1
|
Lesuis SL, Park S, Hoorn A, Rashid AJ, Mocle AJ, Salter EW, Vislavski S, Gray MT, Torelli AM, DeCristofaro A, Driever WPF, van der Stelt M, Zweifel LS, Collingridge GL, Lefebvre JL, Walters BJ, Frankland PW, Hill MN, Josselyn SA. Stress disrupts engram ensembles in lateral amygdala to generalize threat memory in mice. Cell 2025; 188:121-140.e20. [PMID: 39549697 PMCID: PMC11726195 DOI: 10.1016/j.cell.2024.10.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 08/25/2024] [Accepted: 10/17/2024] [Indexed: 11/18/2024]
Abstract
Stress induces aversive memory overgeneralization, a hallmark of many psychiatric disorders. Memories are encoded by a sparse ensemble of neurons active during an event (an engram ensemble). We examined the molecular and circuit processes mediating stress-induced threat memory overgeneralization in mice. Stress, acting via corticosterone, increased the density of engram ensembles supporting a threat memory in lateral amygdala, and this engram ensemble was reactivated by both specific and non-specific retrieval cues (generalized threat memory). Furthermore, we identified a critical role for endocannabinoids, acting retrogradely on parvalbumin-positive (PV+) lateral amygdala interneurons in the formation of a less-sparse engram and memory generalization induced by stress. Glucocorticoid receptor antagonists, endocannabinoid synthesis inhibitors, increasing PV+ neuronal activity, and knocking down cannabinoid receptors in lateral amygdala PV+ neurons restored threat memory specificity and a sparse engram in stressed mice. These findings offer insights into stress-induced memory alterations, providing potential therapeutic avenues for stress-related disorders.
Collapse
Affiliation(s)
- Sylvie L Lesuis
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada; Cellular and Computational Neuroscience, Swammerdam Institute for Life Science, Amsterdam Neuroscience, University of Amsterdam, 1090 GE Amsterdam, the Netherlands
| | - Sungmo Park
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada
| | - Annelies Hoorn
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Asim J Rashid
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada
| | - Andrew J Mocle
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Eric W Salter
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, and TANZ Centre for Research in Neurodegenerative Diseases, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Stefan Vislavski
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada
| | - Madison T Gray
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Angelica M Torelli
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada
| | - Antonietta DeCristofaro
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada
| | - Wouter P F Driever
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Einsteinweg 55, Leiden 2333 CC, the Netherlands
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Einsteinweg 55, Leiden 2333 CC, the Netherlands
| | - Larry S Zweifel
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; Department of Psychiatry and Behavioral Sciences, University of Washington, 2815 Eastlake Ave E Suite 200, Seattle, WA 98102, USA
| | - Graham L Collingridge
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, and TANZ Centre for Research in Neurodegenerative Diseases, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Julie L Lefebvre
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Brandon J Walters
- Department of Cell and Systems Biology, University of Toronto Mississauga, 3359 Mississauga Rd, Mississauga, ON L5L 1C6, Canada
| | - Paul W Frankland
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Psychology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Matthew N Hill
- Hotchkiss Brain Institute, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.
| | - Sheena A Josselyn
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Psychology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
2
|
Loetscher KB, Goldfarb EV. Integrating and fragmenting memories under stress and alcohol. Neurobiol Stress 2024; 30:100615. [PMID: 38375503 PMCID: PMC10874731 DOI: 10.1016/j.ynstr.2024.100615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/21/2024] Open
Abstract
Stress can powerfully influence the way we form memories, particularly the extent to which they are integrated or situated within an underlying spatiotemporal and broader knowledge architecture. These different representations in turn have significant consequences for the way we use these memories to guide later behavior. Puzzlingly, although stress has historically been argued to promote fragmentation, leading to disjoint memory representations, more recent work suggests that stress can also facilitate memory binding and integration. Understanding the circumstances under which stress fosters integration will be key to resolving this discrepancy and unpacking the mechanisms by which stress can shape later behavior. Here, we examine memory integration at multiple levels: linking together the content of an individual experience, threading associations between related but distinct events, and binding an experience into a pre-existing schema or sense of causal structure. We discuss neural and cognitive mechanisms underlying each form of integration as well as findings regarding how stress, aversive learning, and negative affect can modulate each. In this analysis, we uncover that stress can indeed promote each level of integration. We also show how memory integration may apply to understanding effects of alcohol, highlighting extant clinical and preclinical findings and opportunities for further investigation. Finally, we consider the implications of integration and fragmentation for later memory-guided behavior, and the importance of understanding which type of memory representation is potentiated in order to design appropriate interventions.
Collapse
Affiliation(s)
| | - Elizabeth V. Goldfarb
- Department of Psychiatry, Yale University, USA
- Department of Psychology, Yale University, USA
- Wu Tsai Institute, Yale University, USA
- National Center for PTSD, West Haven VA, USA
| |
Collapse
|
3
|
Peppercorn J, Miller EK, Hasselmo ME. Don't You Worry 'bout a Thing: Harnessing the Power of Music to Improve Emotional Health in Oncology. JCO Oncol Pract 2023; 19:1089-1091. [PMID: 37883731 DOI: 10.1200/op.23.00555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
In this editorial, Drs Peppercorn and noted neuroscientists Miller and Hasselmo comment on a recent randomized trial of music to reduce stress during infusion, noting that our understanding of the brain supports a unique and particularly effective role for music in improving mood and reducing distress for patients with cancer
Collapse
Affiliation(s)
- Jeffrey Peppercorn
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA
| | - Earl K Miller
- The Picower Institute for Learning & Memory and Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA
| | - Michael E Hasselmo
- Department of Psychological and Brain Sciences, Boston University, Boston, MA
| |
Collapse
|
4
|
Sherman BE, Harris BB, Turk-Browne NB, Sinha R, Goldfarb EV. Hippocampal Mechanisms Support Cortisol-Induced Memory Enhancements. J Neurosci 2023; 43:7198-7212. [PMID: 37813570 PMCID: PMC10601369 DOI: 10.1523/jneurosci.0916-23.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/05/2023] [Accepted: 09/09/2023] [Indexed: 10/17/2023] Open
Abstract
Stress can powerfully influence episodic memory, often enhancing memory encoding for emotionally salient information. These stress-induced memory enhancements stand at odds with demonstrations that stress and the stress-related hormone cortisol can negatively affect the hippocampus, a brain region important for episodic memory encoding. To resolve this apparent conflict and determine whether and how the hippocampus supports memory encoding under cortisol, we combined behavioral assays of associative memory, high-resolution fMRI, and pharmacological manipulation of cortisol in a within-participant, double-blinded procedure (in both sexes). Behaviorally, hydrocortisone promoted the encoding of subjectively arousing, positive associative memories. Neurally, hydrocortisone led to enhanced functional connectivity between hippocampal subregions, which predicted subsequent memory enhancements for emotional associations. Cortisol also modified the relationship between hippocampal representations and associative memory: whereas hippocampal signatures of distinctiveness predicted memory under placebo, relative integration predicted memory under cortisol. Together, these data provide novel evidence that the human hippocampus contains the necessary machinery to support emotional associative memory enhancements under cortisol.SIGNIFICANCE STATEMENT Our daily lives are filled with stressful events, which powerfully shape the way we form episodic memories. For example, stress and stress-related hormones can enhance our memory for emotional events. However, the mechanisms underlying these memory benefits are unclear. In the current study, we combined functional neuroimaging, behavioral tests of memory, and double-blind, placebo-controlled hydrocortisone administration to uncover the effects of the stress-related hormone cortisol on the function of the human hippocampus, a brain region important for episodic memory. We identified novel ways in which cortisol can enhance hippocampal function to promote emotional memories, highlighting the adaptive role of cortisol in shaping memory formation.
Collapse
Affiliation(s)
- Brynn E Sherman
- Department of Psychology, University of Pennsylvania, Philadelphia 19104
| | - Bailey B Harris
- Department of Psychology, UCLA, Los Angeles, California 90095
| | - Nicholas B Turk-Browne
- Department of Psychology, Yale University, New Haven, Connecticut 06520
- Wu Tsai Institute, Yale University, New Haven, Connecticut 06510
| | - Rajita Sinha
- Department of Psychiatry, Yale University, New Haven, Connecticut 06511
| | - Elizabeth V Goldfarb
- Department of Psychology, Yale University, New Haven, Connecticut 06520
- Wu Tsai Institute, Yale University, New Haven, Connecticut 06510
- Department of Psychiatry, Yale University, New Haven, Connecticut 06511
- National Center for PTSD, VA Connecticut Healthcare System, West Haven, Connecticut 06477
| |
Collapse
|
5
|
Giovanniello J, Bravo-Rivera C, Rosenkranz A, Matthew Lattal K. Stress, associative learning, and decision-making. Neurobiol Learn Mem 2023; 204:107812. [PMID: 37598745 DOI: 10.1016/j.nlm.2023.107812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/02/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Exposure to acute and chronic stress has significant effects on the basic mechanisms of associative learning and memory. Stress can both impair and enhance associative learning depending on type, intensity, and persistence of the stressor, the subject's sex, the context that the stress and behavior is experienced in, and the type of associative learning taking place. In some cases, stress can cause or exacerbate the maladaptive behavior that underlies numerous psychiatric conditions including anxiety disorders, obsessive-compulsive disorder, post-traumatic stress disorder, substance use disorder, and others. Therefore, it is critical to understand how the varied effects of stress, which may normally facilitate adaptive behavior, can also become maladaptive and even harmful. In this review, we highlight several findings of associative learning and decision-making processes that are affected by stress in both human and non-human subjects and how they are related to one another. An emerging theme from this work is that stress biases behavior towards less flexible strategies that may reflect a cautious insensitivity to changing contingencies. We consider how this inflexibility has been observed in different associative learning procedures and suggest that a goal for the field should be to clarify how factors such as sex and previous experience influence this inflexibility.
Collapse
Affiliation(s)
| | - Christian Bravo-Rivera
- Departments of Psychiatry and Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, PR 00935, United States.
| | - Amiel Rosenkranz
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Chicago Medical School, Rosalind Franklin University of Medicine and Science, United States.
| | - K Matthew Lattal
- Department of Behavioral Neuroscience, Oregon Health & Science University, United States.
| |
Collapse
|
6
|
Lourenço-Silva MI, Ulans A, Campbell AM, Almeida Paz ICL, Jacobs L. Social-pair judgment bias testing in slow-growing broiler chickens raised in low- or high-complexity environments. Sci Rep 2023; 13:9393. [PMID: 37296295 PMCID: PMC10256692 DOI: 10.1038/s41598-023-36275-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Impacts of environmental complexity on affective states in slow-growing broiler chickens (Gallus gallus domesticus) are unknown. Chickens' performance in judgment bias tests (JBT) can be limited as they are tested individually, causing fear and anxiety. The objectives were to apply a social-pair JBT to assess the effect of environmental complexity on slow-growing broiler chickens` affective states, and assess the impact of fearfulness, anxiety, and chronic stress on JBT performance. Six-hundred Hubbard Redbro broilers were housed in six low-complexity (similar to commercial) or six high-complexity (permanent and temporary enrichments) pens. Twelve chicken pairs were trained (1 pair/pen, n = 24 chickens) using a multimodal approach (visual and spatial cues), with reward and neutral cues of opposing color and location. Three ambiguous cues were tested: near-positive, middle, and near-neutral cues. Approach and pecking behavior were recorded. Eighty-three percent of chickens (20/24) were successfully trained in 13 days. Fearfulness, anxiety, and chronic stress did not impact chickens' performance. Chickens successfully discriminated between cues. Low-complexity chickens approached the middle cue faster than high-complexity chickens, indicating that they were in a more positive affective state. The environmental complexity provided in this study did not improve affective states in slow-growing broiler chickens compared to a control. A social-pair JBT resulted in excellent learning and testing outcomes in slow-growing broilers.
