1
|
Guo J, Yang WT, Mai FY, Liang JR, Luo J, Zhou MC, Yu DD, Wang YL, Li CG. Unravelling oncosis: morphological and molecular insights into a unique cell death pathway. Front Immunol 2024; 15:1450998. [PMID: 39281670 PMCID: PMC11393741 DOI: 10.3389/fimmu.2024.1450998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/07/2024] [Indexed: 09/18/2024] Open
Abstract
Programmed cell death (PCD) is a fundamental biological process for maintaining cellular equilibrium and regulating development, health, and disease across all living organisms. Among the various types of PCD, apoptosis plays a pivotal role in numerous diseases, notably cancer. Cancer cells frequently develop mechanisms to evade apoptosis, increasing resistance to standard chemotherapy treatments. This resistance has prompted extensive research into alternative mechanisms of programmed cell death. One such pathway is oncosis, characterized by significant energy consumption, cell swelling, dilation of the endoplasmic reticulum, mitochondrial swelling, and nuclear chromatin aggregation. Recent research suggests that oncosis can impact conditions such as chemotherapeutic cardiotoxicity, myocardial ischemic injury, stroke, and cancer, mediated by specific oncosis-related proteins. In this review, we provide a detailed examination of the morphological and molecular features of oncosis and discuss various natural or small molecule compounds that can induce this type of cell death. Additionally, we summarize the current understanding of the molecular mechanisms underlying oncosis and its role in both normal physiology and pathological conditions. These insights aim to illuminate future research directions and propose innovative strategies for leveraging oncosis as a therapeutic tool against human diseases and cancer resistance.
Collapse
Affiliation(s)
- Jie Guo
- Department of Rehabilitation Medicine, Shenzhen Second People's Hospital, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Wen-Tao Yang
- Pain Department of Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, China
| | - Feng-Yi Mai
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology School of Medicine, Shenzhen, China
| | - Jing-Rong Liang
- Pain Department of Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, China
| | - Jiao Luo
- Department of Rehabilitation Medicine, Shenzhen Second People's Hospital, Shenzhen, China
| | - Ming-Chao Zhou
- Department of Rehabilitation Medicine, Shenzhen Second People's Hospital, Shenzhen, China
| | - Dong-Dong Yu
- Department of Rehabilitation Medicine, Shenzhen Second People's Hospital, Shenzhen, China
| | - Yu-Long Wang
- Department of Rehabilitation Medicine, Shenzhen Second People's Hospital, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Chen-Guang Li
- Pain Department of Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, China
| |
Collapse
|
2
|
Feng T, Tang Z, Shu J, Wu X, Jiang H, Chen Z, Chen Y, Ji L, Chao H. A Cyclometalated Ruthenium(II) Complex Induces Oncosis for Synergistic Activation of Innate and Adaptive Immunity. Angew Chem Int Ed Engl 2024; 63:e202405679. [PMID: 38771671 DOI: 10.1002/anie.202405679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/07/2024] [Accepted: 05/21/2024] [Indexed: 05/23/2024]
Abstract
An optimal cancer chemotherapy regimen should effectively address the drug resistance of tumors while eliciting antitumor-immune responses. Research has shown that non-apoptotic cell death, such as pyroptosis and ferroptosis, can enhance the immune response. Despite this, there has been limited investigation and reporting on the mechanisms of oncosis and its correlation with immune response. Herein, we designed and synthesized a Ru(II) complex that targeted the nucleus and mitochondria to induce cell oncosis. Briefly, the Ru(II) complex disrupts the nucleus and mitochondria DNA, which active polyADP-ribose polymerase 1, accompanied by ATP consumption and porimin activation. Concurrently, mitochondrial damage and endoplasmic reticulum stress result in the release of Ca2+ ions and increased expression of Calpain 1. Subsequently, specific pore proteins porimin and Calpain 1 promote cristae destruction or vacuolation, ultimately leading to cell membrane rupture. The analysis of RNA sequencing demonstrates that the Ru(II) complex can initiate the oncosis-associated pathway and activate both innate and adaptive immunity. In vivo experiments have confirmed that oncosis promotes dendritic cell maturation and awakens adaptive cytotoxic T lymphocytes but also activates the innate immune by inducing the polarization of macrophages towards an M1 phenotype.
Collapse
Affiliation(s)
- Tao Feng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Zixin Tang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Jun Shu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Xianbo Wu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Hui Jiang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Zhuoli Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
- MOE Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 400201, P. R. China
| |
Collapse
|
3
|
Corsetti G, Pasini E, Scarabelli TM, Romano C, Singh A, Scarabelli CC, Dioguardi FS. Importance of Energy, Dietary Protein Sources, and Amino Acid Composition in the Regulation of Metabolism: An Indissoluble Dynamic Combination for Life. Nutrients 2024; 16:2417. [PMID: 39125298 PMCID: PMC11313897 DOI: 10.3390/nu16152417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
PURPOSE This paper aims to present a unique perspective that emphasizes the intricate interplay between energy, dietary proteins, and amino acid composition, underscoring their mutual dependence for health-related considerations. Energy and protein synthesis are fundamental to biological processes, crucial for the sustenance of life and the growth of organisms. METHODS AND RESULTS We explore the intricate relationship between energy metabolism, protein synthesis, regulatory mechanisms, protein sources, amino acid availability, and autophagy in order to elucidate how these elements collectively maintain cellular homeostasis. We underscore the vital role this dynamic interplay has in preserving cell life. CONCLUSIONS A deeper understanding of the link between energy and protein synthesis is essential to comprehend fundamental cellular processes. This insight could have a wide-ranging impact in several medical fields, such as nutrition, metabolism, and disease management.
Collapse
Affiliation(s)
- Giovanni Corsetti
- Division of Human Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25023 Brescia, Italy;
| | - Evasio Pasini
- Italian Association of Functional Medicine, 20855 Lesmo, Italy;
- Department of Clinical and Experimental Sciences, University of Brescia, 25023 Brescia, Italy
| | | | - Claudia Romano
- Division of Human Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25023 Brescia, Italy;
| | - Arashpreet Singh
- School of Osteopathic Medicine, Campbell University, Lillington, NC 27546, USA;
| | | | | |
Collapse
|
4
|
Lin YS, Sun Z, Shen LS, Gong RH, Chen JW, Xu Y, Yu H, Chen S, Chen GQ. Arnicolide D induces endoplasmic reticulum stress-mediated oncosis via ATF4 and CHOP in hepatocellular carcinoma cells. Cell Death Discov 2024; 10:134. [PMID: 38472168 DOI: 10.1038/s41420-024-01911-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/14/2024] Open
Abstract
Endoplasmic reticulum (ER) stress can trigger various cell death mechanisms beyond apoptosis, providing promise in cancer treatment. Oncosis, characterized by cellular swelling and increased membrane permeability, represents a non-apoptotic form of cell death. In our study, we discovered that Arnicolide D (AD), a natural sesquiterpene lactone compound, induces ER stress-mediated oncosis in hepatocellular carcinoma (HCC) cells, and this process is reactive oxygen species (ROS)-dependent. Furthermore, we identified the activation of the PERK-eIF2α-ATF4-CHOP pathway during ER stress as a pivotal factor in AD-induced oncosis. Notably, the protein synthesis inhibitor cycloheximide (CHX) was found to effectively reverse AD-induced oncosis, suggesting ATF4 and CHOP may hold crucial roles in the induction of oncosis by AD. These proteins play a vital part in promoting protein synthesis during ER stress, ultimately leading to cell death. Subsequent studies, in where we individually or simultaneously knocked down ATF4 and CHOP in HCC cells, provided further confirmation of their indispensable roles in AD-induced oncosis. Moreover, additional animal experiments not only substantiated AD's ability to inhibit HCC tumor growth but also solidified the essential role of ER stress-mediated and ROS-dependent oncosis in AD's therapeutic potential. In summary, our research findings strongly indicate that AD holds promise as a therapeutic agent for HCC by its ability to induce oncosis.
Collapse
Affiliation(s)
- Yu-Shan Lin
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Zhiwei Sun
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Li-Sha Shen
- Chongqing Academy of Chinese Materia Medica, Chongqing, 400065, China
| | - Rui-Hong Gong
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong, China
| | - Jia-Wen Chen
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 100193, Beijing, China
| | - Yanfeng Xu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Haiyang Yu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, and State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Sibao Chen
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China.
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong, China.
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 100193, Beijing, China.
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong, China.
| | - Guo-Qing Chen
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China.
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong, China.
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong, China.
| |
Collapse
|
5
|
Pan N, Zhang Y, Huang M, Liang Z, Gong Y, Chen X, Li Y, Wu C, Huang Z, Sun J. Lysosome-targeted ruthenium(II) complex encapsulated with pluronic ® F-127 induces oncosis in A549 cells. J Biol Inorg Chem 2024; 29:265-278. [PMID: 38189962 DOI: 10.1007/s00775-023-02039-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/09/2023] [Indexed: 01/09/2024]
Abstract
Transition metal complexes with characteristics of unique packaging in nanoparticles and remarkable cancer cell cytotoxicity have emerged as potential alternatives to platinum-based antitumor drugs. Here we report the synthesis, characterization, and antitumor activities of three new Ruthenium complexes that introduce 5-fluorouracil-derived ligands. Notably, encapsulation of one such metal complex, Ru3, within pluronic® F-127 micelles (Ru3-M) significantly enhanced Ru3 cytotoxicity toward A549 cells by a factor of four. To determine the mechanisms underlying Ru3-M cytotoxicity, additional in vitro experiments were conducted that revealed A549 cell treatment with lysosome-targeting Ru3-M triggered oxidative stress, induced mitochondrial membrane potential depolarization, and drastically reduced intracellular ATP levels. Taken together, these results demonstrated that Ru3-M killed cells mainly via a non-apoptotic pathway known as oncosis, as evidenced by observed Ru3-M-induced cellular morphological changes including cytosolic flushing, cell swelling, and cytoplasmic vacuolation. In turn, these changes together caused cytoskeletal collapse and activation of porimin and calpain1 proteins with known oncotic functions that distinguished this oncotic process from other cell death processes. In summary, Ru3-M is a potential anticancer agent that kills A549 cells via a novel mechanism involving Ru(II) complex triggering of cell death via oncosis.
Collapse
Affiliation(s)
- Nanlian Pan
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
- Department of Pharmacy, Dongguan People's Hospital, Dongguan, 523059, China
| | - Yuqing Zhang
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Minying Huang
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Zhijun Liang
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Yao Gong
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Xide Chen
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, China.
| | - Yuling Li
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Ciling Wu
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Zunnan Huang
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, Guangdong Medical University, Dongguan, 523808, China.
| | - Jing Sun
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China.
