1
|
Abstract
ABSTRACT The mechanical traits of cancer include abnormally high solid stress as well as drastic and spatially heterogeneous changes in intrinsic mechanical tissue properties. Whereas solid stress elicits mechanosensory signals promoting tumor progression, mechanical heterogeneity is conducive to cell unjamming and metastatic spread. This reductionist view of tumorigenesis and malignant transformation provides a generalized framework for understanding the physical principles of tumor aggressiveness and harnessing them as novel in vivo imaging markers. Magnetic resonance elastography is an emerging imaging technology for depicting the viscoelastic properties of biological soft tissues and clinically characterizing tumors in terms of their biomechanical properties. This review article presents recent technical developments, basic results, and clinical applications of magnetic resonance elastography in patients with malignant tumors.
Collapse
Affiliation(s)
- Jing Guo
- From the Department of Radiology
| | | | | | | |
Collapse
|
2
|
Li J, Sun B, Li Y, Li S, Wang J, Zhu Y, Lu H. Correlation analysis between shear-wave elastography and pathological profiles in breast cancer. Breast Cancer Res Treat 2023; 197:269-276. [PMID: 36374375 DOI: 10.1007/s10549-022-06804-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE To explore the correlation between shear-wave elastography (SWE) parameters and pathological profiles of invasive breast cancer. METHODS A total of 197 invasive breast cancers undergoing preoperative SWE and primary surgical treatment were included. Maximum elastic modulus (Emax), mean elastic modulus (Emean), and elastic modulus standard deviation (Esd) were calculated by SWE. Pathological profile was gold standard according to postoperative pathology. The relationship between SWE parameters and pathological factors were analyzed using univariate and multivariate analysis. RESULTS In univariate analysis, large cancers showed significantly higher Emax, Emean and Esd (all P < 0.001). Emax and Esd in the group of histological grade III were higher than those in the group of grade I (both P < 0.05). Invasive lobular carcinomas (ILC) showed higher Emean than invasive ductal carcinoma (IDC) (P < 0.001). Lymphovascular invasion (LVI) group showed higher Emax values than negative group (P < 0.05). Emax, Emean and Esd of the Ki-67 positive group presented higher values than negative group (all P < 0.05). Androgen receptor (AR) positive lesions had lower Esd than AR negative lesions (P < 0.05). In multivariate analysis, invasive size independently influenced Emax (P < 0.001). Invasive size and pathological type both independently influenced Emean (both P < 0.001). Invasive size and AR status were both independently influenced Esd (both P < 0.05). CONCLUSION SWE parameters correlated with pathological profiles of invasive breast cancer.In particular, AR positive group showed significantly low Esd than negative group.
Collapse
Affiliation(s)
- Junnan Li
- Department of Breast Imaging, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Bo Sun
- The Second Department of Breast Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Yanbo Li
- Department of Breast Imaging, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Shuang Li
- Department of Bone and Tissue Oncology, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Jiahui Wang
- Department of Breast Imaging, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Ying Zhu
- Department of Breast Imaging, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Hong Lu
- Department of Breast Imaging, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China. .,Tianjin Medical University Cancer Institute and Hospital, West Huan-Hu Rd, Ti Yuan Bei, Hexi District, Tianjin, 300060, People's Republic of China.
| |
Collapse
|
3
|
Parasaram V, Civale J, Bamber JC, Robinson SP, Jamin Y, Harris E. Preclinical Three-Dimensional Vibrational Shear Wave Elastography for Mapping of Tumour Biomechanical Properties In Vivo. Cancers (Basel) 2022; 14:4832. [PMID: 36230755 PMCID: PMC9564290 DOI: 10.3390/cancers14194832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/06/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Preclinical investigation of the biomechanical properties of tissues and their treatment-induced changes are essential to support drug-discovery, clinical translation of biomarkers of treatment response, and studies of mechanobiology. Here we describe the first use of preclinical 3D elastography to map the shear wave speed (cs), which is related to tissue stiffness, in vivo and demonstrate the ability of our novel 3D vibrational shear wave elastography (3D-VSWE) system to detect tumour response to a therapeutic challenge. We investigate the use of one or two vibrational sources at vibrational frequencies of 700, 1000 and 1200 Hz. The within-subject coefficients of variation of our system were found to be excellent for 700 and 1000 Hz and 5.4 and 6.2%, respectively. The relative change in cs measured with our 3D-VSWE upon treatment with an anti-vascular therapy ZD6126 in two tumour xenografts reflected changes in tumour necrosis. U-87 MG drug vs vehicle: Δcs = −24.7 ± 2.5 % vs 7.5 ± 7.1%, (p = 0.002) and MDA-MB-231 drug vs vehicle: Δcs = −12.3 ± 2.7 % vs 4.5 ± 4.7%, (p = 0.02). Our system enables rapid (<5 min were required for a scan length of 15 mm and three vibrational frequencies) 3D mapping of quantitative tumour viscoelastic properties in vivo, allowing exploration of regional heterogeneity within tumours and speedy recovery of animals from anaesthesia so that longitudinal studies (e.g., during tumour growth or following treatment) may be conducted frequently.
Collapse
Affiliation(s)
| | | | | | | | | | - Emma Harris
- Division of Radiotherapy and Imaging, Centre for Cancer Imaging, Institute of Cancer Research, London SM2 5NG, UK
| |
Collapse
|
4
|
Arthur A, Johnston EW, Winfield JM, Blackledge MD, Jones RL, Huang PH, Messiou C. Virtual Biopsy in Soft Tissue Sarcoma. How Close Are We? Front Oncol 2022; 12:892620. [PMID: 35847882 PMCID: PMC9286756 DOI: 10.3389/fonc.2022.892620] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/31/2022] [Indexed: 12/13/2022] Open
Abstract
A shift in radiology to a data-driven specialty has been unlocked by synergistic developments in imaging biomarkers (IB) and computational science. This is advancing the capability to deliver "virtual biopsies" within oncology. The ability to non-invasively probe tumour biology both spatially and temporally would fulfil the potential of imaging to inform management of complex tumours; improving diagnostic accuracy, providing new insights into inter- and intra-tumoral heterogeneity and individualised treatment planning and monitoring. Soft tissue sarcomas (STS) are rare tumours of mesenchymal origin with over 150 histological subtypes and notorious heterogeneity. The combination of inter- and intra-tumoural heterogeneity and the rarity of the disease remain major barriers to effective treatments. We provide an overview of the process of successful IB development, the key imaging and computational advancements in STS including quantitative magnetic resonance imaging, radiomics and artificial intelligence, and the studies to date that have explored the potential biological surrogates to imaging metrics. We discuss the promising future directions of IBs in STS and illustrate how the routine clinical implementation of a virtual biopsy has the potential to revolutionise the management of this group of complex cancers and improve clinical outcomes.
Collapse
Affiliation(s)
- Amani Arthur
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, Sutton, United Kingdom
| | - Edward W. Johnston
- Sarcoma Unit, The Royal Marsden National Health Service (NHS) Foundation Trust, London, United Kingdom
| | - Jessica M. Winfield
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, Sutton, United Kingdom
- Sarcoma Unit, The Royal Marsden National Health Service (NHS) Foundation Trust, London, United Kingdom
| | - Matthew D. Blackledge
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, Sutton, United Kingdom
| | - Robin L. Jones
- Sarcoma Unit, The Royal Marsden National Health Service (NHS) Foundation Trust, London, United Kingdom
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Paul H. Huang
- Division of Molecular Pathology, The Institute of Cancer Research, Sutton, United Kingdom
| | - Christina Messiou
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, Sutton, United Kingdom
- Sarcoma Unit, The Royal Marsden National Health Service (NHS) Foundation Trust, London, United Kingdom
| |
Collapse
|
5
|
Decreased tissue stiffness in glioblastoma by MR elastography is associated with increased cerebral blood flow. Eur J Radiol 2021; 147:110136. [PMID: 35007982 DOI: 10.1016/j.ejrad.2021.110136] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/09/2021] [Accepted: 12/27/2021] [Indexed: 12/31/2022]
Abstract
PURPOSE Understanding how mechanical properties relate to functional changes in glioblastomas may help explain different treatment response between patients. The aim of this study was to map differences in biomechanical and functional properties between tumor and healthy tissue, to assess any relationship between them and to study their spatial distribution. METHODS Ten patients with glioblastoma and 17 healthy subjects were scanned using MR Elastography, perfusion and diffusion MRI. Stiffness and viscosity measurements G' and G'', cerebral blood flow (CBF), apparent diffusion coefficient (ADC) and fractional anisotropy (FA) were measured in patients' contrast-enhancing tumor, necrosis, edema, and gray and white matter, and in gray and white matter for healthy subjects. A regression analysis was used to predict CBF as a function of ADC, FA, G' and G''. RESULTS Median G' and G'' in contrast-enhancing tumor were 13% and 37% lower than in normal-appearing white matter (P < 0.01), and 8% and 6% lower in necrosis than in contrast-enhancing tumor, respectively (P < 0.05). Tumors showed both inter-patient and intra-patient heterogeneity. Measurements approached values in normal-appearing tissue when moving outward from the tumor core, but abnormal tissue properties were still present in regions of normal-appearing tissue. Using both a linear and a random-forest model, prediction of CBF was improved by adding MRE measurements to the model (P < 0.01). CONCLUSIONS The inclusion of MRE measurements in statistical models helped predict perfusion, with stiffer tissue associated with lower perfusion values.