Collapse
Affiliation(s)
- M I Lourenço-Silva
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Sciences (FMVZ), São Paulo State University "Júlio de Mesquita Filho" (UNESP), Botucatu, São Paulo, Brazil
- School of Animal Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - A Ulans
- School of Animal Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - A M Campbell
- School of Animal Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - I C L Almeida Paz
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Sciences (FMVZ), São Paulo State University "Júlio de Mesquita Filho" (UNESP), Botucatu, São Paulo, Brazil
| | - L Jacobs
- School of Animal Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
7
|
Sherman BE, Harris BB, Turk-Browne NB, Sinha R, Goldfarb EV. Hippocampal mechanisms support cortisol-induced memory enhancements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527745. [PMID: 36798309 PMCID: PMC9934703 DOI: 10.1101/2023.02.08.527745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Stress can powerfully influence episodic memory, often enhancing memory encoding for emotionally salient information. These stress-induced memory enhancements stand at odds with demonstrations that stress and the stress-related hormone cortisol can negatively affect the hippocampus, a brain region important for episodic memory encoding. To resolve this apparent conflict and determine whether and how the hippocampus supports memory encoding under cortisol, we combined behavioral assays of associative memory, high-resolution functional magnetic resonance imaging (fMRI), and pharmacological manipulation of cortisol in a within-participant, double-blinded procedure. Hydrocortisone led to enhanced functional connectivity between hippocampal subregions, which predicted subsequent memory enhancements for emotional information. Cortisol also modified the relationship between hippocampal representations and memory: whereas hippocampal signatures of distinctiveness predicted memory under placebo, relative integration predicted memory under cortisol. Together, these data provide novel evidence that the human hippocampus contains the necessary machinery to support emotional memory enhancements under stress.
Collapse
Affiliation(s)
| | | | | | | | - Elizabeth V Goldfarb
- Department of Psychology, Yale University
- Wu Tsai Institute, Yale University
- Department of Psychiatry, Yale University
| |
Collapse
|
8
|
Merz CJ. How Different Factors in Combination Change Fear Extinction Learning: The Case of Sex and Stress Hormones. Curr Top Behav Neurosci 2023; 64:179-191. [PMID: 37455303 DOI: 10.1007/7854_2023_427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Effects of a specific factor on fear extinction or exposure therapy have revealed promising results, for example how sex or stress hormones exert the capability to critically change extinction learning and consolidation processes. However, we must acknowledge that in real life these factors do not operate in isolation, they go hand in hand. In this chapter, the available evidence regarding interactions of sex and stress hormones on extinction processes and exposure therapy will be integrated and discussed. First hints exist that these factors in combination critically target extinction learning and consolidation processes, calling for more detailed research on the exact underlying mechanisms. In addition to experiments with high sample sizes, we must aim for a collaborative effort of laboratories across the whole world to be able to identify critical combinations of factors associated with improved, but also impaired extinction processes and exposure therapy success. We expect that the revelation of further relevant factors will not only be limited to the interplay between sex and stress hormones but will include factors such as sleep and exercise as well. In the long run, uncovering the most important interaction effects will give us critical hints for differential treatment options to be realized in the sense of a personalized medicine approach.
Collapse
Affiliation(s)
- Christian J Merz
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
9
|
Rygvold TW, Hatlestad-Hall C, Elvsåshagen T, Moberget T, Andersson S. Long-Term Potentiation-Like Visual Synaptic Plasticity Is Negatively Associated With Self-Reported Symptoms of Depression and Stress in Healthy Adults. Front Hum Neurosci 2022; 16:867675. [PMID: 35601905 PMCID: PMC9119023 DOI: 10.3389/fnhum.2022.867675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Long-term potentiation (LTP) is one of the most extensively studied forms of neuroplasticity and is considered the strongest candidate mechanism for memory and learning. The use of event-related potentials and sensory stimulation paradigms has allowed for the translation from animal studies to non-invasive studies of LTP-like synaptic plasticity in humans. Accumulating evidence suggests that synaptic plasticity as measured by stimulus-specific response modulation is reduced in neuropsychiatric disorders such as major depressive disorder (MDD), bipolar disorders and schizophrenia, suggesting that impaired synaptic plasticity plays a part in the underlying pathophysiology of these disorders. This is in line with the neuroplasticity hypothesis of depression, which postulate that deficits in neuroplasticity might be a common pathway underlying depressive disorders. The current study aims to replicate and confirm earlier reports that visual stimulus-specific response modulation is a viable probe into LTP-like synaptic plasticity in a large sample of healthy adults (n = 111). Further, this study explores whether impairments in LTP-like synaptic plasticity is associated with self-reported subclinical depressive symptoms and stress in a healthy population. Consistent with prior research, the current study replicated and confirmed reports demonstrating significant modulation of visual evoked potentials (VEP) following visual high-frequency stimulation. Current results further indicate that reduced LTP-like synaptic plasticity is associated with higher levels of self-reported symptoms of depression and perceived stress. This indicate that LTP-like plasticity is sensitive to sub-clinical levels of psychological distress, and might represent a vulnerability marker for the development of depressive symptoms.
Collapse
Affiliation(s)
- Trine Waage Rygvold
- Department of Psychology, Faculty of Social Sciences, University of Oslo, Oslo, Norway
| | | | | | - Torgeir Moberget
- Department of Psychology, Faculty of Social Sciences, University of Oslo, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Stein Andersson
- Department of Psychology, Faculty of Social Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
10
|
Wolf DC, Desgent S, Sanon NT, Chen JS, Elkaim LM, Bosoi CM, Awad PN, Simard A, Salam MT, Bilodeau GA, Duss S, Sawan M, Lewis EC, Weil AG. Sex differences in the developing brain impact stress-induced epileptogenicity following hyperthermia-induced seizures. Neurobiol Dis 2021; 161:105546. [PMID: 34742878 DOI: 10.1016/j.nbd.2021.105546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/19/2021] [Accepted: 11/02/2021] [Indexed: 12/24/2022] Open
Abstract
Febrile seizures (FS) are common, affecting 2-5% of children between the ages of 3 months and 6 years. Complex FS occur in 10% of patients with FS and are strongly associated with mesial temporal lobe epilepsy. Current research suggests that predisposing factors, such as genetic and anatomic abnormalities, may be necessary for complex FS to translate to mesial temporal lobe epilepsy. Sex hormones are known to influence seizure susceptibility and epileptogenesis, but whether sex-specific effects of early life stress play a role in epileptogenesis is unclear. Here, we investigate sex differences in the activity of the hypothalamic-pituitary-adrenal (HPA) axis following chronic stress and the underlying contributions of gonadal hormones to the susceptibility of hyperthermia-induced seizures (HS) in rat pups. Chronic stress consisted of daily injections of 40 mg/kg of corticosterone (CORT) subcutaneously from postnatal day (P) 1 to P9 in male and female rat pups followed by HS at P10. Body mass, plasma CORT levels, temperature threshold to HS, seizure characteristics, and electroencephalographic in vivo recordings were compared between CORT- and vehicle (VEH)-injected littermates during and after HS at P10. In juvenile rats (P18-P22), in vitro CA1 pyramidal cell recordings were recorded in males to investigate excitatory and inhibitory neuronal circuits. Results show that daily CORT injections increased basal plasma CORT levels before HS and significantly reduced weight gain and body temperature threshold of HS in both males and females. CORT also significantly lowered the generalized convulsions (GC) latency while increasing recovery time and the number of electrographic seizures (>10s), which had longer duration. Furthermore, sex-specific differences were found in response to chronic CORT injections. Compared to females, male pups had increased basal plasma CORT levels after HS, longer recovery time and a higher number of electrographic seizures (>10s), which also had longer duration. Sex-specific differences were also found at baseline conditions with lower latency to generalized convulsions and longer duration of electrographic seizures in males but not in females. In juvenile male rats, the amplitude of evoked excitatory postsynaptic potentials, as well as the amplitude of inhibitory postsynaptic currents, were significantly greater in CORT rats when compared to VEH littermates. These findings not only validate CORT injections as a stress model, but also show a sex difference in baseline conditions as well as a response to chronic CORT and an impact on seizure susceptibility, supporting a potential link between sustained early-life stress and complex FS. Overall, these effects also indicate a putatively less severe phenotype in female than male pups. Ultimately, studies investigating the biological underpinnings of sex differences as a determining factor in mental and neurologic problems are necessary to develop better diagnostic, preventative, and therapeutic approaches for all patients regardless of their sex.
Collapse
Affiliation(s)
- Daniele C Wolf
- Centre de Recherche, Centre Hospitalier Universitaire (CHU) Sainte-Justine, Département de Pédiatrie, Université de Montréal, Québec, Canada; Département de Neurosciences, Université de Montréal, Québec, Canada.