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, China.
| |
Collapse
|
6
|
Zhang D, Yuan R, Pan J, Fan Q, Sun K, Xu Z, Gao X, Wang Q, He J, Ye Y, Mu Z, Leng J, Gao H. Dihydrotanshinone Triggers Porimin-Dependent Oncosis by ROS-Mediated Mitochondrial Dysfunction in Non-Small-Cell Lung Cancer. Int J Mol Sci 2023; 24:11953. [PMID: 37569328 PMCID: PMC10419281 DOI: 10.3390/ijms241511953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 08/13/2023] Open
Abstract
Lung cancer is one of the leading causes of cancer death. Non-small-cell lung cancer (NSCLC) accounts for the majority of lung cancer diagnoses. Dihydrotanshinone (DHT) is a compound extract from Salvia miltiorrhiza, which has favorable anti-inflammatory and anti-cancer activities. However, the role of DHT in NSCLC has not been fully studied. The anti-cancer drugs used for treating lung cancer often lead to apoptosis; however, the drug resistance of apoptosis restricts the effect of these drugs. Oncosis is a passive form of cell death that is different from apoptosis. It is characterized by cell swelling, and Porimin is a specific marker for oncosis. In this study, the role of DHT in mediating oncosis in A549 cells was investigated. In vitro, the MTS assay was used to detect cell activity after DHT treatment. Microscopy and electron microscopy were used to observe cell morphology changes. Western blotting was used to detect protein expression. Flow cytometry was used to detect intracellular reactive oxygen species (ROS) level, calcium ion (Ca2+) level, and cell mortality. The intracellular Lactic dehydrogenase (LDH) level was detected by an LDH detection kit after DHT treatment. The ATP level was detected using an ATP detection kit. In vivo, Lewis lung cancer (LLC) xenograft mice were used to evaluate the anti-tumor effect of DHT. Hematoxylin and eosin (HE) staining was used to detect the pathology of lung cancer tumors. The detection of Porimin in the tumor tissues of the mice after DHT administration was assessed by immunohistochemistry (IHC). The results of this study showed that DHT treatment changed the cell morphology; destroyed the mitochondrial structure; increased the expression of Porimin; increased the levels of LDH, ROS, and Ca2+; decreased the mitochondrial membrane potential and ATP level; and played an anti-tumor role in vitro by mediating oncosis in A549 cells. The in vivo studies showed that DHT could effectively inhibit tumor growth. The results of protein detection and IHC detection in the tumor tissues showed that the expression of Porimin was increased and that oncosis occurred in the tumor tissues of mice. DHT triggered Porimin-dependent oncosis by ROS-mediated mitochondrial dysfunction in NSCLC. The in vivo studies showed that DHT could inhibit tumor growth in LLC xenograft mice by triggering oncosis. This study indicates the potential for DHT to treat NSCLC.
Collapse
Affiliation(s)
- Dongjie Zhang
- College of Basic Medical, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Renyikun Yuan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Jiaping Pan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Qiumei Fan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Kaili Sun
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Zhipeng Xu
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xiang Gao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Qinqin Wang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Jia He
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Yaqing Ye
- College of Basic Medical, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Zhengrong Mu
- College of Basic Medical, Guangxi Medical University, Nanning 530200, China
| | - Jing Leng
- College of Basic Medical, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Hongwei Gao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| |
Collapse
|
7
|
Wang C, Sun Y, Huang S, Wei Z, Tan J, Wu C, Chen Q, Zhang X. Self-Immolative Photosensitizers for Self-Reported Cancer Phototheranostics. J Am Chem Soc 2023. [PMID: 37216494 DOI: 10.1021/jacs.3c01666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Photosensitizers to precise target and change fluorescence upon light illumination could accurately self-report where and when the photosensitizers work, enabling us to visualize the therapeutic process and precisely regulate treatment outcomes, which is the unremitting pursuit of precision and personalized medicine. Here, we report self-immolative photosensitizers by adopting a strategy of light-manipulated oxidative cleavage of C═C bonds that can generate a burst of reactive oxygen species, to cleave to release self-reported red-emitting products and trigger nonapoptotic cell oncosis. Strong electron-withdrawing groups are found to effectively suppress the C═C bond cleavage and phototoxicity via studying the structure-activity relationship, allowing us to elaborate NG1-NG5 that could temporarily inactivate the photosensitizer and quench the fluorescence by different glutathione (GSH)-responsive groups. Thereinto, NG2 with 2-cyano-4-nitrobenzene-1-sulfonyl group displays excellent GSH responsiveness than the other four. Surprisingly, NG2 shows better reactivity with GSH in weakly acidic condition, which inspires the application in weakly acidic tumor microenvironment where GSH elevates. To this end, we further synthesize NG-cRGD by anchoring integrin αvβ3 binding cyclic pentapeptide (cRGD) for tumor targeting. In A549 xenografted tumor mice, NG-cRGD successfully deprotects to restore near-infrared fluorescence because of elevated GSH in tumor site, which is subsequently cleaved upon light irradiation releasing red-emitting products to report photosensitizer working, while effectively ablating tumors via triggered oncosis. The advanced self-immolative organic photosensitizer may accelerate the development of self-reported phototheranostics in future precision oncology.
Collapse
Affiliation(s)
- Chunfei Wang
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Yongjie Sun
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Shaojuan Huang
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Zixiang Wei
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Jingyun Tan
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Changfeng Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qiang Chen
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- MOE Frontiers Science Centre for Precision Oncology, University of Macau, Macau SAR 999078, China
| | - Xuanjun Zhang
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- MOE Frontiers Science Centre for Precision Oncology, University of Macau, Macau SAR 999078, China
| |
Collapse
|
8
|
Li Y, Ouyang Q, Chen W, Liu K, Zhang B, Yao J, Zhang S, Ding J, Cong M, Xu A. An iron-dependent form of non-canonical ferroptosis induced by labile iron. SCIENCE CHINA. LIFE SCIENCES 2023; 66:516-527. [PMID: 36515861 DOI: 10.1007/s11427-022-2244-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/14/2022] [Indexed: 12/15/2022]
Abstract
Ferroptosis is a recently identified iron-dependent form of nonapoptotic cell death characterized by reactive oxygen species (ROS) generation and lipid peroxidation. Here, we report a novel iron-dependent form of ferroptosis induced by labile iron and investigate the mechanism underlying this process. We find that labile iron-induced ferroptosis is distinct from canonical ferroptosis and is linked to the mitochondrial pathway. Specifically, the mitochondrial calcium uniporter mediates the ferroptosis induced by labile iron. Interestingly, cells undergoing labile iron-induced ferroptosis exhibit cytoplasmic features of oncosis and nuclear features of apoptosis. Furthermore, labile iron-induced ferroptosis involves a unique set of genes. Finally, labile iron-induced ferroptosis was observed in liver subjected to acute iron overload in vivo. Our study reveals a novel form of ferroptosis that may be implicated in diseases caused by acute injury.
Collapse
Affiliation(s)
- Yanmeng Li
- Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Qin Ouyang
- Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Wei Chen
- Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Ke Liu
- Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Bei Zhang
- Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Jingyi Yao
- Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Song Zhang
- Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Junying Ding
- Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| | - Min Cong
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| | - Anjian Xu
- Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
9
|
Shields NJ, Peyroux EM, Campbell K, Mehta S, Woolley AG, Counoupas C, Neumann S, Young SL. Calpains Released from Necrotic Tumor Cells Enhance Antigen Cross-Presentation to Activate CD8 +T Cells In Vitro. THE JOURNAL OF IMMUNOLOGY 2022; 209:1635-1651. [DOI: 10.4049/jimmunol.2100500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/19/2022] [Indexed: 11/07/2022]
|
10
|
Ortega-Forte E, Hernández-García S, Vigueras G, Henarejos-Escudero P, Cutillas N, Ruiz J, Gandía-Herrero F. Potent anticancer activity of a novel iridium metallodrug via oncosis. Cell Mol Life Sci 2022; 79:510. [PMID: 36066676 PMCID: PMC9448686 DOI: 10.1007/s00018-022-04526-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/27/2022] [Accepted: 08/10/2022] [Indexed: 11/25/2022]
Abstract
Oncosis (from Greek ónkos, meaning "swelling") is a non-apoptotic cell death process related to energy depletion. In contrast to apoptosis, which is the main form of cell death induced by anticancer drugs, oncosis has been relatively less explored but holds potential to overcome drug resistance phenomena. In this study, we report a novel rationally designed mitochondria-targeted iridium(III) complex (OncoIr3) with advantageous properties as a bioimaging agent. OncoIr3 exhibited potent anticancer activity in vitro against cancer cells and displayed low toxicity to normal dividing cells. Flow cytometry and fluorescence-based assays confirmed an apoptosis-independent mechanism involving energy depletion, mitochondrial dysfunction and cellular swelling that matched with the oncotic process. Furthermore, a Caenorhabditis elegans tumoral model was developed to test this compound in vivo, which allowed us to prove a strong oncosis-derived antitumor activity in animals (with a 41% reduction of tumor area). Indeed, OncoIr3 was non-toxic to the nematodes and extended their mean lifespan by 18%. Altogether, these findings might shed new light on the development of anticancer metallodrugs with non-conventional modes of action such as oncosis, which could be of particular interest for the treatment of apoptosis-resistant cancers.
Collapse
Affiliation(s)
- Enrique Ortega-Forte
- Departamento de Química Inorgánica, Universidad de Murcia, and Murcia BioHealth Research Institute (IMIB-Arrixaca), 30071 Murcia, Spain
| | - Samanta Hernández-García
- Departamento de Bioquímica y Biología Molecular A. Unidad Docente de Biología, Facultad de Veterinaria, Universidad de Murcia, 30071 Murcia, Spain
| | - Gloria Vigueras
- Departamento de Química Inorgánica, Universidad de Murcia, and Murcia BioHealth Research Institute (IMIB-Arrixaca), 30071 Murcia, Spain
| | - Paula Henarejos-Escudero
- Departamento de Bioquímica y Biología Molecular A. Unidad Docente de Biología, Facultad de Veterinaria, Universidad de Murcia, 30071 Murcia, Spain
| | - Natalia Cutillas
- Departamento de Química Inorgánica, Universidad de Murcia, and Murcia BioHealth Research Institute (IMIB-Arrixaca), 30071 Murcia, Spain
| | - José Ruiz
- Departamento de Química Inorgánica, Universidad de Murcia, and Murcia BioHealth Research Institute (IMIB-Arrixaca), 30071 Murcia, Spain
| | - Fernando Gandía-Herrero
- Departamento de Bioquímica y Biología Molecular A. Unidad Docente de Biología, Facultad de Veterinaria, Universidad de Murcia, 30071 Murcia, Spain
| |
Collapse
|
11
|
Li RY, Zheng ZY, Li ZM, Heng JH, Zheng YQ, Deng DX, Xu XE, Liao LD, Lin W, Xu HY, Huang HC, Li EM, Xu LY. Cisplatin-induced pyroptosis is mediated via the CAPN1/CAPN2-BAK/BAX-caspase-9-caspase-3-GSDME axis in esophageal cancer. Chem Biol Interact 2022; 361:109967. [PMID: 35525317 DOI: 10.1016/j.cbi.2022.109967] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/15/2022] [Accepted: 04/29/2022] [Indexed: 02/05/2023]
Abstract
Esophageal cancer is the seventh most common cancer globally. Chemotherapy resistance remains a significant challenge in the treatment of esophageal cancer patients. Cisplatin can damage tumor cells by inducing pyroptosis. However, the underlying molecular mechanisms remain unclear. In this work, we aim to investigate pyroptosis-dependent molecular mechanisms underlying cisplatin sensitivity and find potential biomarkers to predict response to cisplatin-based chemotherapy for esophageal cancer patients. Pyroptosis-associated proteins were screened via proteomics for esophageal cancer (n = 124) and bioinformatics analysis. We observed that high calpain-1 (CAPN1) and calpain-2 (CAPN2) expression were associated with favorable clinical outcomes and prolonged survival in esophageal cancer patients. We employed immunohistochemistry to evaluate the expression of CAPN1 and CAPN2 in pretreatment tumor biopsies from 108 patients with esophageal cancer who received concurrent chemoradiotherapy (CCRT). These results suggested that esophageal cancer patients with high expression of both CAPN1 and CAPN2 are likely to experience a complete response to CCRT and have significantly better survival. Western blotting, LDH release, calpain activity and cell viability assays indicated that cisplatin could activate calpain activity, while calpain inhibition or knockout suppressed cisplatin-induced pyroptosis. Mechanistically, we uncovered a novel mechanism whereby cisplatin induced pyroptosis via activation of a CAPN1/CAPN2-BAK/BAX-caspase-9-caspase-3-GSDME signaling axis in esophageal cancer cells. Collectively, this study is the first to explore the effects of calpain on cisplatin-induced pyroptosis in esophageal cancer cells. Further, our findings also imply that the combination of CAPN1 and CAPN2 could be considered as a promising biomarker of cisplatin sensitivity and prognosis in patients with esophageal cancer, providing a possibility to guide individualized treatment.
