1
|
Vadabingi N, Mallepogu V, Mallapu RE, Pasala C, Poreddy S, Bellala P, Amineni U, Cirandur SR, Meriga B. Novel sulfamethoxazole and 1-(2-fluorophenyl) piperazine derivatives as potential apoptotic and antiproliferative agents by inhibition of BCL2; design, synthesis, biological evaluation, and docking studies. 3 Biotech 2024; 14:269. [PMID: 39421851 PMCID: PMC11480306 DOI: 10.1007/s13205-024-04111-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
In the present study, a novel series of sulfamethoxazole and 1-(2-fluorophenyl) piperazine derivatives were designed, synthesized and characterized by FTIR, IH NMR,13C NMR, Mass spectrometry, CHN data, and evaluated for their efficiency as BCL2 inhibitors that could lead to potential antiproliferative activity. The ten newly synthesized compounds were screened for their therapeutic activity using MDA-MB-231 breast cancer cell lines. All the test compounds exhibited moderate to high cytotoxic activity in MTT assay. Among them, compounds 3e and 6b exhibited promising antitumor activity, as evidenced by their IC50 values of 16.98 and 17.33 μM respectively. In addition, both compounds 3e and 6b displayed potential antioxidant and apoptosis induction properties. The qRT-PCR analysis showed down regulation of BCL2 expression and up regulation of Casp3 expression in 3e and 6b treated MDA-MB-231 cells. Further, the interaction between critical amino acids of the active domains of BCL2 and 3e and 6b was evaluated by MD simulation, and the results reflected the potent inhibitory activities of 3e and 6b. In summary, the novel compounds 3e and 6b demonstrate their potent anti-cancer properties by inducing apoptosis and selectively targeting BCL2 and caspases-3. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04111-6.
Collapse
Affiliation(s)
| | - Venkataswamy Mallepogu
- Department of Biochemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh 517502 India
| | - Rani E. Mallapu
- Department of Chemistry, Rayalaseema University, Kurnool, Andhra Pradesh India
| | - Chiranjeevi Pasala
- Bioinformatics Centre, Department of Bioinformatics, SVIMS University, Tirupati, Andhra Pradesh India
| | - Sumithra Poreddy
- Department of Chemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh India
| | - Poojitha Bellala
- Department of Chemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh India
| | - Umamaheswari Amineni
- Bioinformatics Centre, Department of Bioinformatics, SVIMS University, Tirupati, Andhra Pradesh India
| | - Suresh Reddy Cirandur
- Department of Chemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh India
| | - Balaji Meriga
- Department of Biochemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh 517502 India
| |
Collapse
|
2
|
Varol A, Klauck SM, Dantzer F, Efferth T. Enhancing cisplatin drug sensitivity through PARP3 inhibition: The influence on PDGF and G-coupled signal pathways in cancer. Chem Biol Interact 2024; 398:111094. [PMID: 38830565 DOI: 10.1016/j.cbi.2024.111094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/07/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
Drug resistance poses a significant challenge in cancer treatment despite the clinical efficacy of cisplatin. Identifying and targeting biomarkers open new ways to improve therapeutic outcomes. In this study, comprehensive bioinformatic analyses were employed, including a comparative analysis of multiple datasets, to evaluate overall survival and mutation hotspots in 27 base excision repair (BER) genes of more than 7,500 tumors across 23 cancer types. By using various parameters influencing patient survival, revealing that the overexpression of 15 distinct BER genes, particularly PARP3, NEIL3, and TDG, consistently correlated with poorer survival across multiple factors such as race, gender, and metastasis. Single nucleotide polymorphism (SNP) analyses within protein-coding regions highlighted the potential deleterious effects of mutations on protein structure and function. The investigation of mutation hotspots in BER proteins identified PARP3 due to its high mutation frequency. Moving from bioinformatics to wet lab experiments, cytotoxic experiments demonstrated that the absence of PARP3 by CRISPR/Cas9-mediated knockdown in MDA-MB-231 breast cancer cells increased drug activity towards cisplatin, carboplatin, and doxorubicin. Pathway analyses indicated the impact of PARP3 absence on the platelet-derived growth factor (PDGF) and G-coupled signal pathways on cisplatin exposure. PDGF, a critical regulator of various cellular functions, was downregulated in the absence of PARP3, suggesting a role in cancer progression. Moreover, the influence of PARP3 knockdown on G protein-coupled receptors (GPCRs) affects their function in the presence of cisplatin. In conclusion, the study demonstrated a synthetic lethal interaction between GPCRs, PDGF signaling pathways, and PARP3 gene silencing. PARP3 emerged as a promising target.
Collapse
Affiliation(s)
- Ayşegül Varol
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, 55128, Mainz, Germany
| | - Sabine M Klauck
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ) Heidelberg, National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership between DKFZ and University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Françoise Dantzer
- Poly(ADP-ribosyl)ation and Genome Integrity, Laboratoire d'Excellence Medalis, UMR7242, Centre Nationale de la Recherche Scientifique/Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg, 300 bld. S. Brant, CS10413, 67412, Illkirch, France
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, 55128, Mainz, Germany.
| |
Collapse
|
3
|
Saputra F, Kishida M, Hu SY. Nitrate and Nitrite Exposure Induces Visual Impairments in Adult Zebrafish. TOXICS 2024; 12:518. [PMID: 39058170 PMCID: PMC11281020 DOI: 10.3390/toxics12070518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
Nitrate and nitrite have emerged as increasingly common environmental pollutants, posing significant risks to various forms of life within ecosystems. To understand their impact on the visual system of zebrafish, adult zebrafish were exposed to environmentally relevant concentrations of nitrate (10 mg/L) and nitrite (1 mg/L) for 7 days. Visual behaviors were examined using optomotor and avoidance response. The eyeballs of the zebrafish were collected for H&E staining, IHC, and qPCR. Exposure decreased visual behavior and the thickness of most retinal layers. Exposure decreased expression of pax6a, pax6b, gpx1a, and bcl2a. Exposure increased expression of esr1, esr1a, esr2b, cyp19a1b, sod1a, nos2a, casps3, and tp53, and increased retinal brain aromatase expression by IHC. Collectively, our findings demonstrate that nitrate and nitrite exposure negatively impacted the visual system of adult zebrafish, highlighting the potential hazards of these environmental pollutants on aquatic organisms.
Collapse
Affiliation(s)
- Febriyansyah Saputra
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan;
| | - Mitsuyo Kishida
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan;
| | - Shao-Yang Hu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| |
Collapse
|
4
|
Sun Z, Peng X, Zhao L, Yang Y, Zhu Y, Wang L, Kang B. From tissue lesions to neurotoxicity: The devastating effects of small-sized nanoplastics on red drum Sciaenops ocellatus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173238. [PMID: 38750760 DOI: 10.1016/j.scitotenv.2024.173238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/19/2024] [Accepted: 05/12/2024] [Indexed: 05/19/2024]
Abstract
Nanoplastic pollution typically exhibits more biotoxicity to marine organisms than microplastic pollution. Limited research exists on the toxic effects of small-sized nanoplastics on marine fish, especially regarding their post-exposure resilience. In this study, red drum (Sciaenops ocellatus) were exposed to small-sized polystyrene nanoplastics (30 nm, PS-NPs) for 7 days for the exposure experiments, followed by 14 days of recovery experiments. Histologically, hepatic lipid droplets and branchial epithelial liftings were the primary lesions induced by PS-NPs during both exposure and recovery periods. The inhibition of total superoxide dismutase activity and the accumulation of malondialdehyde content throughout the exposure and recovery periods. Transcriptional and metabolic regulation revealed that PS-NPs induced lipid metabolism disorders and DNA damage during the initial 1-2 days of exposure periods, followed by immune responses and neurotoxicity in the later stages (4-7 days). During the early recovery stages (2-7 days), lipid metabolism and cell cycle were activated, while in the later recovery stage (14 days), the emphasis shifted to lipid metabolism and energy metabolism. Persistent histological lesions, changes in antioxidant capacity, and fluctuations in gene and metabolite expression were observed even after 14 days of recovery periods, highlighting the severe biotoxicity of small-sized PS-NPs to marine fish. In summary, small-sized PS-NPs have severe biotoxicity, causing tissue lesions, oxidative damage, lipid metabolism disorders, DNA damage, immune responses, and neurotoxicity in red drum. This study offers valuable insights into the toxic effects and resilience of small-sized nanoplastics on marine fish.
Collapse
Affiliation(s)
- Zhicheng Sun
- Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, Shandong, China; Fisheries College, Ocean University of China, Qingdao 266003, Shandong, China
| | - Xin Peng
- Marine Academy of Zhejiang Province, Hangzhou 315613, Zhejiang, China; Key Laboratory of Ocean Space Resource Management Technology, Hangzhou 310012, Zhejiang, China
| | - Linlin Zhao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, Shandong, China
| | - Yi Yang
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, 999077, Hong Kong, China
| | - Yugui Zhu
- Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, Shandong, China; Fisheries College, Ocean University of China, Qingdao 266003, Shandong, China
| | - Linlong Wang
- Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, Shandong, China; Fisheries College, Ocean University of China, Qingdao 266003, Shandong, China
| | - Bin Kang
- Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, Shandong, China; Fisheries College, Ocean University of China, Qingdao 266003, Shandong, China
| |
Collapse
|
5
|
Zhang L, Xia J. N6-Methyladenosine Methylation of mRNA in Cell Apoptosis. Mol Neurobiol 2024; 61:3934-3948. [PMID: 38040996 DOI: 10.1007/s12035-023-03813-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 11/16/2023] [Indexed: 12/03/2023]
Abstract
Apoptosis, a highly controlled homeostatic mechanism that eliminates single cells without destroying tissue function, occurs during growing development and senescence. N6-methyladenosine (m6A), as the most common internal modification of eukaryotic mRNA, fine-tunes gene expression by regulating many aspects of mRNA metabolism, such as splicing, nucleation, stability, translation, and degradation. Remarkably, recent reports have indicated that aberrant methylation of m6A-related RNA may directly or indirectly influence the expression of apoptosis-related genes, thus regulating the process of cell apoptosis. In this review, we summarized the relationship between m6A modification and cell apoptosis, especially its role in the nervous system, and analyzed the limitations of the current research.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Jian Xia
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.
- Clinical Research Center for Cerebrovascular Disease of Hunan Province, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
6
|
Park K, Kwak IS. Modulating responses of indicator genes in cellular homeostasis, immune defense and apoptotic process in the Macrophthalmus japonicus exposed to di(2-ethylhexyl) phthalate as a plastic additive. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 108:104456. [PMID: 38657882 DOI: 10.1016/j.etap.2024.104456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/08/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
Di(2-ethylhexyl) phthalate (DEHP), have been increasingly used as plasticizers to manufacture soft and flexible materials and ubiquitously found in water and sediments in the aquatic ecosystem. The aim of the present study was to evaluate the effect of DEHP exposure on cellular homeostasis (HSF1 and seven HSPs), immune responses (ILF), and apoptotic responses (p53, BAX, Bcl-2). DEHP exposure upregulated the expression of HSF1 and ILF. Moreover, it altered the expression levels of HSPs (upregulation of HSP70, HSP90, HSP40, HSP83, and HSP67B2 and downregulation of HSP60 and HSP21) in conjunction with HSF1 and ILF in the gills and hepatopancreas of M. japonicus exposed to DEHP. At the protein level, DEHP exposure changed apoptotic signals in both tissues of M. japonicus. These findings indicate that chronic exposures to several DEHP concentrations could disturb cellular balance, damage the inflammatory and immune systems, and induce apoptotic cell death, thereby affecting the survival of M. japonicus.
Collapse
Affiliation(s)
- Kiyun Park
- Fisheries Science Institute, Chonnam National University, Yeosu 59626, South Korea
| | - Ihn-Sil Kwak
- Fisheries Science Institute, Chonnam National University, Yeosu 59626, South Korea; Department of Ocean Integrated Science, Chonnam National University, Yeosu 59626, South Korea.
| |
Collapse
|
7
|
Lontro Alves L, Gomes Pereira P, Torres Ciambarella B, Porto Campos M, Rabelo K, Rosa Nascimento AL, Leal de Carvalho dos Santos Cunha R, Borba Vieira Andrade C, Cesar Nunes Moraes A, Bernardi A, Verdini Guimarães F, Fuentes Ribeiro da Silva J, José de Carvalho J. Beneficial Effects of Capybara Oil Supplementation on Steatosis and Liver Apoptosis in Obese Mice. J Obes 2024; 2024:7204607. [PMID: 38831961 PMCID: PMC11147678 DOI: 10.1155/2024/7204607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 06/05/2024] Open
Abstract
Obesity is a complex chronic disease characterized by excess body fat (adipose) that is harmful to health and has been a major global health problem. It may be associated with several diseases, such as nonalcoholic fatty liver disease (NAFLD). Polyunsaturated fatty acids (PUFA) are lipid mediators that have anti-inflammatory characteristics and can be found in animals and plants, with capybara oil (CO) being a promising source. So, we intend to evaluate the hepatic pathophysiological alterations in C57Bl/6 mice with NAFLD, caused by obesity, and the possible beneficial effects of OC in the treatment of this disease. Eighteen 3-month-old male C57Bl/6 mice received a control or high-fat diet for 18 weeks. From the 15th to the 18th week, the animals received treatment-through orogastric gavage-with placebo or free capybara oil (5 g/kg). Parameters inherent to body mass, glucose tolerance, evaluation of liver enzymes, percentage of hepatic steatosis, oxidative stress, the process of cell death with the apoptotic biomarkers (Bax, Bcl2, and Cytochrome C), and the ultrastructure of hepatocytes were analyzed. Even though the treatment with CO was not able to disassemble the effects on the physiological parameters, it proved to be beneficial in reversing the morphological and ultrastructural damage present in the hepatocytes. Thus, demonstrating that CO has beneficial effects in reducing steatosis and the apoptotic pathway, it is a promising treatment for NAFLD.