Collapse
|
6
|
Griffon J, Buffello D, Giron A, Bridal SL, Lamuraglia M. Non-Invasive Ultrasonic Description of Tumor Evolution. Cancers (Basel) 2021; 13:cancers13184560. [PMID: 34572788 PMCID: PMC8472198 DOI: 10.3390/cancers13184560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary During tumor evolution, heterogeneous structural and functional changes occur in the tumor microenvironment. These complex changes have pro- or anti-tumorigenesis effects and have an impact on therapy efficiency. Therefore, the tumor microenvironment needs to be non-invasively characterized over time. The aim of this preclinical work is to compare the sensitivity of modifications occurring during tumor evolution of volume, immunohistochemistry and non-invasive quantitative ultrasound parameters (Shear Wave Elastography and dynamic Contrast-Enhanced Ultrasound) and to study the link between them. The complementary evaluation over time of multiple morphological and functional parameters during tumor growth underlines the need to integrate histological, morphological, functional, and, ultimately, genomic information into models that can consider the temporal and spatial variability of features to better understand tumor evolution. Abstract Purpose: There is a clinical need to better non-invasively characterize the tumor microenvironment in order to reveal evidence of early tumor response to therapy and to better understand therapeutic response. The goals of this work are first to compare the sensitivity to modifications occurring during tumor growth for measurements of tumor volume, immunohistochemistry parameters, and emerging ultrasound parameters (Shear Wave Elastography (SWE) and dynamic Contrast-Enhanced Ultrasound (CEUS)), and secondly, to study the link between the different parameters. Methods: Five different groups of 9 to 10 BALB/c female mice with subcutaneous CT26 tumors were imaged using B-mode morphological imaging, SWE, and CEUS at different dates. Whole-slice immunohistological data stained for the nuclei, T lymphocytes, apoptosis, and vascular endothelium from these tumors were analyzed. Results: Tumor volume and three CEUS parameters (Time to Peak, Wash-In Rate, and Wash-Out Rate) significantly changed over time. The immunohistological parameters, CEUS parameters, and SWE parameters showed intracorrelation. Four immunohistological parameters (the number of T lymphocytes per mm2 and its standard deviation, the percentage area of apoptosis, and the colocalization of apoptosis and vascular endothelium) were correlated with the CEUS parameters (Time to Peak, Wash-In Rate, Wash-Out Rate, and Mean Transit Time). The SWE parameters were not correlated with the CEUS parameters nor with the immunohistological parameters. Conclusions: US imaging can provide additional information on tumoral changes. This could help to better explore the effect of therapies on tumor evolution, by studying the evolution of the parameters over time and by studying their correlations.
Collapse
Affiliation(s)
- Jerome Griffon
- Sorbonne Université, CNRS, INSERM, Laboratoire d’Imagerie Biomédicale, LIB, F-75006 Paris, France; (J.G.); (D.B.); (A.G.); (S.L.B.)
| | - Delphine Buffello
- Sorbonne Université, CNRS, INSERM, Laboratoire d’Imagerie Biomédicale, LIB, F-75006 Paris, France; (J.G.); (D.B.); (A.G.); (S.L.B.)
| | - Alain Giron
- Sorbonne Université, CNRS, INSERM, Laboratoire d’Imagerie Biomédicale, LIB, F-75006 Paris, France; (J.G.); (D.B.); (A.G.); (S.L.B.)
| | - S. Lori Bridal
- Sorbonne Université, CNRS, INSERM, Laboratoire d’Imagerie Biomédicale, LIB, F-75006 Paris, France; (J.G.); (D.B.); (A.G.); (S.L.B.)
| | - Michele Lamuraglia
- Sorbonne Université, CNRS, INSERM, Laboratoire d’Imagerie Biomédicale, LIB, F-75006 Paris, France; (J.G.); (D.B.); (A.G.); (S.L.B.)
- AP-HP, Hôpital Beaujon, Service d’Oncologie Digestive et Medicale, F-92110 Clichy, France
- Correspondence: ; Tel.: +33-144419605; Fax: +33-146335673
| |
Collapse
|
7
|
Yang JY, Qiu BS. The Advance of Magnetic Resonance Elastography in Tumor Diagnosis. Front Oncol 2021; 11:722703. [PMID: 34532290 PMCID: PMC8438294 DOI: 10.3389/fonc.2021.722703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/04/2021] [Indexed: 11/13/2022] Open
Abstract
The change in tissue stiffness caused by pathological changes in the tissue's structure could be detected earlier, prior to the manifestation of their clinical features. Magnetic resonance elastography (MRE) is a noninvasive imaging technique that uses low-frequency vibrations to quantitatively measure the elasticity or stiffness of tissues. In tumor tissue, stiffness is directly related to tumor development, invasion, metastasis, and chemoradiotherapy resistance. It also dictates the choice of surgical method. At present, MRE is widely used in assessing different human organs, such as the liver, brain, breast, prostate, uterus, gallbladder, and colon stiffness. In the field of oncology, MRE's value lies in tumor diagnosis (especially early diagnosis), selection of treatment method, and prognosis evaluation. This article summarizes the principle of MRE and its research and application progress in tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Jin-Ying Yang
- Laboratory Center for Information Science, University of Science and Technology of China, Hefei, China
| | - Ben-Sheng Qiu
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engneering, University of Science and Technology of China, Hefei, China
| |
Collapse
|
8
|
Hu J, Guo J, Pei Y, Hu P, Li M, Sack I, Li W. Rectal Tumor Stiffness Quantified by In Vivo Tomoelastography and Collagen Content Estimated by Histopathology Predict Tumor Aggressiveness. Front Oncol 2021; 11:701336. [PMID: 34485136 PMCID: PMC8415020 DOI: 10.3389/fonc.2021.701336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/29/2021] [Indexed: 01/23/2023] Open
Abstract
PURPOSE To investigate the significance of collagen in predicting the aggressiveness of rectal tumors in patients, examined in vivo based on tomoelastography quantified stiffness and ex vivo by histologically measured collagen volume fraction (CVF). EXPERIMENTAL DESIGN 170 patients with suspected rectal cancer were prospectively enrolled and underwent preoperative magnetic resonance imaging (MRI) and rectal tomoelastography, a technique based on multifrequency magnetic resonance elastography. Histopathologic analysis identified eighty patients with rectal cancer who were divided into subgroups by tumor-node (TN) stage, prognostic stage, and risk level. Rectal tumor stiffness was correlated with histopathologic CVF. Area-under-the-curve (AUC) and contingency analysis were used to evaluate the performance of rectal stiffness in distinguishing tumor stages which was compared to standard clinical MRI. RESULTS In vivo tomoelastography revealed that rectal tumor stiffened significantly with increased TN stage (p<0.05). Tumors with poorly differentiated status, perineural and lymphovascular invasion also displayed higher stiffness than well-to-moderately differentiated, noninvasive tumors (all p<0.05). Similar to in vivo stiffness, CVF indicated an abnormally high collagen content in tumors with perineural invasion and poor differentiation status. CVF was also positively correlated with stiffness (p<0.05). Most importantly, both stiffness (AUROC: 0.82) and CVF (AUROC: 0.89) demonstrated very good diagnostic accuracy in detecting rectal tumors that have high risk for progressing to an aggressive state with poorer prognosis. CONCLUSION In human rectal carcinomas, overexpression of collagen is correlated with increased tissue stiffness and high risk for tumor advancing more aggressively. In vivo tomoelastography quantifies rectal tumor stiffness which improves the diagnostic performance of standard MRI in the assessment of lymph nodes metastasis. Therefore, in vivo stiffness mapping by tomoelastography can predict rectal tumor aggressiveness and add diagnostic value to MRI.
Collapse
Affiliation(s)
- Jiaxi Hu
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Guo
- Department of Radiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Yigang Pei
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Ping Hu
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Mengsi Li
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Ingolf Sack
- Department of Radiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Wenzheng Li
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
9
|
Pagé G, Tardieu M, Gennisson JL, Besret L, Garteiser P, Van Beers BE. Tumor Solid Stress: Assessment with MR Elastography under Compression of Patient-Derived Hepatocellular Carcinomas and Cholangiocarcinomas Xenografted in Mice. Cancers (Basel) 2021; 13:cancers13081891. [PMID: 33920771 PMCID: PMC8071192 DOI: 10.3390/cancers13081891] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 01/01/2023] Open
Abstract
Malignant tumors have abnormal biomechanical characteristics, including high viscoelasticity, solid stress, and interstitial fluid pressure. Magnetic resonance (MR) elastography is increasingly used to non-invasively assess tissue viscoelasticity. However, solid stress and interstitial fluid pressure measurements are performed with invasive methods. We studied the feasibility and potential role of MR elastography at basal state and under controlled compression in assessing altered biomechanical features of malignant liver tumors. MR elastography was performed in mice with patient-derived, subcutaneously xenografted hepatocellular carcinomas or cholangiocarcinomas to measure the basal viscoelasticity and the compression stiffening rate, which corresponds to the slope of elasticity versus applied compression. MR elastography measurements were correlated with invasive pressure measurements and digital histological readings. Significant differences in MR elastography parameters, pressure, and histological measurements were observed between tumor models. In multivariate analysis, collagen content and interstitial fluid pressure were determinants of basal viscoelasticity, whereas solid stress, in addition to collagen content, cellularity, and tumor type, was an independent determinant of compression stiffening rate. Compression stiffening rate had high AUC (0.87 ± 0.08) for determining elevated solid stress, whereas basal elasticity had high AUC for tumor collagen content (AUC: 0.86 ± 0.08). Our results suggest that MR elastography compression stiffening rate, in contrast to basal viscoelasticity, is a potential marker of solid stress in malignant liver tumors.