| | - Sébastien Desgent
- Centre de Recherche, Centre Hospitalier Universitaire (CHU) Sainte-Justine, Département de Pédiatrie, Université de Montréal, Québec, Canada; Département de Neurosciences, Université de Montréal, Québec, Canada
| | - Nathalie T Sanon
- Centre de Recherche, Centre Hospitalier Universitaire (CHU) Sainte-Justine, Département de Pédiatrie, Université de Montréal, Québec, Canada
| | - Jia-Shu Chen
- The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Lior M Elkaim
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Ciprian M Bosoi
- Centre de Recherche, Centre Hospitalier Universitaire (CHU) Sainte-Justine, Département de Pédiatrie, Université de Montréal, Québec, Canada
| | - Patricia N Awad
- Centre de Recherche, Centre Hospitalier Universitaire (CHU) Sainte-Justine, Département de Pédiatrie, Université de Montréal, Québec, Canada
| | - Alexe Simard
- Centre de Recherche, Centre Hospitalier Universitaire (CHU) Sainte-Justine, Département de Pédiatrie, Université de Montréal, Québec, Canada
| | - Muhammad T Salam
- Laboratoire Polystim, Département de génie électrique, Polytechnique Montréal, Montréal, Québec, Canada
| | - Guillaume-Alexandre Bilodeau
- LITIV Lab., Département de génie informatique et génie logiciel, Polytechnique Montréal, Montréal, Québec, Canada
| | - Sandra Duss
- Centre de Recherche, Centre Hospitalier Universitaire (CHU) Sainte-Justine, Département de Pédiatrie, Université de Montréal, Québec, Canada
| | - Mohamad Sawan
- Laboratoire Polystim, Département de génie électrique, Polytechnique Montréal, Montréal, Québec, Canada
| | | | - Alexander G Weil
- Centre de Recherche, Centre Hospitalier Universitaire (CHU) Sainte-Justine, Département de Pédiatrie, Université de Montréal, Québec, Canada; Département de Neurosciences, Université de Montréal, Québec, Canada; Neurosurgery Service, Department of Surgery, Université de Montréal, Québec, Canada
| |
Collapse
|
11
|
El Marzouki H, Aboussaleh Y, Najimi M, Chigr F, Ahami A. Effect of Cold Stress on Neurobehavioral and Physiological Parameters in Rats. Front Physiol 2021; 12:660124. [PMID: 34603068 PMCID: PMC8485037 DOI: 10.3389/fphys.2021.660124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 08/16/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: Cold stress is an important current issue and implementing control strategies to limit its sometimes harmful effects is crucial. Cold is a common stressor that can occur in our work and our occupational or leisure time activities every day. There are substantial studies on the effects of chronic stress on memory and behavior, although, the cognitive changes and anxiety disorders that can occur after exposure to chronic intermittent cold stress are not completely characterized. Therefore, the present study was undertaken with an aim to investigate the effects of chronic intermittent cold stress on body weight, food intake and working memory, and to elucidate cold stress related anxiety disorders using cognitive and behavioral test batteries. Methods: We generated a cold stress model by exposing rats to chronic intermittent cold stress for 5 consecutive days and in order to test for the potential presence of sex differences, a comparable number of male and female rats were tested in the current study. Then, we measured the body weights, food intake and the adrenal glands weight. Working memory and recognition memory were assessed using the Y maze and the Novel Object Recognition (NOR) tasks. While, sex differences in the effects of chronic stress on behavior were evaluated by the elevated plus maze (EPM), open field maze (OF), and Marble burying (MB) tests. Results: We found that 2 h exposure to cold (4°C) resulted in an increase in the relative weight of the adrenal glands in male rats. Given the same chronic stress 5 days of cold exposure (2 h per day), increased weight gain in male rats, while females showed decreased food intake and no change in body weight. Both sexes successfully performed the Y maze and object recognition (OR) tasks, indicating intact spatial working memory performance and object recognition abilities in both male and female rats. In addition, we have shown that stress caused an increase in the level of anxiety in male rats. In contrast, the behavior of the female rats was not affected by cold exposure. Conclusion: Overall, the current results provide preliminary evidence that chronic intermittent cold stress model may not be an efficient stressor to female rats. Females exhibit resilience to cold exposure that causes an increase in the level of anxiety in male rats, which demonstrates that they are affected differently by stress and the gender is an important consideration in experimental design.
Collapse
Affiliation(s)
- Hajar El Marzouki
- Biology and Health Laboratory, Unit of Clinical and Cognitive-Behavioural Neurosciences and Applied Nutrition Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Youssef Aboussaleh
- Biology and Health Laboratory, Unit of Clinical and Cognitive-Behavioural Neurosciences and Applied Nutrition Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Mohamed Najimi
- Biological Engineering Laboratory, Faculty of Sciences and Techniques, Sultan MoulaySlimane University, Beni Mellal, Morocco
| | - Fatiha Chigr
- Biological Engineering Laboratory, Faculty of Sciences and Techniques, Sultan MoulaySlimane University, Beni Mellal, Morocco
| | - Ahmed Ahami
- Biology and Health Laboratory, Unit of Clinical and Cognitive-Behavioural Neurosciences and Applied Nutrition Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| |
Collapse
|
12
|
Noorani A, Hung PSP, Zhang JY, Sohng K, Laperriere N, Moayedi M, Hodaie M. Pain relief reverses hippocampal abnormalities in trigeminal neuralgia. THE JOURNAL OF PAIN 2021; 23:141-155. [PMID: 34380093 DOI: 10.1016/j.jpain.2021.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/24/2021] [Accepted: 07/12/2021] [Indexed: 11/17/2022]
Abstract
Chronic pain patients frequently report memory and concentration difficulties. Objective testing in this population points to poor performance on memory and cognitive tests, and increased comorbid anxiety and depression. Recent evidence has suggested convergence between chronic pain and memory deficits onto the hippocampus. The hippocampus consists of heterogenous subfields involved in memory consolidation, behavior regulation, and stress modulation. Despite significant studies outlining hippocampal changes in human and chronic pain animal models, the effect of pain relief on hippocampal abnormalities remains unknown. Trigeminal neuralgia (TN) is a chronic neuropathic pain disorder which is highly amenable to surgical interventions, providing a unique opportunity to investigate the effect of pain relief. This study investigates the effect of pain relief on hippocampal subfields in TN. Anatomical MR images of 61 TN patients were examined before and 6 months after surgery. Treatment responders (n=47) reported 95% pain relief, whereas non-responders (n=14) reported 40% change in pain on average. At baseline, patients had smaller hippocampal volumes, compared to controls. After surgery, responders' hippocampal volumes normalized, largely driven by CA2/3, CA4 and dentate gyrus, which are involved in memory consolidation and neurogenesis. We propose that hippocampal atrophy in TN is pain-driven and successful treatment normalizes such abnormalities.
Collapse
Affiliation(s)
- Alborz Noorani
- Division of Brain, Imaging, and Behaviour - Systems Neuroscience, Krembil Research Institute, Toronto Western Hospital, University Health Network, Ontario, Canada; Department of Surgery and Institute of Medical Science, University of Toronto, Ontario, Canada; Collaborative Program in Neuroscience, University of Toronto, Ontario, Canada; Temerty Faculty of Medicine, University of Toronto, Ontario, Canada
| | - Peter Shih-Ping Hung
- Division of Brain, Imaging, and Behaviour - Systems Neuroscience, Krembil Research Institute, Toronto Western Hospital, University Health Network, Ontario, Canada; Department of Surgery and Institute of Medical Science, University of Toronto, Ontario, Canada; Collaborative Program in Neuroscience, University of Toronto, Ontario, Canada; Temerty Faculty of Medicine, University of Toronto, Ontario, Canada
| | - Jia Y Zhang
- Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Kaylee Sohng
- Division of Brain, Imaging, and Behaviour - Systems Neuroscience, Krembil Research Institute, Toronto Western Hospital, University Health Network, Ontario, Canada; Temerty Faculty of Medicine, University of Toronto, Ontario, Canada
| | - Normand Laperriere
- Temerty Faculty of Medicine, University of Toronto, Ontario, Canada; Radiation Medicine Program, Princess Margaret Hospital and University of Toronto, Toronto, Ontario, Canada
| | - Massieh Moayedi
- Collaborative Program in Neuroscience, University of Toronto, Ontario, Canada; Centre for Multimodal Sensorimotor and Pain Research, University of Toronto, Ontario, Canada; University of Toronto Centre for the Study of Pain, Toronto, Ontario, Canada; Division of Clinical & Computational Neuroscience, Krembil Research Institute, Toronto Western Hospital, University Health Network, Ontario Canada
| | - Mojgan Hodaie
- Division of Brain, Imaging, and Behaviour - Systems Neuroscience, Krembil Research Institute, Toronto Western Hospital, University Health Network, Ontario, Canada; Department of Surgery and Institute of Medical Science, University of Toronto, Ontario, Canada; Collaborative Program in Neuroscience, University of Toronto, Ontario, Canada; Temerty Faculty of Medicine, University of Toronto, Ontario, Canada; Division of Neurosurgery, Krembil Brain Institute, Toronto Western Hospital, University Health Network, Ontario, Canada.
| |
Collapse
|
13
|
Sinnaeve R, Vaessen T, van Diest I, Myin-Germeys I, van den Bosch LMC, Vrieze E, Kamphuis JH, Claes S. Investigating the stress-related fluctuations of level of personality functioning: A critical review and agenda for future research. Clin Psychol Psychother 2021; 28:1181-1193. [PMID: 33590556 DOI: 10.1002/cpp.2566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 12/14/2022]
Abstract
The Diagnostic and Statistical Manual of Mental Disorders (DSM-5) and the International Classification of Diseases (ICD-11) proposed a dimensional approach to the assessment of personality disorders (PDs). Both models dictate that the clinician first determines PD severity before assessing maladaptive traits, invoking the level of personality functioning (LPF) construct. We consider LPF a promising dimensional construct for translational research because of its clinical importance and conceptual overlap with the Research Domain Criteria (RDoC) Social Processes. We aim to identify biomarkers that co-vary with fluctuations in LPF in adulthood, ultimately to predict persistent decrease in LPF, associated with suicidality and morbidity. However, a theoretical framework to investigate stress-related oscillations in LPF is currently missing. In this article, we aim to fill this hiatus with a critical review about stress and LPF. First, we discuss acute stress and LPF. We briefly present the basics of the neurophysiological stress response and review the literature on momentary and daily fluctuations in LPF, both at a subjective and physiological level. Second, we review the effects of chronic stress on brain function and social behaviour and recapitulate the main findings from prospective cohort studies. This review underlies our suggestions for multimethod assessment of stress-related oscillations in LPF and our theoretical framework for future longitudinal studies, in particular studies using the experience sampling method (ESM).
