1
|
Chen C, Han P, Qing Y. Metabolic heterogeneity in tumor microenvironment - A novel landmark for immunotherapy. Autoimmun Rev 2024; 23:103579. [PMID: 39004158 DOI: 10.1016/j.autrev.2024.103579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/10/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
The surrounding non-cancer cells and tumor cells that make up the tumor microenvironment (TME) have various metabolic rhythms. TME metabolic heterogeneity is influenced by the intricate network of metabolic control within and between cells. DNA, protein, transport, and microbial levels are important regulators of TME metabolic homeostasis. The effectiveness of immunotherapy is also closely correlated with alterations in TME metabolism. The response of a tumor patient to immunotherapy is influenced by a variety of variables, including intracellular metabolic reprogramming, metabolic interaction between cells, ecological changes within and between tumors, and general dietary preferences. Although immunotherapy and targeted therapy have made great strides, their use in the accurate identification and treatment of tumors still has several limitations. The function of TME metabolic heterogeneity in tumor immunotherapy is summarized in this article. It focuses on how metabolic heterogeneity develops and is regulated as a tumor progresses, the precise molecular mechanisms and potential clinical significance of imbalances in intracellular metabolic homeostasis and intercellular metabolic coupling and interaction, as well as the benefits and drawbacks of targeted metabolism used in conjunction with immunotherapy. This offers insightful knowledge and important implications for individualized tumor patient diagnosis and treatment plans in the future.
Collapse
Affiliation(s)
- Chen Chen
- The First Affiliated Hospital of Ningbo University, Ningbo 315211, Zhejiang, China
| | - Peng Han
- Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang, China.
| | - Yanping Qing
- The First Affiliated Hospital of Ningbo University, Ningbo 315211, Zhejiang, China.
| |
Collapse
|
2
|
Lasota S, Zimolag E, Bobis-Wozowicz S, Pilipiuk J, Madeja Z. The dynamics of the electrotactic reaction of mouse 3T3 fibroblasts. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119647. [PMID: 38092134 DOI: 10.1016/j.bbamcr.2023.119647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/22/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
The molecular mechanisms behind electrotaxis remain largely unknown, with no identified primary direct current electric field (dcEF) sensor. Two leading hypotheses propose mechanisms involving the redistribution of charged components in the cell membrane (driven by electrophoresis or electroosmosis) and the asymmetric activation of ion channels. To investigate these mechanisms, we studied the dynamics of electrotactic behaviour of mouse 3T3 fibroblasts. We observed that 3T3 fibroblasts exhibit cathodal migration within just 1 min when exposed to physiological dcEF. This rapid response suggests the involvement of ion channels in the cell membrane. Our large-scale screening method identified several ion channel genes as potential key players, including the inwardly rectifying potassium channel Kir4.2. Blocking the Kir channel family with Ba2+ or silencing the Kcnj15 gene, encoding Kir4.2, significantly reduced the directional migration of 3T3 cells. Additionally, the levels of the intracellular regulators of Kir channels, spermine (SPM) and spermidine (SPD), had a significant impact on cell directionality. Interestingly, inhibiting Kir4.2 resulted in the temporary cessation of electrotaxis for approximately 1-2 h before its return. This observation suggests a two-phase mechanism for the electrotaxis of mouse 3T3 fibroblasts, where ion channel activation triggers the initial rapid response to dcEF, and the subsequent redistribution of membrane receptors sustains long-term directional movement. In summary, our study unveils the involvement of Kir channels and proposes a biphasic mechanism to explain the electrotactic behaviour of mouse 3T3 fibroblasts, shedding light on the molecular underpinnings of electrotaxis.
Collapse
Affiliation(s)
- Slawomir Lasota
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Eliza Zimolag
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Gronostajowa 7, 30-387 Kraków, Poland
| | - Sylwia Bobis-Wozowicz
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Gronostajowa 7, 30-387 Kraków, Poland
| | - Jagoda Pilipiuk
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Gronostajowa 7, 30-387 Kraków, Poland
| | - Zbigniew Madeja
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Gronostajowa 7, 30-387 Kraków, Poland.
| |
Collapse
|
3
|
Zheng Y, Kang S, O'Neill J, Bojak I. Spontaneous slow wave oscillations in extracellular field potential recordings reflect the alternating dominance of excitation and inhibition. J Physiol 2024; 602:713-736. [PMID: 38294945 DOI: 10.1113/jp284587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 01/15/2024] [Indexed: 02/02/2024] Open
Abstract
In the resting state, cortical neurons can fire action potentials spontaneously but synchronously (Up state), followed by a quiescent period (Down state) before the cycle repeats. Extracellular recordings in the infragranular layer of cortex with a micro-electrode display a negative deflection (depth-negative) during Up states and a positive deflection (depth-positive) during Down states. The resulting slow wave oscillation (SWO) has been studied extensively during sleep and under anaesthesia. However, recent research on the balanced nature of synaptic excitation and inhibition has highlighted our limited understanding of its genesis. Specifically, are excitation and inhibition balanced during SWOs? We analyse spontaneous local field potentials (LFPs) during SWOs recorded from anaesthetised rats via a multi-channel laminar micro-electrode and show that the Down state consists of two distinct synaptic states: a Dynamic Down state associated with depth-positive LFPs and a prominent dipole in the extracellular field, and a Static Down state with negligible (≈ 0 mV $ \approx 0{\mathrm{\;mV}}$ ) LFPs and a lack of dipoles extracellularly. We demonstrate that depth-negative and -positive LFPs are generated by a shift in the balance of synaptic excitation and inhibition from excitation dominance (depth-negative) to inhibition dominance (depth-positive) in the infragranular layer neurons. Thus, although excitation and inhibition co-tune overall, differences in their timing lead to an alternation of dominance, manifesting as SWOs. We further show that Up state initiation is significantly faster if the preceding Down state is dynamic rather than static. Our findings provide a coherent picture of the dependence of SWOs on synaptic activity. KEY POINTS: Cortical neurons can exhibit repeated cycles of spontaneous activity interleaved with periods of relative silence, a phenomenon known as 'slow wave oscillation' (SWO). During SWOs, recordings of local field potentials (LFPs) in the neocortex show depth-negative deflection during the active period (Up state) and depth-positive deflection during the silent period (Down state). Here we further classified the Down state into a dynamic phase and a static phase based on a novel method of classification and revealed non-random, stereotypical sequences of the three states occurring with significantly different transitional kinetics. Our results suggest that the positive and negative deflections in the LFP reflect the shift of the instantaneous balance between excitatory and inhibitory synaptic activity of the local cortical neurons. The differences in transitional kinetics may imply distinct synaptic mechanisms for Up state initiation. The study may provide a new approach for investigating spontaneous brain rhythms.
Collapse
Affiliation(s)
- Ying Zheng
- School of Biological Sciences, Whiteknights, University of Reading, Reading, UK
- Centre for Integrative Neuroscience and Neurodynamics (CINN), University of Reading, Reading, UK
| | - Sungmin Kang
- School of Psychology, Cardiff University, Cardiff, UK
| | | | - Ingo Bojak
- Centre for Integrative Neuroscience and Neurodynamics (CINN), University of Reading, Reading, UK
- School of Psychology and Clinical Language Science, Whiteknights, University of Reading, Reading, UK
| |
Collapse
|
4
|
Ma Z, Paudel U, Foskett JK. Effects of temperature on action potentials and ion conductances in type II taste-bud cells. Am J Physiol Cell Physiol 2023; 325:C155-C171. [PMID: 37273235 PMCID: PMC10312327 DOI: 10.1152/ajpcell.00413.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/06/2023]
Abstract
Temperature strongly influences the intensity of taste, but it remains understudied despite its physiological, hedonic, and commercial implications. The relative roles of the peripheral gustatory and somatosensory systems innervating the oral cavity in mediating thermal effects on taste sensation and perception are poorly understood. Type II taste-bud cells, responsible for sensing sweet, bitter umami, and appetitive NaCl, release neurotransmitters to gustatory neurons by the generation of action potentials, but the effects of temperature on action potentials and the underlying voltage-gated conductances are unknown. Here, we used patch-clamp electrophysiology to explore the effects of temperature on acutely isolated type II taste-bud cell electrical excitability and whole cell conductances. Our data reveal that temperature strongly affects action potential generation, properties, and frequency and suggest that thermal sensitivities of underlying voltage-gated Na+ and K+ channel conductances provide a mechanism for how and whether voltage-gated Na+ and K+ channels in the peripheral gustatory system contribute to the influence of temperature on taste sensitivity and perception.NEW & NOTEWORTHY The temperature of food affects how it tastes. Nevertheless, the mechanisms involved are not well understood, particularly whether the physiology of taste-bud cells in the mouth is involved. Here we show that the electrical activity of type II taste-bud cells that sense sweet, bitter, and umami substances is strongly influenced by temperature. These results suggest a mechanism for the influence of temperature on the intensity of taste perception that resides in taste buds themselves.
Collapse
Affiliation(s)
- Zhongming Ma
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Usha Paudel
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - J Kevin Foskett
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|
5
|
Janjic P, Solev D, Kocarev L. Non-trivial dynamics in a model of glial membrane voltage driven by open potassium pores. Biophys J 2023; 122:1470-1490. [PMID: 36919241 PMCID: PMC10147837 DOI: 10.1016/j.bpj.2023.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/01/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Despite the molecular evidence that a nearly linear steady-state current-voltage relationship in mammalian astrocytes reflects a total current resulting from more than one differentially regulated K+ conductance, detailed ordinary differential equation (ODE) models of membrane voltage Vm are still lacking. Various experimental results reporting altered rectification of the major Kir currents in glia, dominated by Kir4.1, have motivated us to develop a detailed model of Vm dynamics incorporating the weaker potassium K2P-TREK1 current in addition to Kir4.1, and study the stability of the resting state Vr. The main question is whether, with the loss of monotonicity in glial I-V curve resulting from altered Kir rectification, the nominal resting state Vr remains stable, and the cell retains the trivial, potassium electrode behavior with Vm after EK. The minimal two-dimensional model of Vm near Vr showed that an N-shape deformed Kir I-V curve induces multistability of Vm in a model that incorporates K2P activation kinetics, and nonspecific K+ leak currents. More specifically, an asymmetrical, nonlinear decrease of outward Kir4.1 conductance, turning the channels into inward rectifiers, introduces instability of Vr. That happens through a robust bifurcation giving birth to a second, more depolarized stable resting state Vdr > -10 mV. Realistic recordings from electrographic seizures were used to perturb the model. Simulations of the model perturbed by constant current through gap junctions and seizure-like discharges as local field potentials led to depolarization and switching of Vm between the two stable states, in a downstate-upstate manner. In the event of prolonged depolarizations near Vdr, such catastrophic instability would affect all aspects of the glial function, from metabolic support to membrane transport, and practically all neuromodulatory roles assigned to glia.
Collapse
Affiliation(s)
- Predrag Janjic
- Laboratory for Complex Systems and Networks, Research Centre for Computer Science and Information Technologies, Macedonian Academy of Sciences and Arts, Skopje, North Macedonia.
| | - Dimitar Solev
- Laboratory for Complex Systems and Networks, Research Centre for Computer Science and Information Technologies, Macedonian Academy of Sciences and Arts, Skopje, North Macedonia
| | - Ljupco Kocarev
- Laboratory for Complex Systems and Networks, Research Centre for Computer Science and Information Technologies, Macedonian Academy of Sciences and Arts, Skopje, North Macedonia
| |
Collapse
|
6
|
Elices I, Kulkarni A, Escoubet N, Pontani LL, Prevost AM, Brette R. An electrophysiological and kinematic model of Paramecium, the "swimming neuron". PLoS Comput Biol 2023; 19:e1010899. [PMID: 36758112 PMCID: PMC9946239 DOI: 10.1371/journal.pcbi.1010899] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/22/2023] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
Paramecium is a large unicellular organism that swims in fresh water using cilia. When stimulated by various means (mechanically, chemically, optically, thermally), it often swims backward then turns and swims forward again in a new direction: this is called the avoiding reaction. This reaction is triggered by a calcium-based action potential. For this reason, several authors have called Paramecium the "swimming neuron". Here we present an empirically constrained model of its action potential based on electrophysiology experiments on live immobilized paramecia, together with simultaneous measurement of ciliary beating using particle image velocimetry. Using these measurements and additional behavioral measurements of free swimming, we extend the electrophysiological model by coupling calcium concentration to kinematic parameters, turning it into a swimming model. In this way, we obtain a model of autonomously behaving Paramecium. Finally, we demonstrate how the modeled organism interacts with an environment, can follow gradients and display collective behavior. This work provides a modeling basis for investigating the physiological basis of autonomous behavior of Paramecium in ecological environments.
