1
|
Bhattacharjee S, Aswal VK, Seth D. Unraveling the Role of Polyoxometalates-Based Superchaotropes on the Photophysics of Organic Molecules and Modulation of Water Dynamics in a Hydrophilic Block Copolymer Solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025. [PMID: 39842039 DOI: 10.1021/acs.langmuir.4c03990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Polyoxometalates (POMs) are composed of nanometric metal-oxide anions and have rich solution chemistry. In this class, Keggin POMs have been identified as the most influential inorganic additives for aqueous nonionic soft matter systems. POMs being at the borderline of classical ions and charged colloids possess fascinating solution properties; the present work aims to delve deeper into the interactions between nanoions and nonionic soft matters from a spectroscopic point of view. Our studies reveal that although of the same structural makeup, silicotungstic acid hydrate (SiW) and phosphotungstic acid hydrate (PW) affect the photophysics of Coumarin-480 (C-480) in poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) ((PEO)76-(PPO)30-(PEO)76, F-68) copolymeric media in a dissimilar manner. From time-resolved studies, we find a preference for SiW toward the intramolecular charge transfer state of C-480, whereas PW favors the locally emissive state of the probe. Further, from rotational relaxation studies, it appears that SiW renders a rigid environment around the probe molecule, while PW relaxes the copolymeric environment. Finally, the dynamic quenching mechanism of the added nanoions was unraveled, which showed a straightforward Förster mechanism for SiW but a short-range interaction was operative for PW. From Fourier transform infrared and 1H NMR, it can be concluded that both the nanoions interacted with the PPO moiety of the copolymer; yet, their contrasting effect on the photophysics has been rationalized as a consequence of charge density on the ions.
Collapse
Affiliation(s)
- Sanyukta Bhattacharjee
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801103, Bihar, India
| | - Vinod K Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Debabrata Seth
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801103, Bihar, India
| |
Collapse
|
2
|
Brnovic A, Hunt LA, Tian H, Hammarström L. Revising exciton diffusion lengths in polymer dot photocatalysts. Phys Chem Chem Phys 2025; 27:1083-1088. [PMID: 39679930 DOI: 10.1039/d4cp04108a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Exciton migration in organic polymer dots (Pdots) is crucial for optimizing photocatalytic reactions at the particle surface, such as hydrogen evolution and carbon dioxide reduction. Despite the use of Pdots in photocatalysis, there is still a need for better understanding of exciton diffusion within these systems. This study investigates the exciton diffusion in PFBT Pdots stabilized with different weight percentages of the co-polymer surfactant PS-PEG-COOH and doped with perylene red as an internal quencher. Time-resolved fluorescence quenching data yields a quenching volume that the excitons explore during their lifetime (Vq), which is comparable to the volume of the hydrophobic core of PFBT Pdots. This indicates that excitons can migrate to the particle surface with high probability and suggests that the intrinsic exciton diffusion length (LD ≈ 19 nm) for PFBT is significantly larger than previously reported in Pdot studies from the literature (5.3 and 8.6 nm). Additionally, a larger quenching rate constant (kq) and smaller volume (Vq) is observed for the higher PS-PEG-COOH weight ratio, which are attributed to their smaller core. The study provides insights into the exciton migration within Pdots, with important implications for photocatalysis.
Collapse
Affiliation(s)
- Andjela Brnovic
- Department of Chemistry, Ångström Laboratory, Uppsala University, SE 751 20 Uppsala, Sweden.
| | - Leigh Anna Hunt
- Department of Chemistry, Ångström Laboratory, Uppsala University, SE 751 20 Uppsala, Sweden.
| | - Haining Tian
- Department of Chemistry, Ångström Laboratory, Uppsala University, SE 751 20 Uppsala, Sweden.
| | - Leif Hammarström
- Department of Chemistry, Ångström Laboratory, Uppsala University, SE 751 20 Uppsala, Sweden.
| |
Collapse
|
3
|
Cui X, Yan Y, Wei J. Theoretical Study on the Excitation Energy Transfer Dynamics in the Phycoerythrin PE555 Light-Harvesting Complex. ACS OMEGA 2024; 9:51228-51236. [PMID: 39758654 PMCID: PMC11696437 DOI: 10.1021/acsomega.4c07445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/06/2024] [Accepted: 11/22/2024] [Indexed: 01/07/2025]
Abstract
Photosynthesis in nature begins with light harvesting. The special pigment-protein complex converts sunlight into electron excitation that is transmitted to the reaction center, which triggers charge separation. Evidence shows that quantum coherence between electron excited states is important in the excitation energy transfer process. In this work, we investigate the quantum coherence of the PE555 complex in exciton dynamics and its performance and significance in photosynthetic light harvesting. To elucidate the energy transfer mechanism of the PE555 complex, an exciton model is adopted with the full Hamiltonian obtained from structure-based calculations. We used quantum dissipation theory to investigate the excitation dynamic process. The results indicate the existence of long-lived quantum coherence phenomena. We then discuss the pathway of the excitation energy transfer process, which is when the PEB chromophore molecules absorb energy and then transfer the excited energy to the DBV50/61B molecule. To further discuss the effect of the initial coherent superposition of dimeric states on the excitation energy transfer process to the DBV50/61B chromophore molecule, the results indicate that the coherent superposition of initially excited states indeed promotes the transmission of excitation energy to the acceptor state. Furthermore, we investigate the optimization behavior of individual pigment molecules, and these results show that the local protein environment among chromophore molecules can affect the throughput of the system in a controllable manner.
Collapse
Affiliation(s)
- XueYan Cui
- Department
of Science, Henan Institute of Technology, Xinxiang 453003, China
| | - YiJing Yan
- Department
of Chemical Physics and Hefei National Laboratory for Physical Sciences
at the Microscale, University of Science
and Technology of China, Hefei, Anhui 230026, China
| | - JianHua Wei
- Department
of Physics and Beijing Key Laboratory of Optoelectronic Functional
Materials and Micro-Nano Devices, Renmin
University of China, Beijing 100872, China
| |
Collapse
|
4
|
Zhang J, Wang S, Guo M, Li XK, Xiong YC, Zhou W. Photon-mediated energy transfer between molecules and atoms in a cavity: A numerical study. J Chem Phys 2024; 161:244305. [PMID: 39786904 DOI: 10.1063/5.0242420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/11/2024] [Indexed: 01/12/2025] Open
Abstract
The molecular energy transfer is crucial for many different physicochemical processes. The efficiency of traditional resonance energy transfer relies on dipole-dipole distance between molecules and becomes negligible when the distance is larger than ∼10 nm, which is difficult to overcome. Cavity polariton, formed when placing molecules inside the cavity, is a promising way to surmount the distance limit. By hybridizing a two-level atom (TLA) and a lithium fluoride (LiF) molecule with a cavity, we numerically simulate the reaction process and the energy transfer between them. Our results show that the TLA can induce a deep potential well, which can be seen as a replica of the potential energy surface of bare LiF, acting as a reservoir to absorb/release the molecular kinetic energy. In addition, the energy transfer shows a molecular nuclear kinetic energy dependent behavior, namely, more nuclear kinetic energy igniting more energy transfer. These findings show us a promising way to manipulate the energy transfer process within the cavity using an intentional TLA, which can also serve as a knob to control the reaction process.
Collapse
Affiliation(s)
- Jun Zhang
- Shiyan Key Laboratory of Quantum Information and Precision Optics, and School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China
- Hubei Key Laboratory of Energy Storage and Power Battery, and Collaborative Innovation Center for Optoelectronic Technology, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China
- Institute of Shiyan Industrial Technology of Chinese Academy of Engineering, Shiyan 442002, People's Republic of China
| | - Shaohong Wang
- Shiyan Key Laboratory of Quantum Information and Precision Optics, and School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China
- Hubei Key Laboratory of Energy Storage and Power Battery, and Collaborative Innovation Center for Optoelectronic Technology, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China
| | - Mengdi Guo
- Shiyan Key Laboratory of Quantum Information and Precision Optics, and School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China
- Hubei Key Laboratory of Energy Storage and Power Battery, and Collaborative Innovation Center for Optoelectronic Technology, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China
| | - Xin-Ke Li
- Shiyan Key Laboratory of Quantum Information and Precision Optics, and School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China
- Hubei Key Laboratory of Energy Storage and Power Battery, and Collaborative Innovation Center for Optoelectronic Technology, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China
| | - Yong-Chen Xiong
- Shiyan Key Laboratory of Quantum Information and Precision Optics, and School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China
- Hubei Key Laboratory of Energy Storage and Power Battery, and Collaborative Innovation Center for Optoelectronic Technology, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China
- Institute of Shiyan Industrial Technology of Chinese Academy of Engineering, Shiyan 442002, People's Republic of China
| | - Wanghuai Zhou
- Shiyan Key Laboratory of Quantum Information and Precision Optics, and School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China
- Hubei Key Laboratory of Energy Storage and Power Battery, and Collaborative Innovation Center for Optoelectronic Technology, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China
- Institute of Shiyan Industrial Technology of Chinese Academy of Engineering, Shiyan 442002, People's Republic of China
| |
Collapse
|
5
|
Xiang H, Hill EH. Cascade Förster resonance energy transfer between layered silicate edge-linked chromophores. J Colloid Interface Sci 2024; 676:543-550. [PMID: 39053402 DOI: 10.1016/j.jcis.2024.07.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
Förster resonance energy transfer (FRET) serves as a critical mechanism to study intermolecular interactions and the formation of macromolecular assemblies. Cascade FRET is a multi-step FRET process which can overcome limitations associated with traditional single-step FRET. Herein, a novel organic-inorganic hybrid composed of a nile red derivative attached to the edge of the layered silicate clay Laponite (Lap-NR) was used to facilitate cascade FRET between Laponite sheets. Utilizing naphthalene-diimide edge-modified Laponite (Lap-NDI) as the initial donor, Rhodamine 6G on the basal surface of Laponite as the first acceptor, and Lap-NR as the second acceptor, cascade FRET was achieved. The influence of solvent composition in a DMF/water mixture on cascade FRET was investigated, revealing that a higher water content led to an enhancement of the cascade FRET process, which is attributed to increased aggregation-induced emission of Lap-NDI and the enhanced quantum yield of R6G in water. This study provides a unique approach to achieve cascade FRET by taking advantage of the anisotropic surface chemistry of a two-dimensional nanomaterial, providing a colloidally-driven alternative with improved tunability compared to macromolecular routes. The flexibility and simplicity of this approach will advance the state of the art of organic-inorganic hybrids for applications in optoelectronics, sensors, and hybrid photovoltaics.
Collapse
Affiliation(s)
- Hongxiao Xiang
- Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Eric H Hill
- Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; The Hamburg Center for Ultrafast Imaging (CUI), Luruper Chausee 149, 22761 Hamburg, Germany.
| |
Collapse
|
6
|
Baek SD, Yang SJ, Yang H, Shao W, Yang YT, Dou L. Exciton Dynamics in Layered Halide Perovskite Light-Emitting Diodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2411998. [PMID: 39564714 DOI: 10.1002/adma.202411998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/23/2024] [Indexed: 11/21/2024]
Abstract
Layered halide perovskites have garnered significant interest due to their exceptional optoelectronic properties and great promises in light-emitting applications. Achieving high-performance perovskite light-emitting diodes (PeLEDs) requires a deep understanding of exciton dynamics in these materials. This review begins with a fundamental overview of the structural and photophysical properties of layered halide perovskites, then delves into the importance of dimensionality control and cascade energy transfer in quasi-2D PeLEDs. In the second half of the review, more complex exciton dynamics, such as multiexciton processes and triplet exciton dynamics, from the perspective of LEDs are explored. Through this comprehensive review, an in-depth understanding of the critical aspects of exciton dynamics in layered halide perovskites and their impacts on future research and technological advancements for layered halide PeLEDs is provided.
Collapse
Affiliation(s)
- Sung-Doo Baek
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Seok Joo Yang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Department of Chemical Engineering, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi, 39177, Republic of Korea
| | - Hanjun Yang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Wenhao Shao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Yu-Ting Yang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Letian Dou
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
7
|
Jiang SL, Wu YT, Chen WC, Huang JP, Chen D, Li L, Han L, Shi JH. Multispectral and molecular simulation of the interaction of human α1-acid glycoprotein with palbociclib. Biochim Biophys Acta Gen Subj 2024; 1868:130712. [PMID: 39313164 DOI: 10.1016/j.bbagen.2024.130712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/24/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024]
Abstract
Palbociclib, a selective CDK4/6 inhibitor with potent anti-tumor effects, was investigated for its interaction with human α1-acid glycoprotein (HAG). Spectral analysis revealed that palbociclib forms a ground state complex with HAG, exhibiting binding constant (Kb) of 104 M-1 at the used temperature range. The interaction between the two was determined to be driven mainly by hydrogen bonding and hydrophobic forces. Multispectral studies indicated that the bound palbociclib altered the secondary structure of HAG and reduced polarity around Trp and Tyr amino acids. And, molecular docking and dynamics simulations verified the experimental findings. Finally, most of the metal ions present in plasma, such as K+, Cu2+, Ca2+, Mg2+, Ni2+, Fe3+, and Co2+, are detrimental to the binding of palbociclib to HAG, with the exception of Zn2+, which is favorable.
