1
|
Charpinel AMM, Féres JC, Barreto FCC. Effects of fine particulate matter air pollution on survival of Heliconius ethilla (Godart, 1819). Sci Rep 2024; 14:29710. [PMID: 39613782 DOI: 10.1038/s41598-024-78347-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 10/30/2024] [Indexed: 12/01/2024] Open
Abstract
Human activities affect natural ecosystems worldwide and can generate negative effects on insect species such as growth inhibition, developmental abnormalities and reduction of reproductive and survival rates. Our study focused on fine particulate matter, a pollutant known to cause mechanical obstruction, heavy metal intoxication, and stress in Lepidoptera larvae. Heliconius ethilla (Lepidoptera: Nymphalidae) is a Heliconiinae found in the southeastern region of Brazil. We started our study with 3255 eggs, from which 69 stage 3 larvae were randomly separated as the treatment group. The larvae were fed with Passiflora edulis leaves and the SPM was added before being offered to the treatment group in an increasing concentration according to the age of the larvae and the leaf, simulating the gradual deposition of SPM in the environment. Our results demonstrate that Sedimentable Particulate Matter negatively impacted mortality rates, pupal weight, and body size. The results strongly indicate that the presence of SPM negatively impacts the survival, development and potentially the reproductive success of H. ethilla. A reduction in the population size and a consequent decrease in the chances of long-term survival of the species can be expected.
Collapse
Affiliation(s)
- A M M Charpinel
- Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, ES, Brazil.
| | - J C Féres
- Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - F C C Barreto
- Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| |
Collapse
|
2
|
Ramakrishnan DK, Jauernegger F, Hoefle D, Berg C, Berg G, Abdelfattah A. Unravelling the microbiome of wild flowering plants: a comparative study of leaves and flowers in alpine ecosystems. BMC Microbiol 2024; 24:417. [PMID: 39425049 PMCID: PMC11490174 DOI: 10.1186/s12866-024-03574-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND While substantial research has explored rhizosphere and phyllosphere microbiomes, knowledge on flower microbiome, particularly in wild plants remains limited. This study explores into the diversity, abundance, and composition of bacterial and fungal communities on leaves and flowers of wild flowering plants in their natural alpine habitat, considering the influence of environmental factors. METHODS We investigated 50 wild flowering plants representing 22 families across seven locations in Austria. Sampling sites encompassed varied soil types (carbonate/silicate) and altitudes (450-2760 m). Amplicon sequencing to characterize bacterial and fungal communities and quantitative PCR to assess microbial abundance was applied, and the influence of biotic and abiotic factors assessed. RESULTS Our study revealed distinct bacterial and fungal communities on leaves and flowers, with higher diversity and richness on leaves (228 fungal and 91 bacterial ASVs) than on flowers (163 fungal and 55 bacterial ASVs). In addition, Gammaproteobacteria on flowers and Alphaproteobacteria on leaves suggests niche specialization for plant compartments. Location significantly shaped both community composition and fungal diversity on both plant parts. Notably, soil type influenced community composition but not diversity. Altitude was associated with increased fungal species diversity on leaves and flowers. Furthermore, significant effects of plant family identity emerged within a subset of seven families, impacting bacterial and fungal abundance, fungal Shannon diversity, and bacterial species richness, particularly on flowers. CONCLUSION This study provides novel insights into the specific microbiome of wild flowering plants, highlighting adaptations to local environments and plant-microbe coevolution. The observed specificity indicates a potential role in plant health and resilience, which is crucial for predicting how microbiomes respond to changing environments, ultimately aiding in the conservation of natural ecosystems facing climate change pressures.
Collapse
Affiliation(s)
- Dinesh Kumar Ramakrishnan
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth Allee 100, 14469, Potsdam, Germany
- Institute for Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Franziska Jauernegger
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria
| | - Daniel Hoefle
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth Allee 100, 14469, Potsdam, Germany
- Institute for Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Christian Berg
- Institute of Biology, Department of Plant Sciences, NAWI Graz, University of Graz, 8010, Graz, Austria
| | - Gabriele Berg
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth Allee 100, 14469, Potsdam, Germany
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria
- Institute for Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Ahmed Abdelfattah
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth Allee 100, 14469, Potsdam, Germany.
| |
Collapse
|
3
|
Kończak B, Wiesner-Sękala M, Ziembińska-Buczyńska A. The European trees phyllosphere characteristics and its potential in air bioremediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123977. [PMID: 38621454 DOI: 10.1016/j.envpol.2024.123977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/08/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
The air pollution remediation is naturally carried out by plants. Their overground parts called phyllosphere are a type of a natural filter on which pollutants can be adsorb. Moreover, microbial communities living in phyllosphere perform a variety of biochemical processes removing also chemical pollutants. As their pollution is nowadays a burning issue especially for highly developed countries, the development of effective and ecological technologies for air treatment are of the utmost importance. The use of phyllosphere bacteria in the process of air bioremediation is a promising technology. This article reviews the role of phyllospheric bacteria in air bioremediation processes especially linked with the moderate climate plants. Research results published so far indicate that phyllosphere bacteria are able to metabolize the air pollutants but their potential is strictly determined by plant-phyllospheric bacteria interaction. The European tree species most commonly used for this purpose are also presented. The collected information filled the gap in the practical use of tree species in air bioremediation in the moderate climate zone.
Collapse
Affiliation(s)
- B Kończak
- Department of Water Protection, Central Mining Institute - National Research Institute, Plac Gwarków 1, 40-166, Katowice, Poland.
| | - M Wiesner-Sękala
- Department of Water Protection, Central Mining Institute - National Research Institute, Plac Gwarków 1, 40-166, Katowice, Poland.
| | - A Ziembińska-Buczyńska
- Department of Environmental Biotechnology, Faculty of Power and Environmental Engineering, Silesian University of Technology, str. Akademicka 2, 44-100, Gliwice, Poland.
| |
Collapse
|
4
|
Dong M, Holle MJ, Miller MJ, Banerjee P, Feng H. Fates of attached E. coli o157:h7 on intact leaf surfaces revealed leafy green susceptibility. Food Microbiol 2024; 119:104432. [PMID: 38225040 DOI: 10.1016/j.fm.2023.104432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/08/2023] [Accepted: 11/22/2023] [Indexed: 01/17/2024]
Abstract
Leafy greens, especially lettuce, are repeatedly linked to foodborne outbreaks. This paper studied the susceptibility of different leafy greens to human pathogens. Five commonly consumed leafy greens, including romaine lettuce, green-leaf lettuce, baby spinach, kale, and collard, were selected by their outbreak frequencies. The behavior of E. coli O157:H7 87-23 on intact leaf surfaces and in their lysates was investigated. Bacterial attachment was positively correlated with leaf surface roughness and affected by the epicuticular wax composition. At room temperature, E. coli O157:H7 had the best growth potentials on romaine and green-leaf lettuce surfaces. The bacterial growth was positively correlated with stomata size and affected by epicuticular wax compositions. At 37 °C, E. coli O157:H7 87-23 was largely inhibited by spinach and collard lysates, and it became undetectable in kale lysate after 24 h of incubation. Kale and collard lysates also delayed or partially inhibited the bacterial growth in TSB and lettuce lysate at 37 °C, and they sharply reduced the E. coli O157:H7 population on green leaf lettuce at 4 °C. In summary, the susceptibility of leafy greens to E. coli O157:H7 is determined by a produce-specific combination of physiochemical properties and temperature.
Collapse
Affiliation(s)
- Mengyi Dong
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
| | - Maxwell J Holle
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
| | - Michael J Miller
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
| | - Pratik Banerjee
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
| | - Hao Feng
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States.
| |
Collapse
|
5
|
Sun Z, Zhang W, Liu Y, Ding C, Zhu W. The Changes of Phyllosphere Fungal Communities among Three Different Populus spp. Microorganisms 2023; 11:2479. [PMID: 37894137 PMCID: PMC10609125 DOI: 10.3390/microorganisms11102479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
As an ecological index for plants, the diversity and structure of phyllosphere microbial communities play a crucial role in maintaining ecosystem stability and balance; they can affect plant biogeography and ecosystem function by influencing host fitness and function. The phyllosphere microbial communities reflect the immigration, survival, and growth of microbial colonists, which are influenced by various environmental factors and leaves' physical and chemical properties. This study investigated the structure and diversity of phyllosphere fungal communities in three different Populus spp., namely-P. × euramaricana (BF3), P. nigra (N46), and P. alba × P. glandulosa (84K). Leaves' chemical properties were also analyzed to identify the dominant factors affecting the phyllosphere fungal communities. N46 exhibited the highest contents of total nitrogen (Nt), total phosphorus (Pt), soluble sugar, and starch. Additionally, there were significant variations in the abundance, diversity, and composition of phyllosphere fungal communities among the three species: N46 had the highest Chao1 index and observed_species, while 84K had the highest Pielou_e index and Simpson index. Ascomycota and Basidiomycota are the dominant fungal communities at the phylum level. Results from typical correlation analyses indicate that the chemical properties of leaves, especially total phosphorus (Pt), total nitrogen (Nt), and starch content, significantly impact the structure and diversity of the phyllosphere microbial community. However, it is worth noting that even under the same stand conditions, plants from different species have distinct leaf characteristics, proving that the identity of the host species is the critical factor affecting the structure of the phyllosphere fungal community.
Collapse
Affiliation(s)
- Zhuo Sun
- College of Forestry, Shenyang Agriculture University, Shenyang 110000, China; (Z.S.); (Y.L.)
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100083, China;
| | - Weixi Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100083, China;
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100083, China
| | - Yuting Liu
- College of Forestry, Shenyang Agriculture University, Shenyang 110000, China; (Z.S.); (Y.L.)
- Research Station of Liaohe-River Plain Forest Ecosystem, Chinese Forest Ecosystem Research Network (CFERN), Shenyang Agricultural University, Tieling 110161, China
| | - Changjun Ding
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100083, China;
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100083, China
| | - Wenxu Zhu
- College of Forestry, Shenyang Agriculture University, Shenyang 110000, China; (Z.S.); (Y.L.)
- Research Station of Liaohe-River Plain Forest Ecosystem, Chinese Forest Ecosystem Research Network (CFERN), Shenyang Agricultural University, Tieling 110161, China
| |
Collapse
|
6
|
Šigutová H, Šigut M, Pyszko P, Kostovčík M, Kolařík M, Drozd P. Seasonal Shifts in Bacterial and Fungal Microbiomes of Leaves and Associated Leaf-Mining Larvae Reveal Persistence of Core Taxa Regardless of Diet. Microbiol Spectr 2023; 11:e0316022. [PMID: 36629441 PMCID: PMC9927363 DOI: 10.1128/spectrum.03160-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Microorganisms are key mediators of interactions between insect herbivores and their host plants. Despite a substantial interest in studying various aspects of these interactions, temporal variations in microbiomes of woody plants and their consumers remain understudied. In this study, we investigated shifts in the microbiomes of leaf-mining larvae (Insecta: Lepidoptera) and their host trees over one growing season in a deciduous temperate forest. We used 16S and ITS2 rRNA gene metabarcoding to profile the bacterial and fungal microbiomes of leaves and larvae. We found pronounced shifts in the leaf and larval microbiota composition and richness as the season progressed, and bacteria and fungi showed consistent patterns. The quantitative similarity between leaf and larval microbiota was very low for bacteria (~9%) and decreased throughout the season, whereas fungal similarity increased and was relatively high (~27%). In both leaves and larvae, seasonality, along with host taxonomy, was the most important factor shaping microbial communities. We identified frequently occurring microbial taxa with significant seasonal trends, including those more prevalent in larvae (Streptococcus, Candida sake, Debaryomyces prosopidis, and Neoascochyta europaea), more prevalent in leaves (Erwinia, Seimatosporium quercinum, Curvibasidium cygneicollum, Curtobacterium, Ceramothyrium carniolicum, and Mycosphaerelloides madeirae), and frequent in both leaves and larvae (bacterial strain P3OB-42, Methylobacterium/Methylorubrum, Bacillus, Acinetobacter, Cutibacterium, and Botrytis cinerea). Our results highlight the importance of considering seasonality when studying the interactions between plants, herbivorous insects, and their respective microbiomes, and illustrate a range of microbial taxa persistent in larvae, regardless of their occurrence in the diet. IMPORTANCE Leaf miners are endophagous insect herbivores that feed on plant tissues and develop and live enclosed between the epidermis layers of a single leaf for their entire life cycle. Such close association is a precondition for the evolution of more intimate host-microbe relationships than those found in free-feeding herbivores. Simultaneous comparison of bacterial and fungal microbiomes of leaves and their tightly linked consumers over time represents an interesting study system that could fundamentally contribute to the ongoing debate on the microbial residence of insect gut. Furthermore, leaf miners are ideal model organisms for interpreting the ecological and evolutionary roles of microbiota in host plant specialization. In this study, the larvae harbored specific microbial communities consisting of core microbiome members. Observed patterns suggest that microbes, especially bacteria, may play more important roles in the caterpillar holobiont than generally presumed.