Collapse
Affiliation(s)
- Gwenaël Pagé
- Laboratory of Imaging Biomarkers, Center of Research on Inflammation, Université de Paris, UMR 1149, Inserm, F-75018 Paris, France; (P.G.); (B.E.V.B.)
- Correspondence:
| | - Marion Tardieu
- Montpellier Cancer Research Institute (IRCM), INSERM U1194, University of Montpellier, 34095 Montpellier, France;
- Montpellier Cancer Institute (ICM), 34298 Montpellier, France
| | - Jean-Luc Gennisson
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, 91401 Orsay, France;
| | | | - Philippe Garteiser
- Laboratory of Imaging Biomarkers, Center of Research on Inflammation, Université de Paris, UMR 1149, Inserm, F-75018 Paris, France; (P.G.); (B.E.V.B.)
| | - Bernard E. Van Beers
- Laboratory of Imaging Biomarkers, Center of Research on Inflammation, Université de Paris, UMR 1149, Inserm, F-75018 Paris, France; (P.G.); (B.E.V.B.)
- Department of Radiology, AP-HP, Beaujon University Hospital Paris Nord, F-92110 Clichy, France
| |
Collapse
|
10
|
Yoo J, Seo BK, Park EK, Kwon M, Jeong H, Cho KR, Woo OH, Song SE, Cha J. Tumor stiffness measured by shear wave elastography correlates with tumor hypoxia as well as histologic biomarkers in breast cancer. Cancer Imaging 2020; 20:85. [PMID: 33256820 PMCID: PMC7706221 DOI: 10.1186/s40644-020-00362-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/24/2020] [Indexed: 11/10/2022] Open
Abstract
Background Shear wave elastography (SWE) is an ultrasound technique for the noninvasive quantification of tissue stiffness. The hypoxic tumor microenvironment promotes tumor stiffness and is associated with poor prognosis in cancer. We aimed to investigate the correlation between tumor hypoxia and histologic biomarkers and tumor stiffness measured by SWE in breast cancer. Methods From June 2016 to January 2018, 82 women with invasive breast cancer who underwent SWE before treatment were enrolled. Average tumor elasticity (Eaverage) and tumor-to-fat elasticity ratio (Eratio) were extracted from SWE. Immunohistochemical staining of glucose transporter 1 (GLUT1) was used to assess tumor hypoxia in breast cancer tissues and automated digital image analysis was performed to assess GLUT1 activities. Spearman correlation and logistic regression analyses were performed to identify associations between GLUT1 expression and SWE values, histologic biomarkers, and molecular subtypes. The Mann–Whitney U test, t test, or Kruskal–Wallis test was used to compare SWE values and histologic features according to the GLUT1 expression (≤the median vs > median). Results Eaverage (r = 0.676) and Eratio (r = 0.411) correlated significantly with GLUT1 expression (both p < 0.001). Eaverage was significantly higher in cancers with estrogen receptor (ER)–, progesterone receptor (PR)–, Ki67+, and high-grade (p < 0.05). Eratio was higher in cancers with Ki67+, lymph node metastasis, and high-grade (p < 0.05). Cancers with high GLUT1 expression (>median) had higher Eaverage (mean, 85.4 kPa vs 125.5 kPa) and Eratio (mean, 11.7 vs 17.9), and more frequent ER– (21.7% vs 78.3%), PR– (26.4% vs 73.1%), Ki67+ (31.7%% vs 68.3%), human epidermal growth factor receptor 2 (HER2) + (25.0% vs 75.0%), high-grade (28.6% vs 71.4%), and HER2-overexpressing (25.0% vs 75.0%) and triple-negative (23.1% vs 76.9%) subtypes (p < 0.05). Multivariable analysis showed that Eaverage was independently associated with GLUT1 expression (p < 0.001). Conclusions Tumor stiffness on SWE is significantly correlated with tumor hypoxia as well as histologic biomarkers. In particular, Eaverage on SWE has independent prognostic significance for tumor hypoxia in the multivariable analysis and can potentially be used as a noninvasive imaging biomarker to predict prognosis and pretreatment risk stratification in breast cancer patients.
Collapse
Affiliation(s)
- Joonghyun Yoo
- Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi-do, 15355, South Korea
| | - Bo Kyoung Seo
- Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi-do, 15355, South Korea.
| | - Eun Kyung Park
- Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi-do, 15355, South Korea
| | - Myoungae Kwon
- Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi-do, 15355, South Korea
| | - Hoiseon Jeong
- Department of Pathology, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi-do, 15355, South Korea
| | - Kyu Ran Cho
- Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Ok Hee Woo
- Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, 148 Gurodong-ro, Guro-gu, Seoul, 08308, South Korea
| | - Sung Eun Song
- Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Jaehyung Cha
- Medical Science Research Center, Korea University Ansan Hospital, 123 Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi-do, 15355, South Korea
| |
Collapse
|
11
|
Park SJ, Yoon JH, Lee DH, Lim WH, Lee JM. Tumor Stiffness Measurements on MR Elastography for Single Nodular Hepatocellular Carcinomas Can Predict Tumor Recurrence After Hepatic Resection. J Magn Reson Imaging 2020; 53:587-596. [PMID: 32914909 DOI: 10.1002/jmri.27359] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Tumor stiffness (TS), measured by magnetic resonance elastography (MRE), could be associated with tumor mechanical properties and tumor grade. PURPOSE To determine whether TS obtained using MRE is associated with survival in patients with single nodular hepatocellular carcinoma (HCC) after hepatic resection (HR). STUDY TYPE Retrospective. POPULATION In all, 95 patients with pathologically confirmed HCCs. FIELD STRENGTH/SEQUENCE 1.5T/3D spin-echo echo-planar imaging MRE. ASSESSMENT TS values of the whole tumor (TS-WT) and of a solid portion of the tumor (TS-SP) after excluding the necrotic area were measured on stiffness maps. Known imaging prognostic factors of HCC were also analyzed. After surgery, pathologic findings were evaluated from resected pathology specimens. STATISTICAL TESTS Fisher's exact test and the Mann-Whitney U-test were performed to determine the significance of differences according to the tumor grade. Overall survival (OS) / recurrence-free survival (RFS) analyses were performed using Kaplan-Meier analyses and Cox multivariable models. RESULTS The average TS-WT was 2.14 ± 0.74 kPa, and the average TS-SP was 2.51 ± 1.07 kPa. The cumulative incidence of RFS was 73.1%, 63.1%, and 57.3% at 1, 3, and 5 years, respectively. The TS-WT, TS-SP, and tumor size (≥5 cm) were significant prognostic factors for RFS (P < 0.001; P < 0.001; P = 0.017, respectively). The estimated overall 1-, 3-, and 5-year survival rates were 95.7%, 86.9%, and 80.8%, respectively. The alpha-fetoprotein changes, platelets, tumor size (≥5 cm), and vascular invasion in pathology were significant predictive factors for overall survival (all P < 0.05). Tumor necrosis, TS-WT, TS-SP, and vascular invasion in pathology were significantly correlated with poorly differentiated HCC (all P < 0.05). DATA CONCLUSION The TS-WT, TW-SP, and tumor size (≥5 cm) were significant predictive factors of RFS after HR in patients with HCC. Level of Evidence Technical Efficacy Stage 5 J. MAGN. RESON. IMAGING 2021;53:587-596.
Collapse
Affiliation(s)
- Sae-Jin Park
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Jeong Hee Yoon
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Dong Ho Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Woo Hyeon Lim
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Jeong Min Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
| |
Collapse
|
12
|
Son MJ, Kim S, Jung HK, Ko KH, Koh JE, Park AY. Can Ultrasonographic Vascular and Elastographic Features of Invasive Ductal Breast Carcinoma Predict Histologic Aggressiveness? Acad Radiol 2020; 27:487-496. [PMID: 31300357 DOI: 10.1016/j.acra.2019.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/07/2019] [Accepted: 06/15/2019] [Indexed: 01/15/2023]
Abstract
RATIONALE AND OBJECTIVES To investigate if preoperative ultrasonographic vascular and shear-wave elastographic examinations can predict histologic aggressiveness. MATERIALS AND METHODS Preoperative ultrasonographic vascular features and shear-wave elasticities were retrospectively evaluated for 147 invasive ductal carcinomas. Vascular feature was assessed using four-tier vascularity score. Mean and maximum elasticities (Emean and Emax), and the lesion-to-fat ratio (Eratio) were documented. Histologic parameters were reviewed for tumor size, multiplicity, axillary lymph node status, lymphovascular invasion, histologic grade, estrogen receptor, progesterone receptor, human epidermal growth factor receptor2 (HER2), Ki-67, p53, and histologic subtype. Vascularity score and elasticities were correlated with histologic parameters and histologic parameters were compared between the group with low vascularity score and elasticities and the group with high vascularity score and elasticities using ANOVA, chi-squared test, and regression analysis. RESULTS Vascularity score was independently associated with tumor size (p = 0.010) and HER2 (p = 0.007). Emean and Emax were associated with tumor size, histologic grade, and lymphovascular invasion, and Eratio was associated with tumor size, histologic grade, estrogen receptor, progesterone receptor, Ki-67, and histologic subtype (p < 0.05). Emean and Emax were independently associated with tumor size (p < 0.001). The group with high vascularity score and Eratio showed large tumor size (p < 0.001) and HER2 positivity (p = 0.039) in comparison to the group with low vascularity score and Eratio. CONCLUSION Ultrasonographic vascular features were associated with tumor size and HER2. SWE elasticities were associated with tumor size, histologic grade, hormonal receptor, and histologic subtype. Therefore, preoperative vascular and elastographic examinations could predict histologic aggressiveness of invasive ductal breast carcinoma.
