1
|
Möhrle D, Murari K, Rho JM, Cheng N. Vocal communication in asocial BTBR mice is more malleable by a ketogenic diet in juveniles than adults. Neuroscience 2024; 561:43-64. [PMID: 39413868 DOI: 10.1016/j.neuroscience.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/28/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024]
Abstract
Deficits in social communication and language development are a hallmark of autism spectrum disorder currently with no effective approaches to reduce the negative impact. Interventional studies using animal models have been very limited in demonstrating improved vocal communication. Autism has been proposed to involve metabolic dysregulation. Ketogenic diet (KD) is a metabolism-based therapy for medically intractable epilepsy, and its applications in other neurological conditions have been increasingly tested. However, how KD would affect vocal communication has not been explored. The BTBR mouse strain is widely used to model asocial phenotypes. They display robust and pronounced deficits in vocalization during social interaction, and have metabolic changes implicated in autism. We investigated the effects of KD on ultrasonic vocalizations (USVs) in juvenile and adult BTBR mice during male-female social encounters. After a brief treatment with KD, the number, spectral bandwidth, and much of the temporal structure of USVs were robustly closer to control levels in both juvenile and adult BTBR mice. Composition of call categories and transitioning between individual call subtypes were more effectively altered to more closely align with the control group in juvenile BTBR mice. Together, our data provide further support to the hypothesis that metabolism-based dietary intervention could modify disease expression, including core symptoms, in autism. Future studies should tease apart the molecular mechanisms of KD's effects on vocalization.
Collapse
Affiliation(s)
- Dorit Möhrle
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.
| | - Kartikeya Murari
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada; Department of Electrical and Software Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada.
| | - Jong M Rho
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Ning Cheng
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
2
|
Abdel-Rahman M, Hussein AA, Ahmed-Farid OA, Sawi AA, Abdel Moneim AE. Intermittent fasting alerts neurotransmitters and oxidant/antioxidant status in the brain of rats. Metab Brain Dis 2024; 39:1291-1305. [PMID: 39292431 PMCID: PMC11513736 DOI: 10.1007/s11011-024-01415-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 08/14/2024] [Indexed: 09/19/2024]
Abstract
Several recent studies have attempted to understand how fasting has benefits for body health, especially the nervous system. To evaluate the impact of intermittent fasting on body weight, brain neurotransmitters, brain oxidative stress, and brain-derived neurotrophic factor (BDNF) in several areas of the brain, this study was conducted in rats. Thirty male Wistar rats were randomly divided into two groups. Group 1 (15 rats) served as the control and group 2 (15 rats) underwent intermittent fasting (IF; 24 h) for 1, 7, or 15 days. The findings demonstrated that intermittent fasting significantly reduced body weight. In this sense, brain monoamines and amino acids, namely dopamine, glutamate, aspartate, and oxidative stress markers (malondialdehyde and nitric oxide), decreased significantly after 1 day of IF. However, norepinephrine, serotonin, gamma-amino butyric acid, and glycine increased significantly. Additionally, glutathione levels were markedly elevated in IF. Surprisingly, the neuromodulatory effect of intermittent fasting fluctuates depending on the IF period. To support this fluctuation, BDNF levels increased after 1 day in the hippocampus and decreased after 15 days of intermittent fasting in all areas of the brain tested. In conclusion, our results show that intermittent fasting has beneficial influences on the brain; however, prolonged intermittent fasting can also induce some unfavorable physiological outcomes that prevent optimal neurological function.
Collapse
Affiliation(s)
- Mona Abdel-Rahman
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Aida A Hussein
- Zoology and Entomology Department, Faculty of Science, Suez University, Suez, Egypt
| | - Omar A Ahmed-Farid
- Department of Physiology, National Organization for Drug Control and Research (NODCAR), Giza, Giza Governorate, Egypt
| | - Abdullah A Sawi
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt
| | | |
Collapse
|
3
|
Frank GKW, Scolnick B. Therapeutic ketogenic diet as treatment for anorexia nervosa. Front Nutr 2024; 11:1392135. [PMID: 39296512 PMCID: PMC11409850 DOI: 10.3389/fnut.2024.1392135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/13/2024] [Indexed: 09/21/2024] Open
Abstract
Anorexia nervosa (AN) is a severe psychiatric disorder. However, we lack neurobiological models and interventions to explain and treat the core characteristics of food restriction, feeling fat, and body size overestimation. Research has made progress in understanding brain function involved in the pathophysiology of AN, but translating those results into biological therapies has been challenging. Studies have suggested that metabolic factors could contribute to developing and maintaining AN pathophysiology. Here, we describe a neurobiological model for why using a therapeutic ketogenic diet could address key alterations in brain function in AN and prevent the desire for weight loss and associated eating disorder-specific symptoms. This translational model is based on animal studies and human data and integrates behavioral traits, brain neural energy metabolism, and neurotransmitter function. Pilot data indicate that the intervention can dramatically reduce eating and body-related fears, although larger studies across illness stages still need to be conducted.
Collapse
Affiliation(s)
- Guido K W Frank
- Department of Psychiatry, San Diego School of Medicine, University of California, San Diego, San Diego, CA, United States
| | | |
Collapse
|
4
|
Ari C, D'Agostino DP, Cha BJ. Neuroregeneration Improved by Sodium-D,L-Beta-Hydroxybutyrate in Primary Neuronal Cultures. Pharmaceuticals (Basel) 2024; 17:1160. [PMID: 39338322 PMCID: PMC11435142 DOI: 10.3390/ph17091160] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Ketone bodies are considered alternative fuels for the brain when glucose availability is limited. To determine the neuroregenerative potential of D,L-sodium-beta-hydroxybutyrate (D/L-BHB), Sprague Dawley rat primary cortical neurons were exposed to simulated central nervous system injury using a scratch assay. The neuronal cell migration, cell density and degree of regeneration in the damaged areas (gaps) in the absence (control) and presence of BHB (2 mM) were documented with automated live-cell imaging by the CytoSMART system over 24 h, which was followed by immunocytochemistry, labeling synapsin-I and β3-tubulin. The cell density was significantly higher in the gaps with BHB treatment after 24 h compared to the control. In the control, only 1.5% of the measured gap areas became narrower over 24 h, while in the BHB-treated samples 49.23% of the measured gap areas became narrower over 24 h. In the control, the gap expanded by 63.81% post-injury, while the gap size decreased by 10.83% in response to BHB treatment, compared to the baseline. The cell density increased by 97.27% and the gap size was reduced by 74.64% in response to BHB, compared to the control. The distance travelled and velocity of migrating cells were significantly higher with BHB treatment, while more synapsin-I and β3-tubulin were found in the BHB-treated samples after 24 h, compared to the control. The results demonstrate that D/L-BHB enhanced neuronal migration and molecular processes associated with neural regeneration and axonogenesis. These results may have clinical therapeutic applications in the future for nervous system injuries, such as for stroke, concussion and TBI patients.
Collapse
Affiliation(s)
- Csilla Ari
- Behavioral Neuroscience Laboratory, Department of Psychology, University of South Florida, Tampa, FL 33620, USA
- Ketone Technologies LLC, Tampa, FL 33612, USA
| | - Dominic P D'Agostino
- Ketone Technologies LLC, Tampa, FL 33612, USA
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA
- Institute for Human and Machine Cognition, Ocala, FL 34471, USA
| | - Byeong J Cha
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
5
|
Shang S, Wang L, Lu X. β-Hydroxybutyrate enhances astrocyte glutamate uptake through EAAT1 expression regulation. Mol Cell Neurosci 2024; 131:103959. [PMID: 39179164 DOI: 10.1016/j.mcn.2024.103959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/28/2024] [Accepted: 08/18/2024] [Indexed: 08/26/2024] Open
Abstract
β-Hydroxybutyrate (BHB) has been reported to exert neuroprotective functions and is considered a promising treatment for neurodegenerative diseases such as Parkinson's and Alzheimer's. Numerous studies have revealed BHB's multifaceted roles, including anti-senescence, anti-oxidative, and anti-inflammatory activities. However, the underlying mechanisms warrant further investigation. Astrocytes, the most abundant glial cells in the central nervous system, play a pivotal role in the development and progression of neurodegenerative diseases. While BHB is known to alter neuronal metabolism and function, its effects on astrocytes remain poorly understood. In this study, we conducted transcriptome sequencing analysis to identify differentially expressed genes induced by BHB in astrocytes and found that the gene Solute carrier family 1 member 3 (Slc1a3), encoding the glutamate transporter EAAT1, was significantly upregulated by BHB treatment. Cellular and animal-based experiments confirmed an increase in EAAT1 protein expression in primary astrocytes and the hippocampus of mice treated with BHB. This upregulation may be due to the activation of the Ca2+/CAMKII pathway by BHB. Furthermore, BHB improved astrocytes' glutamate uptake and partially restored neuronal viability impaired by glutamate-induced excitotoxicity when astrocytes were functionalized. Our results suggest that BHB may alleviate neuronal damage caused by excessive glutamate by enhancing the glutamate absorption and uptake capacity of astrocytes. This study proposes a novel mechanism for the neuroprotective effects of BHB and reinforces its beneficial impact on the central nervous system (CNS).
Collapse
Affiliation(s)
- Sen Shang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China
| | - Leilei Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China
| | - Xiaoyun Lu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China.
| |
Collapse
|
6
|
Park JY, Kim HR, Lee SH, Lee SW, Sin HS, Kim SY, Park MH. Metabolic Profiling Changes Induced by Fermented Blackberries in High-Fat-Diet-Fed Mice Utilizing Gas Chromatography-Mass Spectrometry Analysis. BIOLOGY 2024; 13:511. [PMID: 39056704 PMCID: PMC11274121 DOI: 10.3390/biology13070511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/24/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024]
Abstract
The aim of this study was to investigate the metabolic changes associated with the anti-obesity effects of fermented blackberry extracts in the liver tissues of high-fat-diet-fed mice using mass spectrometry-based metabolomics analysis. C57BL/6J mice were divided into eight groups: normal-diet-fed mice, high-fat-diet-fed mice, high-fat diet treated with blackberry extract, high-fat-diet mice treated with blackberry fermented by L. plantarum, and high-fat diet with blackberry fermented by L. brevis. After 12 weeks, the high-fat-diet group exhibited a greater increase in liver weight compared to the control group, and among the groups, the group administered with blackberry fermented with L. plantarum showed the most pronounced reduction in liver weight. As the primary organ responsible for amino acid metabolism, the liver is crucial for maintaining amino acid homeostasis. In our study, we observed that the levels of several essential amino acids, including isoleucine and valine, were decreased by the high-fat diet, and were recovered by administration of blackberry extract fermented with L. plantarum. Our results demonstrated the potential of blackberry extract fermented with L. plantarum as a functional material for metabolic disorders by restoring some of the amino acid metabolism disturbances induced by a high-fat diet.
Collapse
Affiliation(s)
- Jae Young Park
- Jeonju AgroBio-Materials Institute, Wonjangdong-gil 111-27, Deokjin-gu, Jeonju-si 54810, Jeonbuk State, Republic of Korea; (J.Y.P.); (H.-R.K.); (S.-H.L.)
| | - Ha-Rim Kim
- Jeonju AgroBio-Materials Institute, Wonjangdong-gil 111-27, Deokjin-gu, Jeonju-si 54810, Jeonbuk State, Republic of Korea; (J.Y.P.); (H.-R.K.); (S.-H.L.)
| | - Seung-Hyeon Lee
- Jeonju AgroBio-Materials Institute, Wonjangdong-gil 111-27, Deokjin-gu, Jeonju-si 54810, Jeonbuk State, Republic of Korea; (J.Y.P.); (H.-R.K.); (S.-H.L.)
| | - Sang-Wang Lee
- Chebigen Inc., 62 Ballyong-ro, Deokjin-gu, Jeonju-si 54853, Jeonbuk State, Republic of Korea; (S.-W.L.); (H.-S.S.)
| | - Hong-Sig Sin
- Chebigen Inc., 62 Ballyong-ro, Deokjin-gu, Jeonju-si 54853, Jeonbuk State, Republic of Korea; (S.-W.L.); (H.-S.S.)
| | - Seon-Young Kim
- Jeonju AgroBio-Materials Institute, Wonjangdong-gil 111-27, Deokjin-gu, Jeonju-si 54810, Jeonbuk State, Republic of Korea; (J.Y.P.); (H.-R.K.); (S.-H.L.)
| | - Mi Hee Park
- Jeonju AgroBio-Materials Institute, Wonjangdong-gil 111-27, Deokjin-gu, Jeonju-si 54810, Jeonbuk State, Republic of Korea; (J.Y.P.); (H.-R.K.); (S.-H.L.)
| |
Collapse
|
7
|
Alanis Guevara MI, García de Alba García JE, López Alanis AL, González Ojeda A, Fuentes Orozco C. Prospective study of the modified Atkins diet in adult drug-resistant epilepsy: effectiveness, tolerability, and adherence. Neurologia 2024; 39:467-473. [PMID: 37120105 DOI: 10.1016/j.nrleng.2021.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 10/17/2021] [Indexed: 05/01/2023] Open
Abstract
INTRODUCTION Drug-resistant epilepsy presents high worldwide prevalence and is difficult to control despite the wide variety of available antiepileptic drugs (AED). The modified Atkins diet (MAD) is an additional treatment alternative. Several studies have addressed the use of the ketogenic diet and MAD in children with drug-resistant epilepsy, but insufficient research has been conducted into adults with the same condition. OBJECTIVE To evaluate the effectiveness and tolerability of, and adherence to, the MAD in adults with drug-resistant epilepsy. MATERIAL AND METHODS We conducted a 6-month pre-post prospective study at a reference hospital. Patients were prescribed the MAD with limited carbohydrate intake and unlimited fat intake. We conducted clinical and electroencephalographic follow-up according to the relevant guidelines, and assessed adverse effects changes in laboratory findings, and adherence. RESULTS Thirty-two patients with drug-resistant epilepsy were included in the study. Patients' mean age was 30 years, mean disease progression time was 22 years, and all patients had focal or multifocal epilepsy. Thirty-four percent of patients presented > 50% decreases in overall seizure frequency (P = .001); seizure control was greater in the first month and subsequently declined. These patients presented weight loss (RR: 7.2; 95% CI, 1.3-39.5; P = .02), good to fair adherence only in the first and third months (RR: 9.4; 95% CI, 0.9-93.6; P = .04 and RR: 0.4; 95% CI, 0.30-0.69; P = .02, respectively). Tolerability data showed that the MAD is safe: adverse effects were minor and short-lived in most cases, with the exception of mild to moderate hyperlipidaemia in one-third of patients. The adherence rate was 50% at the end of the study. CONCLUSIONS In adults with drug-resistant focal epilepsy, the MAD showed adequate tolerability and moderate but decreasing effectiveness and adherence, probably due to a preference for a carbohydrate-based diet.