Collapse
Affiliation(s)
- Hana Šigutová
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Martin Šigut
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Petr Pyszko
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Martin Kostovčík
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Miroslav Kolařík
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Pavel Drozd
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
7
|
Do TT, Smyth C, Crispie F, Burgess C, Brennan F, Walsh F. Comparison of soil and grass microbiomes and resistomes reveals grass as a greater antimicrobial resistance reservoir than soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159179. [PMID: 36191722 DOI: 10.1016/j.scitotenv.2022.159179] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/09/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Grasslands cover a large proportion of global agricultural landmass used to feed herbivores and ruminants and link the environment to the food chain via animals onto humans. However, most scientific studies of antimicrobial resistance and microbiomes at the environmental - animal nexus have focused on soil or vegetables rather than grasslands. Based on previous microbiome phyllosphere-soil studies we hypothesised that the microbiome and resistomes across soil and grass would have a core of shared taxa and antimicrobial resistance genes (ARGs), but that in addition each would also have a minority of unique signatures. Our data indicated grass contained a wider variety and higher relative abundance of ARGs and mobile genetic elements (MGEs) than soil with or without slurry amendments. The microbiomes of soil and grass were similar in content but varied in the composition proportionality. While there were commonalities across many of the ARGs present in soil and on grass their correlations with MGEs and bacteria differed, suggesting a source other than soil is also relevant for the resistome of grass. The variations in the relative abundances of ARGs in soil and on grass also indicated that either the MGEs or the bacteria carrying the ARGs comprised a higher relative abundance on grass than in soil. We conclude that while soil may be a source of some of these genes it cannot be the source for all ARGs and MGEs. Our data identifies grass as a more diverse and abundant reservoir of ARGs and MGEs in the environment than soil, which is significant to human and animal health when viewed in the context of grazing food animals.
Collapse
Affiliation(s)
- Thi Thuy Do
- Department of Biology, Maynooth University, Maynooth, Co. Kildare W23 F2H6, Ireland
| | - Cian Smyth
- Department of Biology, Maynooth University, Maynooth, Co. Kildare W23 F2H6, Ireland
| | - Fiona Crispie
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61 C996, Ireland
| | | | - Fiona Brennan
- Teagasc, Crops, Environment and Land-Use Programme, Johnstown Castle, Co. Wexford Y35 Y521, Ireland
| | - Fiona Walsh
- Department of Biology, Maynooth University, Maynooth, Co. Kildare W23 F2H6, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
8
|
Jarrige D, Haridas S, Bleykasten-Grosshans C, Joly M, Nadalig T, Sancelme M, Vuilleumier S, Grigoriev IV, Amato P, Bringel F. High-quality genome of the basidiomycete yeast Dioszegia hungarica PDD-24b-2 isolated from cloud water. G3 (BETHESDA, MD.) 2022; 12:jkac282. [PMID: 36259934 PMCID: PMC9713403 DOI: 10.1093/g3journal/jkac282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/06/2022] [Indexed: 04/26/2024]
Abstract
The genome of the basidiomycete yeast Dioszegia hungarica strain PDD-24b-2 isolated from cloud water at the summit of puy de Dôme (France) was sequenced using a hybrid PacBio and Illumina sequencing strategy. The obtained assembled genome of 20.98 Mb and a GC content of 57% is structured in 16 large-scale contigs ranging from 90 kb to 5.56 Mb, and another 27.2 kb contig representing the complete circular mitochondrial genome. In total, 8,234 proteins were predicted from the genome sequence. The mitochondrial genome shows 16.2% cgu codon usage for arginine but has no canonical cognate tRNA to translate this codon. Detected transposable element (TE)-related sequences account for about 0.63% of the assembled genome. A dataset of 2,068 hand-picked public environmental metagenomes, representing over 20 Tbp of raw reads, was probed for D. hungarica related ITS sequences, and revealed worldwide distribution of this species, particularly in aerial habitats. Growth experiments suggested a psychrophilic phenotype and the ability to disperse by producing ballistospores. The high-quality assembled genome obtained for this D. hungarica strain will help investigate the behavior and ecological functions of this species in the environment.
Collapse
Affiliation(s)
- Domitille Jarrige
- Génétique Moléculaire, Génomique, Microbiologie (GMGM), Université de Strasbourg, UMR 7156 CNRS, Strasbourg, France
| | - Sajeet Haridas
- Lawrence Berkeley National Laboratory, U.S. Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA
| | | | - Muriel Joly
- Université Clermont Auvergne, Clermont Auvergne Institut National Polytechnique (INP), Centre National de la Recherche Scientifique (CNRS), Institut de Chimie de Clermont-Ferrand (ICCF), 63000 Clermont-Ferrand, France
| | - Thierry Nadalig
- Génétique Moléculaire, Génomique, Microbiologie (GMGM), Université de Strasbourg, UMR 7156 CNRS, Strasbourg, France
| | - Martine Sancelme
- Université Clermont Auvergne, Clermont Auvergne Institut National Polytechnique (INP), Centre National de la Recherche Scientifique (CNRS), Institut de Chimie de Clermont-Ferrand (ICCF), 63000 Clermont-Ferrand, France
| | - Stéphane Vuilleumier
- Génétique Moléculaire, Génomique, Microbiologie (GMGM), Université de Strasbourg, UMR 7156 CNRS, Strasbourg, France
| | - Igor V Grigoriev
- Lawrence Berkeley National Laboratory, U.S. Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Pierre Amato
- Université Clermont Auvergne, Clermont Auvergne Institut National Polytechnique (INP), Centre National de la Recherche Scientifique (CNRS), Institut de Chimie de Clermont-Ferrand (ICCF), 63000 Clermont-Ferrand, France
| | - Françoise Bringel
- Génétique Moléculaire, Génomique, Microbiologie (GMGM), Université de Strasbourg, UMR 7156 CNRS, Strasbourg, France
| |
Collapse
|
9
|
Félix CR, Nascimento BEDS, Valente P, Landell MF. Different plant compartments, different yeasts: the example of the bromeliad phyllosphere. Yeast 2022; 39:363-400. [PMID: 35715939 DOI: 10.1002/yea.3804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/14/2022] [Accepted: 06/14/2022] [Indexed: 11/09/2022] Open
Abstract
The plant phyllosphere is one of the largest sources of microorganisms, including yeasts. In bromeliads, the knowledge of yeasts is dispersed and still incipient. To understand the extent of our knowledge on the subject, this review proposes to compile and synthesize existing knowledge, elucidating possible patterns, biotechnological and taxonomic potentials, bringing to light new knowledge, and identifying information gaps. For such, we systematically review scientific production on yeasts in bromeliads using various databases. The results indicated that the plant compartments flowers, fruits, leaves, and water tank (phytotelma) have been studied when focusing on the yeast community in the bromeliad phyllosphere. More than 180 species of yeasts and yeast-like fungi were recorded from the phyllosphere, 70% were exclusively found in one of these four compartments and only 2% were shared among all. In addition, most of the community had a low frequency of occurrence, and approximately half of the species had a single record. Variables such as bromeliad subfamilies and functional types, as well as plant compartments, were statistically significant, though inconclusive and with low explanatory power. At least 50 yeast species with some biotechnological potentials have been isolated from bromeliads. More than 90% of these species were able to produce extracellular enzymes. In addition, other biotechnological applications have also been recorded. Moreover, new species have been described, though yeasts were only exploited in approximately 1% of the existing bromeliads species, which highlights that there is still much to be explored. Nevertheless, it appears that we are still far from recovering the completeness of the diversity of yeasts in this host. Furthermore, bromeliads proved to be a good ecological model for prospecting new yeasts and for studies on the interaction between plants and yeasts. In addition, the yeast community diverged among plant compartments, establishing bromeliads as a microbiologically complex and heterogeneous mosaic. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ciro Ramon Félix
- Universidade Federal de Alagoas, Instituto de Ciências Biológicas e da Saúde, Maceió, AL, Brazil.,Programa de Pós-graduação em Diversidade Biológica e Conservação nos Trópicos, Universidade Federal de Alagoas, Maceió, AL, Brazil
| | | | - Patrícia Valente
- Universidade Federal do Rio Grande do Sul, Departamento de Microbiologia, Imunologia e Parasitologia, Porto Alegre, RS, Brazil
| | - Melissa Fontes Landell
- Universidade Federal de Alagoas, Instituto de Ciências Biológicas e da Saúde, Maceió, AL, Brazil
| |
Collapse
|
10
|
Fessia A, Barra P, Barros G, Nesci A. Could Bacillus biofilms enhance the effectivity of biocontrol strategies in the phyllosphere? J Appl Microbiol 2022; 133:2148-2166. [PMID: 35476896 DOI: 10.1111/jam.15596] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/13/2022] [Accepted: 04/21/2022] [Indexed: 11/30/2022]
Abstract
Maize (Zea mays L.), a major crop in Argentina and a staple food around the world, is affected by the emergence and re-emergence of foliar diseases. Agrochemicals are the main control strategy nowadays, but they can cause resistance in insects and microbial pathogens and have negative effects on the environment and human health. An emerging alternative is the use of living organisms, i.e. microbial biocontrol agents, to suppress plant pathogen populations. This is a risk-free approach when the organisms acting as biocontrol agents come from the same ecosystem as the foliar pathogens they are meant to antagonize. Some epiphytic microorganisms may form biofilm by becoming aggregated and attached to a surface, as is the case of spore-forming bacteria from the genus Bacillus. Their ability to sporulate and their tolerance to long storage periods make them a frequently used biocontrol agent. Moreover, the biofilm that they create protects them against different abiotic and biotic factors and helps them to acquire nutrients, which ensures their survival on the plants they protect. This review analyzes the interactions that the phyllosphere-inhabiting Bacillus genus establishes with its environment through biofilm, and how this lifestyle could serve to design effective biological control strategies.
Collapse
Affiliation(s)
- Aluminé Fessia
- Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ruta Nacional 36, Km 601, X5804ZAB Río Cuarto, Córdoba, Argentina
| | - Paula Barra
- Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ruta Nacional 36, Km 601, X5804ZAB Río Cuarto, Córdoba, Argentina
| | - Germán Barros
- Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ruta Nacional 36, Km 601, X5804ZAB Río Cuarto, Córdoba, Argentina
| | - Andrea Nesci
- Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ruta Nacional 36, Km 601, X5804ZAB Río Cuarto, Córdoba, Argentina
| |
Collapse
|
11
|
Ding C, Zhang W, Wang Y, Ding M, Wang X, Li A, Liang D, Su X. Study on the differences of phyllosphere microorganisms between poplar hybrid offspring and their parents. PeerJ 2022; 10:e12915. [PMID: 35310169 PMCID: PMC8932310 DOI: 10.7717/peerj.12915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 01/20/2022] [Indexed: 01/11/2023] Open
Abstract
The females and males of dioecious plants have evolved sex-specific characteristics in terms of their morphological and physiological properties. However, the differentiation of phyllosphere microorganism of dioecious plants between parents and hybrid offspring remain largely unexplored. Here, the phyllosphere bacterial and fungal community diversity and composition of female (Populus nigra 'DH5' (PNDH5)), male (P. simonii 'DH4' (PSDH4)), and the hybrid offspring (P. simonii × P. nigra 'DH1' (PSPNDH1), P. simonii × P. nigra 'DH2' (PSPNDH2), P. simonii × P. nigra 'DH3' (PSPNDH3)) were investigated using 16S rDNA/ITS rDNA gene-based Illumina NovaSeq 6000 sequencing. There was considerable variation of plant height, diameter at breast height, leaf area, length of petioles, leaf moisture content, and starch among different samples, and PSDH2 owned the highest plant height, diameter at breast height, and length of petioles. No distinct differences of phyllosphere bacterial community diversity were observed among PSDH4, PNDH5, PSPNDH1, PSPNDH2, and PSPNDH3; while, PSPNDH2 owned the highest fungal Pielou_e index, Shannon index, and Simpson index. Firmicutes and Ascomycota were the predominant phyllosphere bacterial and fungal community at the phylum level, respectively. Bacilli and Gammaproteobacteria were the two most dominant bacterial classes regardless of parent and the hybrid offspring. The predominant phyllosphere fungal community was Dothideomycetes at the class level. The NMDS demonstrated that phyllosphere microbial community obviously differed between parents and offspring, while the phyllosphere microbial community presented some similarities under different hybrid progeny. Also, leaf characteristics contributed to the differentiation of phyllosphere bacterial and fungal communities between parents and hybrid offspring. These results highlighted the discrimination of phyllosphere microorganisms on parent and hybrid offspring, which provided clues to potential host-related species in the phyllosphere environment.
Collapse
Affiliation(s)
- Changjun Ding
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China,Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Weixi Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China,Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yanbo Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China,Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Mi Ding
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China,Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Xiaojiang Wang
- Inner Mongolia Academy of Forestry Sciences, Hohhot, Inner Mongolia, China
| | - Aiping Li
- Inner Mongolia Academy of Forestry Sciences, Hohhot, Inner Mongolia, China
| | - Dejun Liang
- Liaoning Provincial Poplar Institute, Gaizhou, Liaoning, China
| | - Xiaohua Su
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China,Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
12
|
Unlocking the Changes of Phyllosphere Fungal Communities of Fishscale Bamboo (Phyllachora heterocladae) under Rhombic-Spot Disease Stressed Conditions. FORESTS 2022. [DOI: 10.3390/f13020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As an important nonwood bioresource, fishscale bamboo (Phyllachora heterocladae Oliver) is widely distributed in the subtropical region of China. Rhombic-spot disease, caused by Neostagonosporella sichuanensis, is one of the most serious diseases that threatens fishscale bamboo health. However, there is limited knowledge about how rhombic-spot disease influences the diversity and structures of phyllosphere fungal communities. In this study, we investigated the phyllosphere fungal communities from stems, branches, and leaves of fishscale bamboo during a rhombic-spot disease outbreak using 18S rRNA sequencing. We found that only the phyllosphere fungal community from stems was significantly affected by pathogen invasion in terms of community richness, diversity, and structure. FUNGuild analysis revealed that the major classifications of phyllosphere fungi based on trophic modes in stems, branches, and leaves changed from symbiotroph-pathotroph, no obvious dominant trophic mode, and symbiotroph to saprotroph, saprotroph–pathotroph–symbiotroph, and saprotroph–symbiotroph, respectively, after pathogen invasion. The fungal community composition of the three tissues displayed significant differences at the genus level between healthy and diseased plants. The associations among fungal species in diseased samples showed more complex co-occurrence network structures than those of healthy samples. Taken together, our results highlight the importance of plant pathological conditions for the assembly of phyllosphere fungal communities in different tissues.