Collapse
Affiliation(s)
- Luciana Lontro Alves
- Ultrastructure and Tissue Biology Laboratory, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Priscila Gomes Pereira
- Ultrastructure and Tissue Biology Laboratory, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Bianca Torres Ciambarella
- Ultrastructure and Tissue Biology Laboratory, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Miguel Porto Campos
- Ultrastructure and Tissue Biology Laboratory, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Kíssila Rabelo
- Ultrastructure and Tissue Biology Laboratory, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
- Interdisciplinary Laboratory of Medical Research, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Ana Lúcia Rosa Nascimento
- Ultrastructure and Tissue Biology Laboratory, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | | | - Cherley Borba Vieira Andrade
- Ultrastructure and Tissue Biology Laboratory, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Alan Cesar Nunes Moraes
- Ultrastructure and Tissue Biology Laboratory, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
- Electron Microscopy Laboratory of Biology Institute, Federal Fluminense University, Rio de Janeiro, Brazil
| | - Andressa Bernardi
- Inflammation Laboratory, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | | | - Jorge José de Carvalho
- Ultrastructure and Tissue Biology Laboratory, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Zahran SS, Ragab FA, Soliman AM, El-Gazzar MG, Mahmoud WR, Ghorab MM. Utility of sulfachloropyridazine in the synthesis of novel anticancer agents as antiangiogenic and apoptotic inducers. Bioorg Chem 2024; 148:107411. [PMID: 38733747 DOI: 10.1016/j.bioorg.2024.107411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024]
Abstract
In a search for new anticancer agents with better activity and selectivity, the present work described the synthesis of several new series of sulfachloropyridazine hybrids with thiocarbamates 3a-e, thioureids 4a-h, 5a-e and 4-substituted sulfachloropyridazines 6a, b, 7a, b and 8. The synthesized compounds were screened in vitro against a panel of 60 cancer cell lines in one dose assay. The most potent derivatives 3a, 3c, 4c, 4d, 5e, 7a and 7b were tested for their antiangiogenic activity by measuring their ability to inhibit VEGFR-2. The most potent compounds in VEGFR-2 inhibitory assay were further evaluated for their ability to inhibit PDGFR. In addition, the ability of 4c compound to inhibit cell migration on HUVEC cells and cell cycle effect on UO-31 cells has been studied. The pro-apoptotic effect of compound 4c was studied by the evaluation of caspase-3, Bax and BCl-2. Alternatively, the IC50 of compounds 3a, 3c, 4c, 5e, 7a and 7b against certain human cancer cell lines were determined. Re-evaluation in combination with γ-radiation was carried out for compounds 4c, 5e and 7b to study the possible synergistic effect on cytotoxicity. Docking studies of the most active compounds were performed to give insights into the binding mode within VEGFR-2 active site.
Collapse
Affiliation(s)
- Sally S Zahran
- Department of Drug Radiation Research, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt
| | - Fatma A Ragab
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, 11562, Egypt
| | - Aiten M Soliman
- Department of Drug Radiation Research, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt.
| | - Marwa G El-Gazzar
- Department of Drug Radiation Research, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt
| | - Walaa R Mahmoud
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, 11562, Egypt
| | - Mostafa M Ghorab
- Department of Drug Radiation Research, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt.
| |
Collapse
|
9
|
AboZaid OAR, Abdel-Maksoud MA, Saleh IA, El-Tayeb MA, El-Sonbaty SM, Shoker FE, Salem MA, Emad AM, Mani S, Deva Magendhra Rao AK, Mamdouh MA, Kotob MH, Aufy M, Kodous AS. Targeting the NF-κB p65/Bcl-2 signaling pathway in hepatic cellular carcinoma using radiation assisted synthesis of zinc nanoparticles coated with naturally isolated gallic acid. Biomed Pharmacother 2024; 172:116274. [PMID: 38364738 DOI: 10.1016/j.biopha.2024.116274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024] Open
Abstract
PURPOSE Oral diethylnitrosamine (DEN) is a known hepatocarcinogen that damages the liver and causes cancer. DEN damages the liver through reactive oxygen species-mediated inflammation and biological process regulation. MATERIALS AND METHODS Gallic acid-coated zinc oxide nanoparticles (Zn-GANPs) were made from zinc oxide (ZnO) synthesized by irradiation dose of 50 kGy utilizing a Co-60 γ-ray source chamber with a dose rate of 0.83 kGy/h and gallic acid from pomegranate peel. UV-visible (UV) spectrophotometry verified Zn-GANP synthesis. TEM, DLS, and FTIR were utilized to investigate ZnO-NPs' characteristics. Rats were orally exposed to DEN for 8 weeks at 20 mg/kg five times per week, followed by intraperitoneal injection of Zn-GANPs at 20 mg/kg for 5 weeks. Using oxidative stress, anti-inflammatory, liver function, histologic, apoptotic, and cell cycle parameters for evaluating Zn-GANPs treatment. RESULTS DEN exposure elevated inflammatory markers (AFP and NF-κB p65), transaminases (AST, ALT), γ-GT, globulin, and total bilirubin, with reduced protein and albumin levels. It also increased MDA levels, oxidative liver cell damage, and Bcl-2, while decreasing caspase-3 and antioxidants like GSH, and CAT. Zn-GANPs significantly mitigated these effects and lowered lipid peroxidation, AST, ALT, and γ-GT levels, significantly increased CAT and GSH levels (p<0.05). Zn-GANPs caused S and G2/M cell cycle arrest and G0/G1 apoptosis. These results were associated with higher caspase-3 levels and lower Bcl-2 and TGF-β1 levels. Zn-GANPs enhance and restore the histology and ultrastructure of the liver in DEN-induced rats. CONCLUSION The data imply that Zn-GANPs may prevent and treat DEN-induced liver damage and carcinogenesis.
Collapse
Affiliation(s)
- Omayma A R AboZaid
- Department of Biochemistry, Faculty of Veterinary Medicine, Moshtohor, Benha University, Egypt
| | | | | | - Mohamed A El-Tayeb
- Botany and Microbiology department- College of Science- King Saud University, Saudi Arabia
| | - Sawsan M El-Sonbaty
- Radiation Microbiology Department, National Center for Radiation Research & Technology (NCRRT), Egyptian Atomic-Energy Authority (EAEA), Egypt
| | - Faten E Shoker
- Department of Biochemistry, Faculty of Veterinary Medicine, Moshtohor, Benha University, Egypt
| | - Maha A Salem
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information, Egypt
| | - Ayat M Emad
- Pharmacognosy Department, Faculty of Pharmacy, October 6 University, Sixth of October City, Giza 12585, Egypt
| | - Samson Mani
- Department of Research, Rajiv Gandhi Cancer Institute, and Research Centre, Sector 5, Rohini, Delhi 110085, India; Department of Molecular Oncology, Cancer Institute (WIA), 38, Sardar Patel Road, P.O. Box 600036, Chennai, Tamilnadu, India
| | | | - Mohamed A Mamdouh
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, 6th of October City, Giza 12585, Egypt
| | - Mohamed H Kotob
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna, Austria; Department of Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Mohammed Aufy
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna, Austria.
| | - Ahmad S Kodous
- Department of Molecular Oncology, Cancer Institute (WIA), 38, Sardar Patel Road, P.O. Box 600036, Chennai, Tamilnadu, India; Radiation Biology department, National Center for Radiation Research & Technology (NCRRT), Egyptian Atomic-Energy Authority (EAEA), Egypt.
| |
Collapse
|
10
|
Dalisay DS, Tenebro CP, Sabido EM, Suarez AFL, Paderog MJV, Reyes-Salarda R, Saludes JP. Marine-Derived Anticancer Agents Targeting Apoptotic Pathways: Exploring the Depths for Novel Cancer Therapies. Mar Drugs 2024; 22:114. [PMID: 38535455 PMCID: PMC10972102 DOI: 10.3390/md22030114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 04/13/2024] Open
Abstract
Extensive research has been conducted on the isolation and study of bioactive compounds derived from marine sources. Several natural products have demonstrated potential as inducers of apoptosis and are currently under investigation in clinical trials. These marine-derived compounds selectively interact with extrinsic and intrinsic apoptotic pathways using a variety of molecular mechanisms, resulting in cell shrinkage, chromatin condensation, cytoplasmic blebs, apoptotic bodies, and phagocytosis by adjacent parenchymal cells, neoplastic cells, or macrophages. Numerous marine-derived compounds are currently undergoing rigorous examination for their potential application in cancer therapy. This review examines a total of 21 marine-derived compounds, along with their synthetic derivatives, sourced from marine organisms such as sponges, corals, tunicates, mollusks, ascidians, algae, cyanobacteria, fungi, and actinobacteria. These compounds are currently undergoing preclinical and clinical trials to evaluate their potential as apoptosis inducers for the treatment of different types of cancer. This review further examined the compound's properties and mode of action, preclinical investigations, clinical trial studies on single or combination therapy, and the prospective development of marine-derived anticancer therapies.
Collapse
Affiliation(s)
- Doralyn S. Dalisay
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (E.M.S.); (M.J.V.P.)
- Department of Biology, University of San Agustin, Iloilo City 5000, Philippines;
- Balik Scientist Program, Department of Science and Technology, Philippine Council for Health Research and Development (DOST-PCHRD), Taguig 1631, Philippines;
| | - Chuckcris P. Tenebro
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (E.M.S.); (M.J.V.P.)
| | - Edna M. Sabido
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (E.M.S.); (M.J.V.P.)
| | - Angelica Faith L. Suarez
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City 5000, Philippines;
| | - Melissa June V. Paderog
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (E.M.S.); (M.J.V.P.)
- Department of Pharmacy, University of San Agustin, Iloilo City 5000, Philippines
| | - Rikka Reyes-Salarda
- Department of Biology, University of San Agustin, Iloilo City 5000, Philippines;
| | - Jonel P. Saludes
- Balik Scientist Program, Department of Science and Technology, Philippine Council for Health Research and Development (DOST-PCHRD), Taguig 1631, Philippines;
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City 5000, Philippines;
- Department of Chemistry, University of San Agustin, Iloilo City 5000, Philippines
| |
Collapse
|
11
|
Erkoc-Kaya D, Arikoglu H, Guclu E, Dursunoglu D, Menevse E. Juglone-ascorbate treatment enhances reactive oxygen species mediated mitochondrial apoptosis in pancreatic cancer. Mol Biol Rep 2024; 51:340. [PMID: 38393422 DOI: 10.1007/s11033-024-09254-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/12/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND Treatment of Pancreatic Cancer (PC) is challenging due to its aggressiveness and acquired resistance to conventional chemotherapy and radiotherapy. Therefore, the discovery of new therapeutic agents and strategies is essential. Juglone, a naphthoquinone, is a secondary metabolite produced naturally in walnut-type trees having allelopathic features in its native environment. Juglone was shown to prevent cell proliferation and induce ROS-mediated mitochondrial apoptosis. Ascorbate with both antioxidant and oxidant features, shows selective cytotoxicity in cancer cells. METHODS AND RESULTS In this study, we evaluated the anticancer effects of Juglone in combination with ascorbate in PANC-1 and BxPC-3 PC cells. The MTT assay was used to determine the IC50 dose of Juglone with 1 mM NaAscorbate (Jug-NaAsc). Subsequently, the cells were treated with 5, 10, 15 and 20 µM Jug-NaAsc for 24 h. Apoptotic effects were evaluated by analyzing the following genes using qPCR; proapoptotic Bax, antiapoptotic Bcl-2 related to the mitochondrial apoptotic pathway and apoptosis inhibitor Birc5 (Survivin). Immunofluorescence analysis was performed using Annexin V-FITC in PC cells. As an antioxidant enzyme, Trx2 protein levels were determined by a commercial ELISA test kit. Jug-NaAsc treatment decreased the expressions of antiapoptotic genes Bcl-2 and Birc5 while the apoptotic gene Bax expression increased at all doses. Additionally, a dose-dependently increase of apoptosis according to immunofluorescence analysis and the decreases of Trx2 enzyme levels at all treatments in both cell lines supported gene expression results. CONCLUSION Our results suggest that Juglone is a potential anticancer agent especially when combined with ascorbate.
Collapse
Affiliation(s)
- Dudu Erkoc-Kaya
- Department of Medical Biology, Faculty of Medicine, Selcuk University, Konya, Turkey.
| | - Hilal Arikoglu
- Department of Medical Biology, Faculty of Medicine, Selcuk University, Konya, Turkey
| | - Ebru Guclu
- Department of Basic Science and Health, Hemp Research Institute Yozgat Bozok University, Yozgat, Turkey
| | - Duygu Dursunoglu
- Department of Histology-Embryology, Faculty of Medicine, Selcuk University, Konya, Turkey
| | - Esma Menevse
- Department of Medical Biochemistry, Faculty of Medicine, Selcuk University, Konya, Turkey
| |
Collapse
|
12
|
Wang Q, Tang J, Pan L, Song A, Miao J, Zheng X, Li Z. Study on epigenotoxicity, sex hormone synthesis, and DNA damage of benzo[a]pyrene in the testis of male Ruditapes philippinarum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169340. [PMID: 38110097 DOI: 10.1016/j.scitotenv.2023.169340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023]
Abstract
Research on the mechanisms of reproductive toxicity caused by persistent organic pollutants (POPs) in marine animals has received significant attention. One group of typical POPs, called polycyclic aromatic hydrocarbons (PAHs), has been found to cause various reproductive toxicities in aquatic organisms, including epigenotoxicity, reproductive endocrine disruption, DNA damage effects and other reproductive toxicity, thereby affecting gonadal development. Interestingly, male aquatic animals are more susceptible to the disturbance and toxicity of environmental pollutants. However, current studies primarily focus on vertebrates, leaving a large gap in our understanding of the reproductive toxicity and mechanisms of PAHs interference in marine invertebrates. In this study, male Ruditapes philippinarum was used as an experimental subject to investigate reproduction-related indexes in clams under the stress of benzo[a]pyrene (B[a]P) at different concentrations (0, 0.8, 4 and 20 μg/L) during the proliferative, growth, maturity, and spawning period. We analyzed the molecular mechanisms of reproductive toxicity caused by PAHs in marine bivalves, specifically epigenotoxicity, reproductive endocrine disruption, and gonadal damage-apoptotic effect. The results suggest that DNA methylation plays a crucial role in mediating B[a]P-induced reproductive toxicity in male R. philippinarum. B[a]P may affect sex hormone levels, impede spermatogenesis and testis development in clams, by inhibiting the steroid hormone synthesis pathway and downregulating genes critical for cell proliferation, testis development, and spermatid expulsion. Moreover, the spermatids of male R. philippinarum were severely impaired under the B[a]P stress, leading to reduced reproductive performance in the clams. These findings contribute to a better understanding of the reproductive toxicity response of male marine invertebrates to POPs stress.
Collapse
Affiliation(s)
- Qiaoqiao Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Jian Tang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China.
| | - Aimin Song
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Xin Zheng
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Zeyuan Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| |
Collapse
|
13
|
Liu K, Yuan X, Yang T, Deng D, Chen Y, Tang M, Zhang C, Zou Y, Zhang S, Li D, Shi M, Guo Y, Zhou Y, Zhao M, Yang Z, Chen L. Discovery, Optimization, and Evaluation of Potent and Selective DNA-PK Inhibitors in Combination with Chemotherapy or Radiotherapy for the Treatment of Malignancies. J Med Chem 2024; 67:245-271. [PMID: 38117951 DOI: 10.1021/acs.jmedchem.3c01338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Given the multifaceted biological functions of DNA-PK encompassing DNA repair pathways and beyond, coupled with the susceptibility of DNA-PK-deficient cells to DNA-damaging agents, significant strides have been made in the pursuit of clinical potential for DNA-PK inhibitors as synergistic adjuncts to chemo- or radiotherapy. Nevertheless, although substantial progress has been made with the discovery of potent inhibitors of DNA-PK, the clinical trial landscape requires even more potent and selective molecules. This necessitates further endeavors to expand the repertoire of clinically accessible DNA-PK inhibitors for the ultimate benefit of patients. Described herein are the obstacles that were encountered and the solutions that were found, which eventually led to the identification of compound 31t. This compound exhibited a remarkable combination of robust potency and exceptional selectivity along with favorable in vivo profiles as substantiated by pharmacokinetic studies in rats and pharmacodynamic assessments in H460, BT474, and A549 xenograft models.