Collapse
Affiliation(s)
- Shao-Liang Jiang
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Yu-Ting Wu
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Wang-Cai Chen
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jia-Ping Huang
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Dong Chen
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Li Li
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Liang Han
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Jie-Hua Shi
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou 310032, China
| |
Collapse
|
8
|
Daoud R, Cacciari R, De Vico L. Multiconfigurational Excitonic Couplings in Homo- and Heterodimer Stacks of Azobenzene-Derived Dyes. J Phys Chem A 2024; 128:9398-9411. [PMID: 39432887 PMCID: PMC11534007 DOI: 10.1021/acs.jpca.4c05237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 10/23/2024]
Abstract
Molecular excitons play a major role within dye aggregates and hold significant potential for (opto)electronic and photovoltaic applications. Numerous studies have documented alterations in the spectral properties of dye homoaggregates, but only limited work has been reported for heteroaggregates. In this article, dimeric dye stacks were constructed from azobenzene-like dyes with identical or distinct structures, and their excitonic features were computationally investigated. Our results show that strong exciton coupling is not limited to identical chromophores, as often assumed, based on a recently made available Frenkel Exciton Hamiltonian and multiconfigurational plus second-order perturbation theory energetics methodology. Heteroaggregate stacks were found to exhibit different absorption features from the corresponding interacting monomers, indicating considerable coupling interactions between units. We analyzed how such coupling may vary according to various aspects, such as the relative positions of the interacting monomers or the differences in their energetics. Such qualitative and semiquantitative analyses allow the evaluation of the excitonic behavior of these dye aggregates to encourage further efforts toward a deeper understanding of the excitonic properties of tailored dye heteroaggregate systems.
Collapse
Affiliation(s)
- Razan
E. Daoud
- Dipartimento di Biotecnologie, Chimica
e Farmacia, Università degli Studi
di Siena, Via A. Moro 2, 53100 Siena, Italy
| | | | - Luca De Vico
- Dipartimento di Biotecnologie, Chimica
e Farmacia, Università degli Studi
di Siena, Via A. Moro 2, 53100 Siena, Italy
| |
Collapse
|
9
|
Sheven DG, Pervukhin VV. Photochemical degradation of antibiotics: real-time investigation by aerodynamic thermal breakup droplet ionization mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6988-6993. [PMID: 39279729 DOI: 10.1039/d4ay01459f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
A method is proposed for studying photochemical reactions in solution in real time using aerodynamic/thermal breakup droplet ionization mass spectrometry. Capabilities of the method were demonstrated by analyses of photodegradation processes of three antibiotics (thiamphenicol, ciprofloxacin, and ofloxacin) by means of aqueous solutions. The method rapidly provided information about photochemical changes for understanding the photochemical processes.
Collapse
Affiliation(s)
- Dmitriy G Sheven
- Nikolaev Institute of Inorganic Chemistry SB RAS, Prosp. Lavrentieva 3, 630090 Novosibirsk, Russia.
| | - Viktor V Pervukhin
- Nikolaev Institute of Inorganic Chemistry SB RAS, Prosp. Lavrentieva 3, 630090 Novosibirsk, Russia.
| |
Collapse
|
10
|
Fleming GR, Scholes GD. The development and applications of multidimensional biomolecular spectroscopy illustrated by photosynthetic light harvesting. Q Rev Biophys 2024; 57:e11. [PMID: 39434618 DOI: 10.1017/s003358352400009x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
The parallel and synergistic developments of atomic resolution structural information, new spectroscopic methods, their underpinning formalism, and the application of sophisticated theoretical methods have led to a step function change in our understanding of photosynthetic light harvesting, the process by which photosynthetic organisms collect solar energy and supply it to their reaction centers to initiate the chemistry of photosynthesis. The new spectroscopic methods, in particular multidimensional spectroscopies, have enabled a transition from recording rates of processes to focusing on mechanism. We discuss two ultrafast spectroscopies - two-dimensional electronic spectroscopy and two-dimensional electronic-vibrational spectroscopy - and illustrate their development through the lens of photosynthetic light harvesting. Both spectroscopies provide enhanced spectral resolution and, in different ways, reveal pathways of energy flow and coherent oscillations which relate to the quantum mechanical mixing of, for example, electronic excitations (excitons) and nuclear motions. The new types of information present in these spectra provoked the application of sophisticated quantum dynamical theories to describe the temporal evolution of the spectra and provide new questions for experimental investigation. While multidimensional spectroscopies have applications in many other areas of science, we feel that the investigation of photosynthetic light harvesting has had the largest influence on the development of spectroscopic and theoretical methods for the study of quantum dynamics in biology, hence the focus of this review. We conclude with key questions for the next decade of this review.
Collapse
Affiliation(s)
- Graham R Fleming
- Department of Chemistry and QB3 Institute, Kavli Energy Nanoscience Institute, University of California, Berkeley, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | |
Collapse
|
11
|
Krzemińska A, Biczysko M, Pernal K, Hapka M. Anisole-Water and Anisole-Ammonia Complexes in Ground and Excited (S 1) States: A Multiconfigurational Symmetry-Adapted Perturbation Theory (SAPT) Study. J Phys Chem A 2024; 128:8816-8824. [PMID: 39352939 PMCID: PMC11480881 DOI: 10.1021/acs.jpca.4c04928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024]
Abstract
Binary complexes of anisole have long been considered paradigm systems for studying microsolvation in both the ground and electronically excited states. We report a symmetry-adapted perturbation theory (SAPT) analysis of intermolecular interactions in anisole-water and anisole-ammonia complexes within the framework of the multireference SAPT(CAS) method. Upon the S1 ← S0 electronic transition, the hydrogen bond in the anisole-water dimer is weakened, which SAPT(CAS) shows to be determined by changes in the electrostatic energy. As a result, the water complex becomes less stable in the relaxed S1 state despite decreased Pauli repulsion. Stronger binding of the anisole-ammonia complex following electronic excitation is more nuanced and results from counteracting shifts in the repulsive (exchange) and attractive (electrostatic, induction and dispersion) forces. In particular, we show that the formation of additional binding N-H···π contacts in the relaxed S1 geometry is possible due to reduced Pauli repulsion in the excited state. The SAPT(CAS) interaction energies have been validated against the coupled cluster (CC) results and experimentally determined shifts of the S1 ← S0 anisole band. While for the hydrogen-bonded anisole-water dimer SAPT(CAS) and CC shifts are in excellent agreement, for ammonia SAPT(CAS) is only qualitatively correct.
Collapse
Affiliation(s)
- Agnieszka Krzemińska
- Institute
of Physics, Lodz University of Technology, ul. Wolczanska 217/221, 93-005 Lodz, Poland
| | - Malgorzata Biczysko
- Faculty
of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Katarzyna Pernal
- Institute
of Physics, Lodz University of Technology, ul. Wolczanska 217/221, 93-005 Lodz, Poland
| | - Michał Hapka
- Faculty
of Chemistry, University of Warsaw, ul. L. Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|
12
|
Xiang TF, Liu Z, Zheng T, Yang L, Tamiaki H, Sasaki SI, Li A, Wang XF. Coherent Charge Transfer Reveals a Different Theoretical Limit of Power Conversion Efficiency in Organic Solar Cells. J Phys Chem Lett 2024; 15:9335-9341. [PMID: 39236264 DOI: 10.1021/acs.jpclett.4c01631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
The hopping charge transfer (CT) theory is used to explain the dynamics of traditional donor-acceptor (D-A) devices in organic solar cells (OSCs). But it is not applicable to the unconventional OSCs inspired by photosynthesis, referred to as Z-devices. In this study, we establish a universal heterojunction CT model in OSCs, based on the reported coherent CT in photosynthesis. Compared to the trade-off between energy loss and charge generation efficiency in the D-A device, we analyze its change in the Z-device. We introduce the "avalanche-like" CT of the Z-device induced by many-body Coulomb interaction and relevant experimental support. Combining with the Shockley-Queisser theory, we evaluate the theory limit power conversion efficiency of a D-A device and a Z-device. The Z-device has the potential to surpass the Shockley-Queisser limit of 33%.
Collapse
Affiliation(s)
- Tian-Fu Xiang
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, P. R. China
| | - Ziyan Liu
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, P. R. China
| | - Tianfang Zheng
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, P. R. China
| | - Lin Yang
- Key Laboratory for UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Shin-Ichi Sasaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
- Department of Medical Bioscience, Faculty of Bioscience, Nagahama institute of Bio-Science and Technology, Nagahama, Shiga 5260829, Japan
| | - Aijun Li
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, P. R. China
| | - Xiao-Feng Wang
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
13
|
Remmel M, Matthias J, Lincoln R, Keller-Findeisen J, Butkevich AN, Bossi ML, Hell SW. Photoactivatable Xanthone (PaX) Dyes Enable Quantitative, Dual Color, and Live-Cell MINFLUX Nanoscopy. SMALL METHODS 2024; 8:e2301497. [PMID: 38497095 DOI: 10.1002/smtd.202301497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/06/2024] [Indexed: 03/19/2024]
Abstract
The single-molecule localization concept MINFLUX has triggered a reevaluation of the features of fluorophores for attaining nanometer-scale resolution. MINFLUX nanoscopy benefits from temporally controlled fluorescence ("on"/"off") photoswitching. Combined with an irreversible switching behavior, the localization process is expected to turn highly efficient and quantitative data analysis simple. The potential in the recently reported photoactivable xanthone (PaX) dyes is recognized to extend the list of molecular switches used for MINFLUX with 561 nm excitation beyond the fluorescent protein mMaple. The MINFLUX localization success rates of PaX560, PaX+560, and mMaple are quantitatively compared by analyzing the effective labeling efficiency of endogenously tagged nuclear pore complexes. The PaX dyes prove to be superior to mMaple and on par with the best reversible molecular switches routinely used in single-molecule localization microscopy. Moreover, the rationally designed PaX595 is introduced for complementing PaX560 in dual color 561 nm MINFLUX imaging based on spectral classification and the deterministic, irreversible, and additive-independent nature of PaX photoactivation is showcased in fast live-cell MINFLUX imaging. The PaX dyes meet the demands of MINFLUX for a robust readout of each label position and fill the void of reliable fluorophores dedicated to 561 nm MINFLUX imaging.
Collapse
Affiliation(s)
- Michael Remmel
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
| | - Jessica Matthias
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
| | - Richard Lincoln
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
| | - Jan Keller-Findeisen
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Alexey N Butkevich
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Mariano L Bossi
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Stefan W Hell
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| |
Collapse
|
14
|
Fufina TY, Vasilieva LG, Klenina IB, Proskuryakov II. Anomalous Temperature Dependence of the Triplet-Triplet Energy Transfer in Cereibacter sphaeroides I(L177)H Mutant Reaction Centers. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1573-1581. [PMID: 39418516 DOI: 10.1134/s0006297924090049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/08/2024] [Accepted: 08/22/2024] [Indexed: 10/19/2024]
Abstract
In photosynthetic reaction centers, quenching of the primary donor triplet state by energy transfer to the carotenoid molecule provides efficient suppression of generation of singlet-excited oxygen, potent chemical oxidant. This process in the Cereibacter sphaeroides reaction centers is thermoactivated, and discontinues at temperatures below 40 K. In these reaction centers, substitution of amino acid residue isoleucine at the 177 position of the L-subunit with histidine results in the sharp decrease of activation energy, so that the carotenoid triplets are populated even at 10 K. Activation energy of the T-T energy transfer was estimated as 7.5 cm-1, which is more than 10-fold lower than activation energy in the wild type reaction centers. At certain temperatures, the energy transfer in the mutant is decelerated, which is related to the increase of effective distance of the triplet-triplet transfer. To the best of our knowledge, the described mutation presents the first reaction center modification leading to the significant decrease in activation energy of the T-T energy transfer to carotenoid molecule. The I(L177)H mutant reaction centers present a considerable interest for further studies of the triplet state quenching mechanisms, and of other photophysical and photochemical processes in the reaction centers of bacterial photosynthesis.