Collapse
|
13
|
Wang P, Dai J, Luo L, Liu Y, Jin D, Zhang Z, Li X, Fu W, Tang T, Xiao Y, Hu Y, Liu E. Scale-Dependent Effects of Growth Stage and Elevational Gradient on Rice Phyllosphere Bacterial and Fungal Microbial Patterns in the Terrace Field. FRONTIERS IN PLANT SCIENCE 2022; 12:766128. [PMID: 35095946 PMCID: PMC8794795 DOI: 10.3389/fpls.2021.766128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
The variation of phyllosphere bacterial and fungal communities along elevation gradients may provide a potential link with temperature, which corresponds to an elevation over short geographic distances. At the same time, the plant growth stage is also an important factor affecting phyllosphere microorganisms. Understanding microbiological diversity over changes in elevation and among plant growth stages is important for developing crop growth ecological theories. Thus, we investigated variations in the composition of the rice phyllosphere bacterial and fungal communities at five sites along an elevation gradient from 580 to 980 m above sea level (asl) in the Ziquejie Mountain at the seedling, heading, and mature stages, using high-throughput Illumina sequencing methods. The results revealed that the dominant bacterial phyla were Proteobacteria, Actinobacteria, and Bacteroidetes, and the dominant fungal phyla were Ascomycota and Basidiomycota, which varied significantly at different elevation sites and growth stages. Elevation had a greater effect on the α diversity of phyllosphere bacteria than on that phyllosphere fungi. Meanwhile, the growth stage had a great effect on the α diversity of both phyllosphere bacteria and fungi. Our results also showed that the composition of bacterial and fungal communities varied significantly along elevation within the different growth stages, in terms of both changes in the relative abundance of species, and that the variations in bacterial and fungal composition were well correlated with variations in the average elevation. A total of 18 bacterial and 24 fungal genera were significantly correlated with elevational gradient, displaying large differences at the various growth stages. Soluble protein (SP) shared a strong positive correlation with bacterial and fungal communities (p < 0.05) and had a strong significant negative correlation with Serratia, Passalora, unclassified_Trichosphaeriales, and antioxidant enzymes (R > 0.5, p < 0.05), and significant positive correlation with the fungal genera Xylaria, Gibberella, and Penicillium (R > 0.5, p < 0.05). Therefore, it suggests that elevation and growth stage might alter both the diversity and abundance of phyllosphere bacterial and fungal populations.
Collapse
Affiliation(s)
- Pei Wang
- State Key Laboratory of Hybrid Rice, Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
- College of Plant Protection, Hunan Agricultural University, Changsha, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha, China
| | - Jianping Dai
- State Key Laboratory of Hybrid Rice, Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Luyun Luo
- Yangtze Normal University, Chongqing, China
| | - Yong Liu
- State Key Laboratory of Hybrid Rice, Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Decai Jin
- Chinese Academy of Sciences Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Zhuo Zhang
- State Key Laboratory of Hybrid Rice, Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Xiaojuan Li
- State Key Laboratory of Hybrid Rice, Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Wei Fu
- State Key Laboratory of Hybrid Rice, Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Tao Tang
- State Key Laboratory of Hybrid Rice, Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Youlun Xiao
- State Key Laboratory of Hybrid Rice, Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Yang Hu
- Zhejiang Academy of Forestry, Hangzhou, China
| | - Erming Liu
- College of Plant Protection, Hunan Agricultural University, Changsha, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha, China
| |
Collapse
|
14
|
He YH, Adkar-Purushothama CR, Ito T, Shirakawa A, Yamamoto H, Kashiwagi A, Tatewaki A, Fujibayashi M, Sugiyama S, Yaginuma K, Akahira T, Yamamoto S, Tsushima S, Matsushita Y, Sano T. Microbial Diversity in the Phyllosphere and Rhizosphere of an Apple Orchard Managed under Prolonged "Natural Farming" Practices. Microorganisms 2021; 9:microorganisms9102056. [PMID: 34683377 PMCID: PMC8540600 DOI: 10.3390/microorganisms9102056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 12/03/2022] Open
Abstract
Microbial diversity in an apple orchard cultivated with natural farming practices for over 30 years was compared with conventionally farmed orchards to analyze differences in disease suppression. In this long-term naturally farmed orchard, major apple diseases were more severe than in conventional orchards but milder than in a short-term natural farming orchard. Among major fungal species in the phyllosphere, we found that Aureobasidium pullulans and Cryptococcus victoriae were significantly less abundant in long-term natural farming, while Cladosporium tenuissimum predominated. However, diversity of fungal species in the phyllosphere was not necessarily the main determinant in the disease suppression observed in natural farming; instead, the maintenance of a balanced, constant selection of fungal species under a suitable predominant species such as C. tenuissimum seemed to be the important factors. Analysis of bacteria in the phyllosphere revealed Pseudomonas graminis, a potential inducer of plant defenses, predominated in long-term natural farming in August. Rhizosphere metagenome analysis showed that Cordyceps and Arthrobotrys, fungal genera are known to include insect- or nematode-infecting species, were found only in long-term natural farming. Among soil bacteria, the genus Nitrospira was most abundant, and its level in long-term natural farming was more than double that in the conventionally farmed orchard.
Collapse
Affiliation(s)
- Ying-Hong He
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan; (Y.-H.H.); (C.R.A.-P.); (A.S.); (H.Y.); (A.T.); (M.F.); (S.S.)
| | - Charith Raj Adkar-Purushothama
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan; (Y.-H.H.); (C.R.A.-P.); (A.S.); (H.Y.); (A.T.); (M.F.); (S.S.)
- RNA Group/Groupe ARN, Département de Biochimie, Université de Sherbrooke, 3201 rue Jean-Mignault, Sherbrooke, QC J1E 4K8, Canada
| | - Tsutae Ito
- Division of Apple Research, Institute of Fruit Tree and Tea Science (NIFTS), National Agriculture and Food Research Organization (NARO), Morioka 020-0123, Japan; (T.I.); (K.Y.)
| | - Asuka Shirakawa
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan; (Y.-H.H.); (C.R.A.-P.); (A.S.); (H.Y.); (A.T.); (M.F.); (S.S.)
| | - Hideki Yamamoto
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan; (Y.-H.H.); (C.R.A.-P.); (A.S.); (H.Y.); (A.T.); (M.F.); (S.S.)
| | - Akiko Kashiwagi
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan; (Y.-H.H.); (C.R.A.-P.); (A.S.); (H.Y.); (A.T.); (M.F.); (S.S.)
- Correspondence: (A.K.); (T.S.)
| | - Ayumu Tatewaki
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan; (Y.-H.H.); (C.R.A.-P.); (A.S.); (H.Y.); (A.T.); (M.F.); (S.S.)
| | - Misato Fujibayashi
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan; (Y.-H.H.); (C.R.A.-P.); (A.S.); (H.Y.); (A.T.); (M.F.); (S.S.)
| | - Shuichi Sugiyama
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan; (Y.-H.H.); (C.R.A.-P.); (A.S.); (H.Y.); (A.T.); (M.F.); (S.S.)
| | - Katsuhiko Yaginuma
- Division of Apple Research, Institute of Fruit Tree and Tea Science (NIFTS), National Agriculture and Food Research Organization (NARO), Morioka 020-0123, Japan; (T.I.); (K.Y.)
| | - Tomoya Akahira
- Apple Research Institute, Aomori Prefectural Industrial Technology Research Center, Kuroishi 036-0332, Japan; (T.A.); (S.Y.)
| | - Shingen Yamamoto
- Apple Research Institute, Aomori Prefectural Industrial Technology Research Center, Kuroishi 036-0332, Japan; (T.A.); (S.Y.)
- Japan Fisheries Research and Education Agency, Fisheries Technology Institute, Fisheries Engineering Division, Kamisu 314-0408, Japan
| | - Seiya Tsushima
- National Agro-Environment Research Institute, Tsukuba 305-0856, Japan; (S.T.); (Y.M.)
- Faculty of Agriculture, Tokyo University of Agriculture, 1737 Funako, Atsugi 243-0034, Japan
| | - Yuko Matsushita
- National Agro-Environment Research Institute, Tsukuba 305-0856, Japan; (S.T.); (Y.M.)
| | - Teruo Sano
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan; (Y.-H.H.); (C.R.A.-P.); (A.S.); (H.Y.); (A.T.); (M.F.); (S.S.)
- Correspondence: (A.K.); (T.S.)
| |
Collapse
|
15
|
Bell-Dereske LP, Evans SE. Contributions of environmental and maternal transmission to the assembly of leaf fungal endophyte communities. Proc Biol Sci 2021; 288:20210621. [PMID: 34375558 DOI: 10.1098/rspb.2021.0621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Leaf fungal endophytes (LFEs) contribute to plant growth and responses to stress. Fungi colonize leaves through maternal transmission, e.g. via the seed, and through environmental transmission, e.g. via aerial dispersal. The relative importance of these two pathways in assembly and function of the LFE community is poorly understood. We used amplicon sequencing to track switchgrass (Panicum virgatum) LFEs in a greenhouse and field experiment as communities assembled from seed endophytes and rain fungi (integration of wet and dry aerial dispersal) in germinating seeds, seedlings, and adult plants. Rain fungi varied temporally and hosted a greater portion of switchgrass LFE richness (greater than 65%) than were found in seed endophytes (greater than 25%). Exposure of germinating seeds to rain inoculum increased dissimilarity between LFE communities and seed endophytes, increasing the abundance of rain-derived taxa, but did not change diversity. In the field, seedling LFE composition changed more over time, with a decline in seed-derived taxa and an increase in richness, in response to environmental transmission than LFEs of adult plants. We show that environmental transmission is an important driver of LFE assembly, and likely plant growth, but its influence depends on both the conditions at the time of colonization and plant life stage.
Collapse
Affiliation(s)
- Lukas P Bell-Dereske
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Sarah E Evans
- W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI 49060, USA.,Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA.,Ecology and Evolutionary Biology Program, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
16
|
Karlsson I, Persson P, Friberg H. Fusarium Head Blight From a Microbiome Perspective. Front Microbiol 2021; 12:628373. [PMID: 33732223 PMCID: PMC7956947 DOI: 10.3389/fmicb.2021.628373] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/08/2021] [Indexed: 11/25/2022] Open
Abstract
The fungal genus Fusarium causes several diseases in cereals, including Fusarium head blight (FHB). A number of Fusarium species are involved in disease development and mycotoxin contamination. Lately, the importance of interactions between plant pathogens and the plant microbiome has been increasingly recognized. In this review, we address the significance of the cereal microbiome for the development of Fusarium-related diseases. Fusarium fungi may interact with the host microbiome at multiple stages during their life cycles and in different plant organs including roots, stems, leaves, heads, and crop residues. There are interactions between Fusarium and other fungi and bacteria as well as among Fusarium species. Recent studies have provided a map of the cereal microbiome and revealed how different biotic and abiotic factors drive microbiome assembly. This review synthesizes the current understanding of the cereal microbiome and the implications for Fusarium infection, FHB development, disease control, and mycotoxin contamination. Although annual and regional variations in predominant species are significant, much research has focused on Fusarium graminearum. Surveying the total Fusarium community in environmental samples is now facilitated with novel metabarcoding methods. Further, infection with multiple Fusarium species has been shown to affect disease severity and mycotoxin contamination. A better mechanistic understanding of such multiple infections is necessary to be able to predict the outcome in terms of disease development and mycotoxin production. The knowledge on the composition of the cereal microbiome under different environmental and agricultural conditions is growing. Future studies are needed to clearly link microbiome structure to Fusarium suppression in order to develop novel disease management strategies for example based on conservation biological control approaches.
Collapse
Affiliation(s)
- Ida Karlsson
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Paula Persson
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Hanna Friberg
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
17
|
Gong T, Xin XF. Phyllosphere microbiota: Community dynamics and its interaction with plant hosts. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:297-304. [PMID: 33369158 DOI: 10.1111/jipb.13060] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/17/2020] [Indexed: 05/22/2023]
Abstract
Plants are colonized by various microorganisms in natural environments. While many studies have demonstrated key roles of the rhizosphere microbiota in regulating biological processes such as nutrient acquisition and resistance against abiotic and biotic challenges, less is known about the role of the phyllosphere microbiota and how it is established and maintained. This review provides an update on current understanding of phyllosphere community assembly and the mechanisms by which plants and microbes establish the phyllosphere microbiota for plant health.
Collapse
Affiliation(s)
- Tianyu Gong
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiu-Fang Xin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
- The Chinese Academy of Sciences (CAS) and CAS John Innes Centre of Excellence for Plant and Microbial Sciences, Shanghai, 200032, China
| |
Collapse
|
18
|
Zhou J, Yu L, Zhang J, Liu J, Zou X. Dynamic characteristics and co-occurrence patterns of microbial community in tobacco leaves during the 24-month aging process. ANN MICROBIOL 2021. [DOI: 10.1186/s13213-021-01620-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
Microorganisms are important in tobacco aging. These are used to improve the quality of tobacco leaves after threshing and redrying. However, the response of microbial community to the storage environment and time during the tobacco aging process has been less explored. This study aimed to characterize the dynamic changes in microbial community composition and diversity in tobacco leaf samples.