Collapse
Affiliation(s)
- M I Alanis Guevara
- Servicio de Neurología, Unidad Médica de Alta Especialidad, Hospital de Especialidades del Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
| | - J E García de Alba García
- Departamento de Salud Pública, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Jalisco, Mexico
| | - A L López Alanis
- Servicio de Neurología, Unidad Médica de Alta Especialidad, Hospital de Especialidades del Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
| | - A González Ojeda
- Unidad de Investigación Biomédica 02, Unidad Médica de Alta Especialidad, Hospital de Especialidades del Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
| | - C Fuentes Orozco
- Unidad de Investigación Biomédica 02, Unidad Médica de Alta Especialidad, Hospital de Especialidades del Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico.
| |
Collapse
|
8
|
Wei L, Chen S, Deng X, Liu Y, Wang H, Gao X, Huang Y. Metabolomic discoveries for early diagnosis and traditional Chinese medicine efficacy in ischemic stroke. Biomark Res 2024; 12:63. [PMID: 38902829 PMCID: PMC11188286 DOI: 10.1186/s40364-024-00608-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024] Open
Abstract
Ischemic stroke (IS), a devastating cerebrovascular accident, presents with high mortality and morbidity. Following IS onset, a cascade of pathological changes, including excitotoxicity, inflammatory damage, and blood-brain barrier disruption, significantly impacts prognosis. However, current clinical practices struggle with early diagnosis and identifying these alterations. Metabolomics, a powerful tool in systems biology, offers a promising avenue for uncovering early diagnostic biomarkers for IS. By analyzing dynamic metabolic profiles, metabolomics can not only aid in identifying early IS biomarkers but also evaluate Traditional Chinese Medicine (TCM) efficacy and explore its mechanisms of action in IS treatment. Animal studies demonstrate that TCM interventions modulate specific metabolite levels, potentially reflecting their therapeutic effects. Identifying relevant metabolites in cerebral ischemia patients holds immense potential for early diagnosis and improved outcomes. This review focuses on recent metabolomic discoveries of potential early diagnostic biomarkers for IS. We explore variations in metabolites observed across different ages, genders, disease severity, and stages. Additionally, the review examines how specific TCM extracts influence IS development through metabolic changes, potentially revealing their mechanisms of action. Finally, we emphasize the importance of integrating metabolomics with other omics approaches for a comprehensive understanding of IS pathophysiology and TCM efficacy, paving the way for precision medicine in IS management.
Collapse
Affiliation(s)
- Liangzhe Wei
- Department of Neurosurgery, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, 315010, China
- Ningbo Key Laboratory of Neurological Diseases and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
| | - Siqi Chen
- Ningbo Key Laboratory of Neurological Diseases and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang, 315010, China
| | - Xinpeng Deng
- Department of Neurosurgery, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, 315010, China
- Ningbo Key Laboratory of Neurological Diseases and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
| | - Yuchun Liu
- Department of Neurosurgery, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, 315010, China
- Ningbo Key Laboratory of Neurological Diseases and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
| | - Haifeng Wang
- Department of Neurosurgery, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, 315010, China
- Ningbo Key Laboratory of Neurological Diseases and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
| | - Xiang Gao
- Department of Neurosurgery, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, 315010, China.
- Ningbo Key Laboratory of Neurological Diseases and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China.
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang, 315010, China.
| | - Yi Huang
- Department of Neurosurgery, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, 315010, China.
- Ningbo Key Laboratory of Neurological Diseases and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China.
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang, 315010, China.
| |
Collapse
|
9
|
Mishra P, Singh SC, Ramadass B. Drug resistant epilepsy and ketogenic diet: A narrative review of mechanisms of action. World Neurosurg X 2024; 22:100328. [PMID: 38444870 PMCID: PMC10914588 DOI: 10.1016/j.wnsx.2024.100328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 02/21/2024] [Indexed: 03/07/2024] Open
Abstract
Drug-resistant epilepsy (DRE) poses a significant global challenge, impacting the well-being of patients. Anti-epileptic drugs often fail to effectively control seizures in individuals with DRE. This condition not only leads to persistent seizures but also induces neurochemical imbalances, elevating the risk of sudden unexpected death in epilepsy and comorbidities. Moreover, patients experience mood and personality alterations, educational and vocational setbacks, social isolation, and cognitive impairments. Ketogenic diet has emerged as a valuable therapeutic approach for DRE, having been utilized since 1920. Various types of ketogenic diets have demonstrated efficacy in controlling seizures. By having a multimodal mechanism of action, the ketogenic diet reduces neuronal excitability and the frequency of seizure episodes. In our narrative review, we have initially provided a concise overview of the factors contributing to drug resistance in epilepsy. Subsequently, we have discussed the different available ketogenic diets. We have reviewed the underlying mechanisms through which the ketogenic diet operates. These mechanisms encompass decreased neuronal excitability, enhanced mitochondrial function, alterations in sleep patterns, and modulation of the gut microbiome. Understanding the complex mechanisms by which this diet acts is essential as it is a rigorous diet and requires good compliance. Hence knowledge of the mechanisms may help to advance research on achieving similar therapeutic effects through other less stringent approaches.
Collapse
Affiliation(s)
- Priyadarshini Mishra
- Department of Physiology, All India Institute of Medical Sciences Bhubaneswar, Odisha, India
| | - Sajal Clarence Singh
- Department of Physiology, Institute of Medical Sciences & SUM Hospital, Odisha, India
| | - Balamurugan Ramadass
- Department of Biochemistry, All India Institute of Medical Sciences Bhubaneswar, Odisha, India
| |
Collapse
|
10
|
Chatterjee S, Ghosh R, Biswas P, Das S, Sengupta S, Dubey S, Ray BK, Pandit A, Benito-León J, Bhattacharjee R. Diabetic striatopathy and other acute onset de novo movement disorders in hyperglycemia. Diabetes Metab Syndr 2024; 18:102997. [PMID: 38582065 DOI: 10.1016/j.dsx.2024.102997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND AND AIMS Acute onset de novo movement disorder is an increasingly recognized, yet undereported complication of diabetes. Hyperglycemia can give rise to a range of different movement disorders, hemichorea-hemiballism being the commonest. This article delves into the current knowledge about this condition, its diverse presentations, ongoing debates regarding its underlying mechanisms, disparities between clinical and radiological findings, and challenges related to its management. METHODS PubMed and Google Scholar were searched with the following key terms- "diabetes", "striatopathy", "hyperglycemia", "striatum", "basal ganglia", "movement disorder", "involuntary movement". Case reports, systematic reviews, meta-analysis, and narrative reviews published in English literature related to the topic of interest from January 1, 1950, to October 20, 2023, were retrieved. The references cited in the chosen articles were also examined, and those considered relevant were included in the review. RESULTS Diabetic striatopathy is the prototype of movement disorders associated with hyperglycemia with its characteristic neuroimaging feature (contralateral striatal hyperdensitity on computed tomography or hyperintensity on T1-weighted magnetic resonance imaging). Risk factors for diabetic striatopathy includes Asian ethnicity, female gender, prolonged poor glycemic control, and concurrent retinopathy. Several hypotheses have been proposed to explain the pathophysiology of movement disorders induced by hyperglycemia. These hypotheses are not mutually exclusive; instead, they represent interconnected pathways contributing to the development of this unique condition. While the most prominent clinical feature of diabetic striatopathy is a movement disorder, its phenotypic expression has been found to extend to other manifestations, including stroke, seizures, and cognitive and behavioral symptoms. Fortunately, the prognosis for diabetic striatopathy is generally excellent, with complete resolution achievable through the use of anti-hyperglycemic therapy alone or in combination with neuroleptic medications. CONCLUSION Hyperglycemia is the commonest cause of acute onset de novo movement disorders presenting to a range of medical specialists. So, it is of utmost importance that the physicians irrespective of their speciality remain aware of this clinical entity and check blood glucose at presentation before ordering any other investigations. Prompt clinical diagnosis of this condition and implementation of intensive glycemic control can yield significant benefits for patients.
Collapse
Affiliation(s)
- Subhankar Chatterjee
- Department of Endocrinology & Metabolism, Medical College & Hospital, Kolkata, India.
| | - Ritwik Ghosh
- Department of General Medicine, Burdwan Medical College & Hospital, Burdwan, India.
| | - Payel Biswas
- Department of Radiodiagnosis, GNRC Hospitals, Barasat, Kolkata, India.
| | - Shambaditya Das
- Department of Neuromedicine, Bangur Institute of Neurosciences, IPGMER & SSKM Hospital, Kolkata, India.
| | - Samya Sengupta
- Department of Neuromedicine, Bangur Institute of Neurosciences, IPGMER & SSKM Hospital, Kolkata, India.
| | - Souvik Dubey
- Department of Neuromedicine, Bangur Institute of Neurosciences, IPGMER & SSKM Hospital, Kolkata, India.
| | - Biman Kanti Ray
- Department of Neuromedicine, Bangur Institute of Neurosciences, IPGMER & SSKM Hospital, Kolkata, India.
| | - Alak Pandit
- Department of Neuromedicine, Bangur Institute of Neurosciences, IPGMER & SSKM Hospital, Kolkata, India.
| | - Julián Benito-León
- Department of Neurology, University Hospital "12 de Octubre", Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Department of Medicine, Faculty of Medicine, Complutense University, Madrid, Spain.
| | - Rana Bhattacharjee
- Department of Endocrinology & Metabolism, Medical College & Hospital, Kolkata, India.
| |
Collapse
|
11
|
Grabowska K, Grabowski M, Przybyła M, Pondel N, Barski JJ, Nowacka-Chmielewska M, Liśkiewicz D. Ketogenic diet and behavior: insights from experimental studies. Front Nutr 2024; 11:1322509. [PMID: 38389795 PMCID: PMC10881757 DOI: 10.3389/fnut.2024.1322509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
As a journal page for full details. The ketogenic diet (KD) has been established as a treatment for epilepsy, but more recently it has been explored as an alternative or add-on therapy for many other diseases ranging from weight loss to neurological disorders. Animal models are widely used in studies investigating the therapeutic effects of the KD as well as underlying mechanisms. Especially in the context of neurological, psychiatric, and neurodevelopmental disorders essential endpoints are assessed by behavioral and motor tests. Here we summarized research evaluating the influence of the KD on cognition, depressive and anxiety-related behaviors, and social and nutritional behaviors of laboratory rodents. Each section contains a brief description of commonly used behavioral tests highlighting their limitations. Ninety original research articles, written in English, performed on mice or rats, providing measurement of blood beta-hydroxybutyrate (BHB) levels and behavioral evaluation were selected for the review. The majority of research performed in various disease models shows that the KD positively impacts cognition. Almost an equal number of studies report a reduction or no effect of the KD on depressive-related behaviors. For anxiety-related behaviors, the majority of studies show no effect. Despite the increasing use of the KD in weight loss and its appetite-reducing properties the behavioral evaluation of appetite regulation has not been addressed in preclinical studies. This review provides an overview of the behavioral effects of nutritional ketosis addressed to a broad audience of scientists interested in the KD field but not necessarily specializing in behavioral tests.
Collapse
Affiliation(s)
- Konstancja Grabowska
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
- Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Mateusz Grabowski
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
- Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Marta Przybyła
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
- Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Natalia Pondel
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
| | - Jarosław J Barski
- Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Marta Nowacka-Chmielewska
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
| | - Daniela Liśkiewicz
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
- Institute of Diabetes and Obesity, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| |
Collapse
|
12
|
Lum GR, Ha SM, Olson CA, Blencowe M, Paramo J, Reyes B, Matsumoto JH, Yang X, Hsiao EY. Ketogenic diet therapy for pediatric epilepsy is associated with alterations in the human gut microbiome that confer seizure resistance in mice. Cell Rep 2023; 42:113521. [PMID: 38070135 PMCID: PMC10769314 DOI: 10.1016/j.celrep.2023.113521] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/13/2023] [Accepted: 11/14/2023] [Indexed: 12/30/2023] Open
Abstract
The gut microbiome modulates seizure susceptibility and the anti-seizure effects of the ketogenic diet (KD) in animal models, but whether these relationships translate to KD therapies for human epilepsy is unclear. We find that the clinical KD alters gut microbial function in children with refractory epilepsy. Colonizing mice with KD-associated microbes promotes seizure resistance relative to matched pre-treatment controls. Select metagenomic and metabolomic features, including those related to anaplerosis, fatty acid β-oxidation, and amino acid metabolism, are seen with human KD therapy and preserved upon microbiome transfer to mice. Mice colonized with KD-associated gut microbes exhibit altered hippocampal transcriptomes, including pathways related to ATP synthesis, glutathione metabolism, and oxidative phosphorylation, and are linked to susceptibility genes identified in human epilepsy. Our findings reveal key microbial functions that are altered by KD therapies for pediatric epilepsy and linked to microbiome-induced alterations in brain gene expression and seizure protection in mice.
