1
|
Poulsen SB, Murali SK, Thomas L, Assmus A, Rosenbæk LL, Nielsen R, Dimke H, Rieg T, Fenton RA. Genetic deletion of the kidney sodium/proton exchanger-3 (NHE3) does not alter calcium and phosphate balance due to compensatory responses. Kidney Int 2024:S0085-2538(24)00533-7. [PMID: 39089578 DOI: 10.1016/j.kint.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 06/10/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024]
Abstract
The sodium/proton exchanger-3 (NHE3) plays a major role in acid-base and extracellular volume regulation and is also implicated in calcium homeostasis. As calcium and phosphate balances are closely linked, we hypothesized that there was a functional link between kidney NHE3 activity, calcium, and phosphate balance. Therefore, we examined calcium and phosphate homeostasis in kidney tubule-specific NHE3 knockout mice (NHE3loxloxPax8 mice). Compared to controls, these knockout mice were normocalcemic with no significant difference in urinary calcium excretion or parathyroid hormone levels. Thiazide-induced hypocalciuria was less pronounced in the knockout mice, in line with impaired proximal tubule calcium transport. Knockout mice had greater furosemide-induced calciuresis and distal tubule calcium transport pathways were enhanced. Despite lower levels of the sodium/phosphate cotransporters (NaPi)-2a and -2c, knockout mice had normal plasma phosphate, sodium-dependent 32Phosphate uptake in proximal tubule membrane vesicles and urinary phosphate excretion. Intestinal phosphate uptake was unchanged. Low dietary phosphate reduced parathyroid hormone levels and increased NaPi-2a and -2c abundances in both genotypes, but NaPi-2c levels remained lower in the knockout mice. Gene expression profiling suggested proximal tubule remodeling in the knockout mice. Acutely, indirect NHE3 inhibition using the SGLT2 inhibitor empagliflozin did not affect urinary calcium and phosphate excretion. No differences in femoral bone density or architecture were detectable in the knockout mice. Thus, a role for kidney NHE3 in calcium homeostasis can be unraveled by diuretics, but NHE3 deletion in the kidneys has no major effects on overall calcium and phosphate homeostasis due, at least in part, to compensating mechanisms.
Collapse
Affiliation(s)
- Søren B Poulsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Sathish K Murali
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Linto Thomas
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, USA
| | - Adrienne Assmus
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Lena L Rosenbæk
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Rikke Nielsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark; Department of Nephrology, Odense University Hospital, Odense, Denmark
| | - Timo Rieg
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, USA; James A. Haley Veterans' Hospital, Tampa, Florida, USA.
| | - Robert A Fenton
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
2
|
Martín Navarro JA, Medina Zahonero L, Procaccini FL, Barba Teba R, Rubio Menendez V, Valle Alvarez E, PoloCánovas ME, Ortega-Díaz M, Puerta Carretero M, Lucena Valverde R, Muñoz Ramos P, Alcázar Arroyo R, de Sequera Ortiz P. Hyperaldosteronism and hyperparathyroidism. A disturbing friendship. Nefrologia 2024; 44:496-502. [PMID: 39107222 DOI: 10.1016/j.nefroe.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/11/2023] [Accepted: 12/26/2023] [Indexed: 08/09/2024] Open
Abstract
Classically, aldosterone actions are associated with the stability of the effective circulating volume and with blood pressure control, while parathormone actions are linked to bone mineral metabolism, calcium, and phosphate homeostasis. Nevertheless, the relationship between these two hormonal axes surpasses these areas. A bidirectional interrelation between calcium-phosphorus metabolism and blood pressure control can lead to alterations in both. This can have significant implications for the evolution and treatment of patients. To illustrate this relationship, we present two clinical cases that demonstrate the pathophysiology involved.).
Collapse
Affiliation(s)
| | | | - Fabio L Procaccini
- Servicio de Nefrología, Hospital Universitario Infanta Leonor, Madrid, Spain.
| | - Raquel Barba Teba
- Servicio de Nefrología, Hospital Universitario Infanta Leonor, Madrid, Spain.
| | | | | | | | - Mayra Ortega-Díaz
- Servicio de Nefrología, Hospital Universitario Infanta Leonor, Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
3
|
Hanna RM, Ahdoot RS, Kalantar-Zadeh K, Ghobry L, Kurtz I. Calcium Transport in the Kidney and Disease Processes. Front Endocrinol (Lausanne) 2022; 12:762130. [PMID: 35299844 PMCID: PMC8922474 DOI: 10.3389/fendo.2021.762130] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/25/2021] [Indexed: 11/25/2022] Open
Abstract
Calcium is a key ion involved in cardiac and skeletal muscle contractility, nerve function, and skeletal structure. Global calcium balance is affected by parathyroid hormone and vitamin D, and calcium is shuttled between the extracellular space and the bone matrix compartment dynamically. The kidney plays an important role in whole-body calcium balance. Abnormalities in the kidney transport proteins alter the renal excretion of calcium. Various hormonal and regulatory pathways have evolved that regulate the renal handling of calcium to maintain the serum calcium within defined limits despite dynamic changes in dietary calcium intake. Dysregulation of renal calcium transport can occur pharmacologically, hormonally, and via genetic mutations in key proteins in various nephron segments resulting in several disease processes. This review focuses on the regulation transport of calcium in the nephron. Genetic diseases affecting the renal handling of calcium that can potentially lead to changes in the serum calcium concentration are reviewed.
Collapse
Affiliation(s)
- Ramy M. Hanna
- Division of Nephrology, Department of Medicine, University of California Irvine (UCI) School of Medicine, Orange, CA, United States
| | - Rebecca S. Ahdoot
- Division of Nephrology, Department of Medicine, University of California Irvine (UCI) School of Medicine, Orange, CA, United States
| | - Kamyar Kalantar-Zadeh
- Division of Nephrology, Department of Medicine, University of California Irvine (UCI) School of Medicine, Orange, CA, United States
| | - Lena Ghobry
- School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ira Kurtz
- Division of Nephrology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, United States
- University of California Los Angeles (UCLA) Brain Research Center, Los Angeles, CA, United States
| |
Collapse
|
4
|
Hunter RW, Dhaun N, Bailey MA. The impact of excessive salt intake on human health. Nat Rev Nephrol 2022; 18:321-335. [DOI: 10.1038/s41581-021-00533-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2021] [Indexed: 12/19/2022]
|
5
|
Chang CK, Chang CC, Wu VC, Geng JH, Lee HY. The Relationship Between Renal Stones and Primary Aldosteronism. Front Endocrinol (Lausanne) 2022; 13:828839. [PMID: 35222284 PMCID: PMC8864315 DOI: 10.3389/fendo.2022.828839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/13/2022] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION The association between primary aldosteronism (PA) and nephrolithiasis is still unclear. The hypercalciuria and hypocitraturia of PA patients might be the reason leading to recurrent calcium nephrolithiasis. This study aimed to evaluate the relationship between PA and renal stones, including stone size and density. MATERIALS AND METHODS From February 2010 to March 2021, we retrospectively collected 610 patients who presented to our medical center with hypertension history, and all these patients, suspicious of PA, had PA data survey. In total, 147 patients had kidney stone and were divided into 44 patients with essential hypertension as group 1 and 103 patients with PA as group 2. Pearson χ2 test and independent Student's t-test were performed to examine the differences among variables. RESULTS The mean age was 54.4 ± 12.0 years in group 1 and 53.0 ± 11.1 years in group 2. The incidence rate of renal stones in the PA group was around 24%. No significant differences between the two groups were found for gender, systolic/diastolic blood pressure, duration of hypertension, diabetes mellitus history, and laterality of kidney stone; however, mean stone size was 4.0 ± 3.3 mm in group 1 and 6.5 ± 7.2 mm in group 2, with a significantly larger renal stone size noted in the PA group than that in the essential hypertension group (p = 0.004). Hounsfield unit (HU) density was higher in the PA group vis-à-vis the essential hypertension cohort, although this did not reach a significant difference (p = 0.204). CONCLUSIONS Our study revealed that PA patients had a higher incidence rate of renal stones compared to that of the general population. Besides, the PA-related renal stones also presented as larger and harder than those of the essential hypertension group. Further investigation concerning the association between PA and renal stones is warranted.
Collapse
Affiliation(s)
- Chun-Kai Chang
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chin-Chen Chang
- Department of Medical Imaging, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- Department and Graduate Institute of Forensic Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Vin-Cent Wu
- Section of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jiun-Hung Geng
- Department of Urology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan
| | - Hsiang-Ying Lee
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- *Correspondence: Hsiang-Ying Lee,
| |
Collapse
|
6
|
"Recurrent Papillary Necrosis and Nephrocalcinosis Induced by Nonsteroidal Anti-Inflammatory Drugs for Gouty Arthritis Associated with Congenital Chloride-Losing Diarrhea: A Major Risk for Kidney Loss". Case Rep Nephrol 2021; 2021:3558278. [PMID: 34777886 PMCID: PMC8578686 DOI: 10.1155/2021/3558278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/05/2021] [Indexed: 11/17/2022] Open
Abstract
Congenital chloride-losing diarrhea (CCLD) is a rare genetic disorder due to autosomal recessive mutation in the SLC26A3 gene on chromosome 7. It is characterized with chronic watery diarrhea with high fecal chloride (Cl: >90 mmol/L), low potassium (K), and metabolic alkalosis with low urinary Cl and K. The overall long-term prognosis is favorable with optimal life-long salt and K supplementation. In this case report, we describe a man with progressive renal failure and small kidneys that showed nephrocalcinosis and papillary necrosis. His disease was diagnosed since birth and was confirmed by our tests. He was incompliant with therapy and had developed gout. The latter complication of his disease has led to excessive NSAID use over the past years. Reinstitution of diet, drug therapy, and allopurinol had stabilized his renal disease for 1 year of follow-up. In conclusion, excessive analgesic use is a risk factor for renal failure in CCLD.
