1
|
Sun H, Zhu G, Li S, Li P, Zhang J, Yin R, Yuan L, Gao N, Zhao J. Fucosylated Glycosaminoglycan Oligosaccharide HS14, Derived from Sea Cucumbers, Is a Novel Inhibitor of Platelet Toll-like Receptor 2. Mar Drugs 2025; 23:110. [PMID: 40137296 PMCID: PMC11943722 DOI: 10.3390/md23030110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/27/2025] Open
Abstract
(1) Background: Toll-like receptor 2 (TLR2) on platelets is increasingly recognized as a pivotal mediator in infection-induced platelet activation and aggregation, contributing to both inflammatory and thrombotic diseases. Targeting TLR2 on platelets offers a promising therapeutic strategy for inflammatory and thrombotic-related disorders. However, inhibitors targeting platelet TLR2 have not yet been reported. (2) Methods: Platelet aggregation was assessed using a light transmission aggregometer. Platelet activation was evaluated by measuring the release of P-selectin and von Willebrand factor (vWF) via ELISA. Intracellular Ca2+ mobilization was quantified using Fluo 3-AM fluorescence, recorded by flow cytometry. Static platelet adhesion was visualized under a microscope, and the formation of platelet-granulocyte aggregates in human whole blood was analyzed by flow cytometry. (3) Results: Fucosylated glycosaminoglycan (FG) tetradecasaccharide HS14 inhibited the activation and aggregation of human platelets induced by the synthetic bacterial lipopeptide Pam3CSK4 in a concentration-dependent manner. This inhibitory effect gives rise to significant anti-inflammatory and anti-thrombotic activities, as evidenced by reduced platelet adhesion and decreased platelet-granulocyte aggregates formation in human whole blood. (4) Conclusions: This study is the first to identify FG oligosaccharide HS14 as a promising inhibitor of platelet TLR2/TLR1, demonstrating significant therapeutic potential for inflammatory and thrombotic-related diseases.
Collapse
Affiliation(s)
- Huifang Sun
- School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China;
| | - Guangyu Zhu
- College of Life Sciences, South-Central Minzu University, Wuhan 430074, China;
| | - Sujuan Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
| | - Pengfei Li
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; (P.L.); (J.Z.); (R.Y.); (L.Y.)
| | - Jiali Zhang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; (P.L.); (J.Z.); (R.Y.); (L.Y.)
| | - Ronghua Yin
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; (P.L.); (J.Z.); (R.Y.); (L.Y.)
| | - Lin Yuan
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; (P.L.); (J.Z.); (R.Y.); (L.Y.)
| | - Na Gao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; (P.L.); (J.Z.); (R.Y.); (L.Y.)
| | - Jinhua Zhao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; (P.L.); (J.Z.); (R.Y.); (L.Y.)
| |
Collapse
|
2
|
Laspa Z, Dicenta-Baunach V, Schaale D, Sigle M, Hochuli R, Castor T, Bayrak A, Harm T, Müller KAL, Pillaiyar T, Laufer S, Rohlfing AK, Gawaz MP. Hemin-induced platelet activation is regulated by the ACKR3 chemokine surface receptor and has implications for passivation of vulnerable atherosclerotic plaques. FEBS J 2024; 291:5420-5434. [PMID: 39387619 DOI: 10.1111/febs.17294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/11/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024]
Abstract
In vulnerable atherosclerotic plaques, intraplaque hemorrhages (IPH) result in hemolysis of red blood cells and release of hemoglobin and free hemin. Hemin activates platelets and leads to thrombosis. Agonism of the inhibitory platelet receptor ACKR3 inhibits hemin-dependent platelet activation and thrombus formation. To characterize the effect of hemin and ACKR3 agonism on isolated human platelets, multi-color flow cytometry and classical experimental setup such as light transmission aggregometry and a flow chamber assay were used. Hemin induces platelet aggregation and ex vivo platelet-dependent thrombus formation on immobilized collagen under a low shear rate of 500 s-1, indicating that free hemin is a strong activator of platelet-dependent thrombosis. Recently, we described that ACKR3 is a prominent inhibitory receptor of platelet activation. Specific ACKR3 agonists but not conventional antiplatelet compounds such as COX-1 inhibitor (indometacin), ADP-receptor blocker (cangrelor), or PAR1 inhibitor (ML161) inhibit both hemin-dependent aggregation and thrombus formation. To further characterize the effect of hemin on platelet subpopulations, we established a multi-color flow cytometry assay. We found that hemin induces procoagulant (CD42bpos/PAC-1neg/AnnexinVpos), aggregatory (CD42bpos/PAC-1pos/AnnexinVneg), and inflammatory (CD42bpos/CXCR4pos/ACKR3pos/AnnexinVpos) platelet subpopulations. Treatment with ACKR3 agonists significantly decreased the formation of procoagulant and ACKR3pos platelets in response to hemin. We conclude that hemin is a strong activator for the formation of procoagulant platelets and thrombus formation which is dependent on the function of ACKR3. Activation of ACKR3 using specific agonists may offer a therapeutic strategy to regulate the vulnerability of atherosclerotic plaques in areas of IPH.
Collapse
Affiliation(s)
- Zoi Laspa
- Department of Cardiology and Angiology, University Hospital Tübingen, University Tübingen, Germany
| | - Valerie Dicenta-Baunach
- Department of Cardiology and Angiology, University Hospital Tübingen, University Tübingen, Germany
| | - David Schaale
- Department of Cardiology and Angiology, University Hospital Tübingen, University Tübingen, Germany
| | - Manuel Sigle
- Department of Cardiology and Angiology, University Hospital Tübingen, University Tübingen, Germany
| | - Ravi Hochuli
- Department of Cardiology and Angiology, University Hospital Tübingen, University Tübingen, Germany
| | - Tatsiana Castor
- Department of Cardiology and Angiology, University Hospital Tübingen, University Tübingen, Germany
| | - Alp Bayrak
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, University Tübingen, Germany
| | - Tobias Harm
- Department of Cardiology and Angiology, University Hospital Tübingen, University Tübingen, Germany
| | - Karin Anne Lydia Müller
- Department of Cardiology and Angiology, University Hospital Tübingen, University Tübingen, Germany
| | - Thanigaimalai Pillaiyar
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, University Tübingen, Germany
- Tübingen Center for Academic Drug Discovery & Development (TüCAD2), Germany
| | - Stefan Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, University Tübingen, Germany
- Tübingen Center for Academic Drug Discovery & Development (TüCAD2), Germany
- iFIT Cluster of Excellence EXC 2180 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Germany
| | - Anne-Katrin Rohlfing
- Department of Cardiology and Angiology, University Hospital Tübingen, University Tübingen, Germany
| | - Meinrad Paul Gawaz
- Department of Cardiology and Angiology, University Hospital Tübingen, University Tübingen, Germany
| |
Collapse
|
3
|
Cao Z, Jiang X, He Y, Zheng X. Metabolic landscape in venous thrombosis: insights into molecular biology and therapeutic implications. Ann Med 2024; 56:2401112. [PMID: 39297312 DOI: 10.1080/07853890.2024.2401112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/20/2024] [Accepted: 05/12/2024] [Indexed: 09/21/2024] Open
Abstract
The findings of the last decade suggest a complex link between inflammatory cells, coagulation, and the activation of platelets and their synergistic interaction to promote venous thrombosis. Inflammation is present throughout the process of venous thrombosis, and various metabolic pathways of erythrocytes, endothelial cells, and immune cells involved in venous thrombosis, including glucose metabolism, lipid metabolism, homocysteine metabolism, and oxidative stress, are associated with inflammation. While the metabolic microenvironment has been identified as a marker of malignancy, recent studies have revealed that for cancer thrombosis, alterations in the metabolic microenvironment appear to also be a potential risk. In this review, we discuss how the synergy between metabolism and thrombosis drives thrombotic disease. We also explore the great potential of anti-inflammatory strategies targeting venous thrombosis and the complex link between anti-inflammation and metabolism. Furthermore, we suggest how we can use our existing knowledge to reduce the risk of venous thrombosis.
Collapse
Affiliation(s)
- Zheng Cao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xuejun Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yiyu He
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiaoxin Zheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
4
|
Liu S, Guo F, Zhang T, Zhu Y, Lu M, Wu X, He F, Yu R, Yan D, Ming Z, Shu D. Iron deficiency anemia and platelet dysfunction: A comprehensive analysis of the underlying mechanisms. Life Sci 2024; 351:122848. [PMID: 38885879 DOI: 10.1016/j.lfs.2024.122848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
AIMS This research aimed to study the changes in platelet function and their underlying mechanisms in iron deficiency anemia. MAIN METHODS Initially, we evaluated platelet function in an IDA mice model. Due to the inability to accurately reduce intracellular Fe2+ concentrations, we investigated the impact of Fe2+ on platelet function by introducing varying concentrations of Fe2+. To probe the underlying mechanism, we simultaneously examined the dynamics of calcium in the cytosol, and integrin αIIbβ3 activation in Fe2+-treated platelets. Ferroptosis inhibitors Lip-1 and Fer-1 were applied to determine whether ferroptosis was involved in this process. KEY FINDINGS Our study revealed that platelet function was suppressed in IDA mice. Fe2+ concentration-dependently facilitated platelet activation and function in vitro. Mechanistically, Fe2+ promoted calcium mobilization, integrin αIIbβ3 activation, and its downstream outside-in signaling. Additionally, we also demonstrated that ferroptosis might play a role in this process. SIGNIFICANCE Our data suggest an association between iron and platelet activation, with iron deficiency resulting in impaired platelet function, while high concentrations of Fe2+ contribute to platelet activation and function by promoting calcium mobilization, αIIbβ3 activation, and ferroptosis.
Collapse
Affiliation(s)
- Sijia Liu
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China; Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Fang Guo
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China; Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Tianli Zhang
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China; Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Ying Zhu
- Wuhan No.1 Hospital, Wuhan 430071, China
| | - Meng Lu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Xiayu Wu
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China; Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Fuqin He
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China; Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Ruiying Yu
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China; Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Dan Yan
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China; Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Zhangyin Ming
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.
| | - Dan Shu
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China; Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
5
|
Zhou X, Zhou X, Zhang Z, Zhu R, Lu M, Lv K, Fang C, Ming Z, Cheng Z, Hu Y. Mechanism of Bile Acid in Regulating Platelet Function and Thrombotic Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401683. [PMID: 38922767 PMCID: PMC11348205 DOI: 10.1002/advs.202401683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/02/2024] [Indexed: 06/28/2024]
Abstract
Platelets play a key role in physiological hemostasis and pathological thrombosis. Based on the limitations of current antiplatelet drugs, it's important to elucidate the mechanisms of regulating platelet activation. In addition to dissolving lipid nutrients, bile acids (BAs) can regulate platelet function. However, the specific mechanisms underlying BAs-mediated effects on platelet activation and thrombotic diseases remain unknown. Therefore, the effects of BAs on platelets and intracellular regulatory mechanisms are explored. It is showed that the inhibitory effect of secondary BAs is more significant than that of primary BAs; lithocholic acid (LCA) shows the highest inhibitory effect. In the process of platelet activation, BAs suppress platelet activation via the spleen tyrosine kinase (SYK), protein kinase B (Akt), and extracellular signal-regulated kinase1/2 (Erk1/2) pathways. Nck adaptor proteins (NCK1) deficiency significantly suppress the activity of platelets and arterial thrombosis. Phosphorylated proteomics reveal that LCA inhibited phosphorylation of syntaxin-11 at S80/81 in platelets. Additional LCA supplementation attenuated atherosclerotic plaque development and reduced the inflammation in mice. In conclusion, BAs play key roles in platelet activation via Syk, Akt, ERK1/2, and syntaxin-11 pathways, which are associated with NCK1. The anti-platelet effects of BAs provide a theoretical basis for the prevention and therapy of thrombotic diseases.