Collapse
Affiliation(s)
- Gregory R Lum
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Sung Min Ha
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Christine A Olson
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Montgomery Blencowe
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jorge Paramo
- UCLA Goodman-Luskin Microbiome Center, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Beck Reyes
- Department of Pediatrics, Division of Pediatric Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Joyce H Matsumoto
- Department of Pediatrics, Division of Pediatric Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xia Yang
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Elaine Y Hsiao
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; UCLA Goodman-Luskin Microbiome Center, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, Los Angeles, CA 90095, USA.
| |
Collapse
|
13
|
Arumugam TV, Alli-Shaik A, Liehn EA, Selvaraji S, Poh L, Rajeev V, Cho Y, Cho Y, Kim J, Kim J, Swa HLF, Hao DTZ, Rattanasopa C, Fann DYW, Mayan DC, Ng GYQ, Baik SH, Mallilankaraman K, Gelderblom M, Drummond GR, Sobey CG, Kennedy BK, Singaraja RR, Mattson MP, Jo DG, Gunaratne J. Multiomics analyses reveal dynamic bioenergetic pathways and functional remodeling of the heart during intermittent fasting. eLife 2023; 12:RP89214. [PMID: 37769126 PMCID: PMC10538958 DOI: 10.7554/elife.89214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023] Open
Abstract
Intermittent fasting (IF) has been shown to reduce cardiovascular risk factors in both animals and humans, and can protect the heart against ischemic injury in models of myocardial infarction. However, the underlying molecular mechanisms behind these effects remain unclear. To shed light on the molecular and cellular adaptations of the heart to IF, we conducted comprehensive system-wide analyses of the proteome, phosphoproteome, and transcriptome, followed by functional analysis. Using advanced mass spectrometry, we profiled the proteome and phosphoproteome of heart tissues obtained from mice that were maintained on daily 12- or 16 hr fasting, every-other-day fasting, or ad libitum control feeding regimens for 6 months. We also performed RNA sequencing to evaluate whether the observed molecular responses to IF occur at the transcriptional or post-transcriptional levels. Our analyses revealed that IF significantly affected pathways that regulate cyclic GMP signaling, lipid and amino acid metabolism, cell adhesion, cell death, and inflammation. Furthermore, we found that the impact of IF on different metabolic processes varied depending on the length of the fasting regimen. Short IF regimens showed a higher correlation of pathway alteration, while longer IF regimens had an inverse correlation of metabolic processes such as fatty acid oxidation and immune processes. Additionally, functional echocardiographic analyses demonstrated that IF enhances stress-induced cardiac performance. Our systematic multi-omics study provides a molecular framework for understanding how IF impacts the heart's function and its vulnerability to injury and disease.
Collapse
Affiliation(s)
- Thiruma V Arumugam
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe UniversityMelbourneAustralia
- Department of Physiology, Yong Loo Lin School Medicine, National University of SingaporeSingaporeSingapore
- School of Pharmacy, Sungkyunkwan UniversitySuwonRepublic of Korea
| | - Asfa Alli-Shaik
- Translational Biomedical Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and ResearchSingaporeSingapore
| | - Elisa A Liehn
- National Heart Research Institute, National Heart Centre SingaporeSingaporeSingapore
- Institute for Molecular Medicine, University of Southern DenmarkOdenseDenmark
- National Institute of Pathology "Victor Babes"BucharestRomania
| | - Sharmelee Selvaraji
- Department of Physiology, Yong Loo Lin School Medicine, National University of SingaporeSingaporeSingapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of SingaporeSingaporeSingapore
| | - Luting Poh
- Department of Physiology, Yong Loo Lin School Medicine, National University of SingaporeSingaporeSingapore
| | - Vismitha Rajeev
- Department of Physiology, Yong Loo Lin School Medicine, National University of SingaporeSingaporeSingapore
| | - Yoonsuk Cho
- School of Pharmacy, Sungkyunkwan UniversitySuwonRepublic of Korea
| | - Yongeun Cho
- School of Pharmacy, Sungkyunkwan UniversitySuwonRepublic of Korea
| | - Jongho Kim
- School of Pharmacy, Sungkyunkwan UniversitySuwonRepublic of Korea
| | - Joonki Kim
- Department of Physiology, Yong Loo Lin School Medicine, National University of SingaporeSingaporeSingapore
- Natural Products Research Center, Korea Institute of Science and TechnologyGangneungRepublic of Korea
| | - Hannah LF Swa
- Translational Biomedical Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and ResearchSingaporeSingapore
| | - David Tan Zhi Hao
- Department of Physiology, Yong Loo Lin School Medicine, National University of SingaporeSingaporeSingapore
| | - Chutima Rattanasopa
- Translational Laboratories in Genetic Medicine, Agency for Science, Technology and ResearchSingaporeSingapore
- Cardiovascular and Metabolic Disorders Program, Duke-National University of SingaporeSingaporeSingapore
| | - David Yang-Wei Fann
- Department of Physiology, Yong Loo Lin School Medicine, National University of SingaporeSingaporeSingapore
| | - David Castano Mayan
- Translational Laboratories in Genetic Medicine, Agency for Science, Technology and ResearchSingaporeSingapore
| | - Gavin Yong-Quan Ng
- Department of Physiology, Yong Loo Lin School Medicine, National University of SingaporeSingaporeSingapore
| | - Sang-Ha Baik
- Department of Physiology, Yong Loo Lin School Medicine, National University of SingaporeSingaporeSingapore
| | - Karthik Mallilankaraman
- Department of Physiology, Yong Loo Lin School Medicine, National University of SingaporeSingaporeSingapore
| | - Mathias Gelderblom
- Department of Neurology, University Medical Center Hamburg-EppendorfHamburgGermany
| | - Grant R Drummond
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe UniversityMelbourneAustralia
| | - Christopher G Sobey
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe UniversityMelbourneAustralia
| | - Brian K Kennedy
- Department of Physiology, Yong Loo Lin School Medicine, National University of SingaporeSingaporeSingapore
- Department of Biochemistry, Yong Loo Lin School Medicine, National University of SingaporeSingaporeSingapore
| | - Roshni R Singaraja
- Department of Medicine, Yong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
| | - Mark P Mattson
- Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan UniversitySuwonRepublic of Korea
| | - Jayantha Gunaratne
- Translational Biomedical Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and ResearchSingaporeSingapore
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
| |
Collapse
|
14
|
Wang J, Huang LI, Li H, Chen G, Yang L, Wang D, Han H, Zheng G, Wang X, Liang J, He W, Fang F, Liao J, Sun D. Effects of ketogenic diet on the classification and functional composition of intestinal flora in children with mitochondrial epilepsy. Front Neurol 2023; 14:1237255. [PMID: 37588668 PMCID: PMC10426284 DOI: 10.3389/fneur.2023.1237255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/14/2023] [Indexed: 08/18/2023] Open
Abstract
The ketogenic diet (KD) has shown excellent performance in the treatment of refractory epilepsy, but how it works is not yet fully understood. Gut microbiota is associated with various neurological disorders through the brain-gut axis. Different dietary patterns have different effects on the composition and function of gut microbiota. Here, by analyzing fecal samples from some patients with mitochondrial epilepsy before and after KD treatment through 16SrRNA sequencing, we found that KD intervention reduced the abundance of Firmicutes in the patient's gut, while the abundance of Bacteroidota increased in the KD group. LefSe analysis showed that Actinobacteriota, Phascolarctobacterium had significant advantages in the control group, while Bacteroides increased significantly after KD intervention, especially Bacteroides fragilis. Functional analysis showed that there were significant differences in 12 pathways in level 3. These changes suggest that KD can change the composition and diversity of the gut microbiota in patients and affect their function. Changes in specific bacterial groups in the gut may serve as biomarkers for the therapeutic effects of KD on epilepsy.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pediatric Neurology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - LIjuan Huang
- Department of Pediatric Neurology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hua Li
- Department of Epilepsy Center, Guangdong 999 Brain Hospital, Guangzhou, China
| | - Guohong Chen
- Department of Neurology, Henan Provincial Children’s Hospital, Zhengzhou, China
| | - Liming Yang
- Department of Neurology, Hunan Provincial Children’s Hospital, Changsha, China
| | - Dong Wang
- Department of Neurology, Xi’an Children’s Hospital, Xi’an, China
| | - Hong Han
- Department of Neurology, Children’s Hospital of Shanxi, Taiyuan, China
| | - Guo Zheng
- Department of Neurology, Nanjing Children’s Hospital, Nanjing, China
| | - Xu Wang
- Department of Neurology, Changchun Children’s Hospital, Changchun, China
| | - Jianmin Liang
- Department of Neurology, The First Bethune Hospital of Jilin University, Changchun, China
| | - Weijie He
- Aegicare (Shenzhen) Technology Co., Ltd., Shenzhen, China
| | - Fang Fang
- Department of Neurology, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Jianxiang Liao
- Department of Neurology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Dan Sun
- Department of Pediatric Neurology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
15
|
Kong D, Sun JX, Yang JQ, Li YS, Bi K, Zhang ZY, Wang KH, Luo HY, Zhu M, Xu Y. Ketogenic diet: a potential adjunctive treatment for substance use disorders. Front Nutr 2023; 10:1191903. [PMID: 37575322 PMCID: PMC10414993 DOI: 10.3389/fnut.2023.1191903] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023] Open
Abstract
Substance use disorders (SUD) can lead to serious health problems, and there is a great interest in developing new treatment methods to alleviate the impact of substance abuse. In recent years, the ketogenic diet (KD) has shown therapeutic benefits as a dietary therapy in a variety of neurological disorders. Recent studies suggest that KD can compensate for the glucose metabolism disorders caused by alcohol use disorder by increasing ketone metabolism, thereby reducing withdrawal symptoms and indicating the therapeutic potential of KD in SUD. Additionally, SUD often accompanies increased sugar intake, involving neural circuits and altered neuroplasticity similar to substance addiction, which may induce cross-sensitization and increased use of other abused substances. Reducing carbohydrate intake through KD may have a positive effect on this. Finally, SUD is often associated with mitochondrial damage, oxidative stress, inflammation, glia dysfunction, and gut microbial disorders, while KD may potentially reverse these abnormalities and serve a therapeutic role. Although there is much indirect evidence that KD has a positive effect on SUD, the small number of relevant studies and the fact that KD leads to side effects such as metabolic abnormalities, increased risk of malnutrition and gastrointestinal symptoms have led to the limitation of KD in the treatment of SUD. Here, we described the organismal disorders caused by SUD and the possible positive effects of KD, aiming to provide potential therapeutic directions for SUD.
Collapse
Affiliation(s)
- Deshenyue Kong
- General Hospital of Eastern Theater Command, Nanjing, China
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, China
- First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jia-xue Sun
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, China
- First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ji-qun Yang
- Third People’s Hospital of Kunming City/Drug Rehabilitation Hospital of Kunming City, Kunming, China
| | - Yuan-sen Li
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, China
- First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ke Bi
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, China
- First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zun-yue Zhang
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, China
| | - Kun-hua Wang
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, China
| | - Hua-you Luo
- First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Mei Zhu
- First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yu Xu
- General Hospital of Eastern Theater Command, Nanjing, China
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, China
- First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
16
|
Yu Q, Falkenhain K, Little JP, Wong KK, Nie J, Shi Q, Kong Z. Effects of ketone supplements on blood β-hydroxybutyrate, glucose and insulin: A systematic review and three-level meta-analysis. Complement Ther Clin Pract 2023; 52:101774. [PMID: 37327753 DOI: 10.1016/j.ctcp.2023.101774] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/08/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Effects of ketone supplements as well as relevant dose-response relationships and time effects on blood β-hydroxybutyrate (BHB), glucose and insulin are controversial. OBJECTIVE This study aimed to summarize the existing evidence and synthesize the results, and demonstrate underlying dose-response relationships as well as sustained time effects. METHODS Medline, Web of Science, Embase, and Cochrane Central Register of Controlled Trials were searched for relevant randomized crossover/parallel studies published until 25th November 2022. Three-level meta-analysis compared the acute effects of exogenous ketone supplementation and placebo in regulating blood parameters, with Hedge's g used as measure of effect size. Effects of potential moderators were explored through multilevel regression models. Dose-response and time-effect models were established via fractional polynomial regression. RESULTS The meta-analysis with 327 data points from 30 studies (408 participants) indicated that exogenous ketones led to a significant increase in blood BHB (Hedge's g = 1.4994, 95% CI [1.2648, 1.7340]), reduction in glucose (Hedge's g = -0.3796, 95% CI [-0.4550, -0.3041]), and elevation in insulin of non-athlete healthy population (Hedge's g = 0.1214, 95%CI [0.0582, 0.3011]), as well as insignificant change in insulin of obesity and prediabetes. Nonlinear dose-response relationship between ketone dosage and blood parameter change was observed in some time intervals for BHB (30-60 min; >120 min) and insulin (30-60 min; 90-120 min), with linear relationship observed for glucose (>120 min). Nonlinear associations between time and blood parameter change were found in BHB (>550 mg/kg) and glucose (450-550 mg/kg), with linear relationship observed in BHB (≤250 mg/kg) and insulin (350-550 mg/kg). CONCLUSION Dose-response relationships and sustained time effects were observed in BHB, glucose and insulin following ketone supplementation. Glucose-lowering effect without increasing insulin load among population of obesity and prediabetes was of remarkable clinical implication. REGISTRY AND REGISTRY NUMBER PROSPERO (CRD42022360620).