Collapse
Affiliation(s)
- Kongjun Liu
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xue Yuan
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Tao Yang
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Dexin Deng
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yong Chen
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Minghai Tang
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Chufeng Zhang
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yurong Zou
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Shunjie Zhang
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Dan Li
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Mingsong Shi
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yong Guo
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yanting Zhou
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Min Zhao
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Zhuang Yang
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Lijuan Chen
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
- Chengdu Zenitar Biomedical Technology Co., Ltd., Chengdu 610041, China
| |
Collapse
|
14
|
Wei Q, Li P, Yang T, Zhu J, Sun L, Zhang Z, Wang L, Tian X, Chen J, Hu C, Xue J, Ma L, Shimura T, Fang J, Ying J, Guo P, Cheng X. The promise and challenges of combination therapies with antibody-drug conjugates in solid tumors. J Hematol Oncol 2024; 17:1. [PMID: 38178200 PMCID: PMC10768262 DOI: 10.1186/s13045-023-01509-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/06/2023] [Indexed: 01/06/2024] Open
Abstract
Antibody-drug conjugates (ADCs) represent an important class of cancer therapies that have revolutionized the treatment paradigm of solid tumors. To date, many ongoing studies of ADC combinations with a variety of anticancer drugs, encompassing chemotherapy, molecularly targeted agents, and immunotherapy, are being rigorously conducted in both preclinical studies and clinical trial settings. Nevertheless, combination therapy does not always guarantee a synergistic or additive effect and may entail overlapping toxicity risks. Therefore, understanding the current status and underlying mechanisms of ADC combination therapy is urgently required. This comprehensive review analyzes existing evidence concerning the additive or synergistic effect of ADCs with other classes of oncology medicines. Here, we discuss the biological mechanisms of different ADC combination therapy strategies, provide prominent examples, and assess their benefits and challenges. Finally, we discuss future opportunities for ADC combination therapy in clinical practice.
Collapse
Affiliation(s)
- Qing Wei
- Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
| | - Peijing Li
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province, Hangzhou, China
| | - Teng Yang
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Jiayu Zhu
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Sun
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Department of Gynecologic Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Ziwen Zhang
- Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Lu Wang
- Department of Radiation Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Xuefei Tian
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai, China
- College of Molecular Medicine, Hangzhou Institute for Advanced Study (HIAS), University of Chinese Academy of Sciences, Hangzhou, China
| | - Jiahui Chen
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou, China
| | - Can Hu
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou, China
| | - Junli Xue
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Letao Ma
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Takaya Shimura
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Jianmin Fang
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Jieer Ying
- Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, China.
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China.
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China.
| | - Peng Guo
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China.
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China.
| | - Xiangdong Cheng
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China.
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China.
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou, China.
| |
Collapse
|
15
|
Shayea AMF, Renno WM, Qabazard B, Masocha W. Neuroprotective Effects of a Hydrogen Sulfide Donor in Streptozotocin-Induced Diabetic Rats. Int J Mol Sci 2023; 24:16650. [PMID: 38068971 PMCID: PMC10706751 DOI: 10.3390/ijms242316650] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
Diabetic neuropathy is an important long-term complication of diabetes. This study explored the hypothesis that hydrogen sulfide (H2S) ameliorates neuropathic pain by controlling antiapoptotic and pro-apoptotic processes. The effects of a slow-releasing H2S donor, GYY4137, on the expression of antiapoptotic and pro-apoptotic genes and proteins, such as B-cell lymphoma 2 (Bcl2) and Bcl-2-like protein 4 (Bax), as well as caspases, cyclooxygenase (COX)-1 and COX-2, monocytes/macrophages, and endothelial cells, in the spinal cord of male Sprague-Dawley rats with streptozotocin-induced peripheral diabetic neuropathy, were investigated using reverse transcription-PCR, western blot and immunohistochemistry. The antihypoalgesic activities of GYY4137 on diabetic rats were evaluated using the tail flick test. Treatment of diabetic rats with GYY4137 attenuated thermal hypoalgesia and prevented both the diabetes-induced increase in Bax mRNA expression (p = 0.0032) and the diabetes-induced decrease in Bcl2 mRNA expression (p = 0.028). The GYY4137-treated diabetic group had increased COX-1 (p = 0.015), decreased COX-2 (p = 0.002), reduced caspase-7 and caspase-9 protein expression (p < 0.05), and lower numbers of endothelial and monocyte/macrophage cells (p < 0.05) compared to the non-treated diabetic group. In summary, the current study demonstrated the protective properties of H2S, which prevented the development of neuropathy related behavior, and suppressed apoptosis activation pathways and inflammation in the spinal cord. H2S-releasing drugs could be considered as possible treatment options of diabetic peripheral neuropathy.
Collapse
Affiliation(s)
- Abdulaziz M. F. Shayea
- Department of Occupational Therapy, College of Allied Health Science, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait;
- Molecular Biology Program, College of Graduate Studies, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait
| | - Waleed M. Renno
- Department of Anatomy, College of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait;
| | - Bedoor Qabazard
- Department of Pharmacology and Therapeutics, College of Pharmacy, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait;
| | - Willias Masocha
- Department of Pharmacology and Therapeutics, College of Pharmacy, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait;
| |
Collapse
|
16
|
Yin K, Sheng J, Chen J, Gao F, Miao C, Liu D. Protective effect of phosphorylated Athyrium multidentatum (Doll.) Ching polysaccharide on vascular endothelial cells in vitro and in vivo. Chem Biol Drug Des 2023; 102:1213-1230. [PMID: 37550016 DOI: 10.1111/cbdd.14316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/28/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023]
Abstract
The purpose of this study was to prepare phosphorylated Athyrium multidentatum (Doll.) Ching polysaccharide (PPS) and investigate its protective effect on vascular endothelial cells (VECs) in vitro and in vivo and the underlying mechanisms. Sodium tripolyphosphate (STPP) and sodium trimetaphosphate (STMP) were used as phosphorylation reagents and PPS was characterized by Fourier transform infrared (FT-IR), 13 C nuclear magnetic resonance (13 C NMR) and 31 P nuclear magnetic resonance (31 P NMR) spectra. Chemical analysis demonstrated that PPS was composed of mannose, glucosamine, rhamnose, glucuronic acid, galacturonic acid, galactosamine, glucose, galactose, xylose, arabinose, and fucose with a molar ratio of 11.36:0.42:4.03:1.12:1.81:0.26:33.25:24.12:6.85:14.46:2.32 and a molecular weight of 28,837 Da. Results from in vitro and in vivo assays revealed that PPS protected human umbilical vein endothelial cells (HUVECs) against H2 O2 -induced oxidative injury and attenuated D-galactose-induced VECs damage in mice. RNA sequencing (RNA-seq) analysis identified 18 differentially expressed genes (DEGs) between D-galactose-treated and PPS-pretreated mice abdominal aorta. A deep analysis of these DEGs disclosed that PPS regulated the expression of genes involved in the functions of vascular endothelium repairment, cell growth and proliferation, cell survival and apoptosis, inflammation, angiogenesis and antioxidant, indicating that these biological processes might play crucial roles in the protective actions of PPS on VECs.
Collapse
Affiliation(s)
- Kaiyue Yin
- Department of Pharmacy, Weifang Medical University, Weifang, China
| | - Jiwen Sheng
- Department of Pharmacy, Weifang Medical University, Weifang, China
| | - Jiyu Chen
- Department of Pharmacy, Weifang Medical University, Weifang, China
| | - Feng Gao
- Department of Pharmacy, Weifang Medical University, Weifang, China
| | - Changqing Miao
- Department of Pharmacy, Weifang Medical University, Weifang, China
| | - Dongmei Liu
- Department of Pharmacy, Weifang Medical University, Weifang, China
| |
Collapse
|
17
|
Siyuan W, Xiaozhi L, Jialin W, Wei H, Liu S, Zou C, Song J, Xia L, Yilong A. The Potential Mechanism of Curcumin in Treating Oral Squamous Cell Carcinoma Based on Integrated Bioinformatic Analysis. Int J Genomics 2023; 2023:8860321. [PMID: 37868072 PMCID: PMC10590272 DOI: 10.1155/2023/8860321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/24/2023] [Accepted: 09/27/2023] [Indexed: 10/24/2023] Open
Abstract
Aims This study explores the effects of curcumin as a therapeutic agent against oral squamous cell carcinoma (OSCC). Methods We acquired the targets of curcumin from three digital databases, including the Comparative Toxicogenomics Database, Search Tool for Interactions of Chemicals, and SwissTargetPrediction. Then, we identified the differentially expressed genes (DEGs) and the weighted gene coexpression network analysis-based key modules using the expression profiles of GSE23558 to acquire the OSCC-related genes. Additionally, the GeneCards and Online Mendelian Inheritance in Man databases were also used to identify the OSCC-related genes. Finally, curcumin-OSCC interaction genes were obtained by overlapping curcumin targets and OSCC-related genes. The enrichment analysis was performed by the ClusterProfiler algorithm and Metascape, respectively. Then, a protein-protein interaction network was created, and the maximal clique centrality algorithm was used to identify the top 10 hub genes. Besides, we examined the expression levels of hub genes in OSCC using The Cancer Genome Atlas database. Results 927 DEGs were identified, including 308 upregulated ones and 619 downregulated ones. The cluster one-step network construction function of the WGCNA algorithm recognized a soft-thresholding power of 6, and 9083 genes were acquired. 2591 OSCC-related genes were obtained by overlapping the GSE23558-identified genes and the OSCC-related genes from disease target bases. Finally, we identified 70 candidate drug-disease interaction genes by overlapping the disease-related genes with the curcumin target. The enrichment analysis suggested that response to oxidative stress, epithelial cell proliferation, and AGE/RAGE pathway might involve in the effect of curcumin on OSCC. The topologic study identified the ten hub genes, including VEGFA, AKT1, TNF, HIF1A, EGFR, JUN, STAT3, MMP9, EGF, and MAPK3. A significant difference was observed in VEGFA, AKT1, TNF, HIF1A, EGFR, MMP9, EGF, and MAPK3 expression levels between head and neck squamous cell carcinoma and the normal controls. However, no significant difference was observed in JUN (P = 0.14) and STAT3 (P = 0.054). Conclusion This study provided an overview and basis for the potential mechanism of curcumin against OSCC. The following experiments should be performed to further understand the effectiveness and safety of curcumin in treating OSCC.
Collapse
Affiliation(s)
- Wu Siyuan
- Foshan Stomatological Hospital, School of Medicine, Foshan University, Foshan, Guangdong, China
| | - Lv Xiaozhi
- Department of Oral and Maxillofacial Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wu Jialin
- Foshan Stomatological Hospital, School of Medicine, Foshan University, Foshan, Guangdong, China
| | - Haigang Wei
- Foshan Stomatological Hospital, School of Medicine, Foshan University, Foshan, Guangdong, China
| | - Shiwei Liu
- Department of Stomatology, Foshan First People's Hospital, Foshan, Guangdong, China
| | - Chen Zou
- Foshan Stomatological Hospital, School of Medicine, Foshan University, Foshan, Guangdong, China
| | - Jing Song
- Foshan Stomatological Hospital, School of Medicine, Foshan University, Foshan, Guangdong, China
| | - Li Xia
- Foshan Stomatological Hospital, School of Medicine, Foshan University, Foshan, Guangdong, China
| | - Ai Yilong
- Foshan Stomatological Hospital, School of Medicine, Foshan University, Foshan, Guangdong, China
| |
Collapse
|
18
|
Lin C, Yang Z, Liu Q. Effect of I-125 Seed Implantation on Lung Cancer and Its Environmental Impact. HEALTH PHYSICS 2023; 125:273-280. [PMID: 37347183 DOI: 10.1097/hp.0000000000001714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
ABSTRACT This paper compares the efficacy and adverse effects of iodine-125 ( 125 I) seed implantation and external beam radiotherapy (EBRT) in the treatment of lung cancer as well as impact of the 125 I radiation on the environment around the patients. A total of 40 patients who were admitted with lung cancer to our hospital from October 2017 to October 2018 were enrolled into this study. The patients were randomly assigned into study groups treated with 125 I seed implantation (20 patients) and a control group treated with EBRT (20 patients). The patients were followed up for 6 mo by CT scanning of the tumor size as well as measuring serum carcinoembryonic antigen (CEA), cytokeratin fragment (CYRA21-1), and neurospecific enolase (NSE) levels. The dose rate of 125 I at various distances and times after implantation was also measured. The local tumor control rate was higher in the study group than in the control group. CEA, NSE and CYFRA21-1 significantly decreased from the pre-treatment baseline in both groups (p < 0.05). Side effects of pneumothorax, hemoptysis, chest pain, and leukopenia occurred in the patients treated with 125 I seed implantation. Radiation of the 125 I isotope, which was correlated with the number of implanted 125 I seeds, decreased rapidly in a time- and distance-dependent manner. A lead apron could significantly block radiation of 125 I. Compared to EBRT, brachytherapy with 125 I seed implantation in the lung cancer had a better therapeutic outcome with fewer complications. A lead apron could protect members of patient's family as well as public from 125 I radiation.
Collapse
Affiliation(s)
- Chunlong Lin
- Department of Respiratory, Yueyang Municipal Hospital of Hunan Normal University, Yueyang 414000, Hunan, China
| | | | | |
Collapse
|
19
|
Mahmoud SF, Elewa YH, Nomir AG, Rashwan AM, Noreldin AE. Calbindin Has a Potential Spatiotemporal Correlation with Proliferation and Apoptosis in the Postnatal Rat Kidney. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1705-1717. [PMID: 37584523 DOI: 10.1093/micmic/ozad080] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/02/2023] [Accepted: 07/18/2023] [Indexed: 08/17/2023]
Abstract
The protein calbindin-D28k modulates calcium reabsorption in the kidney. Here, we aimed to study the influence of proliferation and apoptosis in different compartments of the kidney on the developmental function of calbindin. Using immunohistochemistry, we investigated the postnatal development of rats' kidneys by using calbindin, proliferative cell nuclear antigen (PCNA), and apoptotic single-stranded DNA (ssDNA). In the neonatal stage (1-day and 1-week-old rats), calbindin showed a positive reaction in the distal convoluted tubule (DCT), a short nephron segment between the macula densa, collecting ducts, and tubules. Moreover, the localization of calbindin was restricted to immature nephrons and mesenchymal tissues. Furthermore, PCNA immunoreactivity was moderate in early-developed podocytes with no reactivity in other renal tubules. The ssDNA immunoreactivity was moderate in the undifferentiated nephron. Then, in the mature stage (3 and 6 weeks old), there was an intense calbindin reaction in DCT but a moderate reaction to PCNA and ssDNA in podocytes. A more intense calbindin reactivity was found in the adult stage (2- and 3-month-old rats) in DCT and collecting tubules. Therefore, in this study, calbindin localization showed an inverse relationship with PCNA and ssDNA of the nephron compartments, which might reflect the efficiency of bone-building and muscle contraction during animal development.