Collapse
Affiliation(s)
- Rong-Yao Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Zhen-Yuan Zheng
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, Guangdong, China; Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, 515041, Guangdong, China; Guangdong Esophageal Cancer Research Institute, Shantou Sub-center, Cancer Research Center, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Zhi-Mao Li
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Jing-Hua Heng
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Ya-Qi Zheng
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Dan-Xia Deng
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xiu-E Xu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Lian-Di Liao
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Wan Lin
- Guangdong Esophageal Cancer Research Institute, Shantou Sub-center, Cancer Research Center, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Hong-Yao Xu
- Department of Radiation Oncology, Shantou Central Hospital, Shantou, 515041, China
| | - He-Cheng Huang
- Department of Radiation Oncology, Shantou Central Hospital, Shantou, 515041, China
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Li-Yan Xu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, 515041, Guangdong, China
- Guangdong Esophageal Cancer Research Institute, Shantou Sub-center, Cancer Research Center, Shantou University Medical College, Shantou, 515041, Guangdong, China
| |
Collapse
|
12
|
Singlet Oxygen, Photodynamic Therapy, and Mechanisms of Cancer Cell Death. JOURNAL OF ONCOLOGY 2022; 2022:7211485. [PMID: 35794980 PMCID: PMC9252714 DOI: 10.1155/2022/7211485] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/07/2022] [Accepted: 05/11/2022] [Indexed: 01/06/2023]
Abstract
Photodynamic therapy (PDT) can be developed into an important arsenal against cancer; it is a minimally invasive therapy, which is used in the treatment or/and palliation of a variety of cancers and benign diseases. The removal of cancerous tissue is achieved with the use of photosensitizer and a light source, which excites the photosensitizer. This excitation causes the photosensitizer to generate singlet oxygen and other reactive oxygen species. PDT has been used in several types of cancers including nonmelanoma skin cancer, bladder cancer, esophageal cancer, head and neck cancer, and non-small cell lung cancer (NSCLC). Although it is routinely used in nonmelanoma skin cancer, it has not been widely adopted in other solid cancers due to a lack of clinical data showing the superiority of PDT over other forms of treatment. Singlet oxygen used in PDT can alter the activity of the catalase, which induces immunomodulation through HOCl signaling. The singlet oxygen can induce apoptosis through both the extrinsic and intrinsic pathways. The extrinsic pathway of apoptosis starts with the activation of the Fas receptor by singlet oxygen that leads to activation of the caspase-7 and caspase-3. In the case of the intrinsic pathway, disruption caused by singlet oxygen in the mitochondria membrane leads to the release of cytochrome c, which binds with APAF-1 and procaspase-9, forming a complex, which activates caspase-3. Mechanisms of PDT action can vary according to organelles affected. In the plasma membrane, membrane disruption is caused by the oxidative stress leading to the intake of calcium ions, which causes swelling and rupture of cells due to excess intake of water, whereas disruption of lysosome causes the release of the cathepsins B and D, which cleave Bid into tBid, which changes the mitochondrial outer membrane permeability (MOMP). Oxidative stress causes misfolding of protein in the endoplasmic reticulum. When misfolding exceeds the threshold, it triggers unfolding protein response (UPR), which leads to activation of caspase-9 and caspase-3. Finally, the activation of p38 MAPK works as an alternative pathway for the induction of MOMP.
Collapse
|
13
|
Li X, Luo R, Liang X, Wu Q, Gong C. Recent advances in enhancing reactive oxygen species based chemodynamic therapy. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.11.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Cao Y, Wang Y, Yang J. NAD +-dependent mechanism of pathological axon degeneration. CELL INSIGHT 2022; 1:100019. [PMID: 37193131 PMCID: PMC10120281 DOI: 10.1016/j.cellin.2022.100019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 05/18/2023]
Abstract
Pathological axon degeneration is broadly observed in neurodegenerative diseases. This unique process of axonal pathology could directly interfere with the normal functions of neurocircuitries and contribute to the onset of clinical symptoms in patients. It has been increasingly recognized that functional preservation of axonal structures is an indispensable part of therapeutic strategies for treating neurological disorders. In the past decades, the research field has witnessed significant breakthroughs in understanding the stereotyped self-destruction of axons upon neurodegenerative insults, which is distinct from all the known types of programmed cell death. In particular, the novel NAD+-dependent mechanism involving the WLDs, NMNAT2, and SARM1 proteins has emerged. This review summarizes the landmark discoveries elucidating the molecular pathway of pathological axon degeneration and highlights the evolving concept that neurodegeneration would be intrinsically linked to NAD+ and energy metabolism.
Collapse
Affiliation(s)
- Ying Cao
- Center for Life Sciences, Peking University, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Yi Wang
- Center for Life Sciences, Peking University, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Jing Yang
- Center for Life Sciences, Peking University, Beijing, 100871, China
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, 100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
- Chinese Institute for Brain Research, Beijing, 102206, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, 518055, China
| |
Collapse
|
15
|
Shao L, Hu T, Fan X, Wu X, Zhou F, Chen B, Tan S, Xu H, Pan A, Liang S, He Y. Intelligent Nanoplatform with Multi Therapeutic Modalities for Synergistic Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:13122-13135. [PMID: 35286061 DOI: 10.1021/acsami.2c01913] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chemodynamic therapy (CDT) has attracted increasing attention in tumor treatment but is limited by insufficient endogenous H2O2. Moreover, it is challenging for monotherapy to achieve a satisfactory outcome due to tumor complexity. Herein, we developed an intelligent nanoplatform that could respond to a tumor microenvironment to induce efficient CDT without complete dependence on H2O2 and concomitantly generate chemotherapy and oncosis therapy (OT). The nanoplatform was constructed by a calcium- and iron-doped mesoporous silica nanoparticle (CFMSN) loaded with dihydroartemisinin (DHA). After entering into cancer cells, the nanoplatform could directly convert the intracellular H2O2 into toxic •OH due to the Fenton-like activity of CFMSN. Meanwhile, the acidic microenvironment and endogenous chelating molecules triggered Ca2+ and Fe3+ release from the nanoplatform, causing particle collapse with accompanying DHA release for chemotherapy. Simultaneously, the released Ca2+ induced intracellular Ca2+-overloading for OT, which was further enhanced by DHA, while the released Fe3+ was reduced to reactive Fe2+ by intracellular glutathione, guaranteeing efficient Fenton reaction-mediated CDT. Moreover, Fe2+ cleaved the peroxy bonds of DHA to generate C-centered radicals to further amplify CDT. Both in vitro and in vivo results confirmed that the nanoplatform exhibited excellent anticancer efficacy via the synergistic effect of multi therapeutic modalities, which is extremely promising for high-efficient cancer therapy.
Collapse
Affiliation(s)
- Linjie Shao
- School of Material Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Taishun Hu
- School of Material Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Xingyu Fan
- School of Material Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Xiaozan Wu
- Science Park, Central South University, Changsha, Hunan 410083, China
| | - Fangfang Zhou
- Department of Neurology, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Botao Chen
- Hunan Provincial People's Hospital, the First-Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, China
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Hui Xu
- Institute of Super-Microstructure and Ultrafast Process in Advanced Materials, School of Physics and Electronics, Central South University, Changsha, Hunan 410083, China
| | - Anqiang Pan
- School of Material Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Shuquan Liang
- School of Material Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Yongju He
- School of Material Science and Engineering, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
16
|
Hoogstraten CA, Smeitink JAM, Russel FGM, Schirris TJJ. Dissecting Drug-Induced Cytotoxicity and Metabolic Dysfunction in Conditionally Immortalized Human Proximal Tubule Cells. FRONTIERS IN TOXICOLOGY 2022; 4:842396. [PMID: 35295229 PMCID: PMC8915871 DOI: 10.3389/ftox.2022.842396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/02/2022] [Indexed: 11/24/2022] Open
Abstract
Fourteen to 26 percent of all hospitalized cases of acute kidney injury are explained by drug-induced toxicity, emphasizing the importance of proper strategies to pre-clinically assess renal toxicity. The MTT assay is widely used as a measure of cell viability, but largely depends on cellular metabolic activity. Consequently, MTT as a single assay may not be the best way to assess cytotoxicity of compounds that reduce mitochondrial function and cellular metabolic activity without directly affecting cell viability. Accordingly, we aim to highlight the limitations of MTT alone in assessing renal toxicity of compounds that interfere with metabolic activity. Therefore, we compared toxic effects observed by MTT with a fluorescent assay that determines compromised plasma membrane permeability. Exposure of proximal tubule epithelial cells to nephrotoxic compounds reduced cellular metabolic activity concentration- and time-dependently. We show that compared to our fluorescence-based approach, assessment of cellular metabolic activity by means of MTT provides a composite readout of cell death and metabolic impairment. An approach independent of cellular metabolism is thus preferable when assessing cytotoxicity of compounds that induce metabolic dysfunction. Moreover, combining both assays during drug development enables a first discrimination between compounds having a direct or indirect mitochondrial toxic potential.
Collapse
Affiliation(s)
- Charlotte A. Hoogstraten
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jan A. M. Smeitink
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Pediatrics, Radboud University Medical Center, Nijmegen, Netherlands
- Khondrion BV, Nijmegen, Netherlands
| | - Frans G. M. Russel
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Tom J. J. Schirris
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
17
|
Ye M, Huang WQ, Li ZX, Wang CX, Liu T, Chen Y, Hor CHH, Man WL, Ni WX. Osmium(VI) nitride triggers mitochondria-induced oncosis and apoptosis. Chem Commun (Camb) 2022; 58:2468-2471. [PMID: 35024704 DOI: 10.1039/d1cc05148b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We report a new osmium(VI) nitrido complex bearing a nonplanar tetradentate ligand with potent anticancer activity. This complex causes mitochondrial damage, which induces liver cancer cell death via oncosis and apoptosis. This is the first osmium-based anticancer candidate that induces oncosis.
Collapse
Affiliation(s)
- Meng Ye
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong, 515041, P. R. China
| | - Wan-Qiong Huang
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong, 515041, P. R. China
| | - Zi-Xin Li
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong, 515041, P. R. China
| | - Chuan-Xian Wang
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong, 515041, P. R. China
| | - Tao Liu
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong, 515041, P. R. China.
| | - YunZhou Chen
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, HKSAR, P. R. China
| | | | - Wai-Lun Man
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, HKSAR, P. R. China
| | - Wen-Xiu Ni
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong, 515041, P. R. China
- Clinical Research Centre, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, P. R. China
| |
Collapse
|
18
|
Potent antitumor activity of a glutamyltransferase-derived peptide via an activation of oncosis pathway. Sci Rep 2021; 11:16507. [PMID: 34389740 PMCID: PMC8363616 DOI: 10.1038/s41598-021-93055-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 03/08/2021] [Indexed: 12/09/2022] Open
Abstract
Hepatocellular carcinoma (HCC) still presents poor prognosis with high mortality rate, despite of the improvement in the management. The challenge for precision treatment was due to the fact that little targeted therapeutics are available for HCC. Recent studies show that metabolic and circulating peptides serve as endogenous switches for correcting aberrant cellular plasticity. Here we explored the antitumor activity of low molecular components in human umbilical serum and identified a high abundance peptide VI-13 by peptidome analysis, which was recognized as the part of glutamyltransferase signal peptide. We modified VI-13 by inserting four arginines and obtained an analog peptide VI-17 to improve its solubility. Our analyses showed that the peptide VI-17 induced rapid context-dependent cell death, and exhibited a higher sensitivity on hepatoma cells, which is attenuated by polyethylene glycol but not necrotic inhibitors such as z-VAD-fmk or necrostatin-1. Morphologically, VI-17 induced cell swelling, blebbing and membrane rupture with release of cellular ATP and LDH into extracellular media, which is hallmark of oncotic process. Mechanistically, VI-17 induced cell membrane pore formation, degradation of α-tubulin via influx of calcium ion. These results indicated that the novel peptide VI-17 induced oncosis in HCC cells, which could serve as a promising lead for development of therapeutic intervention of HCC.