Collapse
Affiliation(s)
- Irene Elices
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Anirudh Kulkarni
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- Department of Bioengineering and Centre for Neurotechnology, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Nicolas Escoubet
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), Paris
| | - Léa-Laetitia Pontani
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), Paris
| | - Alexis Michel Prevost
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), Paris
| | - Romain Brette
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
7
|
Chen S, Cui W, Chi Z, Xiao Q, Hu T, Ye Q, Zhu K, Yu W, Wang Z, Yu C, Pan X, Dai S, Yang Q, Jin J, Zhang J, Li M, Yang D, Yu Q, Wang Q, Yu X, Yang W, Zhang X, Qian J, Ding K, Wang D. Tumor-associated macrophages are shaped by intratumoral high potassium via Kir2.1. Cell Metab 2022; 34:1843-1859.e11. [PMID: 36103895 DOI: 10.1016/j.cmet.2022.08.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 06/10/2022] [Accepted: 08/17/2022] [Indexed: 01/11/2023]
Abstract
The tumor microenvironment (TME) is a unique niche governed by constant crosstalk within and across all intratumoral cellular compartments. In particular, intratumoral high potassium (K+) has shown immune-suppressive potency on T cells. However, as a pan-cancer characteristic associated with local necrosis, the impact of this ionic disturbance on innate immunity is unknown. Here, we reveal that intratumoral high K+ suppresses the anti-tumor capacity of tumor-associated macrophages (TAMs). We identify the inwardly rectifying K+ channel Kir2.1 as a central modulator of TAM functional polarization in high K+ TME, and its conditional depletion repolarizes TAMs toward an anti-tumor state, sequentially boosting local anti-tumor immunity. Kir2.1 deficiency disturbs the electrochemically dependent glutamine uptake, engendering TAM metabolic reprogramming from oxidative phosphorylation toward glycolysis. Kir2.1 blockade attenuates both murine tumor- and patient-derived xenograft growth. Collectively, our findings reveal Kir2.1 as a determinant and potential therapeutic target for regaining the anti-tumor capacity of TAMs within ionic-imbalanced TME.
Collapse
Affiliation(s)
- Sheng Chen
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China; Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China; Cancer Center, Zhejiang University, Hangzhou 310058, P.R. China
| | - Wenyu Cui
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China; Eye Center, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China
| | - Zhexu Chi
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China
| | - Qian Xiao
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China; Cancer Center, Zhejiang University, Hangzhou 310058, P.R. China
| | - Tianyi Hu
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China
| | - Qizhen Ye
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China
| | - Kaixiang Zhu
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China
| | - Weiwei Yu
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China; Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China
| | - Zhen Wang
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China
| | - Chengxuan Yu
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China; Cancer Center, Zhejiang University, Hangzhou 310058, P.R. China
| | - Xiang Pan
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China; Cancer Center, Zhejiang University, Hangzhou 310058, P.R. China
| | - Siqi Dai
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China; Cancer Center, Zhejiang University, Hangzhou 310058, P.R. China
| | - Qi Yang
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China
| | - Jiacheng Jin
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China
| | - Jian Zhang
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China
| | - Mobai Li
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China
| | - Dehang Yang
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China
| | - Qianzhou Yu
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China
| | - Quanquan Wang
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China; Cancer Center, Zhejiang University, Hangzhou 310058, P.R. China
| | - Xiafei Yu
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China
| | - Wei Yang
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China
| | - Xue Zhang
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China
| | - Junbin Qian
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China; Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China; Cancer Center, Zhejiang University, Hangzhou 310058, P.R. China
| | - Kefeng Ding
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China; Cancer Center, Zhejiang University, Hangzhou 310058, P.R. China.
| | - Di Wang
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, P.R. China.
| |
Collapse
|
8
|
Cerdan AH, Peverini L, Changeux JP, Corringer PJ, Cecchini M. Lateral fenestrations in the extracellular domain of the glycine receptor contribute to the main chloride permeation pathway. SCIENCE ADVANCES 2022; 8:eadc9340. [PMID: 36240268 PMCID: PMC9565810 DOI: 10.1126/sciadv.adc9340] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Glycine receptors (GlyRs) are ligand-gated ion channels mediating signal transduction at chemical synapses. Since the early patch-clamp electrophysiology studies, the details of the ion permeation mechanism have remained elusive. Here, we combine molecular dynamics simulations of a zebrafish GlyR-α1 model devoid of the intracellular domain with mutagenesis and single-channel electrophysiology of the full-length human GlyR-α1. We show that lateral fenestrations between subunits in the extracellular domain provide the main translocation pathway for chloride ions to enter/exit a central water-filled vestibule at the entrance of the transmembrane channel. In addition, we provide evidence that these fenestrations are at the origin of current rectification in known anomalous mutants and design de novo two inward-rectifying channels by introducing mutations within them. These results demonstrate the central role of lateral fenestrations on synaptic neurotransmission.
Collapse
Affiliation(s)
- Adrien H. Cerdan
- Institut de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, F-67083 Strasbourg Cedex, France
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Channel-Receptors Unit, Paris, France
| | - Laurie Peverini
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Channel-Receptors Unit, Paris, France
| | - Jean-Pierre Changeux
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Channel-Receptors Unit, Paris, France
- Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, CA, USA
- Collège de France, Paris, France
| | - Pierre-Jean Corringer
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Channel-Receptors Unit, Paris, France
| | - Marco Cecchini
- Institut de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, F-67083 Strasbourg Cedex, France
| |
Collapse
|
9
|
Fernandes CAH, Zuniga D, Fagnen C, Kugler V, Scala R, Péhau-Arnaudet G, Wagner R, Perahia D, Bendahhou S, Vénien-Bryan C. Cryo-electron microscopy unveils unique structural features of the human Kir2.1 channel. SCIENCE ADVANCES 2022; 8:eabq8489. [PMID: 36149965 PMCID: PMC9506730 DOI: 10.1126/sciadv.abq8489] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/04/2022] [Indexed: 06/16/2023]
Abstract
We present the first structure of the human Kir2.1 channel containing both transmembrane domain (TMD) and cytoplasmic domain (CTD). Kir2.1 channels are strongly inward-rectifying potassium channels that play a key role in maintaining resting membrane potential. Their gating is modulated by phosphatidylinositol 4,5-bisphosphate (PIP2). Genetically inherited defects in Kir2.1 channels are responsible for several rare human diseases, including Andersen's syndrome. The structural analysis (cryo-electron microscopy), surface plasmon resonance, and electrophysiological experiments revealed a well-connected network of interactions between the PIP2-binding site and the G-loop through residues R312 and H221. In addition, molecular dynamics simulations and normal mode analysis showed the intrinsic tendency of the CTD to tether to the TMD and a movement of the secondary anionic binding site to the membrane even without PIP2. Our results revealed structural features unique to human Kir2.1 and provided insights into the connection between G-loop and gating and the pathological mechanisms associated with this channel.
Collapse
Affiliation(s)
- Carlos A. H. Fernandes
- UMR 7590, CNRS, Muséum National d’Histoire Naturelle, IRD, Institut de Minéralogie, Physique des Matériaux et de Cosmochimie, IMPMC, Sorbonne Université, 75005 Paris, France
| | - Dania Zuniga
- UMR 7590, CNRS, Muséum National d’Histoire Naturelle, IRD, Institut de Minéralogie, Physique des Matériaux et de Cosmochimie, IMPMC, Sorbonne Université, 75005 Paris, France
| | - Charline Fagnen
- UMR 7590, CNRS, Muséum National d’Histoire Naturelle, IRD, Institut de Minéralogie, Physique des Matériaux et de Cosmochimie, IMPMC, Sorbonne Université, 75005 Paris, France
| | - Valérie Kugler
- IMPReSs Facility, Biotechnology and Cell Signaling UMR 7242, CNRS–University of Strasbourg, Illkirch, Cedex, France
| | - Rosa Scala
- CNRS UMR7370, LP2M, Labex ICST, Faculté de Médecine, Université Côte d’Azur, Nice, France
| | - Gérard Péhau-Arnaudet
- Ultrastructural BioImaging Core Facility/UMR 3528, Institut Pasteur, 75724 Paris Cedex 15, France
| | - Renaud Wagner
- IMPReSs Facility, Biotechnology and Cell Signaling UMR 7242, CNRS–University of Strasbourg, Illkirch, Cedex, France
| | - David Perahia
- Laboratoire de Biologie et Pharmacologie Appliquée, Ecole Normale Supérieure Paris-Saclay, 4 Ave. des Sciences, 91190 Gif-sur-Yvette, France
| | - Saïd Bendahhou
- CNRS UMR7370, LP2M, Labex ICST, Faculté de Médecine, Université Côte d’Azur, Nice, France
| | - Catherine Vénien-Bryan
- UMR 7590, CNRS, Muséum National d’Histoire Naturelle, IRD, Institut de Minéralogie, Physique des Matériaux et de Cosmochimie, IMPMC, Sorbonne Université, 75005 Paris, France
| |
Collapse
|
10
|
Sancho M, Fletcher J, Welsh DG. Inward Rectifier Potassium Channels: Membrane Lipid-Dependent Mechanosensitive Gates in Brain Vascular Cells. Front Cardiovasc Med 2022; 9:869481. [PMID: 35419431 PMCID: PMC8995785 DOI: 10.3389/fcvm.2022.869481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Cerebral arteries contain two primary and interacting cell types, smooth muscle (SMCs) and endothelial cells (ECs), which are each capable of sensing particular hemodynamic forces to set basal tone and brain perfusion. These biomechanical stimuli help confer tone within arterial networks upon which local neurovascular stimuli function. Tone development is intimately tied to arterial membrane potential (VM) and changes in intracellular [Ca2+] driven by voltage-gated Ca2+ channels (VGCCs). Arterial VM is in turn set by the dynamic interplay among ion channel species, the strongly inward rectifying K+ (Kir) channel being of special interest. Kir2 channels possess a unique biophysical signature in that they strongly rectify, display negative slope conductance, respond to elevated extracellular K+ and are blocked by micromolar Ba2+. While functional Kir2 channels are expressed in both smooth muscle and endothelium, they lack classic regulatory control, thus are often viewed as a simple background conductance. Recent literature has provided new insight, with two membrane lipids, phosphatidylinositol 4,5-bisphosphate (PIP2) and cholesterol, noted to (1) stabilize Kir2 channels in a preferred open or closed state, respectively, and (2) confer, in association with the cytoskeleton, caveolin-1 (Cav1) and syntrophin, hemodynamic sensitivity. It is these aspects of vascular Kir2 channels that will be the primary focus of this review.
