1
|
Darmasaputra GS, van Rijnberk LM, Galli M. Functional consequences of somatic polyploidy in development. Development 2024; 151:dev202392. [PMID: 38415794 PMCID: PMC10946441 DOI: 10.1242/dev.202392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Polyploid cells contain multiple genome copies and arise in many animal tissues as a regulated part of development. However, polyploid cells can also arise due to cell division failure, DNA damage or tissue damage. Although polyploidization is crucial for the integrity and function of many tissues, the cellular and tissue-wide consequences of polyploidy can be very diverse. Nonetheless, many polyploid cell types and tissues share a remarkable similarity in function, providing important information about the possible contribution of polyploidy to cell and tissue function. Here, we review studies on polyploid cells in development, underlining parallel functions between different polyploid cell types, as well as differences between developmentally-programmed and stress-induced polyploidy.
Collapse
Affiliation(s)
- Gabriella S. Darmasaputra
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| | - Lotte M. van Rijnberk
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| | - Matilde Galli
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| |
Collapse
|
2
|
Sung YW, Kim J, Yang JW, Shim D, Kim YH. Transcriptome-Based Comparative Expression Profiling of Sweet Potato during a Compatible Response with Root-Knot Nematode Meloidogyne incognita Infection. Genes (Basel) 2023; 14:2074. [PMID: 38003017 PMCID: PMC10671793 DOI: 10.3390/genes14112074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/08/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
M. incognita, a root-knot nematode (RKN), infects the roots of several important food crops, including sweet potato (Ipomoea batatas Lam.), and severely reduces yields. However, the molecular mechanisms underlying infection remain unclear. Previously, we investigated differential responses to RKN invasion in susceptible and resistant sweet potato cultivars through RNA-seq-based transcriptome analysis. In this study, gene expression similarities and differences were examined in RKN-susceptible sweet potato cultivars during the compatible response to RKN infection. Three susceptible cultivars investigated in previous research were used: Dahomi (DHM), Shinhwangmi (SHM), and Yulmi (YM). Of the three cultivars, YM had the highest number of genes with altered expression in response to infection. YM was also the cultivar with the highest susceptibility to RKN. Comparisons among cultivars identified genes that were regulated in more than one cultivar upon infection. Pairwise comparisons revealed that YM and DHM shared the most regulated genes, whereas YM and SHM shared the lowest number of regulated genes. Five genes were up-regulated, and two were down-regulated, in all three cultivars. Among these, four genes were highly up-regulated in all cultivars: germin-like protein, anthranilate synthase α subunit, isocitrate lyase, and uncharacterized protein. Genes were also identified that were uniquely regulated in each cultivar in response to infection, suggesting that susceptible cultivars respond to infection through shared and cultivar-specific pathways. Our findings expand the understanding of the compatible response to RKN invasion in sweet potato roots and provide useful information for further research on RKN defense mechanisms.
Collapse
Affiliation(s)
- Yeon Woo Sung
- Department of Biology Education, IALS, Gyeongsang National University, Jinju 52828, Republic of Korea
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jaewook Kim
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jung-Wook Yang
- Department of Crop Cultivation & Environment, Research National Institute of Crop Science, RDA, Suwon 16429, Republic of Korea
| | - Donghwan Shim
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yun-Hee Kim
- Department of Biology Education, IALS, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
3
|
Vilela RMIF, Kuster VC, Magalhães TA, Martini VC, Oliveira RM, de Oliveira DC. Galls induced by a root-knot nematode in Petroselinum crispum (Mill.): impacts on host development, histology, and cell wall dynamics. PROTOPLASMA 2023; 260:1287-1302. [PMID: 36892633 DOI: 10.1007/s00709-023-01849-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Infection by the root-knot nematode (RKN), Meloidogyne incognita, impacts crop productivity worldwide, including parsley cultures (Petroselinum crispum). Meloidogyne infection involves a complex relationship between the pathogen and the host plant tissues, leading to the formation of galls and feeding sites that disorganize the vascular system, affecting the development of cultures. Herein, we sought to evaluate the impact of RKN on the agronomic traits, histology, and cell wall components of parsley, with emphasis on giant cell formation. The study consisted of two treatments: (i) control, where 50 individuals of parsley grew without M. incognita inoculation; and (ii) inoculated plants, where 50 individuals were exposed to juveniles (J2) of M. incognita. Meloidogyne incognita infection affected the development of parsley, reducing the growth of some agronomical characteristics such as root weight and shoot weight and height. Giant cell formation was noticed at 18 days after inoculation, promoting disorganization of the vascular system. Epitopes of HGs detected in giant cells reveal the continuous capacity of giant cells to elongate under the stimulus of RKN, essential processes for feeding site establishment. In addition, the detection of epitopes of HGs with low and high methyl-esterified groups indicates the PMEs activity despite biotic stress.
Collapse
Affiliation(s)
| | - Vinícius Coelho Kuster
- Campus Cidade Universitária, Universidade Federal de Jataí (UFJ), Jataí, Goiás, CEP 75801-615, Brazil
| | - Thiago Alves Magalhães
- Departamento de Biologia, Universidade Federal de Lavras (UFLA), Lavras, Minas Gerais, CEP 37200-000, Brazil
| | - Vitor Campana Martini
- Campus Umuarama, Universidade Federal de Uberlândia (UFU), Instituto de Biologia, Uberlândia, Minas Gerais, CEP 38402-020, Brazil
| | | | - Denis Coelho de Oliveira
- Campus Umuarama, Universidade Federal de Uberlândia (UFU), Instituto de Biologia, Uberlândia, Minas Gerais, CEP 38402-020, Brazil.
| |
Collapse
|
4
|
Khan A, Chen S, Fatima S, Ahamad L, Siddiqui MA. Biotechnological Tools to Elucidate the Mechanism of Plant and Nematode Interactions. PLANTS (BASEL, SWITZERLAND) 2023; 12:2387. [PMID: 37376010 DOI: 10.3390/plants12122387] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023]
Abstract
Plant-parasitic nematodes (PPNs) pose a threat to global food security in both the developed and developing worlds. PPNs cause crop losses worth a total of more than USD 150 billion worldwide. The sedentary root-knot nematodes (RKNs) also cause severe damage to various agricultural crops and establish compatible relationships with a broad range of host plants. This review aims to provide a broad overview of the strategies used to identify the morpho-physiological and molecular events that occur during RKN parasitism. It describes the most current developments in the transcriptomic, proteomic, and metabolomic strategies of nematodes, which are important for understanding compatible interactions of plants and nematodes, and several strategies for enhancing plant resistance against RKNs. We will highlight recent rapid advances in molecular strategies, such as gene-silencing technologies, RNA interference (RNAi), and small interfering RNA (siRNA) effector proteins, that are leading to considerable progress in understanding the mechanism of plant-nematode interactions. We also take into account genetic engineering strategies, such as targeted genome editing techniques, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) (CRISPR/Cas-9) system, and quantitative trait loci (QTL), to enhance the resistance of plants against nematodes.
Collapse
Affiliation(s)
- Arshad Khan
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Shaohua Chen
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Saba Fatima
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Lukman Ahamad
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | | |
Collapse
|
5
|
Zhang L, Xu Z, Jiang Z, Chen X, Li B, Xu L, Zhang Z. Cloning and functional analysis of the root-knot nematode resistance gene NtRk1 in tobacco. PHYSIOLOGIA PLANTARUM 2023; 175:e13894. [PMID: 36942459 DOI: 10.1111/ppl.13894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/06/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Tobacco (Nicotiana tabacum L.) is an economically important crop worldwide. Root-knot nematodes (RKNs) are responsible for yield losses in tobacco and other crops, such as tomato, potato, peanut, and soybean. Therefore, screening for resistance genes that can prevent RKN infestation and the associated damage is crucial. However, there is no report of cloning tobacco RKN resistance genes to date. Here, we cloned the tobacco RKN resistance gene NtRk1 from the resistant variety TI706, using rapid amplification of cDNA ends. NtRk1 has high homology with other RKN resistance genes (CaMi in pepper, Mi-1.1 and Mi-1.2 in tomato). Under normal conditions, NtRk1 was barely expressed in the roots; however, following RKN infection, its expression level rapidly increased. Overexpression of NtRk1 in the susceptible cultivar "Changbohuang" enhanced its resistance to Meloidogyne incognita, while RNA interference of NtRk1 in the resistant cultivar K326 resulted in its susceptibility to M. incognita. Moreover, compared with resistant variety K326, we found the salicylic acid and jasmonic acid contents of RNAi plants decreased after inoculation with M. incognita, and confirmed that the function of NtRk1 is related to these phytohormones. These findings indicate that NtRk1 is an RKN resistance gene, which is abundantly expressed in response to RKN infection and may enhance host defense responses by elevating salicylic acid and jasmonic acid levels.
Collapse
Affiliation(s)
- Luyang Zhang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhiqiang Xu
- China Tobacco Zhejiang Industry Co, Ltd, Hangzhou, 310008, China
| | - Zhimin Jiang
- China Tobacco Zhejiang Industry Co, Ltd, Hangzhou, 310008, China
| | - Xiaoxiang Chen
- China Tobacco Zhejiang Industry Co, Ltd, Hangzhou, 310008, China
| | - Bo Li
- China Tobacco Zhejiang Industry Co, Ltd, Hangzhou, 310008, China
| | - Liping Xu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhiqiang Zhang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| |
Collapse
|
6
|
Nadeem H, Khan A, Gupta R, Anees A, Ahmad F. A Seinhorst Model Determined the Host-Parasite Relationships of Meloidogyne Javanica Infecting Fenugreek Cv. UM202. J Nematol 2023; 55:20230005. [PMID: 36880013 PMCID: PMC9984803 DOI: 10.2478/jofnem-2023-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Indexed: 03/02/2023] Open
Abstract
Root-knot nematodes (RKNs) have been shown to be challenging and persistent pests of economic crops worldwide. Among RKNs, Meloidogyne javanica is particularly important, as it rapidly spreads and has a diverse host range. Measuring its damaging threshold level will help us to develop management strategies for adequate plant protection against nematodes. In our study, we observed the relationship between a linear series of 12 initial population densities (Pi) of M. javanica, i.e., 0, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, and 128 second-staged juveniles (J2s) g-1 soil, and fenugreek cv. UM202 growth parameters were investigated using a Seinhorst model. A Seinhorst model was fitted to shoot length and dry weight data for fenugreek plants. A positive correlation was found between J2s inoculum levels and percent reductions in growth parameters. The 1.3 J2s of M. javanica g-1 soil were found to damage threshold levels with respect to shoot length and shoot dry weight of fenugreek plants. The minimum relative values (m) for shoot length and shoot dry weight were 0.15 and 0.17, respectively, at Pi =128 J2s g-1 soil. The maximum nematode reproduction rate (Pf /Pi) was 31.6 at an initial population density (Pi) of 2 J2s g-1 soil.
Collapse
Affiliation(s)
- Hera Nadeem
- Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh202002, India
| | - Amir Khan
- Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh202002, India
| | - Rishil Gupta
- Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh202002, India
| | - Arshi Anees
- Centre for Agricultural Education, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh202002, India
| | - Faheem Ahmad
- Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh202002, India
| |
Collapse
|
7
|
Kumar A, Fitoussi N, Sanadhya P, Sichov N, Bucki P, Bornstein M, Belausuv E, Brown Miyara S. Two Candidate Meloidogyne javanica Effector Genes, MjShKT and MjPUT3: A Functional Investigation of Their Roles in Regulating Nematode Parasitism. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:79-94. [PMID: 36324054 DOI: 10.1094/mpmi-10-22-0212-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
During parasitism, root-knot nematode Meloidogyne spp. inject molecules termed effectors that have multifunctional roles in construction and maintenance of nematode feeding sites. As an outcome of transcriptomic analysis of Meloidogyne javanica, we identified and characterized two differentially expressed genes encoding the predicted proteins MjShKT, carrying a Stichodactyla toxin (ShKT) domain, and MjPUT3, carrying a ground-like domain, both expressed during nematode parasitism of the tomato plant. Fluorescence in-situ hybridization revealed expression of MjShKT and MjPUT3 in the dorsal esophageal glands, suggesting their injection into host cells. MjShKT expression was upregulated during the parasitic life stages, to a maximum at the mature female stage, whereas MjPUT3 expression increased in third- to fourth-stage juveniles. Subcellular in-planta localization of MjShKT and MjPUT3 using a fused fluorescence marker indicated MjShKT co-occurrence with the endoplasmic reticulum, the perinuclear endoplasmatic reticulum, and the Golgi organelle markers, while MjPUT3 localized, to some extent, within the endoplasmatic reticulum and was clearly observed within the nucleoplasm. MjShKT inhibited programmed cell death induced by overexpression of MAPKKKα and Gpa2/RBP-1. Overexpression of MjShKT in tomato hairy roots allowed an increase in nematode reproduction, as indicated by the high number of eggs produced on roots overexpressing MjShKT. Roots overexpressing MjPUT3 were characterized by enhanced root growth, with no effect on nematode development on those roots. Investigation of the two candidate effectors suggested that MjShKT is mainly involved in manipulating the plant effector-triggered immune response toward establishment and maintenance of active feeding sites, whereas MjPUT3 might modulate roots morphology in favor of nematode fitness in the host roots. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Entomology, Nematology and Chemistry units, Agricultural Research Organization (ARO), Volcani Center, Bet Dagan 50250, Israel
| | - Nathalia Fitoussi
- Department of Entomology, Nematology and Chemistry units, Agricultural Research Organization (ARO), Volcani Center, Bet Dagan 50250, Israel
- Department of Plant Pathology and Microbiology, the Robert H. Smith Faculty of Agriculture, Food and Environment, the Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Payal Sanadhya
- Department of Entomology, Nematology and Chemistry units, Agricultural Research Organization (ARO), Volcani Center, Bet Dagan 50250, Israel
| | - Natalia Sichov
- Department of Entomology, Nematology and Chemistry units, Agricultural Research Organization (ARO), Volcani Center, Bet Dagan 50250, Israel
| | - Patricia Bucki
- Department of Entomology, Nematology and Chemistry units, Agricultural Research Organization (ARO), Volcani Center, Bet Dagan 50250, Israel
| | - Menachem Bornstein
- Department of Plant Pathology and Weed Research, ARO, Volcani Center, Bet Dagan 50250, Israel
| | - Eduard Belausuv
- Department of Plant Sciences, ARO, Volcani Center, Bet Dagan 50250, Israel
| | - Sigal Brown Miyara
- Department of Entomology, Nematology and Chemistry units, Agricultural Research Organization (ARO), Volcani Center, Bet Dagan 50250, Israel
| |
Collapse
|
8
|
Kranse OP, Ko I, Healey R, Sonawala U, Wei S, Senatori B, De Batté F, Zhou J, Eves-van den Akker S. A low-cost and open-source solution to automate imaging and analysis of cyst nematode infection assays for Arabidopsis thaliana. PLANT METHODS 2022; 18:134. [PMID: 36503537 PMCID: PMC9743603 DOI: 10.1186/s13007-022-00963-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Cyst nematodes are one of the major groups of plant-parasitic nematode, responsible for considerable crop losses worldwide. Improving genetic resources, and therefore resistant cultivars, is an ongoing focus of many pest management strategies. One of the major bottlenecks in identifying the plant genes that impact the infection, and thus the yield, is phenotyping. The current available screening method is slow, has unidimensional quantification of infection limiting the range of scorable parameters, and does not account for phenotypic variation of the host. The ever-evolving field of computer vision may be the solution for both the above-mentioned issues. To utilise these tools, a specialised imaging platform is required to take consistent images of nematode infection in quick succession. RESULTS Here, we describe an open-source, easy to adopt, imaging hardware and trait analysis software method based on a pre-existing nematode infection screening method in axenic culture. A cost-effective, easy-to-build and -use, 3D-printed imaging device was developed to acquire images of the root system of Arabidopsis thaliana infected with the cyst nematode Heterodera schachtii, replacing costly microscopy equipment. Coupling the output of this device to simple analysis scripts allowed the measurement of some key traits such as nematode number and size from collected images, in a semi-automated manner. Additionally, we used this combined solution to quantify an additional trait, root area before infection, and showed both the confounding relationship of this trait on nematode infection and a method to account for it. CONCLUSION Taken together, this manuscript provides a low-cost and open-source method for nematode phenotyping that includes the biologically relevant nematode size as a scorable parameter, and a method to account for phenotypic variation of the host. Together these tools highlight great potential in aiding our understanding of nematode parasitism.