Collapse
Affiliation(s)
- Sahar F Mahmoud
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Al Gomhouria St, Scientific Campus, Damanhour 22511, Egypt
| | - Yaser H Elewa
- Department of Histology, Faculty of Veterinary Medicine, Zagazig University, El Tagneed St, Agriculture Square, Zagazig 44519, Egypt
- Faculty of Veterinary Medicine, Basic Veterinary Sciences, Hokkaido University, Kita Ku, Kita18, Nishi 9 Jo, Sapporo 060-0818, Japan
| | - Ahmed G Nomir
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Damanhour University, Al Gomhouria St, Scientific Campus, Damanhour 22511, Egypt
| | - Ahmed M Rashwan
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Damanhour University, Al Gomhouria St, Scientific Campus, Damanhour 22511, Egypt
- Laboratory of Life science frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Al Gomhouria St, Scientific Campus, Damanhour 22511, Egypt
| |
Collapse
|
20
|
Ujaoney AK, Anaganti N, Padwal MK, Basu B. Deinococcus lineage and Rad52 family-related protein DR0041 is involved in DNA protection and compaction. Int J Biol Macromol 2023; 248:125885. [PMID: 37473881 DOI: 10.1016/j.ijbiomac.2023.125885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
DR0041 ORF encodes an uncharacterized Deinococcus lineage protein. We earlier reported presence of DR0041 protein in DNA repair complexes of Ssb and RecA in Deinococcus radiodurans. Here, we systematically examined the role of DR0041 in DNA metabolism using various experimental methodologies including electrophoretic mobility assays, nuclease assays, strand exchange assays and transmission electron microscopy. Interaction between DR0041 and the C-terminal acidic tail of Ssb was assessed through co-expression and in vivo cross-linking studies. A knockout mutant was constructed to understand importance of DR0041 ORF for various physiological processes. Results highlight binding of DR0041 protein to single-stranded and double-stranded DNA, interaction with Ssb-coated single-stranded DNA without interference with RecA-mediated strand exchange, protection of DNA from exonucleases, and compaction of high molecular weight DNA molecules into tightly condensed forms. Bridging and compaction of sheared DNA by DR0041 protein might have implications in the preservation of damaged DNA templates to maintain genome integrity upon exposure to gamma irradiation. Our results suggest that DR0041 protein is dispensable for growth under standard growth conditions and following gamma irradiation but contributes to protection of DNA during transformation. We discuss the role of DR0041 protein from the perspective of protection of broken DNA templates and functional redundancy.
Collapse
Affiliation(s)
- Aman Kumar Ujaoney
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Narasimha Anaganti
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Mahesh Kumar Padwal
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Bhakti Basu
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|
21
|
Elshimy R, Zedan H, Elmorsy TH, Khattab RA. Prevalence and In Vivo Assessment of Virulence in Shiga Toxin-Producing Escherichia coli Clinical Isolates from Greater Cairo Area. Microb Drug Resist 2023; 29:407-415. [PMID: 37579256 DOI: 10.1089/mdr.2022.0348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023] Open
Abstract
Background: Shiga toxin-producing Escherichia coli (STEC) has been identified as an important etiologic agent of human disease in Egypt. Aims: To investigate the occurrence and describe the characterization as well as prevalence of STEC in Greater Cairo hospitals as well as molecular characterization of virulence and resistance genes. Methods: Four hundred seventy E. coli clinical isolates were collected from eight hospitals and analyzed by genotypic and phenotypic methods for STEC, followed by histopathological examination and scoring of different organs lesions. Results: The highest proportion of isolates was from urine (151 isolates), whereas the lowest was from splenic drain (3 isolates). In tandem, when serogrouping was performed, 15 serogroups were obtained where the most prevalent was O157 and the least prevalent was O151. All isolates were positive when screened for identity gene gad A, while only typable strains were screened for seven virulence genes stx1 (gene encoding Shiga toxin 1), stx2 (gene encoding Shiga toxin 2), tsh (gene encoding thermostable hemagglutinin), eaeA (gene encoding intimin), invE (gene encoding invasion protein), aggR (gene encoding aggregative adherence transcriptional regulator), and astA (aspartate transaminase) where the prevalence was 48%, 30%, 50%, 57%, 7.5%, 12%, and 58%, respectively. Of 254 typable isolates, 152 were STEC carrying stx1 or stx2 genes or both. Conclusions: Relying on in vivo comparison between different E. coli pathotypes via histopathological examination of different organs, E. coli pathotypes could be divided into mild virulent, moderate virulent, and high virulent strains. Statistical analysis revealed significant correlation between different serogroups and presence of virulence genes.
Collapse
Affiliation(s)
- Rana Elshimy
- Department of Microbiology and Immunology, Egyptian Drug Authority, Giza, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Egypt
| | - Hamdallah Zedan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Tarek H Elmorsy
- Department of Microbiology and Immunology, Egyptian Drug Authority, Giza, Egypt
| | | |
Collapse
|
22
|
Clementi A, Virzì GM, Manani SM, de Cal M, Battaglia GG, Ronco C, Zanella M. Plasma Cell-Free DNA and Caspase-3 Levels in Patients with Chronic Kidney Disease. J Clin Med 2023; 12:5616. [PMID: 37685683 PMCID: PMC10488719 DOI: 10.3390/jcm12175616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/13/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Cell-free plasma DNA (cfDNA) is circulating extracellular DNA arising from cell death mechanisms (apoptosis, necrosis, etc.). It is commonly existent in healthy individuals, but its ranks increase in diverse clinical circumstances, such as kidney disease, sepsis, myocardial infarction, trauma and cancer. In patients with advanced chronic kidney disease, cfDNA is connected to inflammation, and it has been associated with higher mortality. Caspase-3 plays a dominant role in apoptosis, a mechanism of programmed cell death involved in the pathogenesis and progression of chronic kidney disease (CKD). The aim of this pilot study was the evaluation of cfDNA levels and caspase-3 concentrations in patients with chronic kidney disease, in order to investigate the potential role of these molecules, deriving from inflammatory and apoptotic mechanisms, in the progression of renal damage. METHODS We compared cfDNA and caspase-3 levels in 25 CKD patients and in 10 healthy subjects, evaluating their levels based on CKD stage. We also explored correlations between cfDNA and caspase-3 levels in CKD patients and between cfDNA and caspase-3 levels and serum creatinine and urea in this population. RESULTS We observed that cfDNA and caspase-3 levels were higher in patients with CKD compared to healthy subjects, in particular in patients with advanced renal disease (CKD stage 5). A positive correlation between cfDNA and caspase-3 levels and between cfDNA and caspase-3 and creatinine and urea were also noticed. CONCLUSIONS Patients with chronic kidney disease show higher levels of cfDNA and caspase-3 levels compared to the control group. Based on these preliminary results, we speculated that the worsening of renal damage and the increase in uremic toxin concentration could be associated with higher levels of cfDNA and caspase-3 levels, thus reflecting the potential role of inflammation and apoptosis in the progression of CKD. Future studies should focus on the validation of these promising preliminary results.
Collapse
Affiliation(s)
- Anna Clementi
- Department of Nephrology and Dialysis, Santa Marta and Santa Venera Hospital, 95024 Acireale, Italy; (A.C.); (G.G.B.)
- IRRIV-International Renal Research Institute, 36100 Vicenza, Italy; (S.M.M.); (M.d.C.); (C.R.); (M.Z.)
| | - Grazia Maria Virzì
- IRRIV-International Renal Research Institute, 36100 Vicenza, Italy; (S.M.M.); (M.d.C.); (C.R.); (M.Z.)
- Department of Nephrology, Dialysis and Transplant, St. Bortolo Hospital, 36100 Vicenza, Italy
| | - Sabrina Milan Manani
- IRRIV-International Renal Research Institute, 36100 Vicenza, Italy; (S.M.M.); (M.d.C.); (C.R.); (M.Z.)
- Department of Nephrology, Dialysis and Transplant, St. Bortolo Hospital, 36100 Vicenza, Italy
| | - Massimo de Cal
- IRRIV-International Renal Research Institute, 36100 Vicenza, Italy; (S.M.M.); (M.d.C.); (C.R.); (M.Z.)
- Department of Nephrology, Dialysis and Transplant, St. Bortolo Hospital, 36100 Vicenza, Italy
| | - Giovanni Giorgio Battaglia
- Department of Nephrology and Dialysis, Santa Marta and Santa Venera Hospital, 95024 Acireale, Italy; (A.C.); (G.G.B.)
| | - Claudio Ronco
- IRRIV-International Renal Research Institute, 36100 Vicenza, Italy; (S.M.M.); (M.d.C.); (C.R.); (M.Z.)
- Department of Nephrology, Dialysis and Transplant, St. Bortolo Hospital, 36100 Vicenza, Italy
| | - Monica Zanella
- IRRIV-International Renal Research Institute, 36100 Vicenza, Italy; (S.M.M.); (M.d.C.); (C.R.); (M.Z.)
- Department of Nephrology, Dialysis and Transplant, St. Bortolo Hospital, 36100 Vicenza, Italy
| |
Collapse
|
23
|
AL-Ishaq RK, Kubatka P, Büsselberg D. Sweeteners and the Gut Microbiome: Effects on Gastrointestinal Cancers. Nutrients 2023; 15:3675. [PMID: 37686707 PMCID: PMC10489909 DOI: 10.3390/nu15173675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Worldwide, the demand for natural and synthetic sweeteners in the food industry as an alternative to refined sugar is increasing. This has prompted more research to be conducted to estimate its safety and effects on health. The gut microbiome is critical in metabolizing selected sweeteners which might affect overall health. Recently, more studies have evaluated the relationship between sweeteners and the gut microbiome. This review summarizes the current knowledge regarding the role played by the gut microbiome in metabolizing selected sweeteners. It also addresses the influence of the five selected sweeteners and their metabolites on GI cancer-related pathways. Overall, the observed positive effects of sweetener consumption on GI cancer pathways, such as apoptosis and cell cycle arrest, require further investigation in order to understand the underlying mechanism.
Collapse
Affiliation(s)
- Raghad Khalid AL-Ishaq
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| |
Collapse
|
24
|
Li K, Ma L, Lu Z, Yan L, Chen W, Wang B, Xu H, Asemi Z. Apoptosis and heart failure: The role of non-coding RNAs and exosomal non-coding RNAs. Pathol Res Pract 2023; 248:154669. [PMID: 37422971 DOI: 10.1016/j.prp.2023.154669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/01/2023] [Accepted: 07/02/2023] [Indexed: 07/11/2023]
Abstract
Heart failure is a condition that affects the cardio vascular system and occurs if the heart cannot adequately pump the oxygen and blood to the body. Myocardial infarction, reperfusion injury, and this disease is the only a few examples of the numerous cardiovascular illnesses that are impacted by the closely controlled cell deletion process known as apoptosis. Attention has been paid to the creation of alternative diagnostic and treatment modalities for the condition. Recent evidences have shown that some non-coding RNAs (ncRNAs) influence the stability of proteins, control of transcription factors, and HF apoptosis through a variety of methods. Exosomes make a significant paracrine contribution to the regulation of illnesses as well as to the communication between nearby and distant organs. However, it has not yet been determined whether exosomes regulate the cardiomyocyte-tumor cell interaction in ischemia HF to limit the vulnerability of malignancy to ferroptosis. Here, we list the numerous ncRNAs in HF that are connected to apoptosis. In addition, we emphasize the significance of exosomal ncRNAs in the HF.
Collapse
Affiliation(s)
- Ketao Li
- Department of cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang 310022, China
| | - Liping Ma
- Department of cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang 310022, China
| | - Zhiwei Lu
- Hangzhou Heyunjia Hospital, Hangzhou, Zhe'jiang 310000, China
| | - Laixing Yan
- Department of cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang 310022, China
| | - Wan Chen
- Department of Cardiology, Jiulongpo First People's Hospital, Chongqing 400051, China
| | - Bing Wang
- Department of cardiology, Zouping People's Hospital, Zouping, Shandong 256299, China
| | - Huiju Xu
- Department of cardiology, Hangzhou Mingzhou Hospital, Hangzhou, Zhe'jiang 311215, China.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| |
Collapse
|
25
|
Cox MM, Goodman MF, Keck JL, van Oijen A, Lovett ST, Robinson A. Generation and Repair of Postreplication Gaps in Escherichia coli. Microbiol Mol Biol Rev 2023; 87:e0007822. [PMID: 37212693 PMCID: PMC10304936 DOI: 10.1128/mmbr.00078-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023] Open
Abstract
When replication forks encounter template lesions, one result is lesion skipping, where the stalled DNA polymerase transiently stalls, disengages, and then reinitiates downstream to leave the lesion behind in a postreplication gap. Despite considerable attention in the 6 decades since postreplication gaps were discovered, the mechanisms by which postreplication gaps are generated and repaired remain highly enigmatic. This review focuses on postreplication gap generation and repair in the bacterium Escherichia coli. New information to address the frequency and mechanism of gap generation and new mechanisms for their resolution are described. There are a few instances where the formation of postreplication gaps appears to be programmed into particular genomic locations, where they are triggered by novel genomic elements.