Collapse
Affiliation(s)
- Tatiana Yu Fufina
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Lyudmila G Vasilieva
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Irina B Klenina
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Ivan I Proskuryakov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
15
|
Wang J, Zhu R, Zou J, Liu H, Meng H, Zhen Z, Li W, Wang Z, Chen H, Pu Y, Weng Y. Incoherent ultrafast energy transfer in phycocyanin 620 from Thermosynechococcus vulcanus revealed by polarization-controlled two dimensional electronic spectroscopy. J Chem Phys 2024; 161:085101. [PMID: 39171718 DOI: 10.1063/5.0222587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024] Open
Abstract
Phycocyanin 620 (PC620) is the outermost light-harvesting complex in phycobilisome of cyanobacteria, engaged in light collection and energy transfer to the core antenna, allophycocyanin. Recently, long-lived exciton-vibrational coherences have been observed in allophycocyanin, accounting for the coherent energy transfer [Zhu et al., Nat. Commun. 15, 3171 (2024)]. PC620 has a nearly identical spatial location of three α84-β84 phycocyanobilin pigment pairs to those in allophycocyanin, inferring an existence of possible coherent energy transfer pathways. However, whether PC620 undergoes coherent or incoherent energy transfer remains debated. Furthermore, accurate determination of energy transfer rates in PC620 is still necessary owing to the spectral overlap and broadening in conventional time-resolved spectroscopic measurements. In this work, the energy transfer process within PC620 was directly resolved by polarization-controlled two dimensional electronic spectroscopy (2DES) and global analysis. The results show that the energy transfer from α84 to the adjacent β84 has a lifetime constant of 400 fs, from β155 to β84 of 6-8 ps, and from β155 to α84 of 66 ps, fully conforming to the Förster resonance energy transfer mechanism. The circular dichroism spectrum also reveals that the α84-β84 pigment pair does not form excitonic dimer, and the observed oscillatory signals are confirmed to be vibrational coherence, excluding the exciton-vibrational coupling. Nodal line slope analysis of 2DES further reveals that all the vibrational modes participate in the energy dissipation of the excited states. Our results consolidate that the ultrafast energy transfer process in PC620 is incoherent, where the twisted conformation of α84 is suggested as the main cause for preventing the formation of α84-β84 excitonic dimer in contrast to allophycocyanin.
Collapse
Affiliation(s)
- Jiayu Wang
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ruidan Zhu
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Jiading Zou
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, People's Republic of China
| | - Heyuan Liu
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Hanting Meng
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zhanghe Zhen
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Wenjun Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, People's Republic of China
| | - Zhuan Wang
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Hailong Chen
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, People's Republic of China
| | - Yang Pu
- School of Agriculture, Ludong University, Yantai 264025, People's Republic of China
| | - Yuxiang Weng
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, People's Republic of China
| |
Collapse
|
16
|
Sandik G, Feist J, García-Vidal FJ, Schwartz T. Cavity-enhanced energy transport in molecular systems. NATURE MATERIALS 2024:10.1038/s41563-024-01962-5. [PMID: 39122930 DOI: 10.1038/s41563-024-01962-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 07/01/2024] [Indexed: 08/12/2024]
Abstract
Molecules are the building blocks of all of nature's functional components, serving as the machinery that captures, stores and releases energy or converts it into useful work. However, molecules interact with each other over extremely short distances, which hinders the spread of energy across molecular systems. Conversely, photons are inert, but they are fast and can traverse large distances very efficiently. Using optical resonators, these distinct entities can be mixed with each other, opening a path to new architectures that benefit from both the active nature of molecules and the long-range transport obtained by the coupling with light. In this Review, we present the physics underlying the enhancement of energy transfer and energy transport in molecular systems, and highlight the experimental and theoretical advances in this field over the past decade. Finally, we identify several key questions and theoretical challenges that remain to be resolved via future research.
Collapse
Affiliation(s)
- Gal Sandik
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences and Center for Light-Matter Interaction, Tel Aviv University, Tel Aviv, Israel
| | - Johannes Feist
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid, Spain.
| | - Francisco J García-Vidal
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid, Spain.
| | - Tal Schwartz
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences and Center for Light-Matter Interaction, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
17
|
Cui K, Hammes-Schiffer S. Theory for proton-coupled energy transfer. J Chem Phys 2024; 161:034113. [PMID: 39012810 DOI: 10.1063/5.0217546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 06/06/2024] [Indexed: 07/18/2024] Open
Abstract
In the recently discovered proton-coupled energy transfer (PCEnT) mechanism, the transfer of electronic excitation energy between donor and acceptor chromophores is coupled to a proton transfer reaction. Herein, we develop a general theory for PCEnT and derive an analytical expression for the nonadiabatic PCEnT rate constant. This theory treats the transferring hydrogen nucleus quantum mechanically and describes the PCEnT process in terms of nonadiabatic transitions between reactant and product electron-proton vibronic states. The rate constant is expressed as a summation over these vibronic states, and the contribution of each pair of vibronic states depends on the square of the vibronic coupling as well as the spectral convolution integral, which can be viewed as a generalization of the Förster-type spectral overlap integral for vibronic rather than electronic states. The convolution integral also accounts for the common vibrational modes shared by the donor and acceptor chromophores for intramolecular PCEnT. We apply this theory to model systems to investigate the key features of PCEnT processes. The excited vibronic states can contribute significantly to the total PCEnT rate constant, and the common modes can either slow down or speed up the process. Because the pairs of vibronic states that contribute the most to the PCEnT rate constant may correspond to spectroscopically dark states, PCEnT could occur even when there is no apparent overlap between the donor emission and acceptor absorption spectra. This theory will assist in the interpretation of experimental data and will guide the design of additional PCEnT systems.
Collapse
Affiliation(s)
- Kai Cui
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | | |
Collapse
|
18
|
Bai S, Zhang P, Beratan DN. Using Adiabatic Energy Splitting To Compute Dexter Energy Transfer Couplings. J Phys Chem A 2024; 128:5721-5729. [PMID: 38968620 DOI: 10.1021/acs.jpca.3c08146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
Dexter energy transfer and transport (DET) are of broad interest in energy science, and DET rates depend on electronic couplings between donor and acceptor species. DET couplings are challenging to compute since they originate from both one- and two-particle interactions, and the strength of this interaction drops approximately exponentially with donor-acceptor distances. Using adiabatic energy splitting to compute DET couplings has advantages because adiabatic states can be calculated directly using conventional quantum chemical methods. We describe a minimum energy splitting method to compute the DET coupling by altering molecular geometries to drive the systems into a T1/T2 energy quasi-degenerate-activated DA complex. We explore the accuracy of various quantum chemical approaches to calculate the Dexter couplings.
Collapse
Affiliation(s)
- Shuming Bai
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Peng Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - David N Beratan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Biochemistry, Duke University, Durham, North Carolina 27710, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
19
|
Gu Q, Gorgon S, Romanov AS, Li F, Friend RH, Evans EW. Fast Transfer of Triplet to Doublet Excitons from Organometallic Host to Organic Radical Semiconductors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402790. [PMID: 38819637 DOI: 10.1002/adma.202402790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/09/2024] [Indexed: 06/01/2024]
Abstract
Spin triplet exciton formation sets limits on technologies using organic semiconductors that are confined to singlet-triplet photophysics. In contrast, excitations in the spin doublet manifold in organic radical semiconductors can show efficient luminescence. Here the dynamics of the spin allowed process of intermolecular energy transfer from triplet to doublet excitons are explored. A carbene-metal-amide (CMA-CF3) is employed as a model triplet donor host, since following photoexcitation it undergoes extremely fast intersystem crossing to generate a population of triplet excitons within 4 ps. This enables a foundational study for tracking energy transfer from triplets to a model radical semiconductor, TTM-3PCz. Over 74% of all radical luminescence originates from the triplet channel in this system under photoexcitation. It is found that intermolecular triplet-to-doublet energy transfer can occur directly and rapidly, with 12% of triplet excitons transferring already on sub-ns timescales. This enhanced triplet harvesting mechanism is utilized in efficient near-infrared organic light-emitting diodes, which can be extended to other opto-electronic and -spintronic technologies by radical-based spin control in molecular semiconductors.
Collapse
Affiliation(s)
- Qinying Gu
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
- Shanghai Artificial Intelligence Laboratory, Shanghai, 200232, P. R. China
| | - Sebastian Gorgon
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Alexander S Romanov
- Department of Chemistry, University of Manchester, Oxford Rd., Manchester, M13 9PL, UK
| | - Feng Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun, 130012, P. R. China
| | - Richard H Friend
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Emrys W Evans
- Department of Chemistry, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| |
Collapse
|
20
|
Li H, Wang T, Han J, Xu Y, Kang X, Li X, Zhu M. Fluorescence resonance energy transfer in atomically precise metal nanoclusters by cocrystallization-induced spatial confinement. Nat Commun 2024; 15:5351. [PMID: 38914548 PMCID: PMC11196639 DOI: 10.1038/s41467-024-49735-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 06/17/2024] [Indexed: 06/26/2024] Open
Abstract
Understanding the fluorescence resonance energy transfer (FRET) of metal nanoparticles at the atomic level has long been a challenge due to the lack of accurate systems with definite distance and orientation of molecules. Here we present the realization of achieving FRET between two atomically precise copper nanoclusters through cocrystallization-induced spatial confinement. In this study, we demonstrate the establishment of FRET in a cocrystallized Cu8(p-MBT)8(PPh3)4@Cu10(p-MBT)10(PPh3)4 system by exploiting the overlapping spectra between the excitation of the Cu10(p-MBT)10(PPh3)4 cluster and the emission of the Cu8(p-MBT)8(PPh3)4 cluster, combined with accurate control over the confined space between the two nanoclusters. Density functional theory is employed to provide deeper insights into the role of the distance and dipole orientations of molecules to illustrate the FRET procedure between two cluster molecules at the electronic structure level.
Collapse
Affiliation(s)
- Hao Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, 230601, Hefei, China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, 230601, Hefei, China
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, 230601, Hefei, China
- School of Materials and Chemical Engineering, Anhui Jianzhu University, 230601, Hefei, China
| | - Tian Wang
- Department of Chemistry, University of Washington, Seattle, WA, 98195-1653, USA
| | - Jiaojiao Han
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, 230601, Hefei, China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, 230601, Hefei, China
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, 230601, Hefei, China
| | - Ying Xu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, 230601, Hefei, China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, 230601, Hefei, China
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, 230601, Hefei, China
| | - Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, 230601, Hefei, China.
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, 230601, Hefei, China.
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, 230601, Hefei, China.
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, WA, 98195-1653, USA.
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, 230601, Hefei, China.
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, 230601, Hefei, China.
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, 230601, Hefei, China.
| |
Collapse
|
21
|
Wang X, Gao S, Luo Y, Liu X, Tom R, Zhao K, Chang V, Marom N. Computational Discovery of Intermolecular Singlet Fission Materials Using Many-Body Perturbation Theory. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:7841-7864. [PMID: 38774154 PMCID: PMC11103713 DOI: 10.1021/acs.jpcc.4c01340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/24/2024]
Abstract
Intermolecular singlet fission (SF) is the conversion of a photogenerated singlet exciton into two triplet excitons residing on different molecules. SF has the potential to enhance the conversion efficiency of solar cells by harvesting two charge carriers from one high-energy photon, whose surplus energy would otherwise be lost to heat. The development of commercial SF-augmented modules is hindered by the limited selection of molecular crystals that exhibit intermolecular SF in the solid state. Computational exploration may accelerate the discovery of new SF materials. The GW approximation and Bethe-Salpeter equation (GW+BSE) within the framework of many-body perturbation theory is the current state-of-the-art method for calculating the excited-state properties of molecular crystals with periodic boundary conditions. In this Review, we discuss the usage of GW+BSE to assess candidate SF materials as well as its combination with low-cost physical or machine learned models in materials discovery workflows. We demonstrate three successful strategies for the discovery of new SF materials: (i) functionalization of known materials to tune their properties, (ii) finding potential polymorphs with improved crystal packing, and (iii) exploring new classes of materials. In addition, three new candidate SF materials are proposed here, which have not been published previously.
Collapse
Affiliation(s)
- Xiaopeng Wang
- School
of Foundational Education, University of
Health and Rehabilitation Sciences, Qingdao 266113, China
- Qingdao
Institute for Theoretical and Computational Sciences, Institute of
Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Siyu Gao
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yiqun Luo
- Department
of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Xingyu Liu
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Rithwik Tom
- Department
of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Kaiji Zhao
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Vincent Chang
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Noa Marom
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department
of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
22
|
Gomrok S, Eldridge BK, Chaffin EA, Barr JW, Huang X, Hoang TB, Wang Y. Plasmonic couplings in Ag-Au heterodimers. J Chem Phys 2024; 160:144706. [PMID: 38591683 PMCID: PMC11006426 DOI: 10.1063/5.0196256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/22/2024] [Indexed: 04/10/2024] Open
Abstract
The plasmonic coupling between silver (Ag) and gold (Au) nanoparticles (NPs) under four polarization modes was examined: a longitudinal mode (L-mode), where the electric field of a linearly polarized incident light parallels the dimer axis, and three transverse modes (T-modes), where the electric field of the light is perpendicular to the dimer axis. The coupling was studied using the discrete dipole approximation followed by an in-house postprocessing code that determines the extinction (Qext), absorption (Qabs), and near-field (Qnf) spectra from the individual NPs as well as the whole system. In agreement with the literature results, the extinction/absorption spectra of the whole dimer have two peaks, one near the Ag localized surface plasmon resonance (LSPR) region and the other at the Au LSPR region, with the peak at Ag LSPR being reduced in all modes and the peak at Au LSPR being red-shifted and increased in the L-mode but not in the T-modes. It is further shown that the scattering at the Ag LSPR region is reduced and becomes less than the isolated Ag NPs, but the absorption at the Ag LSPR is increased and becomes greater than the isolated Ag NPs for the 50 nm Ag-Au heterodimer. This suggests that the scattering from Ag NPs is being reabsorbed by the neighboring Au NPs due to the interband electronic transition in Au at that wavelength range. The Qext from the individual NP in the heterodimer shows the presence of the Fano profile on the Au NP but not on the Ag NP. This phenomenon was further investigated by using a dielectric particle (DP) placed near the Ag or Au NPs. The Fano profile appears in the absorbing DP spectra placed near either Ag or Au NPs. However, the Fano profile is masked upon further increases in the refractive index value of the DP particle. This explains the absence of a Fano profile on the Ag NPs in the Ag-Au heterodimer. The large near-field enhancement on both Ag and Au NPs at the Au plasmonic wavelength in the L-mode for large NPs was investigated through a DP-Au system. The large enhancement was shown to arise from a large imaginary component of the DP refractive index and a small real component. Through examination of both the near- and far-field properties of the individual NPs as well as the whole system and examinations of DP-Ag and DP-Au systems, our study provides a new understanding of the couplings between Ag and Au NPs.