Collapse
Affiliation(s)
- Olaf Prosper Kranse
- Department of Plant Sciences, The Crop Science Centre, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Itsuhiro Ko
- Department of Plant Sciences, The Crop Science Centre, University of Cambridge, Cambridge, CB2 3EA, UK
- Plant Pathology Department, Washington State University, Pullman, WA, 99164, USA
| | - Roberta Healey
- Department of Plant Sciences, The Crop Science Centre, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Unnati Sonawala
- Department of Plant Sciences, The Crop Science Centre, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Siyuan Wei
- Department of Plant Sciences, The Crop Science Centre, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Beatrice Senatori
- Department of Plant Sciences, The Crop Science Centre, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Francesco De Batté
- Department of Plant Sciences, The Crop Science Centre, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Ji Zhou
- Jiangsu Collaborative Innovation Center for Modern Crop Production Co-Sponsored By Province and Ministry, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, 210095, China
- Cambridge Crop Research, National Institute of Agricultural Botany (NIAB), Cambridge, CB3 0LE, UK
| | | |
Collapse
|
9
|
Li Y, Ren Q, Bo T, Mo M, Liu Y. AWA and ASH Homologous Sensing Genes of Meloidogyne incognita Contribute to the Tomato Infection Process. Pathogens 2022; 11:pathogens11111322. [PMID: 36365073 PMCID: PMC9693415 DOI: 10.3390/pathogens11111322] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
The AWA neurons of Caenorhabditis elegans mainly perceive volatile attractive odors, while the ASH neurons perceive pH, penetration, nociception, odor tropism, etc. The perceptual neurons of Meloidogyne incognita have been little studied. The number of infestations around and within tomato roots was significantly reduced after RNA interference for high-homology genes in AWA and ASH neurons compared between M. incognita and C. elegans. Through in situ hybridization, we further determined the expression and localization of the homologous genes Mi-odr-10 and Mi-gpa-6 in M. incognita. In this study, we found that M. incognita has neuronal sensing pathways similar to AWA and ASH perception of C. elegans for sensing chemical signals from tomato roots. Silencing the homologous genes in these pathways could affect the nematode perception and infestation of tomato root systems. The results contribute to elucidating the process of the plant host perception of M. incognita.
Collapse
Affiliation(s)
| | | | | | | | - Yajun Liu
- Correspondence: ; Tel.: +86-871-65031093
| |
Collapse
|
10
|
Sultana MS, Mazarei M, Millwood RJ, Liu W, Hewezi T, Stewart CN. Functional analysis of soybean cyst nematode-inducible synthetic promoters and their regulation by biotic and abiotic stimuli in transgenic soybean ( Glycine max). FRONTIERS IN PLANT SCIENCE 2022; 13:988048. [PMID: 36160998 PMCID: PMC9501883 DOI: 10.3389/fpls.2022.988048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
We previously identified cis-regulatory motifs in the soybean (Glycine max) genome during interaction between soybean and soybean cyst nematode (SCN), Heterodera glycines. The regulatory motifs were used to develop synthetic promoters, and their inducibility in response to SCN infection was shown in transgenic soybean hairy roots. Here, we studied the functionality of two SCN-inducible synthetic promoters; 4 × M1.1 (TAAAATAAAGTTCTTTAATT) and 4 × M2.3 (ATATAATTAAGT) each fused to the -46 CaMV35S core sequence in transgenic soybean. Histochemical GUS analyses of transgenic soybean plants containing the individual synthetic promoter::GUS construct revealed that under unstressed condition, no GUS activity is present in leaves and roots. While upon nematode infection, the synthetic promoters direct GUS expression to roots predominantly in the nematode feeding structures induced by the SCN and by the root-knot nematode (RKN), Meloidogyne incognita. There were no differences in GUS activity in leaves between nematode-infected and non-infected plants. Furthermore, we examined the specificity of the synthetic promoters in response to various biotic (insect: fall armyworm, Spodoptera frugiperda; and bacteria: Pseudomonas syringe pv. glycinea, P. syringe pv. tomato, and P. marginalis) stresses. Additionally, we examined the specificity to various abiotic (dehydration, salt, cold, wounding) as well as to the signal molecules salicylic acid (SA), methyl jasmonate (MeJA), and abscisic acid (ABA) in the transgenic plants. Our wide-range analyses provide insights into the potential applications of synthetic promoter engineering for conditional expression of transgenes leading to transgenic crop development for resistance improvement in plant.
Collapse
Affiliation(s)
- Mst Shamira Sultana
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, United States
| | - Mitra Mazarei
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, United States
| | - Reginald J. Millwood
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States
| | - Wusheng Liu
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, United States
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States
| | - C. Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
11
|
Abstract
Peptide signaling is an emerging paradigm in molecular plant-microbe interactions with vast implications for our understanding of plant-nematode interactions and beyond. Plant-like peptide hormones, first discovered in cyst nematodes, are now recognized as an important class of peptide effectors mediating several different types of pathogenic and symbiotic interactions. Here, we summarize what has been learned about nematode-secreted CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) peptide effectors since the last comprehensive review on this topic a decade ago. We also highlight new discoveries of a diverse array of peptide effectors that go beyond the CLE peptide effector family in not only phytonematodes but in organisms beyond the phylum Nematoda.
Collapse
Affiliation(s)
- Melissa G Mitchum
- Department of Plant Pathology and Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Athens, Georgia, USA; ,
| | - Xunliang Liu
- Department of Plant Pathology and Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Athens, Georgia, USA; ,
| |
Collapse
|
12
|
Fitoussi N, de Almeida Engler J, Sichov N, Bucki P, Sela N, Harel A, Belausuv E, Kumar A, Brown Miyara S. The Minichromosome Maintenance Complex Component 2 (MjMCM2) of Meloidogyne javanica is a potential effector regulating the cell cycle in nematode-induced galls. Sci Rep 2022; 12:9196. [PMID: 35654810 PMCID: PMC9163083 DOI: 10.1038/s41598-022-13020-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/12/2022] [Indexed: 11/09/2022] Open
Abstract
Root-knot nematodes Meloidogyne spp. induce enlarged multinucleate feeding cells—galls—in host plant roots. Although core cell-cycle components in galls follow a conserved track, they can also be usurped and manipulated by nematodes. We identified a candidate effector in Meloidogyne javanica that is directly involved in cell-cycle manipulation—Minichromosome Maintenance Complex Component 2 (MCM2), part of MCM complex licensing factor involved in DNA replication. MjMCM2, which is induced by plant oxilipin 9-HOT, was expressed in nematode esophageal glands, upregulated during parasitic stages, and was localized to plant cell nucleus and plasma membrane. Infected tomato hairy roots overexpressing MjMCM2 showed significantly more galls and egg-mass-producing females than wild-type roots, and feeding cells showed more nuclei. Phylogenetic analysis suggested seven homologues of MjMCM2 with unknown association to parasitism. Sequence mining revealed two RxLR-like motifs followed by SEED domains in all Meloidogyne spp. MCM2 protein sequences. The unique second RxLR-like motif was absent in other Tylenchida species. Molecular homology modeling of MjMCM2 suggested that second RxLR2-like domain is positioned on a surface loop structure, supporting its function in polar interactions. Our findings reveal a first candidate cell-cycle gene effector in M. javanica—MjMCM2—that is likely secreted into plant host to mimic function of endogenous MCM2.
Collapse
Affiliation(s)
- Nathalia Fitoussi
- Department of Entomology, Nematology and Chemistry Units, Agricultural Research Organization (ARO), The Volcani Center, 50250, Bet Dagan, Israel.,Department of Plant Pathology and Microbiology, The Faculty of Agriculture Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | | | - Natalia Sichov
- Department of Entomology, Nematology and Chemistry Units, Agricultural Research Organization (ARO), The Volcani Center, 50250, Bet Dagan, Israel
| | - Patricia Bucki
- Department of Entomology, Nematology and Chemistry Units, Agricultural Research Organization (ARO), The Volcani Center, 50250, Bet Dagan, Israel
| | - Noa Sela
- Bioinformatics Unit, Institute of Plant Sciences, Agricultural Research Organization (ARO), The Volcani Center, 50250, Bet Dagan, Israel
| | - Arye Harel
- Bioinformatics Unit, Institute of Plant Sciences, Agricultural Research Organization (ARO), The Volcani Center, 50250, Bet Dagan, Israel
| | - Eduard Belausuv
- Department of Plant Sciences, Agricultural Research Organization (ARO), The Volcani Center, Bet Dagan, Israel
| | - Anil Kumar
- Department of Entomology, Nematology and Chemistry Units, Agricultural Research Organization (ARO), The Volcani Center, 50250, Bet Dagan, Israel
| | - Sigal Brown Miyara
- Department of Entomology, Nematology and Chemistry Units, Agricultural Research Organization (ARO), The Volcani Center, 50250, Bet Dagan, Israel.
| |
Collapse
|
13
|
Joshi I, Kohli D, Pal A, Chaudhury A, Sirohi A, Jain PK. Host delivered-RNAi of effector genes for imparting resistance against root-knot and cyst nematodes in plants. PHYSIOLOGICAL AND MOLECULAR PLANT PATHOLOGY 2022; 118:101802. [DOI: 10.1016/j.pmpp.2022.101802] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
|
14
|
Changes in the expression level of genes encoding transcription factors and cell wall-related proteins during Meloidogyne arenaria infection of maize (Zea mays). Mol Biol Rep 2021; 48:6779-6786. [PMID: 34468910 PMCID: PMC8481208 DOI: 10.1007/s11033-021-06677-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/23/2021] [Indexed: 10/28/2022]
Abstract
BACKGROUND Meloidogyne arenaria is an economically important root-knot nematode (RKN) species whose hosts include maize (Zea mays). The plant response to RKN infection activates many cellular mechanisms, among others, changes in the expression level of genes encoding transcription and elongation factors as well as proteins related to cell wall organization. METHODS AND RESULTS This study is aimed at characterization of expression of selected transcription and elongation factors encoding the genes WRKY53, EF1a, and EF1b as well as the ones encoding two proteins associated with cell wall functioning (glycine-rich RNA-binding protein, GRP and polygalacturonase, PG) during the maize response to M. arenaria infection. The changes in the relative level of expression of genes encoding these proteins were assessed using the reverse transcription-quantitative real-time PCR. The material studied were leaves and root samples collected from four maize varieties showing different susceptibilities toward M. arenaria infection, harvested at three different time points. Significant changes in the expression level of GRP between susceptible and tolerant varieties were observed. CONCLUSIONS Results obtained in the study suggest pronounced involvement of glycine-rich RNA-binding protein and EF1b in the maize response and resistance to RKN.