Methods
In this study, 16S and ITS rRNA gene amplicon sequencing techniques were used to characterize the composition, diversity, and co-occurrence of the microbial community in tobacco leaves stored in two different cities during the 24-month aging. Furthermore, the activities of several enzymes were measured spectrophotometrically, and the correlation between the microbiota and enzyme activity was analyzed by network analysis.
Results
Shannon diversity and Chao richness of bacterial communities gradually increased during the first 18 months, whereas those of the fungal community decreased. The relative abundance of Proteobacteria decreased, whereas that of Actinobacteria and Bacteroidetes increased. The proportion of Ascomycota gradually increased during the first 18 months and then rapidly decreased, whereas the proportion of Basidiomycota exhibited a completely opposite pattern. The change in the composition of bacterial community and dominant genera in leaves was not significant between Guiyang city and Maotai city storerooms, but that in the fungal community was significant. The network analysis revealed that fungal networks were more complex and compact than bacterial networks, and a strong negative correlation existed between bacteria and fungi. Moreover, the bacterial microbiome showed a strong positive association with amylase activity, while the fungal microbiome positively correlated with cellulase activity.
Conclusions
This study demonstrated a significant spatiotemporal heterogeneity in the composition of the microbial community during tobacco aging and highlighted the possible influence of the interactions and enzyme activity on microbial diversity and composition. The findings provided a scientific basis for using microorganisms to regulate and control tobacco aging.
Collapse
|
19
|
Qi SS, Bogdanov A, Cnockaert M, Acar T, Ranty-Roby S, Coenye T, Vandamme P, König GM, Crüsemann M, Carlier A. Induction of antibiotic specialized metabolism by co-culturing in a collection of phyllosphere bacteria. Environ Microbiol 2021; 23:2132-2151. [PMID: 33393154 DOI: 10.1111/1462-2920.15382] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/29/2020] [Indexed: 01/04/2023]
Abstract
A diverse set of bacteria live on the above-ground parts of plants, composing the phyllosphere, and play important roles for plant health. Phyllosphere microbial communities assemble in a predictable manner and diverge from communities colonizing other plant organs or the soil. However, how these communities differ functionally remains obscure. We assembled a collection of 258 bacterial isolates representative of the most abundant taxa of the phyllosphere of Arabidopsis and a shared soil inoculum. We screened the collection for the production of metabolites that inhibit the growth of Gram-positive and Gram-negative bacteria either in isolation or in co-culture. We found that isolates capable of constitutive antibiotic production in monoculture were significantly enriched in the soil fraction. In contrast, the proportion of binary cultures resulting in the production of growth inhibitory compounds differed only marginally between the phyllosphere and soil fractions. This shows that the phyllosphere may be a rich resource for potentially novel molecules with antibiotic activity, but that production or activity is dependent upon induction by external signals or cues. Finally, we describe the isolation of antimicrobial acyloin metabolites from a binary culture of Arabidopsis phyllosphere isolates, which inhibit the growth of clinically relevant Acinetobacter baumannii.
Collapse
Affiliation(s)
- Shan Shan Qi
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Alexander Bogdanov
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, Bonn, 53115, Germany.,Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, California
| | - Margo Cnockaert
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Tessa Acar
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium.,LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Sarah Ranty-Roby
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Gabriele M König
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, Bonn, 53115, Germany
| | - Max Crüsemann
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, Bonn, 53115, Germany
| | - Aurélien Carlier
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium.,LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| |
Collapse
|
20
|
Chen X, Wicaksono WA, Berg G, Cernava T. Bacterial communities in the plant phyllosphere harbour distinct responders to a broad-spectrum pesticide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141799. [PMID: 32889475 DOI: 10.1016/j.scitotenv.2020.141799] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/29/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
Pesticide application can be accompanied by harmful non-target effects that affect humans, animals, as well as whole ecosystems. However, such effects remain mainly unaddressed in connection with microorganisms, and especially bacteria therein, which are essential for ecosystem functioning and host health. We analysed bacterial communities by sequencing 16S rRNA gene fragment amplicons following spray application of a broad-spectrum fungicide based on the active ingredient N-(3,5-dichlorophenyl) succinimide on Nicotiana tabacum L. leaves. The plant's phyllosphere was predominantly colonized by Proteobacteria, with Alphaproteobacteria accounting for up to 33.8% of the indigenous bacterial community. Bioinformatic analyses indicated that pesticide applications had an effect on the core microbiome as well as the rare microbiome. Moreover, the interference of the pesticide with phyllosphere bacteria was found to be selective. We have identified four positive responders including an ASV assigned to the genus Acinetobacter and 12 negative responders mainly assigned to bacterial genera known for beneficial plant-microbe interactions, including Stenotrophomonas, Sphingomonas, Flavobacterium and Serratia. Complementary inference of bacterial functioning on community level indicated that microbes with distinct stress response systems were likely enriched in the conducted treatments. The overall findings confirmed that pesticide treatments can induce measureable shifts in non-target bacterial communities colonizing the plant phyllosphere. They also indicate that potentially beneficial bacteria, which are known for their intrinsic association with plants, are among the most sensitive responders to the employed fungicide and thus highlight the importance of off-target studies in the context of the plant microbiome.
Collapse
Affiliation(s)
- Xiaoyulong Chen
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, 550025 Guiyang, China; College of Tobacco Science, Guizhou University, 550025 Guiyang, China; Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, 550025 Guiyang, China
| | - Wisnu Adi Wicaksono
- Institute of Environmental Biotechnology, Graz University of Technology, 8010 Graz, Austria.
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, 8010 Graz, Austria.
| | - Tomislav Cernava
- College of Tobacco Science, Guizhou University, 550025 Guiyang, China; Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, 550025 Guiyang, China; Institute of Environmental Biotechnology, Graz University of Technology, 8010 Graz, Austria.
| |
Collapse
|
21
|
Stone BWG, Jackson CR. Seasonal Patterns Contribute More Towards Phyllosphere Bacterial Community Structure than Short-Term Perturbations. MICROBIAL ECOLOGY 2021; 81:146-156. [PMID: 32737538 PMCID: PMC8048045 DOI: 10.1007/s00248-020-01564-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 07/27/2020] [Indexed: 05/06/2023]
Abstract
Phyllosphere microorganisms are sensitive to fluctuations in wind, temperature, solar radiation, and rain. However, recent explorations of patterns in phyllosphere communities across time often focus on seasonal shifts and leaf senescence without measuring the contribution of environmental drivers and leaf traits. Here, we focus on the effects of rain on the phyllosphere bacterial community of the wetland macrophyte broadleaf cattail (Typha latifolia) across an entire year, specifically targeting days before and 1, 3, and 5 days after rain events. To isolate the contribution of precipitation from other factors, we covered a subset of plants to shield them from rainfall. We used targeted Illumina sequencing of the V4 region of the bacterial 16S rRNA gene to characterize phyllosphere community composition. Rain events did not have a detectable effect on phyllosphere community richness or evenness regardless of whether the leaves were covered from rain or not, suggesting that foliar microbial communities are robust to such disturbances. While climatic and leaf-based variables effectively modeled seasonal trends in phyllosphere diversity and composition, they provided more limited explanatory value at shorter time scales. These findings underscore the dominance of long-term seasonal patterns related to climatic variation as the main factor influencing the phyllosphere community.
Collapse
Affiliation(s)
- Bram W G Stone
- Department of Biology, University of Mississippi, Shoemaker Hall, University, St. Cloud, MS, 38677-1848, USA.
- Center for Ecosystem Science and Society, Science Lab Facility, Northern Arizona University, Building 17, Flagstaff, AZ, 86011-5620, USA.
| | - Colin R Jackson
- Department of Biology, University of Mississippi, Shoemaker Hall, University, St. Cloud, MS, 38677-1848, USA
| |
Collapse
|
22
|
Michael PJ, Jones D, White N, Hane JK, Bunce M, Gibberd M. Crop-Zone Weed Mycobiomes of the South-Western Australian Grain Belt. Front Microbiol 2020; 11:581592. [PMID: 33324368 PMCID: PMC7721668 DOI: 10.3389/fmicb.2020.581592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/28/2020] [Indexed: 01/16/2023] Open
Abstract
In the absence of a primary crop host, secondary plant hosts may act as a reservoir for fungal plant pathogens of agricultural crops. Secondary hosts may potentially harbor heteroecious biotrophs (e.g., the stripe rust fungus Puccinia striiformis) or other pathogens with broad host ranges. Agricultural grain production tends toward monoculture or a limited number of crop hosts over large regions, and local weeds are a major source of potential secondary hosts. In this study, the fungal phyllospheres of 12 weed species common in the agricultural regions of Western Australia (WA) were compared through high-throughput DNA sequencing. Amplicons of D2 and ITS were sequenced on an Illumina MiSeq system using previously published primers and BLAST outputs analyzed using MEGAN. A heatmap of cumulative presence-absence for fungal taxa was generated, and variance patterns were investigated using principal components analysis (PCA) and canonical correspondence analysis (CCA). We observed the presence of several major international crop pathogens, including basidiomycete rusts of the Puccinia spp., and ascomycete phytopathogens of the Leptosphaeria and Pyrenophora genera. Unrelated to crop production, several endemic pathogen species including those infecting Eucalyptus trees were also observed, which was consistent with local native flora. We also observed that differences in latitude or climate zones appeared to influence the geographic distributions of plant pathogenic species more than the presence of compatible host species, with the exception of Brassicaceae host family. There was an increased proportion of necrotrophic Ascomycete species in warmer and drier regions of central WA, compared to an increased proportion of biotrophic Basidiomycete species in cooler and wetter regions in southern WA.
Collapse
Affiliation(s)
- Pippa J. Michael
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| | - Darcy Jones
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| | - Nicole White
- TRENDLab, School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| | - James K. Hane
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| | - Michael Bunce
- TRENDLab, School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| | - Mark Gibberd
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| |
Collapse
|
23
|
Yadav AN, Singh J, Rastegari AA, Yadav N. Phyllospheric Microbiomes: Diversity, Ecological Significance, and Biotechnological Applications. ACTA ACUST UNITED AC 2020. [PMCID: PMC7123684 DOI: 10.1007/978-3-030-38453-1_5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The phyllosphere referred to the total aerial plant surfaces (above-ground portions), as habitat for microorganisms. Microorganisms establish compositionally complex communities on the leaf surface. The microbiome of phyllosphere is rich in diversity of bacteria, fungi, actinomycetes, cyanobacteria, and viruses. The diversity, dispersal, and community development on the leaf surface are based on the physiochemistry, environment, and also the immunity of the host plant. A colonization process is an important event where both the microbe and the host plant have been benefited. Microbes commonly established either epiphytic or endophytic mode of life cycle on phyllosphere environment, which helps the host plant and functional communication with the surrounding environment. To the scientific advancement, several molecular techniques like metagenomics and metaproteomics have been used to study and understand the physiology and functional relationship of microbes to the host and its environment. Based on the available information, this chapter describes the basic understanding of microbiome in leaf structure and physiology, microbial interactions, especially bacteria, fungi, and actinomycetes, and their adaptation in the phyllosphere environment. Further, the detailed information related to the importance of the microbiome in phyllosphere to the host plant and their environment has been analyzed. Besides, biopotentials of the phyllosphere microbiome have been reviewed.
Collapse
Affiliation(s)
- Ajar Nath Yadav
- Department of Biotechnology, Eternal University, Baru Sahib, Himachal Pradesh India
| | - Joginder Singh
- Department of Microbiology, Lovely Professional University, Phagwara, Punjab India
| | | | - Neelam Yadav
- Gopi Nath PG College, Veer Bahadur Singh Purvanchal University, Ghazipur, Uttar Pradesh India
| |
Collapse
|
24
|
Grady KL, Sorensen JW, Stopnisek N, Guittar J, Shade A. Assembly and seasonality of core phyllosphere microbiota on perennial biofuel crops. Nat Commun 2019; 10:4135. [PMID: 31515535 PMCID: PMC6742659 DOI: 10.1038/s41467-019-11974-4] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 08/15/2019] [Indexed: 12/17/2022] Open
Abstract
Perennial grasses are promising feedstocks for biofuel production, with potential for leveraging their native microbiomes to increase their productivity and resilience to environmental stress. Here, we characterize the 16S rRNA gene diversity and seasonal assembly of bacterial and archaeal microbiomes of two perennial cellulosic feedstocks, switchgrass (Panicum virgatum L.) and miscanthus (Miscanthus x giganteus). We sample leaves and soil every three weeks from pre-emergence through senescence for two consecutive switchgrass growing seasons and one miscanthus season, and identify core leaf taxa based on occupancy. Virtually all leaf taxa are also detected in soil; source-sink modeling shows non-random, ecological filtering by the leaf, suggesting that soil is an important reservoir of phyllosphere diversity. Core leaf taxa include early, mid, and late season groups that were consistent across years and crops. This consistency in leaf microbiome dynamics and core members is promising for microbiome manipulation or management to support crop production. Microbial communities of plant leaf surfaces are ecologically important, but how they assemble and vary in time is unclear. Here, the authors identify core leaf microbiomes and seasonal patterns for two biofuel crops and show with source-sink models that soil is a reservoir of phyllosphere diversity.