Collapse
Affiliation(s)
- Xianghui Zhou
- Department of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Xin Zhou
- Department of StomatologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Zhao Zhang
- Department of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Ruirui Zhu
- Department of CardiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Meng Lu
- Department of PharmacologySchool of Basic MedicineTongji Medical College of Huazhong University of Science and TechnologyWuhan430030China
| | - Keyu Lv
- Department of PharmacologySchool of Basic MedicineTongji Medical College of Huazhong University of Science and TechnologyWuhan430030China
| | - Chao Fang
- Department of PharmacologySchool of Basic MedicineTongji Medical College of Huazhong University of Science and TechnologyWuhan430030China
| | - Zhangyin Ming
- Department of PharmacologySchool of Basic MedicineTongji Medical College of Huazhong University of Science and TechnologyWuhan430030China
| | - Zhipeng Cheng
- Department of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Yu Hu
- Department of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| |
Collapse
|
6
|
Tan Y, Lu W, Yi X, Cai H, Yuan Y, Zhang S. Improvement of platelet preservation by inhibition of TRPC6. Transfus Med 2023. [PMID: 36746770 DOI: 10.1111/tme.12955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 12/27/2022] [Accepted: 01/16/2023] [Indexed: 02/08/2023]
Abstract
BACKGROUND The preservation of platelets (PLTs) by room temperature (RT) oscillation limits their shelf life to between 4 and 7 days because of the decrease in PLT function. TRPC6 is a non-selective mechanically sensitive cation channel that has been shown to mediate Ca2+ signalling, implying a role in PLT activation during preservation by RT oscillation. OBJECTIVES This study was designed to investigate whether inhibition of TRPC6 can improve the RT preservation of PLTs and the possible underlying mechanism. METHODS Human PLTs from whole blood were stored at 22 ± 2°C with oscillation in plasma or M-sol (mixture of solutions). BI-749327, a specific TRPC6 inhibitor, was administered throughout the preservation period. PLT distribution width (PDW), mean platelet volume (MPV), maximum platelet aggregation rate (MAR) and average aggregation rate (AAR) were measured. The MTT method was used to assess the relative viability of PLTs. Flow cytometry was used to measure the changes of Ca2+ concentration in PLTs and phosphatidylserine (PS) exposure on the PLT surface, and western blotting was used to assess the expression changes of platelet TRPC6 and CD62P proteins. RESULTS Compared with the control group, inhibition of TRPC6 with BI-749327 significantly reduced the PDW, MPV and Ca2+ concentration, the MAR and AAR were significantly increased, the expression of TRPC6 and CD62P protein was significantly down-regulated in PLTs, and the PS exposure was significantly reduced on the PLT surface. However, these effects were all reversed by activation of TRPC6. CONCLUSION Inhibition of TRPC6 improves the quality of PLT preservation by inhibiting the Ca2+ signal mediated by TRPC6.
Collapse
Affiliation(s)
- Yuanjia Tan
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, China Three Gorges University, Yichang, China.,Department of Physiology, Medical College of China Three Gorges University, Yichang, China
| | - Wei Lu
- Office, The Blood Bank Center of Yichang City, Yichang, China
| | - Xiaomei Yi
- Office, The Blood Bank Center of Yichang City, Yichang, China
| | - Huili Cai
- Department of Hematology, Yichang Central People' Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Yurong Yuan
- Office, The Blood Bank Center of Yichang City, Yichang, China
| | - Shizhong Zhang
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, China Three Gorges University, Yichang, China.,Department of Physiology, Medical College of China Three Gorges University, Yichang, China
| |
Collapse
|
7
|
Zainal Abidin NA, Timofeeva M, Szydzik C, Akbaridoust F, Lav C, Marusic I, Mitchell A, Hamilton JR, Ooi AS, Nesbitt WS. A microfluidic method to investigate platelet mechanotransduction under extensional strain. Res Pract Thromb Haemost 2023; 7:100037. [PMID: 36846647 PMCID: PMC9944983 DOI: 10.1016/j.rpth.2023.100037] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/17/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Background Blood platelets have evolved a complex mechanotransduction machinery to rapidly respond to hemodynamic conditions. A variety of microfluidic flow-based approaches have been developed to explore platelet mechanotransduction; however, these experimental models primarily focus on the effects of increased wall shear stress on platelet adhesion events and do not consider the critical effects of extensional strain on platelet activation in free flow. Objectives We report the development and application of a hyperbolic microfluidic assay that allows for investigation of platelet mechanotransduction under quasi-homogenous extensional strain rates in the absence of surface adhesions. Methods Using a combined computational fluid dynamic and experimental microfluidic approach, we explore 5 extensional strain regimes (geometries) and their effect on platelet calcium signal transduction. Results We demonstrate that in the absence of canonical adhesion, receptor engagement platelets are highly sensitive to both initial increase and subsequent decrease in extensional strain rates within the range of 747 to 3319/s. Furthermore, we demonstrate that platelets rapidly respond to the rate of change in extensional strain and define a threshold of ≥7.33 × 106/s/m, with an optimal range of 9.21 × 107 to 1.32 × 108/s/m. In addition, we demonstrate a key role of both the actin-based cytoskeleton and annular microtubules in the modulation of extensional strain-mediated platelet mechanotransduction. Conclusion This method opens a window onto a novel platelet signal transduction mechanism and may have potential diagnostic utility in the identification of patients who are prone to thromboembolic complications associated with high-grade arterial stenosis or are on mechanical circulatory support systems, for which the extensional strain rate is a predominant hemodynamic driver.
Collapse
Affiliation(s)
- Nurul A. Zainal Abidin
- The Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Mariia Timofeeva
- Department of Mechanical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Crispin Szydzik
- The Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- School of Engineering, RMIT University, Melbourne, Victoria, Australia
| | - Farzan Akbaridoust
- Department of Mechanical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Chitrarth Lav
- Department of Mechanical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Victoria, Australia
- Scuderia AlphaTauri F1, Bicester, UK
| | - Ivan Marusic
- Department of Mechanical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Arnan Mitchell
- School of Engineering, RMIT University, Melbourne, Victoria, Australia
| | - Justin R. Hamilton
- The Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Andrew S.H. Ooi
- Department of Mechanical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Warwick S. Nesbitt
- The Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
8
|
Mindukshev I, Fock E, Dobrylko I, Sudnitsyna J, Gambaryan S, Panteleev MA. Platelet Hemostasis Reactions at Different Temperatures Correlate with Intracellular Calcium Concentration. Int J Mol Sci 2022; 23:ijms231810667. [PMID: 36142580 PMCID: PMC9505593 DOI: 10.3390/ijms231810667] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 11/22/2022] Open
Abstract
Hypo- and hyperthermia affect both primary and secondary hemostasis; however, there are controversial data concerning platelet activation and the underlying mechanisms under hypo- and hyperthermia. The discrepancies in the data could be partly explained by different approaches to hemostatic reactions analysis. We applied a new LaSca-TMF laser particle analyzer for a simultaneous fluorescence and laser scattering analysis of platelet responses at different temperatures. Human platelets were activated by ADP in a wide range of temperatures, and platelet transformations (e.g., a shape change reaction, aggregation and clot formation) and the intracellular calcium concentration ([Ca2+]i) were analyzed by LaSca-TMF and confocal microscopy. The platelet shape change reaction gradually increased with a rising temperature. The platelet aggregation strongly decreased at low ADP concentrations with the augmentation of the temperature and was independent of the temperature at high ADP concentrations. In contrast, the clotting time decreased with a temperature increase. Similar to the aggregation response, a rise in [Ca2+]i triggered by low ADP concentrations was higher under hypothermic conditions and the differences were independent of the temperature at high ADP concentrations. We showed that the key reactions of cellular hemostasis are differentially regulated by temperature and demonstrated for the first time that an accelerated aggregation under hypothermic conditions directly correlated with an increased level in [Ca2+]i in platelets.
Collapse
Affiliation(s)
- Igor Mindukshev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Ave., 194223 Saint Petersburg, Russia
| | - Ekaterina Fock
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Ave., 194223 Saint Petersburg, Russia
| | - Irina Dobrylko
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Ave., 194223 Saint Petersburg, Russia
| | - Julia Sudnitsyna
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Ave., 194223 Saint Petersburg, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 30 Srednyaya Kalitnikovskaya St., 109029 Moscow, Russia
| | - Stepan Gambaryan
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Ave., 194223 Saint Petersburg, Russia
- Correspondence: (S.G.); (M.A.P.)
| | - Mikhail A. Panteleev
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 30 Srednyaya Kalitnikovskaya St., 109029 Moscow, Russia
- Correspondence: (S.G.); (M.A.P.)
| |
Collapse
|
9
|
Upregulation of cAMP prevents antibody-mediated thrombus formation in COVID-19. Blood Adv 2021; 6:248-258. [PMID: 34753174 PMCID: PMC8580563 DOI: 10.1182/bloodadvances.2021005210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/21/2021] [Indexed: 11/20/2022] Open
Abstract
Thromboembolic events are frequently reported in patients infected with the SARS-CoV-2 virus. The exact mechanisms of COVID-19 associated hypercoagulopathy, however, remain elusive. Recently, we observed that platelets (PLTs) from patients with severe COVID-19 infection express high levels of procoagulant markers, which were found to be associated with increased risk for thrombosis. In the current study, we investigated the time course as well as the mechanisms leading to procoagulant PLTs in COVID-19. Our study demonstrates the presence of PLT-reactive IgG antibodies that induce marked changes in PLTs in terms of increased inner-mitochondrial-transmembrane potential (Δψ) depolarization, phosphatidylserine (PS) externalization and P-selectin expression. The IgG-induced procoagulant PLTs and increased thrombus formation was mediated by ligation of PLT Fc gamma RIIA (FcγRIIA). In addition, PLTs´ contents of calcium and cyclic-adenosine-monophosphate (cAMP) were identified to play central role in antibody-induced procoagulant PLT formation. Most importantly, antibody-induced procoagulant events as well as increased thrombus formation in severe COVID-19 were inhibited by Iloprost a clinically approved therapeutic agent that increases the intracellular cAMP levels in PLTs. Our data indicate that upregulation of cAMP could be a potential therapeutic target to prevent antibody-mediated coagulopathy in COVID-19 disease.
Collapse
|
10
|
Affiliation(s)
- Kirk A Taylor
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK
| | | |
Collapse
|
11
|
The effect of the anticoagulant on the cellular composition and growth factor content of platelet-rich plasma. Cell Tissue Bank 2021; 23:375-383. [PMID: 34455526 DOI: 10.1007/s10561-021-09952-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/11/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND The cellular and biochemical composition of the platelet rich plasma (PRP) may impact its regenerative capacity. PRP composition have been shown to vary substantially among different separation systems and protocols. The type and the dose of anticoagulant might affect the content of PRP. OBJECTIVE The objective of this study was to evaluate the effect of anticoagulant use, on cellular composition and the amount of growth factors in fresh PRP. METHODS Three different methods were used to prepare PRP from 12 healthy participants. The protocol 1 included standart dose sodium citrate (SC) (0.9 ml, 3.8%), protocol 2 included 0.5 ml SC and no anticoagulant was used in protocol 3. The PRP's were compared in regards to cellular content, capture efficiency of platelets (CE), concentrations and total doses of fresh studied vascular endothelial growth factor (VEGF), platelet derived growth factor -BB, (PDGF-BB), transforming growth factor β1 (TGF-β1) levels. RESULTS The CE and total platelet count were highest in protocol 1. The white blood cells (WBC) and VEGF were highest in protocol 3. The highest total TGF-β1 and total PDGF levels were obtained with protocol 1, while the highest total VEGF levels were obtained with protocol 3. CONCLUSION The results of this study revealed that the use and the dose of SC affects the cellular content of PRP and GFs measured in fresh PRP. The CE and platelet dose increases while the WBC and VEGF decreases with the use of SC.