Collapse
Affiliation(s)
- Roland Sinnaeve
- University Psychiatric Center KU Leuven, Kortenberg, Belgium.,Department of Neurosciences, Mind Body Research, KU Leuven, Leuven, Belgium
| | - Thomas Vaessen
- Department of Neurosciences, Mind Body Research, KU Leuven, Leuven, Belgium.,Department of Neurosciences, Contextual Psychiatry, KU Leuven, Leuven, Belgium
| | - Ilse van Diest
- Faculty of Psychology and Educational Sciences, Health Psychology Research Group, KU Leuven, Leuven, Belgium
| | - Inez Myin-Germeys
- Department of Neurosciences, Contextual Psychiatry, KU Leuven, Leuven, Belgium
| | | | - Elske Vrieze
- University Psychiatric Center KU Leuven, Kortenberg, Belgium.,Department of Neurosciences, Mind Body Research, KU Leuven, Leuven, Belgium
| | - Jan Henk Kamphuis
- Faculty of Social and Behavioural Sciences, Programme group Clinical Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Stephan Claes
- University Psychiatric Center KU Leuven, Kortenberg, Belgium.,Department of Neurosciences, Mind Body Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Kruse P, Wach D, Wegge J. What motivates social entrepreneurs? A meta-analysis on predictors of the intention to found a social enterprise. JOURNAL OF SMALL BUSINESS MANAGEMENT 2020. [DOI: 10.1080/00472778.2020.1844493] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Philipp Kruse
- School of Science, Faculty of Psychology, Technical University Dresden, Germany
| | - Dominika Wach
- School of Science, Faculty of Psychology, Technical University Dresden, Germany
| | - Jürgen Wegge
- School of Science, Faculty of Psychology, Technical University Dresden, Germany
| |
Collapse
|
15
|
Lewis LM, Deibel SH, Cleary J, Viguers KB, Jones KA, Skinner DM, Hallett D, Thorpe CM. Learning and memory in a rat model of social jetlag that also incorporates mealtime. BIOL RHYTHM RES 2020. [DOI: 10.1080/09291016.2020.1716557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Leanna M. Lewis
- Department of Psychology, Memorial University of Newfoundland, St. John’s, NL, USA
| | - Scott H. Deibel
- Department of Psychology, Memorial University of Newfoundland, St. John’s, NL, USA
| | - Jillian Cleary
- Department of Psychology, Memorial University of Newfoundland, St. John’s, NL, USA
| | - Kayla B. Viguers
- Department of Psychology, Memorial University of Newfoundland, St. John’s, NL, USA
| | - Karen A. Jones
- Department of Psychology, Memorial University of Newfoundland, St. John’s, NL, USA
| | - Darlene M. Skinner
- Department of Psychology, Memorial University of Newfoundland, St. John’s, NL, USA
| | - Darcy Hallett
- Department of Psychology, Memorial University of Newfoundland, St. John’s, NL, USA
| | - Christina M. Thorpe
- Department of Psychology, Memorial University of Newfoundland, St. John’s, NL, USA
| |
Collapse
|
16
|
Xu L, Wang J. Food restriction in adolescence increases emotional disorder-like behaviors in adult rats. J Chem Neuroanat 2019; 104:101731. [PMID: 31862402 DOI: 10.1016/j.jchemneu.2019.101731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/14/2019] [Accepted: 12/15/2019] [Indexed: 10/25/2022]
Abstract
This study was designed to investigate the neuronal mechanism underlying the influence of early-life food restriction on the central nervous system and subsequent behaviors in adult rats. Several behavioral paradigms were tested in rats, including sucrose negative contrast test, forced swimming test (FST) and elevated plus maze test (EPM). in vivo intracellular electrophysiological recordings were conducted in the lateral nucleus of the amygdala (LAT). Finally, the levels of neuropeptide Y (NPY) were examined using immunohistochemistry. Food restriction during adolescence reduced sucrose preference in adult rats. Adolescent food restriction increased total immobile time in the FST and reduced the latency in rats to the first bout of immobility. In the EPM test, rats that experienced food restriction in adolescence and tested four weeks later spent less time than unrestricted controls in the open arm. In addition, chronic food restriction in adolescence increased in vivo LAT neuronal excitability in adulthood. Finally, NPY immunoreactivity in the LAT was reduced in rats that experienced chronic food restriction in adolescence compared to controls. Our results suggest that food restriction in adolescence increases emotional disorder-like behaviors in adult life, in which NPY production regulates the LAT-dependent behaviors and may underly the vulnerability to emotional disorders.
Collapse
Affiliation(s)
- Li Xu
- Department of Electrophysiological Examination, Cangzhou Central Hospital, Cangzhou 061001, Hebei Province, China
| | - Jinfeng Wang
- Department of Electrophysiological Examination, Cangzhou Central Hospital, Cangzhou 061001, Hebei Province, China.
| |
Collapse
|
17
|
Mills AC, Poogpan J, Wong-Anuchit C, Rujkorakarn D. The meaning of acceptance (Thum-jai) in Thai people: Letting it go…so life goes on. Int J Ment Health Nurs 2019; 28:879-887. [PMID: 30848012 DOI: 10.1111/inm.12587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/18/2019] [Indexed: 11/30/2022]
Abstract
The purpose of this qualitative study was to explore the meaning of acceptance (Thum-jai) as a culturally embedded coping strategy in the lives of Thai people who have experienced adversity that caused suffering. Thematic analysis was used to examine the responses of 47 participants to written, open-ended questions or face-to-face interviews. The EQUATOR's COREQ checklist for qualitative research was followed. Participants came from diverse religious' traditions and geographic regions throughout Thailand. Findings revealed seven themes: circumstance and emotion; thought and action; time, experience, and effort; social and moral support; religious and spiritual ethos; acceptance and hope; and survive and thrive. The adverse circumstance is central to the concept of acceptance. Before acceptance, there is often hope; yet Thai people reach an existential point whether to accept the reality of the situation or continue in distress. Purposeful approaches to deal with the event flow from the cultural contexts of spirituality and social support. Drawing upon psychological strength, Thai people undertake purposive thought and action to facilitate redirecting their lives for better mental health. Thum-jai brings release and peace of mind. Clinicians may find that people experiencing adverse life events are best served by nondirective approaches. Acceptance and change in thoughts and behaviours may come from meditation and therapeutic mindfulness practices that allow those in Western and non-Western cultures to use their own values, expressions, and societal expectations to cope with suffering and formulate effective decisions.
Collapse
Affiliation(s)
- Andrew C Mills
- Faculty of Nursing, Mahasarakham University, Mahasarakham, Thailand
| | - Jidapa Poogpan
- Faculty of Nursing, Mahasarakham University, Mahasarakham, Thailand
| | | | | |
Collapse
|
18
|
De Miguel Z, Haditsch U, Palmer TD, Azpiroz A, Sapolsky RM. Adult-generated neurons born during chronic social stress are uniquely adapted to respond to subsequent chronic social stress. Mol Psychiatry 2019; 24:1178-1188. [PMID: 29311652 DOI: 10.1038/s41380-017-0013-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/19/2017] [Accepted: 10/30/2017] [Indexed: 12/28/2022]
Abstract
Chronic stress is a recognized risk factor for psychiatric and psychological disorders and a potent modulator of adult neurogenesis. Numerous studies have shown that during stress, neurogenesis decreases; however, during the recovery from the stress, neurogenesis increases. Despite the increased number of neurons born after stress, it is unknown if the function and morphology of those neurons are altered. Here we asked whether neurons in adult mice, born during the final 5 days of chronic social stress and matured during recovery from chronic social stress, are similar to neurons born with no stress conditions from a quantitative, functional and morphological perspective, and whether those neurons are uniquely adapted to respond to a subsequent stressful challenge. We observed an increased number of newborn neurons incorporated in the dentate gyrus of the hippocampus during the 10-week post-stress recovery phase. Interestingly, those new neurons were more responsive to subsequent chronic stress, as they showed more of a stress-induced decrease in spine density and branching nodes than in neurons born during a non-stress period. Our results replicate findings that the neuronal survival and incorporation of neurons in the adult dentate gyrus increases after chronic stress and suggest that such neurons are uniquely adapted in the response to future social stressors. This finding provides a potential mechanism for some of the long-term hippocampal effects of stress.
Collapse
Affiliation(s)
- Zurine De Miguel
- Department of Biological Sciences, Stanford University, Stanford, CA, 94305, USA. .,Department of Basic Psychological Processes and their Development, Basque Country University, San Sebastián, 20018, Spain.
| | - Ursula Haditsch
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Theo D Palmer
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Arantza Azpiroz
- Department of Basic Psychological Processes and their Development, Basque Country University, San Sebastián, 20018, Spain
| | - Robert M Sapolsky
- Department of Biological Sciences, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
19
|
Trivino-Paredes JS, Nahirney PC, Pinar C, Grandes P, Christie BR. Acute slice preparation for electrophysiology increases spine numbers equivalently in the male and female juvenile hippocampus: a DiI labeling study. J Neurophysiol 2019; 122:958-969. [PMID: 31268808 DOI: 10.1152/jn.00332.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hippocampal slices are widely used for in vitro electrophysiological experiments to study underlying mechanisms for synaptic transmission and plasticity, and there is a growing appreciation for sex differences in synaptic plasticity. To date, several studies have shown that the process of making slices from male animals can induce synaptogenesis in cornu ammonis area 1 (CA1) pyramidal cells, but there is a paucity of data for females and other brain regions. In the current study we use microcrystals of the lipophilic carbocyanine dye DiI (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate) to stain individual neurons in the CA1 and dentate gyrus (DG) hippocampal subfields of postnatal day 21 male and female rats. We show that the preparation of sections for electrophysiology produces significant increases in spines in sections obtained from females, similar to that observed in males. We also show that the procedures used for in vitro electrophysiology also result in significant spine increases in the DG and CA1 subfields. These results demonstrate the utility of this refined DiI procedure for staining neuronal dendrites and spines. They also show, for the first time, that in vitro electrophysiology slice preparations enhance spine numbers on hippocampal cells equivalently in both juvenile females and males.NEW & NOTEWORTHY This study introduces a new DiI technique that elucidates differences in spine numbers in juvenile female and male hippocampus, and shows that slice preparations for hippocampal electrophysiology in vitro may mask these differences.
Collapse
Affiliation(s)
- J S Trivino-Paredes
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - P C Nahirney
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada.,Island Medical Program, University of British Columbia, Victoria, British Columbia, Canada.,Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - C Pinar
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - P Grandes
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada.,Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Vizcaya, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Vizcaya, Spain
| | - B R Christie
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada.,Island Medical Program, University of British Columbia, Victoria, British Columbia, Canada.,Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
20
|
Broekhuis M, van Velsen L, Hermens H. Assessing usability of eHealth technology: A comparison of usability benchmarking instruments. Int J Med Inform 2019; 128:24-31. [PMID: 31160008 DOI: 10.1016/j.ijmedinf.2019.05.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/04/2019] [Accepted: 05/04/2019] [Indexed: 11/17/2022]
Abstract
BACKGROUND It is generally assumed that usability benchmarking instruments are technology agnostic. The same methods for usability evaluations are used for digital commercial, educational, governmental and healthcare systems. However, eHealth technologies have unique characteristics. They need to support patients' health, provide treatment or monitor progress. Little research is done on the effectiveness of different benchmarks (qualitative and quantitative) within the eHealth context. OBJECTIVES In this study, we compared three usability benchmarking instruments (logging task performance, think aloud and the SUS, the System Usability Scale) to assess which metric is most indicative of usability in an eHealth technology. Also, we analyzed how these outcome variables (task completion, system usability score, serious and critical usability issues) interacted with the acceptance factors Perceived benefits, Usefulness and Intention to use. METHODS A usability evaluation protocol was set up that incorporated all three benchmarking methods. This protocol was deployed among 36 Dutch participants and across three different eHealth technologies: a gamified application for older adults (N = 19), an online tele-rehabilitation portal for healthcare professionals (N = 9), and a mobile health app for adolescents (N = 8). RESULTS The main finding was that task completion, compared to the SUS, had stronger correlations with usability benchmarks. Also, serious and critical issues were stronger correlated to task metrics than the SUS. With regard to acceptance factors, there were no significant differences between the three usability benchmarking instruments. CONCLUSIONS With this study, we took a first step in examining how to improve usability evaluations for eHealth. The results show that listing usability issues from think aloud protocols remains one of the most effective tools to explain the usability for eHealth. Using the SUS as a stand-alone usability metric for eHealth is not recommended. Preferably, the SUS should be combined with task metrics, especially task completion. We recommend to develop a usability benchmarking instrument specifically for eHealth.