Collapse
|
7
|
Primary aldosteronism is associated with risk of urinary bladder stones in a nationwide cohort study. Sci Rep 2021; 11:7684. [PMID: 33833262 PMCID: PMC8032702 DOI: 10.1038/s41598-021-86749-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 03/19/2021] [Indexed: 11/23/2022] Open
Abstract
We analyzed database from the Taiwan National Health Insurance to investigate whether primary aldosteronism (PA) increases the risk of bladder stones. This retrospective nationwide population-based cohort study during the period of 1998–2011 compared patients with and without PA extracted by propensity score matching. Cox proportional hazard models and competing death risk model were used to estimate the hazard ratios (HRs), sub-hazard ratios (SHRs) and corresponding 95% confidence intervals (CIs). There were 3442 patients with PA and 3442 patients without PA. The incidence rate of bladder stones was 5.36 and 3.76 per 1000 person-years for both groups, respectively. In adjusted Cox hazard proportional regression models, the HR of bladder stones was 1.68 (95% CI 1.20–2.34) for patients with PA compared to individuals without PA. Considering the competing risk of death, the SHR of bladder stones still indicates a higher risk for PA than a comparison cohort (SHR, 1.79; 95% CI 1.30–2.44). PA, age, sex, and fracture number were the variables significantly contributing to the formation of bladder stones. In conclusion, PA is significantly associated with risk of bladder stones.
Collapse
|
8
|
Leach K, Hannan FM, Josephs TM, Keller AN, Møller TC, Ward DT, Kallay E, Mason RS, Thakker RV, Riccardi D, Conigrave AD, Bräuner-Osborne H. International Union of Basic and Clinical Pharmacology. CVIII. Calcium-Sensing Receptor Nomenclature, Pharmacology, and Function. Pharmacol Rev 2020; 72:558-604. [PMID: 32467152 PMCID: PMC7116503 DOI: 10.1124/pr.119.018531] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The calcium-sensing receptor (CaSR) is a class C G protein-coupled receptor that responds to multiple endogenous agonists and allosteric modulators, including divalent and trivalent cations, L-amino acids, γ-glutamyl peptides, polyamines, polycationic peptides, and protons. The CaSR plays a critical role in extracellular calcium (Ca2+ o) homeostasis, as demonstrated by the many naturally occurring mutations in the CaSR or its signaling partners that cause Ca2+ o homeostasis disorders. However, CaSR tissue expression in mammals is broad and includes tissues unrelated to Ca2+ o homeostasis, in which it, for example, regulates the secretion of digestive hormones, airway constriction, cardiovascular effects, cellular differentiation, and proliferation. Thus, although the CaSR is targeted clinically by the positive allosteric modulators (PAMs) cinacalcet, evocalcet, and etelcalcetide in hyperparathyroidism, it is also a putative therapeutic target in diabetes, asthma, cardiovascular disease, and cancer. The CaSR is somewhat unique in possessing multiple ligand binding sites, including at least five putative sites for the "orthosteric" agonist Ca2+ o, an allosteric site for endogenous L-amino acids, two further allosteric sites for small molecules and the peptide PAM, etelcalcetide, and additional sites for other cations and anions. The CaSR is promiscuous in its G protein-coupling preferences, and signals via Gq/11, Gi/o, potentially G12/13, and even Gs in some cell types. Not surprisingly, the CaSR is subject to biased agonism, in which distinct ligands preferentially stimulate a subset of the CaSR's possible signaling responses, to the exclusion of others. The CaSR thus serves as a model receptor to study natural bias and allostery. SIGNIFICANCE STATEMENT: The calcium-sensing receptor (CaSR) is a complex G protein-coupled receptor that possesses multiple orthosteric and allosteric binding sites, is subject to biased signaling via several different G proteins, and has numerous (patho)physiological roles. Understanding the complexities of CaSR structure, function, and biology will aid future drug discovery efforts seeking to target this receptor for a diversity of diseases. This review summarizes what is known to date regarding key structural, pharmacological, and physiological features of the CaSR.
Collapse
Affiliation(s)
- Katie Leach
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Fadil M Hannan
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Tracy M Josephs
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Andrew N Keller
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Thor C Møller
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Donald T Ward
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Enikö Kallay
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Rebecca S Mason
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Rajesh V Thakker
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Daniela Riccardi
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Arthur D Conigrave
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Hans Bräuner-Osborne
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| |
Collapse
|
9
|
Thomas SR. Mathematical models for kidney function focusing on clinical interest. Morphologie 2019; 103:161-168. [PMID: 31722814 DOI: 10.1016/j.morpho.2019.10.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 10/11/2019] [Indexed: 01/22/2023]
Abstract
We give an overview of mathematical models of renal physiology and anatomy with the clinician in mind. Beyond the past focus on issues of local transport mechanisms along the nephron and the urine concentrating mechanism, recent models have brought insight into difficult problems such as renal ischemia (oxygen and CO2 diffusion in the medulla) or calcium and potassium homeostasis. They have also provided revealing 3D reconstructions of the full trajectories of families of nephrons and collecting ducts through cortex and medulla. The recent appearance of sophisticated whole-kidney models representing nephrons and their associated renal vasculature promises more realistic simulation of renal pathologies and pharmacological treatments in the foreseeable future.
Collapse
Affiliation(s)
- S Randall Thomas
- Inserm, LTSI - UMR 1099, Université Rennes, 35000 Rennes, France.
| |
Collapse
|
10
|
Krieger NS, Grynpas M, VandenEynde A, Asplin JR, Frick KK, Kim MH, Ramos FM, Granja I, Bushinsky DA. Low Sodium Diet Decreases Stone Formation in Genetic Hypercalciuric Stone-Forming Rats. Nephron Clin Pract 2019; 142:147-158. [PMID: 30726853 DOI: 10.1159/000497117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/20/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Urine (u) calcium (Ca) excretion is directly dependent on dietary sodium (Na) intake leading to the recommendation for Na restriction in hypercalciuric kidney stone formers. However, there is no direct evidence that limiting Na intake will reduce recurrent stone formation. MATERIALS AND METHODS We used genetic hypercalciuric stone-forming (GHS) rats, which universally form Ca phosphate (P) kidney stones, fed either a low Na (LNa, 0.05%) or normal Na (NNa, 0.4%) Na diet (D) for 18 weeks. Urine was collected at 6-week intervals. Radiographic analysis for stone formation and bone analyses were done at the conclusion of the study. RESULTS Mean uCa was lower with LNaD than NNaD as was uP and LNaD decreased mean uNa and uChloride. There were no differences in urine supersaturation (SS) with respect to calcium phosphate (CaP) or Ca oxalate (CaOx). However, stone formation was markedly decreased with LNaD by radiographic analysis. The LNaD group had significantly lower femoral anterior-posterior diameter and volumetric bone mineral density (vBMD), but no change in vertebral trabecular vBMD. There were no differences in the bone formation rate or osteoclastic bone resorption between groups. The LNaD group had significantly lower femoral stiffness; however, the ultimate load and energy to fail was not different. CONCLUSION Thus, a low Na diet reduced uCa and stone formation in GHS rats, even though SS with respect to CaP and CaOx was unchanged and effects on bone were modest. These data, if confirmed in humans, support dietary Na restriction to prevent recurrent Ca nephrolithiasis.
Collapse
Affiliation(s)
- Nancy S Krieger
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA,
| | - Marc Grynpas
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Amy VandenEynde
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - John R Asplin
- Litholink Corporation, Laboratory Corporation of America® Holdings, Chicago, Illinois, USA
| | - Kevin K Frick
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Min Ho Kim
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Felix M Ramos
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Ignacio Granja
- Litholink Corporation, Laboratory Corporation of America® Holdings, Chicago, Illinois, USA
| | - David A Bushinsky
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
11
|
Lim JS, Hong N, Park S, Park SI, Oh YT, Yu MH, Lim PY, Rhee Y. Effects of Altered Calcium Metabolism on Cardiac Parameters in Primary Aldosteronism. Endocrinol Metab (Seoul) 2018; 33:485-492. [PMID: 30513563 PMCID: PMC6279903 DOI: 10.3803/enm.2018.33.4.485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/14/2018] [Accepted: 11/05/2018] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Increasing evidence supports interplay between aldosterone and parathyroid hormone (PTH), which may aggravate cardiovascular complications in various heart diseases. Negative structural cardiovascular remodeling by primary aldosteronism (PA) is also suspected to be associated with changes in calcium levels. However, to date, few clinical studies have examined how changes in calcium and PTH levels influence cardiovascular outcomes in PA patients. Therefore, we investigated the impact of altered calcium homeostasis caused by excessive aldosterone on cardiovascular parameters in patients with PA. METHODS Forty-two patients (mean age 48.8±10.9 years; 1:1, male:female) whose plasma aldosterone concentration/plasma renin activity ratio was more than 30 were selected among those who had visited Severance Hospital from 2010 to 2014. All patients underwent adrenal venous sampling with complete access to both adrenal veins. RESULTS The prevalence of unilateral adrenal adenoma (54.8%) was similar to that of bilateral adrenal hyperplasia. Mean serum corrected calcium level was 8.9±0.3 mg/dL (range, 8.3 to 9.9). The corrected calcium level had a negative linear correlation with left ventricular end-diastolic diameter (LVEDD, ρ=-0.424, P=0.031). Moreover, multivariable regression analysis showed that the corrected calcium level was marginally associated with the LVEDD and corrected QT (QTc) interval (β=-0.366, P=0.068 and β=-0.252, P=0.070, respectively). CONCLUSION Aldosterone-mediated hypercalciuria and subsequent hypocalcemia may be partly involved in the development of cardiac remodeling as well as a prolonged QTc interval, in subjects with PA, thereby triggering deleterious effects on target organs additively.