Collapse
Affiliation(s)
- Qian Yu
- Faculty of Education, University of Macau, Macao, China
| | - Kaja Falkenhain
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Jonathan P Little
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Ka Kit Wong
- Faculty of Education, University of Macau, Macao, China
| | - Jinlei Nie
- Faculty of Health Sciences and Sports, Macao Polytechnic University, Macao, China
| | - Qingde Shi
- Faculty of Health Sciences and Sports, Macao Polytechnic University, Macao, China
| | - Zhaowei Kong
- Faculty of Education, University of Macau, Macao, China.
| |
Collapse
|
17
|
Lindquist BE, Timbie C, Voskobiynyk Y, Paz JT. Thalamocortical circuits in generalized epilepsy: Pathophysiologic mechanisms and therapeutic targets. Neurobiol Dis 2023; 181:106094. [PMID: 36990364 PMCID: PMC10192143 DOI: 10.1016/j.nbd.2023.106094] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/02/2023] [Accepted: 03/19/2023] [Indexed: 03/29/2023] Open
Abstract
Generalized epilepsy affects 24 million people globally; at least 25% of cases remain medically refractory. The thalamus, with widespread connections throughout the brain, plays a critical role in generalized epilepsy. The intrinsic properties of thalamic neurons and the synaptic connections between populations of neurons in the nucleus reticularis thalami and thalamocortical relay nuclei help generate different firing patterns that influence brain states. In particular, transitions from tonic firing to highly synchronized burst firing mode in thalamic neurons can cause seizures that rapidly generalize and cause altered awareness and unconsciousness. Here, we review the most recent advances in our understanding of how thalamic activity is regulated and discuss the gaps in our understanding of the mechanisms of generalized epilepsy syndromes. Elucidating the role of the thalamus in generalized epilepsy syndromes may lead to new opportunities to better treat pharmaco-resistant generalized epilepsy by thalamic modulation and dietary therapy.
Collapse
Affiliation(s)
- Britta E Lindquist
- UCSF Department of Neurology, Division of Neurocritical Care, United States of America; UCSF Department of Neurology, Division of Pediatric Epilepsy, United States of America; UCSF Department of Neurology, United States of America
| | - Clare Timbie
- Gladstone Institute of Neurological Disease, United States of America; UCSF Department of Neurology, Division of Pediatric Epilepsy, United States of America; UCSF Department of Neurology, United States of America
| | - Yuliya Voskobiynyk
- Gladstone Institute of Neurological Disease, United States of America; UCSF Department of Neurology, United States of America
| | - Jeanne T Paz
- Gladstone Institute of Neurological Disease, United States of America; UCSF Department of Neurology, United States of America; Kavli Institute for Fundamental Neuroscience, UCSF, United States of America.
| |
Collapse
|
18
|
Patikorn C, Saidoung P, Pham T, Phisalprapa P, Lee YY, Varady KA, Veettil SK, Chaiyakunapruk N. Effects of ketogenic diet on health outcomes: an umbrella review of meta-analyses of randomized clinical trials. BMC Med 2023; 21:196. [PMID: 37231411 PMCID: PMC10210275 DOI: 10.1186/s12916-023-02874-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/19/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Systematic reviews and meta-analyses of randomized clinical trials (RCTs) have reported the benefits of ketogenic diets (KD) in various participants such as patients with epilepsy and adults with overweight or obesity. Nevertheless, there has been little synthesis of the strength and quality of this evidence in aggregate. METHODS To grade the evidence from published meta-analyses of RCTs that assessed the association of KD, ketogenic low-carbohydrate high-fat diet (K-LCHF), and very low-calorie KD (VLCKD) with health outcomes, PubMed, EMBASE, Epistemonikos, and Cochrane database of systematic reviews were searched up to February 15, 2023. Meta-analyses of RCTs of KD were included. Meta-analyses were re-performed using a random-effects model. The quality of evidence per association provided in meta-analyses was rated by the GRADE (Grading of Recommendations, Assessment, Development, and Evaluations) criteria as high, moderate, low, and very low. RESULTS We included 17 meta-analyses comprising 68 RCTs (median [interquartile range, IQR] sample size of 42 [20-104] participants and follow-up period of 13 [8-36] weeks) and 115 unique associations. There were 51 statistically significant associations (44%) of which four associations were supported by high-quality evidence (reduced triglyceride (n = 2), seizure frequency (n = 1) and increased low-density lipoprotein cholesterol (LDL-C) (n = 1)) and four associations supported by moderate-quality evidence (decrease in body weight, respiratory exchange ratio (RER), hemoglobin A1c, and increased total cholesterol). The remaining associations were supported by very low (26 associations) to low (17 associations) quality evidence. In overweight or obese adults, VLCKD was significantly associated with improvement in anthropometric and cardiometabolic outcomes without worsening muscle mass, LDL-C, and total cholesterol. K-LCHF was associated with reduced body weight and body fat percentage, but also reduced muscle mass in healthy participants. CONCLUSIONS This umbrella review found beneficial associations of KD supported by moderate to high-quality evidence on seizure and several cardiometabolic parameters. However, KD was associated with a clinically meaningful increase in LDL-C. Clinical trials with long-term follow-up are warranted to investigate whether the short-term effects of KD will translate to beneficial effects on clinical outcomes such as cardiovascular events and mortality.
Collapse
Affiliation(s)
- Chanthawat Patikorn
- Department of Pharmacotherapy, College of Pharmacy, University of Utah, 30 2000 E, Salt Lake City, Utah 84112 USA
- Department of Social and Administrative Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Pantakarn Saidoung
- Department of Pharmacotherapy, College of Pharmacy, University of Utah, 30 2000 E, Salt Lake City, Utah 84112 USA
| | - Tuan Pham
- Division of Gastroenterology, Hepatology & Nutrition, Department of Internal Medicine, University of Utah, Salt Lake City, Utah USA
| | - Pochamana Phisalprapa
- Division of Ambulatory Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Yeong Yeh Lee
- School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Krista A. Varady
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois USA
| | - Sajesh K. Veettil
- Department of Pharmacotherapy, College of Pharmacy, University of Utah, 30 2000 E, Salt Lake City, Utah 84112 USA
| | - Nathorn Chaiyakunapruk
- Department of Pharmacotherapy, College of Pharmacy, University of Utah, 30 2000 E, Salt Lake City, Utah 84112 USA
- IDEAS Center, Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, Utah USA
| |
Collapse
|
19
|
Merlino G, Tereshko Y, Pez S, Dal Bello S, Pittino A, Di Lorenzo C, Filippi F, Lettieri C, Belgrado E, Gigli GL, Valente M. Sleep of migraine patients is ameliorated by ketogenic diet, independently of pain control. Sleep Med 2023; 107:196-201. [PMID: 37209426 DOI: 10.1016/j.sleep.2023.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/01/2023] [Accepted: 05/07/2023] [Indexed: 05/22/2023]
Abstract
OBJECTIVE/BACKGROUND Migraine patients are frequently affected by sleep complaints. The ketogenic diet (KD) is an option for the treatment of migraine. Our aim was: 1) to assess the effects of KD on sleep complaints in patients affected by migraine and 2) to verify if sleep changes were related to the effects of the diet on headache symptoms. PATIENTS/METHODS From January 2020 to July 2022 we consecutively enrolled 70 migraine patients who were treated with KD as a preventive therapy. We collected information regarding: 1) anthropometric measures; 2) migraine intensity, frequency and disability; 3) subjective sleep complaints, i.e. insomnia, sleep quality, by the Pittsburgh Sleep Quality Index (PSQI), and excessive Daytime Sleepiness (EDS), by the Epworth Sleepiness Scale (ESS). RESULTS After 3 months of KD therapy, anthropometric measures considerably changed, i.e. body mass index and free fat mass, and migraine significantly improved, i.e. lower intensity, frequency and disability. Regarding sleep, we observed that insomnia affected a decreased rate of patients (T0: 60% versus T1: 40%, p < 0.001). Similarly, patients with poor sleep were significantly less after KD therapy (T0: 74.3% versus T1: 34.3%, p < 0.001). Finally, EDS prevalence declined at the follow-up (T0: 40% versus T1: 12.9%, p < 0.001). Sleep features modifications were not correlated with migraine improvements and with anthropometric changes. CONCLUSIONS For the first time we demonstrated that KD may improve sleep complaints in migraine patients. Interestingly, the positive effect of KD on sleep is independent of migraine improvements and anthropometric modifications.
Collapse
Affiliation(s)
- Giovanni Merlino
- Clinical Neurology, Sleep Medicine Center, Udine University Hospital, Udine, Italy.
| | - Yan Tereshko
- Clinical Neurology, Sleep Medicine Center, Udine University Hospital, Udine, Italy
| | - Sara Pez
- Clinical Neurology, Sleep Medicine Center, Udine University Hospital, Udine, Italy
| | - Simone Dal Bello
- Clinical Neurology, Sleep Medicine Center, Udine University Hospital, Udine, Italy
| | - Alice Pittino
- Clinical Neurology, Sleep Medicine Center, Udine University Hospital, Udine, Italy
| | - Cherubino Di Lorenzo
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University Polo Pontino, Latina, Italy
| | - Francesca Filippi
- Clinical Neurology, Sleep Medicine Center, Udine University Hospital, Udine, Italy
| | - Christian Lettieri
- Clinical Neurology, Sleep Medicine Center, Udine University Hospital, Udine, Italy
| | - Enrico Belgrado
- Division of Neurology, Udine University Hospital, Udine, Italy
| | - Gian Luigi Gigli
- Clinical Neurology, Sleep Medicine Center, Udine University Hospital, Udine, Italy; Dipartimento di Area Medica (DAME), University of Udine, Udine, Italy
| | - Mariarosaria Valente
- Clinical Neurology, Sleep Medicine Center, Udine University Hospital, Udine, Italy; Dipartimento di Area Medica (DAME), University of Udine, Udine, Italy
| |
Collapse
|
20
|
Xin JX, Wei DX, Ren Y, Wang JL, Yang G, Zhang H, Li J, Fu C, Yao YF. Distinguishing glutamate and glutamine in in vivo 1 H MRS based on nuclear spin singlet order filtering. Magn Reson Med 2023; 89:1728-1740. [PMID: 36572961 DOI: 10.1002/mrm.29562] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/28/2022]
Abstract
PURPOSE The signals of glutamate (Glu) and glutamine (Gln) are often significantly overlapped in routine 1 H-MR spectra of human brain in vivo. Selectively probing the signals of Glu and Gln in vivo is very important for the study of the metabolisms in which Glu and Gln are involved. METHODS The Glu-/Gln- targeted pulse sequences are developed to selectively probe the signals of Glu and Gln. The core part of the Glu-/Gln- targeted pulse sequences lies on the preparation of the nuclear spin singlet orders (SSOs) of the five-spin systems of Glu and Gln. The optimal control method is used to prepare the SSOs of Glu and Gln with high efficiency. RESULTS The Glu-/Gln- targeted pulse sequences have been applied on phantoms to selectively probe the signals of Glu and Gln. Moreover, in the in vivo experiments, the signals of Glu and Gln in human brains of healthy subjects have been successfully probed separately. CONCLUSION The developed Glu-/Gln- targeted pulse sequences can be used to distinguish the 1 H-MR signals of Glu and Gln in human brains in vivo. The optimal control method provides an effective way to prepare the SSO of a specific spin system with high efficiency and in turn selectively probe the signals of a targeted molecule.
Collapse
Affiliation(s)
- Jia-Xiang Xin
- Physics Department & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, China
| | - Da-Xiu Wei
- Physics Department & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, China
| | - Yan Ren
- Department of Radiology, Huashan Hospital of Fudan University, Shanghai, China
| | - Jun-Long Wang
- Department of Radiology, Huashan Hospital of Fudan University, Shanghai, China
| | - Guang Yang
- Physics Department & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, China
| | - Huojun Zhang
- Department of Radiation Oncology, Shanghai Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Jianqi Li
- Physics Department & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, China
| | - Caixia Fu
- Application Developments, Siemens Shenzhen Magnetic Resonance Ltd., Shenzhen, China
| | - Ye-Feng Yao
- Physics Department & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, China
| |
Collapse
|
21
|
Leitner DF, Siu Y, Korman A, Lin Z, Kanshin E, Friedman D, Devore S, Ueberheide B, Tsirigos A, Jones DR, Wisniewski T, Devinsky O. Metabolomic, proteomic, and transcriptomic changes in adults with epilepsy on modified Atkins diet. Epilepsia 2023; 64:1046-1060. [PMID: 36775798 PMCID: PMC10372873 DOI: 10.1111/epi.17540] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/14/2023]
Abstract
OBJECTIVE High-fat and low-carbohydrate diets can reduce seizure frequency in some treatment-resistant epilepsy patients, including the more flexible modified Atkins diet (MAD), which is more palatable, mimicking fasting and inducing high ketone body levels. Low-carbohydrate diets may shift brain energy production, particularly impacting neuron- and astrocyte-linked metabolism. METHODS We evaluated the effect of short-term MAD on molecular mechanisms in adult epilepsy patients from surgical brain tissue and plasma compared to control participants consuming a nonmodified higher carbohydrate diet (n = 6 MAD, mean age = 43.7 years, range = 21-53, diet for average 10 days; n = 10 control, mean age = 41.9 years, range = 28-64). RESULTS By metabolomics, there were 13 increased metabolites in plasma (n = 15 participants with available specimens), which included 4.10-fold increased ketone body 3-hydroxybutyric acid, decreased palmitic acid in cortex (n = 16), and 11 decreased metabolites in hippocampus (n = 6), which had top associations with mitochondrial functions. Cortex and plasma 3-hydroxybutyric acid levels had a positive correlation (p = .0088, R2 = .48). Brain proteomics and RNAseq identified few differences, including 2.75-fold increased hippocampal MT-ND3 and trends (p < .01, false discovery rate > 5%) in hippocampal nicotinamide adenine dinucleotide (NADH)-related signaling pathways (activated oxidative phosphorylation and inhibited sirtuin signaling). SIGNIFICANCE Short-term MAD was associated with metabolic differences in plasma and resected epilepsy brain tissue when compared to control participants, in combination with trending expression changes observed in hippocampal NADH-related signaling pathways. Future studies should evaluate how brain molecular mechanisms are altered with long-term MAD in a larger cohort of epilepsy patients, with correlations to seizure frequency, epilepsy syndrome, and other clinical variables. [Clinicaltrials.gov NCT02565966.].