Collapse
Affiliation(s)
- Marijke Broekhuis
- Roessingh Research and Development, Roessinghsbleekweg 33b, 7522AH, Enschede, the Netherlands; Biomedical Signals and Systems, Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS), University of Twente, Enschede, the Netherlands.
| | - Lex van Velsen
- Roessingh Research and Development, Roessinghsbleekweg 33b, 7522AH, Enschede, the Netherlands; Biomedical Signals and Systems, Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS), University of Twente, Enschede, the Netherlands
| | - Hermie Hermens
- Roessingh Research and Development, Roessinghsbleekweg 33b, 7522AH, Enschede, the Netherlands; Biomedical Signals and Systems, Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS), University of Twente, Enschede, the Netherlands
| |
Collapse
|
21
|
Arambula SE, Reinl EL, El Demerdash N, McCarthy MM, Robertson CL. Sex differences in pediatric traumatic brain injury. Exp Neurol 2019; 317:168-179. [PMID: 30831070 DOI: 10.1016/j.expneurol.2019.02.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/21/2019] [Accepted: 02/28/2019] [Indexed: 02/08/2023]
Abstract
The response of the developing brain to traumatic injury is different from the response of the mature, adult brain. There are critical developmental trajectories in the young brain, whereby injury can lead to long term functional abnormalities. Emerging preclinical and clinical literature supports the presence of significant sex differences in both the response to and the recovery from pediatric traumatic brain injury (TBI). These sex differences are seen at all pediatric ages, including neonates/infants, pre-pubertal children, and adolescents. As importantly, the response to neuroprotective therapies or treatments can differ between male and females subjects. These sex differences can result from several biologic origins, and may manifest differently during the various phases of brain and body development. Recognizing and understanding these potential sex differences is crucial, and should be considered in both preclinical and clinical studies of pediatric TBI.
Collapse
Affiliation(s)
- Sheryl E Arambula
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Erin L Reinl
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Nagat El Demerdash
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Margaret M McCarthy
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Courtney L Robertson
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
22
|
Influence of pharmacological and epigenetic factors to suppress neurotrophic factors and enhance neural plasticity in stress and mood disorders. Cogn Neurodyn 2019; 13:219-237. [PMID: 31168328 DOI: 10.1007/s11571-019-09522-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 12/17/2018] [Accepted: 01/16/2019] [Indexed: 02/08/2023] Open
Abstract
Stress-induced major depression and mood disorders are characterized by behavioural abnormalities and psychiatric illness, leading to disability and immature mortality worldwide. Neurobiological mechanisms of stress and mood disorders are discussed considering recent findings, and challenges to enhance pharmacological effects of antidepressant, and mood stabilizers. Pharmacological enhancement of ketamine and scopolamine regulates depression at the molecular level, increasing synaptic plasticity in prefrontal regions. Blood-derived neurotrophic factors facilitate mood-deficit symptoms. Epigenetic factors maintain stress-resilience in hippocampal region. Regulation of neurotrophic factors blockades stress, and enhances neuronal survival though it paralyzes limbic regions. Molecular agents and neurotrophic factors also control behavioral and synaptic plasticity in addiction and stress disorders. Future research on neuronal dynamics and cellular actions can be directed to obtain the etiology of synaptic dysregulation in mood disorder and stress. For the first time, the current review contributes to the literature of synaptic plasticity representing the role of epigenetic mechanisms and glucocorticoid receptors to predict depression and anxiety in clinical conditions.
Collapse
|
23
|
Alterations in Systemic and Cognitive Glucocorticoid Sensitivity in Depression. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2018; 4:310-320. [PMID: 30686583 DOI: 10.1016/j.bpsc.2018.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/21/2018] [Accepted: 11/27/2018] [Indexed: 01/22/2023]
Abstract
BACKGROUND Decades of research point to cortisol insensitivity as a biomarker of depression. Despite a vast literature on cortisol's effects on memory, the role of cortisol insensitivity in core psychological features of depression, such as emotional memory biases, is unknown. METHODS Sixty-five premenopausal women with varying levels of depression completed this study involving an at-home low-dose dexamethasone suppression test and four experimental sessions (i.e., two visits for memory encoding of emotionally arousing pictures, each of which was followed 48 hours later by a recall test). Participants received 20 mg of oral cortisol (CORT) or placebo prior to encoding. We tested whether systemic cortisol insensitivity measured with the dexamethasone suppression test predicted cognitive sensitivity to CORT, which was operationalized as the change in negatively biased memory formation for pictures encoded following CORT versus placebo administration. RESULTS Cortisol insensitivity was associated with more severe depression and flatter diurnal cortisol levels. Cortisol insensitivity predicted negative memory bias for pictures encoded during the placebo session and reduction in negative memory bias for pictures encoded during the CORT (compared with placebo) session, even after accounting for psychiatric symptomatology. CONCLUSIONS Our findings replicate research showing that cortisol insensitivity predicts depression severity and flatter diurnal cortisol levels. The results further suggest that systemic cortisol insensitivity is related to negative memory bias and its alleviation by cortisol administration. These novel cognitive findings tie together knowledge regarding endocrine and psychological dysfunction in depression and suggest that boosting cortisol signal may cognitively benefit individuals with cortisol insensitivity.
Collapse
|
24
|
Goldfarb EV, Tompary A, Davachi L, Phelps EA. Acute stress throughout the memory cycle: Diverging effects on associative and item memory. J Exp Psychol Gen 2018; 148:13-29. [PMID: 30221962 DOI: 10.1037/xge0000472] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Acute stress can modulate memory for individual parts of an event (items), but whether it similarly influences memory for associations between items remains unclear. We used a within-subjects design to explore the influence of acute stress on item and associative memory in humans. Participants associated negative words with neutral objects, rated their subjective arousal for each pair, and completed delayed item and paired associative recognition tasks. We found strikingly different patterns of acute stress effects on item and associative memory: for high-arousal pairs, preencoding stress enhanced associative memory, whereas postencoding stress enhanced item memory. Preretrieval stress consistently impaired both forms of memory. We found that the influence of stress-induced cortisol also varied, with a linear relationship between cortisol and item memory but a quadratic relationship between cortisol and associative memory. These findings reveal key differences in how stress, throughout the memory cycle, shapes our memories for items and associations. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Collapse
|
25
|
Bushby EV, Friel M, Goold C, Gray H, Smith L, Collins LM. Factors Influencing Individual Variation in Farm Animal Cognition and How to Account for These Statistically. Front Vet Sci 2018; 5:193. [PMID: 30175105 PMCID: PMC6107851 DOI: 10.3389/fvets.2018.00193] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/26/2018] [Indexed: 12/19/2022] Open
Abstract
For farmed species, good health and welfare is a win-win situation: both the animals and producers can benefit. In recent years, animal welfare scientists have embraced cognitive sciences to rise to the challenge of determining an animal's internal state in order to better understand its welfare needs and by extension, the needs of larger groups of animals. A wide range of cognitive tests have been developed that can be applied in farmed species to assess a range of cognitive traits. However, this has also presented challenges. Whilst it may be expected to see cognitive variation at the species level, differences in cognitive ability between and within individuals of the same species have frequently been noted but left largely unexplained. Not accounting for individual variation may result in misleading conclusions when the results are applied both at an individual level and at higher levels of scale. This has implications both for our fundamental understanding of an individual's welfare needs, but also more broadly for experimental design and the justification for sample sizes in studies using animals. We urgently need to address this issue. In this review, we will consider the latest developments on the causes of individual variation in cognitive outcomes, such as the choice of cognitive test, sex, breed, age, early life environment, rearing conditions, personality, diet, and the animal's microbiome. We discuss the impact of each of these factors specifically in relation to recent work in farmed species, and explore the future directions for cognitive research in this field, particularly in relation to experimental design and analytical techniques that allow individual variation to be accounted for appropriately.
Collapse
Affiliation(s)
- Emily V Bushby
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Mary Friel
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Conor Goold
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Helen Gray
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Lauren Smith
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Lisa M Collins
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
26
|
Durães D, Carneiro D, Jiménez A, Novais P. Characterizing attentive behavior in intelligent environments. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2017.05.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
27
|
Overtraining modifies spatial memory susceptibility to corticosterone administration. Neurobiol Learn Mem 2017; 145:232-239. [DOI: 10.1016/j.nlm.2017.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 09/28/2017] [Accepted: 10/07/2017] [Indexed: 12/20/2022]
|
28
|
Yuen EY, Wei J, Yan Z. Molecular and Epigenetic Mechanisms for the Complex Effects of Stress on Synaptic Physiology and Cognitive Functions. Int J Neuropsychopharmacol 2017; 20:948-955. [PMID: 29016816 PMCID: PMC5737802 DOI: 10.1093/ijnp/pyx052] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/13/2017] [Accepted: 07/08/2017] [Indexed: 12/16/2022] Open
Abstract
Evidence over the past decades has found that stress, particularly through the corticosterone stress hormones, produces complex changes in glutamatergic signaling in prefrontal cortex, which leads to the alteration of cognitive processes medicated by this brain region. Interestingly, the effects of stress on glutamatergic transmission appear to be "U-shaped," depending upon the duration and severity of the stressor. These biphasic effects of acute vs chronic stress represent the adaptive vs maladaptive responses to stressful stimuli. Animal studies suggest that the stress-induced modulation of excitatory synaptic transmission involves changes in presynaptic glutamate release, postsynaptic glutamate receptor membrane trafficking and degradation, spine structure and cytoskeleton network, and epigenetic control of gene expression. This review will discuss current findings on the key molecules involved in the stress-induced regulation of prefrontal cortex synaptic physiology and prefrontal cortex-mediated functions. Understanding the molecular and epigenetic mechanisms that underlie the complex effects of stress will help to develop novel strategies to cope with stress-related mental disorders.
Collapse
Affiliation(s)
- Eunice Y. Yuen
- Yale Child Study Center, Yale University School of Medicine, New Haven, Connecticut (Dr Yuen); Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, New York (Drs Wei and Yan)
| | - Jing Wei
- Yale Child Study Center, Yale University School of Medicine, New Haven, Connecticut (Dr Yuen); Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, New York (Drs Wei and Yan)
| | - Zhen Yan
- Yale Child Study Center, Yale University School of Medicine, New Haven, Connecticut (Dr Yuen); Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, New York (Drs Wei and Yan)
| |
Collapse
|
29
|
Soares MC. The Neurobiology of Mutualistic Behavior: The Cleanerfish Swims into the Spotlight. Front Behav Neurosci 2017; 11:191. [PMID: 29089876 PMCID: PMC5651018 DOI: 10.3389/fnbeh.2017.00191] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/29/2017] [Indexed: 11/29/2022] Open
Abstract
One of the most notorious examples of cooperation between different species happens in the cleaner-client fish mutualism. The best known cleaner fish species, the bluestreak Indo-Pacific cleaner wrasse Labroides dimidiatus has been a model system to study the evolution of cooperation between unrelated animals and between distinct species during the last couple of decades. Given that the cleanerfish mutualism is well-established for behavioral studies of cooperation, it offered an outstanding opportunity to identify the link between cooperation, social cognition, and to undertake proximate studies, which were severely in need. This review surveys the current achievements of several recent studies, pointing towards the potential of the cleanerfish mutualism as a relevant model system for future accomplishments in neuroendocrine research.