Collapse
Affiliation(s)
- Maria Sancho
- Department of Pharmacology, University of Vermont, Burlington, VT, United States
- Department of Physiology, Faculty of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- *Correspondence: Maria Sancho,
| | - Jacob Fletcher
- Department of Physiology and Pharmacology, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Donald G. Welsh
- Department of Physiology and Pharmacology, Robarts Research Institute, University of Western Ontario, London, ON, Canada
- Donald G. Welsh,
| |
Collapse
|
11
|
Nesterov V, Bertog M, Korbmacher C. High baseline ROMK activity in the mouse late distal convoluted and early connecting tubule probably contributes to aldosterone-independent K + secretion. Am J Physiol Renal Physiol 2022; 322:F42-F54. [PMID: 34843658 DOI: 10.1152/ajprenal.00252.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/18/2021] [Indexed: 11/22/2022] Open
Abstract
The renal outer medullary K+ channel (ROMK) is colocalized with the epithelial Na+ channel (ENaC) in the late distal convoluted tubule (DCT2), connecting tubule (CNT), and cortical collecting duct (CCD). ENaC-mediated Na+ absorption generates the electrical driving force for ROMK-mediated tubular K+ secretion, which is critically important for maintaining renal K+ homeostasis. ENaC activity is aldosterone dependent in the late CNT and early CCD (CNT/CCD) but aldosterone independent in the DCT2 and early CNT (DCT2/CNT). This suggests that under baseline conditions with low plasma aldosterone, ROMK-mediated K+ secretion mainly occurs in the DCT2/CNT. Therefore, we hypothesized that baseline ROMK activity is higher in the DCT2/CNT than in the CNT/CCD. To test this hypothesis, patch-clamp experiments were performed in the DCT2/CNT and CNT/CCD microdissected from mice maintained on a standard diet. In single-channel recordings from outside-out patches, we detected typical ROMK channel activity in both the DCT2/CNT and CNT/CCD and confirmed that ROMK is the predominant K+ channel in the apical membrane. Amiloride-sensitive and tertiapin-sensitive whole-cell currents were determined to assess ENaC and ROMK activity, respectively. As expected, baseline amiloride-sensitive current was high in the DCT2/CNT (∼370 pA) but low in the CNT/CCD (∼60 pA). Importantly, tertiapin-sensitive current was significantly higher in the DCT2/CNT than in the CNT/CCD (∼810 vs. ∼350 pA). We conclude that high ROMK activity in the DCT2/CNT is critical for aldosterone-independent renal K+ secretion under baseline conditions. A low-K+ diet significantly reduced ENaC but not ROMK activity in the DCT2/CNT. This suggests that modifying ENaC activity in the DCT2/CNT plays a key regulatory role in adjusting renal K+ excretion to dietary K+ intake.NEW & NOTEWORTHY ROMK-mediated renal K+ secretion is essential for maintaining K+ balance and requires a lumen negative transepithelial potential critically dependent on ENaC activity. Using microdissected distal mouse tubules, we demonstrated that baseline apical ROMK activity is high in the DCT2/CNT. Aldosterone-independent baseline ENaC activity is also high in the DCT2/CNT and downregulated by a low-K+ diet, which highlights the important role of the DCT2/CNT in regulating K+ secretion in an aldosterone-independent manner.
Collapse
Affiliation(s)
- Viatcheslav Nesterov
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Marko Bertog
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Korbmacher
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
12
|
Shalomov B, Handklo-Jamal R, Reddy HP, Theodor N, Bera AK, Dascal N. A revised mechanism of action of hyperaldosteronism-linked mutations in cytosolic domains of GIRK4 (KCNJ5). J Physiol 2021; 600:1419-1437. [PMID: 34957562 DOI: 10.1113/jp282690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 12/21/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Mutations in GIRK4 (KCNJ5) G-protein gated channels cause primary aldosteronism, a major cause of secondary hypertension. The primary mechanism is believed to be loss of K+ selectivity. R52H and E246K, aldosteronism-causing mutations in cytosolic N- and C- termini of GIRK4, were reported to cause loss of K+ selectivity. We show that R52H, E246K and G247R mutations render homotetrameric GIRK channels non-functional. In heterotetrameric context with GIRK1, these mutations impair membrane expression, interaction with Gβγ and open probability, but do not alter K+ selectivity or inward rectification. In human aldosterone-secreting cell line, a GIRK4 opener and overexpression of heterotetrameric GIRK1/4WT , but not over-expression of GIRK1/4 mutants, reduced aldosterone secretion. Aldosteronism-causing mutations in cytosolic domain of GIRK4 are loss-of-function mutations rather than gain-of-function, selectivity-loss mutations. Deciphering of exact biophysical mechanism that impairs the channel is crucial for setting the course of treatment. ABSTRACT G-protein gated, inwardly rectifying potassium channels (GIRK) mediate inhibitory transmission in brain and heart, and are present in adrenal cortex. GIRK4 (KCNJ5) subunits are abundant in the heart and adrenal cortex. Multiple mutations of KCNJ5 cause primary aldosteronism (PA). Mutations in the pore region of GIRK4 cause loss of K+ selectivity, Na+ influx, and depolarization of zona glomerulosa cells followed by hypersecretion of aldosterone. The concept of selectivity loss has been extended to mutations in cytosolic domains of GIRK4 channels, remote from the pore. We expressed aldosteronism-linked GIRK4R52H , GIRK4E246K , and GIRK4G247R mutants in Xenopus oocytes. Whole-cell currents of heterotetrameric GIRK1/4R52H and GIRK1/4E246K channels were greatly reduced compared to GIRK1/4WT . Nevertheless, all heterotetrameric mutants retained full K+ selectivity and inward rectification. When expressed as homotetramers, only GIRK4WT , but none of the mutants, produced whole-cell currents. Confocal imaging, single channel and Förster Resonance Energy Transfer (FRET) analyses showed: 1) reduction of membrane abundance of all mutated channels, especially as homotetramers, 2) impaired interaction with Gβγ subunits, and 3) reduced open probability of GIRK1/4R52H . VU0529331, a GIRK4 opener, activated homotetrameric GIRK4G247R channels, but not GIRK4R52H and GIRK4E246K . In human adrenocortical carcinoma cell line (HAC15), VU0529331 and over-expression of heterotetrameric GIRK1/4WT , but not over-expression of GIRK1/4 mutants, reduced aldosterone secretion. Our results suggest that, contrary to pore mutants of GIRK4, non-pore mutants R52H and E246K mutants are loss-of-function rather than gain-of-function/selectivity-loss mutants. Hence, GIRK4 openers may be a potential course of treatment for patients with cytosolic N- and C-terminal mutations. Abstract Figure: There are two mutations types in KCNJ5 (GIRK4) that can cause excessive secretion of aldosterone, leading to primary aldosteronism. Mutations of the first type render the channel non-selective to monovalent cations and often constitutively active, thus depolarizing the zona granulosa cells. This previously described mechanism underlies the disease-causing effects of mutations of amino acid residues located in the pore region (red color). Blockers of the channel may be useful as potential treatment to reduce aldosterone secretion. Here we show that mutations of the second type, located in the cytosolic domain remote from the pore, act by a different mechanism. They do not alter channel's ion selectivity or rectification but cause poor expression or poor activation by Gβγ, resulting in a reduction in cell's K+ conductance and depolarization. In this case, GIRK4 openers can potentially be useful to prevent the excessive aldosterone secretion. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Boris Shalomov
- Department of Physiology and Pharmacology, School of Medicine, and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Reem Handklo-Jamal
- Department of Physiology and Pharmacology, School of Medicine, and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Haritha P Reddy
- Department of Physiology and Pharmacology, School of Medicine, and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel.,Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Neta Theodor
- Department of Physiology and Pharmacology, School of Medicine, and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Amal K Bera
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Nathan Dascal
- Department of Physiology and Pharmacology, School of Medicine, and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
13
|
MCAs in Arabidopsis are Ca 2+-permeable mechanosensitive channels inherently sensitive to membrane tension. Nat Commun 2021; 12:6074. [PMID: 34667173 PMCID: PMC8526687 DOI: 10.1038/s41467-021-26363-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 10/02/2021] [Indexed: 02/05/2023] Open
Abstract
Mechanosensitive (MS) ion channels respond to mechanical stress and convert it into intracellular electric and ionic signals. Five MS channel families have been identified in plants, including the Mid1-Complementing Activity (MCA) channel; however, its activation mechanisms have not been elucidated in detail. We herein demonstrate that the MCA2 channel is a Ca2+-permeable MS channel that is directly activated by membrane tension. The N-terminal 173 residues of MCA1 and MCA2 were synthesized in vitro, purified, and reconstituted into artificial liposomal membranes. Liposomes reconstituted with MCA1(1-173) or MCA2(1-173) mediate Ca2+ influx and the application of pressure to the membrane reconstituted with MCA2(1-173) elicits channel currents. This channel is also activated by voltage. Blockers for MS channels inhibit activation by stretch, but not by voltage. Since MCA proteins are found exclusively in plants, these results suggest that MCA represent plant-specific MS channels that open directly with membrane tension. Mechanosensitive ion channels convert mechanical stimuli into intracellular electric and ionic signals. Here the authors show that Arabidopsis MCA2 is a Ca2+-permeable mechanosensitive channel that is directly activated by membrane tension.
Collapse
|
14
|
Clerx M, Mirams GR, Rogers AJ, Narayan SM, Giles WR. Immediate and Delayed Response of Simulated Human Atrial Myocytes to Clinically-Relevant Hypokalemia. Front Physiol 2021; 12:651162. [PMID: 34122128 PMCID: PMC8188899 DOI: 10.3389/fphys.2021.651162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/22/2021] [Indexed: 12/18/2022] Open
Abstract
Although plasma electrolyte levels are quickly and precisely regulated in the mammalian cardiovascular system, even small transient changes in K+, Na+, Ca2+, and/or Mg2+ can significantly alter physiological responses in the heart, blood vessels, and intrinsic (intracardiac) autonomic nervous system. We have used mathematical models of the human atrial action potential (AP) to explore the electrophysiological mechanisms that underlie changes in resting potential (Vr) and the AP following decreases in plasma K+, [K+]o, that were selected to mimic clinical hypokalemia. Such changes may be associated with arrhythmias and are commonly encountered in patients (i) in therapy for hypertension and heart failure; (ii) undergoing renal dialysis; (iii) with any disease with acid-base imbalance; or (iv) post-operatively. Our study emphasizes clinically-relevant hypokalemic conditions, corresponding to [K+]o reductions of approximately 1.5 mM from the normal value of 4 to 4.5 mM. We show how the resulting electrophysiological responses in human atrial myocytes progress within two distinct time frames: (i) Immediately after [K+]o is reduced, the K+-sensing mechanism of the background inward rectifier current (IK1) responds. Specifically, its highly non-linear current-voltage relationship changes significantly as judged by the voltage dependence of its region of outward current. This rapidly alters, and sometimes even depolarizes, Vr and can also markedly prolong the final repolarization phase of the AP, thus modulating excitability and refractoriness. (ii) A second much slower electrophysiological response (developing 5-10 minutes after [K+]o is reduced) results from alterations in the intracellular electrolyte balance. A progressive shift in intracellular [Na+]i causes a change in the outward electrogenic current generated by the Na+/K+ pump, thereby modifying Vr and AP repolarization and changing the human atrial electrophysiological substrate. In this study, these two effects were investigated quantitatively, using seven published models of the human atrial AP. This highlighted the important role of IK1 rectification when analyzing both the mechanisms by which [K+]o regulates Vr and how the AP waveform may contribute to "trigger" mechanisms within the proarrhythmic substrate. Our simulations complement and extend previous studies aimed at understanding key factors by which decreases in [K+]o can produce effects that are known to promote atrial arrhythmias in human hearts.
Collapse
Affiliation(s)
- Michael Clerx
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Gary R Mirams
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Albert J Rogers
- Department of Medicine and Cardiovascular Institute, Stanford University, Stanford, CA, United States
| | - Sanjiv M Narayan
- Department of Medicine and Cardiovascular Institute, Stanford University, Stanford, CA, United States
| | - Wayne R Giles
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
15
|
Clinical Importance of the Human Umbilical Artery Potassium Channels. Cells 2020; 9:cells9091956. [PMID: 32854241 PMCID: PMC7565333 DOI: 10.3390/cells9091956] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
Potassium (K+) channels are usually predominant in the membranes of vascular smooth muscle cells (SMCs). These channels play an important role in regulating the membrane potential and vessel contractility-a role that depends on the vascular bed. Thus, the activity of K+ channels represents one of the main mechanisms regulating the vascular tone in physiological and pathophysiological conditions. Briefly, the activation of K+ channels in SMC leads to hyperpolarization and vasorelaxation, while its inhibition induces depolarization and consequent vascular contraction. Currently, there are four different types of K+ channels described in SMCs: voltage-dependent K+ (KV) channels, calcium-activated K+ (KCa) channels, inward rectifier K+ (Kir) channels, and 2-pore domain K+ (K2P) channels. Due to the fundamental role of K+ channels in excitable cells, these channels are promising therapeutic targets in clinical practice. Therefore, this review discusses the basic properties of the various types of K+ channels, including structure, cellular mechanisms that regulate their activity, and new advances in the development of activators and blockers of these channels. The vascular functions of these channels will be discussed with a focus on vascular SMCs of the human umbilical artery. Then, the clinical importance of K+ channels in the treatment and prevention of cardiovascular diseases during pregnancy, such as gestational hypertension and preeclampsia, will be explored.