Collapse
|
15
|
Morphometric and total protein responses in Meloidogyne incognita second-stage juveniles to Nemafric-BL phytonematicide. Sci Rep 2021; 11:1135. [PMID: 33441821 PMCID: PMC7806609 DOI: 10.1038/s41598-020-80210-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 11/03/2020] [Indexed: 11/21/2022] Open
Abstract
After hatch, second-stage juveniles (J2) of root-knot (Meloidogyne species) nematodes could spend at least 12 weeks in soil solutions searching for penetration sites of suitable host plants. The external covering of nematodes, the cuticle, consists of various layers that contain glycoproteins, lipids, soluble proteins (collagens) and insoluble proteins (cuticulins). Generally, cucurbitacins are lipophilic, but there is scant information on how cuticular proteins relate to these complex terpenoids. A study was conducted to investigate the nature and extent of damage post-exposure of J2 to a wide range of Nemafric-BL phytonematicide concentrations. Post-72 h exposure to Nemafric-BL phytonematicide, nematode morphometrics versus phytonematicides exhibited either negative quadratic, positive quadratic, or negative linear relations, with the models explained by significant (P < 0.05) associations (R-squared). Similarly, total proteins versus phytonematicide exhibited significant negative quadratic relations. The principal component analysis indicated that concentration level of 2–4% of Nemafric-BL phytonematicide have the highest impact on the morphometric changes of J2. In conclusion, the nature and extent of damage suggested that Nemafric-BL phytonematicide was highly nematicidal as opposed to being nematostatic, thereby explaining its potent suppressive effects on nematode population densities.
Collapse
|
16
|
Fitoussi N, Borrego E, Kolomiets MV, Qing X, Bucki P, Sela N, Belausov E, Braun Miyara S. Oxylipins are implicated as communication signals in tomato-root-knot nematode (Meloidogyne javanica) interaction. Sci Rep 2021; 11:326. [PMID: 33431951 PMCID: PMC7801703 DOI: 10.1038/s41598-020-79432-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 12/02/2020] [Indexed: 01/29/2023] Open
Abstract
Throughout infection, plant-parasitic nematodes activate a complex host defense response that will regulate their development and aggressiveness. Oxylipins-lipophilic signaling molecules-are part of this complex, performing a fundamental role in regulating plant development and immunity. At the same time, the sedentary root-knot nematode Meloidogyne spp. secretes numerous effectors that play key roles during invasion and migration, supporting construction and maintenance of nematodes' feeding sites. Herein, comprehensive oxylipin profiling of tomato roots, performed using LC-MS/MS, indicated strong and early responses of many oxylipins following root-knot nematode infection. To identify genes that might respond to the lipidomic defense pathway mediated through oxylipins, RNA-Seq was performed by exposing Meloidogyne javanica second-stage juveniles to tomato protoplasts and the oxylipin 9-HOT, one of the early-induced oxylipins in tomato roots upon nematode infection. A total of 7512 differentially expressed genes were identified. To target putative effectors, we sought differentially expressed genes carrying a predicted secretion signal peptide. Among these, several were homologous with known effectors in other nematode species; other unknown, potentially secreted proteins may have a role as root-knot nematode effectors that are induced by plant lipid signals. These include effectors associated with distortion of the plant immune response or manipulating signal transduction mediated by lipid signals. Other effectors are implicated in cell wall degradation or ROS detoxification at the plant-nematode interface. Being an integral part of the plant's defense response, oxylipins might be placed as important signaling molecules underlying nematode parasitism.
Collapse
Affiliation(s)
- Nathalia Fitoussi
- Department of Entomology, Nematology and Chemistry Units, Agricultural Research Organization (ARO), The Volcani Center, P.O. Box 15159, 50250, Rishon LeZion, Bet Dagan, Israel
- Department of Plant Pathology and Microbiology, The Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Eli Borrego
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Michael V Kolomiets
- Department of Plant Pathology and Microbiology, Texas A&M University, TAMU 2132, College Station, 77843-2132, USA
| | - Xue Qing
- Department of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Patricia Bucki
- Department of Entomology, Nematology and Chemistry Units, Agricultural Research Organization (ARO), The Volcani Center, P.O. Box 15159, 50250, Rishon LeZion, Bet Dagan, Israel
| | - Noa Sela
- Department of Plant Pathology and Weed Research, ARO, The Volcani Center, 50250, Bet Dagan, Israel
| | - Eduard Belausov
- Department of Plant Sciences, Ornamental Plants and Agricultural Biotechnology, ARO, The Volcani Center, 50250, Bet Dagan, Israel
| | - Sigal Braun Miyara
- Department of Entomology, Nematology and Chemistry Units, Agricultural Research Organization (ARO), The Volcani Center, P.O. Box 15159, 50250, Rishon LeZion, Bet Dagan, Israel.
| |
Collapse
|
17
|
Macharia TN, Bellieny-Rabelo D, Moleleki LN. Transcriptome Profiling of Potato ( Solanum tuberosum L.) Responses to Root-Knot Nematode ( Meloidogyne javanica) Infestation during A Compatible Interaction. Microorganisms 2020; 8:microorganisms8091443. [PMID: 32967109 PMCID: PMC7563278 DOI: 10.3390/microorganisms8091443] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 12/31/2022] Open
Abstract
Root-knot nematode (RKN) Meloidogyne javanica presents a great challenge to Solanaceae crops, including potato. In this study, we investigated transcriptional responses of potato roots during a compatible interaction with M. javanica. In this respect, differential gene expression of Solanum tuberosum cultivar (cv.) Mondial challenged with M. javanica at 0, 3 and 7 days post-inoculation (dpi) was profiled. In total, 4948 and 4484 genes were detected, respectively, as differentially expressed genes (DEGs) at 3 and 7 dpi. Functional annotation revealed that genes associated with metabolic processes were enriched, suggesting they might have an important role in M. javanica disease development. MapMan analysis revealed down-regulation of genes associated with pathogen perception and signaling suggesting interference with plant immunity system. Notably, delayed activation of pathogenesis-related genes, down-regulation of disease resistance genes, and activation of host antioxidant system contributed to a susceptible response. Nematode infestation suppressed ethylene (ET) and jasmonic acid (JA) signaling pathway hindering JA/ET responsive genes associated with defense. Genes related to cell wall modification were differentially regulated while transport-related genes were up-regulated, facilitating the formation of nematode feeding sites (NFSs). Several families of transcription factors (TFs) were differentially regulated by M. javanica infestation. Suggesting that TFs play an indispensable role in physiological adaptation for successful M. javanica disease development. This genome-wide analysis reveals the molecular regulatory networks in potato roots which are potentially manipulated by M. javanica. Being the first study analyzing transcriptome profiling of M. javanica-diseased potato, it provides unparalleled insight into the mechanism underlying disease development.
Collapse
|
18
|
Xiao K, Chen W, Chen X, Zhu X, Guan P, Hu J. CCS52 and DEL1 function in root-knot nematode giant cell development in Xinjiang wild myrobalan plum (Prunus sogdiana Vassilcz). PROTOPLASMA 2020; 257:1333-1344. [PMID: 32367262 DOI: 10.1007/s00709-020-01505-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Root-knot nematodes (RKNs) are highly invasive plant parasites that establish permanent feeding sites within the roots of the host plant. Successful establishment of the feeding site is essential for the survival of RKN. The formation and development of the feeding cell, also called giant cell, involve both cell division and endoreduplication. Here, we examined giant cell development and endoreduplication in Prunus sogdiana infected with the RKN. We found that feeding sites were established 3-5 days post inoculation (dpi) and matured at 21-28 dpi. The giant cells began to form 5 dpi and continued to increase in size from 7 to 21 dpi. The large numbers of dividing nuclei were observed in giant cells from 7 to 14 dpi. However, nuclear division was rarely observed after 28 days. RT-PCR and in situ hybridization analyses revealed that PsoCCS52A was abundantly expressed at 7-21 dpi and the PsoCCS52A signal observed in giant cell nucleus at 7-14 dpi. The PsoCCS52B is highly expressed at 14 dpi, and the hybridization signal was mainly in the cytoplasm of giant cells. The PsoDEL1 expression was lowest 7-21 dip, with negligible transcript detected in the giant cells. This indicates that the PsoCCS52A plays a role in the process of cell division, while the CCS52B plays a role in the development of giant cells. The PsoDEL1 plays a negative regulatory role in megakaryocyte nuclear replication. These data suggest that an increased expression of PsoCCS52A promotes nuclear division and produces a large number of polyploid nuclei, the area of giant cells and feeding sites increase, ultimately leading to the formation of galls in Prunus sogdiana.
Collapse
Affiliation(s)
- Kun Xiao
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Weiyang Chen
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xuefeng Chen
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xiang Zhu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese, Guiyang, 550025, China
| | - Pingyin Guan
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany.
| | - Jianfang Hu
- College of Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
19
|
Wolfgang A, Taffner J, Guimarães RA, Coyne D, Berg G. Novel Strategies for Soil-Borne Diseases: Exploiting the Microbiome and Volatile-Based Mechanisms Toward Controlling Meloidogyne-Based Disease Complexes. Front Microbiol 2019; 10:1296. [PMID: 31231356 PMCID: PMC6568234 DOI: 10.3389/fmicb.2019.01296] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/23/2019] [Indexed: 11/24/2022] Open
Abstract
Under more intensified cropping conditions agriculture will face increasing incidences of soil-borne plant pests and pathogens, leading to increasingly higher yield losses world-wide. Soil-borne disease complexes, in particular, are especially difficult to control. In order to better understand soil-borne Meloidogyne-based disease complexes, we studied the volatile-based control mechanism of associated bacteria as well as the rhizospheric microbiome on Ugandan tomato plants presenting different levels of root-galling damage, using a multiphasic approach. The experimental design was based on representative samplings of healthy and infected tomato plants from two field locations in Uganda, to establish species collections and DNA libraries. Root galling symptoms on tomato resulted from a multispecies infection of root-knot nematodes (Meloidogyne spp.). Results revealed that 16.5% of the bacterial strain collection produced nematicidal volatile organic compounds (nVOC) active against Meloidogyne. Using SPME GC-MS, diverse VOC were identified, including sulfuric compounds, alkenes and one pyrazine. Around 28% of the bacterial strains were also antagonistic toward at least one fungal pathogen of the disease complex. However, antagonistic interactions appear highly specific. Nematicidal antagonists included Pseudomonas, Comamonas, and Variovorax and fungicidal antagonists belonged to Bacillus, which interestingly, were primarily recovered from healthy roots, while nematode antagonists were prominent in the rhizosphere and roots of diseased roots. In summary, all antagonists comprised up to 6.4% of the tomato root microbiota. In general, the microbiota of healthy and diseased root endospheres differed significantly in alpha and quantitative beta diversity indices. Bacteria-derived volatiles appear to provide a remarkable, yet wholly unexploited, potential to control Meloidogyne-based soil-borne disease complexes. The highly specific observed antagonism indicates that a combination of volatiles or VOC-producing bacteria are necessary to counter the range of pathogens involved in such complexes.
Collapse
Affiliation(s)
- Adrian Wolfgang
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Julian Taffner
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | | | - Danny Coyne
- International Institute of Tropical Agriculture, Nairobi, Kenya
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| |
Collapse
|
20
|
Chinnapandi B, Bucki P, Fitoussi N, Kolomiets M, Borrego E, Braun Miyara S. Tomato SlWRKY3 acts as a positive regulator for resistance against the root-knot nematode Meloidogyne javanica by activating lipids and hormone-mediated defense-signaling pathways. PLANT SIGNALING & BEHAVIOR 2019; 14:1601951. [PMID: 31010365 PMCID: PMC6546140 DOI: 10.1080/15592324.2019.1601951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Diseases caused by plant-parasitic nematodes in vegetables, among them Meloidogyne spp. root-knot nematodes (RKNs), lead to extensive yield decline. A molecular understanding of the mechanisms underlying plants' innate resistance may enable developing safe alternatives to harmful chemical nematicides in controlling RKNs. A tight relationship has been revealed between the WRKY transcription factors and RKN parasitism on tomato roots. We investigated the function role of tomato SlWRK3 and SlWRKY35 in regulating nematode disease development. Using promoter-GUS reporter gene fusions, we show that both SlWRKY3 and SlWRKY35 are induced within 5 days of infection and through feeding-site development and gall maturation, with a much stronger response of the former vs. the latter to nematode infection. Histological analysis of nematode-feeding sites indicated a high expression of SlWRKY3 in developing and mature feeding cells and associated vasculature cells, whereas SlWRKY35 expression was only observed in mature feeding sites. Both SlWRKY3 and SlWRKY35 promoters were induced by the defense phytohormones salicylic acid and indole-3-butyric acid, with no response to either jasmonic acid or methyl jasmonate. SlWRKY3 overexpression resulted in lower infection of the RKN Meloidogyne javanica, whereas knocking down SlWRKY3 resulted in increased infection. Phytohormone and oxylipin profiles determined by LC-MS/MS showed that the enhanced resistance in the former is coupled with an increased accumulation of defense molecules from the shikimate and oxylipin pathways. Our results pinpoint SlWRKY3 as a positive regulator of induced resistance in response to nematode invasion and infection, mostly during the early stages of nematode infection.