Collapse
Affiliation(s)
- Saghar Gomrok
- Department of Chemistry, The University of Memphis, Memphis, Tennessee 38152, USA
| | | | - Elise A. Chaffin
- Department of Chemistry, Freed-Hardeman University, Henderson, Tennessee 38340, USA
| | - James W. Barr
- Department of Chemistry, Freed-Hardeman University, Henderson, Tennessee 38340, USA
| | - Xiaohua Huang
- Department of Chemistry, The University of Memphis, Memphis, Tennessee 38152, USA
| | - Thang B. Hoang
- Department of Physics, The University of Memphis, Memphis, Tennessee 38152, USA
| | - Yongmei Wang
- Department of Chemistry, The University of Memphis, Memphis, Tennessee 38152, USA
| |
Collapse
|
23
|
Kang S, Choi W, Ahn J, Kim T, Oh JH, Kim D. Impact of Packing Geometry on Excimer Characteristics and Mobility in Perylene Bisimide Polycrystalline Films. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18134-18143. [PMID: 38554079 DOI: 10.1021/acsami.3c19140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/01/2024]
Abstract
Efficient exciton transport is essential for high-performance optoelectronics. Considerable efforts have been focused on improving the exciton mobility in organic materials. While it is feasible to improve mobility in organic systems by forming well-ordered stacks, the formation of trap states, particularly the lower-lying states referred to as excimers, remains a significant challenge to enhancing mobility. The mobility of excimer excitons intricately depends on the strength of excitonic coupling in terms of Förster-type diffusive exciton transfer processes. Given that the formation and mobility of excimer excitons are highly sensitive to molecular arrangements (packing geometries), conducting comprehensive investigations into the structure-property relationship in organic systems is crucial. In this study, we prepared three types of polycrystalline films of perylene bisimide (PBI) by varying substituents at the imide and bay positions, which allowed us to tailor the properties of excimer excitons and their mobility based on packing geometries and excitonic coupling strengths. By utilizing femtosecond transient absorption spectroscopy, we observed ultrafast excimer formation in the higher coupling regime, while in the lower coupling regime, the transition from Frenkel to excimer excitons occurs with a time constant of 500 fs. Under high pump-fluence, exciton-exciton annihilation processes occur, indicating the diffusion of excimer excitons. Intriguingly, employing a three-dimensional diffusion model, we derived a diffusion constant that is 3000 times greater in the high coupling regime than in the low coupling regime. To investigate the optoelectronic properties in the form of a bulk system, we fabricated n-type organic field effect transistors and obtained 8000 times higher mobility in the high coupling regime. Furthermore, photocurrent measurements enable us to investigate the charge carrier transport by mobile excimer excitons, suggesting a 230-fold improvement in external quantum efficiency with tightly packing PBI molecules compared to the low coupling regime. These findings not only offer valuable insights into optimizing organic materials for optoelectronic devices but also unveil the intriguing potential of exciton migration within excimers.
Collapse
Affiliation(s)
- Seongsoo Kang
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Wonbin Choi
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaeyong Ahn
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Taeyeon Kim
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Joon Hak Oh
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dongho Kim
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
24
|
Zhang Y, Oberg CP, Hu Y, Xu H, Yan M, Scholes GD, Wang M. Molecular and Supramolecular Materials: From Light-Harvesting to Quantum Information Science and Technology. J Phys Chem Lett 2024:3294-3316. [PMID: 38497707 DOI: 10.1021/acs.jpclett.4c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The past two decades have witnessed immense advances in quantum information technology (QIT), benefited by advances in physics, chemistry, biology, and materials science and engineering. It is intriguing to consider whether these diverse molecular and supramolecular structures and materials, partially inspired by quantum effects as observed in sophisticated biological systems such as light-harvesting complexes in photosynthesis and the magnetic compass of migratory birds, might play a role in future QIT. If so, how? Herein, we review materials and specify the relationship between structures and quantum properties, and we identify the challenges and limitations that have restricted the intersection of QIT and chemical materials. Examples are broken down into two categories: materials for quantum sensing where nonclassical function is observed on the molecular scale and systems where nonclassical phenomena are present due to intermolecular interactions. We discuss challenges for materials chemistry and make comparisons to related systems found in nature. We conclude that if chemical materials become relevant for QIT, they will enable quite new kinds of properties and functions.
Collapse
Affiliation(s)
- Yipeng Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Catrina P Oberg
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Yue Hu
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Hongxue Xu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Mengwen Yan
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Gregory D Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Mingfeng Wang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| |
Collapse
|
25
|
Fujimoto KJ, Seki T, Minoda T, Yanai T. Spectral Tuning and Excitation-Energy Transfer by Unique Carotenoids in Diatom Light-Harvesting Antenna. J Am Chem Soc 2024; 146:3984-3991. [PMID: 38236721 PMCID: PMC10870758 DOI: 10.1021/jacs.3c12045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 02/15/2024]
Abstract
The light-harvesting antennae of diatoms and spinach are composed of similar chromophores; however, they exhibit different absorption wavelengths. Recent advances in cryoelectron microscopy have revealed that the diatom light-harvesting antenna fucoxanthin chlorophyll a/c-binding protein (FCPII) forms a tetramer and differs from the spinach antenna in terms of the number of protomers; however, the detailed molecular mechanism remains elusive. Herein, we report the physicochemical factors contributing to the characteristic light absorption of the diatom light-harvesting antenna based on spectral calculations using an exciton model. Spectral analysis reveals the significant contribution of unique fucoxanthin molecules (fucoxanthin-S) in FCPII to the diatom-specific spectrum, and further analysis determines their essential role in excitation-energy transfer to chlorophyll. It was revealed that the specificity of these fucoxanthin-S molecules is caused by the proximity between protomers associated with the tetramerization of FCPII. The findings of this study demonstrate that diatoms employ fucoxanthin-S to harvest energy under the ocean in the absence of long-wavelength sunlight and can provide significant information about the survival strategies of photosynthetic organisms to adjust to their living environment.
Collapse
Affiliation(s)
- Kazuhiro J. Fujimoto
- Institute
of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Japan
- Department
of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Japan
| | - Takuya Seki
- Department
of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Japan
| | - Takumi Minoda
- Department
of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Japan
| | - Takeshi Yanai
- Institute
of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Japan
- Department
of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Japan
| |
Collapse
|
26
|
Sasihithlu K, Scholes GD. Vibrational Dipole-Dipole Coupling and Long-Range Forces between Macromolecules. J Phys Chem B 2024; 128:1205-1208. [PMID: 38289630 DOI: 10.1021/acs.jpcb.3c08251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Long-range interactions between biomacromolecules are considered important for directing intracellular processes. Recent studies have posited that interactions between oscillating dipoles are well-suited to mediating long-range forces because they are weakly screened by a dielectric environment. Here, we extend these studies and present a quantum electrodynamic mechanism for resonant interactions between vibrational transition dipole moments of molecules. We explicitly consider the molecular charge density oscillations as IR transition dipoles. This gives a physical, molecular assignment to the idea of oscillating dipoles and allows us to develop explicit expressions for the interactions that can be quantified using parameters known from experiment. Moreover, in the same framework, we can describe van der Waals forces. We use numerical calculations to estimate the strength of resonant vibrational dipole-dipole interactions over long distances and compare these estimates to the van der Waals interaction. We find that the resonant vibrational dipole-dipole interactions dominate over the long range.
Collapse
Affiliation(s)
- Karthik Sasihithlu
- Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Gregory D Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
27
|
Zeng Y, Shi W, Peng Q, Niu Y, Ma Z, Zheng X. Pressure effects on both fluorescent emission and charge transport properties of organic semiconductors: a computational study. Phys Chem Chem Phys 2024; 26:1303-1313. [PMID: 38108089 DOI: 10.1039/d3cp03852a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
External pressure can regulate the photophysical property and charge transport performance of organic semiconductors, however, the underlying mechanism at the microscopic level is still elusive. Using thermal vibrational correlation function coupled quantum mechanics/molecular mechanics and full quantum charge transfer rate theory, we systematically explore the influence of pressure on fluorescence emission and charge transport behaviours of representative cyclooctatetrathiophene (COTh). It is found that, upon pressurization, the intramolecular configurations of COTh became more twisted, leading to the blue-shifted emission. The fluorescence quantum efficiency (FQE) of COTh crystals decreases monotonically in a wide pressure range of 0-4.38 GPa, because the increase of intermolecular electronic energy transfer rate constant (keet) is larger than the decrease of internal conversion rate constant (kic), and the variation of keet is dominant. The decrease in kic is attributed to the decreasing reorganization energy, reflecting the suppression of the low-frequency flipping vibrations of four thiophene rings and the high-frequency stretching vibrations of central cyclooctatetraene, while the keet increase is due to the simultaneous increase in exciton coupling and spectra overlap. Moreover, we predicted that the hole mobility of COTh increases monotonically by nearly an order of magnitude from 0.39 to 3.00 cm2 V-1 s-1 upon compression, because of the increase in transfer integral and the decrease of charged reorganization energy. Furthermore, its hole mobility exhibits obvious anisotropy. Our work systematically builds the external pressure, molecular packing, luminescence and transport properties relationships of organic semiconductors and provides theoretical guidance for the rational design of pressure responsive organic semiconductors with excellent photoelectric performance.
Collapse
Affiliation(s)
- Yi Zeng
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Wen Shi
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Qian Peng
- Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yingli Niu
- School of Science, Beijing Jiaotong University, Beijing 100044, China
| | - Zhiying Ma
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, China
| | - Xiaoyan Zheng
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
28
|
Li J, Zeng T, Qu Z, Zhai Y, Li H. Energy transfer from two luteins to chlorophylls in light-harvesting complex II study by using exciton models with phase correction. Phys Chem Chem Phys 2024; 26:1023-1029. [PMID: 38093671 DOI: 10.1039/d3cp05278h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
In light-harvesting complex II of plants, the two lutein pigments (LUT1 and LUT2) are always paired and an energy transfer pathway between them is believed to exist. However, it remains unclear whether this pathway is essential for the energy transfer between carotenoids and chlorophylls. In this work, we performed hybrid quantum mechanics/molecular mechanics simulations with Frenkel exciton models to investigate this energy transfer. The results show that the energy transfer pathways between the S2 state of LUT1 and CLAs are not affected by LUT2 S2. The energy transfer between LUT and chlorophyll-a (CLA) also follows a resonance mechanism. The two LUTs have different energy transfer pathways according to their energy gaps and coupling strengths with each CLA. The present work sheds light on the energy transfer pathways involved in the two LUTs.
Collapse
Affiliation(s)
- Jiarui Li
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130023, China.
| | - Tao Zeng
- Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | - Zexing Qu
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130023, China.
| | - Yu Zhai
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Hui Li
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130023, China.
| |
Collapse
|
29
|
Fischermeier D, Turkin A, Selby J, Lambert C, Mitrić R. Simulation of exciton spectra in disordered supramolecular polymers: exciton localization in cisoid indolenine squaraine hexamers. Phys Chem Chem Phys 2023; 26:219-229. [PMID: 38055887 DOI: 10.1039/d3cp04557a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
In order to understand the effects of disorder and defects in oligomers and polymers on the localization of excitons, we investigated the spectral properties of the squaraine B hexamer using long range corrected tight-binding TDDFT (lc-TDDFTB) and Frenkel-exciton model based calculations. Employing classical molecular dynamics, the cisoid indolenine squaraine hexamers helix was propagated in DCM and acetone to obtain ensembles of realistic structures, which naturally exhibit considerable disorder. The trajectories together with several model squaraine systems were studied to show the profound effects of disorder in the superstructure and disorder of the local monomer geometry on optical properties like absorption and exciton localization. We further compared lc-TDDFTB and exciton theory derived spectral data to related experimental data on absorption, exciton transfer and localization in squaraine polymers and oligomers.
