
- Junjun Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Haibo Xie
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Mengfan Wu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Yidan Hu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Yunsi Kang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, People's Republic of China
| |
Collapse
|
27
|
Drees L, Schneider S, Riedel D, Schuh R, Behr M. The proteolysis of ZP proteins is essential to control cell membrane structure and integrity of developing tracheal tubes in Drosophila. eLife 2023; 12:e91079. [PMID: 37872795 PMCID: PMC10597583 DOI: 10.7554/elife.91079] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/20/2023] [Indexed: 10/25/2023] Open
Abstract
Membrane expansion integrates multiple forces to mediate precise tube growth and network formation. Defects lead to deformations, as found in diseases such as polycystic kidney diseases, aortic aneurysms, stenosis, and tortuosity. We identified a mechanism of sensing and responding to the membrane-driven expansion of tracheal tubes. The apical membrane is anchored to the apical extracellular matrix (aECM) and causes expansion forces that elongate the tracheal tubes. The aECM provides a mechanical tension that balances the resulting expansion forces, with Dumpy being an elastic molecule that modulates the mechanical stress on the matrix during tracheal tube expansion. We show in Drosophila that the zona pellucida (ZP) domain protein Piopio interacts and cooperates with the ZP protein Dumpy at tracheal cells. To resist shear stresses which arise during tube expansion, Piopio undergoes ectodomain shedding by the Matriptase homolog Notopleural, which releases Piopio-Dumpy-mediated linkages between membranes and extracellular matrix. Failure of this process leads to deformations of the apical membrane, tears the apical matrix, and impairs tubular network function. We also show conserved ectodomain shedding of the human TGFβ type III receptor by Notopleural and the human Matriptase, providing novel findings for in-depth analysis of diseases caused by cell and tube shape changes.
Collapse
Affiliation(s)
- Leonard Drees
- Research Group Molecular Organogenesis, Department of Molecular Developmental Biology, Max Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Susi Schneider
- Cell biology, Institute for Biology, Leipzig UniversityLeipzigGermany
| | - Dietmar Riedel
- Facility for electron microscopy, Max Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Reinhard Schuh
- Research Group Molecular Organogenesis, Department of Molecular Developmental Biology, Max Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Matthias Behr
- Cell biology, Institute for Biology, Leipzig UniversityLeipzigGermany
| |
Collapse
|
28
|
Walker RV, Yao Q, Xu H, Maranto A, Swaney KF, Ramachandran S, Li R, Cassina L, Polster BM, Outeda P, Boletta A, Watnick T, Qian F. Fibrocystin/Polyductin releases a C-terminal fragment that translocates into mitochondria and suppresses cystogenesis. Nat Commun 2023; 14:6513. [PMID: 37845212 PMCID: PMC10579373 DOI: 10.1038/s41467-023-42196-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/03/2023] [Indexed: 10/18/2023] Open
Abstract
Fibrocystin/Polyductin (FPC), encoded by PKHD1, is associated with autosomal recessive polycystic kidney disease (ARPKD), yet its precise role in cystogenesis remains unclear. Here we show that FPC undergoes complex proteolytic processing in developing kidneys, generating three soluble C-terminal fragments (ICDs). Notably, ICD15, contains a novel mitochondrial targeting sequence at its N-terminus, facilitating its translocation into mitochondria. This enhances mitochondrial respiration in renal epithelial cells, partially restoring impaired mitochondrial function caused by FPC loss. FPC inactivation leads to abnormal ultrastructural morphology of mitochondria in kidney tubules without cyst formation. Moreover, FPC inactivation significantly exacerbates renal cystogenesis and triggers severe pancreatic cystogenesis in a Pkd1 mouse mutant Pkd1V/V in which cleavage of Pkd1-encoded Polycystin-1 at the GPCR Proteolysis Site is blocked. Deleting ICD15 enhances renal cystogenesis without inducing pancreatic cysts in Pkd1V/V mice. These findings reveal a direct link between FPC and a mitochondrial pathway through ICD15 cleavage, crucial for cystogenesis mechanisms.
Collapse
Affiliation(s)
- Rebecca V Walker
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Qin Yao
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Hangxue Xu
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Anthony Maranto
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kristen F Swaney
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sreekumar Ramachandran
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rong Li
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, Singapore, 117411, Singapore
| | - Laura Cassina
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Brian M Polster
- Department of Anesthesiology and Center for Shock, Trauma, and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Patricia Outeda
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alessandra Boletta
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Terry Watnick
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Feng Qian
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
29
|
Ponticelli C, Moroni G, Reggiani F. Autosomal Dominant Polycystic Kidney Disease: Is There a Role for Autophagy? Int J Mol Sci 2023; 24:14666. [PMID: 37834113 PMCID: PMC10572907 DOI: 10.3390/ijms241914666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Autosomal-Dominant Polycystic Kidney Disease (ADPKD) is a monogenic disorder initiated by mutations in either PKD1 or PKD2 genes, responsible for encoding polycystin 1 and polycystin 2, respectively. These proteins are primarily located within the primary cilia. The disease follows an inexorable progression, leading most patients to severe renal failure around the age of 50, and extra-renal complications are frequent. A cure for ADPKD remains elusive, but some measures can be employed to manage symptoms and slow cyst growth. Tolvaptan, a vasopressin V2 receptor antagonist, is the only drug that has been proven to attenuate ADPKD progression. Recently, autophagy, a cellular recycling system that facilitates the breakdown and reuse of aged or damaged cellular components, has emerged as a potential contributor to the pathogenesis of ADPKD. However, the precise role of autophagy in ADPKD remains a subject of investigation, displaying a potentially twofold impact. On the one hand, impaired autophagy may promote cyst formation by inducing apoptosis, while on the other hand, excessive autophagy may lead to fibrosis through epithelial to mesenchymal transition. Promising results of autophagy inducers have been observed in preclinical studies. Clinical trials are warranted to thoroughly assess the long-term safety and efficacy of a combination of autophagy inducers with metabolic and/or aquaferetic drugs. This research aims to shed light on the complex involvement of autophagy in ADPKD, explore the regulation of autophagy in disease progression, and highlight the potential of combination therapies as a promising avenue for future investigations.