Collapse
|
16
|
Sex Differences in Biophysical Signatures across Molecularly Defined Medial Amygdala Neuronal Subpopulations. eNeuro 2020; 7:ENEURO.0035-20.2020. [PMID: 32493755 PMCID: PMC7333980 DOI: 10.1523/eneuro.0035-20.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/20/2020] [Indexed: 12/29/2022] Open
Abstract
The medial amygdala (MeA) is essential for processing innate social and non-social behaviors, such as territorial aggression and mating, which display in a sex-specific manner. While sex differences in cell numbers and neuronal morphology in the MeA are well established, if and how these differences extend to the biophysical level remain unknown. Our previous studies revealed that expression of the transcription factors, Dbx1 and Foxp2, during embryogenesis defines separate progenitor pools destined to generate different subclasses of MEA inhibitory output neurons. We have also previously shown that Dbx1-lineage and Foxp2-lineage neurons display different responses to innate olfactory cues and in a sex-specific manner. To examine whether these neurons also possess sex-specific biophysical signatures, we conducted a multidimensional analysis of the intrinsic electrophysiological profiles of these transcription factor defined neurons in the male and female MeA. We observed striking differences in the action potential (AP) spiking patterns across lineages, and across sex within each lineage, properties known to be modified by different voltage-gated ion channels. To identify the potential mechanism underlying the observed lineage-specific and sex-specific differences in spiking adaptation, we conducted a phase plot analysis to narrow down putative ion channel candidates. Of these candidates, we found a subset expressed in a lineage-biased and/or sex-biased manner. Thus, our results uncover neuronal subpopulation and sex differences in the biophysical signatures of developmentally defined MeA output neurons, providing a potential physiological substrate for how the male and female MeA may process social and non-social cues that trigger innate behavioral responses.
Collapse
|
17
|
Chen X, Bründl M, Friesacher T, Stary-Weinzinger A. Computational Insights Into Voltage Dependence of Polyamine Block in a Strong Inwardly Rectifying K + Channel. Front Pharmacol 2020; 11:721. [PMID: 32499707 PMCID: PMC7243266 DOI: 10.3389/fphar.2020.00721] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 04/30/2020] [Indexed: 12/30/2022] Open
Abstract
Inwardly rectifying potassium (KIR) channels play important roles in controlling cellular excitability and K+ ion homeostasis. Under physiological conditions, KIR channels allow large K+ influx at potentials negative to the equilibrium potential of K+ but permit little outward current at potentials positive to the equilibrium potential of K+, due to voltage dependent block of outward K+ flux by cytoplasmic polyamines. These polycationic molecules enter the KIR channel pore from the intracellular side. They block K+ ion movement through the channel at depolarized potentials, thereby ensuring, for instance, the long plateau phase of the cardiac action potential. Key questions concerning how deeply these charged molecules migrate into the pore and how the steep voltage dependence arises remain unclear. Recent MD simulations on GIRK2 (=Kir3.2) crystal structures have provided unprecedented details concerning the conduction mechanism of a KIR channel. Here, we use MD simulations with applied field to provide detailed insights into voltage dependent block of putrescine, using the conductive state of the strong inwardly rectifying K+ channel GIRK2 as starting point. Our µs long simulations elucidate details about binding sites of putrescine in the pore and suggest that voltage-dependent rectification arises from a dual mechanism.
Collapse
|
18
|
Sancho M, Welsh DG. K IR channels in the microvasculature: Regulatory properties and the lipid-hemodynamic environment. CURRENT TOPICS IN MEMBRANES 2020; 85:227-259. [PMID: 32402641 DOI: 10.1016/bs.ctm.2020.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Basal tone and perfusion control is set in cerebral arteries by the sensing of pressure and flow, key hemodynamic stimuli. These forces establish a contractile foundation within arterial networks upon which local neurovascular stimuli operate. This fundamental process is intimately tied to arterial VM and the rise in cytosolic [Ca2+] by the graded opening of voltage-operated Ca2+ channels. Arterial VM is in turn controlled by a dynamic interaction among several resident ion channels, KIR being one of particular significance. As the name suggests, KIR displays strong inward rectification, retains a small outward component, potentiated by extracellular K+ and blocked by micromolar Ba2+. Cerebrovascular KIR is unique from other K+ currents as it is present in both smooth muscle and endothelium yet lacking in classical regulatory modulation. Such observations have fostered the view that KIR is nothing more than a background conductance, activated by extracellular K+ and which passively facilitates dilation. Recent work in cell model systems has; however, identified two membrane lipids, phosphatidylinositol 4,5-bisphosphate (PIP2) and cholesterol, that interact with KIR2.x, to stabilize the channel in the preferred open or silent state, respectively. Translating this unique form of regulation, recent studies have demonstrated that specific lipid-protein interactions enable unique KIR populations to sense distinct hemodynamic stimuli and set basal tone. This review summarizes the current knowledge of vascular KIR channels and how the lipid and hemodynamic impact their activity.
Collapse
Affiliation(s)
- Maria Sancho
- Robarts Research Institute and the Department of Physiology & Pharmacology, University of Western Ontario, London, ON, Canada
| | - Donald G Welsh
- Robarts Research Institute and the Department of Physiology & Pharmacology, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
19
|
Eckert D, Schulze T, Stahl J, Rauh O, Van Etten JL, Hertel B, Schroeder I, Moroni A, Thiel G. A small viral potassium ion channel with an inherent inward rectification. Channels (Austin) 2020; 13:124-135. [PMID: 31010373 PMCID: PMC6527081 DOI: 10.1080/19336950.2019.1605813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Some algal viruses have coding sequences for proteins with structural and functional characteristics of pore modules of complex K+ channels. Here we exploit the structural diversity among these channel orthologs to discover new basic principles of structure/function correlates in K+ channels. The analysis of three similar K+ channels with ≤ 86 amino acids (AA) shows that one channel (Kmpv1) generates an ohmic conductance in HEK293 cells while the other two (KmpvSP1, KmpvPL1) exhibit typical features of canonical Kir channels. Like Kir channels, the rectification of the viral channels is a function of the K+ driving force. Reconstitution of KmpvSP1 and KmpvPL1 in planar lipid bilayers showed rapid channel fluctuations only at voltages negative of the K+ reversal voltage. This rectification was maintained in KCl buffer with 1 mM EDTA, which excludes blocking cations as the source of rectification. This means that rectification of the viral channels must be an inherent property of the channel. The structural basis for rectification was investigated by a chimera between rectifying and non-rectifying channels as well as point mutations making the rectifier similar to the ohmic conducting channel. The results of these experiments exclude the pore with pore helix and selectivity filter as playing a role in rectification. The insensitivity of the rectifier to point mutations suggests that tertiary or quaternary structural interactions between the transmembrane domains are responsible for this type of gating.
Collapse
Affiliation(s)
- Denise Eckert
- a Membrane Biophysics , Technische Universität Darmstadt , Darmstadt , Germany
| | - Tobias Schulze
- a Membrane Biophysics , Technische Universität Darmstadt , Darmstadt , Germany
| | - Julian Stahl
- a Membrane Biophysics , Technische Universität Darmstadt , Darmstadt , Germany
| | - Oliver Rauh
- a Membrane Biophysics , Technische Universität Darmstadt , Darmstadt , Germany
| | - James L Van Etten
- b Department of Plant Pathology and Nebraska Center for Virology , University of Nebraska Lincoln , Lincoln , NE , USA
| | - Brigitte Hertel
- a Membrane Biophysics , Technische Universität Darmstadt , Darmstadt , Germany
| | - Indra Schroeder
- a Membrane Biophysics , Technische Universität Darmstadt , Darmstadt , Germany
| | - Anna Moroni
- c Department of Biosciences and CNR IBF-Mi , Università degli Studi di Milano , Milano , Italy
| | - Gerhard Thiel
- a Membrane Biophysics , Technische Universität Darmstadt , Darmstadt , Germany
| |
Collapse
|
20
|
Gupta MK, Vadde R. A computational structural biology study to understand the impact of mutation on structure-function relationship of inward-rectifier potassium ion channel Kir6.2 in human. J Biomol Struct Dyn 2020; 39:1447-1460. [PMID: 32089084 DOI: 10.1080/07391102.2020.1733666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Type 2 diabetes (T2D) is clinically characterized via hyperglycemia. Polymorphism rs5219 in the KCNJ11 gene is a risk factor for developing T2D in humans. KCNJ11 encodes the 'inward-rectifier potassium ion channel (Kir6.2)'. However, because of the absence of the complete crystal/NMR structures of Kir6.2 proteins, insight into its structure and function and its interaction with diverse ligands remain elusive to date. Therefore, a computational approach was employed for predicting the best plausible 'three-dimensional' structure of Kir6.2 as well as for studying the influence of mutation (p. GLU23LYS) on both architectures as well as the function of Kir6.2 employing simulation studies. Results obtained revealed that though, with increased time, 'Gibbs free energy' becomes positive, residues in wild type Kir6.2 experiences less random movement as compared to mutant Kir6.2. The less random movement of residues in wild type Kir6.2 represents the standard coupling between open and closing of 'KATP channel' and thus the normal secretion of insulin. The more dispersed motion of mutant Kir6.2 residues represents 'overactivity' of the 'KATP channel' and thus insulin 'under-secretion'. Further, molecular docking and simulation studies identified two phytochemicals/drugs, namely, A-348441 and chushizisin I, which retains the wild type property of Kir6.2 after binding with mutant protein. Unlike A-348441, this is for the first time, the present study is reporting about the plausible anti-diabetic property of chushizisin I. As these two phytochemicals/drugs, namely, A-348441 and chushizisin I, have passed ADMET test, in the near future, they may be utilized as anti-diabetic drugs after further investigation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Manoj Kumar Gupta
- Department of Biotechnology & Bioinformatics, Yogi Vemana University, Kadapa, Andhra Pradesh, India
| | - Ramakrishna Vadde
- Department of Biotechnology & Bioinformatics, Yogi Vemana University, Kadapa, Andhra Pradesh, India
| |
Collapse
|
21
|
Verkhratsky A, Parpura V, Vardjan N, Zorec R. Physiology of Astroglia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1175:45-91. [PMID: 31583584 DOI: 10.1007/978-981-13-9913-8_3] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Astrocytes are principal cells responsible for maintaining the brain homeostasis. Additionally, these glial cells are also involved in homocellular (astrocyte-astrocyte) and heterocellular (astrocyte-other cell types) signalling and metabolism. These astroglial functions require an expression of the assortment of molecules, be that transporters or pumps, to maintain ion concentration gradients across the plasmalemma and the membrane of the endoplasmic reticulum. Astrocytes sense and balance their neurochemical environment via variety of transmitter receptors and transporters. As they are electrically non-excitable, astrocytes display intracellular calcium and sodium fluctuations, which are not only used for operative signalling but can also affect metabolism. In this chapter we discuss the molecules that achieve ionic gradients and underlie astrocyte signalling.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK. .,Faculty of Health and Medical Sciences, Center for Basic and Translational Neuroscience, University of Copenhagen, 2200, Copenhagen, Denmark. .,Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain.
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nina Vardjan
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia.,Celica Biomedical, Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia.,Celica Biomedical, Ljubljana, Slovenia
| |
Collapse
|
22
|
Vyas VK, Parikh P, Ramani J, Ghate M. Medicinal Chemistry of Potassium Channel Modulators: An Update of Recent Progress (2011-2017). Curr Med Chem 2019; 26:2062-2084. [PMID: 29714134 DOI: 10.2174/0929867325666180430152023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 12/22/2017] [Accepted: 04/25/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Potassium (K+) channels participate in many physiological processes, cardiac function, cell proliferation, neuronal signaling, muscle contractility, immune function, hormone secretion, osmotic pressure, changes in gene expression, and are involved in critical biological functions, and in a variety of diseases. Potassium channels represent a large family of tetrameric membrane proteins. Potassium channels activation reduces excitability, whereas channel inhibition increases excitability. OBJECTIVE Small molecule K+ channel activators and inhibitors interact with voltage-gated, inward rectifying, and two-pore tandem potassium channels. Due to their involvement in biological functions, and in a variety of diseases, small molecules as potassium channel modulators have received great scientific attention. METHODS In this review, we have compiled the literature, patents and patent applications (2011 to 2017) related to different chemical classes of potassium channel openers and blockers as therapeutic agents for the treatment of various diseases. Many different chemical classes of selective small molecule have emerged as potassium channel modulators over the past years. CONCLUSION This review discussed the current understanding of medicinal chemistry research in the field of potassium channel modulators to update the key advances in this field.