Collapse
Affiliation(s)
- David Fischermeier
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg, Emil-Fischer-Str. 42, 97074 Würzburg, Germany.
| | - Arthur Turkin
- Institut für Organische Chemie, Universitüt Würzburg, Am Hubland, D-97074 Würzburg, Germany.
| | - Joshua Selby
- Institut für Organische Chemie, Universitüt Würzburg, Am Hubland, D-97074 Würzburg, Germany.
| | - Christoph Lambert
- Institut für Organische Chemie, Universitüt Würzburg, Am Hubland, D-97074 Würzburg, Germany.
- Center for Nanosystems Chemistry, Universität Würzburg, Theodor-Boveri-Weg, D-97074 Würzburg, Germany
| | - Roland Mitrić
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg, Emil-Fischer-Str. 42, 97074 Würzburg, Germany.
| |
Collapse
|
30
|
Bartolomei B, Sbacchi M, Rosso C, Günay-Gürer A, Zdražil L, Cadranel A, Kralj S, Guldi DM, Prato M. Synthetic Strategies for the Selective Functionalization of Carbon Nanodots Allow Optically Communicating Suprastructures. Angew Chem Int Ed Engl 2023:e202316915. [PMID: 38059678 DOI: 10.1002/anie.202316915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/08/2023]
Abstract
The surface of Carbon Nanodots (CNDs) stands as a rich chemical platform, able to regulate the interactions between particles and external species. Performing selective functionalization of these nanoscale entities is of practical importance, however, it still represents a considerable challenge. In this work, we exploited the organic chemistry toolbox to install target functionalities on the CND surface, while monitoring the chemical changes on the material's outer shell through nuclear magnetic resonance spectroscopy. Following this, we investigated the use of click chemistry to covalently connect CNDs of different nature en-route towards covalent suprastructures with unprecedent molecular control. The different photophysical properties of the connected particles allowed their optical communication in the excited state. This work paves the way for the development of selective and addressable CND building blocks which can act as modular nanoscale synthons that mirror the long-established reactivity of molecular organic synthesis.
Collapse
Affiliation(s)
- Beatrice Bartolomei
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Maria Sbacchi
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Cristian Rosso
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, via Licio Giorgieri 1, 34127, Trieste, Italy
- Current address: Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Ayse Günay-Gürer
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Lukáš Zdražil
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 241/27, 78371, Olomouc, Czech Republic
| | - Alejandro Cadranel
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Química Física de Materiales, Medio Ambiente y Energía, (INQUIMAE), C1428EHA, Buenos Aires, Argentina
| | - Slavko Kralj
- Materials Synthesis Department, Jožef Stefan Institute, Jamova cesta 39, 1000, Ljubljana, Slovenia
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Dirk M Guldi
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, via Licio Giorgieri 1, 34127, Trieste, Italy
- Centre for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014, Donostia San Sebastián, Spain
- Basque Fdn Sci, Ikerbasque, 48013, Bilbao, Spain
| |
Collapse
|
31
|
Dai XY, Huo M, Liu Y. Phosphorescence resonance energy transfer from purely organic supramolecular assembly. Nat Rev Chem 2023; 7:854-874. [PMID: 37993737 DOI: 10.1038/s41570-023-00555-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2023] [Indexed: 11/24/2023]
Abstract
Phosphorescence energy transfer systems have been applied in encryption, biomedical imaging and chemical sensing. These systems exhibit ultra-large Stokes shifts, high quantum yields and are colour-tuneable with long-wavelength afterglow fluorescence (particularly in the near-infrared) under ambient conditions. This review discusses triplet-to-singlet PRET or triplet-to-singlet-to-singlet cascaded PRET systems based on macrocyclic or assembly-confined purely organic phosphorescence introducing the critical toles of supramolecular noncovalent interactions in the process. These interactions promote intersystem crossing, restricting the motion of phosphors, minimizing non-radiative decay and organizing donor-acceptor pairs in close proximity. We discuss the applications of these systems and focus on the challenges ahead in facilitating their further development.
Collapse
Affiliation(s)
- Xian-Yin Dai
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, P. R. China
| | - Man Huo
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, P. R. China
| | - Yu Liu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, P. R. China.
| |
Collapse
|
32
|
Dodson EJ, Ma J, Suissa Szlejf M, Maroudas-Sklare N, Paltiel Y, Adir N, Sun S, Sui SF, Keren N. The structural basis for light acclimation in phycobilisome light harvesting systems systems in Porphyridium purpureum. Commun Biol 2023; 6:1210. [PMID: 38012412 PMCID: PMC10682464 DOI: 10.1038/s42003-023-05586-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023] Open
Abstract
Photosynthetic organisms adapt to changing light conditions by manipulating their light harvesting complexes. Biophysical, biochemical, physiological and genetic aspects of these processes are studied extensively. The structural basis for these studies is lacking. In this study we address this gap in knowledge by focusing on phycobilisomes (PBS), which are large structures found in cyanobacteria and red algae. In this study we focus on the phycobilisomes (PBS), which are large structures found in cyanobacteria and red algae. Specifically, we examine red algae (Porphyridium purpureum) grown under a low light intensity (LL) and a medium light intensity (ML). Using cryo-electron microscopy, we resolve the structure of ML-PBS and compare it to the LL-PBS structure. The ML-PBS is 13.6 MDa, while the LL-PBS is larger (14.7 MDa). The LL-PBS structure have a higher number of closely coupled chromophore pairs, potentially the source of the red shifted fluorescence emission from LL-PBS. Interestingly, these differences do not significantly affect fluorescence kinetics parameters. This indicates that PBS systems can maintain similar fluorescence quantum yields despite an increase in LL-PBS chromophore numbers. These findings provide a structural basis to the processes by which photosynthetic organisms adapt to changing light conditions.
Collapse
Affiliation(s)
- Emma Joy Dodson
- Department of Plant and Environmental Science, The Alexander Silberman Institute of Life Sciences, The Hebrew University in Jerusalem, Jerusalem, Israel
| | - Jianfei Ma
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Maayan Suissa Szlejf
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, 32000, Haifa, Israel
| | - Naama Maroudas-Sklare
- Department of Applied Physics, The Hebrew University in Jerusalem, Jerusalem, Israel
| | - Yossi Paltiel
- Department of Applied Physics, The Hebrew University in Jerusalem, Jerusalem, Israel
| | - Noam Adir
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, 32000, Haifa, Israel
| | - Shan Sun
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Sen-Fang Sui
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China.
- School of Life Sciences, Cryo-EM Center, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Nir Keren
- Department of Plant and Environmental Science, The Alexander Silberman Institute of Life Sciences, The Hebrew University in Jerusalem, Jerusalem, Israel.
| |
Collapse
|
33
|
Baxter JM, Koay CS, Xu D, Cheng SW, Tulyagankhodjaev JA, Shih P, Roy X, Delor M. Coexistence of Incoherent and Ultrafast Coherent Exciton Transport in a Two-Dimensional Superatomic Semiconductor. J Phys Chem Lett 2023; 14:10249-10256. [PMID: 37938804 DOI: 10.1021/acs.jpclett.3c02286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Fully leveraging the remarkable properties of low-dimensional semiconductors requires developing a deep understanding of how their structure and disorder affect the flow of electronic energy. Here, we study exciton transport in single crystals of the two-dimensional superatomic semiconductor CsRe6Se8I3, which straddles a photophysically rich yet elusive intermediate electronic-coupling regime. Using femtosecond scattering microscopy to directly image exciton transport in CsRe6Se8I3, we reveal the rare coexistence of coherent and incoherent exciton transport, leading to either persistent or transient electronic delocalization depending on temperature. Notably, coherent excitons exhibit ballistic transport at speeds approaching an extraordinary 1600 km/s over 300 fs. Such fast transport is mediated by J-aggregate-like superradiance, owing to the anisotropic structure and long-range order of CsRe6Se8I3. Our results establish superatomic crystals as ideal platforms for studying the intermediate electronic-coupling regime in highly ordered environments, in this case displaying long-range electronic delocalization, ultrafast energy flow, and a tunable dual transport regime.
Collapse
Affiliation(s)
- James M Baxter
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Christie S Koay
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Ding Xu
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Shan-Wen Cheng
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | | | - Petra Shih
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Xavier Roy
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Milan Delor
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
34
|
Sorour MI, Marcus AH, Matsika S. Unravelling the Origin of the Vibronic Spectral Signatures in an Excitonically Coupled Indocarbocyanine Cy3 Dimer. J Phys Chem A 2023; 127:9530-9540. [PMID: 37934679 PMCID: PMC10774018 DOI: 10.1021/acs.jpca.3c06090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
The indocarbocyanine Cy3 dye is widely used to probe the dynamics of proteins and DNA. Excitonically coupled Cy3 dimers exhibit very unique spectral signatures that depend on the interchromophoric geometrical orientation induced by the environment, making them powerful tools to infer the dynamics of their surroundings. Understanding the origin of the dimeric spectral signatures is a necessity for an accurate interpretation of the experimental results. In this work, we simulate the vibronic spectrum of an experimentally well-studied Cy3 dimer, and we explain the origin of the experimental signatures present in its linear absorption spectrum. The Franck-Condon harmonic approximations, among other tests, are used to probe the factors contributing to the spectrum. It is found that the first peak in the absorption spectrum originates from the lower energy excitonic state, while the next two peaks are vibrational progressions of the higher energy excitonic state. The polar solvent plays a crucial role in the appearance of the spectrum, being responsible for the localized S1 minimum, which results in an increased intensity of the first peak.
Collapse
Affiliation(s)
- Mohammed I Sorour
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Andrew H Marcus
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Spiridoula Matsika
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
35
|
Mathur D, Díaz SA, Hildebrandt N, Pensack RD, Yurke B, Biaggne A, Li L, Melinger JS, Ancona MG, Knowlton WB, Medintz IL. Pursuing excitonic energy transfer with programmable DNA-based optical breadboards. Chem Soc Rev 2023; 52:7848-7948. [PMID: 37872857 PMCID: PMC10642627 DOI: 10.1039/d0cs00936a] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Indexed: 10/25/2023]
Abstract
DNA nanotechnology has now enabled the self-assembly of almost any prescribed 3-dimensional nanoscale structure in large numbers and with high fidelity. These structures are also amenable to site-specific modification with a variety of small molecules ranging from drugs to reporter dyes. Beyond obvious application in biotechnology, such DNA structures are being pursued as programmable nanoscale optical breadboards where multiple different/identical fluorophores can be positioned with sub-nanometer resolution in a manner designed to allow them to engage in multistep excitonic energy-transfer (ET) via Förster resonance energy transfer (FRET) or other related processes. Not only is the ability to create such complex optical structures unique, more importantly, the ability to rapidly redesign and prototype almost all structural and optical analogues in a massively parallel format allows for deep insight into the underlying photophysical processes. Dynamic DNA structures further provide the unparalleled capability to reconfigure a DNA scaffold on the fly in situ and thus switch between ET pathways within a given assembly, actively change its properties, and even repeatedly toggle between two states such as on/off. Here, we review progress in developing these composite materials for potential applications that include artificial light harvesting, smart sensors, nanoactuators, optical barcoding, bioprobes, cryptography, computing, charge conversion, and theranostics to even new forms of optical data storage. Along with an introduction into the DNA scaffolding itself, the diverse fluorophores utilized in these structures, their incorporation chemistry, and the photophysical processes they are designed to exploit, we highlight the evolution of DNA architectures implemented in the pursuit of increased transfer efficiency and the key lessons about ET learned from each iteration. We also focus on recent and growing efforts to exploit DNA as a scaffold for assembling molecular dye aggregates that host delocalized excitons as a test bed for creating excitonic circuits and accessing other quantum-like optical phenomena. We conclude with an outlook on what is still required to transition these materials from a research pursuit to application specific prototypes and beyond.