Collapse
Affiliation(s)
| | - Gabriella Moroni
- Nephrology and Dialysis Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy;
| | - Francesco Reggiani
- Nephrology and Dialysis Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy;
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy
| |
Collapse
|
30
|
Jung M, Zimmermann R. Quantitative Mass Spectrometry Characterizes Client Spectra of Components for Targeting of Membrane Proteins to and Their Insertion into the Membrane of the Human ER. Int J Mol Sci 2023; 24:14166. [PMID: 37762469 PMCID: PMC10532041 DOI: 10.3390/ijms241814166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
To elucidate the redundancy in the components for the targeting of membrane proteins to the endoplasmic reticulum (ER) and/or their insertion into the ER membrane under physiological conditions, we previously analyzed different human cells by label-free quantitative mass spectrometry. The HeLa and HEK293 cells had been depleted of a certain component by siRNA or CRISPR/Cas9 treatment or were deficient patient fibroblasts and compared to the respective control cells by differential protein abundance analysis. In addition to clients of the SRP and Sec61 complex, we identified membrane protein clients of components of the TRC/GET, SND, and PEX3 pathways for ER targeting, and Sec62, Sec63, TRAM1, and TRAP as putative auxiliary components of the Sec61 complex. Here, a comprehensive evaluation of these previously described differential protein abundance analyses, as well as similar analyses on the Sec61-co-operating EMC and the characteristics of the topogenic sequences of the various membrane protein clients, i.e., the client spectra of the components, are reported. As expected, the analysis characterized membrane protein precursors with cleavable amino-terminal signal peptides or amino-terminal transmembrane helices as predominant clients of SRP, as well as the Sec61 complex, while precursors with more central or even carboxy-terminal ones were found to dominate the client spectra of the SND and TRC/GET pathways for membrane targeting. For membrane protein insertion, the auxiliary Sec61 channel components indeed share the client spectra of the Sec61 complex to a large extent. However, we also detected some unexpected differences, particularly related to EMC, TRAP, and TRAM1. The possible mechanistic implications for membrane protein biogenesis at the human ER are discussed and can be expected to eventually advance our understanding of the mechanisms that are involved in the so-called Sec61-channelopathies, resulting from deficient ER protein import.
Collapse
Affiliation(s)
| | - Richard Zimmermann
- Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany;
| |
Collapse
|
31
|
Oh YK, Ryu H, Ahn C, Park HC, Ma Y, Xu D, Ecder T, Kao TW, Huang JW, Rangan GK. Clinical Characteristics of Rapid Progression in Asia-Pacific Patients With ADPKD. Kidney Int Rep 2023; 8:1801-1810. [PMID: 37705904 PMCID: PMC10496076 DOI: 10.1016/j.ekir.2023.06.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 09/15/2023] Open
Abstract
Introduction This study aimed to determine the utility of different methods to predict rapid progressors (RPs) and their clinical characteristics in Asia-Pacific patients with autosomal dominant polycystic kidney disease (ADPKD). Methods This was a multinational retrospective observational cohort study of patients with ADPKD in the Asia-Pacific region. Five hospitals from Australia, China, South Korea, Taiwan, and Turkey participated in this study. RP was defined by European Renal Association-European Dialysis and Transplantation Association (ERA-EDTA) guidelines and compared to slow progressors (SPs). Results Among 768 patients, 426 patients were RPs. Three hundred six patients met only 1 criterion and 120 patients satisfied multiple criteria for RP. Historical estimated glomerular filtration rate (eGFR) decline fulfilled the criteria for RP in 210 patients. Five patients met the criteria for a historical increase in height-adjusted total kidney volume (TKV). The 210 patients satisfied the criteria for based on kidney volume. During the follow-up period, cyst infections, cyst hemorrhage, and proteinuria occurred more frequently in RP; and 13.9% and 2.1% of RPs and SPs, respectively, progressed to end-stage kidney disease (ESKD). RP criteria based on historical eGFR decline had the strongest correlation with eGFR change over a 2-year follow-up. Conclusion Various assessment strategies should be used for identifying RPs among Asian-Pacific patients with ADPKD in real-world clinical practice during the follow-up period, cyst infections, cyst hemorrhage, and proteinuria occurred more frequently; and more patients progressed to ESKD in RPs compared with SPs.
Collapse
Affiliation(s)
- Yun Kyu Oh
- Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Hyunjin Ryu
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Curie Ahn
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Hayne C. Park
- Department of Internal Medicine, Kangnam Sacred Heart Hospital, Seoul, Korea
| | - Yiyi Ma
- Department of Nephrology, Kidney Institute, Second Affiliated Hospital, Navy Medical University, Shanghai, China
| | - Dechao Xu
- Department of Nephrology, Kidney Institute, Second Affiliated Hospital, Navy Medical University, Shanghai, China
| | - Tevfik Ecder
- Department of Internal Medicine, Division of Nephrology, Faculty of Medicine, Istanbul Bilim University, Istanbul, Turkey
| | - Tze-Wah Kao
- Division of Nephrology, Department of Internal Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Jeng-Wen Huang
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Gopala K. Rangan
- Michael Stern Laboratory for Polycystic Kidney Disease, Westmead Institute for Medical Research, The University of Sydney and the Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Westmead, New South Wales, Australia
| |
Collapse
|
32
|
Liang XB, Dai ZC, Zou R, Tang JX, Yao CW. The Therapeutic Potential of CDK4/6 Inhibitors, Novel Cancer Drugs, in Kidney Diseases. Int J Mol Sci 2023; 24:13558. [PMID: 37686364 PMCID: PMC10487876 DOI: 10.3390/ijms241713558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Inflammation is a crucial pathological feature in cancers and kidney diseases, playing a significant role in disease progression. Cyclin-dependent kinases CDK4 and CDK6 not only contribute to cell cycle progression but also participate in cell metabolism, immunogenicity and anti-tumor immune responses. Recently, CDK4/6 inhibitors have gained approval for investigational treatment of breast cancer and various other tumors. Kidney diseases and cancers commonly exhibit characteristic pathological features, such as the involvement of inflammatory cells and persistent chronic inflammation. Remarkably, CDK4/6 inhibitors have demonstrated impressive efficacy in treating non-cancerous conditions, including certain kidney diseases. Current studies have identified the renoprotective effect of CDK4/6 inhibitors, presenting a novel idea and potential direction for treating kidney diseases in the future. In this review, we briefly reviewed the cell cycle in mammals and the role of CDK4/6 in regulating it. We then provided an introduction to CDK4/6 inhibitors and their use in cancer treatment. Additionally, we emphasized the importance of these inhibitors in the treatment of kidney diseases. Collectively, growing evidence demonstrates that targeting CDK4 and CDK6 through CDK4/6 inhibitors might have therapeutic benefits in various cancers and kidney diseases and should be further explored in the future.