Collapse
Affiliation(s)
- Jung Soo Lim
- Department of Internal Medicine, Institute of Evidence Based Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Namki Hong
- Department of Internal Medicine, Severance Hospital, Endocrine Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Sungha Park
- Division of Cardiology, Severance Cardiovascular Hospital and Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Il Park
- Department of Radiology, Inje University Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
| | - Young Taik Oh
- Department of Radiology, Yonsei University College of Medicine, Seoul, Korea
| | - Min Heui Yu
- Department of Biostatistics, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Pil Yong Lim
- Hwacheon Public Health and Medical Care Center, Hwacheon, Korea
| | - Yumie Rhee
- Department of Internal Medicine, Severance Hospital, Endocrine Research Institute, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
12
|
Bazúa-Valenti S, Rojas-Vega L, Castañeda-Bueno M, Barrera-Chimal J, Bautista R, Cervantes-Pérez LG, Vázquez N, Plata C, Murillo-de-Ozores AR, González-Mariscal L, Ellison DH, Riccardi D, Bobadilla NA, Gamba G. The Calcium-Sensing Receptor Increases Activity of the Renal NCC through the WNK4-SPAK Pathway. J Am Soc Nephrol 2018; 29:1838-1848. [PMID: 29848507 DOI: 10.1681/asn.2017111155] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 04/10/2018] [Indexed: 01/07/2023] Open
Abstract
Background Hypercalciuria can result from activation of the basolateral calcium-sensing receptor (CaSR), which in the thick ascending limb of Henle's loop controls Ca2+ excretion and NaCl reabsorption in response to extracellular Ca2+ However, the function of CaSR in the regulation of NaCl reabsorption in the distal convoluted tubule (DCT) is unknown. We hypothesized that CaSR in this location is involved in activating the thiazide-sensitive NaCl cotransporter (NCC) to prevent NaCl loss.Methods We used a combination of in vitro and in vivo models to examine the effects of CaSR on NCC activity. Because the KLHL3-WNK4-SPAK pathway is involved in regulating NaCl reabsorption in the DCT, we assessed the involvement of this pathway as well.Results Thiazide-sensitive 22Na+ uptake assays in Xenopus laevis oocytes revealed that NCC activity increased in a WNK4-dependent manner upon activation of CaSR with Gd3+ In HEK293 cells, treatment with the calcimimetic R-568 stimulated SPAK phosphorylation only in the presence of WNK4. The WNK4 inhibitor WNK463 also prevented this effect. Furthermore, CaSR activation in HEK293 cells led to phosphorylation of KLHL3 and WNK4 and increased WNK4 abundance and activity. Finally, acute oral administration of R-568 in mice led to the phosphorylation of NCC.Conclusions Activation of CaSR can increase NCC activity via the WNK4-SPAK pathway. It is possible that activation of CaSR by Ca2+ in the apical membrane of the DCT increases NaCl reabsorption by NCC, with the consequent, well known decrease of Ca2+ reabsorption, further promoting hypercalciuria.
Collapse
Affiliation(s)
- Silvana Bazúa-Valenti
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Lorena Rojas-Vega
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - María Castañeda-Bueno
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Jonatan Barrera-Chimal
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | | - Norma Vázquez
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Consuelo Plata
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Adrián R Murillo-de-Ozores
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Lorenza González-Mariscal
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - David H Ellison
- Department of Medicine, Oregon Health and Science University, Portland, Oregon.,Renal Section, Veterans Administration Portland Health Care System, Portland, Oregon
| | - Daniela Riccardi
- School of Biosciences, Cardiff University, Cardiff, United Kingdom; and
| | - Norma A Bobadilla
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Gerardo Gamba
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico; .,Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León, Mexico
| |
Collapse
|
13
|
Pallotti F, Seregni E, Ferrari L, Martinetti A, Biancolini D, Bombardieri E. Diagnostic and Therapeutic Aspects of Iatrogenic Hypoparathyroidism. TUMORI JOURNAL 2018; 89:547-9. [PMID: 14870783 DOI: 10.1177/030089160308900519] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Postsurgical hypoparathyroidism is the most common cause of chronic hypocalcemia. This condition may occur after removal of all parathyroid glands or after interruption of the blood supply to the parathyroid glands during thyroidectomy and radical neck dissection. The severity of the clinical presentation of hypocalcemia may vary from an asymptomatic laboratory finding to a severe life-threatening condition. Persistent hypoparathyroidism requires treatment that must be maintained throughout the patient's lifetime, and for this reason care is required to avoid complications. In this review the most relevant aspects of calcium homeostasis and its alteration in hypoparathyroidism are briefly discussed. In addition, the main approaches to treatment of the hypocalcemic state are presented.
Collapse
|
14
|
Chung VY, Turney BW. A Drosophila genetic model of nephrolithiasis: transcriptional changes in response to diet induced stone formation. BMC Urol 2017; 17:109. [PMID: 29183349 PMCID: PMC5706311 DOI: 10.1186/s12894-017-0292-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 10/30/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Urolithiasis is a significant healthcare issue but the pathophysiology of stone disease remains poorly understood. Drosophila Malpighian tubules were known to share similar physiological function to human renal tubules. We have used Drosophila as a genetic model to study the transcriptional response to stone formation secondary to dietary manipulation. METHODS Wild-type male flies were raised on standard medium supplemented with lithogenic agents: control, sodium oxalate (NaOx) and ethylene glycol (EG). At 2 weeks, Malpighian tubules were dissected under polarized microscope to visualize crystals. The parallel group was dissected for RNA extraction and subsequent next-generation RNA sequencing. RESULTS Crystal formation was visualized in 20%(±2.2) of flies on control diet, 73%(±3.6) on NaOx diet and 84%(±2.2) on EG diet. Differentially expressed genes were identified in flies fed with NaOx and EG diet comparing with the control group. Fifty-eight genes were differentially expressed (FDR <0.05, p < 0.05) in NaOx diet and 20 genes in EG diet. The molecular function of differentially expressed genes were assessed. Among these, Nervana 3, Eaat1 (Excitatory amino acid transporter 1), CG7912, CG5404, CG3036 worked as ion transmembrane transporters, which were possibly involved in stone pathogenesis. CONCLUSIONS We have shown that by dietary modification, stone formation can be manipulated and visualized in Drosophila Malpighian tubules. This genetic model could be potentially used to identify the candidate genes that influence stone risk hence providing more insight to the pathogenesis of human stone disease.
Collapse
Affiliation(s)
- Vera Y. Chung
- Oxford Stone Group, Department of Urology, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Benjamin W. Turney
- Oxford Stone Group, Department of Urology, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
15
|
Alexander RT, Dimke H. Effect of diuretics on renal tubular transport of calcium and magnesium. Am J Physiol Renal Physiol 2017; 312:F998-F1015. [DOI: 10.1152/ajprenal.00032.2017] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/22/2017] [Accepted: 02/27/2017] [Indexed: 01/07/2023] Open
Abstract
Calcium (Ca2+) and Magnesium (Mg2+) reabsorption along the renal tubule is dependent on distinct trans- and paracellular pathways. Our understanding of the molecular machinery involved is increasing. Ca2+ and Mg2+ reclamation in kidney is dependent on a diverse array of proteins, which are important for both forming divalent cation-permeable pores and channels, but also for generating the necessary driving forces for Ca2+ and Mg2+ transport. Alterations in these molecular constituents can have profound effects on tubular Ca2+ and Mg2+ handling. Diuretics are used to treat a large range of clinical conditions, but most commonly for the management of blood pressure and fluid balance. The pharmacological targets of diuretics generally directly facilitate sodium (Na+) transport, but also indirectly affect renal Ca2+ and Mg2+ handling, i.e., by establishing a prerequisite electrochemical gradient. It is therefore not surprising that substantial alterations in divalent cation handling can be observed following diuretic treatment. The effects of diuretics on renal Ca2+ and Mg2+ handling are reviewed in the context of the present understanding of basal molecular mechanisms of Ca2+ and Mg2+ transport. Acetazolamide, osmotic diuretics, Na+/H+ exchanger (NHE3) inhibitors, and antidiabetic Na+/glucose cotransporter type 2 (SGLT) blocking compounds, target the proximal tubule, where paracellular Ca2+ transport predominates. Loop diuretics and renal outer medullary K+ (ROMK) inhibitors block thick ascending limb transport, a segment with significant paracellular Ca2+ and Mg2+ transport. Thiazides target the distal convoluted tubule; however, their effect on divalent cation transport is not limited to that segment. Finally, potassium-sparing diuretics, which inhibit electrogenic Na+ transport at distal sites, can also affect divalent cation transport.
Collapse
Affiliation(s)
- R. Todd Alexander
- Membrane Protein Disease Research Group, Department of Physiology, University of Alberta, Edmonton, Canada
- Department of Pediatrics, University of Alberta, Edmonton, Canada; and
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
16
|
|
17
|
Chung VY, Konietzny R, Charles P, Kessler B, Fischer R, Turney BW. Proteomic changes in response to crystal formation in Drosophila Malpighian tubules. Fly (Austin) 2016; 10:91-100. [PMID: 27064297 DOI: 10.1080/19336934.2016.1171947] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Kidney stone disease is a major health burden with a complex and poorly understood pathophysiology. Drosophila Malpighian tubules have been shown to resemble human renal tubules in their physiological function. Herein, we have used Drosophila as a model to study the proteomic response to crystal formation induced by dietary manipulation in Malpighian tubules. Wild-type male flies were reared in parallel groups on standard medium supplemented with lithogenic agents: control, Sodium Oxalate (NaOx) and Ethylene Glycol (EG). Malpighian tubules were dissected after 2 weeks to visualize crystals with polarized light microscopy. The parallel group was dissected for protein extraction. A new method of Gel Assisted Sample Preparation (GASP) was used for protein extraction. Differentially abundant proteins (p<0.05) were identified by label-free quantitative proteomic analysis in flies fed with NaOx and EG diet compared with control. Their molecular functions were further screened for transmembrane ion transporter, calcium or zinc ion binder. Among these, 11 candidate proteins were shortlisted in NaOx diet and 16 proteins in EG diet. We concluded that GASP is a proteomic sample preparation method that can be applied to individual Drosophila Malpighian tubules. Our results may further increase the understanding of the pathophysiology of human kidney stone disease.