Collapse
Affiliation(s)
- Bharathiraja Chinnapandi
- Department of Entomology, Nematology and Chemistry units, Agricultural Research Organization (ARO), the Volcani Center, Bet Dagan, Israel
| | - Patricia Bucki
- Department of Entomology, Nematology and Chemistry units, Agricultural Research Organization (ARO), the Volcani Center, Bet Dagan, Israel
| | - Nathalia Fitoussi
- Department of Entomology, Nematology and Chemistry units, Agricultural Research Organization (ARO), the Volcani Center, Bet Dagan, Israel
- Department of Plant Pathology and Microbiology, the Faculty of Agriculture, Food & Environment, the Hebrew University of Jerusalem, Rehovot, Israel
| | - Michael Kolomiets
- Department of Plant Pathology and Microbiology, Texas A&M University, TX, USA
| | - Eli Borrego
- Department of Plant Pathology and Microbiology, Texas A&M University, TX, USA
| | - Sigal Braun Miyara
- Department of Entomology, Nematology and Chemistry units, Agricultural Research Organization (ARO), the Volcani Center, Bet Dagan, Israel
- CONTACT Sigal Braun Miyara Department of Entomology, Nematology and Chemistry units, Agricultural Research Organization (ARO), the Volcani Center, Bet Dagan, Israel
| |
Collapse
|
21
|
Ali MA, Anjam MS, Nawaz MA, Lam HM, Chung G. Signal Transduction in Plant⁻Nematode Interactions. Int J Mol Sci 2018; 19:ijms19061648. [PMID: 29865232 PMCID: PMC6032140 DOI: 10.3390/ijms19061648] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/26/2018] [Accepted: 05/29/2018] [Indexed: 12/26/2022] Open
Abstract
To successfully invade and infect their host plants, plant parasitic nematodes (PPNs) need to evolve molecular mechanisms to overcome the defense responses from the plants. Nematode-associated molecular patterns (NAMPs), including ascarosides and certain proteins, while instrumental in enabling the infection, can be perceived by the host plants, which then initiate a signaling cascade leading to the induction of basal defense responses. To combat host resistance, some nematodes can inject effectors into the cells of susceptible hosts to reprogram the basal resistance signaling and also modulate the hosts’ gene expression patterns to facilitate the establishment of nematode feeding sites (NFSs). In this review, we summarized all the known signaling pathways involved in plant–nematode interactions. Specifically, we placed particular focus on the effector proteins from PPNs that mimic the signaling of the defense responses in host plants. Furthermore, we gave an updated overview of the regulation by PPNs of different host defense pathways such as salicylic acid (SA)/jasmonic acid (JA), auxin, and cytokinin and reactive oxygen species (ROS) signaling to facilitate their parasitic successes in plants. This review will enhance the understanding of the molecular signaling pathways involved in both compatible and incompatible plant–nematode interactions.
Collapse
Affiliation(s)
- Muhammad Amjad Ali
- Department of Plant Pathology, University of Agriculture, Faisalabad 38040, Pakistan.
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad 38040, Pakistan.
| | - Muhammad Shahzad Anjam
- Institute of Molecular Biology & Biotechnology, Bahauddin Zakariya University, Multan 66000, Pakistan.
| | | | - Hon-Ming Lam
- School of Life Sciences and Centre for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Yeosu 59626, Korea.
| |
Collapse
|
22
|
Kim J, Yang R, Chang C, Park Y, Tucker ML. The root-knot nematode Meloidogyne incognita produces a functional mimic of the Arabidopsis INFLORESCENCE DEFICIENT IN ABSCISSION signaling peptide. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3009-3021. [PMID: 29648636 PMCID: PMC5972575 DOI: 10.1093/jxb/ery135] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 03/27/2018] [Indexed: 05/12/2023]
Abstract
INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) is a signaling peptide that regulates cell separation in Arabidopsis including floral organ abscission and lateral root emergence. IDA is highly conserved in dicotyledonous flowering plant genomes. IDA-like sequences were also found in the genomic sequences of root-knot nematodes, Meloidogyne spp., which are globally deleterious pathogens of agriculturally important plants, but the role of these genes is unknown. Exogenous treatment of the Arabidopsis ida mutant with synthetic peptide identical to the M. incognita IDA-like 1 (MiIDL1) protein sequence minus its N-terminal signal peptide recovered both the abscission and root architecture defects. Constitutive expression of the full-length MiIDL1 open reading frame in the ida mutant substantially recovered the delayed floral organ abscission phenotype whereas transformants expressing a construct missing the MiIDL1 signal peptide retained the delayed abscission phenotype. Importantly, wild-type Arabidopsis plants harboring an MiIDL1-RNAi construct and infected with nematodes had approximately 40% fewer galls per root than control plants. Thus, the MiIDL1 gene produces a functional IDA mimic that appears to play a role in successful gall development on Arabidopsis roots.
Collapse
Affiliation(s)
- Joonyup Kim
- Soybean Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD, USA
- Department of Cell Biology and Molecular Genetics, Bioscience Research Bldg, University of Maryland, MD, USA
- Life and Industry Convergence Research Institute, Department of Horticulture Bioscience, Pusan National University, Miryang, Republic of Korea
| | - Ronghui Yang
- Soybean Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD, USA
| | - Caren Chang
- Department of Cell Biology and Molecular Genetics, Bioscience Research Bldg, University of Maryland, MD, USA
| | - Younghoon Park
- Life and Industry Convergence Research Institute, Department of Horticulture Bioscience, Pusan National University, Miryang, Republic of Korea
| | - Mark L Tucker
- Soybean Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD, USA
- Correspondence:
| |
Collapse
|
23
|
Chinnapandi B, Bucki P, Braun Miyara S. SlWRKY45, nematode-responsive tomato WRKY gene, enhances susceptibility to the root knot nematode; M. javanica infection. PLANT SIGNALING & BEHAVIOR 2017; 12:e1356530. [PMID: 29271721 PMCID: PMC5792125 DOI: 10.1080/15592324.2017.1356530] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/02/2017] [Accepted: 07/05/2017] [Indexed: 05/21/2023]
Abstract
The fluctuation of tomato's WRKY defense regulators during infection by the root knot nematode Meloidogyne javanica was analyzed: and the spatial and temporal expression of SlWRKY45 was studied in depth with regard to its response to nematode infection, phytohormones, and wounding. Expression of WRKY45 increased substantially within 5 d upon infection and continued through feeding-site development and gall maturation. Histological analysis of nematode feeding sites indicated that WRKY45 was highly expressed within the feeding cells and associated vascular parenchyma cells. Responses of SlWRKY45 promoters to several phytohormones showed that WRKY45 was highly induced by specific phytohormones, including cytokinin, auxin, and the defense-signaling molecule salicylic acid (SA), but not by the jasmonates. Overexpressing tomato lines were generated, and infection tests showed that, significantly, roots over-expressing SlWRKY45 contained substantially increased number of females, indicating that WRKY45 overexpression supported faster nematode development. qRT-PCR tests have shown roots overexpressing WRKY45 suppressed the jasmonic acid and salicylic acid marker genes, proteinase inhibitor (PI), and pathogenesis related protein (PR1), respectively, and also the cytokinin response factors CRF1 and CRF6. Overall, this study indicated SlWRKY45 to be a potential transcription factor whose manipulation by the invading nematode might be critical for coordination of hormone signals supporting favorable condition for nematode development in root tissue.
Collapse
Affiliation(s)
- Bharathiraja Chinnapandi
- Department of Entomology and the Nematology and Chemistry Units, Agricultural Research Organization (ARO), the Volcani Center, Rishon Lezion, Israel
| | - Patricia Bucki
- Department of Entomology and the Nematology and Chemistry Units, Agricultural Research Organization (ARO), the Volcani Center, Rishon Lezion, Israel
| | - Sigal Braun Miyara
- Department of Entomology and the Nematology and Chemistry Units, Agricultural Research Organization (ARO), the Volcani Center, Rishon Lezion, Israel
- CONTACT Sigal Braun Miyara, PhD , Department of Entomology and the Nematology and Chemistry Units, ARO, Volcani Center, HaMaccabim Road, P.O. Box 15159, Rishon Lezion 7528809, Israel
| |
Collapse
|
24
|
Dowd CD, Chronis D, Radakovic ZS, Siddique S, Schmülling T, Werner T, Kakimoto T, Grundler FMW, Mitchum MG. Divergent expression of cytokinin biosynthesis, signaling and catabolism genes underlying differences in feeding sites induced by cyst and root-knot nematodes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:211-228. [PMID: 28746737 DOI: 10.1111/tpj.13647] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/15/2017] [Accepted: 07/21/2017] [Indexed: 05/22/2023]
Abstract
Cyst and root-knot nematodes are obligate parasites of economic importance with a remarkable ability to reprogram root cells into unique metabolically active feeding sites. Previous studies have suggested a role for cytokinin in feeding site formation induced by these two types of nematodes, but the mechanistic details have not yet been described. Using Arabidopsis as a host plant species, we conducted a comparative analysis of cytokinin genes in response to the beet cyst nematode (BCN), Heterodera schachtii, and the root-knot nematode (RKN), Meloidogyne incognita. We identified distinct differences in the expression of cytokinin biosynthesis, catabolism and signaling genes in response to infection by BCN and RKN, suggesting differential manipulation of the cytokinin pathway by these two nematode species. Furthermore, we evaluated Arabidopsis histidine kinase receptor mutant lines ahk2/3, ahk2/4 and ahk3/4 in response to RKN infection. Similar to our previous studies with BCN, these lines were significantly less susceptible to RKN without compromising nematode penetration, suggesting a requirement of cytokinin signaling in RKN feeding site formation. Moreover, an analysis of ahk double mutants using CycB1;1:GUS/ahk introgressed lines revealed contrasting differences in the cytokinin receptors mediating cell cycle activation in feeding sites induced by BCN and RKN.
Collapse
Affiliation(s)
- Carola D Dowd
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Demosthenis Chronis
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Zoran S Radakovic
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert-Kreiten-Straße 13, D-53115, Bonn, Germany
| | - Shahid Siddique
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert-Kreiten-Straße 13, D-53115, Bonn, Germany
| | - Thomas Schmülling
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195, Berlin, Germany
| | - Tomáš Werner
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195, Berlin, Germany
- Institute of Plant Sciences, Department of Plant Physiology, University of Graz, Schubertstraße 51, 8010, Graz, Austria
| | - Tatsuo Kakimoto
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Florian M W Grundler
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert-Kreiten-Straße 13, D-53115, Bonn, Germany
| | - Melissa G Mitchum
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
25
|
Coelho RR, Vieira P, Antonino de Souza Júnior JD, Martin-Jimenez C, De Veylder L, Cazareth J, Engler G, Grossi-de-Sa MF, de Almeida Engler J. Exploiting cell cycle inhibitor genes of the KRP family to control root-knot nematode induced feeding sites in plants. PLANT, CELL & ENVIRONMENT 2017; 40:1174-1188. [PMID: 28103637 DOI: 10.1111/pce.12912] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 01/06/2017] [Indexed: 05/17/2023]
Abstract
Cell cycle control in galls provoked by root-knot nematodes involves the activity of inhibitor genes like the Arabidopsis ICK/KRP members. Ectopic KRP1, KRP2 and KRP4 expression resulted in decreased gall size by inhibiting mitotic activity, whereas KRP6 induces mitosis in galls. Herein, we investigate the role of KRP3, KRP5 and KRP7 during gall development and compared their role with previously studied members of this class of cell cycle inhibitors. Overexpression of KRP3 and KRP7 culminated in undersized giant cells, with KRP3OE galls presenting peculiar elongated giant cells. Nuclei in KRP3OE and KRP5OE lines presented a convoluted and apparently connected phenotype. This appearance may be associated with the punctuated protein nuclear localization driven by specific common motifs. As well, ectopic expression of KRP3OE and KRP5OE affected nematode development and offspring. Decreased mitotic activity in galls of KRP3OE and KRP7OE lines led to a reduced gall size which presented distinct shapes - from more elongated like in the KRP3OE line to small rounded like in the KRP7OE line. Results presented strongly support the idea that induced expression of cell cycle inhibitors such as KRP3 and KRP7 in galls can be envisaged as a conceivable strategy for nematode feeding site control in crop species attacked by phytopathogenic nematodes.
Collapse
Affiliation(s)
- Roberta Ramos Coelho
- INRA, University of Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, 06900, Sophia Antipolis, France
- Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, PqEB - Av. W5 Norte, Caixa Postal 02372, CEP 70770-917, Brasília, DF, Brazil
| | - Paulo Vieira
- INRA, University of Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, 06900, Sophia Antipolis, France
- NemaLab/ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Universidade de Évora, Núcleo da Mitra, Ap., 94,7002-554, Évora, Portugal
| | - José Dijair Antonino de Souza Júnior
- INRA, University of Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, 06900, Sophia Antipolis, France
- Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, PqEB - Av. W5 Norte, Caixa Postal 02372, CEP 70770-917, Brasília, DF, Brazil
| | - Cristina Martin-Jimenez
- INRA, University of Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, 06900, Sophia Antipolis, France
| | - Lieven De Veylder
- Department of Plant Systems Biology, VIB, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Gent, Belgium
| | - Julie Cazareth
- Université de Nice Sophia Antipolis, 06103, Nice, France
- Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, 06560, Valbonne, France
| | - Gilbert Engler
- INRA, University of Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, 06900, Sophia Antipolis, France
| | - Maria Fatima Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, PqEB - Av. W5 Norte, Caixa Postal 02372, CEP 70770-917, Brasília, DF, Brazil
| | - Janice de Almeida Engler
- INRA, University of Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, 06900, Sophia Antipolis, France
| |
Collapse
|
26
|
Hu HJ, Chen YL, Wang YF, Tang YY, Chen SL, Yan SZ. Endophytic Bacillus cereus Effectively Controls Meloidogyne incognita on Tomato Plants Through Rapid Rhizosphere Occupation and Repellent Action. PLANT DISEASE 2017; 101:448-455. [PMID: 30677349 DOI: 10.1094/pdis-06-16-0871-re] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Root-knot nematodes (Meloidogyne spp.), which cause severe global agricultural losses, can establish a special niche in the root vascular cylinder of crops, making them difficult to control. Endophytic bacteria have great potential as biocontrol organisms against Meloidogyne incognita. Three endophytic bacteria were isolated from plant tissues and showed high nematicidal activity against M. incognita second-stage juveniles (J2) in vitro. The gyrB gene sequence amplification results indicated that the three isolates were Bacillus cereus BCM2, B. cereus SZ5, and B. altitudinis CCM7. The isolates colonized tomato roots rapidly and stably during the colonization dynamic experiment. Three pot experiments were designed to determine the potential of three endophytic bacterial isolates on control of root-knot nematodes. The results showed that the preinoculated B. cereus BCM2 experiment significantly reduced gall and egg mass indexes. The inhibition ratio of gall and egg mass was up to 81.2 and 75.6% on tomato roots and significantly enhanced shoot length and fresh weight. The other two experiments with inoculated endophytic bacteria and M. incognita at the same time or after morbidity had lower inhibition ratios compared with the preinoculated endophytic bacteria experiment. The confocal laser-scanning microscopy method was used to further study the possible mechanism of endophytic bacteria in the biocontrol process. The results showed the localization pattern of the endophytic bacteria B. cereus BCM2-(str')-pBCgfp-1 in tomato root tissues. Root tissue colonized by endophytic bacteria repelled M. incognita J2 infection compared with the untreated control in a repellence experiment. We isolated an endophytic B. cereus strain that stably colonized tomato and controlled M. incognita effectively. This strain has potential for plant growth promotion, successful ecological niche occupation, and M. incognita J2 repellent action induction. It plays an important role in endophytic bacteria against root-knot nematodes.