Collapse
Affiliation(s)
| | | | | | - Ji-Xin Tang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Diseases of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Cui-Wei Yao
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Diseases of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| |
Collapse
|
33
|
Sieben CJ, Harris PC. Experimental Models of Polycystic Kidney Disease: Applications and Therapeutic Testing. KIDNEY360 2023; 4:1155-1173. [PMID: 37418622 PMCID: PMC10476690 DOI: 10.34067/kid.0000000000000209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
Polycystic kidney diseases (PKDs) are genetic disorders characterized by the formation and expansion of numerous fluid-filled renal cysts, damaging normal parenchyma and often leading to kidney failure. Although PKDs comprise a broad range of different diseases, with substantial genetic and phenotypic heterogeneity, an association with primary cilia represents a common theme. Great strides have been made in the identification of causative genes, furthering our understanding of the genetic complexity and disease mechanisms, but only one therapy so far has shown success in clinical trials and advanced to US Food and Drug Administration approval. A key step in understanding disease pathogenesis and testing potential therapeutics is developing orthologous experimental models that accurately recapitulate the human phenotype. This has been particularly important for PKDs because cellular models have been of limited value; however, the advent of organoid usage has expanded capabilities in this area but does not negate the need for whole-organism models where renal function can be assessed. Animal model generation is further complicated in the most common disease type, autosomal dominant PKD, by homozygous lethality and a very limited cystic phenotype in heterozygotes while for autosomal recessive PKD, mouse models have a delayed and modest kidney disease, in contrast to humans. However, for autosomal dominant PKD, the use of conditional/inducible and dosage models have resulted in some of the best disease models in nephrology. These have been used to help understand pathogenesis, to facilitate genetic interaction studies, and to perform preclinical testing. Whereas for autosomal recessive PKD, using alternative species and digenic models has partially overcome these deficiencies. Here, we review the experimental models that are currently available and most valuable for therapeutic testing in PKD, their applications, success in preclinical trials, advantages and limitations, and where further improvements are needed.
Collapse
Affiliation(s)
- Cynthia J Sieben
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | | |
Collapse
|
34
|
Sedaka R, Huang J, Yamaguchi S, Lovelady C, Hsu JS, Shinde S, Kasztan M, Crossman DK, Saigusa T. Accelerated cystogenesis by dietary protein load is dependent on, but not initiated by kidney macrophages. Front Med (Lausanne) 2023; 10:1173674. [PMID: 37538309 PMCID: PMC10394241 DOI: 10.3389/fmed.2023.1173674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/03/2023] [Indexed: 08/05/2023] Open
Abstract
Background Disease severity of autosomal dominant polycystic kidney disease (ADPKD) is influenced by diet. Dietary protein, a recognized cyst-accelerating factor, is catabolized into amino acids (AA) and delivered to the kidney leading to renal hypertrophy. Injury-induced hypertrophic signaling in ADPKD results in increased macrophage (MФ) activation and inflammation followed by cyst growth. We hypothesize that the cystogenesis-prompting effects of HP diet are caused by increased delivery of specific AA to the kidney, ultimately stimulating MФs to promote cyst progression. Methods Pkd1flox/flox mice with and without Cre (CAGG-ER) were given tamoxifen to induce global gene deletion (Pkd1KO). Pkd1KO mice were fed either a low (LP; 6%), normal (NP; 18%), or high (HP; 60%) protein diet for 1 week (early) or 6 weeks (chronic). Mice were then euthanized and tissues were used for histology, immunofluorescence and various biochemical assays. One week fed kidney tissue was cell sorted to isolate tubular epithelial cells for RNA sequencing. Results Chronic dietary protein load in Pkd1KO mice increased kidney weight, number of kidney infiltrating and resident MФs, chemokines, cytokines and cystic index compared to LP diet fed mice. Accelerated cyst growth induced by chronic HP were attenuated by liposomal clodronate-mediated MФ depletion. Early HP diet fed Pkd1KO mice had larger cystic kidneys compared to NP or LP fed counterparts, but without increases in the number of kidney MФs, cytokines, or markers of tubular injury. RNA sequencing of tubular epithelial cells in HP compared to NP or LP diet group revealed increased expression of sodium-glutamine transporter Snat3, chloride channel Clcnka, and gluconeogenesis marker Pepck1, accompanied by increased excretion of urinary ammonia, a byproduct of glutamine. Early glutamine supplementation in Pkd1KO mice lead to kidney hypertrophy. Conclusion Chronic dietary protein load-induced renal hypertrophy and accelerated cyst growth in Pkd1KO mice is dependent on both infiltrating and resident MФ recruitment and subsequent inflammatory response. Early cyst expansion by HP diet, however, is relient on increased delivery of glutamine to kidney epithelial cells, driving downstream metabolic changes prior to inflammatory provocation.
Collapse
Affiliation(s)
- Randee Sedaka
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jifeng Huang
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Shinobu Yamaguchi
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Caleb Lovelady
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jung-Shan Hsu
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sejal Shinde
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Malgorzata Kasztan
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - David K. Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Takamitsu Saigusa
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
35
|
Hanna C, Iliuta IA, Besse W, Mekahli D, Chebib FT. Cystic Kidney Diseases in Children and Adults: Differences and Gaps in Clinical Management. Semin Nephrol 2023; 43:151434. [PMID: 37996359 DOI: 10.1016/j.semnephrol.2023.151434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Cystic kidney diseases, when broadly defined, have a wide differential diagnosis extending from recessive diseases with a prenatal or pediatric diagnosis, to the most common autosomal-dominant polycystic kidney disease primarily affecting adults, and several other genetic or acquired etiologies that can manifest with kidney cysts. The most likely diagnoses to consider when assessing a patient with cystic kidney disease differ depending on family history, age stratum, radiologic characteristics, and extrarenal features. Accurate identification of the underlying condition is crucial to estimate the prognosis and initiate the appropriate management, identification of extrarenal manifestations, and counseling on recurrence risk in future pregnancies. There are significant differences in the clinical approach to investigating and managing kidney cysts in children compared with adults. Next-generation sequencing has revolutionized the diagnosis of inherited disorders of the kidney, despite limitations in access and challenges in interpreting the data. Disease-modifying treatments are lacking in the majority of kidney cystic diseases. For adults with rapid progressive autosomal-dominant polycystic kidney disease, tolvaptan (V2-receptor antagonist) has been approved to slow the rate of decline in kidney function. In this article, we examine the differences in the differential diagnosis and clinical management of cystic kidney disease in children versus adults, and we highlight the progress in molecular diagnostics and therapeutics, as well as some of the gaps meriting further attention.