Collapse
|
19
|
How Can Malnutrition Affect Autophagy in Chronic Heart Failure? Focus and Perspectives. Int J Mol Sci 2021; 22:ijms22073332. [PMID: 33805128 PMCID: PMC8036550 DOI: 10.3390/ijms22073332] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/15/2021] [Accepted: 03/21/2021] [Indexed: 12/20/2022] Open
Abstract
Chronic heart failure (CHF) is a disease with important clinical and socio-economic ramifications. Malnutrition and severe alteration of the protein components of the body (protein disarrangements), common conditions in CHF patients, are independent correlates of heart dysfunction, disease progression, and mortality. Autophagy, a prominent occurrence in the heart of patients with advanced CHF, is a self-digestive process that prolongs myocardial cell lifespan by the removal of cytosolic components, such as aging organelles and proteins, and recycles the constituent elements for new protein synthesis. However, in specific conditions, excessive activation of autophagy can lead to the destruction of molecules and organelles essential to cell survival, ultimately leading to organ failure and patient death. In this review, we aim to describe the experimental and clinical evidence supporting a pathophysiological role of nutrition and autophagy in the progression of CHF. The understanding of the mechanisms underlying the interplay between nutrition and autophagy may have important clinical implications by providing molecular targets for innovative therapeutic strategies in CHF patients.
Collapse
|
20
|
Ribeiro AB, Ozelin SD, da Silva LHD, Rinaldi-Neto F, Freitas KS, Nicolella HD, de Souza LDR, Furtado RA, Cunha WR, Tavares DC. Influence of Asiatic acid on cell proliferation and DNA damage in vitro and in vivo systems. J Biochem Mol Toxicol 2021; 35:e22712. [PMID: 33484013 DOI: 10.1002/jbt.22712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 12/01/2020] [Accepted: 01/09/2021] [Indexed: 11/10/2022]
Abstract
Asiatic acid (AA) is a triterpene with promising pharmacological activity. In the present study, in vitro and in vivo assays were conducted to understand the effect of AA on cell proliferation and genomic instability. AA was cytotoxic to human tumor cell lines (M059J, HeLa, and MCF-7), with IC50 values ranging from 13.91 to 111.72 µM. In the case of M059J, AA exhibited selective cytotoxicity after 48 h of treatment (IC50 = 24 µM), decreasing the percentage of cells in the G0/G1 phase, increasing the percentage of cells in the S phase, and inducing apoptosis. A significant increase in chromosomal damage was observed in V79 cell cultures treated with AA (40 µM), revealing genotoxic activity. In contrast, low concentrations (5, 10, and 20 µM) of AA significantly reduced the frequencies of micronuclei induced by the mutagens doxorubicin (DXR), methyl methanesulfonate, and hydrogen peroxide. A reduction of DXR-induced intracellular free radicals was found in V79 cells treated with AA (10 µM). The antigenotoxic effect of AA (30 mg/kg) was also observed against DXR-induced chromosomal damage in Swiss mice. Significant reductions in p53 levels were verified in the liver tissue of these animals. Taken together, the data indicate that AA exerted antiproliferative activity in M059J tumor cells, which is probably related to the induction of DNA damage, leading to cell cycle arrest and apoptosis. Additionally, low concentrations of AA exhibited antigenotoxic effects and its antioxidant activity may be responsible, at least in part, for chemoprevention.
Collapse
Affiliation(s)
- Arthur B Ribeiro
- Laboratório de Mutagênese, Universidade de Franca, Franca, São Paulo, Brazil
| | - Saulo D Ozelin
- Laboratório de Mutagênese, Universidade de Franca, Franca, São Paulo, Brazil
| | - Lucas H D da Silva
- Laboratório de Mutagênese, Universidade de Franca, Franca, São Paulo, Brazil
| | | | - Karoline S Freitas
- Laboratório de Mutagênese, Universidade de Franca, Franca, São Paulo, Brazil
| | - Heloiza D Nicolella
- Laboratório de Mutagênese, Universidade de Franca, Franca, São Paulo, Brazil
| | | | - Ricardo A Furtado
- Laboratório de Mutagênese, Universidade de Franca, Franca, São Paulo, Brazil
| | | | - Denise C Tavares
- Laboratório de Mutagênese, Universidade de Franca, Franca, São Paulo, Brazil
| |
Collapse
|
21
|
Guan R, Xie L, Ji L, Chao H. Phosphorescent Iridium(III) Complexes for Anticancer Applications. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000754] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ruilin Guan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat‐Sen University 510275 Guangzhou P. R. China
| | - Lina Xie
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat‐Sen University 510275 Guangzhou P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat‐Sen University 510275 Guangzhou P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat‐Sen University 510275 Guangzhou P. R. China
- MOE Key Laboratory of Theoretical Organic Chemistry and Functional Molecule School of Chemistry and Chemical Engineering Hunan University of Science and Technology 400201 Xiangtan P. R. China
| |
Collapse
|
22
|
Morgan ET, Skubic C, Lee CM, Cokan KB, Rozman D. Regulation of cytochrome P450 enzyme activity and expression by nitric oxide in the context of inflammatory disease. Drug Metab Rev 2020; 52:455-471. [PMID: 32898444 DOI: 10.1080/03602532.2020.1817061] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Many hepatic cytochrome P450 enzymes and their associated drug metabolizing activities are down-regulated in disease states, and much of this has been associated with inflammatory cytokines and their signaling pathways. One such pathway is the induction of inducible nitric oxide synthase (NOS2) and generation of nitric oxide (NO) in many tissues and cells including the liver and hepatocytes. Experiments in the 1990s demonstrated that NO could bind to and inhibit P450 enzymes, and suggested that inhibition of NOS could attenuate, and NO generation could mimic, the down-regulation by inflammatory stimuli of not only P450 catalytic activities but also of mRNA expression and protein levels of certain P450 enzymes. This review will summarize and examine the evidence that NO functionally inhibits and down-regulates P450 enzymes in vivo and in vitro, with a particular focus on the mechanisms by which these effects are achieved.
Collapse
Affiliation(s)
- Edward T Morgan
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | - Cene Skubic
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Choon-Myung Lee
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | - Kaja Blagotinšek Cokan
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Damjana Rozman
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
23
|
Ji S, Yang X, Chen X, Li A, Yan D, Xu H, Fei H. Structure-tuned membrane active Ir-complexed oligoarginine overcomes cancer cell drug resistance and triggers immune responses in mice. Chem Sci 2020; 11:9126-9133. [PMID: 34094193 PMCID: PMC8161536 DOI: 10.1039/d0sc03975f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 11/21/2022] Open
Abstract
The development of chemotherapy, an important cancer treatment modality, is hindered by the frequently found drug-resistance phenomenon. Meanwhile, researchers have been enthused lately by the synergistic use of chemotherapy with emerging immunotherapeutic treatments. In an effort to address both of the two unmet needs, reported herein is a study on a series of membrane active iridium(iii) complexed oligoarginine peptides with a new cell death mechanism capable of overcoming drug resistance as well as stimulating immunological responses. A systematic structure-activity relationship study elucidated the interdependent effects of three structural factors, i.e., hydrophobicity, topology and cationicity, on the regulation of the cytotoxicity of the Ir(iii)-oligoarginine peptides. With the most prominent toxicities, Ir-complexed octaarginines (R8) were found to display a progressive oncotic cell death featuring cell membrane-penetration and eruptive cytoplasmic content release. Consequently, this membrane-centric death mechanism showed promising potential in overcoming multiple chemical drug-resistance of cancer cells. More interestingly, the eruptive mode of cell death proved to be immunogenic by stimulating the dendritic cell maturation and inflammatory factor accumulation in mice tumours. Taking these mechanisms together, this work demonstrates that membrane active compounds may become the next generation chemotherapeutics because of their combined advantages.
Collapse
Affiliation(s)
- Shuangshuang Ji
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China Hefei 230026 PR China
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences Suzhou 215123 PR China
| | - Xiuzhu Yang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences Suzhou 215123 PR China
| | - Xiaolong Chen
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China Hefei 230026 PR China
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences Suzhou 215123 PR China
| | - Ang Li
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China Hefei 230026 PR China
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences Suzhou 215123 PR China
| | - Doudou Yan
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College Beijing 100005 PR China
| | - Haiyan Xu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College Beijing 100005 PR China
| | - Hao Fei
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China Hefei 230026 PR China
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences Suzhou 215123 PR China
| |
Collapse
|
24
|
Yu J, Zhong B, Xiao Q, Du L, Hou Y, Sun HS, Lu JJ, Chen X. Induction of programmed necrosis: A novel anti-cancer strategy for natural compounds. Pharmacol Ther 2020; 214:107593. [PMID: 32492512 DOI: 10.1016/j.pharmthera.2020.107593] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2020] [Indexed: 02/08/2023]
Abstract
Cell death plays a critical role in organism development and the pathogenesis of diseases. Necrosis is considered a non-programmed cell death in an extreme environment. Recent advances have provided solid evidence that necrosis could be programmed and quite a few types of programmed necrosis, such as necroptosis, ferroptosis, pyroptosis, paraptosis, mitochondrial permeability transition-driven necrosis, and oncosis, have been identified. The specific biomarkers, detailed signaling, and precise pathophysiological importance of programmed necrosis are yet to be clarified, but these forms of necrosis provide novel strategies for the treatment of various diseases, including cancer. Natural compounds are a unique source of lead compounds for the discovery of anti-cancer drugs. Natural compounds can induce both apoptosis and programmed necrosis. In this review, we summarized the recent progress of programmed necrosis and introduced their natural inducers. Noptosis, which is a novel type of programmed necrosis that is strictly dependent on NAD(P)H: quinone oxidoreductase 1-derived oxidative stress was proposed. Furthermore, the anti-cancer strategies that take advantage of programmed necrosis and the main concerns from the scientific community in this regard were discussed.
Collapse
Affiliation(s)
- Jie Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Bingling Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Qingwen Xiao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Lida Du
- Department of Surgery, University of Toronto, Ontario, Canada
| | - Ying Hou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Hong-Shuo Sun
- Department of Surgery, University of Toronto, Ontario, Canada
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
25
|
Delineation of cell death mechanisms induced by synergistic effects of statins and erlotinib in non-small cell lung cancer cell (NSCLC) lines. Sci Rep 2020; 10:959. [PMID: 31969600 PMCID: PMC6976657 DOI: 10.1038/s41598-020-57707-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 01/02/2020] [Indexed: 12/20/2022] Open
Abstract
Hydroxymethylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors (statins) have been shown to overcome tyrosine kinase inhibitor (TKI) resistance in epithelial growth factor receptor (EGFR) mutated non-small cell lung cancer (NSCLC) cells in vivo and in vitro. However, little is known about the putative induction of non-apoptotic cell death pathways by statins. We investigated the effects of pitavastatin and fluvastatin alone or in combination with erlotinib in three NSCLC cell lines and examined the activation of different cell death pathways. We assessed apoptosis via fluorometric caspase assay and poly (ADP-ribose) polymerase 1 (PARP) cleavage. Furthermore, annexinV/propidium iodide (PI) flow cytometry was performed. Small molecule inhibitors benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (zVAD), necrostatin 1 (Nec1), ferrostatin 1 (Fer1), Ac-Lys-Lys-Norleucinal (Calp1) were used to characterise cell death pathway(s) putatively (co-)activated by pitavastatin/erlotinib co-treatment. Synergism was calculated by additivity and isobolographic analyses. Pitavastatin and fluvastatin induced cell death in EGFR TKI resistant NSCLC cells lines A549, Calu6 and H1993 as shown by caspase 3 activation and PARP cleavage. Co-treatment of cells with pitavastatin and the EGFR TKI erlotinib resulted in synergistically enhanced cytotoxicity compared to pitavastatin monotherapy. Flow cytometry indicated the induction of alternative regulated cell death pathways. However, only co-treatment with mevalonic acid (Mev) or the pan-caspase inhibitor zVAD could restore cell viability. The results show that cytotoxicity mediated by statin/erlotinib co-treatment is synergistic and can overcome erlotinib resistance in K-ras mutated NSCLC and relies only on apoptosis.