Collapse
Affiliation(s)
- Keara L Grady
- Department of Microbiology and Molecular Genetics, Michigan State University, 567 Wilson Road, East Lansing, MI, 48824, USA.,The DOE Great Lakes Bioenergy Research Center, Michigan State University, 1129 Farm Lane, East Lansing, MI, 48824, USA
| | - Jackson W Sorensen
- Department of Microbiology and Molecular Genetics, Michigan State University, 567 Wilson Road, East Lansing, MI, 48824, USA.,The DOE Great Lakes Bioenergy Research Center, Michigan State University, 1129 Farm Lane, East Lansing, MI, 48824, USA
| | - Nejc Stopnisek
- The DOE Great Lakes Bioenergy Research Center, Michigan State University, 1129 Farm Lane, East Lansing, MI, 48824, USA.,Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, 293 Farm Lane, East Lansing, MI, 48824, USA
| | - John Guittar
- Department of Microbiology and Molecular Genetics, Michigan State University, 567 Wilson Road, East Lansing, MI, 48824, USA.,Kellogg Biological Station, Michigan State University, 3700 E. Gull Lake Dr, Hickory Corners, MI, 49060, USA
| | - Ashley Shade
- Department of Microbiology and Molecular Genetics, Michigan State University, 567 Wilson Road, East Lansing, MI, 48824, USA. .,The DOE Great Lakes Bioenergy Research Center, Michigan State University, 1129 Farm Lane, East Lansing, MI, 48824, USA. .,Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, 293 Farm Lane, East Lansing, MI, 48824, USA. .,The Plant Resilience Institute, Michigan State University, East Lansing, MI, 48840, USA. .,Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
25
|
Li Y, Wu X, Wang W, Wang M, Zhao C, Chen T, Liu G, Zhang W, Li S, Zhou H, Wu M, Yang R, Zhang G. Microbial taxonomical composition in spruce phyllosphere, but not community functional structure, varies by geographical location. PeerJ 2019; 7:e7376. [PMID: 31355059 PMCID: PMC6644631 DOI: 10.7717/peerj.7376] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 06/28/2019] [Indexed: 01/06/2023] Open
Abstract
Previous studies indicate that the plant phenotypic traits eventually shape its microbiota due to the community assembly based on the functional types. If so, the distance-related variations of microbial communities are mostly only in taxonomical composition due to the different seeds pool, and there is no difference in microbial community functional structure if the location associated factors would not cause phenotypical variations in plants. We test this hypothesis by investigating the phyllospheric microbial community from five species of spruce (Picea spp.) trees that planted similarly but at three different locations. Results indicated that the geographical location affected microbial taxonomical compositions and had no effect on the community functional structure. In fact, this actually leads to a spurious difference in the microbial community. Our findings suggest that, within similar host plants, the phyllosphere microbial communities with differing taxonomical compositions might be functionally similar.
Collapse
Affiliation(s)
- Yunshi Li
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou, China
| | - Xiukun Wu
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou, China
| | - Wanfu Wang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,Conservation Institute, Dunhuang Academy, Dunhuang, China
| | - Minghao Wang
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Changming Zhao
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Tuo Chen
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Guangxiu Liu
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou, China
| | - Wei Zhang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou, China
| | - Shiweng Li
- Lanzhou Jiaotong University, School of Environmental and Municipal Engineering, Lanzhou, China
| | - Huaizhe Zhou
- National University of Defense Technology, College of Computer, Changsha, China
| | - Minghui Wu
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Ruiqi Yang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou, China
| | - Gaosen Zhang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou, China
| |
Collapse
|
26
|
Seabloom EW, Condon B, Kinkel L, Komatsu KJ, Lumibao CY, May G, McCulley RL, Borer ET. Effects of nutrient supply, herbivory, and host community on fungal endophyte diversity. Ecology 2019; 100:e02758. [PMID: 31306499 DOI: 10.1002/ecy.2758] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 03/21/2019] [Accepted: 04/17/2019] [Indexed: 12/13/2022]
Abstract
The microbes contained within free-living organisms can alter host growth, reproduction, and interactions with the environment. In turn, processes occurring at larger scales determine the local biotic and abiotic environment of each host that may affect the diversity and composition of the microbiome community. Here, we examine variation in the diversity and composition of the foliar fungal microbiome in the grass host, Andropogon gerardii, across four mesic prairies in the central United States. Composition of fungal endophyte communities differed among sites and among individuals within a site, but was not consistently affected by experimental manipulation of nutrient supply to hosts (A. gerardii) or herbivore reduction via fencing. In contrast, mean fungal diversity was similar among sites but was limited by total plant biomass at the plot scale. Our work demonstrates that distributed experiments motivated by ecological theory are a powerful tool to unravel the multiscale processes governing microbial community composition and diversity.
Collapse
Affiliation(s)
- Eric W Seabloom
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, 55108, USA
| | - Bradford Condon
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, 55108, USA
| | - Linda Kinkel
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, 55108, USA
| | - Kimberly J Komatsu
- Smithsonian Environmental Research Center, 647 Contees Wharf Road, Edgewater, Maryland, 21037, USA
| | - Candice Y Lumibao
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, 55108, USA
| | - Georgiana May
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, 55108, USA
| | - Rebecca L McCulley
- Department of Plant & Soil Sciences, University of Kentucky, Lexington, Kentucky, 40536-0312, USA
| | - Elizabeth T Borer
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, 55108, USA
| |
Collapse
|
27
|
Establishment Limitation Constrains the Abundance of Lactic Acid Bacteria in the Napa Cabbage Phyllosphere. Appl Environ Microbiol 2019; 85:AEM.00269-19. [PMID: 31003989 DOI: 10.1128/aem.00269-19] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/14/2019] [Indexed: 12/15/2022] Open
Abstract
Patterns of phyllosphere diversity have become increasingly clear with high-throughput sequencing surveys, but the processes that control phyllosphere diversity are still emerging. Through a combination of lab and field experiments using Napa cabbage and lactic acid bacteria (LAB), we examined how dispersal and establishment processes shape the ecological distributions of phyllosphere bacteria. We first determined the abundance and diversity of LAB on Napa cabbage grown at three sites using both culture-based approaches and 16S rRNA gene amplicon sequencing. Across all sites, LAB made up less than 0.9% of the total bacterial community abundance. To assess whether LAB were low in abundance in the Napa cabbage phyllosphere due to a limited abundance in local species pools (source limitation), we quantified LAB in leaf and soil samples across 51 vegetable farms and gardens throughout the northeastern United States. Across all sites, LAB comprised less than 3.2% of the soil bacterial communities and less than 1.6% of phyllosphere bacterial communities. To assess whether LAB are unable to grow in the phyllosphere even if they dispersed at high rates (establishment limitation), we used a gnotobiotic Napa cabbage system in the lab with experimental communities mimicking various dispersal rates of LAB. Even at high dispersal rates, LAB became rare or completely undetectable in experimental communities, suggesting that they are also establishment limited. Collectively, our data demonstrate that the low abundance of LAB in phyllosphere communities may be explained by establishment limitation.IMPORTANCE The quality and safety of vegetable fermentations are dependent on the activities of LAB naturally present in the phyllosphere. Despite their critical role in determining the success of fermentation, the processes that determine the abundance and diversity of LAB in vegetables used for fermentation are poorly characterized. Our work demonstrates that the limited ability of LAB to grow in the cabbage phyllosphere environment may constrain their abundance on cabbage leaves. These results suggest that commercial fermentation of Napa cabbage proceeds despite low and variable abundances of LAB across different growing regions. Propagule limitation may also explain ecological distributions of other rare members of phyllosphere microbes.
Collapse
|
28
|
Luo L, Zhang Z, Wang P, Han Y, Jin D, Su P, Tan X, Zhang D, Muhammad-Rizwan H, Lu X, Liu Y. Variations in phyllosphere microbial community along with the development of angular leaf-spot of cucumber. AMB Express 2019; 9:76. [PMID: 31134393 PMCID: PMC6536563 DOI: 10.1186/s13568-019-0800-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/16/2019] [Indexed: 01/07/2023] Open
Abstract
The phyllosphere is colonized by a wide variety of microorganisms including epiphytes, plant-pathogenic fungus, bacteria, as well as human or animal pathogens. However, little is known about how microbial community composition changes with the development of angular leaf-spot of cucumber. Here, 18 mixed samples were collected based on the lesion coverage rate (LCR) of angular leaf-spot of cucumber from three disease severity groups (DM1: symptomatic-mild, DM2: symptomatic-moderate, DM3: symptomatic-severe). In our study, the microbial community structure and diversity were examined by Illumina MiSeq sequencing. A significant differences was observed in α diversity and community structure among three disease severity groups. The phyllosphere microbiota was observed to be dominated by bacterial populations from Proteobacteria, Actinobacteria, and Firmicutes, as well as fungal species from Ascomycota and Basidiomycota. In addition, some plant-specific microbe such as Sphingomonas, Methylobacterium, Pseudomonas, and Alternaria showed significant changes in their relative abundance of population. The LCR was correlated negatively with Sphingomonas, Methylobacterium, Quadrisphaera, and Lactobacillus, whereas correlated positively with Pseudomonas and Kineococcus (p < 0.05). The LCR was negatively correlated with Alternaria and Arthrinium of the fungal communities (p < 0.05). Molecular ecological networks of the microbial communities were constructed to show the interactions among the OTUs. Our current results indicated that the competitive relationships among species were broken with the development of angular leaf-spot of cucumber. The microbial community composition changed over the development of angular leaf-spot of cucumber. The result of molecular ecological networks indicated that the overall bacterial community tends toward mutualism from the competition. The development of angular leaf-spot of cucumber affected the ecosystem functioning by disrupting the stability of the microbial community network. This work will help us to understand the host plant-specific microbial community structures and shows how these communities change throughout the development of angular leaf-spot of cucumber.
Collapse
|
29
|
Mhuireach GÁ, Betancourt-Román CM, Green JL, Johnson BR. Spatiotemporal Controls on the Urban Aerobiome. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00043] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
30
|
Purahong W, Orrù L, Donati I, Perpetuini G, Cellini A, Lamontanara A, Michelotti V, Tacconi G, Spinelli F. Plant Microbiome and Its Link to Plant Health: Host Species, Organs and Pseudomonas syringae pv. actinidiae Infection Shaping Bacterial Phyllosphere Communities of Kiwifruit Plants. FRONTIERS IN PLANT SCIENCE 2018; 9:1563. [PMID: 30464766 PMCID: PMC6234494 DOI: 10.3389/fpls.2018.01563] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/05/2018] [Indexed: 05/20/2023]
Abstract
Pseudomonas syringae pv. actinidiae (Psa) is the causal agent of the bacterial canker, the most devastating disease of kiwifruit vines. Before entering the host tissues, this pathogen has an epiphytic growth phase on kiwifruit flowers and leaves, thus the ecological interactions within epiphytic bacterial community may greatly influence the onset of the infection process. The bacterial community associated to the two most important cultivated kiwifruit species, Actinidia chinensis and Actinidia deliciosa, was described both on flowers and leaves using Illumina massive parallel sequencing of the V3 and V4 variable regions of the 16S rRNA gene. In addition, the effect of plant infection by Psa on the epiphytic bacterial community structure and biodiversity was investigated. Psa infection affected the phyllosphere microbiome structures in both species, however, its impact was more pronounced on A. deliciosa leaves, where a drastic drop in microbial biodiversity was observed. Furthermore, we also showed that Psa was always present in syndemic association with Pseudomonas syringae pv. syringae and Pseudomonas viridiflava, two other kiwifruit pathogens, suggesting the establishment of a pathogenic consortium leading to a higher pathogenesis capacity. Finally, the analyses of the dynamics of bacterial populations provided useful information for the screening and selection of potential biocontrol agents against Psa.
Collapse
Affiliation(s)
- Witoon Purahong
- Department of Soil Ecology, Helmholtz Center for Environmental Research - UFZ, Halle, Germany
| | - Luigi Orrù
- CREA Research Centre for Genomics and Bioinformatics – Fiorenzuola d’Arda, Italy
| | - Irene Donati
- Department of Agricultural and Food Sciences, Alma Mater Studiorum – Università di Bologna, Bologna, Italy
| | - Giorgia Perpetuini
- Department of Agricultural and Food Sciences, Alma Mater Studiorum – Università di Bologna, Bologna, Italy
| | - Antonio Cellini
- Department of Agricultural and Food Sciences, Alma Mater Studiorum – Università di Bologna, Bologna, Italy
| | | | - Vania Michelotti
- CREA Research Centre for Genomics and Bioinformatics – Fiorenzuola d’Arda, Italy
| | - Gianni Tacconi
- CREA Research Centre for Genomics and Bioinformatics – Fiorenzuola d’Arda, Italy
| | - Francesco Spinelli
- Department of Agricultural and Food Sciences, Alma Mater Studiorum – Università di Bologna, Bologna, Italy
| |
Collapse
|
31
|
Evaluation of post-contamination survival and persistence of applied attenuated E. coli O157:H7 and naturally-contaminating E. coli O157:H7 on spinach under field conditions and following postharvest handling. Food Microbiol 2018; 77:173-184. [PMID: 30297048 DOI: 10.1016/j.fm.2018.08.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/23/2018] [Accepted: 08/23/2018] [Indexed: 11/23/2022]
Abstract
This study determined the variability in population uniformity of an applied mixture of attenuated E. coli O157:H7 (attEcO157) on spinach leaves as impacted by sampling mass and detection technique over spatial and temporal conditions. Opportunistically, the survival and distribution of naturally contaminating pathogenic E. coli O157:H7 (EcO157), in a single packaged lot following commercial postharvest handling and washing, was also evaluated. From the main study outcomes, differences in the applied inoculum dose of 100-fold, resulted in indistinguishable population densities of approximately Log 1.1 CFU g-1 by 14 days post-inoculation (DPI). Composite leaf samples of 150 g and the inclusion of the spinach petiole resulted in the greatest numerical sensitivity of detection of attEcO157 when compared to 25 and 150 g samples without petioles (P < 0.05). Differences in population density and protected-site survival and potential leaf internalization were observed between growing seasons and locations in California (P < 0.05). A Double Weibull model best described and identified two distinct populations with different inactivation rates of the inoculated attEcO157. Linear die-off rates varied between 0.14 and 0.29 Log/Day irrespective of location. Detection of EcO157- stx1-negative and stx2-positive, resulting from a natural contamination event, was observed in 11 of 26 quarantined commercial units of washed spinach by applying the 150 g sample mass protocol. The capacity to detect EcO157 varied between commercial test kits and non-commercial qPCR. Our findings suggest the need for modifications to routine pathogen sampling protocols employed for lot acceptance of spinach and other leafy greens.