Collapse
|
12
|
Surapinit S, Baisaeng N. Macrostachyols A-D, oligostilbenes from Gnetum macrostachyum inhibited in vitro human platelet aggregation. JOURNAL OF HERBMED PHARMACOLOGY 2021. [DOI: 10.34172/jhp.2021.39] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Introduction: Gnetum macrostachyum is a known Thai medicinal plant as a source of bioactive oligostilbenes, which possess platelet inhibitory activities. The study aimed to evaluate the in vitro human platelet aggregation inhibitory activities of macrostachyols A-D (compounds 1-4) isolated from the roots of G. macrostachyum. Methods: The in vitro human platelet aggregation assay was assayed with a 96-well microtiter plate format. The well-known aggregating agents were used to investigate the possible mechanism of inhibition, including adenosine diphosphate (ADP), arachidonic acid (AA), thromboxane A2 analog (U-46619), collagen, thrombin, and thrombin receptor-activating peptide-6 (TRAP-6). Results: Compound 1 was more potent than ibuprofen (positive control) on the adenosine diphosphate- induced platelet aggregation assay (P < 0.05). Compound 3 was more potent than 1, 2, and 4 (P < 0.05), but all active oligostilbenes were less potent than the positive control (P < 0.05) on the arachidonic acid-induced platelet aggregation assay. The oligostilbenes 1, 2, 3, and 4 also displayed the inhibitory effects on the U-46619-induced platelet aggregation. The tetrameric stilbenes 1 was the only compound that exhibited inhibitory effects on thrombin-induced platelet aggregation without TRAP-6 mediated platelet aggregation. Conclusion: The findings revealed the inhibitory effects of oligostilbenes on human platelet aggregation through a target-specific experimental design. It suggests that oligostilbenes from this plant might be applied as antiplatelet aggregation agents in platelet hyperreactivity- related diseases.
Collapse
Affiliation(s)
- Serm Surapinit
- Unit of Excellence in Integrative Molecular Biomedicine, School of Allied Health Sciences, University of Phayao, Phayao 56000, Thailand
| | - Nuttakorn Baisaeng
- Department of Pharmaceutical Technology, School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
| |
Collapse
|
13
|
Shu D, Zhu Y, Lu M, He AD, Chen JB, Ye DS, Liu Y, Zeng XB, Ma R, Ming ZY. Sanguinarine Attenuates Collagen-Induced Platelet Activation and Thrombus Formation. Biomedicines 2021; 9:biomedicines9050444. [PMID: 33919019 PMCID: PMC8142988 DOI: 10.3390/biomedicines9050444] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 11/16/2022] Open
Abstract
Sanguinarine, a benzophenanthridine alkaloid, has been described to have an antiplatelet activity. However, its antithrombotic effect and the mechanism of platelet inhibition have not thoroughly been explored. The current study found that sanguinarine had an inhibitory effect on thrombus formation. This inhibitory effect was quite evident both in the flow-chamber assays as well as in a murine model of FeCl3-induced carotid artery thrombosis. Further investigations also revealed that sanguinarine inhibited the collagen-induced human platelet aggregation and granule release. At the same time, it also prevented platelet spreading and adhesion to immobilized fibrinogen. The molecular mechanisms of its antiplatelet activity were found to be as follows: 1. Reduced phosphorylation of the downstream signaling pathways in collagen specific receptor GPVI (Syk-PLCγ2 and PI3K-Akt-GSK3β); 2. Inhibition of collagen-induced increase in the intracellular Ca2+ concentration ([Ca2+]i); 3. Inhibition of integrin αIIbβ3 outside-in signaling via reducing β3 and Src (Tyr-416) phosphorylation. It can be concluded that sanguinarine inhibits collagen-induced platelet activation and reduces thrombus formation. This effect is mediated via inhibiting the phosphorylation of multiple components in the GPVI signaling pathway. Current data also indicate that sanguinarine can be of some clinical value to treat cardiovascular diseases involving an excess of platelet activation.
Collapse
Affiliation(s)
- Dan Shu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong, University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China; (D.S.); (Y.Z.); (M.L.); (J.-B.C.); (D.-S.Y.); (Y.L.); (X.-B.Z.); (R.M.)
- The Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, 13 Hangkong Road, Wuhan 430030, China
- College of Pharmacy, Xiangnan University, 889 Chenzhou Avenue, Chenzhou 423000, China
| | - Ying Zhu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong, University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China; (D.S.); (Y.Z.); (M.L.); (J.-B.C.); (D.-S.Y.); (Y.L.); (X.-B.Z.); (R.M.)
- The Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, 13 Hangkong Road, Wuhan 430030, China
| | - Meng Lu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong, University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China; (D.S.); (Y.Z.); (M.L.); (J.-B.C.); (D.-S.Y.); (Y.L.); (X.-B.Z.); (R.M.)
- The Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, 13 Hangkong Road, Wuhan 430030, China
| | - Ao-Di He
- Department of Physiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan 430030, China;
- Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiang-Bin Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong, University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China; (D.S.); (Y.Z.); (M.L.); (J.-B.C.); (D.-S.Y.); (Y.L.); (X.-B.Z.); (R.M.)
| | - Ding-Song Ye
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong, University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China; (D.S.); (Y.Z.); (M.L.); (J.-B.C.); (D.-S.Y.); (Y.L.); (X.-B.Z.); (R.M.)
| | - Yue Liu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong, University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China; (D.S.); (Y.Z.); (M.L.); (J.-B.C.); (D.-S.Y.); (Y.L.); (X.-B.Z.); (R.M.)
- The Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, 13 Hangkong Road, Wuhan 430030, China
| | - Xiang-Bin Zeng
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong, University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China; (D.S.); (Y.Z.); (M.L.); (J.-B.C.); (D.-S.Y.); (Y.L.); (X.-B.Z.); (R.M.)
- The Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, 13 Hangkong Road, Wuhan 430030, China
| | - Rong Ma
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong, University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China; (D.S.); (Y.Z.); (M.L.); (J.-B.C.); (D.-S.Y.); (Y.L.); (X.-B.Z.); (R.M.)
| | - Zhang-Yin Ming
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong, University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China; (D.S.); (Y.Z.); (M.L.); (J.-B.C.); (D.-S.Y.); (Y.L.); (X.-B.Z.); (R.M.)
- The Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, 13 Hangkong Road, Wuhan 430030, China
- Tongji-Rongcheng Center for Biomedicine, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence: ; Tel.: +86-27-83650710
| |
Collapse
|
14
|
Liu X, Pan Z. Store-Operated Calcium Entry in the Cardiovascular System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1349:303-333. [DOI: 10.1007/978-981-16-4254-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Molecular Drivers of Platelet Activation: Unraveling Novel Targets for Anti-Thrombotic and Anti-Thrombo-Inflammatory Therapy. Int J Mol Sci 2020; 21:ijms21217906. [PMID: 33114406 PMCID: PMC7662962 DOI: 10.3390/ijms21217906] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death globally-partly a consequence of increased population size and ageing-and are major contributors to reduced quality of life. Platelets play a major role in hemostasis and thrombosis. While platelet activation and aggregation are essential for hemostasis at sites of vascular injury, uncontrolled platelet activation leads to pathological thrombus formation and provokes thrombosis leading to myocardial infarction or stroke. Platelet activation and thrombus formation is a multistage process with different signaling pathways involved to trigger platelet shape change, integrin activation, stable platelet adhesion, aggregation, and degranulation. Apart from thrombotic events, thrombo-inflammation contributes to organ damage and dysfunction in CVDs and is mediated by platelets and inflammatory cells. Therefore, in the past, many efforts have been made to investigate specific signaling pathways in platelets to identify innovative and promising approaches for novel antithrombotic and anti-thrombo-inflammatory strategies that do not interfere with hemostasis. In this review, we focus on some of the most recent data reported on different platelet receptors, including GPIb-vWF interactions, GPVI activation, platelet chemokine receptors, regulation of integrin signaling, and channel homeostasis of NMDAR and PANX1.
Collapse
|
16
|
Cabrera D, Walker K, Moise S, Telling ND, Harper AGS. Controlling human platelet activation with calcium-binding nanoparticles. NANO RESEARCH 2020; 13:2697-2705. [PMID: 33473261 PMCID: PMC7116604 DOI: 10.1007/s12274-020-2912-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 06/12/2023]
Abstract
Human platelets aggregate at sites of blood vessel damage in response to a rise in their cytosolic calcium concentration. Controlling these cytosolic calcium rises would provide a method to inhibit platelet activation and prevent the unwanted blood clots that causes heart attack and strokes. Previously we have predicted that calcium accumulation within the lumen of an infolded portion of the platelet plasma membrane called the open canalicular system (OCS) is essential for maintaining this cytosolic calcium rise. Due to its nanometer dimensions of the OCS, it has been difficult to measure or interfere with the predicted luminal calcium accumulation. Here we utilise iron oxide magnetic nanoparticles coated with the known calcium chelator, citrate, to create calcium-binding nanoparticles. These were used to assess whether an OCS calcium store plays a role in controlling the dynamics of human platelet activation and aggregation. We demonstrate that citrate-coated nanoparticles are rapidly and selectively uptaken into the OCS of activated human platelets, where they act to buffer the accumulation of calcium there. Treatment with these calcium-binding nanoparticles reduced thrombin-evoked cytosolic calcium rises, and slowed platelet aggregation and clot retraction in human platelets. In contrast, nanoparticles that cannot bind calcium have no effect. This study demonstrates that the OCS acts as a key source of calcium for maintaining cytosolic calcium rises and accelerating platelet aggregation, and that calcium-binding nanoparticles targeted to the OCS could provide an anti-platelet therapy to treat patients at risk of suffering heart attacks or strokes.
Collapse
Affiliation(s)
- David Cabrera
- School of Pharmacy and Bioengineering, Keele University, Guy Hilton Research Centre, Thornburrow Drive, Hartshill, Stoke-on-Trent ST4 7QB, UK
| | - Karen Walker
- Central Electron Microscope Unit, School of Life Sciences, Keele University, Newcastle-under-Lyme, Staffordshire, ST5 5BG, UK
| | - Sandhya Moise
- School of Pharmacy and Bioengineering, Keele University, Guy Hilton Research Centre, Thornburrow Drive, Hartshill, Stoke-on-Trent ST4 7QB, UK
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY, UK
| | - Neil D Telling
- School of Pharmacy and Bioengineering, Keele University, Guy Hilton Research Centre, Thornburrow Drive, Hartshill, Stoke-on-Trent ST4 7QB, UK
| | - Alan G S Harper
- School of Pharmacy and Bioengineering, Keele University, Guy Hilton Research Centre, Thornburrow Drive, Hartshill, Stoke-on-Trent ST4 7QB, UK
- School of Medicine, Keele University, Newcastle-under-Lyme, Staffordshire, ST5 5BG, UK
| |
Collapse
|
17
|
The effects of ginsenosides on platelet aggregation and vascular intima in the treatment of cardiovascular diseases: From molecular mechanisms to clinical applications. Pharmacol Res 2020; 159:105031. [PMID: 32562816 DOI: 10.1016/j.phrs.2020.105031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 12/14/2022]
Abstract
Thrombosis initiated by abnormal platelet aggregation is a pivotal pathological event that precedes most cases of cardiovascular diseases (CVD). Recently, growing evidence indicates that platelet could be a potential target for CVD prevention. However, as the conventional antithrombotic management strategy, applications of current antiplatelet agents are somewhat limited by their various side effects, such as bleeding risk and drug resistance. Hence, efforts have been made to search for agents as complementary therapies. Ginsenoside, the principal active component extracted from Panax ginseng, has gained much attention for its regulations on multiple crucial events of platelet aggregation. From structural characteristics to clinical applications, this review anatomized the intrinsic structure-function relationship of antiplatelet potency of ginsenosides, and the involved signal pathways were specifically summarized. Additionally, the emphasis was placed on clinical studies that investigate the antithrombotic efficacy of ginsenosides in the treatment of CVD. Further, a broad overview of approaches for improving the bioavailability of ginsenosides was concluded. Limitations and prospects of current studies were also discussed. This study may provide some new insights into the systematic understanding of ginsenosides in CVD treatment and lay a foundation for future research.