Collapse
|
13
|
Theranostic MRI liposomes for magnetic targeting and ultrasound triggered release of the antivascular CA4P. J Control Release 2020; 322:137-148. [PMID: 32145266 DOI: 10.1016/j.jconrel.2020.03.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/05/2020] [Accepted: 03/03/2020] [Indexed: 02/06/2023]
Abstract
Theranostic nanocarriers of antivascular drug encapsulated in thermosensitive ultramagnetic liposomes can be advantageously designed to provide a locally high concentration and an active delivery, with image-guided Magnetic Resonance Imaging (MRI) so as to reliably cure tumor. We propose a novel therapeutic strategy consisting of the magnetic accumulation of Ultra Magnetic Liposomes (UML) followed by High-Intensity Focused Ultrasound (HIFU) to trigger the release of an antivascular agent monitored by MRI. For this purpose, we co-encapsulated Combretastatin A4 phosphate (CA4P), a vascular disrupting agent, in the core of UML to obtain CA4P-loaded thermosensitive Ultra Magnetic Liposomes (CA4P-UML). To assess the HIFU parameters, the CA4P release has been triggered in vitro by local heating HIFU at the lipids transition temperature. Morphology of endothelial cells was assessed to evaluate the effect of encapsulated versus non-encapsulated CA4P. The efficiency of a treatment combining the magnetic targeting of CA4P-UML with the CA4P release triggered by HIFU was studied in CT26 murine tumors. Tumor perfusion and volume regression parameters were monitored by multiparametric quantitative anatomical and dynamic in vivo MRI at 7 T. Additionally, vascularization and cellularity were evaluated ex-vivo by histology. This thorough investigation showed that the combined treatment exhibited a full benefit. A 150-fold improvement compared with the chemotherapy alone was obtained using a magnetic targeting of CA4P-UML triggered by HIFU, and was consistent with an expected effect on vascularization 24 h after treatment.
Collapse
|
14
|
Bunevicius A, Schregel K, Sinkus R, Golby A, Patz S. REVIEW: MR elastography of brain tumors. Neuroimage Clin 2019; 25:102109. [PMID: 31809993 PMCID: PMC6909210 DOI: 10.1016/j.nicl.2019.102109] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 12/28/2022]
Abstract
MR elastography allows non-invasive quantification of the shear modulus of tissue, i.e. tissue stiffness and viscosity, information that offers the potential to guide presurgical planning for brain tumor resection. Here, we review brain tumor MRE studies with particular attention to clinical applications. Studies that investigated MRE in patients with intracranial tumors, both malignant and benign as well as primary and metastatic, were queried from the Pubmed/Medline database in August 2018. Reported tumor and normal appearing white matter stiffness values were extracted and compared as a function of tumor histopathological diagnosis and MRE vibration frequencies. Because different studies used different elastography hardware, pulse sequences, reconstruction inversion algorithms, and different symmetry assumptions about the mechanical properties of tissue, effort was directed to ensure that similar quantities were used when making inter-study comparisons. In addition, because different methodologies and processing pipelines will necessarily bias the results, when pooling data from different studies, whenever possible, tumor values were compared with the same subject's contralateral normal appearing white matter to minimize any study-dependent bias. The literature search yielded 10 studies with a total of 184 primary and metastatic brain tumor patients. The group mean tumor stiffness, as measured with MRE, correlated with intra-operatively assessed stiffness of meningiomas and pituitary adenomas. Pooled data analysis showed significant overlap between shear modulus values across brain tumor types. When adjusting for the same patient normal appearing white matter shear modulus values, meningiomas were the stiffest tumor-type. MRE is increasingly being examined for potential in brain tumor imaging and might have value for surgical planning. However, significant overlap of shear modulus values between a number of different tumor types limits applicability of MRE for diagnostic purposes. Thus, further rigorous studies are needed to determine specific clinical applications of MRE for surgical planning, disease monitoring and molecular stratification of brain tumors.
Collapse
Affiliation(s)
- Adomas Bunevicius
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA 02115, United States; Harvard Medical School, Boston, MA, United States.
| | - Katharina Schregel
- Institute of Neuroradiology, University Medical Center Goettingen, Goettingen, Germany
| | - Ralph Sinkus
- Inserm U1148, LVTS, University Paris Diderot, University Paris 13, Paris, France
| | - Alexandra Golby
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA 02115, United States; Harvard Medical School, Boston, MA, United States; Department of Radiology, Brigham and Women's Hospital, Boston, MA 02115, United States
| | - Samuel Patz
- Harvard Medical School, Boston, MA, United States; Department of Radiology, Brigham and Women's Hospital, Boston, MA 02115, United States.
| |
Collapse
|
15
|
Li J, Zormpas-Petridis K, Boult JKR, Reeves EL, Heindl A, Vinci M, Lopes F, Cummings C, Springer CJ, Chesler L, Jones C, Bamber JC, Yuan Y, Sinkus R, Jamin Y, Robinson SP. Investigating the Contribution of Collagen to the Tumor Biomechanical Phenotype with Noninvasive Magnetic Resonance Elastography. Cancer Res 2019; 79:5874-5883. [PMID: 31604713 DOI: 10.1158/0008-5472.can-19-1595] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/15/2019] [Accepted: 09/17/2019] [Indexed: 11/16/2022]
Abstract
Increased stiffness in the extracellular matrix (ECM) contributes to tumor progression and metastasis. Therefore, stromal modulating therapies and accompanying biomarkers are being developed to target ECM stiffness. Magnetic resonance (MR) elastography can noninvasively and quantitatively map the viscoelastic properties of tumors in vivo and thus has clear clinical applications. Herein, we used MR elastography, coupled with computational histopathology, to interrogate the contribution of collagen to the tumor biomechanical phenotype and to evaluate its sensitivity to collagenase-induced stromal modulation. Elasticity (G d) and viscosity (G l) were significantly greater for orthotopic BT-474 (G d = 5.9 ± 0.2 kPa, G l = 4.7 ± 0.2 kPa, n = 7) and luc-MDA-MB-231-LM2-4 (G d = 7.9 ± 0.4 kPa, G l = 6.0 ± 0.2 kPa, n = 6) breast cancer xenografts, and luc-PANC1 (G d = 6.9 ± 0.3 kPa, G l = 6.2 ± 0.2 kPa, n = 7) pancreatic cancer xenografts, compared with tumors associated with the nervous system, including GTML/Trp53KI/KI medulloblastoma (G d = 3.5 ± 0.2 kPa, G l = 2.3 ± 0.2 kPa, n = 7), orthotopic luc-D-212-MG (G d = 3.5 ± 0.2 kPa, G l = 2.3 ± 0.2 kPa, n = 7), luc-RG2 (G d = 3.5 ± 0.2 kPa, G l = 2.3 ± 0.2 kPa, n = 5), and luc-U-87-MG (G d = 3.5 ± 0.2 kPa, G l = 2.3 ± 0.2 kPa, n = 8) glioblastoma xenografts, intracranially propagated luc-MDA-MB-231-LM2-4 (G d = 3.7 ± 0.2 kPa, G l = 2.2 ± 0.1 kPa, n = 7) breast cancer xenografts, and Th-MYCN neuroblastomas (G d = 3.5 ± 0.2 kPa, G l = 2.3 ± 0.2 kPa, n = 5). Positive correlations between both elasticity (r = 0.72, P < 0.0001) and viscosity (r = 0.78, P < 0.0001) were determined with collagen fraction, but not with cellular or vascular density. Treatment with collagenase significantly reduced G d (P = 0.002) and G l (P = 0.0006) in orthotopic breast tumors. Texture analysis of extracted images of picrosirius red staining revealed significant negative correlations of entropy with G d (r = -0.69, P < 0.0001) and G l (r = -0.76, P < 0.0001), and positive correlations of fractal dimension with G d (r = 0.75, P < 0.0001) and G l (r = 0.78, P < 0.0001). MR elastography can thus provide sensitive imaging biomarkers of tumor collagen deposition and its therapeutic modulation. SIGNIFICANCE: MR elastography enables noninvasive detection of tumor stiffness and will aid in the development of ECM-targeting therapies.
Collapse
Affiliation(s)
- Jin Li
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | | | - Jessica K R Boult
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Emma L Reeves
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Andreas Heindl
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| | - Maria Vinci
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| | - Filipa Lopes
- Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Craig Cummings
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Caroline J Springer
- Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Louis Chesler
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Chris Jones
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| | - Jeffrey C Bamber
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Yinyin Yuan
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| | - Ralph Sinkus
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom
| | - Yann Jamin
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom.
| | - Simon P Robinson
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom.