Collapse
|
32
|
Cowles KN, Groves RL, Barak JD. Leafhopper-Induced Activation of the Jasmonic Acid Response Benefits Salmonella enterica in a Flagellum-Dependent Manner. Front Microbiol 2018; 9:1987. [PMID: 30190716 PMCID: PMC6115507 DOI: 10.3389/fmicb.2018.01987] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/07/2018] [Indexed: 11/29/2022] Open
Abstract
Enteric human pathogens such as Salmonella enterica are typically studied in the context of their animal hosts, but it has become apparent that these bacteria spend a significant portion of their life cycle on plants. S. enterica survives the numerous stresses common to a plant niche, including defense responses, water and nutrient limitation, and exposure to UV irradiation leading to an increased potential for human disease. In fact, S. enterica is estimated to cause over one million cases of foodborne illness each year in the United States with 20% of those cases resulting from consumption of contaminated produce. Although S. enterica successfully persists in the plant environment, phytobacterial infection by Pectobacterium carotovorum or Xanthomonas spp. increases S. enterica survival and infrequently leads to growth on infected plants. The co-association of phytophagous insects, such as the Aster leafhopper, Macrosteles quadrilineatus, results in S. enterica populations that persist at higher levels for longer periods of time when compared to plants treated with S. enterica alone. We hypothesized that leafhoppers increase S. enterica persistence by altering the plant defense response to the benefit of the bacteria. Leafhopper infestation activated the jasmonic acid (JA) defense response while S. enterica colonization triggered the salicylic acid (SA) response. In tomato plants co-treated with S. enterica and leafhoppers, both JA- and SA-inducible genes were activated, suggesting that the presence of leafhoppers may affect the crosstalk that occurs between the two immune response pathways. To rule out the possibility that leafhoppers provide additional benefits to S. enterica, plants were treated with a chemical JA analog to activate the immune response in the absence of leafhoppers. Although bacterial populations continue to decline over time, analog treatment significantly increased bacterial persistence on the leaf surface. Bacterial mutant analysis determined that the bacterial flagellum, whether functional or not, was required for increased S. enterica survival after analog treatment. By investigating the interaction between this human pathogen, a common phytophagous insect, and their plant host, we hope to elucidate the mechanisms promoting S. enterica survival on plants and provide information to be used in the development of new food safety intervention strategies.
Collapse
Affiliation(s)
- Kimberly N Cowles
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, United States
| | - Russell L Groves
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, United States
| | - Jeri D Barak
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
33
|
Oliveira M, Arenas M, Lage O, Cunha M, Amorim MI. Epiphytic fungal community in Vitis vinifera of the Portuguese wine regions. Lett Appl Microbiol 2017; 66:93-102. [PMID: 29139139 DOI: 10.1111/lam.12826] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 06/07/2017] [Accepted: 11/02/2017] [Indexed: 02/02/2023]
Abstract
In this work, fungi present in the grapevine's phyllosphere collected from the main demarcated wine regions of Portugal were identified, and their phylogenetic relationships were analysed. A total of 46 vine samples (leaves and berries) were collected from different parts of the country, being isolated a total of 117 fungal colonies that were identified to the genus level and sequenced in the following genetic regions: internal transcribed spacer region and 18S rRNA and β-tubulin gene. Next, a phylogenetic tree reconstruction for each genetic region was built. The isolates retrieved from environmental samples belonged to the genera Alternaria (31%), Cladosporium (21%), Penicillium (19%), Aspergillus (7%) and Epicoccum (3%). No genetic signatures of exchange of genetic material were detected, and consequently, the reconstructed phylogenetic trees allowed to distinguish between these different species/genera. In the fungal composition of the Vitis vinifera phyllosphere, several potential pathogens were identified that can be associated with decreases in crop productivity. Knowledge of fungi identification and genetic diversity is pivotal for the development of more adequate crop management strategies. Furthermore, this information will provide guidelines for a more specific and wiser use of fungicides. SIGNIFICANCE AND IMPACT OF THE STUDY The knowledge on the composition of the phyllosphere microbial community is still limited, especially when fungi are concerned. These micro-organisms not only play a crucial role in crop health and productivity but also interact with the winemaking process, determining the safety and quality of grape and grape-derived products. The elucidation of the micro-organisms present in the phyllosphere will have a notorious impact on plant breeding and protection programmes and disease management strategies, allowing a better control of pesticide applications.
Collapse
Affiliation(s)
- M Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - M Arenas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain
| | - O Lage
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - M Cunha
- Departamento de Geociências, Ambiente e Ordenamento do Território, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - M I Amorim
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal.,BioISI - Plant Functional Genomics Group, Biosystems and Integrative Sciences Institute, Porto, Portugal
| |
Collapse
|
34
|
|
35
|
Giacomuzzi V, Mattheis JP, Basoalto E, Angeli S, Knight AL. Survey of conspecific herbivore-induced volatiles from apple as possible attractants for Pandemis pyrusana (Lepidoptera: Tortricidae). PEST MANAGEMENT SCIENCE 2017; 73:1837-1845. [PMID: 28195388 DOI: 10.1002/ps.4548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/24/2017] [Accepted: 02/02/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND Studies were conducted to identify volatiles released by apple foliage untreated or sprayed with a yeast and from untreated and sprayed foliage with actively feeding larvae of Pandemis pyrusana Kearfott. Field studies then evaluated various combinations of these volatiles when paired with acetic acid as possible adult attractants. RESULTS The most abundant volatiles released following herbivore feeding were four green leaf volatiles (GLVs) and acetic acid. Nineteen volatiles were found to be released in significantly higher amounts from foliage with herbivore damage than from intact leaves. The combination of yeast followed by herbivore injury increased the levels of methyl salicylate and phenylacetonitrile compared with herbivory alone. Levels of acetic acid released were not significantly different among the four treatments. Only phenylacetonitrile and 2-phenylethanol with acetic acid caught similar and significantly more total and female moths than acetic acid alone. Moth catches with 12 other volatiles plus acetic acid were not significantly higher than with acetic acid alone, and were lower than with acetic acid and 2-phenylethanol. CONCLUSION These data show that herbivore injury does not create a unique chemical signal for adults to locate oviposition or rendezvous sites. Instead, moths may cue to the aromatic-acetic acid combination as a nutritional cue to locate sugary resources. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Valentino Giacomuzzi
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - James P Mattheis
- Tree Fruit Research Laboratory, Agricultural Research Service, USDA, Wenatchee, WA, USA
| | - Esteban Basoalto
- Instituto de Producción y Sanidad Vegetal, Facultad de Ciencias Agrarias, Universidad Austral de Chile, Valdivia, Chile
| | - Sergio Angeli
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Alan L Knight
- Yakima Agricultural Research Laboratory, Agricultural Research Service, USDA, Wapato, WA, USA
| |
Collapse
|
36
|
Guijarro B, Larena I, Melgarejo P, De Cal A. Adaptive conditions and safety of the application of Penicillium frequentans as a biocontrol agent on stone fruit. Int J Food Microbiol 2017; 254:25-35. [DOI: 10.1016/j.ijfoodmicro.2017.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 04/21/2017] [Accepted: 05/08/2017] [Indexed: 01/29/2023]
|
37
|
Chopyk J, Chattopadhyay S, Kulkarni P, Smyth EM, Hittle LE, Paulson JN, Pop M, Buehler SS, Clark PI, Mongodin EF, Sapkota AR. Temporal Variations in Cigarette Tobacco Bacterial Community Composition and Tobacco-Specific Nitrosamine Content Are Influenced by Brand and Storage Conditions. Front Microbiol 2017; 8:358. [PMID: 28326071 PMCID: PMC5339245 DOI: 10.3389/fmicb.2017.00358] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/21/2017] [Indexed: 12/26/2022] Open
Abstract
Tobacco products, specifically cigarettes, are home to microbial ecosystems that may play an important role in the generation of carcinogenic tobacco-specific nitrosamines (TSNAs), as well as the onset of multiple adverse human health effects associated with the use of these products. Therefore, we conducted time-series experiments with five commercially available brands of cigarettes that were either commercially mentholated, custom-mentholated, user-mentholated, or non-mentholated. To mimic user storage conditions, the cigarettes were incubated for 14 days under three different temperatures and relative humidities (i.e., pocket, refrigerator, and room). Overall, 360 samples were collected over the course of 2 weeks and total DNA was extracted, PCR amplified for the V3V4 hypervariable region of the 16S rRNA gene and sequenced using Illumina MiSeq. A subset of samples (n = 32) was also analyzed via liquid chromatography with tandem mass spectrometry for two TSNAs: N'-nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Comparative analyses of the five tobacco brands revealed bacterial communities dominated by Pseudomonas, Pantoea, and Bacillus, with Pseudomonas relatively stable in abundance regardless of storage condition. In addition, core bacterial operational taxonomic units (OTUs) were identified in all samples and included Bacillus pumilus, Rhizobium sp., Sphingomonas sp., unknown Enterobacteriaceae, Pantoea sp., Pseudomonas sp., Pseudomonas oryzihabitans, and P. putida. Additional OTUs were identified that significantly changed in relative abundance between day 0 and day 14, influenced by brand and storage condition. In addition, small but statistically significant increases in NNN levels were observed in user- and commercially mentholated brands between day 0 and day 14 at pocket conditions. These data suggest that manufacturing and user manipulations, such as mentholation and storage conditions, may directly impact the microbiome of cigarette tobacco as well as the levels of carcinogens.
Collapse
Affiliation(s)
- Jessica Chopyk
- Maryland Institute for Applied Environmental Health, School of Public Health, University of Maryland College Park, MD, USA
| | - Suhana Chattopadhyay
- Maryland Institute for Applied Environmental Health, School of Public Health, University of Maryland College Park, MD, USA
| | - Prachi Kulkarni
- Maryland Institute for Applied Environmental Health, School of Public Health, University of Maryland College Park, MD, USA
| | - Eoghan M Smyth
- Maryland Institute for Applied Environmental Health, School of Public Health, University of MarylandCollege Park, MD, USA; Institute for Genome Sciences and Department of Microbiology and Immunology, School of Medicine, University of MarylandBaltimore, MD, USA
| | - Lauren E Hittle
- Institute for Genome Sciences and Department of Microbiology and Immunology, School of Medicine, University of Maryland Baltimore, MD, USA
| | - Joseph N Paulson
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer InstituteBoston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public HealthBoston, MA, USA
| | - Mihai Pop
- Center for Bioinformatics and Computational Biology, University of Maryland College Park, MD, USA
| | | | - Pamela I Clark
- Department of Behavioral and Community Health, School of Public Health, University of Maryland College Park, MD, USA
| | - Emmanuel F Mongodin
- Institute for Genome Sciences and Department of Microbiology and Immunology, School of Medicine, University of Maryland Baltimore, MD, USA
| | - Amy R Sapkota
- Maryland Institute for Applied Environmental Health, School of Public Health, University of Maryland College Park, MD, USA
| |
Collapse
|
38
|
Giacomuzzi V, Cappellin L, Khomenko I, Biasioli F, Schütz S, Tasin M, Knight AL, Angeli S. Emission of Volatile Compounds from Apple Plants Infested with Pandemis heparana Larvae, Antennal Response of Conspecific Adults, and Preliminary Field Trial. J Chem Ecol 2016; 42:1265-1280. [PMID: 27896554 DOI: 10.1007/s10886-016-0794-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/24/2016] [Accepted: 10/26/2016] [Indexed: 11/25/2022]
Abstract
This study investigated the volatile emission from apple (Malus x domestica Borkh., cv. Golden Delicious) foliage that was either intact, mechanically-damaged, or exposed to larval feeding by Pandemis heparana (Denis and Schiffermüller) (Lepidoptera: Tortricidae). Volatiles were collected by closed-loop-stripping-analysis and characterized by gas chromatography-mass spectrometry in three time periods: after 1 h and again 24 and 48 h later. Volatiles for all treatments also were monitored continuously over a 72-h period by the use of proton transfer reaction - time of flight-mass spectrometry (PTR-ToF-MS). In addition, the volatile samples were analyzed by gas chromatography-electroantennographic detection (GC-EAD) using male and female antennae of P. heparana. Twelve compounds were detected from intact foliage compared with 23 from mechanically-damaged, and 30 from P. heparana-infested foliage. Interestingly, six compounds were released only by P. heparana-infested foliage. The emission dynamics of many compounds measured by PTR-ToF-MS showed striking differences according to the timing of herbivory and the circadian cycle. For example, the emission of green leaf volatiles began shortly after the start of herbivory, and increased over time independently from the light-dark cycle. Conversely, the emission of terpenes and aromatic compounds showed a several-hour delay in response to herbivory, and followed a diurnal rhythm. Methanol was the only identified volatile showing a nocturnal rhythm. Consistent GC-EAD responses were found for sixteen compounds, including five aromatic ones. A field trial in Sweden demonstrated that benzyl alcohol, 2-phenylethanol, phenylacetonitrile, and indole lures placed in traps were not attractive to Pandemis spp. adults, but 2-phenylethanol and phenylacetonitrile when used in combination with acetic acid were attractive to both sexes.