Collapse
Affiliation(s)
- Christian Hanna
- Division of Pediatric Nephrology and Hypertension, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN; Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN.
| | - Ioan-Andrei Iliuta
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Jacksonville, FL
| | - Whitney Besse
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Djalila Mekahli
- PKD Research Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; Department of Pediatric Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Fouad T Chebib
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Jacksonville, FL.
| |
Collapse
|
36
|
Houske EA, Glimm MG, Bergstrom AR, Slipher SK, Welhaven HD, Greenwood MC, Linse GM, June RK, Yu ASL, Wallace DP, Hahn AK. Metabolomic profiling to identify early urinary biomarkers and metabolic pathway alterations in autosomal dominant polycystic kidney disease. Am J Physiol Renal Physiol 2023; 324:F590-F602. [PMID: 37141147 PMCID: PMC10281782 DOI: 10.1152/ajprenal.00301.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/06/2023] [Accepted: 04/26/2023] [Indexed: 05/05/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the formation of numerous fluid-filled cysts that lead to progressive loss of functional nephrons. Currently, there is an unmet need for diagnostic and prognostic indicators of early stages of the disease. Metabolites were extracted from the urine of patients with early-stage ADPKD (n = 48 study participants) and age- and sex-matched normal controls (n = 47) and analyzed by liquid chromatography-mass spectrometry. Orthogonal partial least squares-discriminant analysis was used to generate a global metabolomic profile of early ADPKD for the identification of metabolic pathway alterations and discriminatory metabolites as candidates of diagnostic and prognostic biomarkers. The global metabolomic profile exhibited alterations in steroid hormone biosynthesis and metabolism, fatty acid metabolism, pyruvate metabolism, amino acid metabolism, and the urea cycle. A panel of 46 metabolite features was identified as candidate diagnostic biomarkers. Notable putative identities of candidate diagnostic biomarkers for early detection include creatinine, cAMP, deoxycytidine monophosphate, various androgens (testosterone; 5-α-androstane-3,17,dione; trans-dehydroandrosterone), betaine aldehyde, phosphoric acid, choline, 18-hydroxycorticosterone, and cortisol. Metabolic pathways associated with variable rates of disease progression included steroid hormone biosynthesis and metabolism, vitamin D3 metabolism, fatty acid metabolism, the pentose phosphate pathway, tricarboxylic acid cycle, amino acid metabolism, sialic acid metabolism, and chondroitin sulfate and heparin sulfate degradation. A panel of 41 metabolite features was identified as candidate prognostic biomarkers. Notable putative identities of candidate prognostic biomarkers include ethanolamine, C20:4 anandamide phosphate, progesterone, various androgens (5-α-dihydrotestosterone, androsterone, etiocholanolone, and epiandrosterone), betaine aldehyde, inflammatory lipids (eicosapentaenoic acid, linoleic acid, and stearolic acid), and choline. Our exploratory data support metabolic reprogramming in early ADPKD and demonstrate the ability of liquid chromatography-mass spectrometry-based global metabolomic profiling to detect metabolic pathway alterations as new therapeutic targets and biomarkers for early diagnosis and tracking disease progression of ADPKD.NEW & NOTEWORTHY To our knowledge, this study is the first to generate urinary global metabolomic profiles from individuals with early-stage ADPKD with preserved renal function for biomarker discovery. The exploratory dataset reveals metabolic pathway alterations that may be responsible for early cystogenesis and rapid disease progression and may be potential therapeutic targets and pathway sources for candidate biomarkers. From these results, we generated a panel of candidate diagnostic and prognostic biomarkers of early-stage ADPKD for future validation.
Collapse
Affiliation(s)
- Eden A Houske
- Department of Biological and Environmental Science, Carroll College, Helena, Montana, United States
| | - Matthew G Glimm
- Department of Biological and Environmental Science, Carroll College, Helena, Montana, United States
| | - Annika R Bergstrom
- Department of Chemical and Biological Engineering, Villanova University, Villanova, Pennsylvania, United States
| | - Sally K Slipher
- Department of Mathematical Sciences, Montana State University, Bozeman, Montana, United States
| | - Hope D Welhaven
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, United States
- Molecular Biosciences Program, Montana State University, Bozeman, Montana, United States
| | - Mark C Greenwood
- Department of Mathematical Sciences, Montana State University, Bozeman, Montana, United States
| | - Greta M Linse
- Department of Mathematical Sciences, Montana State University, Bozeman, Montana, United States
| | - Ronald K June
- Department of Mechanical and Industrial Engineering, Montana State University, Bozeman, Montana, United States
| | - Alan S L Yu
- Department of Internal Medicine, Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Darren P Wallace
- Department of Internal Medicine, Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Alyssa K Hahn
- Department of Biological and Environmental Science, Carroll College, Helena, Montana, United States
| |
Collapse
|
37
|
Koslow M, Zhu P, McCabe C, Xu X, Lin X. Kidney transcriptome and cystic kidney disease genes in zebrafish. Front Physiol 2023; 14:1184025. [PMID: 37256068 PMCID: PMC10226271 DOI: 10.3389/fphys.2023.1184025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/20/2023] [Indexed: 06/01/2023] Open
Abstract
Introduction: Polycystic kidney disease (PKD) is a condition where fluid filled cysts form on the kidney which leads to overall renal failure. Zebrafish has been recently adapted to study polycystic kidney disease, because of its powerful embryology and genetics. However, there are concerns on the conservation of this lower vertebrate in modeling polycystic kidney disease. Methods: Here, we aim to assess the molecular conservation of zebrafish by searching homologues polycystic kidney disease genes and carrying transcriptome studies in this animal. Results and Discussion: We found that out of 82 human cystic kidney disease genes, 81 have corresponding zebrafish homologs. While 75 of the genes have a single homologue, only 6 of these genes have two homologs. Comparison of the expression level of the transcripts enabled us to identify one homolog over the other homolog with >70% predominance, which would be prioritized for future experimental studies. Prompted by sexual dimorphism in human and rodent kidneys, we studied transcriptome between different sexes and noted significant differences in male vs. female zebrafish, indicating that sex dimorphism also occurs in zebrafish. Comparison between zebrafish and mouse identified 10% shared genes and 38% shared signaling pathways. String analysis revealed a cluster of genes differentially expressed in male vs. female zebrafish kidneys. In summary, this report demonstrated remarkable molecular conservation, supporting zebrafish as a useful animal model for cystic kidney disease.