Collapse
Affiliation(s)
- Dominique F. Leitner
- Comprehensive Epilepsy Center, New York University Grossman School of Medicine, New York, New York, United States of America
- Center for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, New York, New York, United States of America
- Department of Neurology, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Yik Siu
- Metabolomics Core Resource Laboratory, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Aryeh Korman
- Metabolomics Core Resource Laboratory, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Ziyan Lin
- Applied Bioinformatics Laboratories, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Evgeny Kanshin
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Daniel Friedman
- Comprehensive Epilepsy Center, New York University Grossman School of Medicine, New York, New York, United States of America
- Department of Neurology, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Sasha Devore
- Comprehensive Epilepsy Center, New York University Grossman School of Medicine, New York, New York, United States of America
- Department of Neurology, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Beatrix Ueberheide
- Center for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, New York, New York, United States of America
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, New York, United States of America
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Aristotelis Tsirigos
- Applied Bioinformatics Laboratories, New York University Grossman School of Medicine, New York, New York, United States of America
- Department of Medicine, New York University Grossman School of Medicine, New York, New York, United States of America
- Department of Pathology, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Drew R. Jones
- Metabolomics Core Resource Laboratory, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Thomas Wisniewski
- Center for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, New York, New York, United States of America
- Department of Neurology, New York University Grossman School of Medicine, New York, New York, United States of America
- Department of Pathology, New York University Grossman School of Medicine, New York, New York, United States of America
- Department of Psychiatry, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Orrin Devinsky
- Comprehensive Epilepsy Center, New York University Grossman School of Medicine, New York, New York, United States of America
- Department of Neurology, New York University Grossman School of Medicine, New York, New York, United States of America
| |
Collapse
|
22
|
Dyńka D, Kowalcze K, Paziewska A. The Role of Ketogenic Diet in the Treatment of Neurological Diseases. Nutrients 2022; 14:5003. [PMID: 36501033 PMCID: PMC9739023 DOI: 10.3390/nu14235003] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022] Open
Abstract
Over a hundred years of study on the favourable effect of ketogenic diets in the treatment of epilepsy have contributed to a long-lasting discussion on its potential influence on other neurological diseases. A significant increase in the number of scientific studies in that field has been currently observed. The aim of this paper is a widespread, thorough analysis of the available scientific evidence in respect of the role of the ketogenic diet in the therapy of neurological diseases such as: epilepsy, Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS) and migraine. A wide range of the mechanisms of action of the ketogenic diet has been demonstrated in neurological diseases, including, among other effects, its influence on the reduction in inflammatory conditions and the amount of reactive oxygen species (ROS), the restoration of the myelin sheath of the neurons, the formation and regeneration of mitochondria, neuronal metabolism, the provision of an alternative source of energy for neurons (ketone bodies), the reduction in glucose and insulin concentrations, the reduction in amyloid plaques, the induction of autophagy, the alleviation of microglia activation, the reduction in excessive neuronal activation, the modulation of intestinal microbiota, the expression of genes, dopamine production and the increase in glutamine conversion into GABA. The studies discussed (including randomised controlled studies), conducted in neurological patients, have stressed the effectiveness of the ketogenic diet in the treatment of epilepsy and have demonstrated its promising therapeutic potential in Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS) and migraine. A frequent advantage of the diet was demonstrated over non-ketogenic diets (in the control groups) in the therapy of neurological diseases, with simultaneous safety and feasibility when conducting the nutritional model.
Collapse
Affiliation(s)
- Damian Dyńka
- Institute of Health Sciences, Faculty of Medical and Health Sciences, Siedlce University of Natural Sciences and Humanities, 08-110 Siedlce, Poland
| | - Katarzyna Kowalcze
- Institute of Health Sciences, Faculty of Medical and Health Sciences, Siedlce University of Natural Sciences and Humanities, 08-110 Siedlce, Poland
| | - Agnieszka Paziewska
- Institute of Health Sciences, Faculty of Medical and Health Sciences, Siedlce University of Natural Sciences and Humanities, 08-110 Siedlce, Poland
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
| |
Collapse
|
23
|
Ye Y, Ji J, Huang Y, Zhang Y, Sun X. Metabolic Regulation Effect and Potential Metabolic Biomarkers of Pre-Treated Delphinidin on Oxidative Damage Induced by Paraquat in A549 Cells. Foods 2022; 11:foods11223575. [PMID: 36429167 PMCID: PMC9689328 DOI: 10.3390/foods11223575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Delphinidin (Del) is an anthocyanin component with high in vitro antioxidant capacity. In this study, based on the screening of a cell model, gas chromatography-time of flight mass spectrometry (GC-TOF/MS) was used to evaluate the effect of Del pre-protection on the metabolite levels of intracellular oxidative stress induced by paraquat (PQ). According to the cytotoxicity and reactive oxygen species (ROS) responses of four lung cell lines to PQ induction, A549 cell was selected and treated with 100 μM PQ for 12 h to develop a cellular oxidative stress model. Compared with the PQ-induced group, the principal components of the Del pretreatment group had significant differences, but not significant with the control group, indicating that the antioxidant activity of Del can be correlated to the maintenance of metabolite levels. Del preconditioning protects lipid-related metabolic pathways from the disturbance induced by PQ. In addition, the levels of amino acid- and energy-related metabolites were significantly recovered. Del may also exert an antioxidant effect by regulating glucose metabolism. The optimal combinations of biomarkers in the PQ-treatment group and Del-pretreatment group were alanine-valine-urea and alanine-galactose-glucose. Cell metabolome data provided characteristic fingerprints associated with the antioxidant activity of Del.
Collapse
|
24
|
Zhao X, Cheng P, Xu R, Meng K, Liao S, Jia P, Zheng X, Xiao C. Insights into the development of pentylenetetrazole-induced epileptic seizures from dynamic metabolomic changes. Metab Brain Dis 2022; 37:2441-2455. [PMID: 35838870 DOI: 10.1007/s11011-022-01018-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/26/2022] [Indexed: 10/17/2022]
Abstract
Epilepsy is often considered to be a progressive neurological disease, and the nature of this progression remains unclear. Understanding the overall and common metabolic changes of epileptic seizures can provide novel clues for their control and prevention. Herein, a chronic kindling animal model was established to obtain generalized tonic-clonic seizures via the repeated injections of pentylenetetrazole (PTZ) at subconvulsive dose. Dynamic metabolomic changes in plasma and urine from PTZ-kindled rats at the different kindling phases were explored using NMR-based metabolomics, in combination with behavioral assessment, brain neurotransmitter measurement, electroencephalography and histopathology. The increased levels of glucose, lactate, glutamate, creatine and creatinine, together with the decreased levels of pyruvate, citrate and succinate, ketone bodies, asparagine, alanine, leucine, valine and isoleucine in plasma and/or urine were involved in the development and progression of seizures. These altered metabolites reflected the pathophysiological processes including the compromised energy metabolism, the disturbed amino acid metabolism, the peripheral inflammation and changes in gut microbiota functions. NMR-based metabolomics could provide brain disease information by the dynamic plasma and urinary metabolic changes during chronic epileptic seizures, yielding classification of seizure stages and profound insights into controlling epilepsy via targeting deficient energy metabolism.
Collapse
Affiliation(s)
- Xue Zhao
- The College of Life Sciences, Northwest University, 710069, Xi'an, PR China
| | - Peixuan Cheng
- The College of Life Sciences, Northwest University, 710069, Xi'an, PR China
| | - Ru Xu
- The College of Life Sciences, Northwest University, 710069, Xi'an, PR China
| | - Kaili Meng
- The College of Life Sciences, Northwest University, 710069, Xi'an, PR China
| | - Sha Liao
- The College of Life Sciences, Northwest University, 710069, Xi'an, PR China
| | - Pu Jia
- The College of Life Sciences, Northwest University, 710069, Xi'an, PR China
| | - Xiaohui Zheng
- The College of Life Sciences, Northwest University, 710069, Xi'an, PR China
| | - Chaoni Xiao
- The College of Life Sciences, Northwest University, 710069, Xi'an, PR China.
| |
Collapse
|
25
|
Evangeliou AE, Spilioti MG, Vassilakou D, Goutsaridou F, Seyfried TN. Restricted Ketogenic Diet Therapy for Primary Lung Cancer With Metastasis to the Brain: A Case Report. Cureus 2022; 14:e27603. [PMID: 36059366 PMCID: PMC9435310 DOI: 10.7759/cureus.27603] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2022] [Indexed: 11/05/2022] Open
Abstract
A high-fat and low-carbohydrate diet was administered as a complementary and alternative therapy to a 54-year-old man suffering from non-small-cell lung cancer (NSCLC) with brain metastasis. Three months after the cessation of chemotherapy and radiotherapy, a ketogenic diet (KD) was initiated. This approach was an attempt to stabilize the disease progression after chemotherapy and radiotherapy. Computed tomography following radiation and chemotherapy showed a reduction in the right frontal lobe lesion from 5.5 cm × 6.2 cm to 4 cm × 2.7 cm, while the mass in the upper-right lung lobe reduced from 6.0 cm × 3.0 cm to 2.0 × 1.8 cm. Two years after KD initiation and without any other therapeutic intervention, the right frontal lobe lesion calcified and decreased in size to 1.9 cm × 1.0 cm, while the size of the lung mass further decreased to 1.7 cm × 1.0 cm. The size of the brain and lung lesion remained stable after nine years of KD therapy. However, dyslipidemia developed after this time which led to the discontinuation of the diet. No tumor relapse or health issues occurred for two years after the discontinuation of the diet. This case report indicates that the inclusion of ketogenic metabolic therapy following radiation and chemotherapy is associated with better clinical and survival outcomes for our patient with metastatic NSCLC.
Collapse
|
26
|
Wei S, Binbin L, Yuan W, Zhong Z, Donghai L, Caihua H. β-Hydroxybutyrate in Cardiovascular Diseases : A Minor Metabolite of Great Expectations. Front Mol Biosci 2022; 9:823602. [PMID: 35769904 PMCID: PMC9234267 DOI: 10.3389/fmolb.2022.823602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 04/04/2022] [Indexed: 12/02/2022] Open
Abstract
Despite recent advances in therapies, cardiovascular diseases ( CVDs ) are still the leading cause of mortality worldwide. Previous studies have shown that metabolic perturbations in cardiac energy metabolism are closely associated with the progression of CVDs. As expected, metabolic interventions can be applied to alleviate metabolic impairments and, therefore, can be used to develop therapeutic strategies for CVDs. β-hydroxybutyrate (β-HB) was once known to be a harmful and toxic metabolite leading to ketoacidosis in diabetes. However, the minor metabolite is increasingly recognized as a multifunctional molecular marker in CVDs. Although the protective role of β-HB in cardiovascular disease is controversial, increasing evidence from experimental and clinical research has shown that β-HB can be a “super fuel” and a signaling metabolite with beneficial effects on vascular and cardiac dysfunction. The tremendous potential of β-HB in the treatment of CVDs has attracted many interests of researchers. This study reviews the research progress of β-HB in CVDs and aims to provide a theoretical basis for exploiting the potential of β-HB in cardiovascular therapies.
Collapse
Affiliation(s)
- Shao Wei
- Research and Communication Center of Exercise and Health, Xiamen University of Technology, Xiamen, China
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Liu Binbin
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Wu Yuan
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Zhang Zhong
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Lin Donghai
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
- *Correspondence: Huang Caihua, ; Lin Donghai,
| | - Huang Caihua
- Research and Communication Center of Exercise and Health, Xiamen University of Technology, Xiamen, China
- *Correspondence: Huang Caihua, ; Lin Donghai,
| |
Collapse
|
27
|
Watanabe S, Tsujino S. Applications of Medium-Chain Triglycerides in Foods. Front Nutr 2022; 9:802805. [PMID: 35719157 PMCID: PMC9203050 DOI: 10.3389/fnut.2022.802805] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 05/06/2022] [Indexed: 11/17/2022] Open
Abstract
In the 1950s, the production of processed fats and oils from coconut oil was popular in the United States. It became necessary to find uses for the medium-chain fatty acids (MCFAs) that were byproducts of the process, and a production method for medium-chain triglycerides (MCTs) was established. At the time of this development, its use as a non-fattening fat was being studied. In the early days MCFAs included fatty acids ranging from hexanoic acid (C6:0) to dodecanoic acid (C12:0), but today their compositions vary among manufacturers and there seems to be no clear definition. MCFAs are more polar than long-chain fatty acids (LCFAs) because of their shorter chain length, and their hydrolysis and absorption properties differ greatly. These differences in physical properties have led, since the 1960s, to the use of MCTs to improve various lipid absorption disorders and malnutrition. More than half a century has passed since MCTs were first used in the medical field. It has been reported that they not only have properties as an energy source, but also have various physiological effects, such as effects on fat and protein metabolism. The enhancement of fat oxidation through ingestion of MCTs has led to interest in the study of body fat reduction and improvement of endurance during exercise. Recently, MCTs have also been shown to promote protein anabolism and inhibit catabolism, and applied research has been conducted into the prevention of frailty in the elderly. In addition, a relatively large ingestion of MCTs can be partially converted into ketone bodies, which can be used as a component of "ketone diets" in the dietary treatment of patients with intractable epilepsy, or in the nutritional support of terminally ill cancer patients. The possibility of improving cognitive function in dementia patients and mild cognitive impairment is also being studied. Obesity due to over-nutrition and lack of exercise, and frailty due to under-nutrition and aging, are major health issues in today's society. MCTs have been studied in relation to these concerns. In this paper we will introduce the results of applied research into the use of MCTs by healthy subjects.