Collapse
Affiliation(s)
- Hai-Jing Hu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province 210023, China
| | - Ya-Li Chen
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province 210023, China
| | - Yu-Fang Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province 210023, China
| | - Yun-Yun Tang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province 210023, China
| | - Shuang-Lin Chen
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province 210023, China
| | - Shu-Zhen Yan
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province 210023, China
| |
Collapse
|
27
|
Xing X, Li X, Zhang M, Wang Y, Liu B, Xi Q, Zhao K, Wu Y, Yang T. Transcriptome analysis of resistant and susceptible tobacco (Nicotiana tabacum) in response to root-knot nematode Meloidogyne incognita infection. Biochem Biophys Res Commun 2017; 482:1114-1121. [PMID: 27914810 DOI: 10.1016/j.bbrc.2016.11.167] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 11/29/2016] [Indexed: 11/29/2022]
Abstract
The root-knot nematode (RKN) Meloidogyne incognita reproduces on the roots of tobacco (Nicotiana tabacum), damaging crops, reducing crop yield, and causing economic losses annually. The development of resistant genotypes is an alternative strategy to effectively control these losses. However, the molecular mechanism responsible for host pathogenesis and defense responses in tobacco specifically against RKNs remain poorly understood. Here, root transcriptome analysis of resistant (Yuyan12) and susceptible (Changbohuang) tobacco varieties infected with RKNs was performed. Moreover, 2623 and 545 differentially expressed genes (DEGs) in RKN-infected roots were observed in Yuyan12 and Changbohuang, respectively, compared to those in non-infected roots, including 289 DEGs commonly expressed in the two genotypes. Among these DEGs, genes encoding cell wall modifying proteins, auxin-related proteins, the ROS scavenging system, and transcription factors involved in various biological and physiochemical processes were significantly expressed in both the resistant and susceptible genotypes. This work is thus the first report on the relationships in the RKN-tobacco interaction using transcriptome analysis, and the results provide important information on the mechanism of RKN resistance in tobacco.
Collapse
Affiliation(s)
- Xuexia Xing
- College of Tobacco, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Xiaohui Li
- College of Tobacco, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Mingzhen Zhang
- College of Tobacco, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Yuan Wang
- College of Tobacco, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Bingyang Liu
- College of Tobacco, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Qiliang Xi
- College of Tobacco, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Ke Zhao
- College of Tobacco, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Yunjie Wu
- College of Tobacco, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Tiezhao Yang
- College of Tobacco, Henan Agricultural University, Zhengzhou 450002, Henan, China.
| |
Collapse
|
28
|
Ali MA, Azeem F, Li H, Bohlmann H. Smart Parasitic Nematodes Use Multifaceted Strategies to Parasitize Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:1699. [PMID: 29046680 PMCID: PMC5632807 DOI: 10.3389/fpls.2017.01699] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 09/15/2017] [Indexed: 05/03/2023]
Abstract
Nematodes are omnipresent in nature including many species which are parasitic to plants and cause enormous economic losses in various crops. During the process of parasitism, sedentary phytonematodes use their stylet to secrete effector proteins into the plant cells to induce the development of specialized feeding structures. These effectors are used by the nematodes to develop compatible interactions with plants, partly by mimicking the expression of host genes. Intensive research is going on to investigate the molecular function of these effector proteins in the plants. In this review, we have summarized which physiological and molecular changes occur when endoparasitic nematodes invade the plant roots and how they develop a successful interaction with plants using the effector proteins. We have also mentioned the host genes which are induced by the nematodes for a compatible interaction. Additionally, we discuss how nematodes modulate the reactive oxygen species (ROS) and RNA silencing pathways in addition to post-translational modifications in their own favor for successful parasitism in plants.
Collapse
Affiliation(s)
- Muhammad A. Ali
- Department of Plant Pathology, University of Agriculture Faisalabad, Faisalabad, Pakistan
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture Faisalabad, Faisalabad, Pakistan
- *Correspondence: Muhammad A. Ali ;
| | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Hongjie Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Holger Bohlmann
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| |
Collapse
|
29
|
Liarzi O, Bucki P, Braun Miyara S, Ezra D. Bioactive Volatiles from an Endophytic Daldinia cf. concentrica Isolate Affect the Viability of the Plant Parasitic Nematode Meloidogyne javanica. PLoS One 2016; 11:e0168437. [PMID: 27997626 PMCID: PMC5173030 DOI: 10.1371/journal.pone.0168437] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 12/01/2016] [Indexed: 11/18/2022] Open
Abstract
Plant-parasitic nematodes form one of the largest sources of biotic stress imposed on plants, and are very difficult to control; among them are the obligate parasites, the sedentary root-knot nematodes (RKNs)-Meloidogyne spp.-which are extremely polyphagous and exploit a very wide range of hosts. Endophytic fungi are organisms that spend most of their life cycle within plant tissue without causing visible damage to the host plant. Many endophytes secrete specialized metabolites and/or emit volatile organic compounds (VOCs) that exhibit biological activity. Recently, we demonstrated that the endophytic fungus Daldinia cf. concentrica secrets biologically active VOCs. Here we examined the ability of the fungus and its VOCs to control the RKN M. javanica both in vitro and greenhouse experiments. The D. cf. concentrica VOCs showed bionematicidal activity against the second-stage juveniles (J2s) of M. javanica. We found that exposure of J2s to fungal volatiles caused 67% reduction in viability, and that application of a synthetic volatile mixture (SVM), comprising 3-methyl-1-butanol, (±)-2-methyl-1-butanol, 4-heptanone, and isoamyl acetate, in volumetric ratio of 1:1:2:1 further reduced J2s viability by 99%. We demonstrated that, although each of the four VOCs significantly reduced the viability of J2s relative to the control, only 4-heptanone elicited the same effect as the whole mixture, with nematicidal activity of 90% reduction in viability of the J2s. Study of the effect of the SVM on egg hatching demonstrated that it decreased eggs hatching by 87%. Finally, application of the SVM to soil inoculated with M. javanica eggs or J2s prior to planting susceptible tomato plants resulted in a significantly reduced galling index and fewer eggs produced on each root system, with no effect on root weight. Thus, D. cf. concentrica and/or SVM based on fungal VOCs may be considered as a novel alternative approach to controlling the RKN M. javanica.
Collapse
Affiliation(s)
- Orna Liarzi
- Department of Plant Pathology and Weed Research, ARO - the Volcani Center, Rishon LeZion, Israel
| | - Patricia Bucki
- Department of Entomology and the Nematology and Chemistry units, ARO - the Volcani Center, Rishon LeZion, Israel
| | - Sigal Braun Miyara
- Department of Entomology and the Nematology and Chemistry units, ARO - the Volcani Center, Rishon LeZion, Israel
| | - David Ezra
- Department of Plant Pathology and Weed Research, ARO - the Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
30
|
|
31
|
Maboreke HR, Feldhahn L, Bönn M, Tarkka MT, Buscot F, Herrmann S, Menzel R, Ruess L. Transcriptome analysis in oak uncovers a strong impact of endogenous rhythmic growth on the interaction with plant-parasitic nematodes. BMC Genomics 2016; 17:627. [PMID: 27520023 PMCID: PMC4982138 DOI: 10.1186/s12864-016-2992-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 08/03/2016] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Pedunculate oak (Quercus robur L.), an important forest tree in temperate ecosystems, displays an endogenous rhythmic growth pattern, characterized by alternating shoot and root growth flushes paralleled by oscillations in carbon allocation to below- and aboveground tissues. However, these common plant traits so far have largely been neglected as a determining factor for the outcome of plant biotic interactions. This study investigates the response of oak to migratory root-parasitic nematodes in relation to rhythmic growth, and how this plant-nematode interaction is modulated by an ectomycorrhizal symbiont. Oaks roots were inoculated with the nematode Pratylenchus penetrans solely and in combination with the fungus Piloderma croceum, and the systemic impact on oak plants was assessed by RNA transcriptomic profiles in leaves. RESULTS The response of oaks to the plant-parasitic nematode was strongest during shoot flush, with a 16-fold increase in the number of differentially expressed genes as compared to root flush. Multi-layered defence mechanisms were induced at shoot flush, comprising upregulation of reactive oxygen species formation, hormone signalling (e.g. jasmonic acid synthesis), and proteins involved in the shikimate pathway. In contrast during root flush production of glycerolipids involved in signalling cascades was repressed, suggesting that P. penetrans actively suppressed host defence. With the presence of the mycorrhizal symbiont, the gene expression pattern was vice versa with a distinctly stronger effect of P. penetrans at root flush, including attenuated defence, cell and carbon metabolism, likely a response to the enhanced carbon sink strength in roots induced by the presence of both, nematode and fungus. Meanwhile at shoot flush, when nutrients are retained in aboveground tissue, oak defence reactions, such as altered photosynthesis and sugar pathways, diminished. CONCLUSIONS The results highlight that gene response patterns of plants to biotic interactions, both negative (i.e. plant-parasitic nematodes) and beneficial (i.e. mycorrhiza), are largely modulated by endogenous rhythmic growth, and that such plant traits should be considered as an important driver of these relationships in future studies.
Collapse
Affiliation(s)
- Hazel R. Maboreke
- Institute of Biology, Ecology Group, Humboldt-Universität zu Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Lasse Feldhahn
- Department of Soil Ecology, UFZ – Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle/Saale, Germany
| | - Markus Bönn
- Department of Soil Ecology, UFZ – Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle/Saale, Germany
| | - Mika T. Tarkka
- Department of Soil Ecology, UFZ – Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle/Saale, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Francois Buscot
- Department of Soil Ecology, UFZ – Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle/Saale, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Sylvie Herrmann
- Department of Soil Ecology, UFZ – Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle/Saale, Germany
- Department of Community Ecology, UFZ – Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle/Saale, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Ralph Menzel
- Institute of Biology, Ecology Group, Humboldt-Universität zu Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Liliane Ruess
- Institute of Biology, Ecology Group, Humboldt-Universität zu Berlin, Philippstr. 13, 10115 Berlin, Germany
| |
Collapse
|
32
|
Favery B, Quentin M, Jaubert-Possamai S, Abad P. Gall-forming root-knot nematodes hijack key plant cellular functions to induce multinucleate and hypertrophied feeding cells. JOURNAL OF INSECT PHYSIOLOGY 2016. [PMID: 26211599 DOI: 10.1016/j.jinsphys.2015.07.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Among plant-parasitic nematodes, the root-knot nematodes (RKNs) of the Meloidogyne spp. are the most economically important genus. RKN are root parasitic worms able to infect nearly all crop species and have a wide geographic distribution. During infection, RKNs establish and maintain an intimate relationship with the host plant. This includes the creation of a specialized nutritional structure composed of multinucleate and hypertrophied giant cells, which result from the redifferentiation of vascular root cells. Giant cells constitute the sole source of nutrients for the nematode and are essential for growth and reproduction. Hyperplasia of surrounding root cells leads to the formation of the gall or root-knot, an easily recognized symptom of plant infection by RKNs. Secreted effectors produced in nematode salivary glands and injected into plant cells through a specialized feeding structure called the stylet play a critical role in the formation of giant cells. Here, we describe the complex interactions between RKNs and their host plants. We highlight progress in understanding host plant responses, focusing on how RKNs manipulate key plant processes and functions, including cell cycle, defence, hormones, cellular scaffold, metabolism and transport.
Collapse
Affiliation(s)
- Bruno Favery
- INRA, UMR 1355 Institut Sophia Agrobiotech, 06900 Sophia-Antipolis, France; Univ. Nice Sophia Antipolis, UMR 7254 Institut Sophia Agrobiotech, 06900 Sophia-Antipolis, France; CNRS, UMR 7254 Institut Sophia Agrobiotech, 06900 Sophia-Antipolis, France
| | - Michaël Quentin
- INRA, UMR 1355 Institut Sophia Agrobiotech, 06900 Sophia-Antipolis, France; Univ. Nice Sophia Antipolis, UMR 7254 Institut Sophia Agrobiotech, 06900 Sophia-Antipolis, France; CNRS, UMR 7254 Institut Sophia Agrobiotech, 06900 Sophia-Antipolis, France
| | - Stéphanie Jaubert-Possamai
- INRA, UMR 1355 Institut Sophia Agrobiotech, 06900 Sophia-Antipolis, France; Univ. Nice Sophia Antipolis, UMR 7254 Institut Sophia Agrobiotech, 06900 Sophia-Antipolis, France; CNRS, UMR 7254 Institut Sophia Agrobiotech, 06900 Sophia-Antipolis, France
| | - Pierre Abad
- INRA, UMR 1355 Institut Sophia Agrobiotech, 06900 Sophia-Antipolis, France; Univ. Nice Sophia Antipolis, UMR 7254 Institut Sophia Agrobiotech, 06900 Sophia-Antipolis, France; CNRS, UMR 7254 Institut Sophia Agrobiotech, 06900 Sophia-Antipolis, France.
| |
Collapse
|
33
|
Ng JLP, Perrine-Walker F, Wasson AP, Mathesius U. The Control of Auxin Transport in Parasitic and Symbiotic Root-Microbe Interactions. PLANTS (BASEL, SWITZERLAND) 2015; 4:606-43. [PMID: 27135343 PMCID: PMC4844411 DOI: 10.3390/plants4030606] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 08/12/2015] [Accepted: 08/18/2015] [Indexed: 01/13/2023]
Abstract
Most field-grown plants are surrounded by microbes, especially from the soil. Some of these, including bacteria, fungi and nematodes, specifically manipulate the growth and development of their plant hosts, primarily for the formation of structures housing the microbes in roots. These developmental processes require the correct localization of the phytohormone auxin, which is involved in the control of cell division, cell enlargement, organ development and defense, and is thus a likely target for microbes that infect and invade plants. Some microbes have the ability to directly synthesize auxin. Others produce specific signals that indirectly alter the accumulation of auxin in the plant by altering auxin transport. This review highlights root-microbe interactions in which auxin transport is known to be targeted by symbionts and parasites to manipulate the development of their host root system. We include case studies for parasitic root-nematode interactions, mycorrhizal symbioses as well as nitrogen fixing symbioses in actinorhizal and legume hosts. The mechanisms to achieve auxin transport control that have been studied in model organisms include the induction of plant flavonoids that indirectly alter auxin transport and the direct targeting of auxin transporters by nematode effectors. In most cases, detailed mechanisms of auxin transport control remain unknown.