Collapse
Affiliation(s)
- Vivek K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382 481 Gujarat, India
| | - Palak Parikh
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382 481 Gujarat, India
| | - Jonali Ramani
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382 481 Gujarat, India
| | - Manjunath Ghate
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382 481 Gujarat, India
| |
Collapse
|
23
|
Bajaj S, Han J. Venom-Derived Peptide Modulators of Cation-Selective Channels: Friend, Foe or Frenemy. Front Pharmacol 2019; 10:58. [PMID: 30863305 PMCID: PMC6399158 DOI: 10.3389/fphar.2019.00058] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 01/18/2019] [Indexed: 01/31/2023] Open
Abstract
Ion channels play a key role in our body to regulate homeostasis and conduct electrical signals. With the help of advances in structural biology, as well as the discovery of numerous channel modulators derived from animal toxins, we are moving toward a better understanding of the function and mode of action of ion channels. Their ubiquitous tissue distribution and the physiological relevancies of their opening and closing suggest that cation channels are particularly attractive drug targets, and years of research has revealed a variety of natural toxins that bind to these channels and alter their function. In this review, we provide an introductory overview of the major cation ion channels: potassium channels, sodium channels and calcium channels, describe their venom-derived peptide modulators, and how these peptides provide great research and therapeutic value to both basic and translational medical research.
Collapse
Affiliation(s)
- Saumya Bajaj
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Jingyao Han
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
24
|
Abstract
Potassium channels that exhibit the property of inward rectification (Kir channels) are present in most cells. Cloning of the first Kir channel genes 25 years ago led to recognition that inward rectification is a consequence of voltage-dependent block by cytoplasmic polyamines, which are also ubiquitously present in animal cells. Upon cellular depolarization, these polycationic metabolites enter the Kir channel pore from the intracellular side, blocking the movement of K+ ions through the channel. As a consequence, high K+ conductance at rest can provide very stable negative resting potentials, but polyamine-mediated blockade at depolarized potentials ensures, for instance, the long plateau phase of the cardiac action potential, an essential feature for a stable cardiac rhythm. Despite much investigation of the polyamine block, where exactly polyamines get to within the Kir channel pore and how the steep voltage dependence arises remain unclear. This Minireview will summarize current understanding of the relevance and molecular mechanisms of polyamine block and offer some ideas to try to help resolve the fundamental issue of the voltage dependence of polyamine block.
Collapse
Affiliation(s)
- Colin G Nichols
- From the Department of Cell Biology and Physiology, Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, Missouri 63110
| | - Sun-Joo Lee
- From the Department of Cell Biology and Physiology, Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, Missouri 63110
| |
Collapse
|
25
|
Piermarini PM, Inocente EA, Acosta N, Hopkins CR, Denton JS, Michel AP. Inward rectifier potassium (Kir) channels in the soybean aphid Aphis glycines: Functional characterization, pharmacology, and toxicology. JOURNAL OF INSECT PHYSIOLOGY 2018; 110:57-65. [PMID: 30196125 PMCID: PMC6173977 DOI: 10.1016/j.jinsphys.2018.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/05/2018] [Accepted: 09/05/2018] [Indexed: 05/21/2023]
Abstract
Inward rectifier K+ (Kir) channels contribute to a variety of physiological processes in insects and are emerging targets for insecticide development. Previous studies on insect Kir channels have primarily focused on dipteran species (e.g., mosquitoes, fruit flies). Here we identify and functionally characterize Kir channel subunits in a hemipteran insect, the soybean aphid Aphis glycines, which is an economically important insect pest and vector of soybeans. From the transcriptome and genome of Ap. glycines we identified two cDNAs, ApKir1 and ApKir2, encoding Kir subunits that were orthologs of insect Kir1 and Kir2, respectively. Notably, a gene encoding a Kir3 subunit was absent from the transcriptome and genome of Ap. glycines, similar to the pea aphid Acyrthosiphon pisum. Heterologous expression of ApKir1 and ApKir2 in Xenopus laevis oocytes enhanced K+-currents in the plasma membrane; these currents were inhibited by barium and the small molecule VU041. Compared to ApKir2, ApKir1 mediated currents that were larger in magnitude, more sensitive to barium, and less inhibited by small molecule VU041. Moreover, ApKir1 exhibited stronger inward rectification compared to ApKir2. Topical application of VU041 in adult aphids resulted in dose-dependent mortality within 24 h that was more efficacious than flonicamid, an established insecticide also known to inhibit Kir channels. We conclude that despite the apparent loss of Kir3 genes in aphid evolution, Kir channels are important to aphid survival and represent a promising target for the development of new insecticides.
Collapse
Affiliation(s)
- Peter M Piermarini
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH, USA.
| | - Edna Alfaro Inocente
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH, USA
| | - Nuris Acosta
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH, USA
| | - Corey R Hopkins
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jerod S Denton
- Departments of Anesthesiology and Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrew P Michel
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH, USA
| |
Collapse
|
26
|
Trezza A, Cicaloni V, Porciatti P, Langella A, Fusi F, Saponara S, Spiga O. From in silico to in vitro: a trip to reveal flavonoid binding on the Rattus norvegicus Kir6.1 ATP-sensitive inward rectifier potassium channel. PeerJ 2018; 6:e4680. [PMID: 29736333 PMCID: PMC5936070 DOI: 10.7717/peerj.4680] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 04/09/2018] [Indexed: 12/18/2022] Open
Abstract
Background ATP-sensitive inward rectifier potassium channels (Kir), are a potassium channel family involved in many physiological processes. KATP dysfunctions are observed in several diseases such as hypoglycaemia, hyperinsulinemia, Prinzmetal angina–like symptoms, cardiovascular diseases. Methods A broader view of the KATP mechanism is needed in order to operate on their regulation, and in this work we clarify the structure of the Rattus norvegicus ATP-sensitive inward rectifier potassium channel 8 (Kir6.1), which has been obtained through a homology modelling procedure. Due to the medical use of flavonoids, a considerable increase in studies on their influence on human health has recently been observed, therefore our aim is to study, through computational methods, the three-dimensional (3D) conformation together with mechanism of action of Kir6.1 with three flavonoids. Results Computational analysis by performing molecular dynamics (MD) and docking simulation on rat 3D modelled structure have been completed, in its closed and open conformation state and in complex with Quercetin, 5-Hydroxyflavone and Rutin flavonoids. Our study showed that only Quercetin and 5-Hydroxyflavone were responsible for a significant down-regulation of the Kir6.1 activity, stabilising it in a closed conformation. This hypothesis was supported by in vitro experiments demonstrating that Quercetin and 5-Hydroxyflavone were capable to inhibit KATP currents of rat tail main artery myocytes recorded by the patch-clamp technique. Conclusion Combined methodological approaches, such as molecular modelling, docking and MD simulations of Kir6.1 channel, used to elucidate flavonoids intrinsic mechanism of action, are introduced, revealing a new potential druggable protein site.
Collapse
Affiliation(s)
- Alfonso Trezza
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Vittoria Cicaloni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy.,Toscana Life Sciences Foundation, Siena, Italy
| | - Piera Porciatti
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Andrea Langella
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Fabio Fusi
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Simona Saponara
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Ottavia Spiga
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| |
Collapse
|
27
|
Jackson WF. Boosting the signal: Endothelial inward rectifier K + channels. Microcirculation 2018; 24. [PMID: 27652592 DOI: 10.1111/micc.12319] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/12/2016] [Indexed: 12/19/2022]
Abstract
Endothelial cells express a diverse array of ion channels including members of the strong inward rectifier family composed of KIR 2 subunits. These two-membrane spanning domain channels are modulated by their lipid environment, and exist in macromolecular signaling complexes with receptors, protein kinases and other ion channels. Inward rectifier K+ channel (KIR ) currents display a region of negative slope conductance at membrane potentials positive to the K+ equilibrium potential that allows outward current through the channels to be activated by membrane hyperpolarization, permitting KIR to amplify hyperpolarization induced by other K+ channels and ion transporters. Increases in extracellular K+ concentration activate KIR allowing them to sense extracellular K+ concentration and transduce this change into membrane hyperpolarization. These properties position KIR to participate in the mechanism of action of hyperpolarizing vasodilators and contribute to cell-cell conduction of hyperpolarization along the wall of microvessels. The expression of KIR in capillaries in electrically active tissues may allow KIR to sense extracellular K+ , contributing to functional hyperemia. Understanding the regulation of expression and function of microvascular endothelial KIR will improve our understanding of the control of blood flow in the microcirculation in health and disease and may provide new targets for the development of therapeutics in the future.
Collapse
Affiliation(s)
- William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
28
|
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
29
|
Abstract
Voltage-gated sodium (Na+) channels are expressed in virtually all electrically excitable tissues and are essential for muscle contraction and the conduction of impulses within the peripheral and central nervous systems. Genetic disorders that disrupt the function of these channels produce an array of Na+ channelopathies resulting in neuronal impairment, chronic pain, neuromuscular pathologies, and cardiac arrhythmias. Because of their importance to the conduction of electrical signals, Na+ channels are the target of a wide variety of local anesthetic, antiarrhythmic, anticonvulsant, and antidepressant drugs. The voltage-gated family of Na+ channels is composed of α-subunits that encode for the voltage sensor domains and the Na+-selective permeation pore. In vivo, Na+ channel α-subunits are associated with one or more accessory β-subunits (β1-β4) that regulate gating properties, trafficking, and cell-surface expression of the channels. The permeation pore of Na+ channels is divided in two parts: the outer mouth of the pore is the site of the ion selectivity filter, while the inner cytoplasmic pore serves as the channel activation gate. The cytoplasmic lining of the permeation pore is formed by the S6 segments that include highly conserved aromatic amino acids important for drug binding. These residues are believed to undergo voltage-dependent conformational changes that alter drug binding as the channels cycle through the closed, open, and inactivated states. The purpose of this chapter is to broadly review the mechanisms of Na+ channel gating and the models used to describe drug binding and Na+ channel inhibition.
Collapse
Affiliation(s)
- M E O'Leary
- Cooper Medical School of Rowan University, Camden, NJ, USA
| | - M Chahine
- CERVO Brain Research Center, Institut universitaire en santé mentale de Québec, Quebec City, QC, Canada.
- Department of Medicine, Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
30
|
Verkhratsky A, Nedergaard M. Physiology of Astroglia. Physiol Rev 2018; 98:239-389. [PMID: 29351512 PMCID: PMC6050349 DOI: 10.1152/physrev.00042.2016] [Citation(s) in RCA: 964] [Impact Index Per Article: 160.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/22/2017] [Accepted: 04/27/2017] [Indexed: 02/07/2023] Open
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
31
|
Venom-derived peptides inhibiting Kir channels: Past, present, and future. Neuropharmacology 2017; 127:161-172. [PMID: 28716449 DOI: 10.1016/j.neuropharm.2017.07.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/05/2017] [Accepted: 07/13/2017] [Indexed: 12/17/2022]
Abstract
Inwardly rectifying K+ (Kir) channels play a significant role in vertebrate and invertebrate biology by regulating the movement of K+ ions involved in membrane transport and excitability. Yet unlike other ion channels including their ancestral K+-selective homologs, there are very few venom toxins known to target and inhibit Kir channels with the potency and selectivity found for the Ca2+-activated and voltage-gated K+ channel families. It is unclear whether this is simply due to a lack of discovery, or instead a consequence of the evolutionary processes that drive the development of venom components towards their targets based on a collective efficacy to 1) elicit pain for defensive purposes, 2) promote paralysis for prey capture, or 3) facilitate delivery of venom components into the circulation. The past two decades of venom screening has yielded three venom peptides with inhibitory activity towards mammalian Kir channels, including the discovery of tertiapin, a high-affinity pore blocker from the venom of the European honey bee Apis mellifera. Venomics and structure-based computational approaches represent exciting new frontiers for venom peptide development, where re-engineering peptide 'scaffolds' such as tertiapin may aid in the quest to expand the palette of potent and selective Kir channel blockers for future research and potentially new therapeutics. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
|
32
|
Tykocki NR, Boerman EM, Jackson WF. Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles. Compr Physiol 2017; 7:485-581. [PMID: 28333380 DOI: 10.1002/cphy.c160011] [Citation(s) in RCA: 228] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vascular tone of resistance arteries and arterioles determines peripheral vascular resistance, contributing to the regulation of blood pressure and blood flow to, and within the body's tissues and organs. Ion channels in the plasma membrane and endoplasmic reticulum of vascular smooth muscle cells (SMCs) in these blood vessels importantly contribute to the regulation of intracellular Ca2+ concentration, the primary determinant of SMC contractile activity and vascular tone. Ion channels provide the main source of activator Ca2+ that determines vascular tone, and strongly contribute to setting and regulating membrane potential, which, in turn, regulates the open-state-probability of voltage gated Ca2+ channels (VGCCs), the primary source of Ca2+ in resistance artery and arteriolar SMCs. Ion channel function is also modulated by vasoconstrictors and vasodilators, contributing to all aspects of the regulation of vascular tone. This review will focus on the physiology of VGCCs, voltage-gated K+ (KV) channels, large-conductance Ca2+-activated K+ (BKCa) channels, strong-inward-rectifier K+ (KIR) channels, ATP-sensitive K+ (KATP) channels, ryanodine receptors (RyRs), inositol 1,4,5-trisphosphate receptors (IP3Rs), and a variety of transient receptor potential (TRP) channels that contribute to pressure-induced myogenic tone in resistance arteries and arterioles, the modulation of the function of these ion channels by vasoconstrictors and vasodilators, their role in the functional regulation of tissue blood flow and their dysfunction in diseases such as hypertension, obesity, and diabetes. © 2017 American Physiological Society. Compr Physiol 7:485-581, 2017.