Collapse
|
28
|
Increased Hippocampal Afterdischarge Threshold in Ketogenic Diet is Accompanied by Enhanced Kynurenine Pathway Activity. Neurochem Res 2022; 47:2109-2122. [PMID: 35522366 DOI: 10.1007/s11064-022-03605-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/22/2022] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
Abstract
The efficacy of a ketogenic diet (KD) in controlling seizure has been shown in many experimental and clinical studies, however, its mechanism of action still needs further clarification. The major goal of the present study was to investigate the influence of the commercially available KD and caloric restriction (CR) on the hippocampal afterdischarge (AD) threshold in rats, and concomitant biochemical changes, specifically concerning the kynurenine pathway, in plasma and the hippocampus. As expected, the rats on the KD showed higher AD threshold accompanied by increased plasma β-hydroxybutyrate level compared to the control group and the CR rats. This group presented also lowered tryptophan and elevated kynurenic acid levels in plasma with similar changes in the hippocampus. Moreover, the KD rats showed decreased levels of branched chain amino acids (BCAA) and aromatic amino acids (AAA) in plasma and the hippocampus. No regular biochemical changes were observed in the CR group. Our results are analogous to those detected after single administrations of fatty acids and valproic acid in our previous studies, specifically to an increase in the kynurenine pathway activity and changes in peripheral and central BCAA and AAA levels. This suggests that the anticonvulsant effect of the KD may be at least partially associated with those observed biochemical alternations.
Collapse
|
29
|
Effect of a Ketogenic Diet on Oxidative Posttranslational Protein Modifications and Brain Homogenate Denaturation in the Kindling Model of Epilepsy in Mice. Neurochem Res 2022; 47:1943-1955. [PMID: 35316463 DOI: 10.1007/s11064-022-03579-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 10/18/2022]
Abstract
This study focused on the ketogenic diet (KD) effects on oxidative posttranslational protein modification (PPM) as presumptive factors implicated in epileptogenesis. A 28-day of KD treatment was performed. The corneal kindling model of epileptogenesis was used. Four groups of adult male ICR mice (25-30 g) were randomized in standard rodent chow (SRC) group, KD-treatment group; SRC + kindling group; KD + kindling group (n = 10 each). Advanced oxidation protein products (AOPP) and protein carbonyl contents of brain homogenates together with differential scanning calorimetry (DSC) were evaluated. Two exothermic transitions (Exo1 and Exo2) were explored after deconvolution of the thermograms. Factor analysis was applied. The protective effect of KD in the kindling model was demonstrated with both decreased seizure score and increased seizure latency. KD significantly decreased glucose and increased ketone bodies (KB) in blood. Despite its antiseizure effect, the KD increased the AOPP level and the brain proteome's exothermic transitions, suggestive for qualitative modifications. The ratio of the two exothermic peaks (Exo2/Exo1) of the thermograms from the KD vs. SRC treated group differed more than twice (3.7 vs. 1.6). Kindling introduced the opposite effect, changing this ratio to 2.7 for the KD + kindling group. Kindling significantly increased glucose and KB in the blood whereas decreased the BW under the SRC treatment. Kindling decreased carbonyl proteins in the brain irrespectively of the diet. Further evaluations are needed to assess the nature of correspondence of calorimetric images of the brain homogenates with PPM.
Collapse
|
30
|
Abdullah M, Huang LC, Lin SH, Yang YK. Dopaminergic and glutamatergic biomarkers disruption in addiction and regulation by exercise: a mini review. Biomarkers 2022; 27:306-318. [PMID: 35236200 DOI: 10.1080/1354750x.2022.2049367] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Drug addiction is associated with disruption of a multitude of biomarkers in various brain regions, particularly in the reward center. The most pronounced are dopaminergic and glutamatergic biomarkers, which are affected at various levels. Neuropathological changes in biomarkers alter the homeostasis of the glutamatergic and dopaminergic nervous systems and promote addiction-associated characteristics such as repeated intake, maintenance, withdrawal, reinstatement, and relapse. Exercise has been shown to have a buffering effect on such biomarkers and reverse the effects of addictive substances. METHODS A review of the literature searched in PubMed, examining drug addiction and physical exercise in relation to dopaminergic and glutamatergic systems at any of the three biomarker levels (i.e., neurotransmitter, receptor, or transporter). RESULTS We review the collective impact of addictive substances on the dopaminergic and glutamatergic systems and the beneficial effect of exercise in terms of reversing the damage to these systems. We propose future directions, including implications of exercise as an add-on therapy, substance use disorder (SUD) prognosis and diagnosis and designing of optimized exercise and pharmaceutical regimens based on the aforementioned biomarkers. CONCLUSION Exercise is beneficial for all types of drug addiction at all stages, by reversing molecular damages caused to dopaminergic and glutamatergic systems.
Collapse
Affiliation(s)
- Muhammad Abdullah
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei, Taiwan
| | - Li-Chung Huang
- Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Psychiatry, Chia-Yi Branch, Taichung Veterans General Hospital, Chia-Yi, Taiwan
| | - Shih-Hsien Lin
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen Kuang Yang
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Psychiatry, Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan
| |
Collapse
|
31
|
Zhao X, Liang L, Xu R, Cheng P, Jia P, Bai Y, Zhang Y, Zhao X, Zheng X, Xiao C. Revealing the Antiepileptic Effect of α-Asaronol on Pentylenetetrazole-Induced Seizure Rats Using NMR-Based Metabolomics. ACS OMEGA 2022; 7:6322-6334. [PMID: 35224394 PMCID: PMC8867478 DOI: 10.1021/acsomega.1c06922] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/28/2022] [Indexed: 05/04/2023]
Abstract
α-Asaronol from Acorus tatarinowii (known as "Shichangpu" in Traditional Chinese medicine) has been proved to possess more efficient antiepileptic activity and lower toxicity than α-asarone (namely "Xixinnaojiaonang" as an antiepileptic drug in China) in our previous study. However, the molecular mechanism of α-asaronol against epilepsy needs to be known if to become a novel antiepileptic medicine. Nuclear magnetic resonance (NMR)-based metabolomics was applied to investigate the metabolic patterns of plasma and the brain tissue extract from pentylenetetrazole (PTZ)-induced seizure rats when treated with α-asaronol or α-asarone. The results showed that α-asaronol can regulate the metabolomic level of epileptic rats to normal to some extent, and four metabolic pathways were associated with the antiepileptic effect of α-asaronol, including alanine, aspartate, and glutamate metabolism; synthesis and degradation of ketone bodies; glutamine and glutamate metabolism; and glycine, serine, and threonine metabolism. It was concluded that α-asaronol plays a vital role in enhancing energy metabolism, regulating the balance of excitatory and inhibitory neurotransmitters, and inhibiting cell membrane damage to prevent the occurrence of epilepsy. These findings are of great significance in developing α-asaronol into a promising antiepileptic drug derived from Traditional Chinese medicine.
Collapse
|
32
|
Estudio prospectivo de dieta Atkins modificada en epilepsia farmacorresistente de adultos: efectividad, tolerabilidad y adherencia. Neurologia 2022. [DOI: 10.1016/j.nrl.2021.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
33
|
|
34
|
A ketogenic diet affects brain volume and metabolome in juvenile mice. Neuroimage 2021; 244:118542. [PMID: 34530134 DOI: 10.1016/j.neuroimage.2021.118542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/10/2021] [Accepted: 08/30/2021] [Indexed: 02/07/2023] Open
Abstract
Ketogenic diet (KD) is a high-fat and low-carbohydrate therapy for medically intractable epilepsy, and its applications in other neurological conditions, including those occurring in children, have been increasingly tested. However, how KD affects childhood neurodevelopment, a highly sensitive and plastic process, is not clear. In this study, we explored structural, metabolic, and functional consequences of a brief treatment of a strict KD (weight ratio of fat to carbohydrate plus protein is approximately 6.3:1) in naive juvenile mice of different inbred strains, using a multidisciplinary approach. Systemic measurements using magnetic resonance imaging revealed that unexpectedly, the volumes of most brain structures in KD-fed mice were about 90% of those in mice of the same strain but fed a standard diet. The reductions in volumes were nonselective, including different regions throughout the brain, the ventricles, and the white matter. The relative volumes of different brain structures were unaltered. Additionally, as KD is a metabolism-based treatment, we performed untargeted metabolomic profiling to explore potential means by which KD affected brain growth and to identify metabolic changes in the brain. We found that brain metabolomic profile was significantly impacted by KD, through both distinct and common pathways in different mouse strains. To explore whether the volumetric and metabolic changes induced by this KD treatment were associated with functional consequences, we recorded spontaneous EEG to measure brain network activity. Results demonstrated limited alterations in EEG patterns in KD-fed animals. In addition, we observed that cortical levels of brain-derived neurotrophic factor (BDNF), a critical molecule in neurodevelopment, did not change in KD-fed animals. Together, these findings indicate that a strict KD could affect volumetric development and metabolic profile of the brain in inbred juvenile mice, while global network activities and BDNF signaling in the brain were mostly preserved. Whether the volumetric and metabolic changes are related to any core functional consequences during neurodevelopment and whether they are also observed in humans need to be further investigated. In addition, our results indicate that certain outcomes of KD are specific to the individual mouse strains tested, suggesting that the physiological profiles of individuals may need to be examined to maximize the clinical benefit of KD.
Collapse
|
35
|
Ko A, Kwon HE, Kim HD. Updates on the ketogenic diet therapy for pediatric epilepsy. Biomed J 2021; 45:19-26. [PMID: 34808422 PMCID: PMC9133260 DOI: 10.1016/j.bj.2021.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/25/2021] [Accepted: 11/07/2021] [Indexed: 12/11/2022] Open
Abstract
The ketogenic diet (KD) is a high-fat, low-carbohydrate diet, in which fat, instead of glucose, acts as a major energy source through the production of ketone bodies. The KD was formally introduced in 1921 to mimic the biochemical changes associated with fasting and gained recognition as a potent treatment for pediatric epilepsy in the mid-1990s. Recent clinical and scientific knowledge supports the use of the KD in drug-resistant epilepsy patients for its anti-seizure efficacy, safety, and tolerability. The KD is also receiving growing attention as a potential treatment option for other neurological disorders. This article will review on the recent updates on the KD, focusing on its mechanisms of action, its alternatives, expansion on its use in terms of age groups and different regions in the world, and future issues.
Collapse
Affiliation(s)
- Ara Ko
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Hye Eun Kwon
- Department of Pediatrics, International St. Mary's Hospital, Catholic Kwandong University, College of Medicine, Incheon, Republic of Korea
| | - Heung Dong Kim
- Division of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
36
|
Barrea L, Pugliese G, Frias-Toral E, Napolitano B, Laudisio D, Aprano S, Ceriani F, Savastano S, Colao A, Muscogiuri G. Is there a relationship between the ketogenic diet and sleep disorders? Int J Food Sci Nutr 2021; 73:285-295. [PMID: 34702129 DOI: 10.1080/09637486.2021.1993154] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Sleep disorders are very often underestimated and, consequently, not treated with due priority. Common sleep disorders include insomnia disorders, sleep-related breathing disorders, central disorders of hypersomnolence, circadian rhythm sleep-wake disorders, sleep-related movement disorders, parasomnias, and other sleep disorders. The ketogenic diet (KD) is rich in fat, low in carbohydrates (CHO), and adequate in protein. The KD has shown several applications in treating medical conditions, such as epilepsy, neurodegenerative disorders, obesity with its comorbidities, and sleep disorders, with encouraging results. Therefore, the purpose of this review is to address the primary sleep disorders and their respective standard therapeutic approaches, analyse the effect of ketone bodies (KBs) on sleep homeostasis, and the effects of KD on sleep disorders and in particular on obstructive sleep apnoea (OSA) syndrome. The goal is to summarise the evidence existing up to now on the subject, to provide a starting point for further investigations.
Collapse
Affiliation(s)
- Luigi Barrea
- Dipartimento di Scienze Umanistiche, Università Telematica Pegaso, Napoli, Italy.,Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy
| | - Gabriella Pugliese
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy.,Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy
| | - Evelyn Frias-Toral
- Clinical Research Associate Professor for Palliative Care Residency from Universidad Católica Santiago de Guayaquil, Av. Pdte. Carlos Julio Arosemena Tola, Guayaquil, Ecuador
| | - Bruno Napolitano
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy
| | - Daniela Laudisio
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy.,Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy
| | - Sara Aprano
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy.,Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy
| | - Florencia Ceriani
- Nutrition School, Universidad de la Republica (UdelaR), Montevideo, Uruguay
| | - Silvia Savastano
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy.,Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy
| | - Annamaria Colao
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy.,Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy.,Cattedra Unesco "Educazione alla salute e allo sviluppo sostenibile", University Federico II, Naples, Italy
| | - Giovanna Muscogiuri
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy.,Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy.,Cattedra Unesco "Educazione alla salute e allo sviluppo sostenibile", University Federico II, Naples, Italy
| |
Collapse
|
37
|
Son H, Baek JH, Kang JS, Jung S, Chung HJ, Kim HJ. Acutely increased β-hydroxybutyrate plays a role in the prefrontal cortex to escape stressful conditions during the acute stress response. Biochem Biophys Res Commun 2021; 554:19-24. [PMID: 33774275 DOI: 10.1016/j.bbrc.2021.03.062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 03/11/2021] [Indexed: 11/30/2022]
Abstract
Ketone bodies can be increased in the blood under certain physiological conditions, but their role under such conditions remains to be clarified. In the present study, we found the increment and usage of β-hydroxybutyrate (BHB) in the prefrontal cortex (PFC) during acute stress. BHB levels increased in the blood and PFC after 30-min acute immobilization stress, and BHB dehydrogenase 1 increased in the PFC simultaneously, but not in the hippocampus. Moreover, increased levels of acetyl-CoA, pyruvate carboxylase, and glutamate dehydrogenase 1 were found in the PFC, implicating the metabolism of increased BHB in the brain. Thus, we checked the levels of glutamate, glutamine, and GABA and found increased levels of glutamate and glutamine in the stressed group compared with that in the control group in the PFC. Exogenous administration of BHB enhanced struggling behaviors under stressful conditions. Our results suggest that the metabolism of BHB from peripheral blood in the PFC may contribute to acute stress responses to escape stressful conditions.