Collapse
|
18
|
Calpain cleaves phospholipid flippase ATP8A1 during apoptosis in platelets. Blood Adv 2020; 3:219-229. [PMID: 30674456 DOI: 10.1182/bloodadvances.2018023473] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 12/16/2018] [Indexed: 01/01/2023] Open
Abstract
The asymmetric distribution of phospholipids in the plasma/organellar membranes is generated and maintained through phospholipid flippases in resting cells, but becomes disrupted in apoptotic cells and activated platelets, resulting in phosphatidylserine (PS) exposure on the cell surface. Stable PS exposure during apoptosis requires inactivation of flippases to prevent PS from being reinternalized. Here we show that flippase ATP8A1 is highly expressed in both murine and human platelets, but is not present in the plasma membrane. ATP8A1 is cleaved by the cysteine protease calpain during apoptosis, and the cleavage is prevented indirectly by caspase inhibition, involving blockage of calcium influx into platelets and subsequent calpain activation. In contrast, in platelets activated with thrombin and collagen and exposing PS, ATP8A1 remains intact. These data reveal a novel mechanism of flippase cleavage and suggest that flippase activity in intracellular membranes differs between platelets undergoing apoptosis and activation.
Collapse
|
19
|
Yadav VK, Singh PK, Sharma D, Singh SK, Agarwal V. Mechanism underlying N-(3-oxo-dodecanoyl)-L-homoserine lactone mediated intracellular calcium mobilization in human platelets. Blood Cells Mol Dis 2019; 79:102340. [PMID: 31207554 DOI: 10.1016/j.bcmd.2019.102340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/19/2019] [Accepted: 05/19/2019] [Indexed: 10/26/2022]
Abstract
Acyl-homoserine lactones (AHLs), are the key autoinducer molecules that mediate Pseudomonas aeruginosa associated quorum sensing. P. aeruginosa produces two types of AHLs; N-(3-oxododecanoyl)-L-homoserine lactone (3-oxo-C12 HSL) and N-butyryl-L-homoserine lactone (C4 HSL). AHLs are not only regulating the virulence gene of bacteria but also influence the host cell functions by interkingdom signaling. In this study, we explored the mechanism of AHLs induced calcium mobilization in human platelets. We found that 3-oxo-C12 HSL but not C4 HSL induces intracellular calcium release. 3-oxo-C12 HSL induced calcium mobilization was majorly contributed from the dense tubular system (DTS). Furthermore, 3-oxo-C12 HSL also stimulates the store-operated Ca2+ entry (SOCE) in platelet. Intracellular calcium rise was significantly lowered in rotenone, and bafilomycin pre-treated platelets suggesting partial involvement of mitochondria and acidic vacuoles. The significant effect of 3-oxo-C12 HSL on calcium mobilization can alter the platelet functions that might results in thrombotic disorders in individuals infected with P. aeruginosa.
Collapse
Affiliation(s)
- Vivek Kumar Yadav
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Pradeep Kumar Singh
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Deepmala Sharma
- Department of Mathematics, National Institute of Technology, Raipur, India
| | - Sunil Kumar Singh
- Department of Animal Sciences, Central University of Punjab, Bathinda, India.
| | - Vishnu Agarwal
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India.
| |
Collapse
|
20
|
Space and Time Resolved Detection of Platelet Activation and von Willebrand Factor Conformational Changes in Deep Suspensions. Int J Biomed Imaging 2017; 2017:8318906. [PMID: 29234351 PMCID: PMC5695078 DOI: 10.1155/2017/8318906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/30/2017] [Accepted: 09/27/2017] [Indexed: 11/26/2022] Open
Abstract
Tracking cells and proteins' phenotypic changes in deep suspensions is critical for the direct imaging of blood-related phenomena in in vitro replica of cardiovascular systems and blood-handling devices. This paper introduces fluorescence imaging techniques for space and time resolved detection of platelet activation, von Willebrand factor (VWF) conformational changes, and VWF-platelet interaction in deep suspensions. Labeled VWF, platelets, and VWF-platelet strands are suspended in deep cuvettes, illuminated, and imaged with a high-sensitivity EM-CCD camera, allowing detection using an exposure time of 1 ms. In-house postprocessing algorithms identify and track the moving signals. Recombinant VWF-eGFP (rVWF-eGFP) and VWF labeled with an FITC-conjugated polyclonal antibody are employed. Anti-P-Selectin FITC-conjugated antibodies and the calcium-sensitive probe Indo-1 are used to detect activated platelets. A positive correlation between the mean number of platelets detected per image and the percentage of activated platelets determined through flow cytometry is obtained, validating the technique. An increase in the number of rVWF-eGFP signals upon exposure to shear stress demonstrates the technique's ability to detect breakup of self-aggregates. VWF globular and unfolded conformations and self-aggregation are also observed. The ability to track the size and shape of VWF-platelet strands in space and time provides means to detect pro- and antithrombotic processes.
Collapse
|
21
|
Lin CS, Chen TH, Lin IH, Lee AR, Chou TC. The novel compound MP407 inhibits platelet aggregation through cyclic AMP-dependent processes. Eur J Pharmacol 2017; 815:324-331. [PMID: 28939294 DOI: 10.1016/j.ejphar.2017.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/15/2017] [Accepted: 09/15/2017] [Indexed: 11/27/2022]
Abstract
Platelet hyperactivity plays a critical role for initiating several vascular diseases such as atherothrombosis. Therefore, development of effective antiplatelet agents is necessary for ameliorating platelet-related diseases. In this study, we investigated the effects of the new synthesized compound, MP407 on platelet aggregation and further elucidated the underlying mechanisms. Our results demonstrated that MP407 dose-dependently inhibited collagen-induced platelet aggregation, thromboxane B2 (TXB2) production, intracellular Ca2+ mobilization, platelet membrane GPIIb/IIIa expression, and the phosphorylation of Akt, GSK3β, p38MAPK, and phospho (Ser) PKC substrate (p47). Moreover, MP407 is able to increase the cyclic AMP formation both in resting and activated platelets. However, blocking cyclic AMP formation with 2'5'-ddAdo, an inhibitor of adenylate cyclase, greatly reversed the antiplatelet activity of MP407 and related platelet-activating pathways. MP407 also enhanced VASP phosphorylation at Ser157 in collagen-stimulated platelets, which was attenuated by addition of 2'5'-ddAdo. Therefore, the antiplatelet activity of MP407 may be modulated by cyclic AMP-dependent regulation of Akt, GSK3β, p38MAPK and VASP phosphorylation. Notably, treatment with MP407 markedly reduced the pulmonary thrombosis and the numbers of paralysis and death in mice induced by ADP injection, but did not affect the bleeding time. Taken together, MP407 may be a potential candidate or lead compound for developing novel antiplatelet or antithrombotic agents for platelet hyperactivity-triggered disease therapy.
Collapse
Affiliation(s)
- Chung-Shuen Lin
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan
| | - Tso-Hsiao Chen
- Division of Nephrology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - I-Hsin Lin
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan
| | - An-Rong Lee
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan
| | - Tz-Chong Chou
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan; China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
22
|
Stafford N, Wilson C, Oceandy D, Neyses L, Cartwright EJ. The Plasma Membrane Calcium ATPases and Their Role as Major New Players in Human Disease. Physiol Rev 2017; 97:1089-1125. [PMID: 28566538 DOI: 10.1152/physrev.00028.2016] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 02/07/2023] Open
Abstract
The Ca2+ extrusion function of the four mammalian isoforms of the plasma membrane calcium ATPases (PMCAs) is well established. There is also ever-increasing detail known of their roles in global and local Ca2+ homeostasis and intracellular Ca2+ signaling in a wide variety of cell types and tissues. It is becoming clear that the spatiotemporal patterns of expression of the PMCAs and the fact that their abundances and relative expression levels vary from cell type to cell type both reflect and impact on their specific functions in these cells. Over recent years it has become increasingly apparent that these genes have potentially significant roles in human health and disease, with PMCAs1-4 being associated with cardiovascular diseases, deafness, autism, ataxia, adenoma, and malarial resistance. This review will bring together evidence of the variety of tissue-specific functions of PMCAs and will highlight the roles these genes play in regulating normal physiological functions and the considerable impact the genes have on human disease.
Collapse
Affiliation(s)
- Nicholas Stafford
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Claire Wilson
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Delvac Oceandy
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Ludwig Neyses
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Elizabeth J Cartwright
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
23
|
Faggio C, Sureda A, Morabito S, Sanches-Silva A, Mocan A, Nabavi SF, Nabavi SM. Flavonoids and platelet aggregation: A brief review. Eur J Pharmacol 2017; 807:91-101. [DOI: 10.1016/j.ejphar.2017.04.009] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 04/04/2017] [Accepted: 04/10/2017] [Indexed: 12/11/2022]
|
24
|
Pugh N, Maddox BD, Bihan D, Taylor KA, Mahaut-Smith MP, Farndale RW. Differential integrin activity mediated by platelet collagen receptor engagement under flow conditions. Thromb Haemost 2017; 117:1588-1600. [PMID: 28536721 PMCID: PMC6291897 DOI: 10.1160/th16-12-0906] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 04/22/2017] [Indexed: 11/15/2022]
Abstract
The platelet receptors glycoprotein (Gp)VI, integrin α
2
β
1
and GpIb/V/IX mediate platelet adhesion and activation during thrombogenesis. Increases of intracellular Ca
2+
([Ca
2+
]
i
) are key signals during platelet activation; however, their relative importance in coupling different collagen receptors to functional responses under shear conditions remains unclear. To study shear-dependent, receptor-specific platelet responses, we used collagen or combinations of receptor-specific collagen-mimetic peptides as substrates for platelet adhesion and activation in whole human blood under arterial flow conditions and compared real-time and endpoint parameters of thrombus formation alongside [Ca
2+
]
i
measurements using confocal imaging. All three collagen receptors coupled to [Ca
2+
]
i
signals, but these varied in amplitude and temporal pattern alongside variable integrin activation. GpVI engagement produced large, sustained [Ca
2+
]
i
signals leading to realtime increases in integrins α
2
β
1
− and α
IIb
β
3
-mediated platelet adhesion. α
IIb
β
3
-dependent platelet aggregation was dependent on P
2
Y
12
signalling. Co-engagement of α
2
β
1
and GpIb/V/IX generated transient [Ca
2+
]
i
spikes and low amplitude [Ca
2+
]
i
responses that potentiated GpVI-dependent [Ca
2+
]
i
signalling. Therefore α
2
β
1
GpIb/V/IX and GpVI synergise to generate [Ca
2+
]
i
signals that regulate platelet behaviour and thrombus formation. Antagonism of secondary signalling pathways reveals distinct, separate roles for α
IIb
β
3
in stable platelet adhesion and aggregation.