Collapse
Affiliation(s)
- Matthew Koslow
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Ping Zhu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Chantal McCabe
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, United States
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Xueying Lin
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
38
|
Wang Y, Wang Z, Pavel MA, Ng C, Kashyap P, Li B, Morais TDC, Ulloa GA, Yu Y. The diverse effects of pathogenic point mutations on ion channel activity of a gain-of-function polycystin-2. J Biol Chem 2023; 299:104674. [PMID: 37028763 PMCID: PMC10192930 DOI: 10.1016/j.jbc.2023.104674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 04/08/2023] Open
Abstract
Autosomal dominant polycystic kidney disease is caused by mutations in PKD1 or PKD2 genes. The latter encodes polycystin-2 (PC2, also known as TRPP2), a member of the transient receptor potential ion channel family. Despite most pathogenic mutations in PKD2 being truncation variants, there are also many point mutations, which cause small changes in protein sequences but dramatic changes in the in vivo function of PC2. How these mutations affect PC2 ion channel function is largely unknown. In this study, we systematically tested the effects of 31 point mutations on the ion channel activity of a gain-of-function PC2 mutant, PC2_F604P, expressed in Xenopus oocytes. The results show that all mutations in the transmembrane domains and channel pore region, and most mutations in the extracellular tetragonal opening for polycystins domain, are critical for PC2_F604P channel function. In contrast, the other mutations in the tetragonal opening for polycystins domain and most mutations in the C-terminal tail cause mild or no effects on channel function as assessed in Xenopus oocytes. To understand the mechanism of these effects, we have discussed possible conformational consequences of these mutations based on the cryo-EM structures of PC2. The results help gain insight into the structure and function of the PC2 ion channel and the molecular mechanism of pathogenesis caused by these mutations.
Collapse
Affiliation(s)
- Yan Wang
- Department of Biological Sciences, St. John's University, Queens, New York, USA
| | - Zhifei Wang
- Department of Biological Sciences, St. John's University, Queens, New York, USA
| | - Mahmud Arif Pavel
- Department of Biological Sciences, St. John's University, Queens, New York, USA
| | - Courtney Ng
- Department of Biological Sciences, St. John's University, Queens, New York, USA
| | - Parul Kashyap
- Department of Biological Sciences, St. John's University, Queens, New York, USA
| | - Bin Li
- Department of Biological Sciences, St. John's University, Queens, New York, USA
| | - Tiago D C Morais
- Department of Biological Sciences, St. John's University, Queens, New York, USA
| | - Gabriella A Ulloa
- Department of Biological Sciences, St. John's University, Queens, New York, USA
| | - Yong Yu
- Department of Biological Sciences, St. John's University, Queens, New York, USA.
| |
Collapse
|
39
|
Potretzke TA, Korfiatis P, Blezek DJ, Edwards ME, Klug JR, Cook CJ, Gregory AV, Harris PC, Chebib FT, Hogan MC, Torres VE, Bolan CW, Sandrasegaran K, Kawashima A, Collins JD, Takahashi N, Hartman RP, Williamson EE, King BF, Callstrom MR, Erickson BJ, Kline TL. Clinical Implementation of an Artificial Intelligence Algorithm for Magnetic Resonance-Derived Measurement of Total Kidney Volume. Mayo Clin Proc 2023; 98:689-700. [PMID: 36931980 PMCID: PMC10159957 DOI: 10.1016/j.mayocp.2022.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/09/2022] [Accepted: 12/29/2022] [Indexed: 03/18/2023]
Abstract
OBJECTIVE To evaluate the performance of an internally developed and previously validated artificial intelligence (AI) algorithm for magnetic resonance (MR)-derived total kidney volume (TKV) in autosomal dominant polycystic kidney disease (ADPKD) when implemented in clinical practice. PATIENTS AND METHODS The study included adult patients with ADPKD seen by a nephrologist at our institution between November 2019 and January 2021 and undergoing an MR imaging examination as part of standard clinical care. Thirty-three nephrologists ordered MR imaging, requesting AI-based TKV calculation for 170 cases in these 161 unique patients. We tracked implementation and performance of the algorithm over 1 year. A radiologist and a radiology technologist reviewed all cases (N=170) for quality and accuracy. Manual editing of algorithm output occurred at radiology or radiology technologist discretion. Performance was assessed by comparing AI-based and manually edited segmentations via measures of similarity and dissimilarity to ensure expected performance. We analyzed ADPKD severity class assignment of algorithm-derived vs manually edited TKV to assess impact. RESULTS Clinical implementation was successful. Artificial intelligence algorithm-based segmentation showed high levels of agreement and was noninferior to interobserver variability and other methods for determining TKV. Of manually edited cases (n=84), the AI-algorithm TKV output showed a small mean volume difference of -3.3%. Agreement for disease class between AI-based and manually edited segmentation was high (five cases differed). CONCLUSION Performance of an AI algorithm in real-life clinical practice can be preserved if there is careful development and validation and if the implementation environment closely matches the development conditions.
Collapse
Affiliation(s)
| | | | | | | | - Jason R Klug
- Department of Radiology and Mayo Clinic, Rochester, MN, USA
| | - Cole J Cook
- Department of Radiology and Mayo Clinic, Rochester, MN, USA
| | | | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Fouad T Chebib
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Marie C Hogan
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Vicente E Torres
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | | | | | | - Bernard F King
- Department of Radiology and Mayo Clinic, Rochester, MN, USA
| | | | | | - Timothy L Kline
- Department of Radiology and Mayo Clinic, Rochester, MN, USA; Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
40
|
Huang R, Fu F, Zhou H, Zhang L, Lei T, Cheng K, Yan S, Guo F, Wang Y, Ma C, Li R, Yu Q, Deng Q, Li L, Yang X, Han J, Li D, Liao C. Prenatal diagnosis in the fetal hyperechogenic kidneys: assessment using chromosomal microarray analysis and exome sequencing. Hum Genet 2023; 142:835-847. [PMID: 37095353 DOI: 10.1007/s00439-023-02545-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/13/2023] [Indexed: 04/26/2023]
Abstract
Fetal hyperechogenic kidneys (HEK) is etiologically a heterogeneous disorder. The aim of this study was to identify the genetic causes of HEK using prenatal chromosomal microarray analysis (CMA) and exome sequencing (ES). From June 2014 to September 2022, we identified 92 HEK fetuses detected by ultrasound. We reviewed and documented other ultrasound anomalies, microscopic and submicroscopic chromosomal abnormalities, and single gene disorders. We also analyzed the diagnostic yield of CMA and ES and the clinical impact the diagnosis had on pregnancy management. In our cohort, CMA detected 27 pathogenic copy number variations (CNVs) in 25 (25/92, 27.2%) fetuses, with the most common CNV being 17q12 microdeletion syndrome. Among the 26 fetuses who underwent further ES testing, we identified 7 pathogenic/likely pathogenic variants and 8 variants of uncertain significance in 9 genes in 12 fetuses. Four novel variants were first reported herein, expanding the mutational spectra for HEK-related genes. Following counseling, 52 families chose to continue the pregnancy, and in 23 of them, postnatal ultrasound showed no detectable renal abnormalities. Of these 23 cases, 15 had isolated HEK on prenatal ultrasound. Taken together, our study showed a high rate of detectable genetic etiologies in cases with fetal HEK at the levels of chromosomal (aneuploidy), sub-chromosomal (microdeletions/microduplications), and single gene (point mutations). Therefore, we speculate that combined CMA and ES testing for fetal HEK is feasible and has good clinical utility. When no genetic abnormalities are identified, the findings can be transient, especially in the isolated HEK group.