Collapse
Affiliation(s)
- Valentino Giacomuzzi
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100, Bolzano, Italy
| | - Luca Cappellin
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010, San Michele all'Adige, Italy
- School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge,, MA, 02138, USA
| | - Iuliia Khomenko
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Franco Biasioli
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Stefan Schütz
- Büsgen-Institute, Department of Forest Zoology and Forest Conservation, University of Göttingen, Büsgenweg 3, 37077, Göttingen, Germany
| | - Marco Tasin
- Department of Plant Protection Biology, Unit of Integrated Plant Protection, Swedish University of Agricultural Science, Växtskyddsvägen 3, 230 53, Alnarp, Sweden
| | - Alan L Knight
- USDA, Agricultural Research Service, 5230 Konnowac Pass Rd, Wapato, WA, 98951, USA.
| | - Sergio Angeli
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100, Bolzano, Italy
| |
Collapse
|
39
|
Mhuireach G, Johnson BR, Altrichter AE, Ladau J, Meadow JF, Pollard KS, Green JL. Urban greenness influences airborne bacterial community composition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 571:680-7. [PMID: 27418518 DOI: 10.1016/j.scitotenv.2016.07.037] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/01/2016] [Accepted: 07/06/2016] [Indexed: 05/06/2023]
Abstract
Urban green space provides health benefits for city dwellers, and new evidence suggests that microorganisms associated with soil and vegetation could play a role. While airborne microorganisms are ubiquitous in urban areas, the influence of nearby vegetation on airborne microbial communities remains poorly understood. We examined airborne microbial communities in parks and parking lots in Eugene, Oregon, using high-throughput sequencing of the bacterial 16S rRNA gene on the Illumina MiSeq platform to identify bacterial taxa, and GIS to measure vegetation cover in buffer zones of different diameters. Our goal was to explore variation among highly vegetated (parks) versus non-vegetated (parking lots) urban environments. A secondary objective was to evaluate passive versus active collection methods for outdoor airborne microbial sampling. Airborne bacterial communities from five parks were different from those of five parking lots (p=0.023), although alpha diversity was similar. Direct gradient analysis showed that the proportion of vegetated area within a 50m radius of the sampling station explained 15% of the variation in bacterial community composition. A number of key taxa, including several Acidobacteriaceae were substantially more abundant in parks, while parking lots had higher relative abundance of Acetobacteraceae. Parks had greater beta diversity than parking lots, i.e. individual parks were characterized by unique bacterial signatures, whereas parking lot communities tended to be similar to each other. Although parks and parking lots were selected to form pairs of nearby sites, spatial proximity did not appear to affect compositional similarity. Our results also showed that passive and active collection methods gave comparable results, indicating the "settling dish" method is effective for outdoor airborne sampling. This work sets a foundation for understanding how urban vegetation may impact microbial communities, with potential implications for designing neighborhoods and open space systems that foster better human health.
Collapse
Affiliation(s)
- Gwynne Mhuireach
- Department of Landscape Architecture, University of Oregon, Eugene, OR, United States; Institute for a Sustainable Environment, University of Oregon, Eugene, OR, United States; Biology and the Built Environment Center, Institute of Ecology and Evolution, University of Oregon, Eugene, OR, United States; Energy Studies in Buildings Laboratory, Department of Architecture, University of Oregon, Eugene, OR, United States.
| | - Bart R Johnson
- Department of Landscape Architecture, University of Oregon, Eugene, OR, United States; Institute for a Sustainable Environment, University of Oregon, Eugene, OR, United States
| | - Adam E Altrichter
- Biology and the Built Environment Center, Institute of Ecology and Evolution, University of Oregon, Eugene, OR, United States
| | - Joshua Ladau
- Gladstone Institutes, University of California, San Francisco, CA, United States
| | - James F Meadow
- Biology and the Built Environment Center, Institute of Ecology and Evolution, University of Oregon, Eugene, OR, United States
| | - Katherine S Pollard
- Gladstone Institutes, University of California, San Francisco, CA, United States; Division of Biostatistics, Institute for Human Genetics, Institute for Computational Health Sciences, University of California, San Francisco, CA 94158, United States
| | - Jessica L Green
- Biology and the Built Environment Center, Institute of Ecology and Evolution, University of Oregon, Eugene, OR, United States
| |
Collapse
|
40
|
Vacher C, Hampe A, Porté AJ, Sauer U, Compant S, Morris CE. The Phyllosphere: Microbial Jungle at the Plant–Climate Interface. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2016. [DOI: 10.1146/annurev-ecolsys-121415-032238] [Citation(s) in RCA: 229] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Arndt Hampe
- BIOGECO, INRA, Univ. Bordeaux, 33610 Cestas, France
| | | | - Ursula Sauer
- Bioresources Unit, Department of Health and Environment, AIT Austrian Institute of Technology GmbH, 3430 Tulln, Austria
| | - Stéphane Compant
- Bioresources Unit, Department of Health and Environment, AIT Austrian Institute of Technology GmbH, 3430 Tulln, Austria
| | - Cindy E. Morris
- INRA, Unité de Recherche de Pathologie Végétale, 84143 Montfavet, France
| |
Collapse
|
41
|
Martemyanov VV, Belousova IA, Pavlushin SV, Dubovskiy IM, Ershov NI, Alikina TY, Kabilov MR, Glupov VV. Phenological asynchrony between host plant and gypsy moth reduces insect gut microbiota and susceptibility to Bacillus thuringiensis. Ecol Evol 2016; 6:7298-7310. [PMID: 28725398 PMCID: PMC5513265 DOI: 10.1002/ece3.2460] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/26/2016] [Accepted: 08/12/2016] [Indexed: 01/15/2023] Open
Abstract
The phenological synchrony between the emergence of overwintering herbivorous insects and the budding of host plants is considered a crucial factor in the population dynamics of herbivores. However, the mechanisms driving the interactions between the host plant, herbivores, and their pathogens are often obscure. In the current study, an artificially induced phenological asynchrony was used to investigate how the asynchrony between silver birch Betula pendula and gypsy moth Lymantria dispar affects the immunity of the insect to bacteria, its susceptibility to the entomopathogenic bacteria Bacillus thuringiensis, and the diversity in its midgut microbiota. The lysozyme-like activity in both the midgut and hemolymph plasma and the nonspecific esterase activity and antimicrobial peptide gene expression in the midgut were studied in both noninfected and B. thuringiensis-infected larvae. Our results provide the first evidence that phenologically asynchronous larvae are less susceptible to B. thuringiensis infection than phenologically synchronous larvae, and our results show that these effects are related to the high basic levels and B. thuringiensis-induced levels of lysozyme-like activities. Moreover, a 16S rRNA analysis revealed that dramatic decreases in the diversity of the larval gut bacterial consortia occurred under the effect of asynchrony. Larvae infected with B. thuringiensis presented decreased microbiota diversity if the larvae were reared synchronously with the host plant but not if they were reared asynchronously. Our study demonstrates the significant effect of phenological asynchrony on innate immunity-mediated interactions between herbivores and entomopathogenic bacteria and highlights the role of nonpathogenic gut bacteria in these interactions.
Collapse
Affiliation(s)
- Vyacheslav V. Martemyanov
- Laboratory of Ecological ParasitologyInstitute of Systematics and Ecology of Animals Siberian BranchRussian Academy of SciencesNovosibirskRussia
- Biological InstituteNational Research Tomsk State UniversityTomskRussia
| | - Irina A. Belousova
- Laboratory of Ecological ParasitologyInstitute of Systematics and Ecology of Animals Siberian BranchRussian Academy of SciencesNovosibirskRussia
- Institute of BiologyIrkutsk State UniversityIrkutskRussia
| | - Sergey V. Pavlushin
- Laboratory of Ecological ParasitologyInstitute of Systematics and Ecology of Animals Siberian BranchRussian Academy of SciencesNovosibirskRussia
| | - Ivan M. Dubovskiy
- Laboratory of Insect PathologyInstitute of Systematics and Ecology of Animals Siberian BranchRussian Academy of SciencesNovosibirskRussia
| | - Nikita I. Ershov
- Institute of Cytology and GeneticsSiberian BranchRussian Academy of SciencesNovosibirskRussia
| | - Tatyana Y. Alikina
- Genomics Core FacilityInstitute of Chemical Biology and Fundamental MedicineSiberian BranchRussian Academy of SciencesNovosibirskRussia
| | - Marsel R. Kabilov
- Genomics Core FacilityInstitute of Chemical Biology and Fundamental MedicineSiberian BranchRussian Academy of SciencesNovosibirskRussia
| | - Victor V. Glupov
- Laboratory of Insect PathologyInstitute of Systematics and Ecology of Animals Siberian BranchRussian Academy of SciencesNovosibirskRussia
| |
Collapse
|
42
|
Ploch S, Rose LE, Bass D, Bonkowski M. High Diversity Revealed in Leaf-Associated Protists (Rhizaria: Cercozoa) of Brassicaceae. J Eukaryot Microbiol 2016; 63:635-41. [PMID: 27005328 PMCID: PMC5031217 DOI: 10.1111/jeu.12314] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/20/2016] [Accepted: 03/12/2016] [Indexed: 02/06/2023]
Abstract
The largest biological surface on earth is formed by plant leaves. These leaf surfaces are colonized by a specialized suite of leaf-inhabiting microorganisms, recently termed "phyllosphere microbiome". Microbial prey, however, attract microbial predators. Protists in particular have been shown to structure bacterial communities on plant surfaces, but virtually nothing is known about the community composition of protists on leaves. Using newly designed specific primers targeting the 18S rDNA gene of Cercozoa, we investigated the species richness of this common protist group on leaves of four Brassicaceae species from two different locations in a cloning-based approach. The generated sequences revealed a broad diversity of leaf-associated Cercozoa, mostly bacterial feeders, but also including known plant pathogens and a taxon of potential endophytes that were recently described as algal predators in freshwater systems. This initial study shows that protists must be regarded as an integral part of the microbial diversity in the phyllosphere of plants.
Collapse
Affiliation(s)
- Sebastian Ploch
- Institute of Population Genetics, Cluster of Excellence in Plant Sciences, University of Düsseldorf, Universitätsstr. 1, D-40225, Düsseldorf, Germany
- Senckenberg Biodiversity and Climate Research Center, Georg-Voigt-Street 14-16, D-60325, Frankfurt, Germany
| | - Laura E Rose
- Institute of Population Genetics, Cluster of Excellence in Plant Sciences, University of Düsseldorf, Universitätsstr. 1, D-40225, Düsseldorf, Germany
| | - David Bass
- Department of Life Sciences, The Natural History Museum, London, SW7 5BD, United Kingdom
- Centre for Environment, Fisheries, and Aquaculture Science (Cefas), Barrack Road, The Nothe, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - Michael Bonkowski
- Department of Terrestrial Ecology, Institute of Zoology, University of Cologne, Zülpicher Street 47b, D-50674, Köln, Germany
| |
Collapse
|
43
|
Venkatachalam S, Ranjan K, Prasanna R, Ramakrishnan B, Thapa S, Kanchan A. Diversity and functional traits of culturable microbiome members, including cyanobacteria in the rice phyllosphere. PLANT BIOLOGY (STUTTGART, GERMANY) 2016; 18:627-37. [PMID: 26849835 DOI: 10.1111/plb.12441] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 02/01/2016] [Indexed: 05/13/2023]
Abstract
The diversity and abundance of culturable microbiome members of the rice phyllosphere was investigated using cv. Pusa Punjab Basmati 1509. Both diversity and species richness of bacteria were significantly higher in plants in pots in a semi-controlled environment than those in fields. Application of fertilisers reduced both diversity and species richness in field-grown plants under a conventional flooded system of rice intensification (SRI) and in dry-seeded rice (DSR) modes. Sequence analyses of 16S rDNA of culturable bacteria, those selected after amplified ribosomal DNA restriction analysis (ARDRA), showed the dominance of α-proteobacteria (35%) and actinobacteria (38%); Pantoea, Exiguobacterium and Bacillus were common among the culturable phyllospheric bacteria. About 34% of 83 culturable bacterial isolates had higher potential (>2 μg·ml(-1) ) for indole acetic acid production in the absence of tryptophan. Interestingly, the phyllosphere bacterial isolates from the pot experiment had significantly higher potential for nitrogen fixation than isolates from the field experiment. Enrichment for cyanobacteria showed both unicellular forms and non-heterocystous filaments under aerobic as well as anaerobic conditions. PCR-DGGE analysis of these showed that aerobic and anaerobic conditions as well as the three modes of cultivation of rice in the field strongly influenced the number and abundance of phylotypes. The adaptability and functional traits of these culturable microbiome members suggest enormous diversity in the phyllosphere, including potential for plant growth promotion, which was also significantly influenced by the different methods of growing rice.