Collapse
|
26
|
Chen H, Qiao C, Miao TT, Li AL, Wang WY, Gu W. Synthesis and biological evaluation of novel N-(piperazin-1-yl)alkyl-1 H-dibenzo[ a, c]carbazole derivatives of dehydroabietic acid as potential MEK inhibitors. J Enzyme Inhib Med Chem 2020; 34:1544-1561. [PMID: 31448648 PMCID: PMC6720511 DOI: 10.1080/14756366.2019.1655407] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In this paper, a series of novel 1H-dibenzo[a,c]carbazole derivatives of dehydroabietic acid bearing different N-(piperazin-1-yl)alkyl side chains were designed, synthesised and evaluated for their in vitro anticancer activities against three human hepatocarcinoma cell lines (SMMC-7721, HepG2 and Hep3B). Among them, compound 10g exhibited the most potent activity against three cancer cell lines with IC50 values of 1.39 ± 0.13, 0.51 ± 0.09 and 0.73 ± 0.08 µM, respectively. In the kinase inhibition assay, compound 10g could significantly inhibit MEK1 kinase activity with IC50 of 0.11 ± 0.02 µM, which was confirmed by western blot analysis and molecular docking study. In addition, compound 10g could elevate the intracellular ROS levels, decrease mitochondrial membrane potential, destroy the cell membrane integrity, and finally lead to the oncosis and apoptosis of HepG2 cells. Therefore, compound 10g could be a potent MEK inhibitor and a promising anticancer agent worthy of further investigations.
Collapse
Affiliation(s)
- Hao Chen
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University , Nanjing , PR China
| | - Chao Qiao
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University , Nanjing , PR China
| | - Ting-Ting Miao
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University , Nanjing , PR China
| | - A-Liang Li
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University , Nanjing , PR China
| | - Wen-Yan Wang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University , Nanjing , PR China
| | - Wen Gu
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University , Nanjing , PR China
| |
Collapse
|
27
|
Yu P, Wei R, Dong W, Zhu Z, Zhang X, Chen Y, Liu X, Guo C. CD163 ΔSRCR5 MARC-145 Cells Resist PRRSV-2 Infection via Inhibiting Virus Uncoating, Which Requires the Interaction of CD163 With Calpain 1. Front Microbiol 2020; 10:3115. [PMID: 32038556 PMCID: PMC6990145 DOI: 10.3389/fmicb.2019.03115] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/24/2019] [Indexed: 11/19/2022] Open
Abstract
Porcine alveolar macrophages without the CD163 SRCR5 domain are resistant to porcine reproductive and respiratory syndrome virus (PRRSV) infection. However, whether the deletion of CD163 SRCR5 in MARC-145 cells confers resistance to PRRSV and interaction of which of the host proteins with CD163 is involved in virus uncoating remain unclear. Here we deleted the SRCR5 domain of CD163 in MARC-145 cells using CRISPR/Cas9 to generate a CD163ΔSRCR5 MARC-145 cell line. The modification of CD163 had no impact on CD163 expression. CD163ΔSRCR5 cells were completely resistant to infection by PRRSV-2 strains Li11, CHR6, TJM, and VR2332. The modified cells showed no cytokine response to PRRSV-2 infection and maintained normal cell vitality comparable with the WT cells. The resistant phenotype of the cells was stably maintained through cell passages. There were no replication transcription complexes in the CD163ΔSRCR5 cells. SRCR5 deletion did not disturb the colocalization of CD163 and PRRSV-N in early endosomes (EE). However, the interaction of the viral proteins GP2a, GP3, or GP5 with CD163, which is involved in virus uncoating was affected. Furthermore, 77 CD163-binding cellular proteins affected by the SRCR5 deletion were identified by LC–MS/MS. Inhibition of calpain 1 trapped the virions in EE and forced then into late endosomes but did not block viral attachment and internalization, suggesting that calpain 1 is involved in the uncoating. Overall, CD163ΔSRCR5 MARC-145 cells are fully resistant to PRRSV-2 infection and calpain 1 is identified as a novel host protein that interacts with CD163 to facilitate PRRSV uncoating.
Collapse
Affiliation(s)
- Piao Yu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ruiping Wei
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wenjuan Dong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhenbang Zhu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaoxiao Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chunhe Guo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
28
|
Power MJ, Rogerson LE, Schubert T, Berens P, Euler T, Paquet-Durand F. Systematic spatiotemporal mapping reveals divergent cell death pathways in three mouse models of hereditary retinal degeneration. J Comp Neurol 2019; 528:1113-1139. [PMID: 31710697 DOI: 10.1002/cne.24807] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/06/2019] [Accepted: 10/20/2019] [Indexed: 12/20/2022]
Abstract
Calcium (Ca2+ ) dysregulation has been linked to neuronal cell death, including in hereditary retinal degeneration. Ca2+ dysregulation is thought to cause rod and cone photoreceptor cell death. Spatial and temporal heterogeneities in retinal disease models have hampered validation of this hypothesis. We examined the role of Ca2+ in photoreceptor degeneration, assessing the activation pattern of Ca2+ -dependent calpain proteases, generating spatiotemporal maps of the entire retina in the cpfl1 mouse model for primary cone degeneration, and in the rd1 and rd10 models for primary rod degeneration. We used Gaussian process models to distinguish the temporal sequences of degenerative molecular processes from other variability sources.In the rd1 and rd10 models, spatiotemporal pattern of increased calpain activity matched the progression of primary rod degeneration. High calpain activity coincided with activation of the calpain-2 isoform but not with calpain-1, suggesting differential roles for both calpain isoforms. Primary rod loss was linked to upregulation of apoptosis-inducing factor, although only a minute fraction of cells showed activity of the apoptotic marker caspase-3. After primary rod degeneration concluded, caspase-3 activation appeared in cones, suggesting apoptosis as the dominant mechanism for secondary cone loss. Gaussian process models highlighted calpain activity as a key event during primary rod photoreceptor cell death. Our data suggest a causal link between Ca2+ dysregulation and primary, nonapoptotic degeneration of photoreceptors and a role for apoptosis in secondary degeneration of cones, highlighting the importance of the spatial and temporal location of key molecular events, which may guide the evaluation of new therapies.
Collapse
Affiliation(s)
- Michael J Power
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Centre for Integrative Neuroscience (CIN), University of Tübingen, Tübingen, Germany.,Graduate Training Centre of Neuroscience (GTC), University of Tübingen, Tübingen, Germany
| | - Luke E Rogerson
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Centre for Integrative Neuroscience (CIN), University of Tübingen, Tübingen, Germany.,Graduate Training Centre of Neuroscience (GTC), University of Tübingen, Tübingen, Germany.,Bernstein Center for Computational Neuroscience, Tübingen, Germany.,Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
| | - Timm Schubert
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Centre for Integrative Neuroscience (CIN), University of Tübingen, Tübingen, Germany
| | - Philipp Berens
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Centre for Integrative Neuroscience (CIN), University of Tübingen, Tübingen, Germany.,Bernstein Center for Computational Neuroscience, Tübingen, Germany.,Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
| | - Thomas Euler
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Centre for Integrative Neuroscience (CIN), University of Tübingen, Tübingen, Germany.,Bernstein Center for Computational Neuroscience, Tübingen, Germany
| | | |
Collapse
|
29
|
Wei H, Harper MT. ABT-737 Triggers Caspase-Dependent Inhibition of Platelet Procoagulant Extracellular Vesicle Release during Apoptosis and Secondary Necrosis In Vitro. Thromb Haemost 2019; 119:1665-1674. [PMID: 31493778 PMCID: PMC6768798 DOI: 10.1055/s-0039-1693694] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Platelet lifespan is limited by activation of intrinsic apoptosis. Apoptotic platelets are rapidly cleared from the circulation in vivo. ABT-737 triggers platelet apoptosis and is a useful tool for studying this process. However, in vitro experiments lack clearance mechanisms for apoptotic platelets. To determine whether apoptotic platelets progress to secondary necrosis, apoptosis was triggered in human platelets with ABT-737, a BH3 mimetic. Platelet annexin V (AnV) binding, release of AnV+ extracellular vesicles (EVs), and loss of plasma membrane integrity were monitored by flow cytometry. ABT-737 triggered AnV binding, indicating phosphatidylserine exposure, release of AnV+ EVs, and a slow loss of plasma membrane integrity. The latter suggests that apoptotic platelets progress to secondary necrosis in vitro. These responses were dependent on caspase activation and Ca2+ entry. Surprisingly, although intracellular Ca2+ concentration increased, AnV+ EV release was not dependent on the Ca2+-dependent protease, calpain. On the contrary, ABT-737 downregulated the ability of the Ca2+ ionophore, A23187, to trigger calpain-dependent release of AnV+ EVs. This was dependent on caspase activity as, when caspases were inhibited, ABT-737 increased the ability of A23187 to trigger AnV+ EV release. These data suggest that apoptotic platelets progress to secondary necrosis unless they are cleared. This may affect the interpretation of ABT-737-triggered signaling in platelets in vitro. Ca2+-dependent AnV+ EV release is downregulated during apoptosis in a caspase-dependent manner, which may limit the potential consequences of secondary necrotic platelets.
Collapse
Affiliation(s)
- Hao Wei
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Matthew T Harper
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
30
|
Wan X, Zhong H, Pan W, Li Y, Chen Y, Li N, Tang B. Programmed Release of Dihydroartemisinin for Synergistic Cancer Therapy Using a CaCO
3
Mineralized Metal–Organic Framework. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907388] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Xiuyan Wan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Hui Zhong
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Yanhua Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Yuanyuan Chen
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| |
Collapse
|
31
|
Wan X, Zhong H, Pan W, Li Y, Chen Y, Li N, Tang B. Programmed Release of Dihydroartemisinin for Synergistic Cancer Therapy Using a CaCO
3
Mineralized Metal–Organic Framework. Angew Chem Int Ed Engl 2019; 58:14134-14139. [DOI: 10.1002/anie.201907388] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/23/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Xiuyan Wan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Hui Zhong
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Yanhua Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Yuanyuan Chen
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| |
Collapse
|
32
|
Tateshita N, Miura N, Tanaka H, Masuda T, Ohtsuki S, Tange K, Nakai Y, Yoshioka H, Akita H. Development of a lipoplex-type mRNA carrier composed of an ionizable lipid with a vitamin E scaffold and the KALA peptide for use as an ex vivo dendritic cell-based cancer vaccine. J Control Release 2019; 310:36-46. [PMID: 31386869 DOI: 10.1016/j.jconrel.2019.08.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 12/31/2022]
Abstract
A dendritic cells (DCs)-based vaccine (DC-vaccine) system is an attractive technology for eliciting antigen-specific immune responses that can protect subjects from infectious diseases and for curing various types of cancers. For the insertion of a foreign antigen to DCs, the transfection of an antigen-coding mRNA to the cells is a promising approach. In order to introduce an antigen, a carrier for mRNA transfection is required, since the mRNA molecule per se is unstable in serum-containing medium. We previously reported on an ionizable lipid-like material with vitamin E-scaffolds (ssPalmE) as a material for a lipid nanoparticle (LNP)-based carrier for nucleic acids. In the present study, we report on the development of a lipoplex-type mRNA carrier for use as a DC-vaccine by using a combination of an ssPalmE-LNP and an α-helical cationic peptide "KALA" (ssPalmE-KALA). The transfection of mRNAs complexed with the ssPalmE-KALA achieved a significantly higher protein expression and the production of proinflammatory cytokines from murine bone marrow derived DCs (BMDCs) in comparison with a lipoplex that was prepared with an ssPalm with fatty acid-scaffolds (myristic acid; ssPalmM-KALA). A cellular uptake process and a pH-responsive membrane-destabilization activity cannot explain the preferred protein expression and immune-stimulation caused by the ssPalmE-KALA. Proteomic analyses suggest that transfection with the ssPalmM-KALA stimulates a down-regulatory pathway of translation, while the transfection with the ssPalmE-KALA does not stimulate it. In the vaccination with the BMDCs that were preliminarily transfected with an ovalbumin (OVA)-encoding mRNA elicited the induction OVA specific cytotoxic T-lymphocyte activity in vivo. In parallel, the vaccination induced significant prophylactic anti-tumor effects against a model tumor that stably expressed the OVA protein. Based on the above findings, the ssPalmE-KALA appears to be a potent ex vivo DCs-based RNA vaccine platform.