Supplementary Material to this article is available online at
www.thrombosis-online.com
.
Collapse
Affiliation(s)
- Nicholas Pugh
- Nicholas Pugh, Department of Biomedical and Forensic Sciences, Anglia Ruskin University, Cambridge, CB1 1PT, UK, Tel.: +44 8451962661, E-mail:
| | | | | | | | | | | |
Collapse
|
25
|
Tanwar J, Trebak M, Motiani RK. Cardiovascular and Hemostatic Disorders: Role of STIM and Orai Proteins in Vascular Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:425-452. [PMID: 28900927 DOI: 10.1007/978-3-319-57732-6_22] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Store-operated Ca2+ entry (SOCE) mediated by STIM and Orai proteins is a highly regulated and ubiquitous signaling pathway that plays an important role in various cellular and physiological functions. Endoplasmic reticulum (ER) serves as the major site for intracellular Ca2+ storage. Stromal Interaction Molecule 1/2 (STIM1/2) sense decrease in ER Ca2+ levels and transmits the message to plasma membrane Ca2+ channels constituted by Orai family members (Orai1/2/3) resulting in Ca2+ influx into the cells. This increase in cytosolic Ca2+ in turn activates a variety of signaling cascades to regulate a plethora of cellular functions. Evidence from the literature suggests that SOCE dysregulation is associated with several pathophysiologies, including vascular disorders. Interestingly, recent studies have suggested that STIM proteins may also regulate vascular functions independent of their contribution to SOCE. In this updated book chapter, we will focus on the physiological role of STIM and Orai proteins in the vasculature (endothelial cells and vascular smooth muscle cells). We will further retrospect the literature implicating a critical role for these proteins in vascular disease.
Collapse
Affiliation(s)
- Jyoti Tanwar
- Systems Biology Group, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110020, India
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| | - Rajender K Motiani
- Systems Biology Group, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110020, India.
| |
Collapse
|
26
|
Abstract
Evaluation of platelet function is important for understanding the physiology of hemostasis and thrombosis and is utilized in clinical practice to diagnose inherited and acquired platelet bleeding disorders. Flow cytometry is a powerful tool for rapid evaluation of multiple functional properties of large number of platelets in whole blood and offers many advantages over other traditional methods. Attention to pre-analytical factors is required to ensure biologically valid and robust results.
Collapse
Affiliation(s)
- Leonardo Pasalic
- Deparments of Clinical and Laboratory Haematology, Institute of Clinical Pathology and Medical Research, Westmead Hospital, Westmead, NSW, 2145, Australia.
- Sydney Centres for Thrombosis and Haemostasis, Westmead, NSW, Australia.
| |
Collapse
|
27
|
Skripchenko A, Turgeon A, Thompson-Montgomery D, Awatefe H, Wagner SJ. Value of calcium and phosphate in a bicarbonate-containing platelet additive solution with low plasma levels in maintaining key in vitro platelet storage parameters. Transfusion 2016; 57:349-356. [PMID: 27859382 DOI: 10.1111/trf.13894] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Use of recently developed platelet (PLT) additive solutions (PAS) with 5% plasma levels may reduce the frequency and/or severity of transfusion reactions attributed to plasma. PLTs suspended in bicarbonate-containing PAS-5 with 5% plasma levels can maintain key PLT parameters during 7-day storage. This study evaluates the role of calcium and phosphate, as constituents of PAS-5, in maintaining PLT parameters. STUDY DESIGN AND METHODS An Amicus apheresis PLT unit (n = 13) was equally divided into four 60-mL aliquots in CF-250 polyolefin bags. Four different formulations of PAS-5 were prepared: PAS-5, PAS-5 without phosphate (-PO4 ), PAS-5 without calcium (-Ca), and PAS-5 without Ca and phosphate (-Ca/-PO4 ). PLTs were centrifuged, and the supernatant was expressed and replaced with the respective PAS, yielding PLTs suspended in 95% PAS and 5% plasma. PLTs were stored at 20 to 24ºC with agitation for 7 days. PLT in vitro parameters were evaluated on Days 1, 5, and 7. RESULTS In PLT PAS-5 aliquots, pH levels were maintained better compared with those in -Ca and -Ca/-PO4 aliquots. Glycolysis was greater in -Ca and -Ca/-PO4 PLT aliquots compared with PAS-5 aliquots. Hypotonic stress response and morphology were less and p-selectin (CD62P) binding was greater in -Ca/-PO4 PLT aliquots. The accumulation of reactive oxygen species was greater in -Ca/-PO4 PLTs. Phosphorylation of p38 mitogen-activated protein kinase (MAPK) was greater in -Ca and -Ca/-PO4 PLT aliquots during storage. CONCLUSION The removal of calcium and phosphate from PAS-5 leads to the activation of p38 MAPK and deterioration of key PLT storage parameters.
Collapse
Affiliation(s)
- Andrey Skripchenko
- American Red Cross Biomedical Services, Holland Laboratory, Rockville, Maryland
| | - Annette Turgeon
- American Red Cross Biomedical Services, Holland Laboratory, Rockville, Maryland
| | | | - Helen Awatefe
- American Red Cross Biomedical Services, Holland Laboratory, Rockville, Maryland
| | - Stephen J Wagner
- American Red Cross Biomedical Services, Holland Laboratory, Rockville, Maryland
| |
Collapse
|
28
|
Qi H, Huang Y, Yang Y, Dou G, Wan F, Zhang W, Yang H, Wang L, Wu C, Li L. Anti-platelet activity of panaxatriol saponins is mediated by suppression of intracellular calcium mobilization and ERK2/p38 activation. Altern Ther Health Med 2016; 16:174. [PMID: 27277000 PMCID: PMC4898458 DOI: 10.1186/s12906-016-1160-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/03/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND Increased platelet aggregation is implicated in the pathogenesis of ischemic stroke and anti-platelet strategy may contribute to its therapy. Panaxatriol saponin (PTS), the main components extracted from Panax notoginseng, has been shown to be efficacious in the prevention and treatment of ischemic stroke in China. The aim of this study is to determine the anti-platelet activity and explore the underlying mechanisms. METHODS Inhibitory effect of PTS and its main ginsenosides on agonists-induced platelet aggregation was determined using rabbit or human platelets. Intracellular Ca(2+) concentration ([Ca(2+)]i) mobilization was detected with fura-2/AM probe. MAPKs phosphorylation was determined by Western blotting. RESULTS Our results showed PTS inhibited the rabbit platelet aggregation induced by various agonists (collagen, thrombin and ADP). The three main ginsenosides (Rg1, Re and R1) existing in PTS also showed anti-platelet activity, while their combination exhibited no synergistic effect on rabbit platelet aggregation. Further study demonstrated that PTS and its main ginsenosides also exhibited inhibitory effect on human platelet aggregation. Mechanism study demonstrated that pre-treatment with PTS inhibited the agonists-induced intracellular calcium mobilization. Moreover, PTS significantly suppressed the activation of both ERK2 and p38 by the agonists via reducing the phosphorylation of ERK2 and p38. CONCLUSION We proved that PTS is effective in anti-platelet aggregation, which may, at least in part, be related to the suppression of intracellular calcium mobilization and ERK2/p38 activation. This study may provide one reasonable explanation for the efficacy of PTS on the prevention and treatment of ischemic stroke.
Collapse
|
29
|
Zhu W, Gregory JC, Org E, Buffa JA, Gupta N, Wang Z, Li L, Fu X, Wu Y, Mehrabian M, Sartor RB, McIntyre TM, Silverstein RL, Tang WHW, DiDonato JA, Brown JM, Lusis AJ, Hazen SL. Gut Microbial Metabolite TMAO Enhances Platelet Hyperreactivity and Thrombosis Risk. Cell 2016; 165:111-124. [PMID: 26972052 DOI: 10.1016/j.cell.2016.02.011] [Citation(s) in RCA: 1353] [Impact Index Per Article: 150.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 12/17/2015] [Accepted: 02/08/2016] [Indexed: 12/11/2022]
Abstract
Normal platelet function is critical to blood hemostasis and maintenance of a closed circulatory system. Heightened platelet reactivity, however, is associated with cardiometabolic diseases and enhanced potential for thrombotic events. We now show gut microbes, through generation of trimethylamine N-oxide (TMAO), directly contribute to platelet hyperreactivity and enhanced thrombosis potential. Plasma TMAO levels in subjects (n > 4,000) independently predicted incident (3 years) thrombosis (heart attack, stroke) risk. Direct exposure of platelets to TMAO enhanced sub-maximal stimulus-dependent platelet activation from multiple agonists through augmented Ca(2+) release from intracellular stores. Animal model studies employing dietary choline or TMAO, germ-free mice, and microbial transplantation collectively confirm a role for gut microbiota and TMAO in modulating platelet hyperresponsiveness and thrombosis potential and identify microbial taxa associated with plasma TMAO and thrombosis potential. Collectively, the present results reveal a previously unrecognized mechanistic link between specific dietary nutrients, gut microbes, platelet function, and thrombosis risk.
Collapse
Affiliation(s)
- Weifei Zhu
- Department of Cellular & Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jill C Gregory
- Department of Cellular & Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Elin Org
- Departments of Human Genetics and Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jennifer A Buffa
- Department of Cellular & Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Nilaksh Gupta
- Department of Cellular & Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Zeneng Wang
- Department of Cellular & Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Lin Li
- Department of Cellular & Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Xiaoming Fu
- Department of Cellular & Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Yuping Wu
- Department of Mathematics, Cleveland State University, Cleveland, OH 44115, USA
| | - Margarete Mehrabian
- Departments of Human Genetics and Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - R Balfour Sartor
- Departments of Medicine and Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Thomas M McIntyre
- Department of Cellular & Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Roy L Silverstein
- Department of Medicine, Medical College of Wisconsin and Blood Research Institute, Milwaukee, WI 53226, USA
| | - W H Wilson Tang
- Department of Cellular & Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Joseph A DiDonato
- Department of Cellular & Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - J Mark Brown
- Department of Cellular & Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Aldons J Lusis
- Departments of Human Genetics and Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Stanley L Hazen
- Department of Cellular & Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
30
|
Walford T, Musa FI, Harper AGS. Nicergoline inhibits human platelet Ca(2+) signalling through triggering a microtubule-dependent reorganization of the platelet ultrastructure. Br J Pharmacol 2016; 173:234-47. [PMID: 26450366 PMCID: PMC4813371 DOI: 10.1111/bph.13361] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 08/27/2015] [Accepted: 09/23/2015] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Recently, we demonstrated that a pericellular Ca(2+) recycling system potentiates agonist-evoked Ca(2+) signalling and granule secretion in human platelets and hypothesized a role for the membrane complex (MC) in orchestrating the accumulation of Ca(2+) in the pericellular region. Previous work has demonstrated that treatment with high concentrations of nicergoline may disrupt the MC through an ability to trigger a re-organization of the dense tubular system. Experiments were therefore performed to assess whether nicergoline-induced changes in platelet ultrastructure affects thrombin-evoked Ca(2+) fluxes and dense granule secretion. EXPERIMENTAL APPROACH Thrombin-evoked Ca(2+) fluxes were monitored in Fura-2- or Fluo-5N-loaded human platelets, or using platelet suspensions containing Fluo-4 or Rhod-5N K(+) salts. Fluorescence microscopy was utilized to monitor microtubule structure and intracellular Ca(2+) store distribution in TubulinTracker- and Fluo-5N-loaded platelets respectively. Dense granule secretion was monitored using luciferin-luciferase. KEY RESULTS Nicergoline treatment inhibited thrombin-evoked Ca(2+) signalling and induced alterations in the microtubule structure and the distribution of intracellular Ca(2+) stores in platelets. Nicergoline altered the generation and spreading of thrombin-induced pericellular Ca(2+) signals and almost completely prevented dense granule secretion. Stabilization of microtubules using taxol reversed most effects of nicergoline on platelet Ca(2+) signalling and partially reversed its effects on dense granule secretion. CONCLUSIONS AND IMPLICATIONS Nicergoline-induced alterations to platelet ultrastructure disrupt platelet Ca(2+) signalling in a manner that would be predicted if the MC had been disrupted. These data suggest that nicergoline may be a useful prototype for the discovery of novel MC-disrupting anti-thrombotics.