Collapse
Affiliation(s)
- Ruibin Huang
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Fang Fu
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Hang Zhou
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Lu Zhang
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Tingying Lei
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Ken Cheng
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, 510641, Guangdong, China
| | - Shujuan Yan
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Fei Guo
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - You Wang
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
- The First Clinical Medical College, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Chunling Ma
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
- The First Clinical Medical College, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Ru Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Qiuxia Yu
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Qiong Deng
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Lushan Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Xin Yang
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Jin Han
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Dongzhi Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Can Liao
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China.
| |
Collapse
|
41
|
Cheng T, Agwu C, Shim K, Wang B, Jain S, Mahjoub MR. Aberrant centrosome biogenesis disrupts nephron progenitor cell renewal and fate resulting in fibrocystic kidney disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.04.535568. [PMID: 37066373 PMCID: PMC10104032 DOI: 10.1101/2023.04.04.535568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Mutations that disrupt centrosome structure or function cause congenital kidney developmental defects and fibrocystic pathologies. Yet, it remains unclear how mutations in proteins essential for centrosome biogenesis impact embryonic kidney development. Here, we examined the consequences of conditional deletion of a ciliopathy gene, Cep120 , in the two nephron progenitor niches of the embryonic kidney. Cep120 loss led to reduced abundance of both metanephric mesenchyme and ureteric bud progenitor populations. This was due to a combination of delayed mitosis, increased apoptosis, and premature differentiation of progenitor cells. These defects resulted in dysplastic kidneys at birth, which rapidly formed cysts, displayed increased interstitial fibrosis, and decline in filtration function. RNA sequencing of embryonic and postnatal kidneys from Cep120-null mice identified changes in pathways essential for branching morphogenesis, cystogenesis and fibrosis. Our study defines the cellular and developmental defects caused by centrosome dysfunction during kidney development, and identifies new therapeutic targets for renal centrosomopathies. Highlights Defective centrosome biogenesis in nephron progenitors causes:Reduced abundance of metanephric mesenchyme and premature differentiation into tubular structuresAbnormal branching morphogenesis leading to reduced nephron endowment and smaller kidneysChanges in cell-autonomous and paracrine signaling that drive cystogenesis and fibrosisUnique cellular and developmental defects when compared to Pkd1 knockout models.
Collapse
|
42
|
Duriseti P, Radhakrishnan Y, Chedid M, Hanna C, Potrezke TA, Chebib FT. Life-Threatening Retroperitoneal Hemorrhage Following Cyst Rupture in Autosomal Dominant Polycystic Kidney Disease (ADPKD): A Case Report. AMERICAN JOURNAL OF CASE REPORTS 2023; 24:e938889. [PMID: 36843311 PMCID: PMC9978537 DOI: 10.12659/ajcr.938889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is the leading genetic cause of kidney failure worldwide. It is characterized by cyst formation and growth, kidney parenchymal destruction, and complications including cyst infection, nephrolithiasis, cyst rupture, and cyst hemorrhage. Cyst bleeding is typically a self-limited event. This case report describes a 60-year-old man with ADPKD admitted with retroperitoneal hemorrhage following renal cyst rupture requiring embolization of a bleeding left lumbar artery and use of tranexamic acid. CASE REPORT A 60-year-old man with ADPKD presented with altered mental status. Labs noted hemoglobin of 4.7 g/dL. Abdominal imaging revealed polycystic kidneys and large left retroperitoneal hematoma. Angiogram demonstrated active bleeding from left L3 lumbar artery which was embolized. He was admitted to intensive care unit for hemorrhagic shock requiring multiple blood transfusions. Hemoglobin continued to downtrend despite blood products with repeat imaging demonstrating expanding retroperitoneal bleed. He underwent repeat angiogram and though there was no active bleeding, prophylactic embolization of left L1, L3, L4 lumbar and left renal capsular arteries were performed. Hemoglobin stabilized for next 3 days but continued to downtrend subsequently. Oral tranexamic acid was trialed with stabilization of the hemoglobin. CONCLUSIONS Life-threatening retroperitoneal hemorrhage following cyst rupture in the absence of major trauma or use of anti-coagulants, is a rare complication in ADPKD. Treatment involves resuscitation with blood products, management of shock, and interventional radiology-guided embolization. Tranexamic acid may be considered when the above measures fail. Nephrectomy may be indicated for refractory bleeding. This report highlights the diagnosis and management of massive cyst bleeding in ADPKD.
Collapse
Affiliation(s)
- Parikshit Duriseti
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic,Rochester, MN, USA
| | | | - Maroun Chedid
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic,Rochester, MN, USA
| | - Christian Hanna
- Division of Pediatric Nephrology and Hypertension, Department of Pediatric Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Fouad T. Chebib
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Jacksonville, FL, USA,Corresponding Author: Fouad T. Chebib, e-mail:
| |
Collapse
|
43
|
Dagorn PG, Buchholz B, Kraus A, Batchuluun B, Bange H, Blockken L, Steinberg GR, Moller DE, Hallakou-Bozec S. A novel direct adenosine monophosphate kinase activator ameliorates disease progression in preclinical models of Autosomal Dominant Polycystic Kidney Disease. Kidney Int 2023; 103:917-929. [PMID: 36804411 DOI: 10.1016/j.kint.2023.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 01/13/2023] [Accepted: 01/27/2023] [Indexed: 02/21/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) mainly results from mutations in the PKD1 gene, which encodes polycystin 1. It is the most common inherited kidney disease and is characterized by a progressive bilateral increase in cyst number and size, often leading to kidney failure. The cellular energy sensor and regulator adenosine monophosphate stimulated protein kinase (AMPK) has been implicated as a promising new therapeutic target. To address this hypothesis, we determined the effects of a potent and selective clinical stage direct allosteric AMPK activator, PXL770, in canine and patient-derived 3D cyst models and an orthologous mouse model of ADPKD. PXL770 induced AMPK activation and dose-dependently reduced cyst growth in principal-like Madin-Darby Canine Kidney cells stimulated with forskolin and kidney epithelial cells derived from patients with ADPKD stimulated with desmopressin. In an inducible, kidney epithelium-specific Pkd1 knockout mouse model, PXL770 produced kidney AMPK pathway engagement, prevented the onset of kidney failure (reducing blood urea by 47%), decreased cystic index by 26% and lowered the kidney weight to body weight ratio by 35% compared to untreated control Pkd1 knockout mice. These effects were accompanied by a reduction of markers of cell proliferation (-48%), macrophage infiltration (-53%) and tissue fibrosis (-37%). Thus, our results show the potential of direct allosteric AMPK activation in the treatment of ADPKD and support the further development of PXL770 for this indication.