Collapse
Affiliation(s)
- S Venkatachalam
- Division of Microbiology, ICAR - Indian Agricultural Research Institute (IARI), New Delhi, India
| | - K Ranjan
- Division of Microbiology, ICAR - Indian Agricultural Research Institute (IARI), New Delhi, India
| | - R Prasanna
- Division of Microbiology, ICAR - Indian Agricultural Research Institute (IARI), New Delhi, India
| | - B Ramakrishnan
- Division of Microbiology, ICAR - Indian Agricultural Research Institute (IARI), New Delhi, India
| | - S Thapa
- Division of Microbiology, ICAR - Indian Agricultural Research Institute (IARI), New Delhi, India
| | - A Kanchan
- Division of Microbiology, ICAR - Indian Agricultural Research Institute (IARI), New Delhi, India
| |
Collapse
|
44
|
Stone BWG, Jackson CR. Biogeographic Patterns Between Bacterial Phyllosphere Communities of the Southern Magnolia (Magnolia grandiflora) in a Small Forest. MICROBIAL ECOLOGY 2016; 71:954-61. [PMID: 26883131 DOI: 10.1007/s00248-016-0738-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 02/08/2016] [Indexed: 05/25/2023]
Abstract
The phyllosphere presents a unique system of discrete and easily replicable surfaces colonized primarily by bacteria. However, the biogeography of bacteria in the phyllosphere is little understood, especially at small to intermediate scales. Bacterial communities on the leaves of 91 southern magnolia (Magnolia grandiflora) trees 1-452 m apart in a small forest plot were analyzed and fragments of the 16S ribosomal RNA (rRNA) gene sequenced using the Illumina platform. Assemblages were dominated by members of the Alphaproteobacteria, Bacteroidetes, and Acidobacteria. Patterns in community composition were measured by both relative abundance (theta) and presence-absence (Jaccard) dissimilarity metrics. Distance-based Moran's eigenvector map analyses of the distance-decay relationship found a significant, positive relationship between each dissimilarity metric and significant eigenfunctions derived from geographic distance between trees, indicating trees that were closer together had more similar bacterial phyllosphere communities. Indirect gradient analyses revealed that several environmental parameters (canopy cover, tree elevation, and the slope and aspect of the ground beneath trees) were significantly related to multivariate ordination scores based on relative bacterial sequence abundances; however, these relationships were not significant when looking at the incidence of bacterial taxa. This suggests that bacterial growth and abundance in the phyllosphere is shaped by different assembly mechanisms than bacterial presence or absence. More broadly, this study demonstrates that the distance-decay relationship applies to phyllosphere communities at local scales, and that environmental parameters as well as neutral forces may both influence spatial patterns in the phyllosphere.
Collapse
Affiliation(s)
- Bram W G Stone
- Department of Biology, University of Mississippi, Shoemaker Hall, University MS, P.O. Box 1848, Oxford, MS, 38677, USA.
| | - Colin R Jackson
- Department of Biology, University of Mississippi, Shoemaker Hall, University MS, P.O. Box 1848, Oxford, MS, 38677, USA
| |
Collapse
|
45
|
Eggenberger S, Diaz-Arias MM, Gougherty AV, Nutter FW, Sernett J, Robertson AE. Dissemination of Goss's Wilt of Corn and Epiphytic Clavibacter michiganensis subsp. nebraskensis from Inoculum Point Sources. PLANT DISEASE 2016; 100:686-695. [PMID: 30688625 DOI: 10.1094/pdis-04-15-0486-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Goss's wilt of corn, caused by Clavibacter michiganensis subsp. nebraskensis, has reemerged since 2006 as an economically important disease of corn in in the Midwestern United States. In 2012 and 2013, field plot studies were conducted with a pathogenic, rifampicin-resistant C. michiganensis subsp. nebraskensis isolate and a Goss's wilt-susceptible corn hybrid to monitor epiphytic C. michiganensis subsp. nebraskensis population densities and the temporal and spatial spread of Goss's wilt incidence originating from inoculum point sources. The randomized complete block trial included three treatments: noninoculated control, inoculum point sources established by wound inoculation, and inoculum point sources consisting of C. michiganensis subsp. nebraskensis-infested corn residue. Epiphytic C. michiganensis subsp. nebraskensis was detected on asymptomatic corn leaves collected up to 2.5 m away from inoculum sources at 15 days after inoculation in both years. The percentage of asymptomatic leaf samples on which epiphytic C. michiganensis subsp. nebraskensis was detected increased until mid-August in both years, and reached 90, 55, and 35% in wound-, residue-, and noninoculated plots, respectively, in 2012; and 50, 11, and 2%, respectively, in 2013. Although both growing seasons were drier than normal, Goss's wilt incidence increased over time and space from all C. michiganensis subsp. nebraskensis point sources. Plots infested with C. michiganensis subsp. nebraskensis residue had final Goss's wilt incidence of 7.5 and 1.8% in 2012 and 2013, respectively; plots with a wound-inoculated source had final Goss's wilt incidence of 16.6 and 14.0% in 2012 and 2013, respectively. Our findings suggest that relatively recent outbreaks of Goss's wilt in new regions of the United States may be the result of a gradual, nondetected buildup of C. michiganensis subsp. nebraskensis inoculum in fields.
Collapse
Affiliation(s)
- Sharon Eggenberger
- Department of Plant Pathology and Microbiology, Iowa State University, Ames 50014
| | | | - Andrew V Gougherty
- Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, 21532
| | - Forrest W Nutter
- Department of Plant Pathology and Microbiology, Iowa State University
| | - Jeff Sernett
- Fifth author: Monsanto Company, Huxley, IA 50124
| | | |
Collapse
|
46
|
Wei F, Hu X, Xu X. Dispersal of Bacillus subtilis and its effect on strawberry phyllosphere microbiota under open field and protection conditions. Sci Rep 2016; 6:22611. [PMID: 26936109 PMCID: PMC4776175 DOI: 10.1038/srep22611] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/17/2016] [Indexed: 01/21/2023] Open
Abstract
Using biological control agents (BCAs) is an essential component of integrated pest and diseases management. Despite much research on biocontrol of plant diseases, success in field crops has been limited with most successes being achieved in greenhouse cultivation. This lack of success is often attributed to the complex ecological processes involved in biocontrol. We used next generation sequencing (NGS) technology to study environmental fate of Bacillus subtilis, a widely used BCA, focusing on its dispersal aspect in open field and under protection. The dispersal of B. subtilis was very limited, particularly under protection. The reduction in the BCA population size was relatively small within 8 days; indeed, no overall reduction in the relative abundance was observed under the protected condition. These results suggested that limited dispersal is probably the main reason for its variable (and often low) control efficacy under field conditions. Thus to increase biocontrol efficacy, it is necessary to frequently apply this BCA with the application interval depending on the growth rate of target host tissues. Phyllosphere microbiota differed significantly between plants grown in open field and under protection but were not greatly affected by the introduced BCA.
Collapse
Affiliation(s)
- Feng Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Taicheng Road 3, Yangling 712100, China
- NIAB East Malling Research, East Malling, Kent, ME19 6BJ, UK
| | - Xiaoping Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Taicheng Road 3, Yangling 712100, China
| | - Xiangming Xu
- NIAB East Malling Research, East Malling, Kent, ME19 6BJ, UK
| |
Collapse
|
47
|
Diguanylate Cyclases AdrA and STM1987 Regulate Salmonella enterica Exopolysaccharide Production during Plant Colonization in an Environment-Dependent Manner. Appl Environ Microbiol 2015; 82:1237-1248. [PMID: 26655751 DOI: 10.1128/aem.03475-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/03/2015] [Indexed: 12/17/2022] Open
Abstract
Increasing evidence indicates that despite exposure to harsh environmental stresses, Salmonella enterica successfully persists on plants, utilizing fresh produce as a vector to animal hosts. Among the important S. enterica plant colonization factors are those involved in biofilm formation. S. enterica biofilm formation is controlled by the signaling molecule cyclic di-GMP and represents a sessile lifestyle on surfaces that protects the bacterium from environmental factors. Thus, the transition from a motile, planktonic lifestyle to a sessile lifestyle may represent a vital step in bacterial success. This study examined the mechanisms of S. enterica plant colonization, including the role of diguanylate cyclases (DGCs) and phosphodiesterases (PDEs), the enzymes involved in cyclic di-GMP metabolism. We found that two biofilm components, cellulose and curli, are differentially required at distinct stages in root colonization and that the DGC STM1987 regulates cellulose production in this environment independent of AdrA, the DGC that controls the majority of in vitro cellulose production. In addition, we identified a new function for AdrA in the transcriptional regulation of colanic acid and demonstrated that adrA and colanic acid biosynthesis are associated with S. enterica desiccation tolerance on the leaf surface. Finally, two PDEs with known roles in motility, STM1344 and STM1697, had competitive defects in the phyllosphere, suggesting that regulation of motility is crucial for S. enterica survival in this niche. Our results indicate that specific conditions influence the contribution of individual DGCs and PDEs to bacterial success, perhaps reflective of differential responses to environmental stimuli.
Collapse
|
48
|
Hunter PJ, Pink DA, Bending GD. Cultivar-level genotype differences influence diversity and composition of lettuce ( Lactuca sp.) phyllosphere fungal communities. FUNGAL ECOL 2015. [DOI: 10.1016/j.funeco.2015.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
49
|
Esser DS, Leveau JHJ, Meyer KM, Wiegand K. Spatial scales of interactions among bacteria and between bacteria and the leaf surface. FEMS Microbiol Ecol 2015; 91:fiu034. [PMID: 25764562 PMCID: PMC4399446 DOI: 10.1093/femsec/fiu034] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/04/2014] [Accepted: 12/21/2014] [Indexed: 01/11/2023] Open
Abstract
Microbial life on plant leaves is characterized by a multitude of interactions between leaf colonizers and their environment. While the existence of many of these interactions has been confirmed, their spatial scale or reach often remained unknown. In this study, we applied spatial point pattern analysis to 244 distribution patterns of Pantoea agglomerans and Pseudomonas syringae on bean leaves. The results showed that bacterial colonizers of leaves interact with their environment at different spatial scales. Interactions among bacteria were often confined to small spatial scales up to 5-20 μm, compared to interactions between bacteria and leaf surface structures such as trichomes which could be observed in excess of 100 μm. Spatial point-pattern analyses prove a comprehensive tool to determine the different spatial scales of bacterial interactions on plant leaves and will help microbiologists to better understand the interplay between these interactions.
Collapse
Affiliation(s)
- Daniel S Esser
- Department of Ecosystem Modelling, Büsgen-Institute, Georg-August-University of Göttingen, Büsgenweg 4, 37077 Göttingen, Germany
| | - Johan H J Leveau
- Department of Plant Pathology, University of California, Davis, CA 95616-8751, USA
| | - Katrin M Meyer
- Department of Ecosystem Modelling, Büsgen-Institute, Georg-August-University of Göttingen, Büsgenweg 4, 37077 Göttingen, Germany
| | - Kerstin Wiegand
- Department of Ecosystem Modelling, Büsgen-Institute, Georg-August-University of Göttingen, Büsgenweg 4, 37077 Göttingen, Germany
| |
Collapse
|
50
|
Dees MW, Lysøe E, Nordskog B, Brurberg MB. Bacterial communities associated with surfaces of leafy greens: shift in composition and decrease in richness over time. Appl Environ Microbiol 2015; 81:1530-9. [PMID: 25527554 PMCID: PMC4309712 DOI: 10.1128/aem.03470-14] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/14/2014] [Indexed: 11/20/2022] Open
Abstract
The phyllosphere is colonized by a wide variety of bacteria and fungi; it harbors epiphytes, as well as plant-pathogenic bacteria and even human pathogens. However, little is known about how the bacterial community composition on leafy greens develops over time. The bacterial community of the leafy-green phyllosphere obtained from two plantings of rocket salad (Diplotaxis tenuifolia) and three plantings of lettuce (Lactuca sativa) at two farms in Norway were profiled by an Illumina MiSeq-based approach. We found that the bacterial richness of the L. sativa samples was significantly greater shortly (3 weeks) after planting than at harvest (5 to 7 weeks after planting) for plantings 1 and 3 at both farms. For the second planting, the bacterial diversity remained consistent at the two sites. This suggests that the effect on bacterial colonization of leaves, at least in part must, be seasonally driven rather than driven solely by leaf maturity. The distribution of phyllosphere communities varied between D. tenuifolia and L. sativa at harvest. The variability between these species at the same location suggests that the leaf-dwelling bacteria are not only passive inhabitants but interact with the host, which shapes niches favoring the growth of particular taxa. This work contributes to our understanding of host plant-specific microbial community structures and shows how these communities change throughout plant development.
Collapse
Affiliation(s)
- Merete Wiken Dees
- Bioforsk-Norwegian Institute for Agricultural and Environmental Research, Ås, Norway
| | - Erik Lysøe
- Bioforsk-Norwegian Institute for Agricultural and Environmental Research, Ås, Norway
| | - Berit Nordskog
- Bioforsk-Norwegian Institute for Agricultural and Environmental Research, Ås, Norway
| | - May Bente Brurberg
- Bioforsk-Norwegian Institute for Agricultural and Environmental Research, Ås, Norway
| |
Collapse
|