Collapse
Affiliation(s)
- Divita Mathur
- Department of Chemistry, Case Western Reserve University, Cleveland OH 44106, USA
| | - Sebastián A Díaz
- Center for Bio/Molecular Science and Engineering, Code 6900, USA.
| | - Niko Hildebrandt
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
- Department of Engineering Physics, McMaster University, Hamilton, L8S 4L7, Canada
| | - Ryan D Pensack
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Bernard Yurke
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Austin Biaggne
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Lan Li
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
- Center for Advanced Energy Studies, Idaho Falls, ID 83401, USA
| | - Joseph S Melinger
- Electronics Science and Technology Division, Code 6800, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Mario G Ancona
- Electronics Science and Technology Division, Code 6800, U.S. Naval Research Laboratory, Washington, DC 20375, USA
- Department of Electrical and Computer Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - William B Knowlton
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, USA.
| |
Collapse
|
36
|
Li Manni G, Fdez. Galván I, Alavi A, Aleotti F, Aquilante F, Autschbach J, Avagliano D, Baiardi A, Bao JJ, Battaglia S, Birnoschi L, Blanco-González A, Bokarev SI, Broer R, Cacciari R, Calio PB, Carlson RK, Carvalho Couto R, Cerdán L, Chibotaru LF, Chilton NF, Church JR, Conti I, Coriani S, Cuéllar-Zuquin J, Daoud RE, Dattani N, Decleva P, de Graaf C, Delcey M, De Vico L, Dobrautz W, Dong SS, Feng R, Ferré N, Filatov(Gulak) M, Gagliardi L, Garavelli M, González L, Guan Y, Guo M, Hennefarth MR, Hermes MR, Hoyer CE, Huix-Rotllant M, Jaiswal VK, Kaiser A, Kaliakin DS, Khamesian M, King DS, Kochetov V, Krośnicki M, Kumaar AA, Larsson ED, Lehtola S, Lepetit MB, Lischka H, López Ríos P, Lundberg M, Ma D, Mai S, Marquetand P, Merritt ICD, Montorsi F, Mörchen M, Nenov A, Nguyen VHA, Nishimoto Y, Oakley MS, Olivucci M, Oppel M, Padula D, Pandharkar R, Phung QM, Plasser F, Raggi G, Rebolini E, Reiher M, Rivalta I, Roca-Sanjuán D, Romig T, Safari AA, Sánchez-Mansilla A, Sand AM, Schapiro I, Scott TR, Segarra-Martí J, Segatta F, Sergentu DC, Sharma P, Shepard R, Shu Y, Staab JK, Straatsma TP, Sørensen LK, Tenorio BNC, Truhlar DG, Ungur L, Vacher M, Veryazov V, Voß TA, Weser O, Wu D, Yang X, Yarkony D, Zhou C, Zobel JP, Lindh R. The OpenMolcas Web: A Community-Driven Approach to Advancing Computational Chemistry. J Chem Theory Comput 2023; 19:6933-6991. [PMID: 37216210 PMCID: PMC10601490 DOI: 10.1021/acs.jctc.3c00182] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Indexed: 05/24/2023]
Abstract
The developments of the open-source OpenMolcas chemistry software environment since spring 2020 are described, with a focus on novel functionalities accessible in the stable branch of the package or via interfaces with other packages. These developments span a wide range of topics in computational chemistry and are presented in thematic sections: electronic structure theory, electronic spectroscopy simulations, analytic gradients and molecular structure optimizations, ab initio molecular dynamics, and other new features. This report offers an overview of the chemical phenomena and processes OpenMolcas can address, while showing that OpenMolcas is an attractive platform for state-of-the-art atomistic computer simulations.
Collapse
Affiliation(s)
- Giovanni Li Manni
- Electronic
Structure Theory Department, Max Planck
Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Ignacio Fdez. Galván
- Department
of Chemistry − BMC, Uppsala University, P.O. Box 576, SE-75123 Uppsala, Sweden
| | - Ali Alavi
- Electronic
Structure Theory Department, Max Planck
Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
- Yusuf Hamied
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Flavia Aleotti
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, 40136 Bologna, Italy
| | - Francesco Aquilante
- Theory and
Simulation of Materials (THEOS) and National Centre for Computational
Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jochen Autschbach
- Department
of Chemistry, University at Buffalo, State
University of New York, Buffalo, New York 14260-3000, United States
| | - Davide Avagliano
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, 40136 Bologna, Italy
| | - Alberto Baiardi
- ETH Zurich, Laboratory for Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Jie J. Bao
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
| | - Stefano Battaglia
- Department
of Chemistry − BMC, Uppsala University, P.O. Box 576, SE-75123 Uppsala, Sweden
| | - Letitia Birnoschi
- The Department
of Chemistry, The University of Manchester, M13 9PL, Manchester, U.K.
| | - Alejandro Blanco-González
- Chemistry
Department, Bowling Green State University, Overmann Hall, Bowling Green, Ohio 43403, United States
| | - Sergey I. Bokarev
- Institut
für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
- Chemistry
Department, School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Ria Broer
- Theoretical
Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Roberto Cacciari
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università
di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Paul B. Calio
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Rebecca K. Carlson
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
| | - Rafael Carvalho Couto
- Division
of Theoretical Chemistry and Biology, School of Engineering Sciences
in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Luis Cerdán
- Instituto
de Ciencia Molecular, Universitat de València, Catedrático José Beltrán
Martínez n. 2, 46980 Paterna, Spain
- Instituto
de Óptica (IO−CSIC), Consejo
Superior de Investigaciones Científicas, 28006, Madrid, Spain
| | - Liviu F. Chibotaru
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Nicholas F. Chilton
- The Department
of Chemistry, The University of Manchester, M13 9PL, Manchester, U.K.
| | | | - Irene Conti
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, 40136 Bologna, Italy
| | - Sonia Coriani
- Department
of Chemistry, Technical University of Denmark, Kemitorvet Bldg 207, 2800 Kongens Lyngby, Denmark
| | - Juliana Cuéllar-Zuquin
- Instituto
de Ciencia Molecular, Universitat de València, Catedrático José Beltrán
Martínez n. 2, 46980 Paterna, Spain
| | - Razan E. Daoud
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università
di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Nike Dattani
- HPQC Labs, Waterloo, N2T 2K9 Ontario Canada
- HPQC College, Waterloo, N2T 2K9 Ontario Canada
| | - Piero Decleva
- Istituto
Officina dei Materiali IOM-CNR and Dipartimento di Scienze Chimiche
e Farmaceutiche, Università degli
Studi di Trieste, I-34121 Trieste, Italy
| | - Coen de Graaf
- Department
of Physical and Inorganic Chemistry, Universitat
Rovira i Virgili, Tarragona 43007, Spain
- ICREA, Pg. Lluís
Companys 23, 08010 Barcelona, Spain
| | - Mickaël
G. Delcey
- Division
of Theoretical Chemistry and Biology, School of Engineering Sciences
in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Luca De Vico
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università
di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Werner Dobrautz
- Chalmers
University of Technology, Department of Chemistry
and Chemical Engineering, 41296 Gothenburg, Sweden
| | - Sijia S. Dong
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
- Department
of Chemistry and Chemical Biology, Department of Physics, and Department
of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Rulin Feng
- Department
of Chemistry, University at Buffalo, State
University of New York, Buffalo, New York 14260-3000, United States
- Department
of Chemistry, Fudan University, Shanghai 200433, China
| | - Nicolas Ferré
- Institut
de Chimie Radicalaire (UMR-7273), Aix-Marseille
Univ, CNRS, ICR 13013 Marseille, France
| | | | - Laura Gagliardi
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Marco Garavelli
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, 40136 Bologna, Italy
| | - Leticia González
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, A-1090 Vienna, Austria
| | - Yafu Guan
- State Key
Laboratory of Molecular Reaction Dynamics and Center for Theoretical
Computational Chemistry, Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Meiyuan Guo
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Matthew R. Hennefarth
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Matthew R. Hermes
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Chad E. Hoyer
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Miquel Huix-Rotllant
- Institut
de Chimie Radicalaire (UMR-7273), Aix-Marseille
Univ, CNRS, ICR 13013 Marseille, France
| | - Vishal Kumar Jaiswal
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, 40136 Bologna, Italy
| | - Andy Kaiser
- Institut
für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
| | - Danil S. Kaliakin
- Chemistry
Department, Bowling Green State University, Overmann Hall, Bowling Green, Ohio 43403, United States
| | - Marjan Khamesian
- Department
of Chemistry − BMC, Uppsala University, P.O. Box 576, SE-75123 Uppsala, Sweden
| | - Daniel S. King
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Vladislav Kochetov
- Institut
für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
| | - Marek Krośnicki
- Institute
of Theoretical Physics and Astrophysics, Faculty of Mathematics, Physics
and Informatics, University of Gdańsk, ul Wita Stwosza 57, 80-952, Gdańsk, Poland
| | | | - Ernst D. Larsson
- Division
of Theoretical Chemistry, Chemical Centre, Lund University, P.O. Box 124, SE-22100, Lund, Sweden
| | - Susi Lehtola
- Molecular
Sciences Software Institute, Blacksburg, Virginia 24061, United States
- Department
of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 University of Helsinki, Finland
| | - Marie-Bernadette Lepetit
- Condensed
Matter Theory Group, Institut Néel, CNRS UPR 2940, 38042 Grenoble, France
- Theory
Group, Institut Laue Langevin, 38042 Grenoble, France
| | - Hans Lischka
- Department
of Chemistry and Biochemistry, Texas Tech
University, Lubbock, Texas 79409-1061, United States
| | - Pablo López Ríos
- Electronic
Structure Theory Department, Max Planck
Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Marcus Lundberg
- Department
of Chemistry − Ångström Laboratory, Uppsala University, SE-75120 Uppsala, Sweden
| | - Dongxia Ma
- Electronic
Structure Theory Department, Max Planck
Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
| | - Sebastian Mai
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, A-1090 Vienna, Austria
| | - Philipp Marquetand
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, A-1090 Vienna, Austria
| | | | - Francesco Montorsi
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, 40136 Bologna, Italy
| | - Maximilian Mörchen
- ETH Zurich, Laboratory for Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Artur Nenov
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, 40136 Bologna, Italy
| | - Vu Ha Anh Nguyen
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore
| | - Yoshio Nishimoto
- Graduate
School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Meagan S. Oakley
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
| | - Massimo Olivucci
- Chemistry
Department, Bowling Green State University, Overmann Hall, Bowling Green, Ohio 43403, United States
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università
di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Markus Oppel
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, A-1090 Vienna, Austria
| | - Daniele Padula
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università
di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Riddhish Pandharkar
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Quan Manh Phung
- Department
of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- Institute
of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Felix Plasser
- Department
of Chemistry, Loughborough University, Loughborough, LE11 3TU, U.K.
| | - Gerardo Raggi
- Department
of Chemistry − BMC, Uppsala University, P.O. Box 576, SE-75123 Uppsala, Sweden
- Quantum
Materials and Software LTD, 128 City Road, London, EC1V 2NX, United Kingdom
| | - Elisa Rebolini
- Scientific
Computing Group, Institut Laue Langevin, 38042 Grenoble, France
| | - Markus Reiher
- ETH Zurich, Laboratory for Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Ivan Rivalta
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, 40136 Bologna, Italy
| | - Daniel Roca-Sanjuán
- Instituto
de Ciencia Molecular, Universitat de València, Catedrático José Beltrán
Martínez n. 2, 46980 Paterna, Spain
| | - Thies Romig
- Institut
für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
| | - Arta Anushirwan Safari
- Electronic
Structure Theory Department, Max Planck
Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Aitor Sánchez-Mansilla
- Department
of Physical and Inorganic Chemistry, Universitat
Rovira i Virgili, Tarragona 43007, Spain
| | - Andrew M. Sand
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
- Department
of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208, United States
| | - Igor Schapiro
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Thais R. Scott
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| | - Javier Segarra-Martí
- Instituto
de Ciencia Molecular, Universitat de València, Catedrático José Beltrán
Martínez n. 2, 46980 Paterna, Spain
| | - Francesco Segatta
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, 40136 Bologna, Italy
| | - Dumitru-Claudiu Sergentu
- Department
of Chemistry, University at Buffalo, State
University of New York, Buffalo, New York 14260-3000, United States
- Laboratory
RA-03, RECENT AIR, A. I. Cuza University of Iaşi, RA-03 Laboratory (RECENT AIR), Iaşi 700506, Romania
| | - Prachi Sharma
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
| | - Ron Shepard
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, Lemont, Illinois 60439, USA
| | - Yinan Shu
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
| | - Jakob K. Staab
- The Department
of Chemistry, The University of Manchester, M13 9PL, Manchester, U.K.
| | - Tjerk P. Straatsma
- National
Center for Computational Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831-6373, United States
- Department
of Chemistry and Biochemistry, University
of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| | | | - Bruno Nunes Cabral Tenorio
- Department
of Chemistry, Technical University of Denmark, Kemitorvet Bldg 207, 2800 Kongens Lyngby, Denmark
| | - Donald G. Truhlar
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
| | - Liviu Ungur
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore
| | - Morgane Vacher
- Nantes
Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | - Valera Veryazov
- Division
of Theoretical Chemistry, Chemical Centre, Lund University, P.O. Box 124, SE-22100, Lund, Sweden
| | - Torben Arne Voß
- Institut
für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
| | - Oskar Weser
- Electronic
Structure Theory Department, Max Planck
Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Dihua Wu
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
| | - Xuchun Yang
- Chemistry
Department, Bowling Green State University, Overmann Hall, Bowling Green, Ohio 43403, United States
| | - David Yarkony
- Department
of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Chen Zhou
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United
States
| | - J. Patrick Zobel
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, A-1090 Vienna, Austria
| | - Roland Lindh
- Department
of Chemistry − BMC, Uppsala University, P.O. Box 576, SE-75123 Uppsala, Sweden
- Uppsala
Center for Computational Chemistry (UC3), Uppsala University, PO Box 576, SE-751 23 Uppsala. Sweden
| |
Collapse
|
37
|
Shiels OJ, Menti-Platten M, Bokosi FRB, Burns BR, Keaveney ST, Keller PA, Barker PJ, Trevitt AJ. A Photoreactor-Interfaced Mass Spectrometer: An Online Platform to Monitor Photochemical Reactions. Anal Chem 2023; 95:15472-15476. [PMID: 37830912 DOI: 10.1021/acs.analchem.3c03294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
An experimental platform is reported that allows for the online characterization of photochemical reactions by coupling a continuous flow photoreactor, equipped with LED light irradiation and a dual-tipped ESI source, directly to a mass spectrometer with electrospray ionization. The capabilities of this platform are demonstrated with two classes of photoreactions: (1) the photopolymerization of methyl methacrylate and (2) photocatalyzed alkyne insertion into a 1,2,3-benzotriazinone. The online technique provides rapid information to inform the underlying photochemical mechanism and evaluate the overall photochemistry.