Collapse
Affiliation(s)
- Marta C Soares
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Porto, Portugal
| |
Collapse
|
30
|
Toufexis D, King SB, Michopoulos V. Socially Housed Female Macaques: a Translational Model for the Interaction of Chronic Stress and Estrogen in Aging. Curr Psychiatry Rep 2017; 19:78. [PMID: 28905316 DOI: 10.1007/s11920-017-0833-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE OF REVIEW Estrogen's role in cognitive aging remains unclear. Despite evidence implicating stress in pathological aging, the interaction of stress with estrogen on cognition in older women has received little attention, and few animal models exist with which to examine this interaction. RECENT FINDINGS We present evidence that aging socially subordinate female macaques that experience chronic psychosocial stress constitute a suitable model to investigate this. First, we review studies showing that estrogen modulates cognition in animal models, as well as studies demonstrating that estrogen's action on certain types of cognition is impaired by stress. Next, we discuss data showing that middle-aged socially subordinate female macaques exhibit distinct stress-induced phenotypes, and review our investigations indicating that estrogen modulates behavior and physiology differently in subordinate female monkeys. We conclude that socially housed female macaques represent a translational animal model for investigating the interplay of chronic stress and estrogen on cognitive aging in women.
Collapse
Affiliation(s)
- Donna Toufexis
- Department of Psychological Science, The University of Vermont, Burlington, VT, USA.,Division of Development and Cognitive Neuroscience, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - S Bradley King
- Department of Psychological Science, The University of Vermont, Burlington, VT, USA
| | - Vasiliki Michopoulos
- Division of Development and Cognitive Neuroscience, Yerkes National Primate Research Center, Atlanta, GA, USA. .,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
31
|
Park SH, Kim YJ, Park JC, Han JS, Choi SY. Intranasal Oxytocin following Uncontrollable Stress Blocks Impairments in Hippocampal Plasticity and Recognition Memory in Stressed Rats. Int J Neuropsychopharmacol 2017; 20:861-866. [PMID: 28977526 PMCID: PMC5632307 DOI: 10.1093/ijnp/pyx061] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/24/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Nasal pretreatment with the neuropeptide oxytocin has been reported to prevent stress-induced impairments in hippocampal synaptic plasticity and spatial memory in rats. However, no study has asked if oxytocin application following a stress experience is effective in rescuing stress-induced impairments. METHODS Synaptic plasticity was measured in hippocampal Schaffer collateral-CA1 synapses of rats subjected to uncontrollable stress; their cognitive function was examined using an object recognition task. RESULTS Impaired induction of long-lasting, long-term potentiation by uncontrollable stress was rescued, as demonstrated both in rats and hippocampal slices. Intranasal oxytocin after experiencing uncontrollable stress blocked cognitive impairments in stressed rats and in stressed hippocampal slices treated with a perfused bath solution containing oxytocin. CONCLUSIONS These results indicated that posttreatment with oxytocin after experiencing a stressful event can keep synaptic plasticity and cognition function intact, indicating the therapeutic potential of oxytocin for stress-related disorders, including posttraumatic stress disorder.
Collapse
Affiliation(s)
- Seong-Hae Park
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea (Dr Park, Ms Kim, and Dr Choi); Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea (Mr Park and Dr Han)
| | - Yoon-Jung Kim
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea (Dr Park, Ms Kim, and Dr Choi); Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea (Mr Park and Dr Han)
| | - Jung-Cheol Park
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea (Dr Park, Ms Kim, and Dr Choi); Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea (Mr Park and Dr Han)
| | - Jung-Soo Han
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea (Dr Park, Ms Kim, and Dr Choi); Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea (Mr Park and Dr Han)
| | - Se-Young Choi
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea (Dr Park, Ms Kim, and Dr Choi); Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea (Mr Park and Dr Han).,Correspondence: Se-Young Choi, PhD, Department of Physiology, Seoul National University School of Dentistry, Seoul 110–749, Republic of Korea ()
| |
Collapse
|
32
|
Pinar C, Fontaine CJ, Triviño-Paredes J, Lottenberg CP, Gil-Mohapel J, Christie BR. Revisiting the flip side: Long-term depression of synaptic efficacy in the hippocampus. Neurosci Biobehav Rev 2017. [PMID: 28624435 DOI: 10.1016/j.neubiorev.2017.06.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Synaptic plasticity is widely regarded as a putative biological substrate for learning and memory processes. While both decreases and increases in synaptic strength are seen as playing a role in learning and memory, long-term depression (LTD) of synaptic efficacy has received far less attention than its counterpart long-term potentiation (LTP). Never-the-less, LTD at synapses can play an important role in increasing computational flexibility in neural networks. In addition, like learning and memory processes, the magnitude of LTD can be modulated by factors that include stress and sex hormones, neurotrophic support, learning environments, and age. Examining how these factors modulate hippocampal LTD can provide the means to better elucidate the molecular underpinnings of learning and memory processes. This is in turn will enhance our appreciation of how both increases and decreases in synaptic plasticity can play a role in different neurodevelopmental and neurodegenerative conditions.
Collapse
Affiliation(s)
- Cristina Pinar
- Division of Medical Sciences and UBC Island Medical Program, University of Victoria, Victoria, British Columbia, Canada
| | - Christine J Fontaine
- Division of Medical Sciences and UBC Island Medical Program, University of Victoria, Victoria, British Columbia, Canada
| | - Juan Triviño-Paredes
- Division of Medical Sciences and UBC Island Medical Program, University of Victoria, Victoria, British Columbia, Canada
| | - Carina P Lottenberg
- Division of Medical Sciences and UBC Island Medical Program, University of Victoria, Victoria, British Columbia, Canada; Faculty of Medical Sciences of Santa Casa de São Paulo, Sao Paulo, SP, Brazil
| | - Joana Gil-Mohapel
- Division of Medical Sciences and UBC Island Medical Program, University of Victoria, Victoria, British Columbia, Canada
| | - Brian R Christie
- Division of Medical Sciences and UBC Island Medical Program, University of Victoria, Victoria, British Columbia, Canada.
| |
Collapse
|
33
|
Robb SL, Haase JE, Perkins SM, Haut PR, Henley AK, Knafl KA, Tong Y. Pilot Randomized Trial of Active Music Engagement Intervention Parent Delivery for Young Children With Cancer. J Pediatr Psychol 2017; 42:208-219. [PMID: 27289068 PMCID: PMC5896608 DOI: 10.1093/jpepsy/jsw050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 05/06/2016] [Accepted: 05/06/2016] [Indexed: 11/13/2022] Open
Abstract
Objectives To examine the feasibility/acceptability of a parent-delivered Active Music Engagement (AME + P) intervention for young children with cancer and their parents. Secondary aim to explore changes in AME + P child emotional distress (facial affect) and parent emotional distress (mood; traumatic stress symptoms) relative to controls. Methods A pilot two-group randomized trial was conducted with parents/children (ages 3-8 years) receiving AME + P ( n = 9) or attention control ( n = 7). Feasibility of parent delivery was assessed using a delivery checklist and child engagement; acceptability through parent interviews; preliminary outcomes at baseline, postintervention, 30 days postintervention. Results Parent delivery was feasible, as they successfully delivered AME activities, but interviews indicated parent delivery was not acceptable to parents. Emotional distress was lower for AME + P children, but parents derived no benefit. Conclusions Despite child benefit, findings do not support parent delivery of AME + P.
Collapse
Affiliation(s)
| | | | - Susan M. Perkins
- Department of Biostatistics, Indiana University School of Medicine
| | - Paul R. Haut
- Indiana University School of Medicine, Riley Hospital for Children at Indiana University Health
| | | | | | - Yan Tong
- Department of Biostatistics, Indiana University School of Medicine
| |
Collapse
|
34
|
Hughes E, Shymansky T, Swinton E, Lukowiak KS, Swinton C, Sunada H, Protheroe A, Phillips I, Lukowiak K. Strain-specific differences of the effects of stress on memory in Lymnaea. J Exp Biol 2017; 220:891-899. [DOI: 10.1242/jeb.149161] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/14/2016] [Indexed: 12/17/2022]
Abstract
ABSTRACT
Stress alters the ability to form, recall and maintain memory according to the Yerkes–Dodson/Hebb (YDH) law. The effects of environmentally relevant stressors, such as low environmental calcium and crowding, on learning and memory have previously been described in a laboratory-reared ‘average’ strain of Lymnaea stagnalis (i.e. the Dutch strain) as well as two strains of freshly collected L. stagnalis with enhanced memory formation abilities (i.e. ‘smart’ snails). Here, we use L. stagnalis to study the effects of other environmentally relevant stressors on memory formation in two other strains of freshly collected snails, one ‘smart’ and one ‘average’. The stressors we examined are thermal, resource restriction combined with food odour, predator detection and, for the first time, tissue injury (shell damage). We show that the same stressor has significantly different effects on memory formation depending on whether snails are ‘smart’ or ‘average’. Specifically, our data suggest that a stressor or a combination of stressors act to enhance memory in ‘average’ snails but obstruct memory formation in ‘smart’ snails. These results are consistent with the YDH law and our hypothesis that ‘smart’ snails are more easily stressed than ‘average’ snails.
Collapse
Affiliation(s)
- Emily Hughes
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - Tamila Shymansky
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - Erin Swinton
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - Kai S. Lukowiak
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - Cayley Swinton
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - Hiroshi Sunada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - Amy Protheroe
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - Iain Phillips
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - Ken Lukowiak
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
35
|
Rougemont-Bücking A, Grazioli VS, Daeppen JB, Gmel G, Studer J. Family-Related Stress versus External Stressors: Differential Impacts on Alcohol and Illicit Drug Use in Young Men. Eur Addict Res 2017; 23:284-297. [PMID: 29275419 DOI: 10.1159/000485031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 11/07/2017] [Indexed: 11/19/2022]
Abstract
Intense stress increases substance use (SU). However, little is known about the extent to which distinctive forms of stress should be weighted with regard to their effects on SU. This study aimed to determine whether family-related stress factors (FSF) influenced SU in a different way than external stress factors (ESF). Data was drawn from a Swiss cohort study on SU risk factors (C-SURF), involving 5,308 young adult men. Twelve month use of alcohol and of illicit substances was assessed. FSF and ESF for the time period preceding SU were measured. FSF and ESF were both significantly associated with SU. FSF had a greater impact on the use of most substances than did ESF. The FSF with the strongest association with SU was lack of parental monitoring. Regarding ESF, the cumulative number of stressful external events had a higher impact on SU than previous physical or sexual assault by a stranger. In contrast, physical or sexual assault by a family member was not found to be associated with subsequent SU. These findings have important implications for SU prevention programmes focusing on male teenagers, as it is difficult to screen and intervene in subtle forms of maltreatment in families.