| |
Collapse
|
16
|
Nair A, Liu CH, Singh M, Das S, Le T, Du Y, Soomro S, Aglyamov S, Mohan C, Larin KV. Assessing colitis ex vivo using optical coherence elastography in a murine model. Quant Imaging Med Surg 2019; 9:1429-1440. [PMID: 31559172 PMCID: PMC6732062 DOI: 10.21037/qims.2019.06.03] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/30/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Ulcerative colitis (UC) is an inflammatory bowel disease (IBD) that causes regions of ulceration within the interior of the colon. UC is estimated to afflict hundreds of thousands of people in the United States alone. In addition to traditional colonoscopy, ultrasonic techniques can detect colitis, but have limited spatial resolution, which frequently results in underdiagnoses. Nevertheless, clinical diagnosis of colitis is still generally performed via colonoscopy. Optical techniques such as confocal microscopy and optical coherence tomography (OCT) have been proposed to detect UC with higher resolution. However, UC can potentially alter tissue biomechanical properties, providing additional contrast for earlier and potentially more accurate detection. Although clinically available elastography techniques have been immensely useful, they do not have the resolution for imaging small tissues, such as in small mammalian disease models. However, OCT-based elastography, optical coherence elastography (OCE), is well-suited for imaging the biomechanical properties of small mammal colon tissue. METHODS In this work, we induced elastic waves in ex vivo mouse colon tissue using a focused air-pulse. The elastic waves were detected using a phase-stabilized swept source OCE system, and the wave velocity was translated into stiffness. Measurements were taken at six positions for each sample to assess regional sample elasticity. Additional contrast between the control and diseased tissue was detected by analyzing the dispersion of the elastic wave and tissue optical properties obtained from the OCT structural image. RESULTS The results show distinct differences (P<0.05) in the stiffness between control and colitis disease samples, with a Young's modulus of 11.8±8.0 and 5.1±1.5 kPa, respectively. The OCT signal standard deviations for control and diseased samples were 5.8±0.3 and 5.5±0.2 dB, respectively. The slope of the OCT signal spatial frequency decay in the control samples was 92.7±10.0 and 87.3±4.7 dB∙µm in the colitis samples. The slope of the linearly fitted dispersion curve in the control samples was 1.5 mm, and 0.8 mm in the colitis samples. CONCLUSIONS Our results show that OCE can be utilized to distinguish tissue based on stiffness and optical properties. Our estimates of tissue stiffness suggest that the healthy colon tissue was stiffer than diseased tissue. Furthermore, structural analysis of the tissue indicates a distinct difference in tissue optical properties between the healthy and UC-like diseased tissue.
Collapse
Affiliation(s)
- Achuth Nair
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Chih Hao Liu
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Manmohan Singh
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Susobhan Das
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Triet Le
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Yong Du
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Sanam Soomro
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Salavat Aglyamov
- Department of Mechanical Engineering, University of Houston, Houston, TX, USA
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Chandra Mohan
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Kirill V. Larin
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| |
Collapse
|
17
|
Pepin K, Grimm R, Kargar S, Howe BM, Fritchie K, Frick M, Wenger D, Okuno S, Ehman R, McGee K, James S, Laack N, Herman M, Pafundi D. Soft Tissue Sarcoma Stiffness and Perfusion Evaluation by MRE and DCE-MRI for Radiation Therapy Response Assessment: A Technical Feasibility Study. Biomed Phys Eng Express 2019; 5:10.1088/2057-1976/ab2175. [PMID: 32110433 PMCID: PMC7045581 DOI: 10.1088/2057-1976/ab2175] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Soft tissue sarcomas are a rare and heterogeneous group of malignancies that present significant diagnostic and therapeutic challenges. Patient stratification based on tumor aggressiveness and early therapeutic response based on quantitative imaging may improve prediction of treatment response and the evaluation of new treatment strategies in clinical trials. The purpose of this pilot study was to determine the technical feasibility of magnetic resonance elastography (MRE) and dynamic contrast-enhanced (DCE) MRI for the evaluation of sarcoma stiffness and perfusion in 9 patients with histologically confirmed sarcoma. Additionally, we assessed the feasibility of utilizing MRE and DCE-MRI for the early evaluation of response to radiation therapy in 4 patients to determine the utility of further evaluation in a larger cohort study. Tumor size, stiffness, and perfusion parameters all decreased from baseline at the time of the pre-surgery or follow-up MRI, and results were compared to pathology or conventional imaging. MRE and DCE-MRI may be useful for the quantitative evaluation of tumor stiffness and perfusion, and therapy response assessment in soft tissue sarcomas.
Collapse
Affiliation(s)
- Kay Pepin
- Department of Radiation Oncology, Mayo Clinic, 200 1 Street SW, Rochester, MN 55905
| | - Roger Grimm
- Department of Radiology, Mayo Clinic, 200 1 Street SW, Rochester, MN 55905
| | - Soudabeh Kargar
- Mayo Clinic Graduate School of Biomedical Sciences, 200 1 Street SW, Rochester, MN 55905
| | - B Matthew Howe
- Department of Radiology, Mayo Clinic, 200 1 Street SW, Rochester, MN 55905
| | - Karen Fritchie
- Department of Pathology, Mayo Clinic, 200 1 Street SW, Rochester, MN 55905
| | - Matthew Frick
- Department of Radiology, Mayo Clinic, 200 1 Street SW, Rochester, MN 55905
| | - Doris Wenger
- Department of Radiology, Mayo Clinic, 200 1 Street SW, Rochester, MN 55905
| | - Scott Okuno
- Department of Oncology, Mayo Clinic, 200 1 St SW, Rochester MN, 55905
| | - Richard Ehman
- Department of Radiology, Mayo Clinic, 200 1 Street SW, Rochester, MN 55905
| | - Kiaran McGee
- Department of Radiology, Mayo Clinic, 200 1 Street SW, Rochester, MN 55905
| | - Sarah James
- Department of Radiation Oncology, Mayo Clinic, 200 1 Street SW, Rochester, MN 55905
| | - Nadia Laack
- Department of Radiation Oncology, Mayo Clinic, 200 1 Street SW, Rochester, MN 55905
| | - Michael Herman
- Department of Radiation Oncology, Mayo Clinic, 200 1 Street SW, Rochester, MN 55905
| | - Deanna Pafundi
- Department of Radiation Oncology, Mayo Clinic, 200 1 Street SW, Rochester, MN 55905
| |
Collapse
|
18
|
Valente KP, Thind SS, Akbari M, Suleman A, Brolo AG. Collagen Type I-Gelatin Methacryloyl Composites: Mimicking the Tumor Microenvironment. ACS Biomater Sci Eng 2019; 5:2887-2898. [PMID: 33405592 DOI: 10.1021/acsbiomaterials.9b00264] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Therapeutic drugs can penetrate tissues by diffusion and advection. In a healthy tissue, the interstitial fluid is composed of an influx of nutrients and oxygen from blood vessels. In the case of cancerous tissue, the interstitial fluid is poorly drained because of the lack of lymphatic vasculature, resulting in an increase in interstitial pressure. Furthermore, cancer cells invade healthy tissue by pressing and pushing the surrounding environment, creating an increase in pressure inside the tumor area. This results in a large differential pressure between the tumor and the healthy tissue, leading to an increase in extracellular matrix (ECM) stiffness. Because of high interstitial pressure in addition to matrix stiffening, penetration and distribution of systemic therapies are limited to diffusion, decreasing the efficacy of cancer treatment. This work reports on the development of a microfluidic system that mimics in vitro healthy and cancerous microenvironments using collagen I and gelatin methacryloyl (GelMA) composite hydrogels. The microfluidic device developed here contains a simplistic design with a central chamber and two lateral channels. In the central chamber, hydrogel composites were used to mimic the ECM, whereas lateral channels simulated capillary vessels. The transport of fluorescein sodium salt and fluorescently labeled gold nanoparticles from capillary-mimicking channels through the ECM-mimicking hydrogel was explored by tracking fluorescence. By tuning the hydrogel composition and concentration, the impact of the tumor microenvironment properties on the transport of those species was evaluated. In addition, breast cancer MCF-7 cells were embedded in the hydrogel composites, displaying the formation of 3D clusters with high viability and, consequently, the development of an in vitro tumor model.
Collapse
|
19
|
Pagé G, Tardieu M, Besret L, Blot L, Lopes J, Sinkus R, Van Beers BE, Garteiser P. Assessing Tumor Mechanics by MR Elastography at Different Strain Levels. J Magn Reson Imaging 2019; 50:1982-1989. [DOI: 10.1002/jmri.26787] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/30/2019] [Accepted: 05/01/2019] [Indexed: 12/17/2022] Open
Affiliation(s)
- Gwenaël Pagé
- Laboratory of Imaging BiomarkersUMR1149, INSERM‐University Paris Diderot Paris France
| | - Marion Tardieu
- Laboratory of Imaging BiomarkersUMR1149, INSERM‐University Paris Diderot Paris France
| | | | | | | | - Ralph Sinkus
- Laboratory of Vascular Translational ScienceUMR1148, INSERM‐University Paris Diderot Paris France
- Imaging Sciences and Biomedical EngineeringKing's College London London UK
| | - Bernard E. Van Beers
- Laboratory of Imaging BiomarkersUMR1149, INSERM‐University Paris Diderot Paris France
- Department of RadiologyBeaujon University Hospital Paris Nord Clichy France
| | - Philippe Garteiser
- Laboratory of Imaging BiomarkersUMR1149, INSERM‐University Paris Diderot Paris France
| |
Collapse
|
20
|
Suvannarerg V, Chitchumnong P, Apiwat W, Lertdamrongdej L, Tretipwanit N, Pisarnturakit P, Sitthinamsuwan P, Thiravit S, Muangsomboon K, Korpraphong P. Diagnostic performance of qualitative and quantitative shear wave elastography in differentiating malignant from benign breast masses, and association with the histological prognostic factors. Quant Imaging Med Surg 2019; 9:386-398. [PMID: 31032186 DOI: 10.21037/qims.2019.03.04] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background To determine the diagnostic performance of qualitative and quantitative shear wave elastography (SWE) and the optimal cutoff values of the quantitative SWE parameters in differentiating malignant from benign breast masses, and to evaluate the association between the quantitative SWE parameters and histological prognostic factors. Methods A gray scale ultrasound and SWE were prospectively performed on a total of 244 breast masses (148 benign, and 96 malignant) in 228 consecutive patients before an ultrasound-guided needle biopsy. The qualitative SWE and quantitative SWE parameters (the mean elasticity, maximum elasticity, and elasticity ratio) were measured in each mass. The diagnostic performance of SWE and the optimal cutoff values of the quantitative SWE parameters were obtained. An association analysis of the parameters and histological prognostic factors was performed. Results The malignant masses had a more heterogeneous pattern on the qualitative SWE than benign masses (P<0.001). The quantitative SWE parameters of the malignant masses were higher than those of the benign masses (P<0.001); the mean elasticity, maximum elasticity, and elasticity ratio of the benign masses were 19.73 kPa, 23.98 kPa, and 2.78, respectively; and the mean elasticity, maximum elasticity, and elasticity ratio of the malignant masses were 88.13 kPa, 98.48 kPa, and 10.64, respectively. The optimal cutoff value of the mean elasticity was 30 kPa, of the maximum elasticity was 36 kPa, and of the elasticity ratio was 4.5. The maximum elasticity had the highest AUC. Combining the three SWE parameters to differentiate between the malignant and benign masses increased the negative predictive value (NPV), which correctly downgraded 72.73% of BI-RADS category 4A masses to BI-RADS category 3. No statistically significant association was found between the quantitative SWE parameters and the tumor grading, tumor types, axillary lymph node statuses, or molecular subtypes of the breast cancers (P>0.05). Conclusions The qualitative and quantitative SWE provided good diagnostic performance in differentiating malignant and benign masses. The maximum elasticity of the quantitative SWE parameters had the best diagnostic performance. Adding the three combined quantitative SWE parameters to the BI-RADS category 4A masses potentially downgraded them to BI-RADS category 3 and avoided unnecessary biopsies. No statistically significant association was found between the quantitative SWE parameters and the histological prognostic factors.