Collapse
Affiliation(s)
- Oisin J Shiels
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong NSW 2522, Australia
| | - Maria Menti-Platten
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong NSW 2522, Australia
| | - Fostino R B Bokosi
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong NSW 2522, Australia
| | - Brett R Burns
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong NSW 2522, Australia
| | - Sinead T Keaveney
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong NSW 2522, Australia
| | - Paul A Keller
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong NSW 2522, Australia
| | - Philip J Barker
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong NSW 2522, Australia
| | - Adam J Trevitt
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong NSW 2522, Australia
| |
Collapse
|
38
|
Weng SH, Hsu LY, Ding W. Exploring plasmonic effect on exciton transport: A theoretical insight from macroscopic quantum electrodynamics. J Chem Phys 2023; 159:154701. [PMID: 37843060 DOI: 10.1063/5.0165501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023] Open
Abstract
Exciton transport in extended molecular systems and how to manipulate such transport in a complex environment are essential to many energy and optical-related applications. We investigate the mechanism of plasmon-coupled exciton transport by using the Pauli master equation approach, combined with kinetic rates derived from macroscopic quantum electrodynamics. Through our theoretical framework, we demonstrate that the presence of a silver nanorod induces significant frequency dependence in the ability of transporting exciton through a molecule chain, indicated by the exciton diffusion coefficient, due to the dispersive nature of the silver dielectric response. Compared with the same system in vacuum, great enhancement (up to a factor of 103) in the diffusion coefficient can be achieved by coupling the resonance energy transfer process to localized surface plasmon polariton modes of the nanorod. Furthermore, our analysis reveals that the diffusion coefficients with the nearest-neighbor coupling approximation are ∼10 times smaller than the results obtained beyond this approximation, emphasizing the significance of long-range coupling in exciton transport influenced by plasmonic nanostructures. This study not only paves the way for exploring practical approaches to study plasmon-coupled exciton transport but also provides crucial insights for the design of innovative plasmon-assisted photovoltaic applications.
Collapse
Affiliation(s)
- Shih-Han Weng
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Liang-Yan Hsu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Physics Division, National Center for Theoretical Sciences, Taipei, Taiwan
| | - Wendu Ding
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina 27109, USA
| |
Collapse
|
39
|
Lijina MP, Benny A, Sebastian E, Hariharan M. Keeping the chromophores crossed: evidence for null exciton splitting. Chem Soc Rev 2023; 52:6664-6679. [PMID: 37606527 DOI: 10.1039/d3cs00176h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Fundamental understanding of the supramolecular assemblies of organic chromophores and the development of design strategies have seen endless ripples of interest owing to their exciting photophysical properties and optoelectronic applications. The independent discovery of dye aggregates by Jelley and Scheibe was the commencement of the remarkable advancement in the field of aggregate photophysics. Subsequent research warranted an exceptional model for defining the exciton interactions in aggregates, proposed by Davydov, Kasha and co-workers, independently, based on the long-range Coulombic coupling. Fascinatingly, the orthogonally cross-stacked molecular transition dipole arrangement was foretold by Kasha to possess null exciton interaction leading to spectroscopically uncoupled molecular assembly, which lacked an experimental signature for decades. There have been several attempts to identify and probe atypical molecular aggregates for decoding their optical behaviour. Herein, we discuss the recent efforts in experimentally verifying the unusual exciton interactions supported with quantum chemical computations, primarily focusing on the less explored null exciton splitting. Exciton engineering can be realized through synthetic modifications that can additionally offer control over the assorted non-covalent interactions for orchestrating precise supramolecular assembly, along with molecular editing. The task of attaining a minimal excitonic coupling through an orthogonally cross-stacked crystalline architecture envisaged to offer a monomer-like optical behaviour was first reported in 1,7-dibromoperylene-3,4,9,10-tetracarboxylic tetrabutylester (PTE-Br2). The attempt to stitch molecules covalently in an orthogonal fashion to possess null excitonic character culminated in a spiro-conjugated perylenediimide dimer exhibiting a monomer-like spectroscopic signature. The computational and experimental efforts to map the emergent properties of the cross-stacked architecture are also discussed here. Using the null aggregates formed by the interference effects between CT-mediated and Coulombic couplings in the molecular array is another strategy for achieving monomer-like spectroscopic properties in molecular assemblies. Moreover, identifying supramolecular assemblies with precise angle-dependent properties can have implications in functional material design, and this review can provide insights into the uncharted realm of null exciton splitting.
Collapse
Affiliation(s)
- M P Lijina
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P. O., Vithura, Thiruvananthapuram, Kerala, 695551, India.
| | - Alfy Benny
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P. O., Vithura, Thiruvananthapuram, Kerala, 695551, India.
| | - Ebin Sebastian
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P. O., Vithura, Thiruvananthapuram, Kerala, 695551, India.
| | - Mahesh Hariharan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P. O., Vithura, Thiruvananthapuram, Kerala, 695551, India.
| |
Collapse
|
40
|
Li J, Zeng T, Zhai Y, Qu Z, Li H. Intermolecular resonance energy transfer between two lutein pigments in light-harvesting complex II studied by frenkel exciton models. Phys Chem Chem Phys 2023; 25:24636-24642. [PMID: 37665609 DOI: 10.1039/d3cp03092j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The energy transfer pathways in light-harvesting complex II are complicated and the discovery of the energy transfer between the two luteins revealed an unelucidated important role of carotenoids in the energy flow. This energy transfer between the two S2 states of luteins was for the first time investigated using Frenkel exciton models, using a hybrid scheme of molecular mechanics and quantum mechanics. The results show the energy flow between the two luteins under the Förster resonance energy transfer mechanism. The energy transfer caused by energy level resonance occurs in configurations with small energy gaps. This energy transfer pathway is particularly sensitive to conformation. Moreover, according to the statistical characteristics of the data of the energy gaps and coupling values between LUTs, we proposed stochastic exciton Hamiltonian models to facilitate clarification of the energy transfer among pigments in antenna complexes.
Collapse
Affiliation(s)
- Jiarui Li
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130023, China.
| | - Tao Zeng
- Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | - Yu Zhai
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130023, China.
| | - Zexing Qu
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130023, China.
| | - Hui Li
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130023, China.
| |
Collapse
|
41
|
Catalano AG, Mattiotti F, Dubail J, Hagenmüller D, Prosen T, Franchini F, Pupillo G. Anomalous Diffusion in the Long-Range Haken-Strobl-Reineker Model. PHYSICAL REVIEW LETTERS 2023; 131:053401. [PMID: 37595217 DOI: 10.1103/physrevlett.131.053401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/17/2023] [Indexed: 08/20/2023]
Abstract
We analyze the propagation of excitons in a d-dimensional lattice with power-law hopping ∝1/r^{α} in the presence of dephasing, described by a generalized Haken-Strobl-Reineker model. We show that in the strong dephasing (quantum Zeno) regime the dynamics is described by a classical master equation for an exclusion process with long jumps. In this limit, we analytically compute the spatial distribution, whose shape changes at a critical value of the decay exponent α_{cr}=(d+2)/2. The exciton always diffuses anomalously: a superdiffusive motion is associated to a Lévy stable distribution with long-range algebraic tails for α≤α_{cr}, while for α>α_{cr} the distribution corresponds to a surprising mixed Gaussian profile with long-range algebraic tails, leading to the coexistence of short-range diffusion and long-range Lévy flights. In the many-exciton case, we demonstrate that, starting from a domain-wall exciton profile, algebraic tails appear in the distributions for any α, which affects thermalization: the longer the hopping range, the faster equilibrium is reached. Our results are directly relevant to experiments with cold trapped ions, Rydberg atoms, and supramolecular dye aggregates. They provide a way to realize an exclusion process with long jumps experimentally.
Collapse
Affiliation(s)
- A G Catalano
- University of Strasbourg and CNRS, CESQ and ISIS (UMR 7006), aQCess, 67000 Strasbourg, France
- Institut Ruđer Bošković, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - F Mattiotti
- University of Strasbourg and CNRS, CESQ and ISIS (UMR 7006), aQCess, 67000 Strasbourg, France
| | - J Dubail
- University of Strasbourg and CNRS, CESQ and ISIS (UMR 7006), aQCess, 67000 Strasbourg, France
- Université de Lorraine and CNRS, LPCT (UMR 7019), 54000 Nancy, France
| | - D Hagenmüller
- University of Strasbourg and CNRS, CESQ and ISIS (UMR 7006), aQCess, 67000 Strasbourg, France
| | - T Prosen
- Faculty for Mathematics and Physics, University of Ljubljana, Jadranska ulica 19, 1000 Ljubljana, Slovenia
| | - F Franchini
- Institut Ruđer Bošković, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - G Pupillo
- University of Strasbourg and CNRS, CESQ and ISIS (UMR 7006), aQCess, 67000 Strasbourg, France
- Institut Universitaire de France (IUF), 75000 Paris, France
| |
Collapse
|
42
|
Avramopoulos A, Reis H, Tzeli D, Zaleśny R, Papadopoulos MG. Photoswitchable Molecular Units with Tunable Nonlinear Optical Activity: A Theoretical Investigation. Molecules 2023; 28:5646. [PMID: 37570617 PMCID: PMC10419997 DOI: 10.3390/molecules28155646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
The first-, second-, and third-order molecular nonlinear optical properties, including two-photon absorption of a series of derivatives, involving two dithienylethene (DTE) groups connected by several molecular linkers (bis(ethylene-1,2-dithiolato)Ni- (NiBDT), naphthalene, quasilinear oligothiophene chains), are investigated by employing density functional theory (DFT). These properties can be efficiently controlled by DTE switches, in connection with light of appropriate frequency. NiBDT, as a linker, is associated with a greater contrast, in comparison to naphthalene, between the first and second hyperpolarizabilities of the "open-open" and the "closed-closed" isomers. This is explained by invoking the low-lying excited states of NiBDT. It is shown that the second hyperpolarizability can be used as an index, which follows the structural changes induced by photochromism. Assuming a Förster type transfer mechanism, the intramolecular excited-state energy transfer (EET) mechanism is studied. Two important parameters related to this are computed: the electronic coupling (VDA) between the donor and acceptor fragments as well as the overlap between the absorption and emission spectra of the donor and acceptor groups. NiBDT as a linker is associated with a low electronic coupling, VDA, value. We found that VDA is affected by molecular geometry. Our results predict that the linker strongly influences the communication between the open-closed DTE groups. The sensitivity of the molecular nonlinear optical properties could assist with identification of molecular isomers.
Collapse
Affiliation(s)
| | - Heribert Reis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (H.R.); (M.G.P.)
| | - Demeter Tzeli
- Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15784 Athens, Greece;
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Robert Zaleśny
- Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, PL-50370 Wrocław, Poland;
| | - Manthos G. Papadopoulos
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (H.R.); (M.G.P.)
| |
Collapse
|
43
|
Wen J, Hua Q, Ding S, Sun A, Xia Y. Recent Advances in Fluorescent Probes for Zinc Ions Based on Various Response Mechanisms. Crit Rev Anal Chem 2023; 54:3313-3344. [PMID: 37486769 DOI: 10.1080/10408347.2023.2238078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Zinc is a vital metal element with extensive applications in various fields such as industry, metallurgy, agriculture, food, and healthcare. For living organisms, zinc ions are indispensable, and their deficiency can lead to physiological and metabolic abnormalities that cause multiple diseases. Hence, there is a significant need for selective recognition and effective detection of free zinc ions. As a probe method with high sensitivity, high selectivity, real-time monitoring, safety, harmlessness and ease of operation, fluorescent probes have been widely used in metal ion identification studies, and many convenient, low-cost and easy-to-operate fluorescent probes for Zn2+ detection have been developed. This article reviews the latest research advances in fluorescent chemosensors for Zn2+ detection from 2019 to 2023. In particular, sensors working through photo-induced electron transfer (PET), excited state intramolecular proton transfer (ESIPT), intramolecular charge transfer (ICT), fluorescence resonance energy transfer (FRET), chelation-enhanced fluorescence (CHEF), and aggregation-induced emission (AIE) mechanisms are described. We discuss the use of various recognition mechanisms in detecting zinc ions through specific cases, some of which have been validated through theoretical calculations.