Collapse
Affiliation(s)
- Jason Liang Pin Ng
- Division of Plant Science, Research School of Biology, Australian National University, Linnaeus Way, Building 134, Canberra ACT 2601, Australia.
| | | | | | - Ulrike Mathesius
- Division of Plant Science, Research School of Biology, Australian National University, Linnaeus Way, Building 134, Canberra ACT 2601, Australia.
| |
Collapse
|
34
|
Iberkleid I, Sela N, Brown Miyara S. Meloidogyne javanica fatty acid- and retinol-binding protein (Mj-FAR-1) regulates expression of lipid-, cell wall-, stress- and phenylpropanoid-related genes during nematode infection of tomato. BMC Genomics 2015; 16:272. [PMID: 25886179 PMCID: PMC4450471 DOI: 10.1186/s12864-015-1426-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 03/02/2015] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The secreted Meloidogyne javanica fatty acid- and retinol-binding (FAR) protein Mj-FAR-1 is involved in nematode development and reproduction in host tomato roots. To gain further insight into the role of Mj-FAR-1 in regulating disease development, local transcriptional changes were monitored in tomato hairy root lines with constitutive mj-far-1 expression compared with control roots without inoculation, and 2, 5 and 15 days after inoculation (DAI), using mRNA sequencing analysis. RESULTS Gene-expression profiling revealed a total of 3970 differentially expressed genes (DEGs) between the two lines. Among the DEGs, 1093, 1039, 1959, and 1328 genes were up- or downregulated 2-fold with false discovery rate < 0.001 in noninoculated roots, and roots 2, 5, and 15 DAI compared with control roots, respectively. Four main groups of genes that might be associated with Mj-FAR-1-mediated susceptibility were identified: 1) genes involved in biotic stress responses such as pathogen-defense mechanisms and hormone metabolism; 2) genes involved in phenylalanine and phenylpropanoid metabolism; 3) genes associated with cell wall synthesis, modification or degradation; and 4) genes associated with lipid metabolism. All of these genes were overrepresented among the DEGs. Studying the distances between the treatments, samples from noninoculated roots and roots at 2 DAI clustered predominantly according to the temporal dynamics related to nematode infection. However, at the later time points (5 and 15 DAI), samples clustered predominantly according to mj-far-1 overexpression, indicating that at these time points Mj-FAR-1 is more important in defining a common transcriptome. CONCLUSIONS The presence of four groups of DEGs demonstrates a network of molecular events is mediated by Mj-FAR-1 that leads to highly complex manipulation of plant defense responses against nematode invasion. The results shed light on the in vivo role of secreted FAR proteins in parasitism, and add to the mounting evidence that secreted FAR proteins play a major role in nematode parasitism.
Collapse
Affiliation(s)
- Ionit Iberkleid
- Department of Entomology, Nematology and Chemistry Units, Agricultural Research Organization (ARO), Volcani Center, P.O. Box 6, Bet Dagan, 50250, Israel.
| | - Noa Sela
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, 76100, Israel.
| | - Sigal Brown Miyara
- Department of Entomology, Nematology and Chemistry Units, Agricultural Research Organization (ARO), Volcani Center, P.O. Box 6, Bet Dagan, 50250, Israel.
| |
Collapse
|
35
|
Ajjappala H, Chung HY, Sim JS, Choi I, Hahn BS. Disruption of prefoldin-2 protein synthesis in root-knot nematodes via host-mediated gene silencing efficiently reduces nematode numbers and thus protects plants. PLANTA 2015; 241:773-87. [PMID: 25491640 DOI: 10.1007/s00425-014-2211-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 11/21/2014] [Indexed: 06/04/2023]
Abstract
MAIN CONCLUSION The aim of this study is to demonstrate the feasibility of down-regulating endogeneous prefoldin-2 root-knot nematode transcripts by expressing dsRNA with sequence identity to the nematode gene in tobacco roots under the influence of strong Arabidopsis ubiquitin (UBQ1) promoter. Root-knot nematodes (RKNs) are sedentary endoparasites infecting a wide range of plant species. They parasitise the root system, thereby disrupting water and nutrient uptake and causing major reductions in crop yields. The most reliable means of controlling RKNs is via the use of soil fumigants such as methyl bromide. With the emergence of RNA interference (RNAi) technology, which permits host-mediated nematode gene silencing, a new strategy to control plant pathogens has become available. In the present study, we investigated host-induced RNAi gene silencing of prefoldin-2 in transgenic Nicotiana benthamiana. Reductions in prefoldin-2 mRNA transcript levels were observed when nematodes were soaked in a dsRNA solution in vitro. Furthermore, nematode reproduction was suppressed in RNAi transgenic lines, as evident by reductions in the numbers of root knots (by 34-60 % in independent RNAi lines) and egg masses (by 33-58 %). Endogenous expression of prefoldin-2, analysed via real-time polymerase chain reaction and Western blotting, revealed that the gene was strongly expressed in the pre-parasitic J2 stage. Our observations demonstrate the relevance and potential importance of targeting the prefoldin gene during the nematode life cycle. The work also suggests that further improvements in silencing efficiency in economically important crops can be accomplished using RNAi directed against plant-parasitic nematodes.
Collapse
|
36
|
Vieira P, Engler JDA. The plant cell inhibitor KRP6 is involved in multinucleation and cytokinesis disruption in giant-feeding cells induced by root-knot nematodes. PLANT SIGNALING & BEHAVIOR 2015; 10:e1010924. [PMID: 25915833 PMCID: PMC4622652 DOI: 10.1080/15592324.2015.1010924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 01/14/2015] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
The plant cell cycle inhibitor gene KRP6 has been investigated in roots infected by plant-parasitic root-knot nematodes (Meloidogyne spp.). Unexpectedly, KRP6 overexpressing lines revealed a distinct role for this specific KRP as an activator of the mitotic cell cycle. This function was confirmed in Arabidopsis thaliana suspension cultures ectopically expressing KRP6. A blockage in the mitotic exit was observed in cell suspensions and in giant cells resulted in the appearance of multi-nucleated cells. KRP6 expression during nematode infection and the similarity in phenotypes among KRP6 overexpressing cell cultures and giant-cell morphology strongly suggest that KRP6 is involved in multinucleation and acytokinesis occurring in giant-cells. Once again nematodes have been shown to manipulate the plant cell cycle machinery in order to promote gall establishment.
Collapse
Affiliation(s)
- Paulo Vieira
- Lab. Nematologia/ICAAM-Instituto de Ciências Agrárias e Ambientais Mediterrânicas; Universidade de Évora; Núcleo da Mitra; Évora, Portugal
| | - Janice de Almeida Engler
- Institut National de la Recherche Agronomique; UMR 1355 ISA/Center National de la Recherche Scientifique; UMR 7254 ISA/ Université de Nice-Sophia Antipolis; UMR ISA; Sophia-Antipolis, France
| |
Collapse
|
37
|
Molecular characterization of putative parasitism genes in the plant-parasitic nematode Meloidogyne hispanica. J Helminthol 2014; 90:28-38. [PMID: 25319213 DOI: 10.1017/s0022149x1400073x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Meloidogyne hispanica (Mhi) is a difficult-to-control polyphagous root-knot nematode (RKN) species of emerging importance for economically valuable crops. Nematode secretions are likely to be the first signals perceived by the plant and are thought to be involved in various aspects of the plant-nematode interaction. The aims of this work were to identify and characterize M. hispanica parasitism genes: cathepsin L cysteine protease (cpl-1), calreticulin (crt-1), β-1,4-endoglucanase-1 (eng-1) and manganese superoxide dismutase (mnsod). As there are no genomic data available for M. hispanica, primers were designed from the conserved regions of the putative parasitism genes in M. incognita and M. hapla and used to amplify the genes in M. hispanica, which led to the successful amplification of these genes in M. hispanica. Partial gene sequences were also obtained for M. arenaria, M. hapla, M. hispanica, M. incognita and M. javanica cpl-1, crt-1, eng-1 and mnsod genes, and their phylogenetic relationship analysed. In order to determine whether these genes are differentially expressed during M. hispanica development, cDNA was amplified from mRNA isolated from eggs, second-stage juveniles (J2) and females. Amplification products were observed from cDNA of all developmental stages for the Mhi-cpl-1 and Mhi-crt-1 genes. However, the gene Mhi-crt-1 exhibited intense amplification bands in females, while the Mhi-eng-1 gene was equally amplified in eggs and J2 and the Mhi-mnsod gene was only expressed in eggs. In comparison to the other RKN species, the genes Mhi-eng-1 and Mhi-mnsod showed transcription in different nematode developmental stages.
Collapse
|
38
|
Melillo MT, Leonetti P, Veronico P. Benzothiadiazole effect in the compatible tomato-Meloidogyne incognita interaction: changes in giant cell development and priming of two root anionic peroxidases. PLANTA 2014; 240:841-54. [PMID: 25085693 DOI: 10.1007/s00425-014-2138-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/28/2014] [Indexed: 05/24/2023]
Abstract
BTH application is effective in root-knot nematode-tomato interaction in a way that involves a delay in the formation of nematode feeding site and triggers molecular responses at several levels. The compatible interaction between root-knot nematodes and their hosts requires the nematode to overcome plant defense systems so that a sophisticated permanent feeding site (giant cells) can be produced within the host roots. It has been suggested that activators of plant defenses may provide a novel management strategy for controlling root-knot nematodes but little is known about the molecular basis by which these elicitors operate. The role of pre-treatment with Benzothiadiazole (BTH), a salicylic acid analog, in inducing resistance against Meloidogyne incognita infection was investigated in tomato roots. A decrease in galling in roots and feeding site numbers was observed following BTH treatment. Histological investigations showed a delay in formation of feeding sites in treated plants. BTH-treated galls had higher H2O2 production, lignin accumulation, and increased peroxidase activity than untreated galls. The expression of two tomato genes, Tap1 and Tap2, coding for anionic peroxidases, was examined by qRT-PCR and in situ hybridization in response to BTH. Tap1 was induced at all infection points, reaching the highest level at 15 dpi. Tap2 expression, although slightly delayed in untreated galls, increased during infection in both treated and untreated galls. The expression of Tap1 and Tap2 was observed in giant cells of untreated roots, whereas the transcripts were localized in both giant cells and in parenchyma cells surrounding the developing feeding sites in treated plants. These results show that BTH applied to tomato plants makes them more resistant to infection by nematodes, which become less effective in overcoming root defense pathway.
Collapse
Affiliation(s)
- Maria Teresa Melillo
- Istituto per la Protezione Sostenibile delle Piante, CNR, Via Amendola 122/D, 70126, Bari, Italy,
| | | | | |
Collapse
|
39
|
Eves-van den Akker S, Lilley CJ, Jones JT, Urwin PE. Identification and characterisation of a hyper-variable apoplastic effector gene family of the potato cyst nematodes. PLoS Pathog 2014; 10:e1004391. [PMID: 25255291 PMCID: PMC4177990 DOI: 10.1371/journal.ppat.1004391] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 08/11/2014] [Indexed: 11/18/2022] Open
Abstract
Sedentary endoparasitic nematodes are obligate biotrophs that modify host root tissues, using a suite of effector proteins to create and maintain a feeding site that is their sole source of nutrition. Using assumptions about the characteristics of genes involved in plant-nematode biotrophic interactions to inform the identification strategy, we provide a description and characterisation of a novel group of hyper-variable extracellular effectors termed HYP, from the potato cyst nematode Globodera pallida. HYP effectors comprise a large gene family, with a modular structure, and have unparalleled diversity between individuals of the same population: no two nematodes tested had the same genetic complement of HYP effectors. Individuals vary in the number, size, and type of effector subfamilies. HYP effectors are expressed throughout the biotrophic stages in large secretory cells associated with the amphids of parasitic stage nematodes as confirmed by in situ hybridisation. The encoded proteins are secreted into the host roots where they are detectable by immunochemistry in the apoplasm, between the anterior end of the nematode and the feeding site. We have identified HYP effectors in three genera of plant parasitic nematodes capable of infecting a broad range of mono- and dicotyledon crop species. In planta RNAi targeted to all members of the effector family causes a reduction in successful parasitism. Sedentary plant parasitic nematodes are pathogens that invade plant roots and establish a feeding site. The feeding site is a specialist structure used by the nematode to support its development within the plant. The nematode secretes a suite of proteins, termed ‘effector proteins’ that are responsible for initiating and maintaining the feeding site. The nematode must also evade recognition by the plant defence systems throughout its lifecycle that can last for many weeks. We describe a diverse and variable effector gene family (HYP), the products of which are secreted into the plant by the nematode and are required for successful infection. The variability and modular structure of this gene family can lead to the production of a large array of effector proteins. This diversity may allow the nematodes to combat any resistance mechanisms developed by the plant. Each nematode tested within a population is genetically unique in terms of these effector genes. We found huge variation in the number, size and type of HYP effectors at the level of the individual. This may explain some of the difficulties in breeding nematode resistant plants and has profound implications for those working with other plant pathogens.