Collapse
Affiliation(s)
- Voraparee Suvannarerg
- 1Department of Radiology, Faculty of Medicine, 2Thanyarak Breast Center, 3Department of Surgery, Faculty of Medicine, 4Department of Pathology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Piyanuch Chitchumnong
- 1Department of Radiology, Faculty of Medicine, 2Thanyarak Breast Center, 3Department of Surgery, Faculty of Medicine, 4Department of Pathology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wipawan Apiwat
- 1Department of Radiology, Faculty of Medicine, 2Thanyarak Breast Center, 3Department of Surgery, Faculty of Medicine, 4Department of Pathology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Lassanun Lertdamrongdej
- 1Department of Radiology, Faculty of Medicine, 2Thanyarak Breast Center, 3Department of Surgery, Faculty of Medicine, 4Department of Pathology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nattinee Tretipwanit
- 1Department of Radiology, Faculty of Medicine, 2Thanyarak Breast Center, 3Department of Surgery, Faculty of Medicine, 4Department of Pathology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pongthep Pisarnturakit
- 1Department of Radiology, Faculty of Medicine, 2Thanyarak Breast Center, 3Department of Surgery, Faculty of Medicine, 4Department of Pathology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Panitta Sitthinamsuwan
- 1Department of Radiology, Faculty of Medicine, 2Thanyarak Breast Center, 3Department of Surgery, Faculty of Medicine, 4Department of Pathology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Shanigarn Thiravit
- 1Department of Radiology, Faculty of Medicine, 2Thanyarak Breast Center, 3Department of Surgery, Faculty of Medicine, 4Department of Pathology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kobkun Muangsomboon
- 1Department of Radiology, Faculty of Medicine, 2Thanyarak Breast Center, 3Department of Surgery, Faculty of Medicine, 4Department of Pathology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pornpim Korpraphong
- 1Department of Radiology, Faculty of Medicine, 2Thanyarak Breast Center, 3Department of Surgery, Faculty of Medicine, 4Department of Pathology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
21
|
Liu Y, Huang Y, Han J, Wang J, Li F, Zhou J. Association Between Shear Wave Elastography of Virtual Touch Tissue Imaging Quantification Parameters and the Ki-67 Proliferation Status in Luminal-Type Breast Cancer. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2019; 38:73-80. [PMID: 29708280 DOI: 10.1002/jum.14663] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 03/16/2018] [Accepted: 03/20/2018] [Indexed: 06/08/2023]
Abstract
OBJECTIVES To evaluate the association between shear wave elastography parameters using virtual touch tissue imaging quantification (VTIQ) and the Ki-67 index in luminal-type breast cancer. METHODS Eighty-one patients with 82 lesions of pathologic confirmed luminal-type breast cancer underwent virtual touch tissue imaging quantification examination before surgery between December 2015 and June 2016. Patients were divided into 2 groups according to the Ki-67 index (≥14% versus < 14%), which is used to define luminal type B and luminal type A, respectively. The mean shear wave velocity (SWVmean ) and lesion-to-adjacent tissues ratio (SWV ratio) were calculated for each lesion. RESULTS The SWVmean , SWV ratio, histologic grade, axillary lymph node involvement, and lymphovascular invasion showed a significant positive association with a high Ki-67 index (all P < .05). Receiver operating characteristic curve analysis for the differential diagnosis between high (≥14%) and low (<14%) Ki-67 groups displayed that the optimal cutoff value for SWVmean and SWV ratio were 3.99 meters per second and 2.861, with sensitivity 94% and 72%, specificity 40.6% and 56.2%, and area under the receiver operating characteristic curve of 0.689 and 0.651, respectively. Univariate analysis showed that SWVmean (P = .005), SWV ratio (P = .029), histologic grade (P = .011), presence of axillary node involvement (P = .004), and lymphovascular invasion (P = .008) were significantly associated with high Ki-67 status. Multivariable analysis displayed that SWVmean (hazard ratio [HR], 1.459, 95% confidence interval [CI], 1.028-2.072; P = .035), histologic grade (HR, 4.105; 95% CI, 1.142-14.763; P = .031), and presence of axillary node involvement (HR, 3.75; 95% CI, 1.228-11.453; P = .020) maintained significance for predicting high Ki-67 status. CONCLUSIONS The SWVmean using the virtual touch tissue imaging quantification method showed significant correlation with the Ki-67 index, suggesting the potential to assess tumor proliferation status in luminal-type breast cancer with a noninvasive manner.
Collapse
Affiliation(s)
- Yubo Liu
- Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 6, Guangzhou, China
| | - Yini Huang
- Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 6, Guangzhou, China
| | - Jing Han
- Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 6, Guangzhou, China
| | - Jianwei Wang
- Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 6, Guangzhou, China
| | - Fei Li
- Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 6, Guangzhou, China
| | - Jianhua Zhou
- Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 6, Guangzhou, China
| |
Collapse
|
22
|
Nair A, Liu CH, Das S, Ho T, Du Y, Soomro S, Mohan C, Larin KV. Detecting murine Inflammatory Bowel Disease using Optical Coherence Elastography. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2018:830-833. [PMID: 30440520 DOI: 10.1109/embc.2018.8512295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease (IBD) that causes regions of ulceration within the interior of the colon. UC is estimated to afflict hundreds of thousands of people in the United States alone. Ultrasonic techniques can detect colitis, but have limited spatial resolution, which frequently results in underdiagnoses. Nevertheless, clinical diagnosis of colitis is still generally performed via colonoscopy. Optical techniques such as confocal microscopy and optical coherence tomography (OCT) have been proposed as higher resolution alternative imaging modalities to detect colitis. Additionally, IBD can potentially alter tissue biomechanical properties, which cannot be quantified from structural imaging alone. Elastography is a potential method to assess colon biomechanical properties to provide additional contrast for distinguishing healthy and diseased colon tissue. In this work, we induced elastic waves in ex vivo mouse colon tissue using a focused air-pulse. The elastic waves were detected using a phase-stabilized swept source optical coherence elastography system, and the wave velocity was translated into stiffness. Measurements were taken at six random positions for each sample in order to assess regional sample elasticity. The results show distinct differences ($p \lt 0.05$) in the stiffness between healthy and IBD-diseased samples, with a Young's Modulus of $10.2 \pm 3.7$ kPa and $4.9 \pm 0.3$ kPa, respectively. Dispersion analysis presents another parameter to distinguish tissue health. The high frequency components of the phase velocity dispersion curve indicate a variation between healthy and IBD colonic tissue. Our results show that OCE may be useful for detecting IBD noninvasively.
Collapse
|
23
|
|
24
|
Fovargue D, Nordsletten D, Sinkus R. Stiffness reconstruction methods for MR elastography. NMR IN BIOMEDICINE 2018; 31:e3935. [PMID: 29774974 PMCID: PMC6175248 DOI: 10.1002/nbm.3935] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 03/27/2018] [Accepted: 03/27/2018] [Indexed: 05/19/2023]
Abstract
Assessment of tissue stiffness is desirable for clinicians and researchers, as it is well established that pathophysiological mechanisms often alter the structural properties of tissue. Magnetic resonance elastography (MRE) provides an avenue for measuring tissue stiffness and has a long history of clinical application, including staging liver fibrosis and stratifying breast cancer malignancy. A vital component of MRE consists of the reconstruction algorithms used to derive stiffness from wave-motion images by solving inverse problems. A large range of reconstruction methods have been presented in the literature, with differing computational expense, required user input, underlying physical assumptions, and techniques for numerical evaluation. These differences, in turn, have led to varying accuracy, robustness, and ease of use. While most reconstruction techniques have been validated against in silico or in vitro phantoms, performance with real data is often more challenging, stressing the robustness and assumptions of these algorithms. This article reviews many current MRE reconstruction methods and discusses the aforementioned differences. The material assumptions underlying the methods are developed and various approaches for noise reduction, regularization, and numerical discretization are discussed. Reconstruction methods are categorized by inversion type, underlying assumptions, and their use in human and animal studies. Future directions, such as alternative material assumptions, are also discussed.