Collapse
Affiliation(s)
- Naho Tateshita
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba, Japan
| | - Naoya Miura
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba, Japan
| | - Hiroki Tanaka
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba, Japan.
| | - Takeshi Masuda
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto City, Kumamoto, Japan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto City, Kumamoto, Japan
| | - Kota Tange
- DDS Research Laboratory, DDS Development Division, NOF Corporation, 3-3 Chidori-cho, Kawasaki-ku, Kawasaki 210-0865, Japan
| | - Yuta Nakai
- DDS Research Laboratory, DDS Development Division, NOF Corporation, 3-3 Chidori-cho, Kawasaki-ku, Kawasaki 210-0865, Japan
| | - Hiroki Yoshioka
- DDS Research Laboratory, DDS Development Division, NOF Corporation, 3-3 Chidori-cho, Kawasaki-ku, Kawasaki 210-0865, Japan
| | - Hidetaka Akita
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba, Japan.
| |
Collapse
|
33
|
Power M, Das S, Schütze K, Marigo V, Ekström P, Paquet-Durand F. Cellular mechanisms of hereditary photoreceptor degeneration - Focus on cGMP. Prog Retin Eye Res 2019; 74:100772. [PMID: 31374251 DOI: 10.1016/j.preteyeres.2019.07.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 07/25/2019] [Accepted: 07/29/2019] [Indexed: 12/21/2022]
Abstract
The cellular mechanisms underlying hereditary photoreceptor degeneration are still poorly understood, a problem that is exacerbated by the enormous genetic heterogeneity of this disease group. However, the last decade has yielded a wealth of new knowledge on degenerative pathways and their diversity. Notably, a central role of cGMP-signalling has surfaced for photoreceptor cell death triggered by a subset of disease-causing mutations. In this review, we examine key aspects relevant for photoreceptor degeneration of hereditary origin. The topics covered include energy metabolism, epigenetics, protein quality control, as well as cGMP- and Ca2+-signalling, and how the related molecular and metabolic processes may trigger photoreceptor demise. We compare and integrate evidence on different cell death mechanisms that have been associated with photoreceptor degeneration, including apoptosis, necrosis, necroptosis, and PARthanatos. A special focus is then put on the mechanisms of cGMP-dependent cell death and how exceedingly high photoreceptor cGMP levels may cause activation of Ca2+-dependent calpain-type proteases, histone deacetylases and poly-ADP-ribose polymerase. An evaluation of the available literature reveals that a large group of patients suffering from hereditary photoreceptor degeneration carry mutations that are likely to trigger cGMP-dependent cell death, making this pathway a prime target for future therapy development. Finally, an outlook is given into technological and methodological developments that will with time likely contribute to a comprehensive overview over the entire metabolic complexity of photoreceptor cell death. Building on such developments, new imaging technology and novel biomarkers may be used to develop clinical test strategies, that fully consider the genetic heterogeneity of hereditary retinal degenerations, in order to facilitate clinical testing of novel treatment approaches.
Collapse
Affiliation(s)
- Michael Power
- Cell Death Mechanism Group, Institute for Ophthalmic Research, University of Tübingen, Germany; Centre for Integrative Neurosciences (CIN), University of Tübingen, Germany; Graduate Training Centre of Neuroscience (GTC), University of Tübingen, Germany
| | - Soumyaparna Das
- Cell Death Mechanism Group, Institute for Ophthalmic Research, University of Tübingen, Germany; Graduate Training Centre of Neuroscience (GTC), University of Tübingen, Germany
| | | | - Valeria Marigo
- Department of Life Sciences, University of Modena and Reggio Emilia, Italy
| | - Per Ekström
- Ophthalmology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Sweden
| | - François Paquet-Durand
- Cell Death Mechanism Group, Institute for Ophthalmic Research, University of Tübingen, Germany.
| |
Collapse
|
34
|
Wang L, Mai Z, Zhao M, Wang B, Yu S, Wang X, Chen T. Aspirin induces oncosis in tumor cells. Apoptosis 2019; 24:758-772. [PMID: 31243598 DOI: 10.1007/s10495-019-01555-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
35
|
Corsetti G, Chen-Scarabelli C, Romano C, Pasini E, Dioguardi FS, Onorati F, Knight R, Patel H, Saravolatz L, Faggian G, Scarabelli TM. Autophagy and Oncosis/Necroptosis Are Enhanced in Cardiomyocytes from Heart Failure Patients. Med Sci Monit Basic Res 2019; 25:33-44. [PMID: 30713336 PMCID: PMC6373236 DOI: 10.12659/msmbr.913436] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Although originally described as a survival mechanism, it is unknown whether and to what extent autophagy is implicated in the terminal stages of heart failure. Here, we studied magnitude and evolution of autophagy in patients with intractable heart failure. Material/Methods Myocardial samples were obtained from 22 patients with ischemic cardiomyopathy and idiopathic dilated cardiomyopathy who were undergoing cardiac transplantation. Hearts from 11 patients who died from non-cardiac causes were used as control samples. Autophagy was evaluated by immunostaining with a monoclonal microtubule associated protein light chain 3 (LC3)-II antibody, while the relationship of autophagy with apoptosis and oncosis was assessed by double staining with TUNEL (terminal deoxynucleotidyl transferase – mediated deoxyuridine triphosphate nick end labeling) assay and complement 9 (C9) immunological staining, respectively. In addition, several necroptotic markers, including RIP1 and RIP3 (receptor interacting protein kinase 1 and 3), anti-C3 (cleaved-caspase-3), and anti-NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) were assessed by immunohistochemistry. Results Anti-LC3-II staining was detected in 8.7±1.6% of the heart failure patient heart samples and in 1.2±0.3% of control patient heart samples. Vacuole formation started at one nuclear pole, before becoming bipolar and involving the cytosol. Subsequently, the autophagic process extended also to the nuclei, which underwent a progressive vacuolization and disintegration, assuming a peculiar “strawberry like appearance”. Myocytes with extensive vacuole formation exhibited nuclear degeneration, which was associated with TUNEL, C3, C9, RIP1, and RIP3 positive staining. Conversely, myocytes with less extensive vacuole formation showed RIP1 and NF-κB positive staining, though not positivity for other cell death markers. Conclusions Autophagy was extensively detected in end-stage heart failure and its progression, resulted in secondary cell death, with occurrence of oncosis and necroptosis exceeding that of apoptosis. Conversely, activation of the RIP1/NF-κB pathway was associated with cell survival.
Collapse
Affiliation(s)
- Giovanni Corsetti
- Division of Human Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Carol Chen-Scarabelli
- Center for Heart and Vessel Preclinical Studies, Department of Internal Medicine, St. John Hospital and Medical Center, Wayne State University, Detroit, MI, USA
| | - Claudia Romano
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Evasio Pasini
- Scientific Clinical Institutes Maugeri, Cardiac Rehabilitation Lumezzane Institute, Brescia, Italy
| | | | - Francesco Onorati
- Division of Cardiovascular Surgery, Verona University Hospital, Verona, Italy
| | - Richard Knight
- Medical Research Council (MRC) Toxicology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Hemang Patel
- General Medical Education, Department of Internal Medicine, Ascension St. John Hospital, Detroit, MI, USA
| | - Louis Saravolatz
- Department of Medicine, Ascension St John Hospital and Wayne State University School of Medicine, Detroit, MI, USA
| | - Giuseppe Faggian
- Division of Cardiovascular Surgery, Verona University Hospital, Verona, Italy
| | - Tiziano M Scarabelli
- Center for Heart and Vessel Preclinical Studies, Department of Internal Medicine, St. John Hospital and Medical Center, Wayne State University, Detroit, MI, USA
| |
Collapse
|
36
|
Horn A, Jaiswal JK. Cellular mechanisms and signals that coordinate plasma membrane repair. Cell Mol Life Sci 2018; 75:3751-3770. [PMID: 30051163 PMCID: PMC6541445 DOI: 10.1007/s00018-018-2888-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/13/2018] [Accepted: 07/23/2018] [Indexed: 02/08/2023]
Abstract
Plasma membrane forms the barrier between the cytoplasm and the environment. Cells constantly and selectively transport molecules across their plasma membrane without disrupting it. Any disruption in the plasma membrane compromises its selective permeability and is lethal, if not rapidly repaired. There is a growing understanding of the organelles, proteins, lipids, and small molecules that help cells signal and efficiently coordinate plasma membrane repair. This review aims to summarize how these subcellular responses are coordinated and how cellular signals generated due to plasma membrane injury interact with each other to spatially and temporally coordinate repair. With the involvement of calcium and redox signaling in single cell and tissue repair, we will discuss how these and other related signals extend from single cell repair to tissue level repair. These signals link repair processes that are activated immediately after plasma membrane injury with longer term processes regulating repair and regeneration of the damaged tissue. We propose that investigating cell and tissue repair as part of a continuum of wound repair mechanisms would be of value in treating degenerative diseases.
Collapse
Affiliation(s)
- Adam Horn
- Center for Genetic Medicine Research, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC, 20010-2970, USA
- Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Jyoti K Jaiswal
- Center for Genetic Medicine Research, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC, 20010-2970, USA.
- Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
37
|
Nakajima K, Takakura H, Shimizu Y, Ogawa M. Changes in plasma membrane damage inducing cell death after treatment with near-infrared photoimmunotherapy. Cancer Sci 2018; 109:2889-2896. [PMID: 29949672 PMCID: PMC6125438 DOI: 10.1111/cas.13713] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/25/2018] [Indexed: 12/12/2022] Open
Abstract
Near‐infrared photoimmunotherapy (NIR‐PIT) is a new cancer phototherapy modality using an antibody conjugated to a photosensitizer, IRDye700DX. When the conjugate binds to the plasma membrane and is exposed to NIR light, NIR‐PIT‐treated cells undergo swelling, and target‐selective necrotic/immunogenic cell death is induced. However, the cytotoxic mechanism of NIR‐PIT has not been elucidated. In order to understand the mechanism, it is important to elucidate how the damage to the plasma membrane induced by NIR light irradiation changes over time. Thus, in the present study, we investigated the changes in plasma membrane permeability using ions and molecules of various sizes. Na+ flowed into cells immediately after NIR light irradiation, even when the function of transporters or channels was blocked. Subsequently, fluorescent molecules larger than Na+ entered the cells, but the damage was not large enough for dextran to pass through at early time points. To assess these phenomena quantitatively, membrane permeability was estimated using radiolabeled ions and molecules: 111InCl3, 111In‐DTPA, and 3H‐H2O, and comparable results were obtained. Although minute plasma membrane perforations usually do not induce cell death, our results suggest that the minute damage induced by NIR‐PIT was irreversibly extended with time. In conclusion, minute plasma membrane damage is a trigger for the increase in plasma membrane permeability, cell swelling, and necrotic/immunogenic cell death in NIR‐PIT. Our findings provide new insight into the cytotoxic mechanism of NIR‐PIT.