Collapse
Affiliation(s)
- Vera Y Chung
- a Oxford Stone Group, Department of Urology, Nuffield Department of Surgical Sciences, University of Oxford , UK
| | - Rebecca Konietzny
- b Target Discovery Institute, Nuffield Department of Medicine, University of Oxford , UK
| | - Philip Charles
- b Target Discovery Institute, Nuffield Department of Medicine, University of Oxford , UK
| | - Benedikt Kessler
- b Target Discovery Institute, Nuffield Department of Medicine, University of Oxford , UK
| | - Roman Fischer
- b Target Discovery Institute, Nuffield Department of Medicine, University of Oxford , UK
| | - Benjamin W Turney
- a Oxford Stone Group, Department of Urology, Nuffield Department of Surgical Sciences, University of Oxford , UK
| |
Collapse
|
18
|
Kim SW, Jeon JH, Choi YK, Lee WK, Hwang IR, Kim JG, Lee IK, Park KG. Association of urinary sodium/creatinine ratio with bone mineral density in postmenopausal women: KNHANES 2008-2011. Endocrine 2015; 49:791-9. [PMID: 25614039 DOI: 10.1007/s12020-015-0532-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/12/2015] [Indexed: 12/31/2022]
Abstract
Accumulating evidence shows that high sodium chloride intake increases urinary calcium excretion and may be a risk factor for osteoporosis. However, the effect of oral sodium chloride intake on bone mineral density (BMD) and risk of osteoporosis has been inadequately researched. The aim of the present study was to determine whether urinary sodium excretion (reflecting oral sodium chloride intake) associates with BMD and prevalence of osteoporosis in postmenopausal women. This cross-sectional study involved a nationally representative sample consisting of 2,779 postmenopausal women who participated in the Korea National Health and Nutritional Examination Surveys in 2008-2011. The association of urinary sodium/creatinine ratio with BMD and other osteoporosis risk factors was assessed. In addition, the prevalence of osteoporosis was assessed in four groups with different urinary sodium/creatinine ratios. Participants with osteoporosis had significantly higher urinary sodium/creatinine ratios than the participants without osteoporosis. After adjusting for multiple confounding factors, urinary sodium/creatinine ratio correlated inversely with lumbar spine BMD (P = 0.001). Similarly, when participants were divided into quartile groups according to urinary sodium/creatinine ratio, the average BMD dropped as the urinary sodium/creatinine ratio increased. Multiple logistic regression analysis revealed that compared to quartile 1, quartile 4 had a significantly increased prevalence of lumbar spine osteoporosis (odds ratios 1.346, P for trend = 0.044). High urinary sodium excretion was significantly associated with low BMD and high prevalence of osteoporosis in lumbar spine. These results suggest that high sodium chloride intake decreases lumbar spine BMD and increases the risk of osteoporosis in postmenopausal women.
Collapse
Affiliation(s)
- Sung-Woo Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kyungpook National University School of Medicine, 130 Dongdeok-ro, Jung-gu, Daegu, 700-721, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Petramala L, Zinnamosca L, Settevendemmie A, Marinelli C, Nardi M, Concistrè A, Corpaci F, Tonnarini G, De Toma G, Letizia C. Bone and mineral metabolism in patients with primary aldosteronism. Int J Endocrinol 2014; 2014:836529. [PMID: 24864141 PMCID: PMC4016829 DOI: 10.1155/2014/836529] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 03/12/2014] [Indexed: 12/31/2022] Open
Abstract
Primary aldosteronism represents major cause of secondary hypertension, strongly associated with high cardiovascular morbidity and mortality. Aldosterone excess may influence mineral homeostasis, through higher urinary calcium excretion inducing secondary increase of parathyroid hormone. Recently, in a cohort of PA patients a significant increase of primary hyperparathyroidism was found, suggesting a bidirectional functional link between the adrenal and parathyroid glands. The aim of this study was to evaluate the impact of aldosterone excess on mineral metabolism and bone mass density. In 73 PA patients we evaluated anthropometric and biochemical parameters, renin-angiotensin-aldosterone system, calcium-phosphorus metabolism, and bone mineral density; control groups were 73 essential hypertension (EH) subjects and 40 healthy subjects. Compared to HS and EH, PA subjects had significantly lower serum calcium levels and higher urinary calcium excretion. Moreover, PA patients showed higher plasma PTH, lower serum 25(OH)-vitamin D levels, higher prevalence of vitamin D deficiency (65% versus 25% and 25%; P < 0.001), and higher prevalence of osteopenia/osteoporosis (38.5 and 10.5%) than EH (28% and 4%) and NS (25% and 5%), respectively. This study supports the hypothesis that bone loss and fracture risk in PA patients are potentially the result of aldosterone mediated hypercalciuria and the consecutive secondary hyperparathyroidism.
Collapse
Affiliation(s)
- Luigi Petramala
- Internal Medicine and Secondary Hypertension Unit, Department of Internal Medicine and Medical Specialties, University of Rome La Sapienza, Viale del Policlinico 155, 00165 Rome, Italy
| | - Laura Zinnamosca
- Internal Medicine and Secondary Hypertension Unit, Department of Internal Medicine and Medical Specialties, University of Rome La Sapienza, Viale del Policlinico 155, 00165 Rome, Italy
| | - Amina Settevendemmie
- Internal Medicine and Secondary Hypertension Unit, Department of Internal Medicine and Medical Specialties, University of Rome La Sapienza, Viale del Policlinico 155, 00165 Rome, Italy
| | - Cristiano Marinelli
- Internal Medicine and Secondary Hypertension Unit, Department of Internal Medicine and Medical Specialties, University of Rome La Sapienza, Viale del Policlinico 155, 00165 Rome, Italy
| | - Matteo Nardi
- Internal Medicine and Secondary Hypertension Unit, Department of Internal Medicine and Medical Specialties, University of Rome La Sapienza, Viale del Policlinico 155, 00165 Rome, Italy
| | - Antonio Concistrè
- Internal Medicine and Secondary Hypertension Unit, Department of Internal Medicine and Medical Specialties, University of Rome La Sapienza, Viale del Policlinico 155, 00165 Rome, Italy
| | - Francesco Corpaci
- Internal Medicine and Secondary Hypertension Unit, Department of Internal Medicine and Medical Specialties, University of Rome La Sapienza, Viale del Policlinico 155, 00165 Rome, Italy
| | - Gianfranco Tonnarini
- Internal Medicine and Secondary Hypertension Unit, Department of Internal Medicine and Medical Specialties, University of Rome La Sapienza, Viale del Policlinico 155, 00165 Rome, Italy
| | - Giorgio De Toma
- Department of Surgery, P.Valdoni, University of Rome La Sapienza, Viale del Policlinico 155, 00165 Rome, Italy
| | - Claudio Letizia
- Internal Medicine and Secondary Hypertension Unit, Department of Internal Medicine and Medical Specialties, University of Rome La Sapienza, Viale del Policlinico 155, 00165 Rome, Italy
- *Claudio Letizia:
| |
Collapse
|
20
|
Abstract
The kidney plays a fundamental role in maintaining body salt and fluid balance and blood pressure homeostasis through the actions of its proximal and distal tubular segments of nephrons. However, proximal tubules are well recognized to exert a more prominent role than distal counterparts. Proximal tubules are responsible for reabsorbing approximately 65% of filtered load and most, if not all, of filtered amino acids, glucose, solutes, and low molecular weight proteins. Proximal tubules also play a key role in regulating acid-base balance by reabsorbing approximately 80% of filtered bicarbonate. The purpose of this review article is to provide a comprehensive overview of new insights and perspectives into current understanding of proximal tubules of nephrons, with an emphasis on the ultrastructure, molecular biology, cellular and integrative physiology, and the underlying signaling transduction mechanisms. The review is divided into three closely related sections. The first section focuses on the classification of nephrons and recent perspectives on the potential role of nephron numbers in human health and diseases. The second section reviews recent research on the structural and biochemical basis of proximal tubular function. The final section provides a comprehensive overview of new insights and perspectives in the physiological regulation of proximal tubular transport by vasoactive hormones. In the latter section, attention is particularly paid to new insights and perspectives learnt from recent cloning of transporters, development of transgenic animals with knockout or knockin of a particular gene of interest, and mapping of signaling pathways using microarrays and/or physiological proteomic approaches.
Collapse
Affiliation(s)
- Jia L Zhuo
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA.
| | | |
Collapse
|
21
|
Lee CT, Lien YHH, Lai LW, Ng HY, Chiou TTY, Chen HC. Variations of dietary salt and fluid modulate calcium and magnesium transport in the renal distal tubule. Nephron Clin Pract 2013; 122:19-27. [PMID: 23774784 DOI: 10.1159/000353199] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Accepted: 05/15/2013] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND The renal distal tubule fine-tunes renal epithelial calcium transport. Dietary intake of salt and fluid varies day-to-day and the kidney adapts accordingly to maintain homeostasis. The alternations in salt and fluid balance affect calcium and magnesium transport in the distal tubule, but the mechanisms are not fully understood. METHODS Sprague-Dawley rats were grouped into high-salt, low-salt and dehydration treatment. Daily intake, water consumption and urine output were recorded. At the end of the experiment, blood and urine samples were collected for hormonal and biochemical tests. Genetic analysis, immunoblotting and immunofluorescence studies were then performed to assess the alterations of calcium and magnesium transport-related molecules. RESULTS High-salt treatment increased urinary sodium, calcium and magnesium excretion. Low-salt treatment and dehydration were associated with decreased urinary excretion of all electrolytes. High-salt treatment was associated with increased intact parathyroid hormone levels. A significant increase in gene expression of TRPV5, TRPV6, calbindin-D28k and TRPM6 was found during high-salt treatment, while low salt and dehydration diminished expression. These findings were confirmed with immunofluorescence studies. High-salt and low-salt intake or dehydration did not cause any significant changes in WNK1, WNK3 and WNK4. CONCLUSIONS Alternations in salt and water intake affect renal calcium and magnesium handling. High-salt intake increases the distal delivery of the divalent cations which upregulates distal tubule calcium and magnesium transport molecules, while the opposite effects are associated with low-salt intake or dehydration.
Collapse
Affiliation(s)
- Chien-Te Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Kaohsiung, Taiwan
| | | | | | | | | | | |
Collapse
|
22
|
Tyler Miller R. Control of renal calcium, phosphate, electrolyte, and water excretion by the calcium-sensing receptor. Best Pract Res Clin Endocrinol Metab 2013; 27:345-58. [PMID: 23856264 DOI: 10.1016/j.beem.2013.04.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Through regulation of excretion, the kidney shares responsibility for the metabolic balance of calcium (Ca(2+)) with several other tissues including the GI tract and bone. The balances of Ca(2+) and phosphate (PO4), magnesium (Mg(2+)), sodium (Na(+)), potassium (K(+)), chloride (Cl(-)), and water (H2O) are linked via regulatory systems with overlapping effects and are also controlled by systems specific to each of them. Cloning of the calcium-sensing receptor (CaSR) along with the recognition that mutations in the CaSR gene are responsible for two familial syndromes characterized by abnormalities in the regulation of PTH secretion and Ca(2+) metabolism (Familial Hypocalciuric Hypercalcemia, FHH, and Autosomal Dominant Hypocalcemia, ADH) made it clear that extracellular Ca(2+) (Ca(2+)o) participates in its own regulation via a specific, receptor-mediated mechanism. Demonstration that the CaSR is expressed in the kidney as well as the parathyroid glands combined with more complete characterizations of FHH and ADH established that the effects of elevated Ca(2+) on the kidney (wasting of Na(+), K(+), Cl(-), Ca(2+), Mg(2+) and H2O) are attributable to activation of the CaSR. The advent of positive and negative allosteric modulators of the CaSR along with mouse models with global or tissue-selective deletion of the CaSR in the kidney have allowed a better understanding of the functions of the CaSR in various nephron segments. The biology of the CaSR is more complicated than originally thought and difficult to define precisely owing to the limitations of reagents such as anti-CaSR antibodies and the difficulties inherent in separating direct effects of Ca(2+) on the kidney mediated by the CaSR from associated CaSR-induced changes in PTH. Nevertheless, renal CaSRs have nephron-specific effects that contribute to regulating Ca(2+) in the circulation and urine in a manner that assures a narrow range of Ca(2+)o in the blood and avoids excessively high concentrations of Ca(2+) in the urine.