Collapse
Affiliation(s)
- Daniel Fovargue
- Imaging Sciences & Biomedical EngineeringKing's College LondonLondonUK
| | - David Nordsletten
- Imaging Sciences & Biomedical EngineeringKing's College LondonLondonUK
| | - Ralph Sinkus
- Imaging Sciences & Biomedical EngineeringKing's College LondonLondonUK
- Inserm U1148, LVTSUniversity Paris Diderot, University Paris 13Paris75018France
| |
Collapse
|
25
|
Riegler J, Labyed Y, Rosenzweig S, Javinal V, Castiglioni A, Dominguez CX, Long JE, Li Q, Sandoval W, Junttila MR, Turley SJ, Schartner J, Carano RAD. Tumor Elastography and Its Association with Collagen and the Tumor Microenvironment. Clin Cancer Res 2018; 24:4455-4467. [PMID: 29798909 DOI: 10.1158/1078-0432.ccr-17-3262] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/21/2018] [Accepted: 05/17/2018] [Indexed: 11/16/2022]
Abstract
Purpose: The tumor microenvironment presents with altered extracellular matrix (ECM) and stroma composition, which may affect treatment efficacy and contribute to tissue stiffness. Ultrasound (US) elastography can visualize and quantify tissue stiffness noninvasively. However, the contributions of ECM and stromal components to stiffness are poorly understood. We therefore set out to quantify ECM and stroma density and their relation to tumor stiffness.Experimental Design: A modified clinical ultrasound system was used to measure tumor stiffness and perfusion during tumor growth in preclinical tumor models. In vivo measurements were compared with collagen mass spectroscopy and automatic analysis of matrix and stromal markers derived from immunofluorescence images.Results: US elastography estimates of tumor stiffness were positively correlated with tumor volume in collagen and myofibroblast-rich tumors, while no correlations were found for tumors with low collagen and myofibroblast content. US elastography measurements were strongly correlated with ex vivo mechanical testing and mass spectroscopy-based measurements of total collagen and immature collagen crosslinks. Registration of ultrasound and confocal microscopy data showed strong correlations between blood vessel density and T-cell density in syngeneic tumors, while no correlations were found for genetic tumor models. In contrast to collagen density, which was positively correlated with stiffness, no significant correlations were observed for hyaluronic acid density. Finally, localized delivery of collagenase led to a significant reduction in tumor stiffness without changes in perfusion 24 hours after treatment.Conclusions: US elastography can be used as a potential biomarker to assess changes in the tumor microenvironment, particularly changes affecting the ECM. Clin Cancer Res; 24(18); 4455-67. ©2018 AACR.
Collapse
Affiliation(s)
- Johannes Riegler
- Department of Biomedical Imaging, Genentech Inc., South San Francisco, California
| | - Yassin Labyed
- Siemens Medical Solutions USA, Inc. Mountain View, California
| | | | - Vincent Javinal
- Department of In Vivo Pharmacology, Genentech, Inc, South San Francisco, California
| | | | - Claudia X Dominguez
- Department of Cancer Immunology, Genentech, Inc, South San Francisco, California
| | - Jason E Long
- Department of Translational Oncology, Genentech, Inc, South San Francisco, California
| | - Qingling Li
- Department of Microchemistry, and Proteomics and Lipidomics, Genentech, Inc, South San Francisco, California
| | - Wendy Sandoval
- Department of Microchemistry, and Proteomics and Lipidomics, Genentech, Inc, South San Francisco, California
| | - Melissa R Junttila
- Department of Translational Oncology, Genentech, Inc, South San Francisco, California
| | - Shannon J Turley
- Department of Cancer Immunology, Genentech, Inc, South San Francisco, California
| | - Jill Schartner
- Department of In Vivo Pharmacology, Genentech, Inc, South San Francisco, California
| | - Richard A D Carano
- Department of Biomedical Imaging, Genentech Inc., South San Francisco, California.
| |
Collapse
|
26
|
Zhang P, Chen Y, Liu J, Yang Y, Lv Q, Wang J, Zhang L, Xie M. Quantitative Evaluation of Combretastatin A4 Phosphate Early Efficacy in a Tumor Model with Dynamic Contrast-Enhanced Ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:840-852. [PMID: 29395676 DOI: 10.1016/j.ultrasmedbio.2017.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 11/23/2017] [Accepted: 12/03/2017] [Indexed: 06/07/2023]
Abstract
Combretastatin A4 phosphate (CA4P) is a vascular disrupting agent that rapidly shuts down blood supply to tumors. Early monitoring of tumor perfusion plays a crucial role in determining the optimal strategy to managing treatment and guiding future therapy. The aim of this study was to investigate the potential value of dynamic contrast-enhanced ultrasound (CEUS) in quantitative evaluation of tumor perfusion at an early stage in CA4P therapy. Central and peripheral perfusion of tumors was detected by CEUS pre-treatment (0 h) and 2, 12 and 48 h after CA4P injection. Two perfusion parameters, maximum intensity (IMAX) and time to peak (TTP), were calculated from the time-intensity curve. After CEUS, the efficacy of CA4P was immediately confirmed by immunofluorescence assay and hematoxylin and eosin, Hoechst 33342 and fluorescein isothiocyanate-lectin staining. In CEUS of the center region of tumors, IMAX gradually decreased from 0 to 12 h and regrew at 48 h (p < 0.01). TTP increased only at 2 h. In the peripheral regions, IMAX did not change obviously from 0 to 12 h (p > 0.05) and just increased at 48 h (p < 0.01). The TTP of peripheral regions had the same tendency to vary tendency as that of center regions. In addition, microvascular density (MVD), vascular perfusion and necrotic area of the tumor were quantitatively analyzed. A close correlation between IMAX and MVD was observed in the center areas of tumors (r = 0.72, p < 0.01), whereas the correlation between IMAX and MVD in peripheral areas was weak (r = 0.37, p < 0.01). However, IMAX was positively correlated with tumor perfusion in both center and peripheral areas of tumors (r = 0.82, p < 0.01, and r = 0.63, p < 0.01, respectively). Consequently, IMAX was a reliable indicator of tumor perfusion evaluation by CEUS. The use of CEUS to quantify tumor perfusion could a promising method for the early detection of tumor responses in anti-vascular treatment.
Collapse
Affiliation(s)
- Pingyu Zhang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yihan Chen
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - JinFeng Liu
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yali Yang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qing Lv
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jing Wang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Li Zhang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mingxing Xie
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
27
|
Pepin KM, McGee KP, Arani A, Lake DS, Glaser KJ, Manduca A, Parney IF, Ehman RL, Huston J. MR Elastography Analysis of Glioma Stiffness and IDH1-Mutation Status. AJNR Am J Neuroradiol 2017; 39:31-36. [PMID: 29074637 DOI: 10.3174/ajnr.a5415] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/13/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND PURPOSE Our aim was to noninvasively evaluate gliomas with MR elastography to characterize the relationship of tumor stiffness with tumor grade and mutations in the isocitrate dehydrogenase 1 (IDH1) gene. MATERIALS AND METHODS Tumor stiffness properties were prospectively quantified in 18 patients (mean age, 42 years; 6 women) with histologically proved gliomas using MR elastography from 2014 to 2016. Images were acquired on a 3T MR imaging unit with a vibration frequency of 60 Hz. Tumor stiffness was compared with unaffected contralateral white matter, across tumor grade, and by IDH1-mutation status. The performance of the use of tumor stiffness to predict tumor grade and IDH1 mutation was evaluated with the Wilcoxon rank sum, 1-way ANOVA, and Tukey-Kramer tests. RESULTS Gliomas were softer than healthy brain parenchyma, 2.2 kPa compared with 3.3 kPa (P < .001), with grade IV tumors softer than grade II. Tumors with an IDH1 mutation were significantly stiffer than those with wild type IDH1, 2.5 kPa versus 1.6 kPa, respectively (P = .007). CONCLUSIONS MR elastography demonstrated that not only were gliomas softer than normal brain but the degree of softening was directly correlated with tumor grade and IDH1-mutation status. Noninvasive determination of tumor grade and IDH1 mutation may result in improved stratification of patients for different treatment options and the evaluation of novel therapeutics. This work reports on the emerging field of "mechanogenomics": the identification of genetic features such as IDH1 mutation using intrinsic biomechanical information.