Collapse
Affiliation(s)
- Hyeonwi Son
- Department of Anatomy and Convergence Medical Sciences, Institute of Health Sciences, Bio Anti-aging Medical Research Center, Gyeongsang National University Medical School, 15 Jinju-daero 816 Beongil, Jinju, Gyeongnam, 52727, Republic of Korea
| | - Ji Hyeong Baek
- Department of Anatomy and Convergence Medical Sciences, Institute of Health Sciences, Bio Anti-aging Medical Research Center, Gyeongsang National University Medical School, 15 Jinju-daero 816 Beongil, Jinju, Gyeongnam, 52727, Republic of Korea
| | - Jae Soon Kang
- Department of Anatomy and Convergence Medical Sciences, Institute of Health Sciences, Bio Anti-aging Medical Research Center, Gyeongsang National University Medical School, 15 Jinju-daero 816 Beongil, Jinju, Gyeongnam, 52727, Republic of Korea
| | - Soonwoong Jung
- Department of Anatomy and Convergence Medical Sciences, Institute of Health Sciences, Bio Anti-aging Medical Research Center, Gyeongsang National University Medical School, 15 Jinju-daero 816 Beongil, Jinju, Gyeongnam, 52727, Republic of Korea
| | - Hye Jin Chung
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Hyun Joon Kim
- Department of Anatomy and Convergence Medical Sciences, Institute of Health Sciences, Bio Anti-aging Medical Research Center, Gyeongsang National University Medical School, 15 Jinju-daero 816 Beongil, Jinju, Gyeongnam, 52727, Republic of Korea.
| |
Collapse
|
38
|
Chen P, Wang C, Ren YN, Ye ZJ, Jiang C, Wu ZB. Alterations in the gut microbiota and metabolite profiles in the context of neuropathic pain. Mol Brain 2021; 14:50. [PMID: 33750430 PMCID: PMC7941960 DOI: 10.1186/s13041-021-00765-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/25/2021] [Indexed: 12/17/2022] Open
Abstract
The aim of this study was to explore the relationships among gut microbiota disturbances and serum and spinal cord metabolic disorders in neuropathic pain. 16S rDNA amplicon sequencing and serum and spinal cord metabolomics were used to identify alterations in the microbiota and metabolite profiles in the sham rats and the chronic constriction injury (CCI) model rats. Correlations between the abundances of gut microbiota components at the genus level, the levels of serum metabolites, and pain-related behavioural parameters were analysed. Ingenuity pathway analysis (IPA) was applied to analyse the interaction networks of the differentially expressed serum metabolites. First, we found that the composition of the gut microbiota was different between rats with CCI-induced neuropathic pain and sham controls. At the genus level, the abundances of Helicobacter, Phascolarctobacterium, Christensenella, Blautia, Streptococcus, Rothia and Lactobacillus were significantly increased, whereas the abundances of Ignatzschineria, Butyricimonas, Escherichia, AF12, and Corynebacterium were significantly decreased. Additionally, 72 significantly differentially expressed serum metabolites and 17 significantly differentially expressed spinal cord metabolites were identified between the CCI rats and the sham rats. Finally, correlation analysis showed that changes in the gut microbiota was significantly correlated with changes in serum metabolite levels, suggesting that dysbiosis of the gut microbiota is an important factor in modulating metabolic disturbances in the context of neuropathic pain. In conclusion, our research provides a novel perspective on the potential roles of the gut microbiota and related metabolites in neuropathic pain.
Collapse
Affiliation(s)
- Peng Chen
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Chen Wang
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yan-Na Ren
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Zeng-Jie Ye
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chao Jiang
- Department of Neurology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, China.
| | - Zhi-Bing Wu
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
39
|
Enhancement of Ketone Supplements-Evoked Effect on Absence Epileptic Activity by Co-Administration of Uridine in Wistar Albino Glaxo Rijswijk Rats. Nutrients 2021; 13:nu13010234. [PMID: 33467454 PMCID: PMC7830695 DOI: 10.3390/nu13010234] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/05/2021] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
Both uridine and exogenous ketone supplements decreased the number of spike-wave discharges (SWDs) in a rat model of human absence epilepsy Wistar Albino Glaxo/Rijswijk (WAG/Rij) rats. It has been suggested that alleviating influence of both uridine and ketone supplements on absence epileptic activity may be modulated by A1 type adenosine receptors (A1Rs). The first aim was to determine whether intraperitoneal (i.p.) administration of a specific A1R antagonist 1,3-dipropyl-8-cyclopentylxanthine (DPCPX; 0.2 mg/kg) and a selective adenosine A2A receptor antagonist (7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo [1,5-c]pyrimidine) (SCH 58261; 0.5 mg/kg) have a modulatory influence on i.p. 1000 mg/kg uridine-evoked effects on SWD number in WAG/Rij rats. The second aim was to assess efficacy of a sub-effective dose of uridine (i.p. 250 mg/kg) combined with beta-hydroxybutyrate salt + medium chain triglyceride (KSMCT; 2.5 g/kg, gavage) on absence epilepsy. DPCPX completely abolished the i.p. 1000 mg/kg uridine-evoked alleviating effect on SWD number whereas SCH 58261 was ineffective, confirming the A1R mechanism. Moreover, the sub-effective dose of uridine markedly enhanced the effect of KSMCT (2.5 g/kg, gavage) on absence epileptic activity. These results demonstrate the anti-epilepsy benefits of co-administrating uridine and exogenous ketone supplements as a means to treat absence epilepsy.
Collapse
|
40
|
Bordeleau M, Fernández de Cossío L, Chakravarty MM, Tremblay MÈ. From Maternal Diet to Neurodevelopmental Disorders: A Story of Neuroinflammation. Front Cell Neurosci 2021; 14:612705. [PMID: 33536875 PMCID: PMC7849357 DOI: 10.3389/fncel.2020.612705] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
Providing the appropriate quantity and quality of food needed for both the mother's well-being and the healthy development of the offspring is crucial during pregnancy. However, the macro- and micronutrient intake also impacts the body's regulatory supersystems of the mother, such as the immune, endocrine, and nervous systems, which ultimately influence the overall development of the offspring. Of particular importance is the association between unhealthy maternal diet and neurodevelopmental disorders in the offspring. Epidemiological studies have linked neurodevelopmental disorders like autism spectrum disorders, attention-deficit-hyperactivity disorder, and schizophrenia, to maternal immune activation (MIA) during gestation. While the deleterious consequences of diet-induced MIA on offspring neurodevelopment are increasingly revealed, neuroinflammation is emerging as a key underlying mechanism. In this review, we compile the evidence available on how the mother and offspring are both impacted by maternal dietary imbalance. We specifically explore the various inflammatory and anti-inflammatory effects of dietary components and discuss how changes in inflammatory status can prime the offspring brain development toward neurodevelopmental disorders. Lastly, we discuss research evidence on the mechanisms that sustain the relationship between maternal dietary imbalance and offspring brain development, involving altered neuroinflammatory status in the offspring, as well as genetic to cellular programming notably of microglia, and the evidence that the gut microbiome may act as a key mediator.
Collapse
Affiliation(s)
- Maude Bordeleau
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | | | - M. Mallar Chakravarty
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
- Cerebral Imaging Centre, Douglas Mental Health University, McGill University, Montréal, QC, Canada
- Department of Psychiatry, McGill University, Montréal, QC, Canada
- Department of Biological and Biomedical Engineering, McGill University, Montréal, QC, Canada
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Département de Médecine Moléculaire, Université Laval, Québec, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Biochemistry and Molecular Biology, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
41
|
Davis JJ, Fournakis N, Ellison J. Ketogenic Diet for the Treatment and Prevention of Dementia: A Review. J Geriatr Psychiatry Neurol 2021; 34:3-10. [PMID: 31996078 DOI: 10.1177/0891988720901785] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dementia (major neurocognitive disorder) is an increasingly common syndrome with a significant burden on patients, caregivers, the health-care system, and the society. The prevalence of dementia will certainly continue to grow as the US population ages. Current treatments for dementia, though, are limited. One proposed nonpharmacologic approach for the delay or prevention of dementia is the use of a ketogenic diet. The ketogenic diet was originally employed to treat refractory epilepsy and has shown promise in many neurologic diseases. It has also gained recent popularity for its weight loss effects. Several preclinical studies have confirmed a benefit of ketosis on cognition and systemic inflammation. Given the renewed emphasis on neuroinflammation as a pathogenic contributor to cognitive decline, and the decreased systemic inflammation observed with the ketogenic diet, it is plausible that this diet may delay, ameliorate, or prevent progression of cognitive decline. Several small human studies have shown benefit on cognition in dementia with a ketogenic diet intervention. Future, large controlled studies are needed to confirm this benefit; however, the ketogenic diet has shown promise in regard to delay or mitigation of symptoms of cognitive decline.
Collapse
Affiliation(s)
- Joshua J Davis
- Department of Emergency Medicine, 12311Penn State Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Nicole Fournakis
- Center for Community Health in the Office of Health Equity at 5973Christiana Care Health System, Newark, DE, USA
| | - James Ellison
- The Swank Foundation Endowed Chair in Memory Care and Geriatrics at 5973Christiana Care Health System, Newark, DE, USA
| |
Collapse
|
42
|
Gavrilovici C, Rho JM. Metabolic epilepsies amenable to ketogenic therapies: Indications, contraindications, and underlying mechanisms. J Inherit Metab Dis 2021; 44:42-53. [PMID: 32654164 DOI: 10.1002/jimd.12283] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 12/20/2022]
Abstract
Metabolic epilepsies arise in the context of rare inborn errors of metabolism (IEM), notably glucose transporter type 1 deficiency syndrome, succinic semialdehyde dehydrogenase deficiency, pyruvate dehydrogenase complex deficiency, nonketotic hyperglycinemia, and mitochondrial cytopathies. A common feature of these disorders is impaired bioenergetics, which through incompletely defined mechanisms result in a wide spectrum of neurological symptoms, such as epileptic seizures, developmental delay, and movement disorders. The ketogenic diet (KD) has been successfully utilized to treat such conditions to varying degrees. While the mechanisms underlying the clinical efficacy of the KD in IEM remain unclear, it is likely that the proposed heterogeneous targets influenced by the KD work in concert to rectify or ameliorate the downstream negative consequences of genetic mutations affecting key metabolic enzymes and substrates-such as oxidative stress and cell death. These beneficial effects can be broadly grouped into restoration of impaired bioenergetics and synaptic dysfunction, improved redox homeostasis, anti-inflammatory, and epigenetic activity. Hence, it is conceivable that the KD might prove useful in other metabolic disorders that present with epileptic seizures. At the same time, however, there are notable contraindications to KD use, such as fatty acid oxidation disorders. Clearly, more research is needed to better characterize those metabolic epilepsies that would be amenable to ketogenic therapies, both experimentally and clinically. In the end, the expanded knowledge base will be critical to designing metabolism-based treatments that can afford greater clinical efficacy and tolerability compared to current KD approaches, and improved long-term outcomes for patients.
Collapse
Affiliation(s)
- Cezar Gavrilovici
- Departments of Neurosciences and Pediatrics, University of California San Diego, Rady Children's Hospital, San Diego, California, USA
| | - Jong M Rho
- Departments of Neurosciences and Pediatrics, University of California San Diego, Rady Children's Hospital, San Diego, California, USA
| |
Collapse
|
43
|
Hung PL, Lin JL, Chen C, Hung KY, Hsieh TY, Hsu MH, Kuo HC, Lin YJ. An Examination of Serum Acylcarnitine and Amino Acid Profiles at Different Time Point of Ketogenic Diet Therapy and Their Association of Ketogenic Diet Effectiveness. Nutrients 2020; 13:nu13010021. [PMID: 33374696 PMCID: PMC7822492 DOI: 10.3390/nu13010021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/09/2020] [Accepted: 12/18/2020] [Indexed: 12/30/2022] Open
Abstract
Background: This study aimed to identify metabolic parameters at different time points of ketogenic diet therapy (KDT) and investigate their association with response to KDT in pediatric drug-resistant epilepsy (DRE). Methods: Prospectively, twenty-nine patients (0.67~20 years old) with DRE received classic ketogenic diet with non-fasting, gradual KD initiation protocol (GRAD-KD) for 1 year were enrolled. A total of 22 patients remaining in study received blood examinations at baseline, 3rd, 6th, 9th, and 12th months of KDT. β-hydroxybutyrate, free carnitine, acylcarnitines, and amino acids were compared between responders (seizure reduction rate ≥ 50%) and non-responders (seizure reduction rate < 50%) to identify the effectiveness of KDT. Results: The 12-month retention rate was 76%. The responders after 12 months of KDT were 59% (13/22). The free carnitine level decreased significantly at 9th months (p < 0.001) but increased toward baseline without symptoms. Propionyl carnitine (C3), Isovaleryl carnitine (C5), 3-Hydroxyisovalerylcarnitine (C5:OH) and methylmalonyl carnitine (C4-DC) decreased but 3-hydroxybutyrylcarnitine (C4:OH) increased significantly at 12th months of KDT. The glycine level was persistently higher than baseline after KDT. KDT responders had lower baseline C3 and long-chain acylcarnitines, C14 and C18, as well as lower C5, C18, and leucine/isoleucine. Conclusions: KDT should be avoided in patients with non-ketotic hyperglycemia. Routine carnitine supplementation is not recommended because hypocarnitinemia was transient and asymptomatic during KDT. Better mitochondrial βoxidation function associates with greater KDT response.