Collapse
Affiliation(s)
- Michael M. Cox
- Department of Biochemistry, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Myron F. Goodman
- Department of Biological Sciences, University of Southern California, University Park, Los Angeles, California, USA
- Department of Chemistry, University of Southern California, University Park, Los Angeles, California, USA
| | - James L. Keck
- Department of Biological Chemistry, University of Wisconsin—Madison School of Medicine, Madison, Wisconsin, USA
| | - Antoine van Oijen
- Molecular Horizons, University of Wollongong, Wollongong, New South Wales, Australia
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| | - Susan T. Lovett
- Department of Biology, Brandeis University, Waltham, Massachusetts, USA
| | - Andrew Robinson
- Molecular Horizons, University of Wollongong, Wollongong, New South Wales, Australia
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
26
|
Chaudhury D, Sen U, Biswas S, Shenoy P S, Bose B. Assessment of Threshold Dose of Thoron Inhalation and Its Biological Effects by Mimicking the Radiation Doses in Monazite Placer Deposits Corresponding to the Normal, Medium and Very High Natural Background Radiation Areas. Biol Trace Elem Res 2023; 201:2927-2941. [PMID: 36048359 DOI: 10.1007/s12011-022-03398-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 08/14/2022] [Indexed: 11/02/2022]
Abstract
The dose contributed from thoron (220Rn) and its progeny has been neglected in the dose assessment because of its short half-life (t1/2 = 55.6 s) and generally low concentrations. Recently, concentrations of 220Rn gas and its progeny were found to be pronounced in the traditional residential dwellings in China, on beaches of India and in other countries. Accordingly, we investigated the biological effects of thoron (220Rn) decay products in various mouse organs, succeeding inhalation of thoron gas in BALB/c mouse. We investigated the biological effects upon thoron inhalation on mouse organs with a focus on oxidative stress. These mice were divided into (4 random groups): sham inhalation, thoron inhalation for 1, 4 and 10 days. Various tissues (lung, liver and kidney) were then collected after the time points and subjected to various biochemical analyses. Immediately after inhalation, mouse tissues were excised for gamma spectrometry and 72 h post inhalation for biochemical assays. The gamma spectrometry counts and its subsequent calculation of the equivalent dose showed varied distribution in the lung, liver and kidney. Our results suggest that acute thoron inhalation showed a differential effect on the antioxidant function and exerted pathophysiological alterations via oxidative stress in organs at a higher dose. These findings suggested that thoron inhalation could alter the redox state in organs; however, its characteristics were dependent on the total redox system of the organs as well as the thoron concentration and inhalation time.
Collapse
Affiliation(s)
- Debajit Chaudhury
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Derlakatte, Mangalore, Karnataka, 575018, India
| | - Utsav Sen
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Derlakatte, Mangalore, Karnataka, 575018, India
| | - Siddhartha Biswas
- Department of Onco-Pathology, Yenepoya Medical College, Yenepoya (Deemed to be University), University Road, Derlakatte, Mangalore, Karnataka, 575018, India
| | - Sudheer Shenoy P
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Derlakatte, Mangalore, Karnataka, 575018, India.
| | - Bipasha Bose
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Derlakatte, Mangalore, Karnataka, 575018, India.
| |
Collapse
|
27
|
El-Demerdash AS, Mohamady SN, Megahed HM, Ali NM. Evaluation of gene expression related to immunity, apoptosis, and gut integrity that underlies Artemisia's therapeutic effects in necrotic enteritis-challenged broilers. 3 Biotech 2023; 13:181. [PMID: 37193331 PMCID: PMC10182211 DOI: 10.1007/s13205-023-03560-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/15/2023] [Indexed: 05/18/2023] Open
Abstract
The experiment was designed to validate the effect of Artemisia annua and its novel commercial product (Navy Cox) on the control of necrotic enteritis (NE). A total of one hundred forty broiler chicks were randomly distributed into seven equal groups: G1, control negative; G2, infected with Eimeria (day 15) and C. perfringens (day 19); G3, treated with Navy Cox before challenge; G4, treated with Artemisia before challenge; G5, infected and then treated with Navy Cox; G6, infected and then treated with Artemisia; and G7, infected and treated with amoxicillin. Chicken response and immune organ indicants were recorded during the observation period (4 weeks). Whole blood and serum samples were collected for immunological evaluation, and tissue samples were collected for bacterial counts and estimation of mRNA expression of genes encoding apoptosis, tight junctions, and immunity. Chickens in the infected group revealed a significant decrease in RBCS, HB, PCV% total protein, Lysozyme, and nitric oxide activity in addition to leukocytosis, heterophilia, monocytosis, increase in cortisol, interleukins, and malondialdehyde. Treated groups displayed lower lesions, colony-forming units, and no mortality. Concurrently, a complete blood profile, antioxidants, and immune markers showed significant improvements. The mRNA expression levels of CASP, CLDN-1, OCLN, TJPI, MUC2, and cell-mediated immune response genes (p < 0.0001) were significantly alleviated in the treated groups compared with the challenged counterpart. This is the first-ever report on the efficacy valuation of Navy Cox compared to standard antibiotic treatment of clostridial NE. Navy Cox proved remarkable capability to minimize C. perfringens colonization in broiler intestines, modulation of mucus production, gut health integrity, immune organs, and immune response when used as a prophylactic agent in this form or naturally as Artemisia.
Collapse
Affiliation(s)
- Azza S. El-Demerdash
- Microbiology Department, Agriculture Research Center (ARC), Animal Health Research Institute (AHRI), Zagazig, Egypt
| | - Sahar N. Mohamady
- Clinical Pathology Department, Agriculture Research Center (ARC), Animal Health Research Institute (AHRI), Zagazig, Egypt
| | - Hend M. Megahed
- Biochemistry Department, Agriculture Research Center (ARC), Animal Health Research Institute (AHRI), Zagazig, Egypt
| | - Naglaa M. Ali
- Poultry Disease Department, Agriculture Research Center (ARC), Animal Health Research Institute (AHRI), Assuit, Egypt
| |
Collapse
|
28
|
Gonciarz W, Chmiela M, Kost B, Piątczak E, Brzeziński M. Stereocomplexed microparticles loaded with Salvia cadmica Boiss. extracts for enhancement of immune response towards Helicobacter pylori. Sci Rep 2023; 13:7039. [PMID: 37120681 PMCID: PMC10148839 DOI: 10.1038/s41598-023-34321-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/27/2023] [Indexed: 05/01/2023] Open
Abstract
Controlled delivery of therapeutic substance gives numerous advantages (prevents degradation, improves uptake, sustains concentration, lowers side effects). To encapsulate Salvia cadmica extracts (root or aerial part), enriched with polyphenols with immunomodulatory activity, in stereocomplexed microparticles (sc-PLA), for using them to enhance the immune response towards gastric pathogen Helicobacter pylori. Microparticles were made of biodegradable poly(lactic acid) (PLA) and poly(D-lactic acid) (PDLA). Their stereocomplexation was used to form microspheres and enhance the stability of the obtained particles in acidic/basic pH. The release of Salvia cadmica extracts was done in different pH (5.5, 7.4 and 8.0). The obtained polymers are safe in vitro and in vivo (guinea pig model). The sc-PLA microparticles release of S. cadmica extracts in pH 5.5, 7.4, and 8.0. S. cadmica extracts enhanced the phagocytic activity of guinea pig bone marrow-derived macrophages, which was diminished by H. pylori, and neutralized H. pylori driven enhanced production of tumor necrosis factor (TNF)-α and interleukin (IL)-10. The sc-PLA encapsulated S. cadmica extracts can be recommended for further in vivo study in guinea pigs infected with H. pylori to confirm their ability to improve an immune response towards this pathogen.
Collapse
Affiliation(s)
- Weronika Gonciarz
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, Institute of Microbiology, Biotechnology and Immunology, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland.
| | - Magdalena Chmiela
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, Institute of Microbiology, Biotechnology and Immunology, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland
| | - Bartłomiej Kost
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-636, Lodz, Poland
| | - Ewelina Piątczak
- Department of Pharmaceutical Biotechnology, Medical University of Lodz, Muszyńskiego 1, 90-151, Lodz, Poland
| | - Marek Brzeziński
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-636, Lodz, Poland.
| |
Collapse
|
29
|
Barnard SJ, Haunschild J, Heiser L, Dieterlen MT, Klaeske K, Borger MA, Etz CD. Apoptotic Cell Death in Bicuspid-Aortic-Valve-Associated Aortopathy. Int J Mol Sci 2023; 24:ijms24087429. [PMID: 37108591 PMCID: PMC10138609 DOI: 10.3390/ijms24087429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/12/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
The bicuspid aortic valve (BAV) is the most common cardiovascular congenital abnormality and is frequently associated with proximal aortopathy. We analyzed the tissues of patients with bicuspid and tricuspid aortic valve (TAV) regarding the protein expression of the receptor for advanced glycation products (RAGE) and its ligands, the advanced glycation end products (AGE), as well as the S100 calcium-binding protein A6 (S100A6). Since S100A6 overexpression attenuates cardiomyocyte apoptosis, we investigated the diverse pathways of apoptosis and autophagic cell death in the human ascending aortic specimen of 57 and 49 patients with BAV and TAV morphology, respectively, to identify differences and explanations for the higher risk of patients with BAV for severe cardiovascular diseases. We found significantly increased levels of RAGE, AGE and S100A6 in the aortic tissue of bicuspid patients which may promote apoptosis via the upregulation of caspase-3 activity. Although increased caspase-3 activity was not detected in BAV patients, increased protein expression of the 48 kDa fragment of vimentin was detected. mTOR as a downstream protein of Akt was significantly higher in patients with BAV, whereas Bcl-2 was increased in patients with TAV, assuming a better protection against apoptosis. The autophagy-related proteins p62 and ERK1/2 were increased in patients with BAV, assuming that cells in bicuspid tissue are more likely to undergo apoptotic cell death leading to changes in the wall and finally to aortopathies. We provide first-hand evidence of increased apoptotic cell death in the aortic tissue of BAV patients which may thus provide an explanation for the increased risk of structural aortic wall deficiency possibly underlying aortic aneurysm formation or acute dissection.
Collapse
Affiliation(s)
- Sarah J Barnard
- Heisenberg Working Group, Saxonian Incubator for Clinical Translation, Philipp-Rosenthal-Str. 55, 04103 Leipzig, Germany
| | - Josephina Haunschild
- Heisenberg Working Group, Saxonian Incubator for Clinical Translation, Philipp-Rosenthal-Str. 55, 04103 Leipzig, Germany
- University Department for Cardiac Surgery, Heart Center Leipzig, 04289 Leipzig, Germany
| | - Linda Heiser
- University Department for Cardiac Surgery, Heart Center Leipzig, 04289 Leipzig, Germany
| | - Maja T Dieterlen
- University Department for Cardiac Surgery, Heart Center Leipzig, 04289 Leipzig, Germany
| | - Kristin Klaeske
- University Department for Cardiac Surgery, Heart Center Leipzig, 04289 Leipzig, Germany
| | - Michael A Borger
- University Department for Cardiac Surgery, Heart Center Leipzig, 04289 Leipzig, Germany
| | - Christian D Etz
- Heisenberg Working Group, Saxonian Incubator for Clinical Translation, Philipp-Rosenthal-Str. 55, 04103 Leipzig, Germany
- University Department for Cardiac Surgery, Heart Center Leipzig, 04289 Leipzig, Germany
| |
Collapse
|
30
|
Meng K, Liu Y, Ruan L, Chen L, Chen Y, Liang Y. Suppression of apoptosis in osteocytes, the potential way of natural medicine in the treatment of osteonecrosis of the femoral head. Biomed Pharmacother 2023; 162:114403. [PMID: 37003034 DOI: 10.1016/j.biopha.2023.114403] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/20/2023] [Accepted: 02/09/2023] [Indexed: 04/03/2023] Open
Abstract
OBJECTIVES In the field of orthopedics, osteonecrosis of the femoral head (ONFH) is a common and refractory condition sometimes known as "immortal cancer" due to its complicated etiology, difficult treatment, and high disability rate. This paper's main goal is to examine the most recent literature on the pro-apoptotic effects of traditional Chinese medicine TCM monomers or compounds on osteocytes and to provide a summary of the potential signal routes. METHODS The last ten years' worth of literature on ONFH as well as the anti-ONFH effects of aqueous extracts and monomers from traditional Chinese medicine were compiled. CONCLUSIONS When all the relevant signal pathways are considered, the key apoptotic routes include those mediated by the mitochondrial pathway, the MAPK signaling pathway, the PI3K/Akt signaling pathway, the Wnt/-catenin signaling pathway, the HIF-1 signaling network, etc. As a result, we anticipate that this study will shed light on the value of TCM and its constituent parts for treating ONFH by inducing apoptosis in osteocytes and offer some guidance for the future development of innovative medications as anti-ONFH medications in clinical settings.
Collapse
Affiliation(s)
- Kairui Meng
- Neijiang Hospital of Traditional Chinese Medicine. Chengdu University of Traditional Chinese Medicine, No. 51, Minzu Road, Neijiang 641000, P.R. China
| | - Yicheng Liu
- Neijiang Hospital of Traditional Chinese Medicine, No. 51, Minzu Road, Neijiang 641000, PR China.
| | - Lvqiang Ruan
- Neijiang Hospital of Traditional Chinese Medicine, No. 51, Minzu Road, Neijiang 641000, PR China
| | - Lijuan Chen
- Neijiang Hospital of Traditional Chinese Medicine. Chengdu University of Traditional Chinese Medicine, No. 51, Minzu Road, Neijiang 641000, P.R. China
| | - Ying Chen
- Neijiang Hospital of Traditional Chinese Medicine, No. 51, Minzu Road, Neijiang 641000, PR China
| | - Ying Liang
- Neijiang Hospital of Traditional Chinese Medicine, No. 51, Minzu Road, Neijiang 641000, PR China
| |
Collapse
|
31
|
rhTPO Ameliorates Radiation-Induced Long-Term Hematopoietic Stem Cell Injury in Mice. Molecules 2023; 28:molecules28041953. [PMID: 36838940 PMCID: PMC9961369 DOI: 10.3390/molecules28041953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/06/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Exposure to medium and high doses of ionizing radiation (IR) can induce long-term bone marrow (BM) suppression. We previously showed that recombinant human thrombopoietin (rhTPO) significantly promotes recovery from hematopoietic-acute radiation syndrome, but its effect on long-term BM suppression remains unknown. C57BL/6 mice were exposed to 6.5 Gy γ-rays of total body irradiation (TBI) at a dose-rate of 63.01 cGy per minute, and the mice were treated with rhTPO (100 μg; intramuscular injection) or vehicle at 2 h after TBI. All mice were killed one or two months after TBI for analysis of peripheral blood cell counts, long-term hematopoietic stem cell (HSC) frequency, and BM-derived clonogenic activity. The HSC self-renewal capacity was analyzed by BM transplantation. The levels of reactive oxygen species (ROS) production and ratios of γH2AX+ and p16, p53, and p21 mRNA in HSCs were measured by flow cytometry and real-time polymerase chain reaction, respectively. Treatment with rhTPO reduced long-term myelosuppression by improving long-term hematopoietic reconstitution (p < 0.05) after transplantation and resting state maintenance of HSCs (p < 0.05). Moreover, rhTPO treatment was associated with a sustained reduction in long-term ROS production, reduction of long-term DNA damage, diminished p53/p21 mRNA expression, and prevention of senescence after TBI. This study suggests rhTPO is an effective agent for treating IR-induced long-term BM injury because it regulates hematopoietic remodeling and HSC cycle disorder through the ROS/p53/p21/p16 pathway long term after IR.