Collapse
Affiliation(s)
| | - Bjoern Buchholz
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Andre Kraus
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Battsetseg Batchuluun
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine and Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Hester Bange
- Crown Bioscience Netherlands B.V., The Netherlands
| | | | - Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine and Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
44
|
Zhang J, Chen J, Xu J, Xue C, Mao Z. Plant-derived compounds for treating autosomal dominant polycystic kidney disease. FRONTIERS IN NEPHROLOGY 2023; 3:1071441. [PMID: 37675342 PMCID: PMC10479581 DOI: 10.3389/fneph.2023.1071441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/12/2023] [Indexed: 09/08/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD), the most common monogenic hereditary kidney disease, is the fourth leading cause of end-stage kidney disease worldwide. In recent years, significant progress has been made in delaying ADPKD progression with different kinds of chemical drugs, such as tolvaptan, rapamycin, and somatostatin. Meanwhile, numerous plant-derived compounds have been investigated for their beneficial effects on slowing ADPKD progression. Among them, saikosaponin-d, Ganoderma triterpenes, curcumin, ginkgolide B, steviol, resveratrol, Sparganum stoloniferum Buch.-Ham, Cordyceps sinensis, triptolide, quercitrin, naringin, cardamonin, gambogic acid, and olive leaf extract have been found to retard renal cyst development by inhibiting cell proliferation or promoting cell apoptosis in renal cyst-lining epithelial cells. Metformin, a synthesized compound derived from French lilac or goat's rue (Galega officinalis), has been proven to retard the progression of ADPKD. This review focuses on the roles and mechanisms of plant-derived compounds in treating ADPKD, which may constitute promising new therapeutics in the future.
Collapse
Affiliation(s)
- Jieting Zhang
- School of Medicine, Shanghai University, Shanghai, China
- Division of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jiaxin Chen
- Division of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jing Xu
- Division of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Cheng Xue
- Division of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Zhiguo Mao
- Division of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
45
|
Overexpression of notch signaling in renin cells leads to a polycystic kidney phenotype. Clin Sci (Lond) 2023; 137:35-45. [PMID: 36503993 PMCID: PMC10052804 DOI: 10.1042/cs20220496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Polycystic kidney disease (PKD) is an inherited disorder that results in large kidneys, numerous fluid-filled cysts, and ultimately end-stage kidney disease. PKD is either autosomal dominant caused by mutations in PKD1 or PKD2 genes or autosomal recessive caused by mutations in the PKHD1 or DZIP1L genes. While the genetic basis of PKD is known, the downstream molecular mechanisms and signaling pathways that lead to deregulation of proliferation, apoptosis, and differentiation are not completely understood. The Notch pathway plays critical roles during kidney development including directing differentiation of various progenitor cells, and aberrant Notch signaling results in gross alternations in cell fate. In the present study, we generated and studied transgenic mice that have overexpression of an intracellular fragment of mouse Notch1 ('NotchIC') in renin-expressing cells. Mice with overexpression of NotchIC in renin-expressing cells developed numerous fluid-filled cysts, enlarged kidneys, anemia, renal insufficiency, and early death. Cysts developed in both glomeruli and proximal tubules, had increased proliferation marks, and had increased levels of Myc. The present work implicates the Notch signaling pathway as a central player in PKD pathogenesis and suggests that the Notch-Myc axis may be an important target for therapeutic intervention.
Collapse
|
46
|
Bous J, Fouillen A, Orcel H, Granier S, Bron P, Mouillac B. Structures of the arginine-vasopressin and oxytocin receptor signaling complexes. VITAMINS AND HORMONES 2023; 123:67-107. [PMID: 37718002 DOI: 10.1016/bs.vh.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Arginine-vasopressin (AVP) and oxytocin (OT) are neurohypophysial hormones which share a high sequence and structure homology. These are two cyclic C-terminally amidated nonapeptides with different residues at position 3 and 8. In mammals, AVP and OT exert their multiple biological functions through a specific G protein-coupled receptor family: four receptors are identified, the V1a, V1b, V2 receptors (V1aR, V1bR and V2R) and the OT receptor (OTR). The chemical structure of AVP and OT was elucidated in the early 1950s. Thanks to X-ray crystallography and cryo-electron microscopy, it took however 70 additional years to determine the three-dimensional structures of the OTR and the V2R in complex with their natural agonist ligands and with different signaling partners, G proteins and β-arrestins. Today, the comparison of the different AVP/OT receptor structures gives structural insights into their orthosteric ligand binding pocket, their molecular mechanisms of activation, and their interfaces with canonical Gs, Gq and β-arrestin proteins. It also paves the way to future rational drug design and therapeutic compound development. Indeed, agonist, antagonist, biased agonist, or pharmacological chaperone analogues of AVP and OT are promising candidates to regulate different physiological functions and treat several pathologies.
Collapse
Affiliation(s)
- Julien Bous
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France; CBS (Centre de Biologie Structurale), Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Aurélien Fouillen
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France; CBS (Centre de Biologie Structurale), Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Hélène Orcel
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Sébastien Granier
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Patrick Bron
- CBS (Centre de Biologie Structurale), Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Bernard Mouillac
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France.
| |
Collapse
|
47
|
Shiiya T, Hirashima M. From lymphatic endothelial cell migration to formation of tubular lymphatic vascular network. Front Physiol 2023; 14:1124696. [PMID: 36895637 PMCID: PMC9989012 DOI: 10.3389/fphys.2023.1124696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
During development, lymphatic endothelial cell (LEC) progenitors differentiate from venous endothelial cells only in limited regions of the body. Thus, LEC migration and subsequent tube formation are essential processes for the development of tubular lymphatic vascular network throughout the body. In this review, we discuss chemotactic factors, LEC-extracellular matrix interactions and planar cell polarity regulating LEC migration and formation of tubular lymphatic vessels. Insights into molecular mechanisms underlying these processes will help in understanding not only physiological lymphatic vascular development but lymphangiogenesis associated with pathological conditions such as tumors and inflammation.