Collapse
Affiliation(s)
- R Tyler Miller
- Department of Medicine and Nephrology, University of Texas Southwestern Medical Center and Chief of Medicine Service, VA North Texas Health System, 5323 Harry Hines Blvd, Dallas, TX 75390, USA.
| |
Collapse
|
23
|
Park-Sigal J, Don BR, Porzig A, Recker R, Griswold V, Sebastian A, Duh QY, Portale AA, Shoback D, Schambelan M. Severe hypercalcemic hyperparathyroidism developing in a patient with hyperaldosteronism and renal resistance to parathyroid hormone. J Bone Miner Res 2013; 28:700-8. [PMID: 23074096 DOI: 10.1002/jbmr.1791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 09/17/2012] [Accepted: 10/01/2012] [Indexed: 01/16/2023]
Abstract
We evaluated an African American woman referred in 1986 at age 33 years because of renal potassium and calcium wasting and chronic hip pain. She presented normotensive, hypokalemic, hypocalcemic, normophosphatemic, and hypercalciuric. Marked hyperparathyroidism was evident. Urinary cyclic adenosine monophosphate (cAMP) excretion did not increase in response to parathyroid hormone (PTH) infusion, indicating renal resistance to PTH. X-rays and bone biopsy revealed severe osteitis fibrosa cystica, confirming skeletal responsiveness to PTH. Renal potassium wasting, suppressed plasma renin activity, and elevated plasma and urinary aldosterone levels accompanied her hypokalemia, suggesting primary hyperaldosteronism. Hypokalemia resolved with spironolactone and, when combined with dietary sodium restriction, urinary calcium excretion fell and hypocalcemia improved, in accord with the known positive association between sodium intake and calcium excretion. Calcitriol and oral calcium supplements did not suppress the chronic hyperparathyroidism nor did they reduce aldosterone levels. Over time, hyperparathyroid bone disease progressed with pathologic fractures and persistent pain. In 2004, PTH levels increased further in association with worsening chronic kidney disease. Eventually hypercalcemia and hypertension developed. Localizing studies in 2005 suggested a left inferior parathyroid tumor. After having consistently declined, the patient finally agreed to neck exploration in January 2009. Four hyperplastic parathyroid glands were removed, followed immediately by severe hypocalcemia, attributed to "hungry bone syndrome" and hypoparathyroidism, which required prolonged hospitalization, calcium infusions, and oral calcitriol. Although her bone pain resolved, hyperaldosteronism persisted.
Collapse
Affiliation(s)
- Jennifer Park-Sigal
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94110, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Bonny O, Edwards A. Calcium reabsorption in the distal tubule: regulation by sodium, pH, and flow. Am J Physiol Renal Physiol 2012; 304:F585-600. [PMID: 23152295 DOI: 10.1152/ajprenal.00493.2012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We developed a mathematical model of Ca(2+) transport along the late distal convoluted tubule (DCT2) and the connecting tubule (CNT) to investigate the mechanisms that regulate Ca(2+) reabsorption in the DCT2-CNT. The model accounts for apical Ca(2+) influx across transient receptor potential vanilloid 5 (TRPV5) channels and basolateral Ca(2+) efflux via plasma membrane Ca(2+)-ATPase pumps and type 1 Na(+)/Ca(2+) exchangers (NCX1). Model simulations reproduce experimentally observed variations in Ca(2+) uptake as a function of extracellular pH, Na(+), and Mg(2+) concentration. Our results indicate that amiloride enhances Ca(2+) reabsorption in the DCT2-CNT predominantly by increasing the driving force across NCX1, thereby stimulating Ca(2+) efflux. They also suggest that because aldosterone upregulates both apical and basolateral Na(+) transport pathways, it has a lesser impact on Ca(2+) reabsorption than amiloride. Conversely, the model predicts that full NCX1 inhibition and parathyroidectomy each augment the Ca(2+) load delivered to the collecting duct severalfold. In addition, our results suggest that regulation of TRPV5 activity by luminal pH has a small impact, per se, on transepithelial Ca(2+) fluxes; the reduction in Ca(2+) reabsorption induced by metabolic acidosis likely stems from decreases in TRPV5 expression. In contrast, elevations in luminal Ca(2+) are predicted to significantly decrease TRPV5 activity via the Ca(2+)-sensing receptor. Nevertheless, following the administration of furosemide, the calcium-sensing receptor-mediated increase in Ca(2+) reabsorption in the DCT2-CNT is calculated to be insufficient to prevent hypercalciuria. Altogether, our model predicts complex interactions between calcium and sodium reabsorption in the DCT2-CNT.
Collapse
Affiliation(s)
- Olivier Bonny
- Department of Toxicology and Pharmacology, University of Lausanne, France
| | | |
Collapse
|
25
|
Abstract
Diuretics are commonly used therapeutic agents that act to inhibit sodium transport systems along the length of the renal tubule. The most effective diuretics are inhibitors of sodium chloride transport in the thick ascending limb of Henle. Loop diuretics mobilize large amounts of sodium chloride and water and produce a copious diuresis with a sharp reduction of extracellular fluid volume. As the site of action of diuretics moves downstream (thiazide and potassium-sparing diuretics), their effectiveness declines because the transport systems they inhibit have low transport capacity. Depending on the site of action diuretics can influence the renal handling of electrolyte-free water, calcium, potassium, protons, sodium bicarbonate, and uric acid. As a result, electrolyte and acid-base disorders commonly accompany diuretic use. Glucose and lipid abnormalities also can occur, particularly with the use of thiazide diuretics. This review focuses on the biochemical complications associated with the use of diuretics. The development of these complications can be minimized with careful monitoring, dosage adjustment, and replacement of electrolyte losses.
Collapse
Affiliation(s)
- Biff F Palmer
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
26
|
Sorensen MD, Kahn AJ, Reiner AP, Tseng TY, Shikany JM, Wallace RB, Chi T, Wactawski-Wende J, Jackson RD, O'Sullivan MJ, Sadetsky N, Stoller ML. Impact of nutritional factors on incident kidney stone formation: a report from the WHI OS. J Urol 2012; 187:1645-9. [PMID: 22425103 DOI: 10.1016/j.juro.2011.12.077] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Indexed: 10/28/2022]
Abstract
PURPOSE Increased fluid intake, and decreased dietary sodium and animal protein intake are thought to reduce the risk of kidney stones but the role of calcium intake is controversial. We evaluated the relationship between dietary factors and incident kidney stone formation. MATERIALS AND METHODS Secondary analysis was done of 78,293 women from the prospective WHI OS (Women's Health Initiative Observational Study) with no history of nephrolithiasis who completed the validated food frequency questionnaire. Multivariate logistic regression was used to determine demographic and dietary factors, and supplement use independently associated with incident kidney stones. RESULTS Overall 1,952 women (2.5%) reported an incident kidney stone in 573,575 person-years of followup. The risk of incident kidney stones was decreased by 5% to 28% (p = 0.01) with higher dietary calcium intake and by 13% to 31% (p = 0.002) with higher water intake after adjusting for nephrolithiasis risk factors. Conversely higher dietary sodium intake increased the risk of nephrolithiasis by 11% to 61% (p <0.001) after adjustment with the most pronounced effect in women with the highest intake. Higher body mass index independently increased the risk of incident nephrolithiasis (adjusted OR 1.19-2.01, p <0.001). Animal protein intake was not associated with nephrolithiasis on multivariate analysis. CONCLUSIONS This study adds to the growing evidence underscoring the importance of maintaining adequate fluid and dietary calcium intake. Greater dietary calcium intake significantly decreased the risk of incident kidney stones. In contrast, excess sodium intake increased the risk of incident nephrolithiasis, especially in women with the highest intake. Animal protein intake was not independently associated with nephrolithiasis.
Collapse
Affiliation(s)
- Mathew D Sorensen
- Department of Urology, School of Medicine, University of Washington, Seattle, Washington, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kostakis ID, Cholidou KG, Perrea D. Syndromes of impaired ion handling in the distal nephron: pseudohypoaldosteronism and familial hyperkalemic hypertension. Hormones (Athens) 2012; 11:31-53. [PMID: 22450343 DOI: 10.1007/bf03401536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The distal nephron, which is the site of the micro-regulation of water absorption and ion handling in the kidneys, is under the control of aldosterone. Impairment of the mineralocorticoid signal transduction pathway results in resistance to the action of aldosterone and of mineralocorticoids in general. Herein, we review two syndromes in which ion handling in the distal nephron is impaired: pseudohypoaldosteronism (PHA) and familial hyperkalemic hypertension (FHH). PHA is a rare inherited syndrome characterized by mineralocorticoid resistance, which leads to salt loss, hypotension, hyperkalemia and metabolic acidosis. There are two types of this syndrome: a renal (autosomal dominant) type due to mutations of the mineralocorticoid receptor (MR), and a systemic (autosomal recessive) type due to mutations of the epithelial sodium channel (ENaC). There is also a transient form of PHA, which may be due to urinary tract infections, obstructive uropathy or several medications. FHH is a rare autosomal dominant syndrome, characterized by salt retention, hypertension, hyperkalemia and metabolic acidosis. In FHH, mutations of WNK (with-no-lysine kinase) 4 and 1 alter the activity of several ion transportation systems in the distal nephron. The study of the pathophysiology of PHA and FHH greatly elucidated our understanding of the renin-angiotensin-aldosterone system function and ion handling in the distal nephron. The physiological role of the distal nephron and the pathophysiology of diseases in which the renal tubule is implicated may hence be better understood and, based on this understanding, new drugs can be developed.