Collapse
|
32
|
Fathy MM, Elfiky AA, Bashandy YS, Hamdy MM, Elgharib AM, Ibrahim IM, Kamal RT, Mohamed AS, Rashad AM, Ahmed OS, Elkaramany Y, Abdelaziz YS, Amin FG, Eid JI. An insight into synthesis and antitumor activity of citrate and gallate stabilizing gold nanospheres. Sci Rep 2023; 13:2749. [PMID: 36797452 PMCID: PMC9935520 DOI: 10.1038/s41598-023-29821-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Both gallic and citrate are well-established antioxidants that show promise as new selective anti-cancer drugs. Gold nanoparticles (AuNPs) as well can be developed as flexible and nontoxic nano-carriers for anti-cancer drugs. This article evaluating the efficiency and biocompatibility of gallic acid and citrate capping gold nanoparticles to be used as anti-cancer drug. The biosafety and therapeutic efficiency of prepared nano-formulations were tested on Hela and normal BHK cell line. Gold nanospheres coated with citrate and gallate were synthesized via wet chemical reduction method. The prepared nano-formulations, citrate and gallate coated gold nanospheres (Cit-AuNPs and Ga-AuNPs), were characterized with respect to their morphology, FTIR spectra, and physical properties. In addition, to assess their cytotoxicity, cell cycle arrest and flow cytometry to measure biological response were performed. Cit-Au NPs and Ga-Au NPs were shown to significantly reduce the viability of Hela cancer cells. Both G0/G cell cycle arrest and comet assay results showed that genotoxic effect was induced in Hela cells by Cit-Au NPs and Ga-Au NPs. The results of this study showed that Cit-Au NPs and Ga-AuNPs inhibit the growth of metastatic cervical cancer cells, which could have therapeutic implications.
Collapse
Affiliation(s)
- Mohamed M. Fathy
- grid.7776.10000 0004 0639 9286Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Abdo A. Elfiky
- grid.7776.10000 0004 0639 9286Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Yousef S. Bashandy
- grid.7776.10000 0004 0639 9286Biotechnology and Biomolecular Chemistry Department, Cairo University, Giza, Egypt
| | - Mayar M. Hamdy
- grid.7776.10000 0004 0639 9286Biotechnology and Biomolecular Chemistry Department, Cairo University, Giza, Egypt
| | - Ahmed M. Elgharib
- grid.7776.10000 0004 0639 9286Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Ibrahim M. Ibrahim
- grid.7776.10000 0004 0639 9286Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Rana T. Kamal
- grid.7776.10000 0004 0639 9286Biotechnology and Biomolecular Chemistry Department, Cairo University, Giza, Egypt
| | - Ahmed S. Mohamed
- grid.7776.10000 0004 0639 9286Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Anan M. Rashad
- grid.7776.10000 0004 0639 9286Biotechnology and Biomolecular Chemistry Department, Cairo University, Giza, Egypt
| | - Ola S. Ahmed
- grid.7776.10000 0004 0639 9286Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Giza, Egypt
| | - Yomna Elkaramany
- grid.7776.10000 0004 0639 9286Biotechnology and Biomolecular Chemistry Department, Cairo University, Giza, Egypt
| | - Youssef S. Abdelaziz
- grid.7776.10000 0004 0639 9286Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Fatma G. Amin
- grid.7155.60000 0001 2260 6941Physics Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Jehane I. Eid
- grid.7776.10000 0004 0639 9286Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
33
|
Aziz MN, Nguyen L, Chang Y, Gout D, Pan Z, Lovely CJ. Novel thiazolidines of potential anti-proliferation properties against esophageal squamous cell carcinoma via ERK pathway. Eur J Med Chem 2023; 246:114909. [PMID: 36508971 DOI: 10.1016/j.ejmech.2022.114909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/25/2022]
Abstract
The discovery of a new class of extracellular-signal-regulated kinase (ERK) inhibitors has been achieved via developing novel 2-imino-5-arylidene-thiazolidine analogues. A novel synthetic method employing a solid support-mediated reaction was used to construct the targeted thiazolidines through a cascade reaction with good yields. The chemical and physical stability of the new thiazolidine library has successfully been achieved by blocking the labile C5-position to aerobic oxidation. A cell viability study was performed using esophageal squamous cell carcinoma cell lines (KYSE-30 and KYSE-150) and non-tumorous esophageal epithelial cell lines (HET-1A and NES-G4T) through utilization of an MTT assay, revealing that (Z)-5-((Z)-4-bromobenzylidene)-N-(4-methoxy-2-nitrophenyl)-4,4-dimethylthiazolidin-2-imine (6g) was the best compound among the synthesized library in terms of selectivity. DAPI staining experiments were performed to visualize the morphological changes and to investigate the apoptotic activity. Moreover, western blots were used to probe the mechanism/pathway behind the observed activity/selectivity of thiazolidine 6g which established selective inhibition of phosphorylation in the ERK pathway. Molecular modeling techniques have been utilized to confirm the observed activity. A molecular docking study revealed similar binding interactions between the synthesized thiazolidines and reported co-crystalized inhibitors with ERK proteins. Thus, the present study provides a starting point for the development of interesting bioactive 2-imino-5-arylidene-thiazolidines.
Collapse
Affiliation(s)
- Marian N Aziz
- Department of Chemistry and Biochemistry, 700 Planetarium Place, University of Texas at Arlington, TX, 76019, USA; Department of Pesticide Chemistry, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Linh Nguyen
- Dept. of Biology, College of Science, University of Texas at Arlington, TX, 76019, USA; Department of Graduate Nursing, College of Nursing and Health Innovation, University of Texas at Arlington, TX, 76019, USA
| | - Yan Chang
- Department of Graduate Nursing, College of Nursing and Health Innovation, University of Texas at Arlington, TX, 76019, USA; Bone and Muscle Research Center, University of Texas at Arlington, TX, 76019, USA
| | - Delphine Gout
- Department of Chemistry and Biochemistry, 700 Planetarium Place, University of Texas at Arlington, TX, 76019, USA
| | - Zui Pan
- Department of Graduate Nursing, College of Nursing and Health Innovation, University of Texas at Arlington, TX, 76019, USA; Bone and Muscle Research Center, University of Texas at Arlington, TX, 76019, USA
| | - Carl J Lovely
- Department of Chemistry and Biochemistry, 700 Planetarium Place, University of Texas at Arlington, TX, 76019, USA.
| |
Collapse
|
34
|
Paskeh MDA, Ghadyani F, Hashemi M, Abbaspour A, Zabolian A, Javanshir S, Razzazan M, Mirzaei S, Entezari M, Goharrizi MASB, Salimimoghadam S, Aref AR, Kalbasi A, Rajabi R, Rashidi M, Taheriazam A, Sethi G. Biological impact and therapeutic perspective of targeting PI3K/Akt signaling in hepatocellular carcinoma: Promises and Challenges. Pharmacol Res 2023; 187:106553. [PMID: 36400343 DOI: 10.1016/j.phrs.2022.106553] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
Cancer progression results from activation of various signaling networks. Among these, PI3K/Akt signaling contributes to proliferation, invasion, and inhibition of apoptosis. Hepatocellular carcinoma (HCC) is a primary liver cancer with high incidence rate, especially in regions with high prevalence of viral hepatitis infection. Autoimmune disorders, diabetes mellitus, obesity, alcohol consumption, and inflammation can also lead to initiation and development of HCC. The treatment of HCC depends on the identification of oncogenic factors that lead tumor cells to develop resistance to therapy. The present review article focuses on the role of PI3K/Akt signaling in HCC progression. Activation of PI3K/Akt signaling promotes glucose uptake, favors glycolysis and increases tumor cell proliferation. It inhibits both apoptosis and autophagy while promoting HCC cell survival. PI3K/Akt stimulates epithelial-to-mesenchymal transition (EMT) and increases matrix-metalloproteinase (MMP) expression during HCC metastasis. In addition to increasing colony formation capacity and facilitating the spread of tumor cells, PI3K/Akt signaling stimulates angiogenesis. Therefore, silencing PI3K/Akt signaling prevents aggressive HCC cell behavior. Activation of PI3K/Akt signaling can confer drug resistance, particularly to sorafenib, and decreases the radio-sensitivity of HCC cells. Anti-cancer agents, like phytochemicals and small molecules can suppress PI3K/Akt signaling by limiting HCC progression. Being upregulated in tumor tissues and clinical samples, PI3K/Akt can also be used as a biomarker to predict patients' response to therapy.
Collapse
Affiliation(s)
- Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Ghadyani
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Alireza Abbaspour
- Cellular and Molecular Research Center,Qazvin University of Medical Sciences, Qazvin, Iran
| | - Amirhossein Zabolian
- Resident of department of Orthopedics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Salar Javanshir
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrnaz Razzazan
- Medical Student, Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Translational Sciences, Xsphera Biosciences Inc. 6, Tide Street, Boston, MA 02210, USA
| | - Alireza Kalbasi
- Department of Pharmacy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.
| |
Collapse
|
35
|
Xia Y, Luo Q, Huang C, Shi L, Jahangir A, Pan T, Wei X, He J, Liu W, Shi R, Geng Y, Fang J, Tang L, Guo H, Ouyang P, Chen Z. Ferric citrate-induced colonic mucosal damage associated with oxidative stress, inflammation responses, apoptosis, and the changes of gut microbial composition. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114364. [PMID: 36508806 DOI: 10.1016/j.ecoenv.2022.114364] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 09/05/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Ferric citrate (FC) has been used as an iron fortifier and nutritional supplement, which is reported to induce colitis in rats, however the underlying mechanism remains to be elucidated. We performed a 16-week study of FC in male healthy C57BL/6 mice (nine-month-old) with oral administration of Ctr (0.9 % NaCl), 1.25 % FC (71 mg/kg/bw), 2.5 % FC (143 mg/kg/bw) and 5 % FC (286 mg/kg/bw). FC-exposure resulted in colon iron accumulation, histological alteration and reduce antioxidant enzyme activities, such as glutathione (GSH), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and total antioxidant capacity (T-AOC), together with enhanced lipid peroxidation level, including malondialdehyde (MDA) level and 4-Hydroxynonenal (4-HNE) protein expression. Exposure to FC was associated with upregulated levels of the interleukin (IL)- 6, IL-1β, IL-18, IL-8 and tumor necrosis factor α (TNF-α), while down-regulated levels of IL-4 and IL-10. Exposure to FC was positively associated with the mRNA and protein expressions of cysteine-aspartic proteases (Caspase)- 9, Caspase-3, Bcl-2-associated X protein (Bax), while negatively associated with B-cell lymphoma 2 (Bcl2) in mitochondrial apoptosis signaling pathway. FC-exposure changed the diversity and composition of gut microbes. Additionally, the serum lipopolysaccharide (LPS) contents increased in FC-exposed groups when compared with the control group, while the expression of colonic tight junction proteins (TJPs), such as Claudin-1 and Occludin were decreased. These findings indicate that the colonic mucosal injury induced by FC-exposure are associated with oxidative stress generation, inflammation response and cell apoptosis, as well as the changes in gut microbes diversity and composition.
Collapse
Affiliation(s)
- Yu Xia
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Qihui Luo
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Chao Huang
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Liangqin Shi
- Chengdu University of Traditional Chinese Medicine, College of Basic Medicine, Chengdu 611130, China
| | - Asad Jahangir
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Ting Pan
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoli Wei
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Junbo He
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Wentao Liu
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Riyi Shi
- Center for Paralysis Research & Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | - Yi Geng
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Jing Fang
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Tang
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongrui Guo
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Ping Ouyang
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhengli Chen
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
36
|
Alshiraihi I, Kato TA. Apoptosis Detection Assays. Methods Mol Biol 2023; 2519:53-63. [PMID: 36066709 DOI: 10.1007/978-1-0716-2433-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Many apoptosis assays are available since there are many proteins regulated at multiple points and involved in apoptosis signaling cascade. To detect apoptosis accurately, two or more assays should be used since there are many overlapped features between apoptosis and necrosis. There are six major groups of available assays to detect apoptosis: membrane alteration, mitochondrial assays, cytomorphological alterations, DNA fragmentation, detection of caspase, cleaved substrate, inhibitors and regulators, and detection of apoptosis in whole mounts. Among those assay, early apoptosis could be detected through annexin V, which is based on the loss of the cellular membrane integrity. Also, there are many assays that can detect midphase of apoptosis using caspase activation and molecular processing including PARP degradation. Late phase of apoptosis could be detected with DNA fragmentation assays. Combinations of these assays allow us to identify the mechanisms of apoptosis induction after specific stimulus. This chapter will introduce three apoptosis detection assays including annexin assay, DNA/chromatin condensation assays, and TUNEL assay.
Collapse
Affiliation(s)
- Ilham Alshiraihi
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Takamitsu A Kato
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
37
|
Cal BBF, Araújo LBN, Nunes BM, da Silva CR, Oliveira MBN, Soares BO, Leitão AAC, de Pádula M, Nascimento D, Chaves DSA, Gagliardi RF, Dantas FJS. Cytotoxicity of Extracts from Petiveria alliacea Leaves on Yeast. PLANTS (BASEL, SWITZERLAND) 2022; 11:3263. [PMID: 36501303 PMCID: PMC9741084 DOI: 10.3390/plants11233263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/10/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Petiveria alliacea L. is a plant used in traditional medicine harboring pharmacological properties with anti-inflammatory, antinociceptive, hypoglycemiant and anesthetic activities. This study assessed the potential cytotoxic, genotoxic and mutagenic effects of ethanolic extract of P. alliacea on Saccharomyces cerevisiae strains. S. cerevisiae FF18733 (wild type) and CD138 (ogg1) strains were exposed to fractioned ethanolic extracts of P. alliacea in different concentrations. Three experimental assays were performed: cellular inactivation, mutagenesis (canavanine resistance system) and loss of mitochondrial function (petites colonies). The chemical analyses revealed a rich extract with phenolic compounds such as protocatechuic acid, cinnamic and catechin epicatechin. A decreased cell viability in wild-type and ogg1 strains was demonstrated. All fractions of the extract exerted a mutagenic effect on the ogg1 strain. Only ethyl acetate and n-butanol fractions increased the rate of petites colonies in the ogg1 strain, but not in the wild-type strain. The results indicate that fractions of mid-polarity of the ethanolic extract, at the studied concentrations, can induce mutagenicity mediated by oxidative lesions in the mitochondrial and genomic genomes of the ogg1-deficient S. cerevisiae strain. These findings indicate that the lesions caused by the fractions of P. alliacea ethanolic extract can be mediated by reactive oxygen species and can reach multiple molecular targets to exert their toxicity.