Collapse
Affiliation(s)
- Tomohiro Shiiya
- Division of Pharmacology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masanori Hirashima
- Division of Pharmacology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
48
|
Liu X, Zhang R, Fatehi M, Wang Y, Long W, Tian R, Deng X, Weng Z, Xu Q, Light PE, Tang J, Chen XZ. Regulation of PKD2 channel function by TACAN. J Physiol 2023; 601:83-98. [PMID: 36420836 DOI: 10.1113/jp283895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/18/2022] [Indexed: 11/26/2022] Open
Abstract
Autosomal dominant polycystic kidney disease is caused by mutations in the membrane receptor PKD1 or the cation channel PKD2. TACAN (also termed TMEM120A), recently reported as an ion channel in neurons for mechanosensing and pain sensing, is also distributed in diverse non-neuronal tissues, such as kidney, heart and intestine, suggesting its involvement in other functions. In this study, we found that TACAN is in a complex with PKD2 in native renal cell lines. Using the two-electrode voltage clamp in Xenopus oocytes, we found that TACAN inhibits the channel activity of PKD2 gain-of-function mutant F604P. TACAN fragments containing the first and last transmembrane domains interacted with the PKD2 C- and N-terminal fragments, respectively. The TACAN N-terminus acted as a blocking peptide, and TACAN inhibited the function of PKD2 by the binding of PKD2 with TACAN. By patch clamping in mammalian cells, we found that TACAN inhibits both the single-channel conductance and the open probability of PKD2 and mutant F604P. PKD2 co-expressed with TACAN, but not PKD2 alone, exhibited pressure sensitivity. Furthermore, we found that TACAN aggravates PKD2-dependent tail curvature and pronephric cysts in larval zebrafish. In summary, this study revealed that TACAN acts as a PKD2 inhibitor and mediates mechanosensitivity of the PKD2-TACAN channel complex. KEY POINTS: TACAN inhibits the function of PKD2 in vitro and in vivo. TACAN N-terminal S1-containing fragment T160X interacts with the PKD2 C-terminal fragment N580-L700, and its C-terminal S6-containing fragment L296-D343 interacts with the PKD2 N-terminal A594X. TACAN inhibits the function of the PKD2 channel by physical interaction. The complex of PKD2 with TACAN, but not PKD2 alone, confers mechanosensitivity.
Collapse
Affiliation(s)
- Xiong Liu
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Rui Zhang
- National '111' Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, China
| | - Mohammad Fatehi
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Yifang Wang
- National '111' Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, China
| | - Wentong Long
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Rui Tian
- National '111' Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, China
| | - Xiaoling Deng
- National '111' Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, China
| | - Ziyi Weng
- National '111' Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, China
| | - Qinyi Xu
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Peter E Light
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jingfeng Tang
- National '111' Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, China
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
49
|
Bakaj I, Pocai A. Metabolism-based approaches for autosomal dominant polycystic kidney disease. Front Mol Biosci 2023; 10:1126055. [PMID: 36876046 PMCID: PMC9980902 DOI: 10.3389/fmolb.2023.1126055] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) leads to end stage kidney disease (ESKD) through the development and expansion of multiple cysts throughout the kidney parenchyma. An increase in cyclic adenosine monophosphate (cAMP) plays an important role in generating and maintaining fluid-filled cysts because cAMP activates protein kinase A (PKA) and stimulates epithelial chloride secretion through the cystic fibrosis transmembrane conductance regulator (CFTR). A vasopressin V2 receptor antagonist, Tolvaptan, was recently approved for the treatment of ADPKD patients at high risk of progression. However additional treatments are urgently needed due to the poor tolerability, the unfavorable safety profile, and the high cost of Tolvaptan. In ADPKD kidneys, alterations of multiple metabolic pathways termed metabolic reprogramming has been consistently reported to support the growth of rapidly proliferating cystic cells. Published data suggest that upregulated mTOR and c-Myc repress oxidative metabolism while enhancing glycolytic flux and lactic acid production. mTOR and c-Myc are activated by PKA/MEK/ERK signaling so it is possible that cAMPK/PKA signaling will be upstream regulators of metabolic reprogramming. Novel therapeutics opportunities targeting metabolic reprogramming may avoid or minimize the side effects that are dose limiting in the clinic and improve on the efficacy observed in human ADPKD with Tolvaptan.
Collapse
Affiliation(s)
- Ivona Bakaj
- Cardiovascular and Metabolism, Janssen Research and Development, Spring House, PA, United States
| | - Alessandro Pocai
- Cardiovascular and Metabolism, Janssen Research and Development, Spring House, PA, United States
| |
Collapse
|
50
|
Sun Y, Jin D, Zhang Z, Jin D, Xue J, Duan L, Zhang Y, Kang X, Lian F. The critical role of the Hippo signaling pathway in kidney diseases. Front Pharmacol 2022; 13:988175. [PMID: 36483738 PMCID: PMC9723352 DOI: 10.3389/fphar.2022.988175] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/03/2022] [Indexed: 09/14/2023] Open
Abstract
The Hippo signaling pathway is involved in cell growth, proliferation, and apoptosis, and it plays a key role in regulating organ size, tissue regeneration, and tumor development. The Hippo signaling pathway also participates in the occurrence and development of various human diseases. Recently, many studies have shown that the Hippo pathway is closely related to renal diseases, including renal cancer, cystic kidney disease, diabetic nephropathy, and renal fibrosis, and it promotes the transformation of acute kidney disease to chronic kidney disease (CKD). The present paper summarizes and analyzes the research status of the Hippo signaling pathway in different kidney diseases, and it also summarizes the expression of Hippo signaling pathway components in pathological tissues of kidney diseases. In addition, the present paper discusses the positive therapeutic significance of traditional Chinese medicine (TCM) in regulating the Hippo signaling pathway for treating kidney diseases. This article introduces new targets and ideas for drug development, clinical diagnosis, and treatment of kidney diseases.
Collapse
Affiliation(s)
- Yuting Sun
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - De Jin
- Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Ziwei Zhang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - Di Jin
- College of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - JiaoJiao Xue
- College of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - LiYun Duan
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - YuQing Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - XiaoMin Kang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - FengMei Lian
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- College of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| |
Collapse
|