Collapse
Affiliation(s)
- Sebastian Eves-van den Akker
- Centre for Plant Sciences, University of Leeds, Leeds, United Kingdom
- Cell and Molecular Sciences Group, Dundee Effector Consortium, James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | | | - John T. Jones
- Cell and Molecular Sciences Group, Dundee Effector Consortium, James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | - Peter E. Urwin
- Centre for Plant Sciences, University of Leeds, Leeds, United Kingdom
- * E-mail:
| |
Collapse
|
40
|
Cabrera J, Bustos R, Favery B, Fenoll C, Escobar C. NEMATIC: a simple and versatile tool for the in silico analysis of plant-nematode interactions. MOLECULAR PLANT PATHOLOGY 2014; 15:627-36. [PMID: 24330140 PMCID: PMC6638708 DOI: 10.1111/mpp.12114] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Novel approaches for the control of agriculturally damaging nematodes are sorely needed. Endoparasitic nematodes complete their life cycle within the root vascular cylinder, inducing specialized feeding cells: giant cells for root-knot nematodes and syncytia for cyst nematodes. Both nematodes hijack parts of the transduction cascades involved in developmental processes, or partially mimic the plant responses to other interactions with microorganisms, but molecular evidence of their differences and commonalities is still under investigation. Transcriptomics has been used to describe global expression profiles of their interaction with Arabidopsis, generating vast lists of differentially expressed genes. Although these results are available in public databases and publications, the information is scattered and difficult to handle. Here, we present a rapid, visual, user-friendly and easy to handle spreadsheet tool, called NEMATIC (NEMatode-Arabidopsis Transcriptomic Interaction Compendium; http://www.uclm.es/grupo/gbbmp/english/nematic.asp). It combines existing transcriptomic data for the interaction between Arabidopsis and plant-endoparasitic nematodes with data from different transcriptomic analyses regarding hormone and cell cycle regulation, development, different plant tissues, cell types and various biotic stresses. NEMATIC facilitates efficient in silico studies on plant-nematode biology, allowing rapid cross-comparisons with complex datasets and obtaining customized gene selections through sequential comparative and filtering steps. It includes gene functional classification and links to utilities from several databases. This data-mining spreadsheet will be valuable for the understanding of the molecular bases subjacent to feeding site formation by comparison with other plant systems, and for the selection of genes as potential tools for biotechnological control of nematodes, as demonstrated in the experimentally confirmed examples provided.
Collapse
Affiliation(s)
- Javier Cabrera
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Avenida de Carlos III s/n, 45071, Toledo, Spain
| | | | | | | | | |
Collapse
|
41
|
Vieira P, De Clercq A, Stals H, Van Leene J, Van De Slijke E, Van Isterdael G, Eeckhout D, Persiau G, Van Damme D, Verkest A, Antonino de Souza JD, Júnior, Glab N, Abad P, Engler G, Inzé D, De Veylder L, De Jaeger G, Engler JDA. The Cyclin-Dependent Kinase Inhibitor KRP6 Induces Mitosis and Impairs Cytokinesis in Giant Cells Induced by Plant-Parasitic Nematodes in Arabidopsis. THE PLANT CELL 2014; 26:2633-2647. [PMID: 24963053 PMCID: PMC4114956 DOI: 10.1105/tpc.114.126425] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 04/09/2014] [Accepted: 05/28/2014] [Indexed: 10/25/2023]
Abstract
In Arabidopsis thaliana, seven cyclin-dependent kinase (CDK) inhibitors have been identified, designated interactors of CDKs or Kip-related proteins (KRPs). Here, the function of KRP6 was investigated during cell cycle progression in roots infected by plant-parasitic root-knot nematodes. Contrary to expectations, analysis of Meloidogyne incognita-induced galls of KRP6-overexpressing lines revealed a role for this particular KRP as an activator of the mitotic cell cycle. In accordance, KRP6-overexpressing suspension cultures displayed accelerated entry into mitosis, but delayed mitotic progression. Likewise, phenotypic analysis of cultured cells and nematode-induced giant cells revealed a failure in mitotic exit, with the appearance of multinucleated cells as a consequence. Strong KRP6 expression upon nematode infection and the phenotypic resemblance between KRP6 overexpression cell cultures and root-knot morphology point toward the involvement of KRP6 in the multinucleate and acytokinetic state of giant cells. Along these lines, the parasite might have evolved to manipulate plant KRP6 transcription to the benefit of gall establishment.
Collapse
Affiliation(s)
- Paulo Vieira
- Institut National de la Recherche Agronomique, UMR 1355 ISA/Centre National de la Recherche Scientifique, UMR 7254 ISA/Université de Nice-Sophia Antipolis, UMR ISA, 400 route des Chappes, 06903 Sophia-Antipolis, France
| | - Annelies De Clercq
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, 9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Hilde Stals
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, 9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Jelle Van Leene
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, 9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Eveline Van De Slijke
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, 9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Gert Van Isterdael
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, 9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Dominique Eeckhout
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, 9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Geert Persiau
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, 9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Daniël Van Damme
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, 9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Aurine Verkest
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, 9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - José Dijair Antonino de Souza
- Institut National de la Recherche Agronomique, UMR 1355 ISA/Centre National de la Recherche Scientifique, UMR 7254 ISA/Université de Nice-Sophia Antipolis, UMR ISA, 400 route des Chappes, 06903 Sophia-Antipolis, France Department of Plant Systems Biology, Flanders Institute for Biotechnology, 9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium Laboratório de Interação Molecular Planta-Praga, Embrapa Recursos Genéticos e Biotecnologia, Brasília, 70770-900 Distrito Federal, Brazil Institut de Biologie des Plantes, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8618, Université Paris-Sud, Saclay Plant Sciences, 91405 Orsay Cedex, France
| | - Júnior
- Laboratório de Interação Molecular Planta-Praga, Embrapa Recursos Genéticos e Biotecnologia, Brasília, 70770-900 Distrito Federal, Brazil
| | - Nathalie Glab
- Institut de Biologie des Plantes, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8618, Université Paris-Sud, Saclay Plant Sciences, 91405 Orsay Cedex, France
| | - Pierre Abad
- Institut National de la Recherche Agronomique, UMR 1355 ISA/Centre National de la Recherche Scientifique, UMR 7254 ISA/Université de Nice-Sophia Antipolis, UMR ISA, 400 route des Chappes, 06903 Sophia-Antipolis, France
| | - Gilbert Engler
- Institut National de la Recherche Agronomique, UMR 1355 ISA/Centre National de la Recherche Scientifique, UMR 7254 ISA/Université de Nice-Sophia Antipolis, UMR ISA, 400 route des Chappes, 06903 Sophia-Antipolis, France
| | - Dirk Inzé
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, 9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Lieven De Veylder
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, 9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Geert De Jaeger
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, 9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Janice de Almeida Engler
- Institut National de la Recherche Agronomique, UMR 1355 ISA/Centre National de la Recherche Scientifique, UMR 7254 ISA/Université de Nice-Sophia Antipolis, UMR ISA, 400 route des Chappes, 06903 Sophia-Antipolis, France
| |
Collapse
|
42
|
De novo transcriptome sequencing and analysis of the cereal cyst nematode, Heterodera avenae. PLoS One 2014; 9:e96311. [PMID: 24802510 PMCID: PMC4011697 DOI: 10.1371/journal.pone.0096311] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 04/07/2014] [Indexed: 11/19/2022] Open
Abstract
The cereal cyst nematode (CCN, Heterodera avenae) is a major pest of wheat (Triticum spp) that reduces crop yields in many countries. Cyst nematodes are obligate sedentary endoparasites that reproduce by amphimixis. Here, we report the first transcriptome analysis of two stages of H. avenae. After sequencing extracted RNA from pre parasitic infective juvenile and adult stages of the life cycle, 131 million Illumina high quality paired end reads were obtained which generated 27,765 contigs with N50 of 1,028 base pairs, of which 10,452 were annotated. Comparative analyses were undertaken to evaluate H. avenae sequences with those of other plant, animal and free living nematodes to identify differences in expressed genes. There were 4,431 transcripts common to H. avenae and the free living nematode Caenorhabditis elegans, and 9,462 in common with more closely related potato cyst nematode, Globodera pallida. Annotation of H. avenae carbohydrate active enzymes (CAZy) revealed fewer glycoside hydrolases (GHs) but more glycosyl transferases (GTs) and carbohydrate esterases (CEs) when compared to M. incognita. 1,280 transcripts were found to have secretory signature, presence of signal peptide and absence of transmembrane. In a comparison of genes expressed in the pre-parasitic juvenile and feeding female stages, expression levels of 30 genes with high RPKM (reads per base per kilo million) value, were analysed by qRT-PCR which confirmed the observed differences in their levels of expression levels. In addition, we have also developed a user-friendly resource, Heterodera transcriptome database (HATdb) for public access of the data generated in this study. The new data provided on the transcriptome of H. avenae adds to the genetic resources available to study plant parasitic nematodes and provides an opportunity to seek new effectors that are specifically involved in the H. avenae-cereal host interaction.
Collapse
|
43
|
Rodiuc N, Vieira P, Banora MY, de Almeida Engler J. On the track of transfer cell formation by specialized plant-parasitic nematodes. FRONTIERS IN PLANT SCIENCE 2014; 5:160. [PMID: 24847336 PMCID: PMC4017147 DOI: 10.3389/fpls.2014.00160] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 04/07/2014] [Indexed: 05/02/2023]
Abstract
Transfer cells are ubiquitous plant cells that play an important role in plant development as well as in responses to biotic and abiotic stresses. They are highly specialized and differentiated cells playing a central role in the acquisition, distribution and exchange of nutrients. Their unique structural traits are characterized by augmented ingrowths of invaginated secondary wall material, unsheathed by an amplified area of plasma membrane enriched in a suite of solute transporters. Similar morphological features can be perceived in vascular root feeding cells induced by sedentary plant-parasitic nematodes, such as root-knot and cyst nematodes, in a wide range of plant hosts. Despite their close phylogenetic relationship, these obligatory biotrophic plant pathogens engage different approaches when reprogramming root cells into giant cells or syncytia, respectively. Both nematode feeding-cells types will serve as the main source of nutrients until the end of the nematode life cycle. In both cases, these nematodes are able to remarkably maneuver and reprogram plant host cells. In this review we will discuss the structure, function and formation of these specialized multinucleate cells that act as nutrient transfer cells accumulating and synthesizing components needed for survival and successful offspring of plant-parasitic nematodes. Plant cells with transfer-like functions are also a renowned subject of interest involving still poorly understood molecular and cellular transport processes.
Collapse
Affiliation(s)
- Natalia Rodiuc
- Laboratório de Interação Molecular Planta-Praga, Embrapa Recursos Genéticos e Biotecnologia, PqEBBrasília, Brasil
| | - Paulo Vieira
- NemaLab – Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Universidade de ÉvoraÉvora, Portugal
| | | | - Janice de Almeida Engler
- Laboratório de Interação Molecular Planta-Praga, Embrapa Recursos Genéticos e Biotecnologia, PqEBBrasília, Brasil
- Institut National de la Recherche Agronomique, Plant, Health and Environment, Plant-Nematodes Interaction Team, UMR 1355 ISA/Centre National de la Recherche Scientifique, UMR 7254 ISA/Université de Nice-Sophia Antipolis, UMR ISASophia-Antipolis, France
| |
Collapse
|
44
|
Iberkleid I, Ozalvo R, Feldman L, Elbaz M, Patricia B, Horowitz SB. Responses of tomato genotypes to avirulent and Mi-virulent Meloidogyne javanica isolates occurring in Israel. PHYTOPATHOLOGY 2014; 104:484-496. [PMID: 24724816 DOI: 10.1094/phyto-07-13-0181-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The behavior of naturally virulent Meloidogyne isolates toward the tomato resistance gene Mi in major tomato-growing areas in Israel was studied for the first time. Virulence of seven selected isolates was confirmed over three successive generations on resistant (Mi-carrying) and susceptible (non-Mi-carrying) tomato cultivars. Diagnostic markers verified the predominance of Meloidogyne javanica among virulent isolates selected on resistant tomato cultivars or rootstocks. To better understand the determinants of nematode selection on Mi-carrying plants, reproduction of Mi-avirulent and virulent isolates Mjav1 and Mjv2, respectively, measured as eggs per gram of root, on non-Mi-carrying, heterozygous (Mi/mi) and homozygous (Mi/Mi) genotypes was evaluated. Although no reproduction of Mjav1 was observed on Mi/Mi genotypes, some reproduction was consistently observed on Mi/mi plants; reproduction of Mjv2 on the homozygous and heterozygous genotypes was similar to that on susceptible cultivars, suggesting a limited quantitative effect of the Mi gene. Histological examination of giant cells induced by Mi-virulent versus avirulent isolates confirmed the high virulence of Mjv2 on Mi/mi and Mi/Mi genotypes, allowing the formation of well-developed giant-cell systems despite the Mi gene. Analysis of the plant defense response in tomato Mi/Mi, Mi/mi, and mi/mi genotypes to both avirulent and virulent isolates was investigated by quantitative real-time polymerase chain reaction. Although the jasmonate (JA)-signaling pathway was clearly upregulated by avirulent and virulent isolates on the susceptible (not carrying Mi) and heterozygous (Mi/mi) plants, no change in signaling was observed in the homozygous (Mi/Mi) resistant line following incompatible interaction with the avirulent isolate. Thus, similar to infection promoted by the avirulent isolate on the susceptible genotype, the Mi-virulent isolate induced the JA-dependent pathway, which might promote tomato susceptibility during the compatible interaction with the homozygous (Mi/Mi) resistant line. These results have important consequences for the management of Mi resistance genes for ensuring sustainable tomato farming.