Collapse
Affiliation(s)
- Bruna B. F. Cal
- Departamento de Biofísica e Biometria, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20551-030, Brazil
| | - Luana B. N. Araújo
- Departamento de Biofísica e Biometria, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20551-030, Brazil
| | - Brenno M. Nunes
- Departamento de Biofísica e Biometria, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20551-030, Brazil
| | - Claudia R. da Silva
- Departamento de Biofísica e Biometria, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20551-030, Brazil
| | - Marcia B. N. Oliveira
- Departamento de Biofísica e Biometria, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20551-030, Brazil
| | - Bianka O. Soares
- Núcleo de Biotecnologia Vegetal, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20550-013, Brazil
| | - Alvaro A. C. Leitão
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| | - Marcelo de Pádula
- Laboratório de Microbiologia e Avaliação Genotóxica (LAMIAG), Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| | - Debora Nascimento
- Laboratório de Química de Bioativos Naturais, Departamento de Ciências Farmacêuticas, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Rio de Janeiro 23897-000, Brazil
| | - Douglas S. A. Chaves
- Laboratório de Química de Bioativos Naturais, Departamento de Ciências Farmacêuticas, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Rio de Janeiro 23897-000, Brazil
| | - Rachel F. Gagliardi
- Núcleo de Biotecnologia Vegetal, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20550-013, Brazil
| | - Flavio J. S. Dantas
- Departamento de Biofísica e Biometria, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20551-030, Brazil
| |
Collapse
|
38
|
Behnke A, Mack M, Fieres J, Christmann M, Bürkle A, Moreno-Villanueva M, Kolassa IT. Expression of DNA repair genes and its relevance for DNA repair in peripheral immune cells of patients with posttraumatic stress disorder. Sci Rep 2022; 12:18641. [PMID: 36333408 PMCID: PMC9636148 DOI: 10.1038/s41598-022-22001-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Posttraumatic stress disorder (PTSD) involves elevated levels of cellular oxidative stress which jeopardizes the integrity of essential cell compartments. Previously, we demonstrated higher levels of DNA lesions in peripheral blood mononuclear cells (PBMCs) in PTSD. Retaining vital levels of DNA integrity requires cells to mobilize compensatory efforts in elevating their DNA-repair capacity. Accordingly, we hypothesized to find increased expression rates of the DNA-repair genes X-ray repair cross complementing 1 (XRCC1), poly (ADP-ribose) polymerase 1 (PARP1), and polymerase β (Polβ) in PBMCs of PTSD patients as compared to controls, leading to functionally relevant changes in DNA-repair kinetics. In a cohort of 14 refugees with PTSD and 15 without PTSD, we found significantly higher XRCC1 expression in PTSD patients than controls (U = 161.0, p = 0.009, Cohen's r = 0.49), and positive correlations between the severity of PTSD symptoms and the expression of XRCC1 (rS = 0.57, p = 0.002) and PARP1 (rS = 0.43, p = 0.022). Higher XRCC1 (F = 2.39, p = 0.010, η2p = 0.10) and PARP1 (F = 2.15, p = 0.022, η2p = 0.09) expression accounted for slower repair of experimentally X-ray irradiation-induced DNA damage, highlighting the possible physiological relevance of altered DNA-repair gene expression in PTSD. Our study provides first evidence for a compensatory regulation of DNA-repair mechanisms in PTSD. We discuss the implications of increased DNA damage and altered DNA-repair mechanisms in immune senescence, premature aging, and increased physical morbidity in PTSD.
Collapse
Affiliation(s)
- Alexander Behnke
- grid.6582.90000 0004 1936 9748Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, Albert-Einstein-Allee 47, 89081 Ulm, Germany
| | - Matthias Mack
- grid.6582.90000 0004 1936 9748Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, Albert-Einstein-Allee 47, 89081 Ulm, Germany ,grid.9811.10000 0001 0658 7699Molecular Toxicology, Department of Biology, University of Konstanz, 78457 Constance, Germany
| | - Judy Fieres
- grid.9811.10000 0001 0658 7699Molecular Toxicology, Department of Biology, University of Konstanz, 78457 Constance, Germany ,grid.9811.10000 0001 0658 7699Department of Sport Science, Human Performance Research Centre, University of Konstanz, 78457 Constance, Germany
| | - Markus Christmann
- grid.5802.f0000 0001 1941 7111Applied Toxicology, Institute of Toxicology, University of Mainz, 55131 Mainz, Germany
| | - Alexander Bürkle
- grid.9811.10000 0001 0658 7699Molecular Toxicology, Department of Biology, University of Konstanz, 78457 Constance, Germany
| | - María Moreno-Villanueva
- grid.9811.10000 0001 0658 7699Molecular Toxicology, Department of Biology, University of Konstanz, 78457 Constance, Germany ,grid.9811.10000 0001 0658 7699Department of Sport Science, Human Performance Research Centre, University of Konstanz, 78457 Constance, Germany
| | - Iris-Tatjana Kolassa
- grid.6582.90000 0004 1936 9748Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, Albert-Einstein-Allee 47, 89081 Ulm, Germany ,grid.9811.10000 0001 0658 7699Centre of Excellence for Psychotraumatology, Clinical Psychology and Neuropsychology, University of Konstanz, 78464 Constance, Germany
| |
Collapse
|
39
|
Okonkwo UC, Ohagwu CC, Aronu ME, Okafor CE, Idumah CI, Okokpujie IP, Chukwu NN, Chukwunyelu CE. Ionizing radiation protection and the linear No-threshold controversy: Extent of support or counter to the prevailing paradigm. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2022; 253-254:106984. [PMID: 36057228 DOI: 10.1016/j.jenvrad.2022.106984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
This study has developed a relationship that categorized radiation protection and allows for a proper, clear, and concise review of the different classifications in terms of principles of protection, dose criteria, categories, fundamental tools, exposure situations, applications and control measures. With the groundwork laid, advances of the linear no-threshold (LNT) model which has attracted attention in the field of radiobiology and epidemiology were examined in detail. Various plausible dose-response relationship scenarios were x-rayed under low-dose extrapolation. Intensive review of factors opposing the LNT model involving radiophobia (including misdiagnosis, alternative surgery/imaging, suppression of ionizing radiation (IR) research); radiobiology (including DNA damage repair, apoptosis/necrosis, senescence protection) and cost issues (including-high operating cost of LNT, incorrect prioritization, exaggeration of LNT impact, risk-to-benefit analysis) were performed. On the other hand, factors supporting the use of LNT were equally examined, they include regulatory bodies' endorsement, insufficient statistical significance, partial DNA repair, variability of irradiated bodies, different latency periods for cancer, dynamic nature of threshold and conflicting interests. After considering the gaps in the scientific investigations that either support or counter the scientific paradigm on the use of LNT model, further research and advocacy is recommended that will ultimately lead to the acceptance of an alternative paradigm by the international regulators.
Collapse
Affiliation(s)
- Ugochukwu C Okonkwo
- Department of Mechanical Engineering, Nnamdi Azikiwe University, Awka, Nigeria.
| | - Christopher C Ohagwu
- Department of Radiography and Radiological Sciences, Nnamdi Azikiwe University, Awka, Nigeria
| | - Michael E Aronu
- Department of Radiology, Nnamdi Azikiwe University, Awka, Nigeria
| | - Christian E Okafor
- Department of Mechanical Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| | - Christopher I Idumah
- Department of Polymer and Textile Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| | - Imhade P Okokpujie
- Department of Mechanical and Mechatronic Engineering, Afe-Babalola University, Ado-Ekiti, Nigeria
| | - Nelson N Chukwu
- National Engineering Design Development Institute, Nnewi, Anambra State, Nigeria
| | | |
Collapse
|
40
|
Zhao Y, Liu Z, Wang L, Liu H. Fumonisin B1 as a Tool to Explore Sphingolipid Roles in Arabidopsis Primary Root Development. Int J Mol Sci 2022; 23:12925. [PMID: 36361715 PMCID: PMC9654530 DOI: 10.3390/ijms232112925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 03/28/2024] Open
Abstract
Fumonisin B1 is a mycotoxin that is structurally analogous to sphinganine and sphingosine and inhibits the biosynthesis of complex sphingolipids by repressing ceramide synthase. Based on the connection between FB1 and sphingolipid metabolism, FB1 has been widely used as a tool to explore the multiple functions of sphingolipids in mammalian and plant cells. The aim of this work was to determine the effect of sphingolipids on primary root development by exposing Arabidopsis (Arabidopsis thaliana) seedlings to FB1. We show that FB1 decreases the expression levels of several PIN-FORMED (PIN) genes and the key stem cell niche (SCN)-defining transcription factor genes WUSCHEL-LIKE HOMEOBOX5 (WOX5) and PLETHORAs (PLTs), resulting in the loss of quiescent center (QC) identity and SCN maintenance, as well as stunted root growth. In addition, FB1 induces cell death at the root apical meristem in a non-cell-type-specific manner. We propose that sphingolipids play a key role in primary root growth through the maintenance of the root SCN and the amelioration of cell death in Arabidopsis.
Collapse
Affiliation(s)
- Yanxue Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475000, China
| | - Zhongjie Liu
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Lei Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475000, China
| | - Hao Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475000, China
| |
Collapse
|
41
|
Lee J, Lim JW, Kim H. Astaxanthin Inhibits Oxidative Stress-Induced Ku Protein Degradation and Apoptosis in Gastric Epithelial Cells. Nutrients 2022; 14:nu14193939. [PMID: 36235593 PMCID: PMC9570747 DOI: 10.3390/nu14193939] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Oxidative stress induces DNA damage which can be repaired by DNA repair proteins, such as Ku70/80. Excess reactive oxygen species (ROS) stimulate the activation of caspase-3, which degrades Ku 70/80. Cells with decreased Ku protein levels undergo apoptosis. Astaxanthin exerts antioxidant activity by inducing the expression of catalase, an antioxidant enzyme, in gastric epithelial cells. Therefore, astaxanthin may inhibit oxidative stress-induced DNA damage by preventing Ku protein degradation and thereby suppressing apoptosis. Ku proteins can be degraded via ubiquitination and neddylation which adds ubiquitin-like protein to substrate proteins. We aimed to determine whether oxidative stress decreases Ku70/80 expression through the ubiquitin–proteasome pathway to induce apoptosis and whether astaxanthin inhibits oxidative stress-induced changes in gastric epithelial AGS cells. We induced oxidative stress caused by the treatment of β-D-glucose (G) and glucose oxidase (GO) in the cells. As a result, the G/GO treatment increased ROS levels, decreased nuclear Ku protein levels and Ku-DNA-binding activity, and induced the ubiquitination of Ku80. G/GO increased the DNA damage marker levels (γ-H2AX; DNA fragmentation) and apoptosis marker annexin V-positive cells and cell death. Astaxanthin inhibited G/GO-induced alterations, including Ku degradation in AGS cells. MLN4924, a neddylation inhibitor, and MG132, a proteasome inhibitor, suppressed G/GO-mediated DNA fragmentation and decreased cell viability. These results indicated that G/GO-induced oxidative stress causes Ku protein loss through the ubiquitin–proteasome pathway, resulting in DNA fragmentation and apoptotic cell death. Astaxanthin inhibited oxidative stress-mediated apoptosis via the reduction of ROS levels and inhibition of Ku protein degradation. In conclusion, dietary astaxanthin supplementation or astaxanthin-rich food consumption may be effective for preventing or delaying oxidative stress-mediated cell damage by suppressing Ku protein loss and apoptosis in gastric epithelial cells.
Collapse
Affiliation(s)
| | | | - Hyeyoung Kim
- Correspondence: ; Tel.: +82-2-2123-3125; Fax: +82-2-364-5781
| |
Collapse
|
42
|
α-Lipoic Acid Inhibits Apoptosis by Suppressing the Loss of Ku Proteins in Helicobacter pylori-Infected Human Gastric Epithelial Cells. Nutrients 2022; 14:nu14153206. [PMID: 35956382 PMCID: PMC9370604 DOI: 10.3390/nu14153206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori (H. pylori) is a Gram-negative bacterium that colonizes the gastric mucosa and triggers various stomach diseases. H. pylori induces reactive oxygen species (ROS) production and DNA damage. The heterodimeric Ku70/Ku80 protein plays an essential role in the repair of DNA double-strand breaks (DSB). Oxidative stress stimulate apoptosis and DNA damage that can be repaired by Ku70/80. However, excessive reactive oxygen species (ROS) can cause Ku protein degradation, resulting in DNA fragmentation and apoptosis. α-lipoic acid (α-LA), which is found in organ meats such as liver and heart, spinach, broccoli, and potatoes, quenches free radicals, chelates metal ions, and reduces intracellular DNA damage induced by oxidative stress. Here, we investigated whether H. pylori decreases Ku70/80 and induces apoptosis, and whether α-LA inhibits changes induced by H. pylori. We analyzed ROS, DNA damage markers (γ-H2AX, DNA fragmentation), levels of Ku70/80, Ku-DNA binding activity, Ku80 ubiquitination, apoptosis indices (Bcl-2, Bax, apoptosis-inducing factor (AIF), and caspase-3), and viability in a human gastric epithelial adenocarcinoma cell line (AGS). H. pylori increased ROS, DNA damage markers, Ku80 ubiquitination, and consequently induced apoptosis. It also decreased nuclear Ku70/80 levels and Ku-DNA-binding activity; increased Bax expression, caspase-3 cleavage, and truncated AIF; but decreased Bcl-2 expression. These H. pylori-induced alterations were inhibited by α-LA. The antioxidant N-acetylcysteine and proteasome inhibitor MG-132 suppressed H. pylori-induced cell death and decreased nuclear Ku70/80 levels. The results show that oxidative stress induced Ku70/80 degradation via the ubiquitin-proteasome system, leading to its nuclear loss and apoptosis in H. pylori-infected cells. In conclusion, α-LA inhibited apoptosis induced by H. pylori by reducing ROS levels and suppressing the loss of Ku70/80 proteins in AGS cells.
Collapse
|
43
|
Zhang G, Dong D, Wan X, Zhang Y. Cardiomyocyte death in sepsis: Mechanisms and regulation (Review). Mol Med Rep 2022; 26:257. [PMID: 35703348 PMCID: PMC9218731 DOI: 10.3892/mmr.2022.12773] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 05/20/2022] [Indexed: 11/06/2022] Open
Abstract
Sepsis‑induced cardiac dysfunction is one of the most common types of organ dysfunction in sepsis; its pathogenesis is highly complex and not yet fully understood. Cardiomyocytes serve a key role in the pathophysiology of cardiac function; due to the limited ability of cardiomyocytes to regenerate, their loss contributes to decreased cardiac function. The activation of inflammatory signalling pathways affects cardiomyocyte function and modes of cardiomyocyte death in sepsis. Prevention of cardiomyocyte death is an important therapeutic strategy for sepsis‑induced cardiac dysfunction. Thus, understanding the signalling pathways that activate cardiomyocyte death and cross‑regulation between death modes are key to finding therapeutic targets. The present review focused on advances in understanding of sepsis‑induced cardiomyocyte death pathways, including apoptosis, necroptosis, mitochondria‑mediated necrosis, pyroptosis, ferroptosis and autophagy. The present review summarizes the effect of inflammatory activation on cardiomyocyte death mechanisms, the diversity of regulatory mechanisms and cross‑regulation between death modes and the effect on cardiac function in sepsis to provide a theoretical basis for treatment of sepsis‑induced cardiac dysfunction.