Collapse
Affiliation(s)
- T Walford
- Institute for Science and Technology in Medicine, Keele University, Guy Hilton Research Centre, Stoke-on-Trent, Staffordshire, UK
| | - F I Musa
- Institute for Science and Technology in Medicine, Keele University, Guy Hilton Research Centre, Stoke-on-Trent, Staffordshire, UK
| | - A G S Harper
- Institute for Science and Technology in Medicine, Keele University, Guy Hilton Research Centre, Stoke-on-Trent, Staffordshire, UK
| |
Collapse
|
31
|
Tian X, Chang L, Ma G, Wang T, Lv M, Wang Z, Chen L, Wang Y, Gao X, Zhu Y. Delineation of Platelet Activation Pathway of Scutellarein Revealed Its Intracellular Target as Protein Kinase C. Biol Pharm Bull 2015; 39:181-91. [PMID: 26581323 DOI: 10.1248/bpb.b15-00511] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Erigeron breviscapus has been widely used in traditional Chinese medicine (TCM) and its total flavonoid component is commonly used to treat ischemic stroke, coronary heart disease, diabetes and hypertension. Scutellarin is the major ingredient of E. breviscapus and scutellarein is one of the main bioactive metabolites of scutellarin in vivo, but the latter's pharmacological activities have not been fully characterized. Provided evidence that could inhibit platelet aggregation, the effect of scutellarein on rat washed platelets and its underlying mechanisms were evaluated in our research. Scutellarein inhibited platelet adhesion and aggregation induced by multiple G protein coupled receptor agonists such as thrombin, U46619 and ADP, in a concentration-dependent manner. Furthermore, the mild effect of scutellarein on intracellular Ca(2+) mobilization and cyclic AMP (cAMP) level was observed. On the other hand, the role of scutellarein as potential protein kinase C (PKC) inhibitor was confirmed by PKC activity analysis and molecular docking. The phorbol myristate acetate-induced platelets aggregation assay with or without ADP implied that the scutellarein takes PKC(s) as its primary target(s), and acts on it in a reversible way. Finally, scutellarein as a promising agent exhibited a high inhibition effect on ADP-induced platelet aggregation among its analogues. This study clarifies the PKC-related signaling pathway involved in antiplatelet action of scutellarein, and may be beneficial for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaoxuan Tian
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Lopez E, Bermejo N, Berna-Erro A, Alonso N, Salido GM, Redondo PC, Rosado JA. Relationship between calcium mobilization and platelet α- and δ-granule secretion. A role for TRPC6 in thrombin-evoked δ-granule exocytosis. Arch Biochem Biophys 2015; 585:75-81. [PMID: 26386308 DOI: 10.1016/j.abb.2015.09.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/14/2015] [Accepted: 09/15/2015] [Indexed: 11/25/2022]
Abstract
Changes in cytosolic Ca(2+) concentration ([Ca(2+)]c) regulate granule secretion in different cell types. Thrombin activates PAR1 and PAR4 receptors and promotes release of Ca(2+) from distinct intracellular stores, which, in turn, activates store-operated Ca(2+) entry (SOCE). A crucial step during platelet function is the release of physiological agonists stored in secretory granules to the extracellular compartment during activation. We aim to study the role of Ca(2+) mobilization from the extracellular compartment or from different intracellular stores in platelet granule secretion. By using flow cytometry, we have found that α- and δ-granules are secreted in thrombin-stimulated platelets in the absence of extracellular Ca(2+), and in a concentration-dependent manner. Our findings show that thrombin-stimulated granule secretion depends on Ca(2+) mobilization from intracellular stores. Analysis of the kinetics of granule secretion reveals that platelet stimulation with thrombin results in rapid release of α-granules which precedes the secretion of δ-granules. Incubation of platelets with a specific antibody, which recognizes the extracellular amino acid sequence 573-586 of TRPC6, inhibited thrombin-evoked δ-granule exocytosis. Our results indicate that the mechanisms underlying thrombin-induced α- and δ-granule secretion show differences in dependency on Ca(2+) mobilization.
Collapse
Affiliation(s)
- E Lopez
- Department of Physiology, University of Extremadura, Phycell, 10003, Spain
| | - N Bermejo
- Department of Hematology, Hospital San Pedro de Alcantara, 10003 Cáceres, Spain
| | - A Berna-Erro
- Department of Physiology, University of Extremadura, Phycell, 10003, Spain
| | - N Alonso
- Department of Hematology, Hospital Infanta Cristina, 06006 Badajoz, Spain
| | - G M Salido
- Department of Physiology, University of Extremadura, Phycell, 10003, Spain
| | - P C Redondo
- Department of Physiology, University of Extremadura, Phycell, 10003, Spain
| | - J A Rosado
- Department of Physiology, University of Extremadura, Phycell, 10003, Spain.
| |
Collapse
|
33
|
Inhibitory Effects of Cytosolic Ca(2+) Concentration by Ginsenoside Ro Are Dependent on Phosphorylation of IP3RI and Dephosphorylation of ERK in Human Platelets. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:764906. [PMID: 26355658 PMCID: PMC4556879 DOI: 10.1155/2015/764906] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/27/2015] [Indexed: 01/21/2023]
Abstract
Intracellular Ca2+ ([Ca2+]i) is platelet aggregation-inducing molecule and is involved in activation of aggregation associated molecules. This study was carried out to understand the Ca2+-antagonistic effect of ginsenoside Ro (G-Ro), an oleanane-type saponin in Panax ginseng. G-Ro, without affecting leakage of lactate dehydrogenase, dose-dependently inhibited thrombin-induced platelet aggregation, and the half maximal inhibitory concentration was approximately 155 μM. G-Ro inhibited strongly thrombin-elevated [Ca2+]i, which was strongly increased by A-kinase inhibitor Rp-8-Br-cAMPS compared to G-kinase inhibitor Rp-8-Br-cGMPS. G-Ro increased the level of cAMP and subsequently elevated the phosphorylation of inositol 1, 4, 5-triphosphate receptor I (IP3RI) (Ser1756) to inhibit [Ca2+]i mobilization in thrombin-induced platelet aggregation. Phosphorylation of IP3RI (Ser1756) by G-Ro was decreased by PKA inhibitor Rp-8-Br-cAMPS. In addition, G-Ro inhibited thrombin-induced phosphorylation of ERK 2 (42 kDa), indicating inhibition of Ca2+ influx across plasma membrane. We demonstrate that G-Ro upregulates cAMP-dependent IP3RI (Ser1756) phosphorylation and downregulates phosphorylation of ERK 2 (42 kDa) to decrease thrombin-elevated [Ca2+]i, which contributes to inhibition of ATP and serotonin release, and p-selectin expression. These results indicate that G-Ro in Panax ginseng is a beneficial novel Ca2+-antagonistic compound and may prevent platelet aggregation-mediated thrombotic disease.
Collapse
|
34
|
Swanepoel AC, Nielsen VG, Pretorius E. Viscoelasticity and Ultrastructure in Coagulation and Inflammation: Two Diverse Techniques, One Conclusion. Inflammation 2015; 38:1707-26. [PMID: 25772112 DOI: 10.1007/s10753-015-0148-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The process of blood clotting has been studied for centuries. A synopsis of current knowledge pertaining to haemostasis and the blood components, including platelets and fibrin networks which are closely involved in coagulation, are discussed. Special emphasis is placed on tissue factor (TF), calcium and thrombin since these components have been implicated in both the coagulation process and inflammation. Analysis of platelets and fibrin morphology indicate that calcium, tissue factor and thrombin at concentrations used during viscoelastic analysis (with thromboelastography or TEG) bring about alterations in platelet and fibrin network ultrastructure, which is similar to that seen in inflammation. Scanning electron microscopy indicated that, when investigating platelet structure in disease, addition of TF, calcium or thrombin will mask disease-induced alterations associated with platelet activation. Therefore, washed platelets without any additives is preferred for morphological analysis. Furthermore, morphological and viscoelastic analysis confirmed that thrombin activation is the preferred method of fibrin activation when investigating fibrin network ultrastructure.
Collapse
Affiliation(s)
- Albe C Swanepoel
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Private Bag x323, Arcadia, 0007, South Africa,
| | | | | |
Collapse
|
35
|
Reviakine I. New horizons in platelet research: Understanding and harnessing platelet functional diversity. Clin Hemorheol Microcirc 2015; 60:133-52. [DOI: 10.3233/ch-151942] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
36
|
Effect of TGFβ on calcium signaling in megakaryocytes. Biochem Biophys Res Commun 2015; 461:8-13. [DOI: 10.1016/j.bbrc.2015.03.159] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 03/27/2015] [Indexed: 01/01/2023]
|
37
|
Hårdstedt M, Lindblom S, Hong J, Nilsson B, Korsgren O, Ronquist G. A novel model for studies of blood-mediated long-term responses to cellular transplants. Ups J Med Sci 2015; 120:28-39. [PMID: 25322825 PMCID: PMC4389005 DOI: 10.3109/03009734.2014.965290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
AIMS Interaction between blood and bio-surfaces is important in many medical fields. With the aim of studying blood-mediated reactions to cellular transplants, we developed a whole-blood model for incubation of small volumes for up to 48 h. METHODS Heparinized polyvinyl chloride tubing was cut in suitable lengths and sealed to create small bags. Multiple bags, with fresh venous blood, were incubated attached to a rotating wheel at 37°C. Physiological variables in blood were monitored: glucose, blood gases, mono- and divalent cations and chloride ions, osmolality, coagulation (platelet consumption, thrombin-antithrombin complexes (TAT)), and complement activation (C3a and SC5b-9), haemolysis, and leukocyte viability. RESULTS Basic glucose consumption was high. Glucose depletion resulted in successive elevation of extracellular potassium, while sodium and calcium ions decreased due to inhibition of energy-requiring ion pumps. Addition of glucose improved ion balance but led to metabolic acidosis. To maintain a balanced physiological environment beyond 6 h, glucose and sodium hydrogen carbonate were added regularly based on analyses of glucose, pH, ions, and osmotic pressure. With these additives haemolysis was prevented for up to 72 h and leukocyte viability better preserved. Despite using non-heparinized blood, coagulation and complement activation were lower during long-term incubations compared with addition of thromboplastin and collagen. CONCLUSION A novel whole-blood model for studies of blood-mediated responses to a cellular transplant is presented allowing extended observations for up to 48 h and highlights the importance of stringent evaluations and adjustment of physiological conditions.