Collapse
Affiliation(s)
- Nathan R Tykocki
- Department of Pharmacology, University of Vermont, Burlington, Vermont, USA
| | - Erika M Boerman
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
33
|
Naranjo D, Moldenhauer H, Pincuntureo M, Díaz-Franulic I. Pore size matters for potassium channel conductance. J Gen Physiol 2016; 148:277-91. [PMID: 27619418 PMCID: PMC5037345 DOI: 10.1085/jgp.201611625] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/10/2016] [Indexed: 01/31/2023] Open
Abstract
Ion channels are membrane proteins that mediate efficient ion transport across the hydrophobic core of cell membranes, an unlikely process in their absence. K+ channels discriminate K+ over cations with similar radii with extraordinary selectivity and display a wide diversity of ion transport rates, covering differences of two orders of magnitude in unitary conductance. The pore domains of large- and small-conductance K+ channels share a general architectural design comprising a conserved narrow selectivity filter, which forms intimate interactions with permeant ions, flanked by two wider vestibules toward the internal and external openings. In large-conductance K+ channels, the inner vestibule is wide, whereas in small-conductance channels it is narrow. Here we raise the idea that the physical dimensions of the hydrophobic internal vestibule limit ion transport in K+ channels, accounting for their diversity in unitary conductance.
Collapse
Affiliation(s)
- David Naranjo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Playa Ancha, Valparaíso 2360103, Chile
| | - Hans Moldenhauer
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Playa Ancha, Valparaíso 2360103, Chile
| | - Matías Pincuntureo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Playa Ancha, Valparaíso 2360103, Chile Programa de Doctorado en Ciencias, mención Biofísica y Biología Computacional, Universidad de Valparaíso, Valparaíso 2360103, Chile
| | - Ignacio Díaz-Franulic
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Playa Ancha, Valparaíso 2360103, Chile Center for Bioinformatics and Integrative Biology, Universidad Andrés Bello, Santiago 8370146, Chile Fraunhofer Chile Research, Las Condes 7550296, Chile
| |
Collapse
|
34
|
Frohnhöfer HG, Geiger-Rudolph S, Pattky M, Meixner M, Huhn C, Maischein HM, Geisler R, Gehring I, Maderspacher F, Nüsslein-Volhard C, Irion U. Spermidine, but not spermine, is essential for pigment pattern formation in zebrafish. Biol Open 2016; 5:736-44. [PMID: 27215328 PMCID: PMC4920196 DOI: 10.1242/bio.018721] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Polyamines are small poly-cations essential for all cellular life. The main polyamines present in metazoans are putrescine, spermidine and spermine. Their exact functions are still largely unclear; however, they are involved in a wide variety of processes affecting cell growth, proliferation, apoptosis and aging. Here we identify idefix, a mutation in the zebrafish gene encoding the enzyme spermidine synthase, leading to a severe reduction in spermidine levels as shown by capillary electrophoresis-mass spectrometry. We show that spermidine, but not spermine, is essential for early development, organogenesis and colour pattern formation. Whereas in other vertebrates spermidine deficiency leads to very early embryonic lethality, maternally provided spermidine synthase in zebrafish is sufficient to rescue the early developmental defects. This allows us to uncouple them from events occurring later during colour patterning. Factors involved in the cellular interactions essential for colour patterning, likely targets for spermidine, are the gap junction components Cx41.8, Cx39.4, and Kir7.1, an inwardly rectifying potassium channel, all known to be regulated by polyamines. Thus, zebrafish provide a vertebrate model to study the in vivo effects of polyamines. Summary: We show that the polyamine spermidine, but not spermine, in addition to more general functions during early development, also specifically regulates colour pattern formation in adult zebrafish.
Collapse
Affiliation(s)
- Hans Georg Frohnhöfer
- Max-Planck-Institut für Entwicklungsbiologie, Abteilung 3, Spemannstrasse 35, Tübingen 72076, Germany
| | - Silke Geiger-Rudolph
- Max-Planck-Institut für Entwicklungsbiologie, Abteilung 3, Spemannstrasse 35, Tübingen 72076, Germany
| | - Martin Pattky
- Institut für Physikalische und Theoretische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, Tübingen 72076, Germany
| | - Martin Meixner
- Institut für Physikalische und Theoretische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, Tübingen 72076, Germany
| | - Carolin Huhn
- Institut für Physikalische und Theoretische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, Tübingen 72076, Germany
| | - Hans-Martin Maischein
- Max-Planck-Institut für Entwicklungsbiologie, Abteilung 3, Spemannstrasse 35, Tübingen 72076, Germany
| | - Robert Geisler
- Max-Planck-Institut für Entwicklungsbiologie, Abteilung 3, Spemannstrasse 35, Tübingen 72076, Germany
| | - Ines Gehring
- Max-Planck-Institut für Entwicklungsbiologie, Abteilung 3, Spemannstrasse 35, Tübingen 72076, Germany
| | - Florian Maderspacher
- Max-Planck-Institut für Entwicklungsbiologie, Abteilung 3, Spemannstrasse 35, Tübingen 72076, Germany
| | | | - Uwe Irion
- Max-Planck-Institut für Entwicklungsbiologie, Abteilung 3, Spemannstrasse 35, Tübingen 72076, Germany
| |
Collapse
|
35
|
Atia J, McCloskey C, Shmygol AS, Rand DA, van den Berg HA, Blanks AM. Reconstruction of Cell Surface Densities of Ion Pumps, Exchangers, and Channels from mRNA Expression, Conductance Kinetics, Whole-Cell Calcium, and Current-Clamp Voltage Recordings, with an Application to Human Uterine Smooth Muscle Cells. PLoS Comput Biol 2016; 12:e1004828. [PMID: 27105427 PMCID: PMC4841602 DOI: 10.1371/journal.pcbi.1004828] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 02/23/2016] [Indexed: 11/28/2022] Open
Abstract
Uterine smooth muscle cells remain quiescent throughout most of gestation, only generating spontaneous action potentials immediately prior to, and during, labor. This study presents a method that combines transcriptomics with biophysical recordings to characterise the conductance repertoire of these cells, the ‘conductance repertoire’ being the total complement of ion channels and transporters expressed by an electrically active cell. Transcriptomic analysis provides a set of potential electrogenic entities, of which the conductance repertoire is a subset. Each entity within the conductance repertoire was modeled independently and its gating parameter values were fixed using the available biophysical data. The only remaining free parameters were the surface densities for each entity. We characterise the space of combinations of surface densities (density vectors) consistent with experimentally observed membrane potential and calcium waveforms. This yields insights on the functional redundancy of the system as well as its behavioral versatility. Our approach couples high-throughput transcriptomic data with physiological behaviors in health and disease, and provides a formal method to link genotype to phenotype in excitable systems. We accurately predict current densities and chart functional redundancy. For example, we find that to evoke the observed voltage waveform, the BK channel is functionally redundant whereas hERG is essential. Furthermore, our analysis suggests that activation of calcium-activated chloride conductances by intracellular calcium release is the key factor underlying spontaneous depolarisations. A well-known problem in electrophysiologal modeling is that the parameters of the gating kinetics of the ion channels cannot be uniquely determined from observed behavior at the cellular level. One solution is to employ simplified “macroscopic” currents that mimic the behavior of aggregates of distinct entities at the protein level. The gating parameters of each channel or pump can be determined by studying it in isolation, leaving the general problem of finding the densities at which the channels occur in the plasma membrane. We propose an approach, which we apply to uterine smooth muscle cells, whereby we constrain the list of possible entities by means of transcriptomics and chart the indeterminacy of the problem in terms of the kernel of the corresponding linear transformation. A graphical representation of this kernel visualises the functional redundancy of the system. We show that the role of certain conductances can be fulfilled, or compensated for, by suitable combinations of other conductances; this is not always the case, and such “non-substitutable” conductances can be regarded as functionally non-redundant. Electrogenic entities belonging to the latter category are suitable putative clinical targets.
Collapse
Affiliation(s)
- Jolene Atia
- Division of Reproductive Health, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Conor McCloskey
- Division of Reproductive Health, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Anatoly S. Shmygol
- Division of Reproductive Health, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | | | | | - Andrew M. Blanks
- Division of Reproductive Health, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- * E-mail:
| |
Collapse
|
36
|
Brown PMGE, Aurousseau MRP, Musgaard M, Biggin PC, Bowie D. Kainate receptor pore-forming and auxiliary subunits regulate channel block by a novel mechanism. J Physiol 2016; 594:1821-40. [PMID: 26682513 PMCID: PMC4818602 DOI: 10.1113/jp271690] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 12/07/2015] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Kainate receptor heteromerization and auxiliary subunits, Neto1 and Neto2, attenuate polyamine ion-channel block by facilitating blocker permeation. Relief of polyamine block in GluK2/GluK5 heteromers results from a key proline residue that produces architectural changes in the channel pore α-helical region. Auxiliary subunits exert an additive effect to heteromerization, and thus relief of polyamine block is due to a different mechanism. Our findings have broad implications for work on polyamine block of other cation-selective ion channels. ABSTRACT Channel block and permeation by cytoplasmic polyamines is a common feature of many cation-selective ion channels. Although the channel block mechanism has been studied extensively, polyamine permeation has been considered less significant as it occurs at extreme positive membrane potentials. Here, we show that kainate receptor (KAR) heteromerization and association with auxiliary proteins, Neto1 and Neto2, attenuate polyamine block by enhancing blocker permeation. Consequently, polyamine permeation and unblock occur at more negative and physiologically relevant membrane potentials. In GluK2/GluK5 heteromers, enhanced permeation is due to a single proline residue in GluK5 that alters the dynamics of the α-helical region of the selectivity filter. The effect of auxiliary proteins is additive, and therefore the structural basis of polyamine permeation and unblock is through a different mechanism. As native receptors are thought to assemble as heteromers in complex with auxiliary proteins, our data identify an unappreciated impact of polyamine permeation in shaping the signalling properties of neuronal KARs and point to a structural mechanism that may be shared amongst other cation-selective ion channels.
Collapse
Affiliation(s)
- Patricia M G E Brown
- Integrated Program in Neurosciences, McGill University, Montréal, Québec, Canada, H3G 0B1
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada, H3G 0B1
| | - Mark R P Aurousseau
- Graduate Program in Pharmacology, McGill University, Montréal, Québec, Canada, H3G 0B1
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada, H3G 0B1
| | - Maria Musgaard
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Philip C Biggin
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Derek Bowie
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada, H3G 0B1
| |
Collapse
|
37
|
Hsieh CP, Chiang CC, Huang CW. The mechanism of inward rectification in Kir channels: A novel kinetic model with non-equilibrium thermodynamics approach. Biophys Chem 2016; 212:1-8. [PMID: 26945551 DOI: 10.1016/j.bpc.2016.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/15/2016] [Accepted: 02/15/2016] [Indexed: 10/22/2022]
Abstract
The mechanisms of the strong inward rectification in inward rectifier K(+) (Kir) channels are controversial because the drop in electrical potential due to the movement of the blocker and coupling ions is insufficient to explain the steep voltage-dependent block near the equilibrium potential. Here, we study the "driving force"-dependent block in Kir channels with a novel approach incorporating concepts from the non-equilibrium thermodynamics of small systems, and computer kinetic simulations based on the experimental data of internal Ba(2+) block on Kir2.1 channels. The steep exponential increase in the apparent binding rate near the equilibrium potential is explained, when the encounter frequency is construed as the likelihood of transfer events down or against the electrochemical potential gradient. The exponent of flux ratio, nf=2.62, implies that the blockage of the internal blocker may be coupled with the outward transport of 2 to 3K(+) ions. The flux-coupled block in the single-file multi-ion pore can be demonstrated by the concentration gradient alone, as well as when the driving force is the electrochemical potential difference across the membrane.