Collapse
Affiliation(s)
| | - Veronique S Grazioli
- Alcohol Treatment Center, Centre Hospitalier Universitaire Vaudois CHUV, Lausanne, Switzerland
| | - Jean-Bernard Daeppen
- Alcohol Treatment Center, Centre Hospitalier Universitaire Vaudois CHUV, Lausanne, Switzerland
| | - Gerhard Gmel
- Alcohol Treatment Center, Centre Hospitalier Universitaire Vaudois CHUV, Lausanne, Switzerland.,Addiction Suisse, Lausanne, Switzerland.,Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Frenchay Campus, University of the West of England, Bristol, United Kingdom
| | - Joseph Studer
- Alcohol Treatment Center, Centre Hospitalier Universitaire Vaudois CHUV, Lausanne, Switzerland
| |
Collapse
|
36
|
Luoni A, Berry A, Raggi C, Bellisario V, Cirulli F, Riva MA. Sex-Specific Effects of Prenatal Stress on Bdnf Expression in Response to an Acute Challenge in Rats: a Role for Gadd45β. Mol Neurobiol 2016; 53:7037-7047. [PMID: 26676568 DOI: 10.1007/s12035-015-9569-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/29/2015] [Indexed: 12/24/2022]
Abstract
Exposure to early adversities represents a major risk factor for psychiatric disorders. We have previously shown that exposure to prenatal stress (PNS) in rats alters the developmental expression of brain-derived neurotrophic factor (Bdnf) with a specific temporal profile. However, exposure to early-life stress is known to alter the ability to cope with challenging events later in life, which may contribute to the enhanced vulnerability to stress-related disorders. Since Bdnf is also an important player for activity-dependent plasticity, we investigated whether the exposure to PNS in rats could alter Bdnf responsiveness to an acute challenge at adulthood. We found that exposure to PNS produces significant changes in Bdnf responsiveness with brain region- and gender-specific selectivity. Indeed, exposure to an acute stress upregulates Bdnf expression in the prefrontal cortex, but not in the hippocampus, of control animals. Moreover, such modulatory activity is selectively impaired in PNS female rats, an effect that was associated with changes in the modulation of the DNA demethylase Gadd45β. Our results suggest that exposure to PNS may reprogram gene transcription through epigenetic mechanisms reducing the ability to cope under adverse conditions, a trait that is disrupted in psychiatric diseases.
Collapse
Affiliation(s)
- A Luoni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, via Balzaretti 9, 20133, Milan, Italy
| | - A Berry
- Section of Behavioural Neurosciences, Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - C Raggi
- Section of Behavioural Neurosciences, Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - V Bellisario
- Section of Behavioural Neurosciences, Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - F Cirulli
- Section of Behavioural Neurosciences, Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - M A Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, via Balzaretti 9, 20133, Milan, Italy.
| |
Collapse
|
37
|
Nazeri M, Shabani M, Parsania S, Golchin L, Razavinasab M, Abareghi F, Kermani M. Simultaneous impairment of passive avoidance learning and nociception in rats following chronic swim stress. Adv Biomed Res 2016; 5:93. [PMID: 27308265 PMCID: PMC4908791 DOI: 10.4103/2277-9175.183141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 07/23/2014] [Indexed: 01/05/2023] Open
Abstract
Background: Stress can alter response to nociception. Under certain circumstances stress enhances nociception, a phenomenon which is called stress-induced hyperalgesia (SIH). While nociception has been studied in this paradigm, possible alterations occurring in passive avoidance (PA) learning after exposing rats to this type of stress has not been studied before. Materials and Methods: In the current study, we evaluated the effect of chronic swim stress (FS) or sham swim (SS) on nociception in both spinal (tail-flick) and supraspinal (53.5°C hot-pate) levels. Furthermore, PA task was performed to see whether chronic swim stress changes PA learning or not. Mobility of rats and anxiety-like behavior were assessed using open-field test (OFT). Results: Supraspinal pain response was altered by swim stress (hot-plate test). PA learning was impaired by swim stress, rats in SS group did not show such impairments. Rats in the FS group showed increased mobility (rearing, velocity, total distant moved (TDM) and decreased anxiety-like behavior (time spent in center and grooming) compared to SS rats. Conclusions: This study demonstrated the simultaneous impairment of PA and nociception under chronic swim stress, whether this is simply a co-occurrence or not is of special interest. This finding may implicate a possible role for limbic structures, though this hypothesis should be studied by experimental lesions in different areas of rat brain to assess their possible role in the pathophysiology of SIH.
Collapse
Affiliation(s)
- Masoud Nazeri
- Department of Neuroscience, Neuroscience Research Center, Institute of Neuropharmacology, Kerman, Iran; Department of Neuroscience, Medical Students Research Committee, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Shabani
- Department of Neuroscience, Neuroscience Research Center, Institute of Neuropharmacology, Kerman, Iran
| | - Shahrnaz Parsania
- Department of Neuroscience, Neuroscience Research Center, Institute of Neuropharmacology, Kerman, Iran
| | - Leila Golchin
- Department of Neuroscience, Neuroscience Research Center, Institute of Neuropharmacology, Kerman, Iran
| | | | - Fatemeh Abareghi
- Department of Neuroscience, Medical Students Research Committee, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Moein Kermani
- Department of Neuroscience, Medical Students Research Committee, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
38
|
The effects of hormones and physical exercise on hippocampal structural plasticity. Front Neuroendocrinol 2016; 41:23-43. [PMID: 26989000 DOI: 10.1016/j.yfrne.2016.03.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/02/2016] [Accepted: 03/08/2016] [Indexed: 01/22/2023]
Abstract
The hippocampus plays an integral role in certain aspects of cognition. Hippocampal structural plasticity and in particular adult hippocampal neurogenesis can be influenced by several intrinsic and extrinsic factors. Here we review how hormones (i.e., intrinsic modulators) and physical exercise (i.e., an extrinsic modulator) can differentially modulate hippocampal plasticity in general and adult hippocampal neurogenesis in particular. Specifically, we provide an overview of the effects of sex hormones, stress hormones, and metabolic hormones on hippocampal structural plasticity and adult hippocampal neurogenesis. In addition, we also discuss how physical exercise modulates these forms of hippocampal plasticity, giving particular emphasis on how this modulation can be affected by variables such as exercise regime, duration, and intensity. Understanding the neurobiological mechanisms underlying the modulation of hippocampal structural plasticity by intrinsic and extrinsic factors will impact the design of new therapeutic approaches aimed at restoring hippocampal plasticity following brain injury or neurodegeneration.
Collapse
|
39
|
McCarthy MM. Multifaceted origins of sex differences in the brain. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150106. [PMID: 26833829 DOI: 10.1098/rstb.2015.0106] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2015] [Indexed: 12/18/2022] Open
Abstract
Studies of sex differences in the brain range from reductionistic cell and molecular analyses in animal models to functional imaging in awake human subjects, with many other levels in between. Interpretations and conclusions about the importance of particular differences often vary with differing levels of analyses and can lead to discord and dissent. In the past two decades, the range of neurobiological, psychological and psychiatric endpoints found to differ between males and females has expanded beyond reproduction into every aspect of the healthy and diseased brain, and thereby demands our attention. A greater understanding of all aspects of neural functioning will only be achieved by incorporating sex as a biological variable. The goal of this review is to highlight the current state of the art of the discipline of sex differences research with an emphasis on the brain and to contextualize the articles appearing in the accompanying special issue.
Collapse
Affiliation(s)
- Margaret M McCarthy
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
40
|
Shors TJ, Tobόn K, DiFeo G, Durham DM, Chang HYM. Sexual Conspecific Aggressive Response (SCAR): A Model of Sexual Trauma that Disrupts Maternal Learning and Plasticity in the Female Brain. Sci Rep 2016; 6:18960. [PMID: 26804826 PMCID: PMC4726239 DOI: 10.1038/srep18960] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 11/23/2015] [Indexed: 02/07/2023] Open
Abstract
Sexual aggression can disrupt processes related to learning as females emerge from puberty into young adulthood. To model these experiences in laboratory studies, we developed SCAR, which stands for Sexual Conspecific Aggressive Response. During puberty, a rodent female is paired daily for 30-min with a sexually-experienced adult male. During the SCAR experience, the male tracks the anogenital region of the female as she escapes from pins. Concentrations of the stress hormone corticosterone were significantly elevated during and after the experience. Moreover, females that were exposed to the adult male throughout puberty did not perform well during training with an associative learning task nor did they learn well to express maternal behaviors during maternal sensitization. Most females that were exposed to the adult male did not learn to care for offspring over the course of 17 days. Finally, females that did not express maternal behaviors retained fewer newly-generated cells in their hippocampus whereas those that did express maternal behaviors retained more cells, most of which would differentiate into neurons within weeks. Together these data support SCAR as a useful laboratory model for studying the potential consequences of sexual aggression and trauma for the female brain during puberty and young adulthood.
Collapse
Affiliation(s)
- Tracey J Shors
- Behavioral and Systems Neuroscience, Department of Psychology, Center for Collaborative Neuroscience, Rutgers University
| | - Krishna Tobόn
- Behavioral and Systems Neuroscience, Department of Psychology, Center for Collaborative Neuroscience, Rutgers University
| | - Gina DiFeo
- Behavioral and Systems Neuroscience, Department of Psychology, Center for Collaborative Neuroscience, Rutgers University
| | - Demetrius M Durham
- Behavioral and Systems Neuroscience, Department of Psychology, Center for Collaborative Neuroscience, Rutgers University
| | - Han Yan M Chang
- Behavioral and Systems Neuroscience, Department of Psychology, Center for Collaborative Neuroscience, Rutgers University
| |
Collapse
|
41
|
Jauregui-Huerta F, Zhang L, Yañez-Delgadillo G, Hernandez-Carrillo P, García-Estrada J, Luquín S. Hippocampal cytogenesis and spatial learning in senile rats exposed to chronic variable stress: effects of previous early life exposure to mild stress. Front Aging Neurosci 2015; 7:159. [PMID: 26347648 PMCID: PMC4539520 DOI: 10.3389/fnagi.2015.00159] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 07/31/2015] [Indexed: 12/01/2022] Open
Abstract
In this study, we exposed adult rats to chronic variable stress (CVS) and tested the hypothesis that previous early-life exposure to stress changes the manner in which older subjects respond to aversive conditions. To this end, we analyzed the cytogenic changes in the hippocampus and hippocampal-dependent spatial learning performance. The experiments were performed on 18-month-old male rats divided into four groups as follows: Control (old rats under standard laboratory conditions), Early-life stress (ELS; old rats who were exposed to environmental noise from postnatal days, PNDs 21–35), CVS + ELS (old rats exposed to a chronic stress protocol who were previously exposed to the early-life noise stress) and CVS (old rats who were exposed only to the chronic stress protocol). The Morris Water Maze (MWM) was employed to evaluate the spatial learning abilities of the rats at the end of the experiment. Immunohistochemistry against 5′Bromodeoxyuridine (BrdU) and glial fibrillar acidic protein (GFAP) was also conducted in the DG, CA1, CA2 and CA3 regions of the hippocampus. We confocally analyzed the cytogenic (BrdU-labeled cells) and astrogenic (BrdU + GFAP-labeled cells) changes produced by these conditions. Using this procedure, we found that stress diminished the total number of BrdU+ cells over the main proliferative area of the hippocampus (i.e., the dentate gyrus, DG) but increased the astrocyte phenotypes (GFAP + BrdU). The depleted BrdU+ cells were restored when the senile rats also experienced stress at the early stages of life. The MWM assessment demonstrated that stress also impairs the ability of the rats to learn the task. This impairment was not present when the stressful experience was preceded by the early-life exposure. Thus, our results support the idea that previous exposure to mild stressing agents may have beneficial effects on aged subjects.