Collapse
Affiliation(s)
- Maria Hårdstedt
- Department of Immunology, Genetics and Pathology, Clinical Immunology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
- Center for Clinical Research Dalarna-Uppsala University, Falun, Sweden
| | - Susanne Lindblom
- Department of Immunology, Genetics and Pathology, Clinical Immunology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Jaan Hong
- Department of Immunology, Genetics and Pathology, Clinical Immunology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Bo Nilsson
- Department of Immunology, Genetics and Pathology, Clinical Immunology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Olle Korsgren
- Department of Immunology, Genetics and Pathology, Clinical Immunology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Gunnar Ronquist
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
| |
Collapse
|
38
|
Dolan AT, Diamond SL. Systems modeling of Ca(2+) homeostasis and mobilization in platelets mediated by IP3 and store-operated Ca(2+) entry. Biophys J 2014; 106:2049-60. [PMID: 24806937 DOI: 10.1016/j.bpj.2014.03.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 03/11/2014] [Accepted: 03/14/2014] [Indexed: 11/17/2022] Open
Abstract
Resting platelets maintain a stable level of low cytoplasmic calcium ([Ca(2+)]cyt) and high dense tubular system calcium ([Ca(2+)]dts). During thrombosis, activators cause a transient rise in inositol trisphosphate (IP3) to trigger calcium mobilization from stores and elevation of [Ca(2+)]cyt. Another major source of [Ca(2+)]cyt elevation is store-operated calcium entry (SOCE) through plasmalemmal calcium channels that open in response to store depletion as [Ca(2+)]dts drops. A 34-species systems model employed kinetics describing IP3-receptor, DTS-plasmalemma puncta formation, SOCE via assembly of STIM1 and Orai1, and the plasmalemma and sarco/endoplasmic reticulum Ca(2+)-ATPases. Four constraints were imposed: calcium homeostasis before activation; stable in zero extracellular calcium; IP3-activatable; and functional SOCE. Using a Monte Carlo method to sample three unknown parameters and nine initial concentrations in a 12-dimensional space near measured or expected values, we found that model configurations that were responsive to stimuli and demonstrated significant SOCE required high inner membrane electric potential (>-70 mV) and low resting IP3 concentrations. The absence of puncta in resting cells was required to prevent spontaneous store depletion in calcium-free media. Ten-fold increases in IP3 caused saturated calcium mobilization. This systems model represents a critical step in being able to predict platelets' phenotypes during hemostasis or thrombosis.
Collapse
Affiliation(s)
- Andrew T Dolan
- Institute for Medicine and Engineering, Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Scott L Diamond
- Institute for Medicine and Engineering, Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
39
|
Liu G, Liu G, Alzoubi K, Umbach AT, Pelzl L, Borst O, Gawaz M, Lang F. Upregulation of store operated Ca channel Orai1, stimulation of Ca(2+) entry and triggering of cell membrane scrambling in platelets by mineralocorticoid DOCA. Kidney Blood Press Res 2014; 38:21-30. [PMID: 24525794 DOI: 10.1159/000355750] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Mineralocorticoid excess leads to vascular injury, which is partially due to hypertension but in addition involves increased concentration of cytosolic Ca(2+) concentration in platelets, key players in the pathophysiology of occlusive vascular disease. Mineralocorticoids are in part effective by rapid nongenomic mechanisms including phosphatidylinositide-3-kinase (PI3K) signaling, which involves activation of the serum & glucocorticoid inducible kinase (SGK) isoforms. SGK1 has in turn been shown to participate in the regulation of the pore forming Ca(2+) channel protein Orai1 in platelets. Orai1 accomplishes entry of Ca(2+), which is in turn known to trigger cell membrane scrambling. Platelets lack nuclei but are able to express protein by translation, which is stimulated by PI3K signaling. The present study explored whether the mineralocorticoid desoxycorticosterone acetate (DOCA) influences platelet Orai1 protein abundance, cytosolic Ca(2+)-activity ([Ca(2+)]i), phosphatidylserine abundance at the cell surface and/or cell volume. METHODS Orai1 protein abundance was estimated utilizing CF™488A conjugated antibodies, [Ca(2+)]i utilizing Fluo3-fluorescence, phosphatidylserine abundance utilizing FITC-labelled annexin V, and cell volume utilizing forward scatter in flow cytometry. RESULTS DOCA (10 µg/ml) treatment of murine platelets was followed by a significant increase of Orai1 protein abundance, [Ca(2+)]i, percentage of phosphatidylserine exposing platelets and platelet swelling. The effect on [Ca(2+)]i, phosphatidylserine abundance and cell volume were completely abrogated by addition of the specific SGK inhibitor EMD638683 (50 µM) CONCLUSIONS: The mineralocorticoid DOCA upregulates Orai1 protein abundance in the cell membrane, thus increasing [Ca(2+)]i and triggering phosphatidylserine abundance, effects paralleled by platelet swelling.
Collapse
Affiliation(s)
- Guoxing Liu
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
40
|
D'Addio F, Maffi P, Vezzulli P, Vergani A, Mello A, Bassi R, Nano R, Falautano M, Coppi E, Finzi G, D'Angelo A, Fermo I, Pellegatta F, La Rosa S, Magnani G, Piemonti L, Falini A, Folli F, Secchi A, Fiorina P. Islet transplantation stabilizes hemostatic abnormalities and cerebral metabolism in individuals with type 1 diabetes. Diabetes Care 2014; 37:267-76. [PMID: 24026546 PMCID: PMC3867995 DOI: 10.2337/dc13-1663] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Islets after kidney transplantation have been shown to positively affect the quality of life of individuals with type 1 diabetes (T1D) by reducing the burden of diabetes complications, but fewer data are available for islet transplantation alone (ITA). The aim of this study was to assess whether ITA has a positive impact on hemostatic and cerebral abnormalities in individuals with T1D. RESEARCH DESIGN AND METHODS Prothrombotic factors, platelet function/ultrastructure, and cerebral morphology, metabolism, and function have been investigated over a 15-month follow-up period using ELISA/electron microscopy and magnetic resonance imaging, nuclear magnetic resonance spectroscopy, and neuropsychological evaluation (Profile of Mood States test and paced auditory serial addition test) in 22 individuals with T1D who underwent ITA (n = 12) or remained on the waiting list (n = 10). Patients were homogeneous with regard to metabolic criteria, hemostatic parameters, and cerebral morphology/metabolism/function at the time of enrollment on the waiting list. RESULTS At the 15-month follow-up, the group undergoing ITA, but not individuals with T1D who remained on the waiting list, showed 1) improved glucose metabolism; 2) near-normal platelet activation and prothrombotic factor levels; 3) near-normal cerebral metabolism and function; and 4) a near-normal neuropsychological test. CONCLUSIONS ITA, despite immunosuppressive therapy, is associated with a near-normalization of hemostatic and cerebral abnormalities.
Collapse
|
41
|
Altered expression of platelet proteins and calpain activity mediate hypoxia-induced prothrombotic phenotype. Blood 2013; 123:1250-60. [PMID: 24297866 DOI: 10.1182/blood-2013-05-501924] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Oxygen-compromised environments, such as high altitude, air travel, and sports, and pathological conditions, such as solid tumors, have been suggested to be prothrombotic. Despite the indispensable role of platelets in thrombus formation, the studies linking hypoxia, platelet reactivity, and thrombus formation are limited. In the present study, platelet proteome/reactivity was analyzed to elucidate the acute hypoxia-induced prothrombotic phenotype. Rats exposed to acute simulated hypoxia (282 torr/8% oxygen) demonstrated a decreased bleeding propensity and increased platelet reactivity. Proteomic analysis of hypoxic platelets revealed 27 differentially expressed proteins, including those involved in coagulation. Among these proteins, calpain small subunit 1, a 28-kDa regulatory component for calpain function, was significantly upregulated under hypoxic conditions. Moreover, intraplatelet Ca(2+) level and platelet calpain activity were also found to be in accordance with calpain small subunit 1 expression. The inhibition of calpain activity demonstrated reversal of hypoxia-induced platelet hyperreactivity. The prothrombotic role for calpain was further confirmed by an in vivo model of hypoxia-induced thrombosis. Interestingly, patients who developed thrombosis while at extreme altitude had elevated plasma calpain activities and increased soluble P-selectin level. In summary, this study suggests that augmented calpain activity is associated with increased incidence of thrombosis under hypoxic environments.
Collapse
|
42
|
Sage SO, Pugh N, Farndale RW, Harper AGS. Pericellular Ca(2+) recycling potentiates thrombin-evoked Ca(2+) signals in human platelets. Physiol Rep 2013; 1:e00085. [PMID: 24303163 PMCID: PMC3841026 DOI: 10.1002/phy2.85] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 08/12/2013] [Indexed: 01/16/2023] Open
Abstract
We have previously demonstrated that Na(+)/Ca(2+) exchangers (NCXs) potentiate Ca(2+) signaling evoked by thapsigargin in human platelets, via their ability to modulate the secretion of autocoids from dense granules. This link was confirmed in platelets stimulated with the physiological agonist, thrombin, and experiments were performed to examine how Ca(2+) removal by the NCX modulates platelet dense granule secretion. In cells loaded with the near-membrane indicator FFP-18, thrombin stimulation was observed to elicit an NCX-dependent accumulation of Ca(2+) in a pericellular region around the platelets. To test whether this pericellular Ca(2+) accumulation might be responsible for the influence of NCXs over platelet function, platelets were exposed to fast Ca(2+) chelators or had their glycocalyx removed. Both manipulations of the pericellular Ca(2+) rise reduced thrombin-evoked Ca(2+) signals and dense granule secretion. Blocking Ca(2+)-permeable ion channels had a similar effect, suggesting that Ca(2+) exported into the pericellular region is able to recycle back into the platelet cytosol. Single cell imaging with extracellular Fluo-4 indicated that thrombin-evoked rises in extracellular [Ca(2+)] occurred within the boundary described by the cell surface, suggesting their presence within the open canalicular system (OCS). FFP-18 fluorescence was similarly distributed. These data suggest that upon thrombin stimulation, NCX activity creates a rise in [Ca(2+)] within the pericellular region of the platelet from where it recycles back into the platelet cytosol, acting to both accelerate dense granule secretion and maintain the initial rise in cytosolic [Ca(2+)].
Collapse
Affiliation(s)
- Stewart O Sage
- Department of Physiology, Development and Neuroscience, University of Cambridge Cambridge, U.K
| | | | | | | |
Collapse
|
43
|
Gorudko IV, Sokolov AV, Shamova EV, Grudinina NA, Drozd ES, Shishlo LM, Grigorieva DV, Bushuk SB, Bushuk BA, Chizhik SA, Cherenkevich SN, Vasilyev VB, Panasenko OM. Myeloperoxidase modulates human platelet aggregation via actin cytoskeleton reorganization and store-operated calcium entry. Biol Open 2013; 2:916-23. [PMID: 24143278 PMCID: PMC3773338 DOI: 10.1242/bio.20135314] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 06/24/2013] [Indexed: 01/09/2023] Open
Abstract
Myeloperoxidase (MPO) is a heme-containing enzyme released from activated leukocytes into the extracellular space during inflammation. Its main function is the production of hypohalous acids that are potent oxidants. MPO can also modulate cell signaling and inflammatory responses independently of its enzymatic activity. Because MPO is regarded as an important risk factor for cardiovascular diseases associated with increased platelet activity, we studied the effects of MPO on human platelet functional properties. Laser scanning confocal microscopy was used to reveal carbohydrate-independent MPO binding to human platelet membrane. Adding MPO to platelets did not activate their aggregation under basal conditions (without agonist). In contrast, MPO augmented agonist-induced platelet aggregation, which was not prevented by MPO enzymatic activity inhibitors. It was found that exposure of platelets to MPO leads to actin cytoskeleton reorganization and an increase in their elasticity. Furthermore, MPO evoked a rise in cytosolic Ca2+ through enhancement of store-operated Ca2+ entry (SOCE). Together, these findings indicate that MPO is not a direct agonist but rather a mediator that binds to human platelets, induces actin cytoskeleton reorganization and affects the mechanical stiffness of human platelets, resulting in potentiating SOCE and agonist-induced human platelet aggregation. Therefore, an increased activity of platelets in vascular disease can, at least partly, be provided by MPO elevated concentrations.