Collapse
Affiliation(s)
- Jinrong Wen
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou, China
| | - Qianying Hua
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou, China
| | - Sha Ding
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou, China
| | - Aokui Sun
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou, China
| | - Yong Xia
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou, China
- College of Chemistry and Chemical Engineering, Central South University, Changsha, China
| |
Collapse
|
44
|
Barcza B, Szirmai Á, Tajti A, Stanton JF, Szalay PG. Benchmarking Aspects of Ab Initio Fragment Models for Accurate Excimer Potential Energy Surfaces. J Chem Theory Comput 2023; 19:3580-3600. [PMID: 37236166 PMCID: PMC10694823 DOI: 10.1021/acs.jctc.3c00104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Indexed: 05/28/2023]
Abstract
While Coupled-Cluster methods have been proven to provide an accurate description of excited electronic states, the scaling of the computational costs with the system size limits the degree for which these methods can be applied. In this work different aspects of fragment-based approaches are studied on noncovalently bound molecular complexes with interacting chromophores of the fragments, such as π-stacked nucleobases. The interaction of the fragments is considered at two distinct steps. First, the states localized on the fragments are described in the presence of the other fragment(s); for this we test two approaches. One method is founded on QM/MM principles, only including the electrostatic interaction between the fragments in the electronic structure calculation with Pauli repulsion and dispersion effects added separately. The other model, a Projection-based Embedding (PbE) using the Huzinaga equation, includes both electrostatic and Pauli repulsion and only needs to be augmented by dispersion interactions. In both schemes the extended Effective Fragment Potential (EFP2) method of Gordon et al. was found to provide an adequate correction for the missing terms. In the second step, the interaction of the localized chromophores is modeled for a proper description of the excitonic coupling. Here the inclusion of purely electrostatic contributions appears to be sufficient: it is found that the Coulomb part of the coupling provides accurate splitting of the energies of interacting chromophores that are separated by more than 4 Å.
Collapse
Affiliation(s)
- Bónis Barcza
- Laboratory
of Theoretical Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, P.O. Box 32, H-1117 Budapest, Hungary
- György
Hevesy Doctoral School, Institute of Chemistry, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Ádám
B. Szirmai
- Laboratory
of Theoretical Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, P.O. Box 32, H-1117 Budapest, Hungary
- György
Hevesy Doctoral School, Institute of Chemistry, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Attila Tajti
- Laboratory
of Theoretical Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, P.O. Box 32, H-1117 Budapest, Hungary
| | - John F. Stanton
- Quantum
Theory Project, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Péter G. Szalay
- Laboratory
of Theoretical Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, P.O. Box 32, H-1117 Budapest, Hungary
| |
Collapse
|
45
|
Somayaji H, Scholes GD. Waveguided energy transfer in pseudo-two-dimensional systems. J Chem Phys 2023; 158:2895247. [PMID: 37290084 DOI: 10.1063/5.0145540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/25/2023] [Indexed: 06/10/2023] Open
Abstract
Resonance energy transfer (RET) is an important and ubiquitous process whereby energy is transferred from a donor chromophore to an acceptor chromophore without contact via Coulombic coupling. There have been a number of recent advances exploiting the quantum electrodynamics (QED) framework for RET. Here, we extend the QED RET theory to investigate whether real photon exchange can allow for excitation transfer over very long distances if the exchanged photon is waveguided. To study this problem, we consider RET in two spatial dimensions. We derive the RET matrix element using QED in two dimensions, consider an even greater confinement by deriving the RET matrix element for a two-dimensional waveguide using ray theory, and compare the resulting RET elements in 3D and 2D and for the 2D waveguide. We see greatly enhanced RET rates over long distances for both the 2D and 2D waveguide systems and see a great preference for transverse photon mediated transfer in the 2D waveguide system.
Collapse
Affiliation(s)
- Hrishikesh Somayaji
- Department of Chemistry, Princeton University, Princeton, New Jersey 08540, USA
| | - Gregory D Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08540, USA
| |
Collapse
|
46
|
Sk B, Hirata S. Förster resonance energy transfer involving the triplet state. Chem Commun (Camb) 2023; 59:6643-6659. [PMID: 37139987 DOI: 10.1039/d3cc00748k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Triplet harvesting is important for high-efficiency optoelectronics devices, time-resolved bioimaging, sensing, and anti-counterfeiting devices. Förster resonance energy transfer (FRET) from the donor (D) to the acceptor (A) is important to efficiently harvest the triplet excitons after a variety of excitations. However, general explanations of the key factors of FRET from the singlet state (FRETS-S) via reverse intersystem crossing and FRET from the triplet state (FRETT-S) have not been reported beyond spectral overlap between emission of the D and absorption of the A. This feature article gives an overview of FRET involving the triplet state. After discussing the contribution of the radiation yield from the state of the D considering spin-forbidden factors of FRET, a variety of schemes involving triplet states, such as FRETS-Svia reverse intersystem crossing from the triplet state, dual FRETS-S and FRETT-S, and selective FRETT-S, are introduced. Representative examples, including the chemical structure and FRET for triplet harvesting, are highlighted using emerging applications in optoelectronics and afterglow imaging. Finally, recent developments of using FRET involving triplet states for high-efficiency optoelectronic devices and time-resolved bioimaging are discussed. This article provides crucial information for controlling state-of-the-art properties using FRET involving the triplet state.
Collapse
Affiliation(s)
- Bahadur Sk
- Department of Engineering Science, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan.
| | - Shuzo Hirata
- Department of Engineering Science, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan.
| |
Collapse
|
47
|
Gotfredsen H, Thiel D, Greißel PM, Chen L, Krug M, Papadopoulos I, Ferguson MJ, Nielsen MB, Torres T, Clark T, Guldi DM, Tykwinski RR. Sensitized Singlet Fission in Rigidly Linked Axial and Peripheral Pentacene-Subphthalocyanine Conjugates. J Am Chem Soc 2023; 145:9548-9563. [PMID: 37083447 DOI: 10.1021/jacs.2c13353] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
The goal of harnessing the theoretical potential of singlet fission (SF), a process in which one singlet excited state is split into two triplet excited states, has become a central challenge in solar energy research. Covalently linked dimers provide crucial models for understanding the role of chromophore arrangement and coupling in SF. Sensitizers can be integrated into these systems to expand the absorption bandwidth through which SF can be accessed. Here, we define the role of the sensitizer-chromophore geometry in a sensitized SF model system. To this end, two conjugates have been synthesized consisting of a pentacene dimer (SF motif) connected via a rigid alkynyl bridge to a subphthalocyanine (the sensitizer motif) in either an axial or a peripheral arrangement. Steady-state and time-resolved photophysical measurements are used to confirm that both conjugates operate as per design, displaying near unity energy transfer efficiencies and high triplet quantum yields from SF. Decisively, energy transfer between the subphthalocyanine and pentacene dimer occurs ca. 26 times faster in the peripheral conjugate, even though the two chromophores are ca. 3 Å farther apart than in the axial conjugate. Following a theoretical evaluation of the dipolar coupling, Vdip2, and the orientation factor, κ2, of both the axial (Vdip2 = 140 cm-2; κ2 = 0.08) and the peripheral (Vdip2 = 724 cm-2; κ2 = 1.46) arrangements, we establish that this rate acceleration is due to a more favorable (nearly co-planar) relative orientation of the transition dipole moments of the subphthalocyanine and pentacenes in the peripheral constellation.
Collapse
Affiliation(s)
- Henrik Gotfredsen
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø 2100, Denmark
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford OX1 3TA, U.K
| | - Dominik Thiel
- Department of Chemistry and Pharmacy and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Phillip M Greißel
- Department of Chemistry and Pharmacy and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Lan Chen
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Marcel Krug
- Department of Chemistry and Pharmacy and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Ilias Papadopoulos
- Department of Chemistry and Pharmacy and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstraße 3, 91058 Erlangen, Germany
- Department of Applied Chemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka819-0395, Japan
| | - Michael J Ferguson
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Mogens Brøndsted Nielsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø 2100, Denmark
| | - Tomás Torres
- Department of Organic Chemistry and Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid 28049, Spain
- IMDEA Nanociencia, C/Faraday 9, Cantoblanco, Madrid 28049, Spain
| | - Timothy Clark
- Department of Chemistry and Pharmacy and Computer-Chemie-Center (CCC), Friedrich-Alexander-University Erlangen-Nuremberg, Nägelsbachstraße 25, Erlangen 91052, Germany
| | - Dirk M Guldi
- Department of Chemistry and Pharmacy and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Rik R Tykwinski
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
48
|
He Z, Li F, Zuo P, Tian H. Principles and Applications of Resonance Energy Transfer Involving Noble Metallic Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3083. [PMID: 37109920 PMCID: PMC10145016 DOI: 10.3390/ma16083083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/01/2023] [Accepted: 04/11/2023] [Indexed: 06/19/2023]
Abstract
Over the past several years, resonance energy transfer involving noble metallic nanoparticles has received considerable attention. The aim of this review is to cover advances in resonance energy transfer, widely exploited in biological structures and dynamics. Due to the presence of surface plasmons, strong surface plasmon resonance absorption and local electric field enhancement are generated near noble metallic nanoparticles, and the resulting energy transfer shows potential applications in microlasers, quantum information storage devices and micro-/nanoprocessing. In this review, we present the basic principle of the characteristics of noble metallic nanoparticles, as well as the representative progress in resonance energy transfer involving noble metallic nanoparticles, such as fluorescence resonance energy transfer, nanometal surface energy transfer, plasmon-induced resonance energy transfer, metal-enhanced fluorescence, surface-enhanced Raman scattering and cascade energy transfer. We end this review with an outlook on the development and applications of the transfer process. This will offer theoretical guidance for further optical methods in distance distribution analysis and microscopic detection.
Collapse
Affiliation(s)
- Zhicong He
- School of Mechanical and Electrical Engineering, Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430073, China
- School of Mechanical and Electrical Engineering, Hubei Polytechnic University, Huangshi 435003, China
- Hubei Key Laboratory of Intelligent Transportation Technology and Device, Hubei Polytechnic University, Huangshi 435003, China
| | - Fang Li
- School of Mechanical and Electrical Engineering, Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430073, China
| | - Pei Zuo
- School of Mechanical and Electrical Engineering, Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430073, China
| | - Hong Tian
- School of Mechanical and Electrical Engineering, Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430073, China
| |
Collapse
|
49
|
Peng S, Shao G, Wang K, Chen X, Xu J, Wang H, Wu D, Xia J. Efficient Energy Transfer in a Rylene Imide-Based Heterodimer: The Role of Intramolecular Electronic Coupling. J Phys Chem Lett 2023; 14:3249-3257. [PMID: 36975134 DOI: 10.1021/acs.jpclett.3c00477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The development of antenna molecules with simplified structures can effectively avoid the complex exciton dynamics resulting from conformational mobility. Two distinct heterodimers TP and TBP comprising a perylenediimide (PDI) donor and terrylenediimide (TDI) acting as an energy sink were investigated. Tuned by varying functionalization positions, the bay-to-bay-linked TP offers a strong chromophore coupling, while the bay-to-N-linked TBP exhibits a weak chromophore coupling. Using transient absorption spectroscopy, we found that TP underwent ultrafast vibrational relaxation (τVR < 400 fs) from upper vibrational energy levels of the singlet states after pumping at 490 nm, and followed by electron transfer (ET, τET = 2.5 ps) from TDI to PDI. TBP exhibited ultrafast excitation energy transfer (EET, τEET = 0.48 ± 0.1 ps) from the excited PDI donor to TDI acceptor, and the subsequent charge transfer (CT) process was almost quenched. This result provides insight into designing novel small molecules capable of efficient energy transfer.
Collapse
Affiliation(s)
- Shaoqian Peng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, 430070, China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| | - Guangwei Shao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, 430070, China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| | - Kangwei Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, 430070, China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| | - Xingyu Chen
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Jingwen Xu
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Huan Wang
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Di Wu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| | - Jianlong Xia
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, 430070, China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
50
|
Toldo JM, do Casal MT, Ventura E, do Monte SA, Barbatti M. Surface hopping modeling of charge and energy transfer in active environments. Phys Chem Chem Phys 2023; 25:8293-8316. [PMID: 36916738 PMCID: PMC10034598 DOI: 10.1039/d3cp00247k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/01/2023] [Indexed: 03/05/2023]
Abstract
An active environment is any atomic or molecular system changing a chromophore's nonadiabatic dynamics compared to the isolated molecule. The action of the environment on the chromophore occurs by changing the potential energy landscape and triggering new energy and charge flows unavailable in the vacuum. Surface hopping is a mixed quantum-classical approach whose extreme flexibility has made it the primary platform for implementing novel methodologies to investigate the nonadiabatic dynamics of a chromophore in active environments. This Perspective paper surveys the latest developments in the field, focusing on charge and energy transfer processes.
Collapse
Affiliation(s)
| | | | - Elizete Ventura
- Departamento de Química, CCEN, Universidade Federal da Paraíba, 58059-900, João Pessoa, Brazil.
| | - Silmar A do Monte
- Departamento de Química, CCEN, Universidade Federal da Paraíba, 58059-900, João Pessoa, Brazil.
| | - Mario Barbatti
- Aix-Marseille University, CNRS, ICR, Marseille, France.
- Institut Universitaire de France, 75231, Paris, France
| |
Collapse
|