Collapse
Affiliation(s)
- Kohei Nakajima
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Hideo Takakura
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yoichi Shimizu
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Mikako Ogawa
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
| |
Collapse
|
38
|
Guan R, Chen Y, Zeng L, Rees TW, Jin C, Huang J, Chen ZS, Ji L, Chao H. Oncosis-inducing cyclometalated iridium(iii) complexes. Chem Sci 2018; 9:5183-5190. [PMID: 29997872 PMCID: PMC6000986 DOI: 10.1039/c8sc01142g] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 05/02/2018] [Indexed: 12/25/2022] Open
Abstract
Oncosis is a non-apoptotic form of programmed cell death (PCD), which differs from apoptosis in both morphological changes and inner pathways, and might hold the key to defeating a major obstacle in cancer therapy - drug-resistance, which is often a result of the intrinsic apoptosis resistance of tumours. However, despite the fact that the term "oncosis" was coined and used much earlier than apoptosis, little effort has been made to discover new drugs which can initiate this form of cell death, in comparison to drugs inducing apoptosis or any other type of PCD. So herein, we present the synthesis of a series of mitochondria-targeting cyclometalated Ir(iii) complexes, which activated the oncosis-specific protein porimin and calpain in cisplatin-resistant cell line A549R, and determined their cytotoxicity against a wide range of drug-resistant cancer types. To the best of our knowledge, these complexes are the very first metallo-components to induce oncosis in drug-resistant cancer cells.
Collapse
Affiliation(s)
- Ruilin Guan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry , School of Chemistry , Sun Yat-Sen University , Guangzhou , 510275 , P. R. China .
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry , School of Chemistry , Sun Yat-Sen University , Guangzhou , 510275 , P. R. China .
| | - Leli Zeng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry , School of Chemistry , Sun Yat-Sen University , Guangzhou , 510275 , P. R. China .
- College of Pharmacy and Health Sciences , St. John's University , New York , NY 11439 , USA
| | - Thomas W Rees
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry , School of Chemistry , Sun Yat-Sen University , Guangzhou , 510275 , P. R. China .
| | - Chengzhi Jin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry , School of Chemistry , Sun Yat-Sen University , Guangzhou , 510275 , P. R. China .
| | - Juanjuan Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry , School of Chemistry , Sun Yat-Sen University , Guangzhou , 510275 , P. R. China .
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences , St. John's University , New York , NY 11439 , USA
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry , School of Chemistry , Sun Yat-Sen University , Guangzhou , 510275 , P. R. China .
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry , School of Chemistry , Sun Yat-Sen University , Guangzhou , 510275 , P. R. China .
- MOE Key Laboratory of Theoretical Organic Chemistry and Functional Molecule , School of Chemistry and Chemical Engineering , Hunan University of Science and Technology , Xiangtan , 400201 , P. R. China
| |
Collapse
|
39
|
Shu F, Chen J, Ma X, Fan Y, Yu L, Zheng W, Amrein MW, Xia T, Shi Y. Cholesterol Crystal-Mediated Inflammation Is Driven by Plasma Membrane Destabilization. Front Immunol 2018; 9:1163. [PMID: 29896195 PMCID: PMC5986904 DOI: 10.3389/fimmu.2018.01163] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/09/2018] [Indexed: 01/21/2023] Open
Abstract
Atherosclerosis is driven by an inflammatory milieu in the walls of artery vessels. Initiated early in life, it progresses to plaque formation and form cell accumulation. A culprit in this cascade is the deposition of cholesterol crystals (CC). The involvement of smaller crystals in the early stage of atherosclerotic changes may be critical to the long-term pathological development. How these small crystals initiate the pro-inflammatory events is under study. We report here an unexpected mechanism that microscopic CC interact with cellular membrane in a phagocytosis-independent manner. The binding of these crystals extracts cholesterol from the cell surface. This process causes a sudden catastrophic rupture of plasma membrane and necrosis of the bound cells independent of any known cell death-inducing pathways, releasing inflammatory agents associated with the necrotic cell death. Our results, therefore, reveal a biophysical aspect of CC in potentially mediating the inflammatory progress in atherosclerosis.
Collapse
Affiliation(s)
- Fei Shu
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Peking University, Beijing, China.,Department of Basic Medical Sciences, Center for Life Sciences, Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Jiahuan Chen
- Department of Basic Medical Sciences, Center for Life Sciences, Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Xiaojie Ma
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yunzhou Fan
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Li Yu
- Department of Basic Medical Sciences, Center for Life Sciences, Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Wencheng Zheng
- Department of Basic Medical Sciences, Center for Life Sciences, Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Matthias W Amrein
- Department of Cell Biology, Snyder Institute, University of Calgary, Calgary, AB, Canada.,Department of Anatomy, Snyder Institute, University of Calgary, Calgary, AB, Canada
| | - Tie Xia
- Department of Basic Medical Sciences, Center for Life Sciences, Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Yan Shi
- Department of Basic Medical Sciences, Center for Life Sciences, Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China.,Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
40
|
Characterization of the Goose CAPN3 Gene and its Expression Pattern in Muscle Tissues of Sichuan White Geese at Different Growth Stages. J Poult Sci 2018; 55:172-181. [PMID: 32055171 PMCID: PMC6756500 DOI: 10.2141/jpsa.0170150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/01/2017] [Indexed: 02/01/2023] Open
Abstract
Calpain 3 (CAPN3), also known as p94, is associated with multiple production traits in domestic animals. However, the molecular characteristics of the CAPN3 gene and its expression profile in goose tissues have not been reported. In this study, CAPN3 cDNA of the Sichuan white goose was cloned, sequenced, and characterized. The CAPN3 full-length cDNA sequence consists of a 2,316-bp coding sequence (CDS) that encodes 771 amino acids with a molecular mass of 89,019 kDa. The protein was predicted to have no signal peptide, but several N-glycosylation, O-glycosylation, and phosphorylation sites. The secondary structure of CAPN3 was predicted to be 38.65% α-helical. Sequence alignment showed that CAPN3 of Sichuan white goose shared more than 90% amino acid sequence similarity with those of Japanese quail, turkey, helmeted guineafowl, duck, pigeon, and chicken. Phylogenetic tree analysis showed that goose CAPN3 has a close genetic relationship and small evolutionary distance with those of the birds. qRT-PCR analysis showed that in 15-day-old animals, the expression level of CAPN3 was significantly higher in breast muscle than in thigh tissues. These results serve as a foundation for further investigations of the function of the goose CAPN3 gene.
Collapse
|
41
|
Abstract
The coevolution of intracellular bacteria with their eukaryotic hosts has presented these pathogens with numerous challenges for their evolutionary progress and survival. Chief among these is the ability to exit from host cells, an event that is fundamentally linked to pathogen dissemination and transmission. Recent years have witnessed a major expansion of research in this area, and this chapter summarizes our current understanding of the spectrum of exit strategies that are exploited by intracellular pathogens. Clear themes regarding the mechanisms of microbial exit have emerged and are most easily conceptualized as (i) lysis of the host cell, (ii) nonlytic exit of free bacteria, and (iii) release of microorganisms into membrane-encased compartments. The adaptation of particular exit strategies is closely linked with additional themes in microbial pathogenesis, including host cell death, manipulation of host signaling pathways, and coincident activation of proinflammatory responses. This chapter will explore the molecular determinants used by intracellular pathogens to promote host cell escape and the infectious advantages each exit pathway may confer, and it will provide an evolutionary framework for the adaptation of these mechanisms.
Collapse
|
42
|
Calcium influx-mediated translocation of m-calpain induces Ku80 cleavage and enhances the Ku80-related DNA repair pathway. Oncotarget 2017; 7:30831-44. [PMID: 27121057 PMCID: PMC5058721 DOI: 10.18632/oncotarget.8791] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 04/01/2016] [Indexed: 01/14/2023] Open
Abstract
Proteomic analysis of ionomycin-treated and untreated mammary epithelial MCF10A cells elucidated differences in Ku80 cleavage. Ku80, a subunit of the Ku protein complex, is an initiator of the non-homologous, end-joining (NHEJ), double-strand breaks (DSBs) repair pathway. The nuclear Ku80 was cleaved in a calcium concentration-dependent manner by m-calpain but not by m-calpain. The cleavage of nuclear Ku80 at its α/β domain was validated by Western blotting analysis using flag-tagged expression vectors of truncated versions of Ku80 and a flag antibody and was confirmed in m-calpain knock-down cells and in vitro cell-free evaluation with recombinant proteins of calpains, Ku70, and Ku80. In addition, the cleaved Ku80 still formed a Ku heterodimer and promoted DNA DSB repair activity. Taken together, these findings indicate that translocated m-calpain enhances the NHEJ pathway through the cleavage of Ku80. Based on the present study, m-calpain in DNA repair pathways might be a novel anticancer drug target, or its mechanism might be a possible route for resistance acquisition of DNA damage-inducing chemotherapeutics.
Collapse
|
43
|
Yuan R, Hou Y, Sun W, Yu J, Liu X, Niu Y, Lu JJ, Chen X. Natural products to prevent drug resistance in cancer chemotherapy: a review. Ann N Y Acad Sci 2017; 1401:19-27. [DOI: 10.1111/nyas.13387] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/22/2017] [Accepted: 04/27/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Renyikun Yuan
- State Key Laboratory of Quality Research in Chinese Medicine; Institute of Chinese Medical Sciences, University of Macau; Macao China
| | - Ying Hou
- State Key Laboratory of Quality Research in Chinese Medicine; Institute of Chinese Medical Sciences, University of Macau; Macao China
| | - Wen Sun
- State Key Laboratory of Quality Research in Chinese Medicine; Institute of Chinese Medical Sciences, University of Macau; Macao China
| | - Jie Yu
- State Key Laboratory of Quality Research in Chinese Medicine; Institute of Chinese Medical Sciences, University of Macau; Macao China
| | - Xin Liu
- State Key Laboratory of Quality Research in Chinese Medicine; Institute of Chinese Medical Sciences, University of Macau; Macao China
| | - Yanan Niu
- State Key Laboratory of Quality Research in Chinese Medicine; Institute of Chinese Medical Sciences, University of Macau; Macao China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine; Institute of Chinese Medical Sciences, University of Macau; Macao China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine; Institute of Chinese Medical Sciences, University of Macau; Macao China
| |
Collapse
|
44
|
Alharbi RA, Pandha HS, Simpson GR, Pettengell R, Poterlowicz K, Thompson A, Harrington K, El-Tanani M, Morgan R. Inhibition of HOX/PBX dimer formation leads to necroptosis in acute myeloid leukemia cells. Oncotarget 2017; 8:89566-89579. [PMID: 29163771 PMCID: PMC5685692 DOI: 10.18632/oncotarget.20023] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 06/26/2017] [Indexed: 12/31/2022] Open
Abstract
The HOX genes encode a family of transcription factors that have key roles in both development and malignancy. Disrupting the interaction between HOX proteins and their binding partner, PBX, has been shown to cause apoptotic cell death in a range of solid tumors. However, despite HOX proteins playing a particularly significant role in acute myeloid leukemia (AML), the relationship between HOX gene expression and patient survival has not been evaluated (with the exception of HOXA9), and the mechanism by which HOX/PBX inhibition induces cell death in this malignancy is not well understood. In this study, we show that the expression of HOXA5, HOXB2, HOXB4, HOXB9, and HOXC9, but not HOXA9, in primary AML samples is significantly related to survival. Furthermore, the previously described inhibitor of HOX/PBX dimerization, HXR9, is cytotoxic to both AML-derived cell lines and primary AML cells from patients. The mechanism of cell death is not dependent on apoptosis but instead involves a regulated form of necrosis referred to as necroptosis. HXR9-induced necroptosis is enhanced by inhibitors of protein kinase C (PKC) signaling, and HXR9 combined with the PKC inhibitor Ro31 causes a significantly greater reduction in tumor growth compared to either reagent alone.