Collapse
Affiliation(s)
- Irina V Gorudko
- Department of Biophysics, Belarusian State University , 220030 Minsk, Belarus
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Münzer P, Tolios A, Pelzl L, Schmid E, Schmidt EM, Walker B, Fröhlich H, Borst O, Gawaz M, Lang F. Thrombin-sensitive expression of the store operated Ca(2+) channel Orai1 in platelets. Biochem Biophys Res Commun 2013; 436:25-30. [PMID: 23685155 DOI: 10.1016/j.bbrc.2013.05.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 05/08/2013] [Indexed: 12/23/2022]
Abstract
Thrombin activates pore forming channel protein Orai1 resulting in store operated Ca(2+) entry (SOCE) with subsequent Ca(2+)-dependent release of platelet granules, activation of integrin αIIbβ3, adhesion, aggregation and thrombus formation. Platelets lack nuclei and are thus unable to modify protein abundance by transcriptional regulation. Nevertheless, they still contain pre-mRNA and mRNA and are thus able to express protein by stimulation of rapid translation. Platelet translation is sensitive to phosphoinositide-3-kinase (PI3K) and actin polymerization. The present study explored whether platelet activation via thrombin modifies Orai1 protein abundance. According to RT-PCR platelets contain pre-mRNA and mRNA encoding Orai1. Activation with thrombin (0.1 U/ml) results in a significant decline of pre-mRNA, which is, according to Western blotting and confocal microscopy, paralleled by a marked and statistically significant increase of Orai1 protein abundance. The increase of Orai1 protein abundance is insensitive to inhibition of transcription with actinomycin (4 μg/ml), but is significantly blunted by inhibition of translation with puromycin (100 nM) and by inhibition of PI3K with wortmannin (100 nM) or LY294002 (25 μM). In conclusion, activation of platelets stimulates the translational expression of Orai1, thus augmenting platelet Ca(2+) signaling.
Collapse
Affiliation(s)
- Patrick Münzer
- Department of Physiology, University of Tübingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
López E, Berna-Erro A, Bermejo N, Brull JM, Martinez R, Garcia Pino G, Alvarado R, Salido GM, Rosado JA, Cubero JJ, Redondo PC. Long-term mTOR inhibitors administration evokes altered calcium homeostasis and platelet dysfunction in kidney transplant patients. J Cell Mol Med 2013; 17:636-647. [PMID: 23577651 PMCID: PMC3822816 DOI: 10.1111/jcmm.12044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 01/31/2013] [Indexed: 12/12/2022] Open
Abstract
The use of the mammal target of rapamycin (mTOR) inhibitors has been consolidated as the therapy of election for preventing graft rejection in kidney transplant patients, despite their immunosuppressive activity is less strong than anti-calcineurin agents like tacrolimus and cyclosporine A. Furthermore, as mTOR is widely expressed, rapamycin (a macrolide antibiotic produced by Streptomyces hygroscopicus) is recommended in patients presenting neoplasia due to its antiproliferative actions. Hence, we have investigated whether rapamycin presents side effects in the physiology of other cell types different from leucocytes, such as platelets. Blood samples were drawn from healthy volunteers and kidney transplant patients long-term medicated with rapamycin: sirolimus and everolimus. Platelets were either loaded with fura-2 or directly stimulated, and immunoassayed or fixed with Laemmli's buffer to perform the subsequent analysis of platelet physiology. Our results indicate that rapamycin evokes a biphasic time-dependent alteration in calcium homeostasis and function in platelets from kidney transplant patients under rapamycin regime, as demonstrated by the reduction in granule secretion observed and subsequent impairment of platelet aggregation in these patients compared with healthy volunteers. Platelet count was also reduced in these patients, thus 41% of patients presented thrombocytopenia. All together our results show that long-term administration of rapamycin to kidney transplant patients evokes alteration in platelet function.
Collapse
Affiliation(s)
- Esther López
- Cell Physiology Research Group, Department of Physiology, University of ExtremaduraCáceres, Spain
| | - Alejandro Berna-Erro
- Cell Physiology Research Group, Department of Physiology, University of ExtremaduraCáceres, Spain
| | - Nuria Bermejo
- Department of Hematology, San Pedro de Alcantara HospitalCáceres, Spain
| | - José María Brull
- Hematology division, Extremadura County Blood Donation CenterMérida, Spain
| | - Rocío Martinez
- Department of Renal Transplantation, Infanta Cristina HospitalBadajoz, Spain
| | | | - Raul Alvarado
- Department of Renal Transplantation, Infanta Cristina HospitalBadajoz, Spain
| | - Ginés María Salido
- Cell Physiology Research Group, Department of Physiology, University of ExtremaduraCáceres, Spain
| | - Juan Antonio Rosado
- Cell Physiology Research Group, Department of Physiology, University of ExtremaduraCáceres, Spain
| | - Juan José Cubero
- Department of Renal Transplantation, Infanta Cristina HospitalBadajoz, Spain
| | - Pedro Cosme Redondo
- Cell Physiology Research Group, Department of Physiology, University of ExtremaduraCáceres, Spain
| |
Collapse
|
46
|
Ehrlich D, Humpel C. Effects of ethanol on aggregation, serotonin release, and amyloid precursor protein processing in rat and human platelets. Platelets 2013; 25:16-22. [PMID: 23402285 DOI: 10.3109/09537104.2013.764979] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
It is known that oxidative stress leads to amyloid precursor protein (APP) dysregulation in platelets. Ethanol (EtOH) is a vascular risk factor and induces oxidative stress. The aim of the present study was thus to investigate whether EtOH affects APP processing in rat and human platelets. Platelets were exposed to 50 mM EtOH with and without 2 mM calcium-chloride (CaCl₂) for 20 or 180 minutes at 37°C. Platelet aggregation, serotonin release and APP isoforms 130 and 106/110 kDa were analyzed. As a control, 100 mM H₂O₂ was tested in rat platelets. Our data show that EtOH alone did not affect any of the analyzed parameters, whereas CaCl₂ significantly increased aggregation of rat and human platelets. In addition, CaCl₂ alone enhanced serotonin release in rat platelets. EtOH counteracted CaCl₂-induced aggregation and serotonin release. In the presence of CaCl₂, EtOH reduced the 130 kDa APP isoform in rat and human platelets. In conclusion, this study shows that in the presence of CaCl₂, EtOH affects the platelet function and APP processing in rat and human platelets.
Collapse
Affiliation(s)
- Daniela Ehrlich
- Laboratory of Psychiatry and Exp. Alzheimer's Research, Department of Psychiatry and Psychotherapy, Innsbruck Medical University , Innsbruck , Austria
| | | |
Collapse
|
47
|
Abstract
Reviewed are new concepts and models of Ca(2+) signalling originating from work with various animal cells, as well as the applicability of these models to the signalling systems used by blood platelets. The following processes and mechanisms are discussed: Ca(2+) oscillations and waves; Ca(2+) -induced Ca(2+) release; involvement of InsP(3)-receptors and quanta1 release of Ca(2+); different pathways of phospholipase C activation; heterogeneity in the intracellular Ca(2+) stores; store-and receptor-regulated Ca(2+) entry. Additionally, some typical aspects of Ca(2+) signalling in platelets are reviewed: involvement of protein serine/threonine and tyrosine kinases in the regulation of signal transduction; possible functions of platelet glycoproteins; and the importance of Ca(2+) for the exocytotic and procoagulant responses.
Collapse
Affiliation(s)
- J W Heemskerk
- Departments of Human Biology/ Biochemistry, University of Limburg, P.O. 616, 6200, MD, Maastricht, The Netherlands
| | | |
Collapse
|
48
|
Translational regulation of the serum- and glucocorticoid-inducible kinase-1 (SGK1) in platelets. Biochem Biophys Res Commun 2012; 425:1-5. [DOI: 10.1016/j.bbrc.2012.07.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 07/07/2012] [Indexed: 12/25/2022]
|
49
|
Gallic Acid Attenuates Platelet Activation and Platelet-Leukocyte Aggregation: Involving Pathways of Akt and GSK3β. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:683872. [PMID: 22811749 PMCID: PMC3395410 DOI: 10.1155/2012/683872] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Revised: 05/08/2012] [Accepted: 05/15/2012] [Indexed: 11/17/2022]
Abstract
Platelet activation and its interaction with leukocytes play an important role in atherothrombosis. Cardiovascular diseases resulted from atherothrombosis remain the major causes of death worldwide. Gallic acid, a major constituent of red wine and tea, has been believed to have properties of cardiovascular protection, which is likely to be related to its antioxidant effects. Nonetheless, there were few and inconsistent data regarding the effects of gallic acid on platelet function. Therefore, we designed this in vitro study to determine whether gallic acid could inhibit platelet activation and the possible mechanisms. From our results, gallic acid could concentration-dependently inhibit platelet aggregation, P-selectin expression, and platelet-leukocyte aggregation. Gallic acid prevented the elevation of intracellular calcium and attenuated phosphorylation of PKCα/p38 MAPK and Akt/GSK3β on platelets stimulated by the stimulants ADP or U46619. This is the first mechanistic explanation for the inhibitory effects on platelets from gallic acid.
Collapse
|
50
|
The serum- and glucocorticoid-inducible kinase 1 (SGK1) influences platelet calcium signaling and function by regulation of Orai1 expression in megakaryocytes. Blood 2012; 119:251-61. [DOI: 10.1182/blood-2011-06-359976] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Abstract
Platelets are activated on increase of cytosolic Ca2+ activity ([Ca2+]i), accomplished by store-operated Ca2+ entry (SOCE) involving the pore-forming ion channel subunit Orai1. Here, we show, for the first time, that the serum- and glucocorticoid-inducible kinase 1 (SGK1) is expressed in platelets and megakaryocytes. SOCE and agonist-induced [Ca2+]i increase are significantly blunted in platelets from SGK1 knockout mice (sgk1−/−). Similarly, Ca2+-dependent degranulation, integrin αIIbβ3 activation, phosphatidylserine exposure, aggregation, and in vitro thrombus formation were significantly impaired in sgk1−/− platelets, whereas tail bleeding time was not significantly enhanced. Platelet and megakaryocyte Orai1 transcript levels and membrane protein abundance were significantly reduced in sgk1−/− mice. In human megakaryoblastic cells (MEG-01), transfection with constitutively active S422DSGK1 but not with inactive K127NSGK1 significantly enhanced Orai1 expression and SOCE, while effects reversed by the SGK1 inhibitor GSK650394 (1μM). Transfection of MEG-01 cells with S422DSGK1 significantly increased phosphorylation of IκB kinase α/β and IκBα resulting in nuclear translocation of NF-κB subunit p65. Treatment of S422DSGK1-transfected MEG-01 cells with the IκB kinase inhibitor BMS-345541 (10μM) abolished SGK1-induced increase of Orai1 expression and SOCE. The present observations unravel SGK1 as novel regulator of platelet function, effective at least in part by NF-κB–dependent transcriptional up-regulation of Orai1 in megakaryocytes and increasing platelet SOCE.
Collapse
|