Collapse
Affiliation(s)
- Ioannis D Kostakis
- Laboratory of Experimental Surgery and Surgical Research N.S. Christeas, National and Kapodistrian University, Medical School, Athens, Greece
| | | | | |
Collapse
|
28
|
A calcium-permeable non-selective cation channel in the thick ascending limb apical membrane of the mouse kidney. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:1135-41. [PMID: 22230350 DOI: 10.1016/j.bbamem.2011.12.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 12/22/2011] [Accepted: 12/23/2011] [Indexed: 11/21/2022]
Abstract
Non-selective cation channels have been described in the basolateral membrane of the renal tubule, but little is known about functional channels on the apical side. Apical membranes of microdissected fragments of mouse cortical thick ascending limbs were searched for ion channels using the cell-free configuration of the patch-clamp technique. A cation channel with a linear current-voltage relationship (19pS) that was permeable both to monovalent cations [P(NH4)(1.7)>P(Na) (1.0)=P(K) (1.0)] and to Ca(2+) (P(Ca)/P(Na)≈0.3) was detected. Unlike the basolateral TRPM4 Ca(2+)-impermeable non-selective cation channel, this non-selective cation channel was insensitive to internal Ca(2+), pH and ATP. The channel was already active after patch excision, and its activity increased after reduced pressure was applied via the pipette. External gadolinium (10(-5)M) decreased the channel-open probability by 70% in outside-out patches, whereas external amiloride (10(-4)M) had no effect. Internal flufenamic acid (10(-4)M) inhibited the channel in inside-out patches. Its properties suggest that the current might be supported by the TRPM7 protein that is expressed in the loop of Henle. The conduction properties of the channel suggest that it could be involved in Ca(2+) signaling.
Collapse
|
29
|
McCormick JA, Nelson JH, Yang CL, Curry JN, Ellison DH. Overexpression of the sodium chloride cotransporter is not sufficient to cause familial hyperkalemic hypertension. Hypertension 2011; 58:888-94. [PMID: 21896937 DOI: 10.1161/hypertensionaha.110.167809] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The sodium chloride cotransporter (NCC) is the primary target of thiazides diuretics, drugs used commonly for long-term hypertension therapy. Thiazides also completely reverse the signs of familial hyperkalemic hypertension (FHHt), suggesting that the primary defect in FHHt is increased NCC activity. To test whether increased NCC abundance alone is sufficient to generate the FHHt phenotype, we generated NCC transgenic mice; surprisingly, these mice did not display an FHHt-like phenotype. Systolic blood pressures of NCC transgenic mice did not differ from those of wild-type mice, even after dietary salt loading. NCC transgenic mice also did not display hyperkalemia or hypercalciuria, even when challenged with dietary electrolyte manipulation. Administration of fludrocortisone to NCC transgenic mice, to stimulate NCC, resulted in an increase in systolic blood pressure equivalent to that of wild-type mice (approximately 20 mm Hg). Although total NCC abundance was increased in the transgenic animals, phosphorylated (activated) NCC was not, suggesting that the defect in FHHt involves either activation of ion transport pathways other than NCC, or else direct activation of NCC, in addition to an increase in NCC abundance.
Collapse
Affiliation(s)
- James A McCormick
- Division of Nephrology and Hypertension, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Mail Code: L463, Portland, OR 97239-3098, USA.
| | | | | | | | | |
Collapse
|
30
|
Cha SK, Huang C, Ding Y, Qi X, Huang CL, Miller RT. Calcium-sensing receptor decreases cell surface expression of the inwardly rectifying K+ channel Kir4.1. J Biol Chem 2011; 286:1828-35. [PMID: 21084311 PMCID: PMC3023478 DOI: 10.1074/jbc.m110.160390] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 11/07/2010] [Indexed: 11/06/2022] Open
Abstract
The Ca(2+)-sensing receptor (CaR) regulates salt and water transport in the kidney as demonstrated by the association of gain of function CaR mutations with a Bartter syndrome-like, salt-wasting phenotype, but the precise mechanism for this effect is not fully established. We found previously that the CaR interacts with and inactivates an inwardly rectifying K(+) channel, Kir4.1, which is expressed in the distal nephron that contributes to the basolateral K(+) conductance, and in which loss of function mutations are associated with a complex phenotype that includes renal salt wasting. We now find that CaR inactivates Kir4.1 by reducing its cell surface expression. Mutant CaRs reduced Kir4.1 cell surface expression and current density in HEK-293 cells in proportion to their signaling activity. Mutant, activated Gα(q) reduced cell surface expression and current density of Kir4.1, and these effects were blocked by RGS4, a protein that blocks signaling via Gα(i) and Gα(q). Other α subunits had insignificant effects. Knockdown of caveolin-1 blocked the effect of Gα(q) on Kir4.1, whereas knockdown of the clathrin heavy chain had no effect. CaR had no comparable effect on the renal outer medullary K(+) channel, an apical membrane distal nephron K(+) channel that is internalized by clathrin-coated vesicles. Co-immunoprecipitation studies showed that the CaR and Kir4.1 physically associate with caveolin-1 in HEK cells and in kidney extracts. Thus, the CaR decreases cell surface expression of Kir4.1 channels via a mechanism that involves Gα(q) and caveolin. These results provide a novel molecular basis for the inhibition of renal NaCl transport by the CaR.
Collapse
Affiliation(s)
- Seung-Kuy Cha
- From the Department of Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Chunfa Huang
- the Departments of Medicine and
- the Louis Stokes Veteran Affairs Medical Center, Cleveland, Ohio 44106, and
| | | | | | - Chou-Long Huang
- From the Department of Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - R. Tyler Miller
- the Departments of Medicine and
- Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106
- the Louis Stokes Veteran Affairs Medical Center, Cleveland, Ohio 44106, and
- the Rammelkamp Center for Research and Education, MetroHealth System Campus, Cleveland, Ohio 44109
| |
Collapse
|
31
|
The salt-wasting phenotype of EAST syndrome, a disease with multifaceted symptoms linked to the KCNJ10 K+ channel. Pflugers Arch 2011; 461:423-35. [DOI: 10.1007/s00424-010-0915-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 12/10/2010] [Accepted: 12/17/2010] [Indexed: 11/25/2022]
|
32
|
Bindels RJ. 2009 Homer W. Smith Award: Minerals in Motion: From New Ion Transporters to New Concepts. J Am Soc Nephrol 2010; 21:1263-9. [DOI: 10.1681/asn.2010010001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
33
|
Bernardo JF, Magyar CE, Sneddon WB, Friedman PA. Impaired renal calcium absorption in mice lacking calcium channel beta 3 subunits. Can J Physiol Pharmacol 2010; 87:522-30. [PMID: 19767875 DOI: 10.1139/y09-035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transgenic mice lacking calcium channel beta3 subunits (CaVbeta3) were used to determine the involvement of a multimeric calcium channel in mediating stimulated renal calcium absorption. We measured the ability of calcium channel beta3 subunit-null (CaVbeta3-/-) and wild-type (CaVbeta3+/+) mice to increase renal calcium absorption in response to the calcium-sparing diuretic chlorothiazide (CTZ). Control rates of fractional sodium excretion were comparable in CaVbeta3-/- and CaVbeta3+/+ mice and CTZ increased sodium excretion similarly in both groups. CTZ enhanced calcium absorption only in wild-type CaVbeta3+/+ mice. This effect was specific for diuretics acting on distal tubules because both CaVbeta3-/- and CaVbeta3+/+ mice responded comparably to furosemide. The absence of beta3 subunits resulted in compensatory increases of TrpV5 calcium channels, the plasma membrane Ca-ATPase, NCX1 Na/Ca exchanger protein, and calbindin-D9k but not calbindin-D28k. We conclude that TrpV5 mediates basal renal calcium absorption and that a multimeric calcium channel that includes CaVbeta3 mediates stimulated calcium transport.
Collapse
Affiliation(s)
- José F Bernardo
- Department of Medicine, Renal Electrolyte Division, W1340 Biomedical Science Tower, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
34
|
Novel Ca receptor signaling pathways for control of renal ion transport. Curr Opin Nephrol Hypertens 2010; 19:106-12. [DOI: 10.1097/mnh.0b013e328332e7b2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Hereditary tubular transport disorders: implications for renal handling of Ca2+ and Mg2+. Clin Sci (Lond) 2009; 118:1-18. [PMID: 19780717 DOI: 10.1042/cs20090086] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The kidney plays an important role in maintaining the systemic Ca2+ and Mg2+ balance. Thus the renal reabsorptive capacity of these cations can be amended to adapt to disturbances in plasma Ca2+ and Mg2+ concentrations. The reabsorption of Ca2+ and Mg2+ is driven by transport of other electrolytes, sometimes through selective channels and often supported by hormonal stimuli. It is, therefore, not surprising that monogenic disorders affecting such renal processes may impose a shift in, or even completely blunt, the reabsorptive capacity of these divalent cations within the kidney. Accordingly, in Dent's disease, a disorder with defective proximal tubular transport, hypercalciuria is frequently observed. Dysfunctional thick ascending limb transport in Bartter's syndrome, familial hypomagnesaemia with hypercalciuria and nephrocalcinosis, and diseases associated with Ca2+-sensing receptor defects, markedly change tubular transport of Ca2+ and Mg2+. In the distal convolutions, several proteins involved in Mg2+ transport have been identified [TRPM6 (transient receptor potential melastatin 6), proEGF (pro-epidermal growth factor) and FXYD2 (Na+/K+-ATPase gamma-subunit)]. In addition, conditions such as Gitelman's syndrome, distal renal tubular acidosis and pseudohypoaldosteronism type II, as well as a mitochondrial defect associated with hypomagnesaemia, all change the renal handling of divalent cations. These hereditary disorders have, in many cases, substantially increased our understanding of the complex transport processes in the kidney and their contribution to the regulation of overall Ca2+ and Mg2+ balance.