Collapse
Affiliation(s)
- Fernando Jauregui-Huerta
- Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara Guadalajara, Jalisco, Mexico
| | - Limei Zhang
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México México, Mexico
| | - Griselda Yañez-Delgadillo
- Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara Guadalajara, Jalisco, Mexico
| | - Pamela Hernandez-Carrillo
- Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara Guadalajara, Jalisco, Mexico
| | - Joaquín García-Estrada
- División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social Guadalajara, Mexico
| | - Sonia Luquín
- Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara Guadalajara, Jalisco, Mexico
| |
Collapse
|
42
|
Muth F, Scampini AV, Leonard AS. The effects of acute stress on learning and memory in bumblebees. LEARNING AND MOTIVATION 2015. [DOI: 10.1016/j.lmot.2014.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
43
|
Stress-induced increases in depression-like and cocaine place-conditioned behaviors are reversed by disruption of memories during reconsolidation. Behav Pharmacol 2015; 25:599-608. [PMID: 25083575 DOI: 10.1097/fbp.0000000000000074] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Maladaptive behavioral responses characteristic of post-traumatic stress disorders are notably resistant to treatment. We hypothesized that the pharmacological disruption of memories activated during reconsolidation might reverse established stress-induced increases in depression-like behaviors and cocaine reward. C57BL/6J mice were subjected to repeated social defeat stress (SDS), and examined for time spent immobile in a subsequent forced swim test (FST). An additional set of SDS-exposed mice were place-conditioned with cocaine, and tested for cocaine-conditioned place preference (CPP). All stress-exposed mice were then subjected to a single additional trial of SDS while under the influence of propranolol or cycloheximide to disrupt memory reconsolidation, then given one additional FST or CPP test the next day. Mice subjected to repeated SDS subsequently demonstrated increases in time spent immobile in the FST or in the cocaine-paired chamber. Vehicle-treatment followed by additional SDS exposure did not alter these behaviors, but propranolol or cycloheximide treatment reversed each of the potentiated responses in a dose-dependent manner. Overall, these results demonstrate that while repeated exposure to a social defeat stressor subsequently increased depression-like behavior and cocaine-CPP, disruption of traumatic memories made labile by re-exposure to SDS during reconsolidation may have therapeutic value in the treatment of established post-traumatic stress disorder-related behaviors.
Collapse
|
44
|
Goel N, Workman JL, Lee TT, Innala L, Viau V. Sex differences in the HPA axis. Compr Physiol 2015; 4:1121-55. [PMID: 24944032 DOI: 10.1002/cphy.c130054] [Citation(s) in RCA: 252] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis is a major component of the systems that respond to stress, by coordinating the neuroendocrine and autonomic responses. Tightly controlled regulation of HPA responses is critical for maintaining mental and physical health, as hyper- and hypo-activity have been linked to disease states. A long history of research has revealed sex differences in numerous components of the HPA stress system and its responses, which may partially form the basis for sex disparities in disease development. Despite this, many studies use male subjects exclusively, while fewer reports involve females or provide direct sex comparisons. The purpose of this article is to present sex comparisons in the functional and molecular aspects of the HPA axis, through various phases of activity, including basal, acute stress, and chronic stress conditions. The HPA axis in females initiates more rapidly and produces a greater output of stress hormones. This review focuses on the interactions between the gonadal hormone system and the HPA axis as the key mediators of these sex differences, whereby androgens increase and estrogens decrease HPA activity in adulthood. In addition to the effects of gonadal hormones on the adult response, morphological impacts of hormone exposure during development are also involved in mediating sex differences. Additional systems impinging on the HPA axis that contribute to sex differences include the monoamine neurotransmitters norepinephrine and serotonin. Diverse signals originating from the brain and periphery are integrated to determine the level of HPA axis activity, and these signals are, in many cases, sex-specific.
Collapse
Affiliation(s)
- Nirupa Goel
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | |
Collapse
|
45
|
Suri D, Vaidya VA. The adaptive and maladaptive continuum of stress responses – a hippocampal perspective. Rev Neurosci 2015; 26:415-42. [DOI: 10.1515/revneuro-2014-0083] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 02/22/2015] [Indexed: 12/21/2022]
Abstract
AbstractExposure to stressors elicits a spectrum of responses that span from potentially adaptive to maladaptive consequences at the structural, cellular and physiological level. These responses are particularly pronounced in the hippocampus where they also appear to influence hippocampal-dependent cognitive function and emotionality. The factors that influence the nature of stress-evoked consequences include the chronicity, severity, predictability and controllability of the stressors. In addition to adult-onset stress, early life stress also elicits a wide range of structural and functional responses, which often exhibit life-long persistence. However, the outcome of early stress exposure is often contingent on the environment experienced in adulthood, and could either aid in stress coping or could serve to enhance susceptibility to the negative consequences of adult stress. This review comprehensively examines the consequences of adult and early life stressors on the hippocampus, with a focus on their effects on neurogenesis, neuronal survival, structural and synaptic plasticity and hippocampal-dependent behaviors. Further, we discuss potential factors that may tip stress-evoked consequences from being potentially adaptive to largely maladaptive.
Collapse
|
46
|
Yoder KM, Phan ML, Lu K, Vicario DS. He hears, she hears: are there sex differences in auditory processing? Dev Neurobiol 2014; 75:302-14. [PMID: 25220950 DOI: 10.1002/dneu.22231] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/20/2014] [Accepted: 09/11/2014] [Indexed: 01/18/2023]
Abstract
Songbirds learn individually unique songs through vocal imitation and use them in courtship and territorial displays. Previous work has identified a forebrain auditory area, the caudomedial nidopallium (NCM), that appears specialized for discriminating and remembering conspecific vocalizations. In zebra finches (ZFs), only males produce learned vocalizations, but both sexes process these and other signals. This study assessed sex differences in auditory processing by recording extracellular multiunit activity at multiple sites within NCM. Juvenile female ZFs (n = 46) were reared in individual isolation and artificially tutored with song. In adulthood, songs were played back to assess auditory responses, stimulus-specific adaptation, neural bias for conspecific song, and memory for the tutor's song, as well as recently heard songs. In a subset of females (n = 36), estradiol (E2) levels were manipulated to test the contribution of E2, known to be synthesized in the brain, to auditory responses. Untreated females (n = 10) showed significant differences in response magnitude and stimulus-specific adaptation compared to males reared in the same paradigm (n = 9). In hormone-manipulated females, E2 augmentation facilitated the memory for recently heard songs in adulthood, but neither E2 augmentation (n = 15) nor E2 synthesis blockade (n = 9) affected tutor song memory or the neural bias for conspecific song. The results demonstrate subtle sex differences in processing communication signals, and show that E2 levels in female songbirds can affect the memory for songs of potential suitors, thus contributing to the process of mate selection. The results also have potential relevance to clinical interventions that manipulate E2 in human patients.
Collapse
Affiliation(s)
- Kathleen M Yoder
- Department of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, Maryland, 21218
| | | | | | | |
Collapse
|
47
|
Dalziell AH, Welbergen JA, Igic B, Magrath RD. Avian vocal mimicry: a unified conceptual framework. Biol Rev Camb Philos Soc 2014; 90:643-68. [PMID: 25079896 DOI: 10.1111/brv.12129] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 06/10/2014] [Accepted: 06/16/2014] [Indexed: 11/30/2022]
Abstract
Mimicry is a classical example of adaptive signal design. Here, we review the current state of research into vocal mimicry in birds. Avian vocal mimicry is a conspicuous and often spectacular form of animal communication, occurring in many distantly related species. However, the proximate and ultimate causes of vocal mimicry are poorly understood. In the first part of this review, we argue that progress has been impeded by conceptual confusion over what constitutes vocal mimicry. We propose a modified version of Vane-Wright's (1980) widely used definition of mimicry. According to our definition, a vocalisation is mimetic if the behaviour of the receiver changes after perceiving the acoustic resemblance between the mimic and the model, and the behavioural change confers a selective advantage on the mimic. Mimicry is therefore specifically a functional concept where the resemblance between heterospecific sounds is a target of selection. It is distinct from other forms of vocal resemblance including those that are the result of chance or common ancestry, and those that have emerged as a by-product of other processes such as ecological convergence and selection for large song-type repertoires. Thus, our definition provides a general and functionally coherent framework for determining what constitutes vocal mimicry, and takes account of the diversity of vocalisations that incorporate heterospecific sounds. In the second part we assess and revise hypotheses for the evolution of avian vocal mimicry in the light of our new definition. Most of the current evidence is anecdotal, but the diverse contexts and acoustic structures of putative vocal mimicry suggest that mimicry has multiple functions across and within species. There is strong experimental evidence that vocal mimicry can be deceptive, and can facilitate parasitic interactions. There is also increasing support for the use of vocal mimicry in predator defence, although the mechanisms are unclear. Less progress has been made in explaining why many birds incorporate heterospecific sounds into their sexual displays, and in determining whether these vocalisations are functionally mimetic or by-products of sexual selection for other traits such as repertoire size. Overall, this discussion reveals a more central role for vocal mimicry in the behavioural ecology of birds than has previously been appreciated. The final part of this review identifies important areas for future research. Detailed empirical data are needed on individual species, including on the structure of mimetic signals, the contexts in which mimicry is produced, how mimicry is acquired, and the ecological relationships between mimic, model and receiver. At present, there is little information and no consensus about the various costs of vocal mimicry for the protagonists in the mimicry complex. The diversity and complexity of vocal mimicry in birds raises important questions for the study of animal communication and challenges our view of the nature of mimicry itself. Therefore, a better understanding of avian vocal mimicry is essential if we are to account fully for the diversity of animal signals.
Collapse
Affiliation(s)
- Anastasia H Dalziell
- Division of Evolution, Ecology and Genetics, Research School of Biology, Australian National University, Canberra 0200, Australia
| | | | | | | |
Collapse
|
48
|
Kindness P, Fitzpatrick D, Mellish C, Masthoff J, O'Meara P, McEwan M. An insight into the demands and stressors experienced by Community First Responders. ACTA ACUST UNITED AC 2014. [DOI: 10.12968/jpar.2014.6.7.362] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | | | | | - Patrick O'Meara
- National Head of Ambulance control Services, Scottish Ambulance Service
| | - Murray McEwan
- Community Resuscitation Development Officer, Scottish Ambulance Service
| |
Collapse
|
49
|
Role of nitric oxide in altered nociception and memory following chronic stress. Physiol Behav 2014; 129:214-20. [DOI: 10.1016/j.physbeh.2014.02.054] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 02/05/2014] [Accepted: 02/28/2014] [Indexed: 01/28/2023]
|
50
|
Deibel SH, Hong NS, Himmler SM, McDonald RJ. The effects of chronic photoperiod shifting on the physiology of female Long-Evans rats. Brain Res Bull 2014; 103:72-81. [DOI: 10.1016/j.brainresbull.2014.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 02/16/2014] [Accepted: 03/03/2014] [Indexed: 12/18/2022]
|