Collapse
Affiliation(s)
- Chi-Pan Hsieh
- Department of Medical Education, Far Eastern Memorial Hospital, No. 21, Nan-Ya S. Rd., Ban-Chiao, New Taipei City 220, Taiwan; Department of Family Medicine, Far Eastern Memorial Hospital, No. 21, Nan-Ya S. Rd., Ban-Chiao, New Taipei City 220, Taiwan; Center for General Education, Chung Yuan Christian University, No. 200, Chung-Pei Rd., Chung-Li District, Taoyuan City 320, Taiwan.
| | - Cheng-Chin Chiang
- Department of Medical Education, Far Eastern Memorial Hospital, No. 21, Nan-Ya S. Rd., Ban-Chiao, New Taipei City 220, Taiwan
| | - Chiung-Wei Huang
- Department of Physiology, National Taiwan University College of Medicine, No.1, Jen-Ai Road, 1st Section, Taipei 100, Taiwan
| |
Collapse
|
38
|
Abstract
The approximately 350 ion channels encoded by the mammalian genome are a main pillar of the nervous system. We have determined the expression pattern of 320 channels in the two-week-old (P14) rat brain by means of non-radioactive robotic in situ hybridization. Optimized methods were developed and implemented to generate stringently coronal brain sections. The use of standardized methods permits a direct comparison of expression patterns across the entire ion channel expression pattern data set and facilitates recognizing ion channel co-expression. All expression data are made publically available at the Genepaint.org database. Inwardly rectifying potassium channels (Kir, encoded by the Kcnj genes) regulate a broad spectrum of physiological processes. Kcnj channel expression patterns generated in the present study were fitted with a deformable subdivision mesh atlas produced for the P14 rat brain. This co-registration, when combined with numerical quantification of expression strengths, allowed for semi-quantitative automated annotation of expression patterns as well as comparisons among and between Kcnj subfamilies. The expression patterns of Kcnj channel were also cross validated against previously published expression patterns of Kcnj channel genes.
Collapse
|
39
|
Thornell IM, Bevensee MO. Regulators of Slc4 bicarbonate transporter activity. Front Physiol 2015; 6:166. [PMID: 26124722 PMCID: PMC4464172 DOI: 10.3389/fphys.2015.00166] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/15/2015] [Indexed: 12/11/2022] Open
Abstract
The Slc4 family of transporters is comprised of anion exchangers (AE1-4), Na+-coupled bicarbonate transporters (NCBTs) including electrogenic Na/bicarbonate cotransporters (NBCe1 and NBCe2), electroneutral Na/bicarbonate cotransporters (NBCn1 and NBCn2), and the electroneutral Na-driven Cl-bicarbonate exchanger (NDCBE), as well as a borate transporter (BTR1). These transporters regulate intracellular pH (pHi) and contribute to steady-state pHi, but are also involved in other physiological processes including CO2 carriage by red blood cells and solute secretion/reabsorption across epithelia. Acid-base transporters function as either acid extruders or acid loaders, with the Slc4 proteins moving HCO−3 either into or out of cells. According to results from both molecular and functional studies, multiple Slc4 proteins and/or associated splice variants with similar expected effects on pHi are often found in the same tissue or cell. Such apparent redundancy is likely to be physiologically important. In addition to regulating pHi, a HCO−3 transporter contributes to a cell's ability to fine tune the intracellular regulation of the cotransported/exchanged ion(s) (e.g., Na+ or Cl−). In addition, functionally similar transporters or splice variants with different regulatory profiles will optimize pH physiology and solute transport under various conditions or within subcellular domains. Such optimization will depend on activated signaling pathways and transporter expression profiles. In this review, we will summarize and discuss both well-known and more recently identified regulators of the Slc4 proteins. Some of these regulators include traditional second messengers, lipids, binding proteins, autoregulatory domains, and less conventional regulators. The material presented will provide insight into the diversity and physiological significance of multiple members within the Slc4 gene family.
Collapse
Affiliation(s)
- Ian M Thornell
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham Birmingham, AL, USA
| | - Mark O Bevensee
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham Birmingham, AL, USA ; Nephrology Research and Training Center, University of Alabama at Birmingham Birmingham, AL, USA ; Center of Glial Biology in Medicine, University of Alabama at Birmingham Birmingham, AL, USA ; Civitan International Research Center, University of Alabama at Birmingham Birmingham, AL, USA
| |
Collapse
|
40
|
Djouhri L, Al Otaibi M, Kahlat K, Smith T, Sathish J, Weng X. Persistent hindlimb inflammation induces changes in activation properties of hyperpolarization-activated current (Ih) in rat C-fiber nociceptors in vivo. Neuroscience 2015; 301:121-33. [PMID: 26047727 DOI: 10.1016/j.neuroscience.2015.05.074] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 05/24/2015] [Accepted: 05/28/2015] [Indexed: 12/31/2022]
Abstract
A hallmark of chronic inflammation is hypersensitivity to noxious and innocuous stimuli. This inflammatory pain hypersensitivity results partly from hyperexcitability of nociceptive dorsal root ganglion (DRG) neurons innervating inflamed tissue, although the underlying ionic mechanisms are not fully understood. However, we have previously shown that the nociceptor hyperexcitability is associated with increased expression of hyperpolarization-activated cyclic nucleotide-gated channel 2 (HCN2) protein and hyperpolarization-activated current (Ih) in C-nociceptors. Here we used in vivo voltage-clamp and current-clamp recordings, in deeply anesthetized rats, to determine whether activation properties of Ih in these C-nociceptors also change following persistent (not acute) hindlimb inflammation induced by complete Freund's adjuvant (CFA). Recordings were made from lumbar (L4/L5) C-nociceptive DRG neurons. Behavioral sensory testing was performed 5-7days after CFA treatment, and all the CFA-treated group showed significant behavioral signs of mechanical and heat hypersensitivity, but not spontaneous pain. Compared with control, C-nociceptors recorded 5-7days after CFA showed: (a) a significant increase in the incidence of spontaneous activity (from ∼5% to 26%) albeit at low rate (0.14±0.08Hz (Mean±SEM); range, 0.01-0.29Hz), (b) a significant increase in the percentage of neurons expressing Ih (from 35%, n=43-84%, n=50) based on the presence of voltage "sag" of >10%, and (c) a significant increase in the conductance (Gh) of the somatic channels conducting Ih along with the corresponding Ih,Ih, activation rate, but not voltage dependence, in C-nociceptors. Given that activation of Ih depolarizes the neuronal membrane toward the threshold of action potential generation, these changes in Ih kinetics in CFA C-nociceptors may contribute to their hyperexcitability and thus to pain hypersensitivity associated with persistent inflammation.
Collapse
Affiliation(s)
- L Djouhri
- Department of Physiology, College of Medicine, King Saud University, P.O. Box 7805, Riyadh 11472, Saudi Arabia
| | - M Al Otaibi
- Department of Physiology, College of Medicine, King Saud University, P.O. Box 7805, Riyadh 11472, Saudi Arabia
| | - K Kahlat
- Department of Physiology, College of Medicine, King Saud University, P.O. Box 7805, Riyadh 11472, Saudi Arabia
| | - T Smith
- Wolfson CARD, Neurorestoration Group, Hodgkin Building, King's College London, Guy's Campus, London Bridge, London SE1 1UL, UK
| | - J Sathish
- Department of Molecular and Clinical Pharmacology;Sherrington Buildings, University of Liverpool, L69 3GE, UK
| | - X Weng
- Department of Neurobiology and State Key Laboratory of Proteomics, Beijing Institute of B Basic Medical Sciences, Beijing 100850, China.
| |
Collapse
|
41
|
Lam D, Schlichter LC. Expression and contributions of the Kir2.1 inward-rectifier K(+) channel to proliferation, migration and chemotaxis of microglia in unstimulated and anti-inflammatory states. Front Cell Neurosci 2015; 9:185. [PMID: 26029054 PMCID: PMC4428136 DOI: 10.3389/fncel.2015.00185] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 04/28/2015] [Indexed: 12/14/2022] Open
Abstract
When microglia respond to CNS damage, they can range from pro-inflammatory (classical, M1) to anti-inflammatory, alternative (M2) and acquired deactivation states. It is important to determine how microglial functions are affected by these activation states, and to identify molecules that regulate their behavior. Microglial proliferation and migration are crucial during development and following damage in the adult, and both functions are Ca2+-dependent. In many cell types, the membrane potential and driving force for Ca2+ influx are regulated by inward-rectifier K+ channels, including Kir2.1, which is prevalent in microglia. However, it is not known whether Kir2.1 expression and contributions are altered in anti-inflammatory states. We tested the hypothesis that Kir2.1 contributes to Ca2+ entry, proliferation and migration of rat microglia. Kir2.1 (KCNJ2) transcript expression, current amplitude, and proliferation were comparable in unstimulated microglia and following alternative activation (IL-4 stimulated) and acquired deactivation (IL-10 stimulated). To examine functional roles of Kir2.1 in microglia, we first determined that ML133 was more effective than the commonly used blocker, Ba2+; i.e., ML133 was potent (IC50 = 3.5 μM) and voltage independent. Both blockers slightly increased proliferation in unstimulated or IL-4 (but not IL-10)-stimulated microglia. Stimulation with IL-4 or IL-10 increased migration and ATP-induced chemotaxis, and blocking Kir2.1 greatly reduced both but ML133 was more effective. In all three activation states, blocking Kir2.1 with ML133 dramatically reduced Ca2+ influx through Ca2+-release-activated Ca2+ (CRAC) channels. Thus, Kir2.1 channel activity is necessary for microglial Ca2+ signaling and migration under resting and anti-inflammatory states but the channel weakly inhibits proliferation.
Collapse
Affiliation(s)
- Doris Lam
- Genetics and Development Division, Toronto Western Research Institute, University Health Network Toronto, ON, Canada ; Department of Physiology, University of Toronto Toronto, ON, Canada
| | - Lyanne C Schlichter
- Genetics and Development Division, Toronto Western Research Institute, University Health Network Toronto, ON, Canada ; Department of Physiology, University of Toronto Toronto, ON, Canada
| |
Collapse
|
42
|
Hoffmann B, Klöcker N, Benndorf K, Biskup C. Visualization of the dynamics of PSD-95 and Kir2.1 interaction by fluorescence lifetime-based resonance energy transfer imaging. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.medpho.2014.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
43
|
Hsieh CP, Kuo CC, Huang CW. Driving force-dependent block by internal Ba(2+) on the Kir2.1 channel: Mechanistic insight into inward rectification. Biophys Chem 2015; 202:40-57. [PMID: 25913355 DOI: 10.1016/j.bpc.2015.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 04/06/2015] [Accepted: 04/06/2015] [Indexed: 02/03/2023]
Abstract
The Kir2.1 channel is characterized by strong inward rectification; however, the mechanism of the steep voltage dependence near the equilibrium potential remains to be investigated. Here, we studied the internal Ba(2+) block of the Kir2.1 channel expressed in Xenopus oocytes. We showed that the driving force and thus the K(+) ion flux significantly influenced the apparent affinity of the block by internal Ba(2+). Kinetic analysis revealed that the binding rate shifted with the driving force and changed steeply near the equilibrium point, either in the presence or absence of the transmembrane electrical field. The unbinding rate was determined by the intrinsic affinity of the site. Mutagenesis studies revealed that the high-affinity binding site for Ba(2+) was located near T141 at the internal entrance of the selectivity filter. The steep change of the blocking affinity near the equilibrium potential may result from the flux-coupling effect in the single-file, multi-ion cytoplasmic pore.