Collapse
|
45
|
Molinari S, Fanelli E, Leonetti P. Expression of tomato salicylic acid (SA)-responsive pathogenesis-related genes in Mi-1-mediated and SA-induced resistance to root-knot nematodes. MOLECULAR PLANT PATHOLOGY 2014; 15:255-64. [PMID: 24118790 PMCID: PMC6638815 DOI: 10.1111/mpp.12085] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The expression pattern of pathogenesis-related genes PR-1, PR-2 and PR-5, considered as markers for salicylic acid (SA)-dependent systemic acquired resistance (SAR), was examined in the roots and shoots of tomato plants pre-treated with SA and subsequently infected with root-knot nematodes (RKNs) (Meloidogyne incognita). PR-1 was up-regulated in both roots and shoots of SA-treated plants, whereas the expression of PR-5 was enhanced only in roots. The over-expression of PR-1 in the whole plant occurred as soon as 1 day after SA treatment. Up-regulation of the PR-1 gene was considered to be the main marker of SAR elicitation. One day after treatment, plants were inoculated with active juveniles (J2s) of M. incognita. The number of J2s that entered the roots and started to develop was significantly lower in SA-treated than in untreated plants at 5 and 15 days after inoculation. The expression pattern of PR-1, PR-2 and PR-5 was also examined in the roots and shoots of susceptible and Mi-1-carrying resistant tomato plants infected by RKNs. Nematode infection produced a down-regulation of PR genes in both roots and shoots of SA-treated and untreated plants, and in roots of Mi-carrying resistant plants. Moreover, in resistant infected plants, PR gene expression, in particular PR-1 gene expression, was highly induced in shoots. Thus, nematode infection was demonstrated to elicit SAR in shoots of resistant plants. The data presented in this study show that the repression of host defence SA signalling is associated with the successful development of RKNs, and that SA exogenously added as a soil drench is able to trigger a SAR-like response to RKNs in tomato.
Collapse
Affiliation(s)
- Sergio Molinari
- Institute of Plant Protection (IPP), National Research Council of Italy (CNR), Via G. Amendola 122/D, 70126, Bari, Italy
| | | | | |
Collapse
|
46
|
Kyndt T, Vieira P, Gheysen G, de Almeida-Engler J. Nematode feeding sites: unique organs in plant roots. PLANTA 2013; 238:807-18. [PMID: 23824525 DOI: 10.1007/s00425-013-1923-z] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 06/13/2013] [Indexed: 05/19/2023]
Abstract
Although generally unnoticed, nearly all crop plants have one or more species of nematodes that feed on their roots, frequently causing tremendous yield losses. The group of sedentary nematodes, which are among the most damaging plant-parasitic nematodes, cause the formation of special organs called nematode feeding sites (NFS) in the root tissue. In this review we discuss key metabolic and cellular changes correlated with NFS development, and similarities and discrepancies between different types of NFS are highlighted.
Collapse
Affiliation(s)
- Tina Kyndt
- Department Molecular Biotechnology, Ghent University (UGent), Coupure Links 653, 9000, Ghent, Belgium,
| | | | | | | |
Collapse
|
47
|
Vieira P, Engler G, de Almeida Engler J. Enhanced levels of plant cell cycle inhibitors hamper root-knot nematode-induced feeding site development. PLANT SIGNALING & BEHAVIOR 2013; 8:e26409. [PMID: 24056043 PMCID: PMC4091379 DOI: 10.4161/psb.26409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/06/2013] [Accepted: 09/07/2013] [Indexed: 05/24/2023]
Abstract
Root-knot nematodes (RKN) are highly specialized, obligatory plant parasites. These animals reprogram root cells to form large, multinucleate, and metabolically active feeding cells (giant cells) that provide a continuous nutrient supply during 3-6 weeks of the nematode's life. The establishment and maintenance of physiologically fully functional giant cells are necessary for the survival of these nematodes. As such, giant cells may be useful targets for applying strategies to reduce damage caused by these nematodes, aiming the reduction of their reproduction. We have recently reported the involvement of cell cycle inhibitors of Arabidopsis, named Kip-Related Proteins (KRPs), on nematode feeding site ontogeny. Our results have demonstrated that this family of cell cycle inhibitors can be envisaged to efficiently disrupt giant cell development, based on previous reports which showed that alterations in KRP concentration levels can induce cell cycle transitions. Herein, we demonstrated that by overexpressing KRP genes, giant cells development is severely compromised as well as nematode reproduction. Thus, control of root-knot nematodes by modulating cell cycle-directed pathways through the enhancement of KRP protein levels may serve as an attractive strategy to limit damage caused by these plant parasites.
Collapse
Affiliation(s)
- Paulo Vieira
- Lab. Nematologia/ICAAM; Instituto de Ciências Agrárias e Ambientais Mediterrânicas; Universidade de Évora; Évora, Portugal
| | - Gilbert Engler
- Institut National de la Recherche Agronomique; UMR 1355 ISA/Centre National de la Recherche Scientifique; UMR 7254 ISA/ Université de Nice-Sophia Antipolis; UMR ISA; Sophia-Antipolis, France
| | - Janice de Almeida Engler
- Institut National de la Recherche Agronomique; UMR 1355 ISA/Centre National de la Recherche Scientifique; UMR 7254 ISA/ Université de Nice-Sophia Antipolis; UMR ISA; Sophia-Antipolis, France
| |
Collapse
|
48
|
Elashry A, Okumoto S, Siddique S, Koch W, Kreil DP, Bohlmann H. The AAP gene family for amino acid permeases contributes to development of the cyst nematode Heterodera schachtii in roots of Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 70:379-86. [PMID: 23831821 PMCID: PMC3737465 DOI: 10.1016/j.plaphy.2013.05.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 05/09/2013] [Indexed: 05/02/2023]
Abstract
The beet cyst nematode Heterodera schachtii is able to infect Arabidopsis plants and induce feeding sites in the root. These syncytia are the only source of nutrients for the nematodes throughout their life and are a nutrient sink for the host plant. We have studied here the role of amino acid transporters for nematode development. Arabidopsis contains a large number of different amino acid transporters in several gene families but those of the AAP family were found to be especially expressed in syncytia. Arabidopsis contains 8 AAP genes and they were all strongly expressed in syncytia with the exception of AAP5 and AAP7, which were slightly downregulated. We used promoter::GUS lines and in situ RT-PCR to confirm the expression of several AAP genes and LHT1, a lysine- and histidine-specific amino acid transporter, in syncytia. The strong expression of AAP genes in syncytia indicated that these transporters are important for the transport of amino acids into syncytia and we used T-DNA mutants for several AAP genes to test for their influence on nematode development. We found that mutants of AAP1, AAP2, and AAP8 significantly reduced the number of female nematodes developing on these plants. Our study showed that amino acid transport into syncytia is important for the development of the nematodes.
Collapse
Affiliation(s)
- Abdelnaser Elashry
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna. UFT Tulln, Konrad Lorenz Str. 24, 3430 Tulln, Austria
| | - Sakiko Okumoto
- Department of Plant Pathology, Physiology, and Weed Science, 549 Latham Hall (0390), Virginia Tech, Blacksburg, VA 24061, USA
| | - Shahid Siddique
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna. UFT Tulln, Konrad Lorenz Str. 24, 3430 Tulln, Austria
| | - Wolfgang Koch
- KWS SAAT AG, Grimsehlstrasse 31, 37574 Einbeck, Germany
| | - David P. Kreil
- Chair of Bioinformatics, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
- School of Life Sciences, University of Warwick, UK
| | - Holger Bohlmann
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna. UFT Tulln, Konrad Lorenz Str. 24, 3430 Tulln, Austria
- Corresponding author. Tel.: +43 1 47654 3360; fax: +43 1 47654 3359.
| |
Collapse
|
49
|
Pham AT, McNally K, Abdel-Haleem H, Roger Boerma H, Li Z. Fine mapping and identification of candidate genes controlling the resistance to southern root-knot nematode in PI 96354. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:1825-38. [PMID: 23568221 DOI: 10.1007/s00122-013-2095-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 03/26/2013] [Indexed: 05/24/2023]
Abstract
Meloidogyne incognita (Kofoid and White) Chitwood (Mi) is the most economically damaging species of the root-knot nematode to soybean and other crops in the southern USA. PI 96354 was identified to carry a high level of resistance to galling and Mi egg production. Two Quantitative Trait Locus (QTLs) were found to condition the resistance in PI 96354 including a major QTL and a minor QTL on chromosome 10 and chromosome 18, respectively. To fine map the major QTL on chromosome 10, F5:6 recombinant inbred lines from the cross between PI 96354 and susceptible genotype Bossier were genotyped with Simple Sequence Repeats (SSR) markers to identify recombinational events. Analysis of lines carrying key recombination events placed the Mi-resistant allele on chromosome 10 to a 235-kb region of the 'Williams 82' genome sequence with 30 annotated genes. Candidate gene analysis identified four genes with cell wall modification function that have several mutations in promoter, exon, 5', and 3'UTR regions. qPCR analysis showed significant difference in expression levels of these four genes in Bossier compared to PI 96354 in the presence of Mi. Thirty Mi-resistant soybean lines were found to have same SNPs in these 4 candidate genes as PI 96354 while 12 Mi-susceptible lines possess the 'Bossier' genotype. The mutant SNPs were used to develop KASP assays to detect the resistant allele on chromosome 10. The four candidate genes identified in this study can be used in further studies to investigate the role of cell wall modification genes in conferring Mi resistance in PI 96354.
Collapse
Affiliation(s)
- Anh-Tung Pham
- Center for Applied Genetic Technologies and Department of Crop and Soil Sciences, University of Georgia, Athens, GA 30602, USA.
| | | | | | | | | |
Collapse
|
50
|
Vieira P, Escudero C, Rodiuc N, Boruc J, Russinova E, Glab N, Mota M, De Veylder L, Abad P, Engler G, de Almeida Engler J. Ectopic expression of Kip-related proteins restrains root-knot nematode-feeding site expansion. THE NEW PHYTOLOGIST 2013; 199:505-519. [PMID: 23574394 DOI: 10.1111/nph.12255] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 03/01/2013] [Indexed: 05/12/2023]
Abstract
The development of nematode feeding sites induced by root-knot nematodes involves the synchronized activation of cell cycle processes such as acytokinetic mitoses and DNA amplification. A number of key cell cycle genes are reported to be critical for nematode feeding site development. However, it remains unknown whether plant cyclin-dependent kinase (CDK) inhibitors such as the Arabidopsis interactor/inhibitor of CDK (ICK)/Kip-related protein (KRP) family are involved in nematode feeding site development. This study demonstrates the involvement of Arabidopsis ICK2/KRP2 and ICK1/KRP1 in the control of mitosis to endoreduplication in galls induced by the root-knot nematode Meloidogyne incognita. Using ICK/KRP promoter-GUS fusions and mRNA in situ hybridizations, we showed that ICK2/KRP2, ICK3/KRP5 and ICK4/KRP6 are expressed in galls after nematode infection. Loss-of-function mutants have minor effects on gall development and nematode reproduction. Conversely, overexpression of both ICK1/KRP1 and ICK2/KRP2 impaired mitosis in giant cells and blocked neighboring cell proliferation, resulting in a drastic reduction of gall size. Studying the dynamics of protein expression demonstrated that protein levels of ICK2/KRP2 are tightly regulated during giant cell development and reliant on the presence of the nematode. This work demonstrates that impeding cell cycle progression by means of ICK1/KRP1 and ICK2/KRP2 overexpression severely restricts gall development, leading to a marked limitation of root-knot nematode development and reduced numbers of offspring.
Collapse
Affiliation(s)
- Paulo Vieira
- Institut National de la Recherche Agronomique, UMR 1355 ISA/Centre National de la Recherche Scientifique, UMR 7254 ISA/Université de Nice-Sophia Antipolis, UMR ISA, 400 route des Chappes, Sophia-Antipolis, France
| | - Carmen Escudero
- Institut National de la Recherche Agronomique, UMR 1355 ISA/Centre National de la Recherche Scientifique, UMR 7254 ISA/Université de Nice-Sophia Antipolis, UMR ISA, 400 route des Chappes, Sophia-Antipolis, France
| | - Natalia Rodiuc
- Institut National de la Recherche Agronomique, UMR 1355 ISA/Centre National de la Recherche Scientifique, UMR 7254 ISA/Université de Nice-Sophia Antipolis, UMR ISA, 400 route des Chappes, Sophia-Antipolis, France
| | - Joanna Boruc
- Department of Plant Systems Biology, VIB, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Gent, Belgium
| | - Eugenia Russinova
- Department of Plant Systems Biology, VIB, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Gent, Belgium
| | - Nathalie Glab
- UMR8618, CNRS Université Paris-Sud 11, Bat 630, 91405, Orsay, France
| | - Manuel Mota
- NemaLab/ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Universidade de Évora, Núcleo da Mitra, Ap. 94, 7002-554, Évora, Portugal
| | - Lieven De Veylder
- Department of Plant Systems Biology, VIB, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Gent, Belgium
| | - Pierre Abad
- Institut National de la Recherche Agronomique, UMR 1355 ISA/Centre National de la Recherche Scientifique, UMR 7254 ISA/Université de Nice-Sophia Antipolis, UMR ISA, 400 route des Chappes, Sophia-Antipolis, France
| | - Gilbert Engler
- Institut National de la Recherche Agronomique, UMR 1355 ISA/Centre National de la Recherche Scientifique, UMR 7254 ISA/Université de Nice-Sophia Antipolis, UMR ISA, 400 route des Chappes, Sophia-Antipolis, France
| | - Janice de Almeida Engler
- Institut National de la Recherche Agronomique, UMR 1355 ISA/Centre National de la Recherche Scientifique, UMR 7254 ISA/Université de Nice-Sophia Antipolis, UMR ISA, 400 route des Chappes, Sophia-Antipolis, France
| |
Collapse
|