Collapse
Affiliation(s)
- Pi-Lien Hung
- Department of Pediatrics, Division of Pediatric Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (P.-L.H.); (M.-H.H.)
| | - Ju-Li Lin
- Department of Pediatrics, Division of Genetics and Endocrinology, Linkou Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyan 333, Taiwan;
| | - Chien Chen
- Department of Neurology, Taipei Veterans General Hospital, National Yang-Ming University, Taipei 112, Taiwan;
| | - Kai-Yin Hung
- Division of Nutritional Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
| | - Tzu-Yun Hsieh
- Department of Pediatrics, Division of Pediatric Critical Care, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (T.-Y.H.); (H.-C.K.)
| | - Mei-Hsin Hsu
- Department of Pediatrics, Division of Pediatric Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (P.-L.H.); (M.-H.H.)
- Department of Pediatrics, Division of Pediatric Critical Care, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (T.-Y.H.); (H.-C.K.)
| | - Hsuan-Chang Kuo
- Department of Pediatrics, Division of Pediatric Critical Care, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (T.-Y.H.); (H.-C.K.)
| | - Ying-Jui Lin
- Department of Pediatrics, Division of Pediatric Critical Care, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (T.-Y.H.); (H.-C.K.)
- Correspondence: ; Tel.: +886-7-731-7123 (ext. 8795); Fax: +886-7-733-8009
| |
Collapse
|
44
|
Koňaříková E, Marković A, Korandová Z, Houštěk J, Mráček T. Current progress in the therapeutic options for mitochondrial disorders. Physiol Res 2020; 69:967-994. [PMID: 33129249 PMCID: PMC8549882 DOI: 10.33549/physiolres.934529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/02/2020] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial disorders manifest enormous genetic and clinical heterogeneity - they can appear at any age, present with various phenotypes affecting any organ, and display any mode of inheritance. What mitochondrial diseases do have in common, is impairment of respiratory chain activity, which is responsible for more than 90% of energy production within cells. While diagnostics of mitochondrial disorders has been accelerated by introducing Next-Generation Sequencing techniques in recent years, the treatment options are still very limited. For many patients only a supportive or symptomatic therapy is available at the moment. However, decades of basic and preclinical research have uncovered potential target points and numerous compounds or interventions are now subjects of clinical trials. In this review, we focus on current and emerging therapeutic approaches towards the treatment of mitochondrial disorders. We focus on small compounds, metabolic interference, such as endurance training or ketogenic diet and also on genomic approaches.
Collapse
Affiliation(s)
- E Koňaříková
- Laboratory of Bioenergetics, Institute of Physiology Czech Acad. Sci., Prague, Czech Republic. ,
| | | | | | | | | |
Collapse
|
45
|
Ketogenic Diet Therapy for Intractable Epilepsy in Infantile Alexander Disease: A Small Case Series and Analyses of Astroglial Chemokines and Proinflammatory Cytokines. Epilepsy Res 2020; 170:106519. [PMID: 33395615 DOI: 10.1016/j.eplepsyres.2020.106519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/23/2020] [Accepted: 11/29/2020] [Indexed: 11/20/2022]
Abstract
In infantile Alexander disease (iAxD), one of the serious symptoms is intractable epilepsy, and some reports have suggested that neuroinflammation may be involved in the pathophysiology of the disease. Drug-resistant seizures adversely affect not only the quality of life of the caregivers and patients, but also patients' lifespan. Thus, controlling epilepsy is clinically important. For intractable childhood epilepsy, ketogenic diet therapy (KDT) is well-established, but its effects on iAxD have not been characterized. Here, we describe the use of KDT in three iAxD patients experiencing drug-resistant seizures. In all three cases, the formerly intractable epilepsies were well controlled by KDT. However, the brain magnetic resonance imaging findings deteriorated even after the epilepsy was controlled. In addition, the concentrations of monocyte chemotactic protein-1 and proinflammatory cytokines in the cerebrospinal fluid of the patients remained still high. KDT is effective in controlling epilepsy in iAxD. Our results clinically support previous reports arguing the involvement of neuroinflammation in the pathophysiology of iAxD. Although KDT cannot prevent disease progression, earlier initiation might contribute to a better prognosis.
Collapse
|
46
|
McDonald TJW, Cervenka MC. Ketogenic Diet Therapies for Seizures and Status Epilepticus. Semin Neurol 2020; 40:719-729. [PMID: 33155184 DOI: 10.1055/s-0040-1719077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ketogenic diet therapies are high-fat, low-carbohydrate diets designed to mimic a fasting state. Although initially developed nearly one century ago for seizure management, most clinical trials for the management of drug-resistant epilepsy in children as well as adults have been conducted over the last 3 decades. Moreover, ketogenic diets offer promising new adjunctive strategies in the critical care setting for the resolution of acute status epilepticus when traditional antiseizure drugs and anesthetic agents fail. Here, we review the history of ketogenic diet development, the clinical evidence supporting its use for the treatment of drug-resistant epilepsy in children and adults, and the early evidence supporting ketogenic diet feasibility, safety, and potential efficacy in the management of status epilepticus.
Collapse
|
47
|
Yuan X, Wang L, Tandon N, Sun H, Tian J, Du H, Pascual JM, Guo L. Triheptanoin Mitigates Brain ATP Depletion and Mitochondrial Dysfunction in a Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2020; 78:425-437. [PMID: 33016909 PMCID: PMC8502101 DOI: 10.3233/jad-200594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Brain energy failure is an early pathological event associated with synaptic dysfunction in Alzheimer's disease (AD). Thus, mitigation or enhancement of brain energy metabolism may offer a therapeutic avenue. However, there is uncertainty as to what metabolic process(es) may be more appropriate to support or augment since metabolism is a multiform process such that each of the various metabolic precursors available is utilized via a specific metabolic pathway. In the brain, these pathways sustain not only a robust rate of energy production but also of carbon replenishment. OBJECTIVE Triheptanoin, an edible odd-chain fatty acid triglyceride, is uncommon in that it replenishes metabolites in the tricarboxylic acid cycle (TCA) cycle via anaplerosis in addition to fueling the cycle via oxidation, thus potentially leading to both carbon replenishment and enhanced mitochondrial ATP production. METHODS To test the hypothesis that triheptanoin is protective in AD, we supplied mice with severe brain amyloidosis (5×FAD mice) with dietary triheptanoin for four and a half months, followed by biological and biochemical experiments to examine mice metabolic as well as synaptic function. RESULTS Triheptanoin treatment had minimal impact on systemic metabolism and brain amyloidosis as well as tauopathy while attenuating brain ATP deficiency and mitochondrial dysfunction including respiration and redox balance in 5×FAD mice. Synaptic density, a disease hallmark, was also preserved in hippocampus and neocortex despite profound amyloid deposition. None of these effects took place in treated control mice. CONCLUSION These findings support the energy failure hypothesis of AD and justify investigating the mechanisms in greater depth with ultimate therapeutic intent.
Collapse
Affiliation(s)
- Xiaodong Yuan
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA.,Health Management Center, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lu Wang
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Neha Tandon
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Huili Sun
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Jing Tian
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Heng Du
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA.,Department of Pharmacology & Toxicology, The University of Kansas, Lawrence, KS, USA.,Higuchi Biosciences Center, The University of Kansas, Lawrence, KS, USA
| | - Juan M Pascual
- Department of Neurology and Neurotherapeutics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lan Guo
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA.,Department of Pharmacology & Toxicology, The University of Kansas, Lawrence, KS, USA.,Higuchi Biosciences Center, The University of Kansas, Lawrence, KS, USA
| |
Collapse
|
48
|
The Effects of a Ketogenic Diet on Sensorimotor Function in a Thoracolumbar Mouse Spinal Cord Injury Model. eNeuro 2020; 7:ENEURO.0178-20.2020. [PMID: 32680835 PMCID: PMC7433893 DOI: 10.1523/eneuro.0178-20.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/14/2020] [Accepted: 07/10/2020] [Indexed: 01/26/2023] Open
Abstract
Spinal cord injury and peripheral nerve injuries are traumatic events that greatly impact quality of life. One factor that is being explored throughout patient care is the idea of diet and the role it has on patient outcomes. But the effects of diet following neurotrauma need to be carefully explored in animal models to ensure that they have beneficial effects. The ketogenic diet provides sufficient daily caloric requirements while being potentially neuroprotective and analgesic. In this study, animals were fed a high-fat, low-carbohydrate diet that led to a high concentration of blood ketone that was sustained for as long as the animals were on the diet. Mice fed a ketogenic diet had significantly lower levels of tyrosine and tryptophan, but the levels of other monoamines within the spinal cord remained similar to those of control mice. Mice were fed a standard or ketogenic diet for 7 d before and 28 d following the injury. Our results show that mice hemisected over the T10–T11 vertebrae showed no beneficial effects of being on a ketogenic diet over a 28 d recovery period. Similarly, ligation of the common peroneal and tibial nerve showed no differences between mice fed normal or ketogenic diets. Tests included von Frey, open field, and ladder-rung crossing. We add to existing literature showing protective effects of the ketogenic diet in forelimb injuries by focusing on neurotrauma in the hindlimbs. The results suggest that ketogenic diets need to be assessed based on the type and location of neurotrauma.
Collapse
|
49
|
Impact of a Ketogenic Diet on Metabolic Parameters in Patients with Obesity or Overweight and with or without Type 2 Diabetes: A Meta-Analysis of Randomized Controlled Trials. Nutrients 2020; 12:nu12072005. [PMID: 32640608 PMCID: PMC7400909 DOI: 10.3390/nu12072005] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/27/2020] [Accepted: 07/02/2020] [Indexed: 12/20/2022] Open
Abstract
The aim of this meta-analysis was to explore the efficacy of a ketogenic diet in metabolic control in patients with overweight or obesity and with or without type 2 diabetes. Embase, PubMed, and Cochrane Library were searched for randomized controlled trials that enrolled patients with overweight or obesity on a ketogenic diet for metabolic control. Fourteen studies were included in meta-analysis. The effects of ketogenic diets on glycemic control were greater for diabetic patients relative to those of low-fat diets, indicated by lower glycated hemoglobin (SMD, -0.62; p < 0.001) and homeostatic model assessment index (SMD, -0.29; p = 0.02), while comparable effects were observed for nondiabetic patients. Ketogenic diets led to substantial weight reduction (SMD, -0.46; p = 0.04) irrespective of patients' diabetes status at baseline and improved lipid profiles in terms of lower triglyceride (SMD, -0.45; p = 0.01) and greater high-density lipoprotein (SMD, 0.31; p = 0.005) for diabetic patients. Other risk markers showed no substantial between-group difference post intervention. Our study findings confirmed that ketogenic diets were more effective in improving metabolic parameters associated with glycemic, weight, and lipid controls in patients with overweight or obesity, especially those with preexisting diabetes, as compared to low-fat diets. This effect may contribute to improvements in metabolic dysfunction-related morbidity and mortality in these patient populations.
Collapse
|
50
|
Weber DD, Aminzadeh-Gohari S, Tulipan J, Catalano L, Feichtinger RG, Kofler B. Ketogenic diet in the treatment of cancer - Where do we stand? Mol Metab 2020; 33:102-121. [PMID: 31399389 PMCID: PMC7056920 DOI: 10.1016/j.molmet.2019.06.026] [Citation(s) in RCA: 243] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/17/2019] [Accepted: 06/28/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Cancer is one of the greatest public health challenges worldwide, and we still lack complementary approaches to significantly enhance the efficacy of standard anticancer therapies. The ketogenic diet, a high-fat, low-carbohydrate diet with adequate amounts of protein, appears to sensitize most cancers to standard treatment by exploiting the reprogramed metabolism of cancer cells, making the diet a promising candidate as an adjuvant cancer therapy. SCOPE OF REVIEW To critically evaluate available preclinical and clinical evidence regarding the ketogenic diet in the context of cancer therapy. Furthermore, we highlight important mechanisms that could explain the potential antitumor effects of the ketogenic diet. MAJOR CONCLUSIONS The ketogenic diet probably creates an unfavorable metabolic environment for cancer cells and thus can be regarded as a promising adjuvant as a patient-specific multifactorial therapy. The majority of preclinical and several clinical studies argue for the use of the ketogenic diet in combination with standard therapies based on its potential to enhance the antitumor effects of classic chemo- and radiotherapy, its overall good safety and tolerability and increase in quality of life. However, to further elucidate the mechanisms of the ketogenic diet as a therapy and evaluate its application in clinical practice, more molecular studies as well as uniformly controlled clinical trials are needed.
Collapse
Affiliation(s)
- Daniela D Weber
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria.
| | - Sepideh Aminzadeh-Gohari
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria.
| | - Julia Tulipan
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria.
| | - Luca Catalano
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria.
| | - René G Feichtinger
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria.
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria.
| |
Collapse
|