Collapse
|
36
|
Randall Thomas S. Kidney modeling and systems physiology. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2009; 1:172-190. [DOI: 10.1002/wsbm.14] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- S. Randall Thomas
- IBISC CNRS FRE 3190 and University of Evry, Tour Evry 2, 91000 Evry, France
| |
Collapse
|
37
|
Gamba G, Friedman PA. Thick ascending limb: the Na(+):K (+):2Cl (-) co-transporter, NKCC2, and the calcium-sensing receptor, CaSR. Pflugers Arch 2009; 458:61-76. [PMID: 18982348 PMCID: PMC3584568 DOI: 10.1007/s00424-008-0607-1] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 10/21/2008] [Indexed: 01/12/2023]
Abstract
The thick ascending limb of Henle's loop is a nephron segment that is vital to the formation of dilute and concentrated urine. This ability is accomplished by a consortium of functionally coupled proteins consisting of the apical Na(+):K(+):2Cl(-) co-transporter, the K(+) channel, and basolateral Cl(-) channel that mediate electroneutral salt absorption. In thick ascending limbs, salt absorption is importantly regulated by the calcium-sensing receptor. Genetic or pharmacological disruption impairing the function of any of these proteins results in Bartter syndrome. The thick ascending limb is also an important site of Ca(2+) and Mg(2+) absorption. Calcium-sensing receptor activation inhibits cellular Ca(2+) absorption induced by parathyroid hormone, as well as passive paracellular Ca(2+) transport. The present review discusses these functions and their genetic and molecular regulation.
Collapse
Affiliation(s)
- Gerardo Gamba
- Molecular Physiology Unit, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan, 14000 Mexico City, Mexico
| | - Peter A. Friedman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
38
|
The impact of sodium chloride and volume depletion in the chronic kidney disease of congenital chloride diarrhea. Kidney Int 2008; 74:1085-93. [DOI: 10.1038/ki.2008.401] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
39
|
Obligado SH, Goldfarb DS. The association of nephrolithiasis with hypertension and obesity: a review. Am J Hypertens 2008; 21:257-64. [PMID: 18219300 DOI: 10.1038/ajh.2007.62] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Kidney stones affect hypertensive patients disproportionately compared to normotensive individuals. On the other hand, some prospective data suggest that a history of nephrolithiasis was associated with a greater tendency to develop hypertension. Newer epidemiologic data also link obesity and diabetes, features of the metabolic syndrome, with nephrolithiasis. In this review, the association of hypertension, diabetes, and obesity with nephrolithiasis is reviewed, and possible pathogenic mechanisms are discussed. Patients with hypertension may have abnormalities of renal calcium metabolism, but data confirming this hypothesis are inconsistent. Higher body mass index and insulin resistance (i.e., the metabolic syndrome) may be etiologic in uric acid nephrolithiasis as increasing body weight is associated with decreasing urinary pH. The possibility that common pathophysiologic mechanisms underly these diseases is intriguing, and if better understood, could potentially lead to better therapies for stone prevention. Both hypertension and stones might be addressed through lifestyle modification to prevent weight gain. Adoption of a lower sodium diet with increased fruits and vegetables and low-fat dairy products, (for example, the dietary approaches to stop hypertension(DASH) diet), may be useful to prevent both stones and hypertension. In those patients in whom dietary modification and weight loss are ineffective, thiazide diuretics are likely to improve blood pressure control and decrease calciuria.
Collapse
|
40
|
Shapiro BP, Owan TE, Mohammed S, Kruger M, Linke WA, Burnett JC, Redfield MM. Mineralocorticoid Signaling in Transition to Heart Failure With Normal Ejection Fraction. Hypertension 2008; 51:289-95. [DOI: 10.1161/hypertensionaha.107.099010] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Heart failure with normal ejection fraction occurs in elderly patients with hypertensive heart disease. We hypothesized that, in such patients, mineralocorticoid receptor activation accelerates the types of ventricular and vascular remodeling and dysfunction believed important in the transition to heart failure. We tested this hypothesis by administering deoxycorticosterone acetate (DOCA) without salt loading or nephrectomy to elderly dogs with experimental hypertension. Elderly dogs were made hypertensive by renal wrapping. After 5 weeks, dogs were randomly assigned to DOCA (1 mg/kg per day IM; old hypertensive [OH]+DOCA; n=11) or not (OH; n=11) for 3 weeks. At week 8, conscious echocardiography and hemodynamic assessment under anesthesia were performed. DOCA resulted in further increases in conscious blood pressure (
P
<0.05) without increases in cardiac output or diastolic volume. In the conscious state, effective arterial elastance (
P
<0.05) and systemic vascular resistance (
P
=0.06) were increased, and systemic arterial compliance (
P
<0.05) was decreased in OH+DOCA animals. After anesthesia, instrumentation, and autonomic blockade, blood pressure was lower, whereas left ventricular (LV) systolic elastance, LV diastolic stiffness, and ex vivo myofiber diastolic stiffness were increased in OH+DOCA animals. LV collagen was increased in OH+DOCA animals (
P
<0.05 for all), but LV mass, LV brain natriuretic peptide, and titin isoform profiles were not. Neither aortic stiffness nor aortic structure was altered in OH+DOCA animals. These findings suggest that age and hypertensive heart disease enhance sensitivity to exogenous mineralocorticoid administration and that mineralocorticoid receptor activation could contribute to the transition to heart failure in elderly persons by promoting increases in LV diastolic and systolic stiffness.
Collapse
Affiliation(s)
- Brian P. Shapiro
- From the Division of Cardiovascular Diseases (B.P.S., S.M., J.C.B., M.M.R.), Mayo Clinic and Foundation, Rochester, Minn; Division of Cardiology (T.E.O.), University of Utah, Salt Lake City; and the Physiology and Biophysics Unit (M.K., W.A.L.), University of Muenster, Muenster, Germany
| | - Theophilus E. Owan
- From the Division of Cardiovascular Diseases (B.P.S., S.M., J.C.B., M.M.R.), Mayo Clinic and Foundation, Rochester, Minn; Division of Cardiology (T.E.O.), University of Utah, Salt Lake City; and the Physiology and Biophysics Unit (M.K., W.A.L.), University of Muenster, Muenster, Germany
| | - Selma Mohammed
- From the Division of Cardiovascular Diseases (B.P.S., S.M., J.C.B., M.M.R.), Mayo Clinic and Foundation, Rochester, Minn; Division of Cardiology (T.E.O.), University of Utah, Salt Lake City; and the Physiology and Biophysics Unit (M.K., W.A.L.), University of Muenster, Muenster, Germany
| | - Martina Kruger
- From the Division of Cardiovascular Diseases (B.P.S., S.M., J.C.B., M.M.R.), Mayo Clinic and Foundation, Rochester, Minn; Division of Cardiology (T.E.O.), University of Utah, Salt Lake City; and the Physiology and Biophysics Unit (M.K., W.A.L.), University of Muenster, Muenster, Germany
| | - Wolfgang A. Linke
- From the Division of Cardiovascular Diseases (B.P.S., S.M., J.C.B., M.M.R.), Mayo Clinic and Foundation, Rochester, Minn; Division of Cardiology (T.E.O.), University of Utah, Salt Lake City; and the Physiology and Biophysics Unit (M.K., W.A.L.), University of Muenster, Muenster, Germany
| | - John C. Burnett
- From the Division of Cardiovascular Diseases (B.P.S., S.M., J.C.B., M.M.R.), Mayo Clinic and Foundation, Rochester, Minn; Division of Cardiology (T.E.O.), University of Utah, Salt Lake City; and the Physiology and Biophysics Unit (M.K., W.A.L.), University of Muenster, Muenster, Germany
| | - Margaret M. Redfield
- From the Division of Cardiovascular Diseases (B.P.S., S.M., J.C.B., M.M.R.), Mayo Clinic and Foundation, Rochester, Minn; Division of Cardiology (T.E.O.), University of Utah, Salt Lake City; and the Physiology and Biophysics Unit (M.K., W.A.L.), University of Muenster, Muenster, Germany
| |
Collapse
|
41
|
|
42
|
Palmer BF, Naderi ASA. Metabolic complications associated with use of thiazide diuretics. ACTA ACUST UNITED AC 2007; 1:381-92. [DOI: 10.1016/j.jash.2007.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 07/21/2007] [Accepted: 07/24/2007] [Indexed: 10/22/2022]
|
43
|
Huang C, Miller RT. Regulation of renal ion transport by the calcium-sensing receptor: an update. Curr Opin Nephrol Hypertens 2007; 16:437-43. [PMID: 17693759 DOI: 10.1097/mnh.0b013e3282b974a6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Extracellular calcium has profound effects on renal tubular transport, presumably via the calcium-sensing receptor, which is expressed in all nephron segments, but its effects in specific segments and the mechanism of regulation of transport are not fully understood. RECENT FINDINGS Recognition that activating calcium-sensing receptor mutations result in a Bartter-like syndrome demonstrate that the transport effects of extracellular calcium are mediated by the calcium-sensing receptor. Its presence in the gills and solute and water-transporting organs of fish coupled with appropriate calcium-sensing receptor kinetics indicate that the calcium-sensing receptor was originally involved in the regulation of sodium chloride, calcium and magnesium transport. Based on its physiological effects on tubular transport and biochemical and genetic data, the calcium-sensing receptor appears to act by mechanisms that distinguish it from other G protein-coupled receptors. SUMMARY The calcium-sensing receptor mediates the effects of extracellular calcium on the kidney, is an essential control point in the regulation of calcium balance and possibly the physiological regulation of sodium chloride balance. The thick ascending limb of Henle and distal convoluted tubule appear to be the nephron segments most responsible for the effects of the calcium-sensing receptor, although its mechanisms of action are not fully established.
Collapse
Affiliation(s)
- Chunfa Huang
- Department of Medicine, Case-Western Reserve University, Louis Stokes VAMC, Rammelkamp Center for Research, Metrohealth Medical Center, Cleveland, Ohio, USA
| | | |
Collapse
|
44
|
Ashton N, Al-Wasil SH, Bond H, Berry JL, Denton J, Freemont AJ. The effect of a low-protein diet in pregnancy on offspring renal calcium handling. Am J Physiol Regul Integr Comp Physiol 2007; 293:R759-65. [PMID: 17567711 DOI: 10.1152/ajpregu.00523.2006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Low birth weight humans and rats exposed to a low-protein diet in utero have reduced bone mineral content. Renal calcium loss during the period of rapid skeletal growth is associated with bone loss. Because young rats exposed to low protein display altered renal function, we tested the hypothesis that renal calcium excretion is perturbed in this model. Pregnant Wistar rats were fed isocalorific diets containing either 18% (control) or 9% (low) protein throughout gestation. Using standard renal clearance techniques, Western blotting for renal calcium transport proteins, and assays for Na+-K+-ATPase activity and serum calcitropic hormones, we characterized calcium handling in 4-wk-old male offspring. Histomorphometric analyses of femurs revealed a reduction in trabecular bone mass in low-protein rats. Renal calcium (control vs. low protein: 10.4 ± 2.1 vs. 27.6 ± 4.5 nmol·min−1·100 g body wt−1; P < 0.01) and sodium excretion were increased, but glomerular filtration rate was reduced in low-protein animals. Total plasma calcium was reduced in low-protein rats ( P < 0.01), but ionized calcium, serum calcitropic hormone concentrations, and total body calcium did not differ. There was no significant change in plasma membrane Ca2+-ATPase pump, epithelial calcium channel, or calbindin-D28K expression in low-protein rat kidneys. However, Na+-K+-ATPase activity was 36% lower ( P < 0.05) in low-protein rats. These data suggest that the hypercalciuria of low-protein rats arises through a reduction in passive calcium reabsorption in the proximal tubule rather than active distal tubule uptake. This may contribute to the reduction in bone mass observed in this model.