Collapse
Affiliation(s)
- Chi-Pan Hsieh
- Department of Medical Education, Far Eastern Memorial Hospital, No. 21, Nan-Ya S. Rd., Ban-Chiao, New Taipei City 220, Taiwan; Department of Family Medicine, Far Eastern Memorial Hospital, No. 21, Nan-Ya S. Rd., Ban-Chiao, New Taipei City 220, Taiwan.
| | - Chung-Chin Kuo
- Department of Physiology, National Taiwan University College of Medicine, No. 1, Jen-Ai Road, 1st Section, Taipei, 100, Taiwan; Department of Neurology, National Taiwan University Hospital, No. 7, Chung-Shan S. Road, Taipei, Taiwan
| | - Chiung-Wei Huang
- Department of Physiology, National Taiwan University College of Medicine, No. 1, Jen-Ai Road, 1st Section, Taipei, 100, Taiwan
| |
Collapse
|
44
|
Dai AI, Akcali A, Koska S, Oztuzcu S, Cengiz B, Demiryürek AT. Contribution of KCNJ10 gene polymorphisms in childhood epilepsy. J Child Neurol 2015; 30:296-300. [PMID: 25008907 DOI: 10.1177/0883073814539560] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The purpose of this study was to investigate the possible association between childhood epilepsy and KCNJ10 gene polymorphisms (rs61822012 and rs2486253). A total of 200 epileptic cases and 200 healthy controls enrolled to this study. Genomic DNAs from the patients and control cases were analyzed by polymerase chain reaction (PCR) and restriction fragment length polymorphism methods. There were significant associations between the G/T genotype of KCNJ10 gene rs2486253 polymorphism in the idiopathic generalized epilepsy group (P = .037) and in subjects with generalized tonic-clonic seizures (P = .0015). T allele was also increased in patients with generalized tonic-clonic seizures (P = .0158). However, no statistically significant association was found between rs61822012 polymorphism and epilepsy. Our data suggest that G/T genotype of the KCNJ10 gene rs2486253 polymorphism affects risk for development of common types of childhood epilepsy. The T allele of this polymorphism was found to be a seizure-susceptibility allele for tonic-clonic epilepsy.
Collapse
Affiliation(s)
- Alper I Dai
- Faculty of Medicine, Department of Pediatrics, Division of Pediatric Neurology, University of Gaziantep, Gaziantep, Turkey
| | - Aylin Akcali
- Faculty of Medicine, Department of Neurology, University of Gaziantep, Gaziantep, Turkey
| | - Safinur Koska
- Faculty of Medicine, Department of Pediatrics, Division of Pediatric Neurology, University of Gaziantep, Gaziantep, Turkey
| | - Serdar Oztuzcu
- Faculty of Medicine, Department of Medical Biology, University of Gaziantep, Gaziantep, Turkey
| | - Beyhan Cengiz
- Faculty of Medicine, Department of Physiology, University of Gaziantep, Gaziantep, Turkey
| | - Abdullah T Demiryürek
- Faculty of Medicine, Department of Medical Pharmacology, University of Gaziantep, Gaziantep, Turkey
| |
Collapse
|
45
|
Cheng CJ, Sung CC, Huang CL, Lin SH. Inward-rectifying potassium channelopathies: new insights into disorders of sodium and potassium homeostasis. Pediatr Nephrol 2015; 30:373-83. [PMID: 24899236 DOI: 10.1007/s00467-014-2764-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/11/2013] [Accepted: 01/10/2014] [Indexed: 11/30/2022]
Abstract
Inward-rectifying potassium (Kir) channels allow more inward than outward potassium flux when channels are open in mammalian cells. At physiological resting membrane potentials, however, they predominantly mediate outward potassium flux and play important roles in regulating the resting membrane potential in diverse cell types and potassium secretion in the kidneys. Mutations of Kir channels cause human hereditary diseases collectively called Kir channelopathies, many of which are characterized by disorders of sodium and potassium homeostasis. Studies on these genetic Kir channelopathies have shed light on novel pathophysiological mechanisms, including renal sodium and potassium handling, potassium shifting in skeletal muscles, and aldosterone production in the adrenal glands. Here, we review several recent advances in Kir channels and their clinical implications in sodium and potassium homeostasis.
Collapse
Affiliation(s)
- Chih-Jen Cheng
- Department of Medicine, Division of Nephrology, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu 114, Taipei, Taiwan
| | | | | | | |
Collapse
|
46
|
Cervera J, Manzanares JA, Mafe S. Electrical coupling in ensembles of nonexcitable cells: modeling the spatial map of single cell potentials. J Phys Chem B 2015; 119:2968-78. [PMID: 25622192 DOI: 10.1021/jp512900x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We analyze the coupling of model nonexcitable (non-neural) cells assuming that the cell membrane potential is the basic individual property. We obtain this potential on the basis of the inward and outward rectifying voltage-gated channels characteristic of cell membranes. We concentrate on the electrical coupling of a cell ensemble rather than on the biochemical and mechanical characteristics of the individual cells, obtain the map of single cell potentials using simple assumptions, and suggest procedures to collectively modify this spatial map. The response of the cell ensemble to an external perturbation and the consequences of cell isolation, heterogeneity, and ensemble size are also analyzed. The results suggest that simple coupling mechanisms can be significant for the biophysical chemistry of model biomolecular ensembles. In particular, the spatiotemporal map of single cell potentials should be relevant for the uptake and distribution of charged nanoparticles over model cell ensembles and the collective properties of droplet networks incorporating protein ion channels inserted in lipid bilayers.
Collapse
Affiliation(s)
- Javier Cervera
- Departament de Termodinàmica, Universitat de València , E-46100 Burjassot, Spain
| | | | | |
Collapse
|
47
|
Cervera J, Alcaraz A, Mafe S. Membrane potential bistability in nonexcitable cells as described by inward and outward voltage-gated ion channels. J Phys Chem B 2014; 118:12444-50. [PMID: 25286866 DOI: 10.1021/jp508304h] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The membrane potential of nonexcitable cells, defined as the electrical potential difference between the cell cytoplasm and the extracellular environment when the current is zero, is controlled by the individual electrical conductance of different ion channels. In particular, inward- and outward-rectifying voltage-gated channels are crucial for cell hyperpolarization/depolarization processes, being amenable to direct physical study. High (in absolute value) negative membrane potentials are characteristic of terminally differentiated cells, while low membrane potentials are found in relatively depolarized, more plastic cells (e.g., stem, embryonic, and cancer cells). We study theoretically the hyperpolarized and depolarized values of the membrane potential, as well as the possibility to obtain a bistability behavior, using simplified models for the ion channels that regulate this potential. The bistability regions, which are defined in the multidimensional state space determining the cell state, can be relevant for the understanding of the different model cell states and the transitions between them, which are triggered by changes in the external environment.
Collapse
Affiliation(s)
- Javier Cervera
- Departament de Termodinàmica, Universitat de València , E-46100 Burjassot, Spain
| | | | | |
Collapse
|
48
|
Huang CW, Kuo CC. Gating of the kir2.1 channel at the bundle crossing region by intracellular spermine and other cations. J Cell Physiol 2014; 229:1703-21. [PMID: 24633623 DOI: 10.1002/jcp.24616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 03/12/2014] [Indexed: 11/06/2022]
Abstract
In the Kir2.1 channel, the flow-dependent blocking effect of intracellular spermine (SPM) strongly indicates coupled movement of ions in a segment of the pore. We have shown that the bundle crossing region of M2 constitutes this critical segment of the pore. Moreover, this segment may undergo opening/closing conformational changes mimicking channel gating. In this study, we further investigate these "gating" conformational changes and relevant controlling mechanisms at this critical segment. We demonstrate that A184R mutation in the inner end of the bundle crossing region not only abolishes the inward rectifying features of SPM block but also tends to close the channel pore, which can then only be opened by intracellular (e.g., Na(+) , or equally effectively, K(+) ) but not extracellular cations. We also found that the exit (back to the intracellular milieu) of the blocking in the deep site is facilitated rather than deterred by the presence of the other SPM in the superficial site. We conclude that intracellular SPM may bind to a deep site in the pore and serve as a flow-dependent blocker. The SPM in the superficial site, on the other hand, serves both as a docking form ready for permeation to the deep site, and as a gating particle capable of opening the bundle crossing region. This inner end of the bundle crossing region of the Kir2.1 channel pore thus constitutes a pivotal segment, which, in collaboration with intracellular SPM and K(+) ions, closely couple channel gating to (inward rectifying) ion permeation.
Collapse
Affiliation(s)
- Chiung-Wei Huang
- Department of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | | |
Collapse
|
49
|
Baronas VA, Kurata HT. Inward rectifiers and their regulation by endogenous polyamines. Front Physiol 2014; 5:325. [PMID: 25221519 PMCID: PMC4145359 DOI: 10.3389/fphys.2014.00325] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 08/06/2014] [Indexed: 12/02/2022] Open
Abstract
Inwardly-rectifying potassium (Kir) channels contribute to maintenance of the resting membrane potential and regulation of electrical excitation in many cell types. Strongly rectifying Kir channels exhibit a very steep voltage dependence resulting in silencing of their activity at depolarized membrane voltages. The mechanism underlying this steep voltage dependence is blockade by endogenous polyamines. These small multifunctional, polyvalent metabolites enter the long Kir channel pore from the intracellular side, displacing multiple occupant ions as they migrate to a stable binding site in the transmembrane region of the channel. Numerous structure-function studies have revealed structural elements of Kir channels that determine their susceptibility to polyamine block, and enable the steep voltage dependence of this process. In addition, various channelopathies have been described that result from alteration of the polyamine sensitivity or activity of strongly rectifying channels. The primary focus of this article is to summarize current knowledge of the molecular mechanisms of polyamine block, and provide some perspective on lingering uncertainties related to this physiologically important mechanism of ion channel blockade. We also briefly review some of the important and well understood physiological roles of polyamine sensitive, strongly rectifying Kir channels, primarily of the Kir2 family.
Collapse
Affiliation(s)
- Victoria A Baronas
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia Vancouver, BC, Canada
| | - Harley T Kurata
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia Vancouver, BC, Canada
| |
Collapse
|
50
|
Zhang J, Martinoia E, De Angeli A. Cytosolic nucleotides block and regulate the Arabidopsis vacuolar anion channel AtALMT9. J Biol Chem 2014; 289:25581-9. [PMID: 25028514 DOI: 10.1074/jbc.m114.576108] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The aluminum-activated malate transporters (ALMTs) form a membrane protein family exhibiting different physiological roles in plants, varying from conferring tolerance to environmental Al(3+) to the regulation of stomatal movement. The regulation of the anion channels of the ALMT family is largely unknown. Identifying intracellular modulators of the activity of anion channels is fundamental to understanding their physiological functions. In this study we investigated the role of cytosolic nucleotides in regulating the activity of the vacuolar anion channel AtALMT9. We found that cytosolic nucleotides modulate the transport activity of AtALMT9. This modulation was based on a direct block of the pore of the channel at negative membrane potentials (open channel block) by the nucleotide and not by a phosphorylation mechanism. The block by nucleotides of AtALMT9-mediated currents was voltage dependent. The blocking efficiency of intracellular nucleotides increased with the number of phosphate groups and ATP was the most effective cellular blocker. Interestingly, the ATP block induced a marked modification of the current-voltage characteristic of AtALMT9. In addition, increased concentrations of vacuolar anions were able to shift the ATP block threshold to a more negative membrane potential. The block of AtALMT9-mediated anion currents by ATP at negative membrane potentials acts as a gate of the channel and vacuolar anion tune this gating mechanism. Our results suggest that anion transport across the vacuolar membrane in plant cells is controlled by cytosolic nucleotides and the energetic status of the cell.
Collapse
Affiliation(s)
- Jingbo Zhang
- From the Institute of Plant Biology, University of Zurich, CH-8008 Zurich, Switzerland and
| | - Enrico Martinoia
- From the Institute of Plant Biology, University of Zurich, CH-8008 Zurich, Switzerland and
| | - Alexis De Angeli
- From the Institute of Plant Biology, University of Zurich, CH-8008 Zurich, Switzerland and the Institut des Sciences du Végétal, CNRS, 91198 Gif-sur-Yvette, France
| |
Collapse
|