Collapse
Affiliation(s)
- Raed A Alharbi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Albaha University, Albaha, Saudi Arabia.,Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Hardev S Pandha
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Guy R Simpson
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | | | | | - Alexander Thompson
- Division of Cancer and Stem Cells, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - Kevin Harrington
- Targeted Therapy Team, Chester Beatty Laboratories, Institute of Cancer Research, London, UK
| | - Mohamed El-Tanani
- Institute of Cancer Therapeutics, University of Bradford, Bradford, UK
| | - Richard Morgan
- Institute of Cancer Therapeutics, University of Bradford, Bradford, UK
| |
Collapse
|
45
|
Kumar V, Ahmad A. Targeting calpains: A novel immunomodulatory approach for microbial infections. Eur J Pharmacol 2017; 814:28-44. [PMID: 28789934 DOI: 10.1016/j.ejphar.2017.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 08/01/2017] [Accepted: 08/03/2017] [Indexed: 02/09/2023]
Abstract
Calpains are a family of Ca2+ dependent cytosolic non-lysosomal proteases with well conserved cysteine-rich domains for enzymatic activity. Due to their functional dependency on Ca2+ concentrations, they are involved in various cellular processes that are regulated by intracellular ca2+ concentration (i.e. embryo development, cell development and migration, maintenance of cellular architecture and structure etc.). Calpains are widely studied proteases in mammalian (i.e. mouse and human) physiology and pathophysiology due to their ubiquitous presence. For example, these proteases have been found to be involved in various inflammatory disorders such as neurodegeneration, cancer, brain and myocardial ischemia and infarction, cataract and muscular dystrophies etc. Besides their role in these sterile inflammatory conditions, calpains have also been shown to regulate a wide range of infectious diseases (i.e. sepsis, tuberculosis, gonorrhoea and bacillary dysentery etc.). One of these regulatory mechanisms mediated by calpains (i.e. calpain 1 and 2) during microbial infections involves the regulation of innate immune response, inflammation and cell death. Thus, the major emphasis of this review is to highlight the importance of calpains in the pathogenesis of various microbial (i.e. bacterial, fungal and viral) diseases and the use of calpain modulators as potential immunomodulators in microbial infections.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Paediatrics and Child Health, Children's Health Queensland Clinical Unit, School of Medicine, University of Queensland, Brisbane, Queensland, Australia.
| | - Ali Ahmad
- Laboratory of innate immunity, CHU Ste-Justine Research Center/Department of Microbiology, Infectious Diseases and Immunology, University of Montreal, 3175 Cote Ste Catherine, Montreal, Quebec, Canada H3T 1C5.
| |
Collapse
|
46
|
Ischemia/Reperfusion Injury following Acute Myocardial Infarction: A Critical Issue for Clinicians and Forensic Pathologists. Mediators Inflamm 2017; 2017:7018393. [PMID: 28286377 PMCID: PMC5327760 DOI: 10.1155/2017/7018393] [Citation(s) in RCA: 274] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/26/2016] [Accepted: 11/30/2016] [Indexed: 12/27/2022] Open
Abstract
Acute myocardial infarction (AMI) is a leading cause of morbidity and mortality. Reperfusion strategies are the current standard therapy for AMI. However, they may result in paradoxical cardiomyocyte dysfunction, known as ischemic reperfusion injury (IRI). Different forms of IRI are recognized, of which only the first two are reversible: reperfusion-induced arrhythmias, myocardial stunning, microvascular obstruction, and lethal myocardial reperfusion injury. Sudden death is the most common pattern for ischemia-induced lethal ventricular arrhythmias during AMI. The exact mechanisms of IRI are not fully known. Molecular, cellular, and tissue alterations such as cell death, inflammation, neurohumoral activation, and oxidative stress are considered to be of paramount importance in IRI. However, comprehension of the exact pathophysiological mechanisms remains a challenge for clinicians. Furthermore, myocardial IRI is a critical issue also for forensic pathologists since sudden death may occur despite timely reperfusion following AMI, that is one of the most frequently litigated areas of cardiology practice. In this paper we explore the literature regarding the pathophysiology of myocardial IRI, focusing on the possible role of the calpain system, oxidative-nitrosative stress, and matrix metalloproteinases and aiming to foster knowledge of IRI pathophysiology also in terms of medicolegal understanding of sudden deaths following AMI.
Collapse
|
47
|
Hisamatsu Y, Suzuki N, Masum AA, Shibuya A, Abe R, Sato A, Tanuma SI, Aoki S. Cationic Amphiphilic Tris-Cyclometalated Iridium(III) Complexes Induce Cancer Cell Death via Interaction with Ca2+-Calmodulin Complex. Bioconjug Chem 2016; 28:507-523. [DOI: 10.1021/acs.bioconjchem.6b00627] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yosuke Hisamatsu
- Faculty of Pharmaceutical Sciences, ‡Research Institute for Biomedical Sciences, §Division of Medical-Science-Engineering
Cooperation and ∥Imaging Frontier Center, Research Institute for Science
and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Nozomi Suzuki
- Faculty of Pharmaceutical Sciences, ‡Research Institute for Biomedical Sciences, §Division of Medical-Science-Engineering
Cooperation and ∥Imaging Frontier Center, Research Institute for Science
and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Abdullah-Al Masum
- Faculty of Pharmaceutical Sciences, ‡Research Institute for Biomedical Sciences, §Division of Medical-Science-Engineering
Cooperation and ∥Imaging Frontier Center, Research Institute for Science
and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Ai Shibuya
- Faculty of Pharmaceutical Sciences, ‡Research Institute for Biomedical Sciences, §Division of Medical-Science-Engineering
Cooperation and ∥Imaging Frontier Center, Research Institute for Science
and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Ryo Abe
- Faculty of Pharmaceutical Sciences, ‡Research Institute for Biomedical Sciences, §Division of Medical-Science-Engineering
Cooperation and ∥Imaging Frontier Center, Research Institute for Science
and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Akira Sato
- Faculty of Pharmaceutical Sciences, ‡Research Institute for Biomedical Sciences, §Division of Medical-Science-Engineering
Cooperation and ∥Imaging Frontier Center, Research Institute for Science
and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Sei-ichi Tanuma
- Faculty of Pharmaceutical Sciences, ‡Research Institute for Biomedical Sciences, §Division of Medical-Science-Engineering
Cooperation and ∥Imaging Frontier Center, Research Institute for Science
and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Shin Aoki
- Faculty of Pharmaceutical Sciences, ‡Research Institute for Biomedical Sciences, §Division of Medical-Science-Engineering
Cooperation and ∥Imaging Frontier Center, Research Institute for Science
and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
48
|
Repurposing the anti-malarial drug artesunate as a novel therapeutic agent for metastatic renal cell carcinoma due to its attenuation of tumor growth, metastasis, and angiogenesis. Oncotarget 2016; 6:33046-64. [PMID: 26426994 PMCID: PMC4741748 DOI: 10.18632/oncotarget.5422] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 09/16/2015] [Indexed: 12/24/2022] Open
Abstract
Despite advances in the development of molecularly targeted therapies, metastatic renal cell carcinoma (RCC) is still incurable. Artesunate (ART), a well-known anti-malarial drug with low toxicity, exhibits highly selective anti-tumor actions against various tumors through generation of cytotoxic carbon-centered free radical in the presence of free iron. However, the therapeutic efficacy of ART against metastatic RCC has not yet been fully elucidated. In the analysis on a dataset from The Cancer Genome Atlas (TCGA) (n = 469) and a tissue microarray set from Samsung Medical Center (n = 119) from a cohort of patients with clear cell RCC (ccRCC), up-regulation of transferrin receptor 1 (TfR1), which is a well-known predictive marker for ART, was correlated with the presence of distant metastasis and an unfavorable prognosis. Moreover, ART exerted potent selective cytotoxicity against human RCC cell lines (Caki-1, 786-O, and SN12C-GFP-SRLu2) and sensitized these cells to sorafenib in vitro, and the extent of ART cytotoxicity correlated with TfR1 expression. ART-mediated growth inhibition of human RCC cell lines was shown to result from the induction of cell cycle arrest at the G2/M phase and oncosis-like cell death. Furthermore, ART inhibited cell clonogenicity and invasion of human RCC cells and anti-angiogenic effects in vitro in a dose-dependent manner. Consistent with these in vitro data, anti-tumor, anti-metastatic and anti-angiogenic effects of ART were also validated in human 786-O xenografts. Taken together, ART is a promising novel candidate for treating human RCC, either alone or in combination with other therapies.
Collapse
|
49
|
Tangmansakulchai K, Abubakar Z, Kitiyanant N, Suwanjang W, Leepiyasakulchai C, Govitrapong P, Chetsawang B. Calpastatin overexpression reduces oxidative stress-induced mitochondrial impairment and cell death in human neuroblastoma SH-SY5Y cells by decreasing calpain and calcineurin activation, induction of mitochondrial fission and destruction of mitochondrial fusion. Mitochondrion 2016; 30:151-61. [DOI: 10.1016/j.mito.2016.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 06/30/2016] [Accepted: 07/20/2016] [Indexed: 10/21/2022]
|
50
|
Lu Y, Liu S, Wang Y, Wang D, Gao J, Zhu L. Asiatic acid uncouples respiration in isolated mouse liver mitochondria and induces HepG2 cells death. Eur J Pharmacol 2016; 786:212-223. [PMID: 27288117 DOI: 10.1016/j.ejphar.2016.06.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 06/02/2016] [Accepted: 06/06/2016] [Indexed: 11/15/2022]
Abstract
Asiatic acid, one of the triterpenoid components isolated from Centella asiatica, has received increasing attention due to a wide variety of biological activities. To date, little is known about its mechanisms of action. Here we examined the cytotoxic effect of asiatic acid on HepG2 cells and elucidated some of the underlying mechanisms. Asiatic acid induced rapid cell death, as well as mitochondrial membrane potential (MMP) dissipation, ATP depletion and cytochrome c release from mitochondria to the cytosol in HepG2 cells. In mitochondria isolated from mouse liver, asiatic acid treatment significantly stimulated the succinate-supported state 4 respiration rate, dissipated the MMP, increased Ca(2+) release from Ca(2+)-loaded mitochondria, decreased ATP content and promoted cytochrome c release, indicating the uncoupling effect of asiatic acid. Hydrogen peroxide (H2O2) produced by succinate-supported mitochondrial respiration was also significantly inhibited by asiatic acid. In addition, asiatic acid inhibited Ca(2+)-induced mitochondrial swelling but did not induce mitochondrial swelling in hyposmotic potassium acetate medium which suggested that asiatic acid may not act as a protonophoric uncoupler. Inhibition of uncoupling proteins (UCPs) or blockade of adenine nucleotide transporter (ANT) attenuated the effect of asiatic acid on MMP dissipation, Ca(2+) release, mitochondrial respiration and HepG2 cell death. When combined inhibition of UCPs and ANT, asiatic acid-mediated uncoupling effect was noticeably alleviated. These results suggested that both UCPs and ANT partially contribute to the uncoupling properties of asiatic acid. In conclusion, asiatic acid is a novel mitochondrial uncoupler and this property is potentially involved in its toxicity on HepG2 cells.
Collapse
Affiliation(s)
- Yapeng Lu
- School of Medicine, Jiangsu University, Zhenjiang 212013, China; Institute of Nautical Medicine, Nantong University, Nantong 226019, China
| | - Siyuan Liu
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Ying Wang
- Institute of Nautical Medicine, Nantong University, Nantong 226019, China
| | - Dang Wang
- Institute of Nautical Medicine, Nantong University, Nantong 226019, China
| | - Jing Gao
- School of Medicine, Jiangsu University, Zhenjiang 212013, China.
| | - Li Zhu
- Institute of Nautical Medicine, Nantong University, Nantong 226019, China.
| |
Collapse
|