Collapse
Affiliation(s)
- Nick Ashton
- Faculty of Life Sciences, University of Manchester, 1.124 Stopford Bldg., Oxford Road, Manchester M13 9PT, UK.
| | | | | | | | | | | |
Collapse
|
45
|
Hsu YJ, Hoenderop JGJ, Bindels RJM. TRP channels in kidney disease. Biochim Biophys Acta Mol Basis Dis 2007; 1772:928-36. [PMID: 17346947 DOI: 10.1016/j.bbadis.2007.02.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Revised: 01/24/2007] [Accepted: 02/01/2007] [Indexed: 02/07/2023]
Abstract
Mammalian TRP channel proteins form six-transmembrane cation-permeable channels that may be grouped into six subfamilies on the basis of amino acid sequence homology (TRPC, TRPV, TRPM, TRPA, TRPP, and TRPML). Recent studies of TRP channels indicate that they are involved in numerous fundamental cell functions and are considered to play an important role in the pathophysiology of many diseases. Many TRPs are expressed in kidney along different parts of the nephron and growing evidence suggest that these channels are involved in hereditary, as well as acquired kidney disorders. TRPC6, TRPM6, and TRPP2 have been implicated in hereditary focal segmental glomerulosclerosis (FSGS), hypomagnesemia with secondary hypocalcemia (HSH), and polycystic kidney disease (PKD), respectively. In addition, the highly Ca(2+)-selective channel, TRPV5, contributes to several acquired mineral (dys)regulation, such as diabetes mellitus (DM), acid-base disorders, diuretics, immunosuppressant agents, and vitamin D analogues-associated Ca(2+) imbalance whereas TRPV4 may function as an osmoreceptor in kidney and participate in the regulation of sodium and water balance. This review presents an overview of the current knowledge concerning the distribution of TRP channels in kidney and their possible roles in renal physiology and kidney diseases.
Collapse
Affiliation(s)
- Yu-Juei Hsu
- Department of Physiology, 286 Physiology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, Medical Centre, P.O. Box 9101, NL-6500HB Nijmegen, The Netherlands
| | | | | |
Collapse
|
46
|
van de Graaf SFJ, Bindels RJM, Hoenderop JGJ. Physiology of epithelial Ca2+ and Mg2+ transport. Rev Physiol Biochem Pharmacol 2007; 158:77-160. [PMID: 17729442 DOI: 10.1007/112_2006_0607] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ca2+ and Mg2+ are essential ions in a wide variety of cellular processes and form a major constituent of bone. It is, therefore, essential that the balance of these ions is strictly maintained. In the last decade, major breakthrough discoveries have vastly expanded our knowledge of the mechanisms underlying epithelial Ca2+ and Mg2+ transport. The genetic defects underlying various disorders with altered Ca2+ and/or Mg2+ handling have been determined. Recently, this yielded the molecular identification of TRPM6 as the gatekeeper of epithelial Mg2+ transport. Furthermore, expression cloning strategies have elucidated two novel members of the transient receptor potential family, TRPV5 and TRPV6, as pivotal ion channels determining transcellular Ca2+ transport. These two channels are regulated by a variety of factors, some historically strongly linked to Ca2+ homeostasis, others identified in a more serendipitous manner. Herein we review the processes of epithelial Ca2+ and Mg2+ transport, the molecular mechanisms involved, and the various forms of regulation.
Collapse
Affiliation(s)
- S F J van de Graaf
- Radboud University Nijmegen Medical Centre, 286 Cell Physiology, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | |
Collapse
|
47
|
Jiang Y, Ferguson WB, Peng JB. WNK4 enhances TRPV5-mediated calcium transport: potential role in hypercalciuria of familial hyperkalemic hypertension caused by gene mutation of WNK4. Am J Physiol Renal Physiol 2006; 292:F545-54. [PMID: 17018846 DOI: 10.1152/ajprenal.00187.2006] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The epithelial Ca(2+) channel TRPV5 serves as a gatekeeper for active Ca(2+) reabsorption in the distal convoluted tubule and connecting tubule of the kidney. WNK4, a protein serine/threonine kinase with gene mutations that cause familial hyperkalemic hypertension (FHH), including a subtype with hypercalciuria, is also localized in the distal tubule of the nephron. To understand the role of WNK4 in modulation of Ca(2+) reabsorption, we evaluated the effect of WNK4 on TRPV5-mediated Ca(2+) transport in Xenopus laevis oocytes. Coexpression of TRPV5 with WNK4 resulted in a twofold increase in TRPV5-mediated Ca(2+) uptake. The increase in Ca(2+) uptake was due to the increase in surface expression of TRPV5. When the thiazide-sensitive Na(+)-Cl(-) cotransporter NCC was coexpressed, the effect of WNK4 on TRPV5 was weakened by NCC in a dose-dependent manner. Although the WNK4 disease-causing mutants E562K, D564A, Q565E, and R1185C retained their ability to upregulate TRPV5, the blocking effect of NCC was further strengthened when wild-type WNK4 was replaced by the Q565E mutant, which causes FHH with hypercalciuria. We conclude that WNK4 positively regulates TRPV5-mediated Ca(2+) transport and that the inhibitory effect of NCC on this process may be involved in the pathogenesis of hypercalciuria of FHH caused by gene mutation in WNK4.
Collapse
Affiliation(s)
- Yi Jiang
- Department of Medicine, Division of Nephrology, University of Alabama at Birmingham, AL 35294-0006, USA
| | | | | |
Collapse
|
48
|
van Abel M, Hoenderop JGJ, Bindels RJM. The epithelial calcium channels TRPV5 and TRPV6: regulation and implications for disease. Naunyn Schmiedebergs Arch Pharmacol 2005; 371:295-306. [PMID: 15747113 DOI: 10.1007/s00210-005-1021-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The epithelial Ca(2+) channels TRPV5 and TRPV6 represent a new family of Ca(2+) channels that belongs to the superfamily of transient receptor potential channels. TRPV5 and TRPV6 constitute the apical Ca(2+) entry mechanism in active Ca(2+) transport in kidney and intestine. The central role of TRPV5 and TRPV6 in active Ca(2+) (re)absorption makes it a prime target for regulation to maintain Ca(2+) balance. This review covers the hormonal regulation, interaction with accessory proteins and (patho)physiological implications of these epithelial Ca(2+) channels.
Collapse
Affiliation(s)
- Monique van Abel
- Department of Physiology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | |
Collapse
|
49
|
Nijenhuis T, Hoenderop JGJ, Bindels RJM. TRPV5 and TRPV6 in Ca(2+) (re)absorption: regulating Ca(2+) entry at the gate. Pflugers Arch 2005; 451:181-92. [PMID: 16044309 DOI: 10.1007/s00424-005-1430-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Accepted: 04/01/2005] [Indexed: 02/05/2023]
Abstract
Many physiological functions rely on the exact maintenance of body Ca(2+) balance. Therefore, the extracellular Ca(2+) concentration is tightly regulated by the concerted actions of intestinal Ca(2+) absorption, exchange of Ca(2+) to and from bone, and renal Ca(2+) reabsorption. Renal distal convoluted and connecting tubular cells as well as duodenal epithelial cells are unique in their ability to mediate transcellular (re)absorption of Ca(2+) at large and highly variable rates. Two members of the transient receptor potential (TRP) superfamily, TRP vanilloid (TRPV)5 and TRPV6, are specialized epithelial Ca(2+) channels responsible for the critical Ca(2+) entry step in transcellular Ca(2+) (re)absorption in intestine and kidney, respectively. Because transcellular Ca(2+) transport is fine-tuned to the body's specific requirements, regulation of the transmembrane Ca(2+) flux through TRPV5/6 is of particular importance and has, therefore, to be conspicuously controlled. We present an overview of the current knowledge and recent advances concerning the coordinated regulation of Ca(2+) influx through the epithelial Ca(2+) channels TRPV5 and TRPV6 in transcellular Ca(2+) (re)absorption.
Collapse
Affiliation(s)
- Tom Nijenhuis
- Department of Physiology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | |
Collapse
|
50
|
Nijenhuis T, Hoenderop JGJ, Bindels RJM. TRPV5 and TRPV6 in Ca(2+) (re)absorption: regulating Ca(2+) entry at the gate. PFLUGERS ARCHIV : EUROPEAN JOURNAL OF PHYSIOLOGY 2005. [PMID: 16044309 DOI: 10.1007/s00424- 005-1430-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Many physiological functions rely on the exact maintenance of body Ca(2+) balance. Therefore, the extracellular Ca(2+) concentration is tightly regulated by the concerted actions of intestinal Ca(2+) absorption, exchange of Ca(2+) to and from bone, and renal Ca(2+) reabsorption. Renal distal convoluted and connecting tubular cells as well as duodenal epithelial cells are unique in their ability to mediate transcellular (re)absorption of Ca(2+) at large and highly variable rates. Two members of the transient receptor potential (TRP) superfamily, TRP vanilloid (TRPV)5 and TRPV6, are specialized epithelial Ca(2+) channels responsible for the critical Ca(2+) entry step in transcellular Ca(2+) (re)absorption in intestine and kidney, respectively. Because transcellular Ca(2+) transport is fine-tuned to the body's specific requirements, regulation of the transmembrane Ca(2+) flux through TRPV5/6 is of particular importance and has, therefore, to be conspicuously controlled. We present an overview of the current knowledge and recent advances concerning the coordinated regulation of Ca(2+) influx through the epithelial Ca(2+) channels TRPV5 and TRPV6 in transcellular Ca(2+) (re)absorption.
Collapse
Affiliation(s)
- Tom Nijenhuis
- Department of Physiology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | |
Collapse
|