Collapse
Affiliation(s)
- Geping Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Dan Dong
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Xianyao Wan
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Yongli Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
44
|
Agborbesong E, Li LX, Li L, Li X. Molecular Mechanisms of Epigenetic Regulation, Inflammation, and Cell Death in ADPKD. Front Mol Biosci 2022; 9:922428. [PMID: 35847973 PMCID: PMC9277309 DOI: 10.3389/fmolb.2022.922428] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a genetic disorder, which is caused by mutations in the PKD1 and PKD2 genes, characterizing by progressive growth of multiple cysts in the kidneys, eventually leading to end-stage kidney disease (ESKD) and requiring renal replacement therapy. In addition, studies indicate that disease progression is as a result of a combination of factors. Understanding the molecular mechanisms, therefore, should facilitate the development of precise therapeutic strategies for ADPKD treatment. The roles of epigenetic modulation, interstitial inflammation, and regulated cell death have recently become the focuses in ADPKD. Different epigenetic regulators, and the presence of inflammatory markers detectable even before cyst growth, have been linked to cyst progression. Moreover, the infiltration of inflammatory cells, such as macrophages and T cells, have been associated with cyst growth and deteriorating renal function in humans and PKD animal models. There is evidence supporting a direct role of the PKD gene mutations to the regulation of epigenetic mechanisms and inflammatory response in ADPKD. In addition, the role of regulated cell death, including apoptosis, autophagy and ferroptosis, have been investigated in ADPKD. However, there is no consensus whether cell death promotes or delays cyst growth in ADPKD. It is therefore necessary to develop an interactive picture between PKD gene mutations, the epigenome, inflammation, and cell death to understand why inherited PKD gene mutations in patients may result in the dysregulation of these processes that increase the progression of renal cyst formation.
Collapse
Affiliation(s)
- Ewud Agborbesong
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Linda Xiaoyan Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Lu Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
45
|
Huang F, Dai C, Zhang Y, Zhao Y, Wang Y, Ru G. Development of Molecular Mechanisms and Their Application on Oncolytic Newcastle Disease Virus in Cancer Therapy. Front Mol Biosci 2022; 9:889403. [PMID: 35860357 PMCID: PMC9289221 DOI: 10.3389/fmolb.2022.889403] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer is caused by the destruction or mutation of cellular genetic materials induced by environmental or genetic factors. It is defined by uncontrolled cell proliferation and abnormality of the apoptotic pathways. The majority of human malignancies are characterized by distant metastasis and dissemination. Currently, the most common means of cancer treatment include surgery, radiotherapy, and chemotherapy, which usually damage healthy cells and cause toxicity in patients. Targeted therapy is an effective tumor treatment method with few side effects. At present, some targeted therapeutic drugs have achieved encouraging results in clinical studies, but finding an effective solution to improve the targeting and delivery efficiency of these drugs remains a challenge. In recent years, oncolytic viruses (OVs) have been used to direct the tumor-targeted therapy or immunotherapy. Newcastle disease virus (NDV) is a solid oncolytic agent capable of directly killing tumor cells and increasing tumor antigen exposure. Simultaneously, NDV can trigger the proliferation of tumor-specific immune cells and thus improve the therapeutic efficacy of NDV in cancer. Based on NDV’s inherent oncolytic activity and the stimulation of antitumor immune responses, the combination of NDV and other tumor therapy approaches can improve the antitumor efficacy while reducing drug toxicity, indicating a broad application potential. We discussed the biological properties of NDV, the antitumor molecular mechanisms of oncolytic NDV, and its application in the field of tumor therapy in this review. Furthermore, we presented new insights into the challenges that NDV will confront and suggestions for increasing NDV’s therapeutic efficacy in cancer.
Collapse
Affiliation(s)
- Fang Huang
- Cancer Center, Department of Pathology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Chuanjing Dai
- Cancer Center, Department of Pathology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- College of Life Sciences and Medicine, Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, Hangzhou, China
| | - Youni Zhang
- College of Life Sciences and Medicine, Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, Hangzhou, China
- Department of Laboratory Medicine, Tiantai People’s Hospital, Taizhou, China
| | - Yuqi Zhao
- College of Life Sciences and Medicine, Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yigang Wang
- College of Life Sciences and Medicine, Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, Hangzhou, China
- *Correspondence: Yigang Wang, ; Guoqing Ru,
| | - Guoqing Ru
- Cancer Center, Department of Pathology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- *Correspondence: Yigang Wang, ; Guoqing Ru,
| |
Collapse
|
46
|
Tang J, Zhang Z, Miao J, Tian Y, Pan L. Effects of benzo[a]pyrene exposure on oxidative stress and apoptosis of gill cells of Chlamys farreri in vitro. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 93:103867. [PMID: 35483583 DOI: 10.1016/j.etap.2022.103867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 03/30/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
As a common pollutant in marine environment, benzo[a]pyrene (B[a]P) has high toxicity to economic shellfish. In order to explore the mechanism of oxidative stress and apoptosis, the effects of 0, 2, 4, 8 μg/mL B[a]P on gill cells of C. farreri at 12 and 24 h were studied. The results showed that B[a]P decreased the activity of gill cells, increased the content of reactive oxygen species (ROS) and the expression of antioxidant defense genes. Besides, B[a]P could induce oxidative damage to nucleus and mitochondria. The gene expression and enzyme activity of apoptosis pathway related factors were changed. In conclusion, these results showed that B[a]P could cause oxidative stress and oxidative damage in gill cells of C. farreri, and mediate gill cell apoptosis through mitochondrial pathway and death receptor pathway. This article provides a theoretical basis for clarifying the molecular mechanism of PAHs-included oxidative stress and apoptosis in bivalves.
Collapse
Affiliation(s)
- Jian Tang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Zixian Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Yimeng Tian
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
47
|
Codonopsis laceolata Water Extract Ameliorates Asthma Severity by Inducing Th2 Cells’ and Pulmonary Epithelial Cells’ Apoptosis via NF-κB/COX-2 Pathway. Processes (Basel) 2022. [DOI: 10.3390/pr10071249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Asthma is an incurable pulmonary disease with several symptoms, including abnormal breathing, coughing, and sleep apnea, which can lead to death, and the population of asthma patients has been increasing worldwide. There are many adverse effects in current drugs, and thus, we have tried to develop anti-asthmatic agents from natural products such as Codonopsis laceolata. To define the anti-asthmatic effect and the mechanism of Codonopsis laceolata, an animal study was conducted considering different cell counts of BALF, serum IgE levels, morphological changes in the pulmonary system, the Th2 cell transcription factor (GATA-3), and the apoptotic pathway (NF-κB/COX-2). Codonopsis laceolata significantly suppressed the representative asthmatic changes, such as airway remodeling, mucous hypersecretion, epithelial hyperplasia, and inflammatory cell infiltration, in the respiratory system. It suppressed the levels of GATA-3, IL-4, and IL-13. The down-regulation of Th2-related factors, such as GATA-3, IL-4, and IL-13, results from the stimulated apoptosis of Th2 cells and epithelial cells via a decrease in the levels of NF-κB and COX-2. We concluded that Codonopsis laceolata might be a promising anti-asthmatic drug.
Collapse
|
48
|
Yin M, Wen W, Wang H, Zhao Q, Zhu H, Chen H, Li X, Qian P. Porcine Sapelovirus 3Cpro Inhibits the Production of Type I Interferon. Front Cell Infect Microbiol 2022; 12:852473. [PMID: 35782136 PMCID: PMC9240219 DOI: 10.3389/fcimb.2022.852473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/28/2022] [Indexed: 11/29/2022] Open
Abstract
Porcine sapelovirus (PSV) is the causative pathogen of reproductive obstacles, acute diarrhea, respiratory distress, or severe polioencephalomyelitis in swine. Nevertheless, the pathogenicity and pathogenic mechanism of PSV infection are not fully understood, which hinders disease prevention and control. In this study, we found that PSV was sensitive to type I interferon (IFN-β). However, PSV could not activate the IFN-β promoter and induce IFN-β mRNA expression, indicating that PSV has evolved an effective mechanism to block IFN-β production. Further study showed that PSV inhibited the production of IFN-β by cleaving mitochondrial antiviral signaling (MAVS) and degrading melanoma differentiation-associated gene 5 (MDA5) and TANK-binding kinase 1 (TBK1) through viral 3Cpro. In addition, our study demonstrated that PSV 3Cpro degrades MDA5 and TBK1 through its protease activity and cleaves MAVS through the caspase pathway. Collectively, our results revealed that PSV inhibits the production of type I interferon to escape host antiviral immunity through cleaving and degrading the adaptor molecules.
Collapse
Affiliation(s)
- Mengge Yin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Wei Wen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Haoyuan Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Qiongqiong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Hechao Zhu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic ProductsAgriculture of the People’s Republic of China, Ministry of Agriculture of the People’s Republic of China, Wuhan, China
- International Research Center for Animal DiseaseTechnology of the People’s Republic of China, Ministry of Science and Technology of the People’s Republic of China, Wuhan, China
| | - Xiangmin Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic ProductsAgriculture of the People’s Republic of China, Ministry of Agriculture of the People’s Republic of China, Wuhan, China
- International Research Center for Animal DiseaseTechnology of the People’s Republic of China, Ministry of Science and Technology of the People’s Republic of China, Wuhan, China
- *Correspondence: Xiangmin Li, ; Ping Qian,
| | - Ping Qian
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic ProductsAgriculture of the People’s Republic of China, Ministry of Agriculture of the People’s Republic of China, Wuhan, China
- International Research Center for Animal DiseaseTechnology of the People’s Republic of China, Ministry of Science and Technology of the People’s Republic of China, Wuhan, China
- *Correspondence: Xiangmin Li, ; Ping Qian,
| |
Collapse
|
49
|
Osacka J, Kiss A, Pirnik Z. Possible involvement of apoptosis in the antipsychotics side effects: A minireview. Clin Exp Pharmacol Physiol 2022; 49:836-847. [PMID: 35575958 DOI: 10.1111/1440-1681.13671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 01/04/2022] [Accepted: 05/11/2022] [Indexed: 11/28/2022]
Abstract
Antipsychotics are used in the treatment of schizophrenia and other psychiatric disorders. Generally they are divided into typical and atypical ones, according to the fact that atypical antipychotics induce less side effects and are more effective in terms of social and cognitive improvements. Their pharmacological effects are mediated via broad range of receptors that consequently influence different cellular signaling pathways. Antipsychotics produce udesirable side effects that range from relatively minor to life-threatening ones. In vitro and in vivo studies have pointed to neurotoxic effect exerted by some antipsychotics and have shown that apoptosis might play role in some side effects induced by antipsyschotics, including tardive dyskinesia, weight gain, agranulocytosis, osteoporosis, myocarditis, etc. Although cumulative data have suggested safety of atypical antipsychotics use during pregnancy some of them have been shown to induce apoptotic neurodegenerative and structural changes in fetal brains with long-lasting impact on cognitive impairment of offsprings. Typical antipsychotics seem to be more cytotoxic than atypical ones. Recently, epidemiological studies have shown lower incidence of cancer in schizophrenic patients what suggest ability of antipsychotics to suppress risk of cancer development. Some antipsychotics have been reported to inhibit cancer cell proliferation and induce their apoptosis. Thus, antipsychotics apoptotic effect may be used as a tool in the treatmnet of some types of cancer, especially in combinatorial therapies. In this minireview, we focused on pro- and anti-apototic or "Dr. Jekyll and Mr. Hyde" effects of antipsychotics, which can be involved in their side effects, as well as their promising therapeutical indications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jana Osacka
- Biomedical Research Center, Slovak Academy of Sciences, Institute of Experimental Endocrinology, Dubravska cesta 9, Bratislava, Slovakia
| | - Alexander Kiss
- Biomedical Research Center, Slovak Academy of Sciences, Institute of Experimental Endocrinology, Dubravska cesta 9, Bratislava, Slovakia
| | - Zdenko Pirnik
- Biomedical Research Center, Slovak Academy of Sciences, Institute of Experimental Endocrinology, Dubravska cesta 9, Bratislava, Slovakia.,Institute of Physiology, Faculty of Medicine Comenius University in Bratislava, Sasinkova 2, Bratislava, Slovakia.,Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam., 2Prague, Czech Republic
| |
Collapse
|
50
|
Silberberg E, Filep JG, Ariel A. Weathering the Storm: Harnessing the Resolution of Inflammation to Limit COVID-19 Pathogenesis. Front Immunol 2022; 13:863449. [PMID: 35615359 PMCID: PMC9124752 DOI: 10.3389/fimmu.2022.863449] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/22/2022] [Indexed: 12/13/2022] Open
Abstract
The resolution of inflammation is a temporally and spatially coordinated process that in its innate manifestations, primarily involves neutrophils and macrophages. The shutdown of infection or injury-induced acute inflammation requires termination of neutrophil accumulation within the affected sites, neutrophil demise, and clearance by phagocytes (efferocytosis), such as tissue-resident and monocyte-derived macrophages. This must be followed by macrophage reprogramming from the inflammatory to reparative and consequently resolution-promoting phenotypes and the production of resolution-promoting lipid and protein mediators that limit responses in various cell types and promote tissue repair and return to homeostatic architecture and function. Recent studies suggest that these events, and macrophage reprogramming to pro-resolving phenotypes in particular, are not only important in the acute setting, but might be paramount in limiting chronic inflammation, autoimmunity, and various uncontrolled cytokine-driven pathologies. The SARS-CoV-2 (COVID-19) pandemic has caused a worldwide health and economic crisis. Severe COVID-19 cases that lead to high morbidity are tightly associated with an exuberant cytokine storm that seems to trigger shock-like pathologies, leading to vascular and multiorgan failures. In other cases, the cytokine storm can lead to diffuse alveolar damage that results in acute respiratory distress syndrome (ARDS) and lung failure. Here, we address recent advances on effectors in the resolution of inflammation and discuss how pro-resolution mechanisms with particular emphasis on macrophage reprogramming, might be harnessed to limit the universal COVID-19 health threat.
Collapse
Affiliation(s)
- Esther Silberberg
- Department of Biology and Human Biology, University of Haifa, Haifa, Israel
| | - János G. Filep
- Department of Pathology and Cell Biology, University of Montreal, Montreal, QC, Canada
- Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada
- *Correspondence: Amiram Ariel, ; János G. Filep,
| | - Amiram Ariel
- Department of Biology and Human Biology, University of Haifa, Haifa, Israel
- *Correspondence: Amiram Ariel, ; János G. Filep,
| |
Collapse
|