Collapse
Affiliation(s)
- K M Pepin
- From the Mayo Graduate School (K.M.P.)
| | - K P McGee
- Departments of Radiology (K.P.M., A.A., D.S.L., K.J.G., A.M., R.L.E., J.H.)
| | - A Arani
- Departments of Radiology (K.P.M., A.A., D.S.L., K.J.G., A.M., R.L.E., J.H.)
| | - D S Lake
- Departments of Radiology (K.P.M., A.A., D.S.L., K.J.G., A.M., R.L.E., J.H.)
| | - K J Glaser
- Departments of Radiology (K.P.M., A.A., D.S.L., K.J.G., A.M., R.L.E., J.H.)
| | - A Manduca
- Departments of Radiology (K.P.M., A.A., D.S.L., K.J.G., A.M., R.L.E., J.H.)
| | - I F Parney
- Neurosurgery (I.F.P.), Mayo Clinic College of Medicine, Rochester, Minnesota
| | - R L Ehman
- Departments of Radiology (K.P.M., A.A., D.S.L., K.J.G., A.M., R.L.E., J.H.)
| | - J Huston
- Departments of Radiology (K.P.M., A.A., D.S.L., K.J.G., A.M., R.L.E., J.H.)
| |
Collapse
|
28
|
Seguin J, Mignet N, Latorre Ossa H, Tanter M, Gennisson JL. Evaluation of Antivascular Combretastatin A4 P Efficacy Using Supersonic Shear Imaging Technique of Ectopic Colon Carcinoma CT26. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:2352-2361. [PMID: 28666550 DOI: 10.1016/j.ultrasmedbio.2017.05.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 05/05/2017] [Accepted: 05/05/2017] [Indexed: 06/07/2023]
Abstract
A recent ultrasound imaging technique-shear wave elastography-showed its ability to image and quantify the mechanical properties of biological tissues, such as prostate or liver tissues. In the present study this technique was used to evaluate the relationship among tumor growth, stiffness and reduction of treatment with combretastatin (CA4 P) in allografted colon tumor CT26 in mice. During 12 d, CT26 tumor growth (n = 52) was imaged by ultrasound, and shear modulus was quantified, showing a good correlation between tumor volume and stiffness (r = 0.59). The treatment was initiated at d 12 and monitored every d during 4 d. Following the treatment, the tumor volume had decreased, while the elasticity of the tumor volume remained steady throughout the treatment. After segmentation using the shear modulus map, a detailed analysis showed a decrease in the stiffness after treatment. This reduction in the mechanical properties was shown to correlate with tissue reorganization, particularly, fibrosis and necrosis, assessed by histology.
Collapse
Affiliation(s)
- Johanne Seguin
- Paris Descartes University, Faculty of Pharmacy, Chimie ParisTech, Sorbonne Paris Cité, Chemical and Biological Technologies for Health Laboratory, Paris, France
| | - Nathalie Mignet
- Paris Descartes University, Faculty of Pharmacy, Chimie ParisTech, Sorbonne Paris Cité, Chemical and Biological Technologies for Health Laboratory, Paris, France
| | - Heldmuth Latorre Ossa
- Institut Langevin - Ondes et Images, ESPCI Paris, PSL Research University, Paris, France
| | - Mickaël Tanter
- Institut Langevin - Ondes et Images, ESPCI Paris, PSL Research University, Paris, France
| | - Jean-Luc Gennisson
- Institut Langevin - Ondes et Images, ESPCI Paris, PSL Research University, Paris, France.
| |
Collapse
|
29
|
Dizeux A, Payen T, Le Guillou-Buffello D, Comperat E, Gennisson JL, Tanter M, Oelze M, Bridal SL. In Vivo Multiparametric Ultrasound Imaging of Structural and Functional Tumor Modifications during Therapy. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:2000-2012. [PMID: 28554540 DOI: 10.1016/j.ultrasmedbio.2017.03.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 03/22/2017] [Accepted: 03/27/2017] [Indexed: 05/26/2023]
Abstract
Longitudinal imaging techniques are needed that can meaningfully probe the tumor microenvironment and its spatial heterogeneity. Contrast-enhanced ultrasound, shear wave elastography and quantitative ultrasound are ultrasound-based techniques that provide information on the vascular function and micro-/macroscopic tissue structure. Modifications of the tumor microenvironment induced by cytotoxic and anti-angiogenic molecules in ectopic murine Lewis lung carcinoma tumors were monitored. The most heterogenous structures were found in tumors treated with anti-angiogenic drug that simultaneously accumulated the highest levels of necrosis and fibrosis. The anti-angiogenic group presented the highest number of correlations between parameters related to vascular function and those related to the micro-/macrostructure of the tumor microenvironment. Results suggest how patterns of multiparametric ultrasound modifications can be related to provide a more insightful marker of changes occurring within tumors during therapy.
Collapse
Affiliation(s)
- Alexandre Dizeux
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France.
| | - Thomas Payen
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France
| | | | - Eva Comperat
- Academic Department of Pathology, Pitie-Salpetriere Hospital, AP-HP, UPMC Univ Paris 06, Paris, France
| | - Jean-Luc Gennisson
- Institut Langevin-Ondes et Images, ESPCI ParisTech, PSL Research University, CNRS UMR7587, INSERM U979, Paris, France
| | - Mickael Tanter
- Institut Langevin-Ondes et Images, ESPCI ParisTech, PSL Research University, CNRS UMR7587, INSERM U979, Paris, France
| | - Michael Oelze
- Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering, University of Illinois, Urbana, Illinois, USA
| | - S Lori Bridal
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France
| |
Collapse
|
30
|
Elyas E, Papaevangelou E, Alles EJ, Erler JT, Cox TR, Robinson SP, Bamber JC. Correlation of Ultrasound Shear Wave Elastography with Pathological Analysis in a Xenografic Tumour Model. Sci Rep 2017; 7:165. [PMID: 28279018 PMCID: PMC5427848 DOI: 10.1038/s41598-017-00144-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/08/2017] [Indexed: 12/30/2022] Open
Abstract
The objective of this study was to evaluate the potential value of ultrasound (US) shear wave elastography (SWE) in assessing the relative change in elastic modulus in colorectal adenocarcinoma xenograft models in vivo and investigate any correlation with histological analysis. We sought to test whether non-invasive evaluation of tissue stiffness is indicative of pathological tumour changes and can be used to monitor therapeutic efficacy. US-SWE was performed in tumour xenografts in 15 NCr nude immunodeficient mice, which were treated with either the cytotoxic drug, Irinotecan, or saline as control. Ten tumours were imaged 48 hours post-treatment and five tumours were imaged for up to five times after treatment. All tumours were harvested for histological analysis and comparison with elasticity measurements. Elastic (Young's) modulus prior to treatment was correlated with tumour volume (r = 0.37, p = 0.008). Irinotecan administration caused significant delay in the tumour growth (p = 0.02) when compared to control, but no significant difference in elastic modulus was detected. Histological analysis revealed a significant correlation between tumour necrosis and elastic modulus (r = -0.73, p = 0.026). SWE measurement provided complimentary information to other imaging modalities and could indicate potential changes in the mechanical properties of tumours, which in turn could be related to the stages of tumour development.
Collapse
Affiliation(s)
- Eli Elyas
- CRUK and EPSRC Imaging Centre, Division of Radiotherapy and Imaging, Institute of Cancer Research, Sutton, Surrey, UK.
- Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Sutton, Surrey, UK.
- Department of Clinical and Experimental Medicine (IKE), Linköping University, Linköping, Sweden.
| | - Efthymia Papaevangelou
- CRUK and EPSRC Imaging Centre, Division of Radiotherapy and Imaging, Institute of Cancer Research, Sutton, Surrey, UK
- MRC Centre for Transplantation, Division of Transplantation Immunology and Mucosal Biology, Guys Hospital, King's College London, London, UK
| | - Erwin J Alles
- CRUK and EPSRC Imaging Centre, Division of Radiotherapy and Imaging, Institute of Cancer Research, Sutton, Surrey, UK
- Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Sutton, Surrey, UK
- MRC Centre for Transplantation, Division of Transplantation Immunology and Mucosal Biology, Guys Hospital, King's College London, London, UK
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Janine T Erler
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Thomas R Cox
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Simon P Robinson
- CRUK and EPSRC Imaging Centre, Division of Radiotherapy and Imaging, Institute of Cancer Research, Sutton, Surrey, UK
| | - Jeffrey C Bamber
- CRUK and EPSRC Imaging Centre, Division of Radiotherapy and Imaging, Institute of Cancer Research, Sutton, Surrey, UK
- Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Sutton, Surrey, UK
| |
Collapse
|
31
|
Nelissen JL, de Graaf L, Traa WA, Schreurs TJL, Moerman KM, Nederveen AJ, Sinkus R, Oomens CWJ, Nicolay K, Strijkers GJ. A MRI-Compatible Combined Mechanical Loading and MR Elastography Setup to Study Deformation-Induced Skeletal Muscle Damage in Rats. PLoS One 2017; 12:e0169864. [PMID: 28076414 PMCID: PMC5226723 DOI: 10.1371/journal.pone.0169864] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 12/23/2016] [Indexed: 02/01/2023] Open
Abstract
Deformation of skeletal muscle in the proximity of bony structures may lead to deep tissue injury category of pressure ulcers. Changes in mechanical properties have been proposed as a risk factor in the development of deep tissue injury and may be useful as a diagnostic tool for early detection. MRE allows for the estimation of mechanical properties of soft tissue through analysis of shear wave data. The shear waves originate from vibrations induced by an external actuator placed on the tissue surface. In this study a combined Magnetic Resonance (MR) compatible indentation and MR Elastography (MRE) setup is presented to study mechanical properties associated with deep tissue injury in rats. The proposed setup allows for MRE investigations combined with damage-inducing large strain indentation of the Tibialis Anterior muscle in the rat hind leg inside a small animal MR scanner. An alginate cast allowed proper fixation of the animal leg with anatomical perfect fit, provided boundary condition information for FEA and provided good susceptibility matching. MR Elastography data could be recorded for the Tibialis Anterior muscle prior to, during, and after indentation. A decaying shear wave with an average amplitude of approximately 2 μm propagated in the whole muscle. MRE elastograms representing local tissue shear storage modulus Gd showed significant increased mean values due to damage-inducing indentation (from 4.2 ± 0.1 kPa before to 5.1 ± 0.6 kPa after, p<0.05). The proposed setup enables controlled deformation under MRI-guidance, monitoring of the wound development by MRI, and quantification of tissue mechanical properties by MRE. We expect that improved knowledge of changes in soft tissue mechanical properties due to deep tissue injury, will provide new insights in the etiology of deep tissue injuries, skeletal muscle damage and other related muscle pathologies.
Collapse
Affiliation(s)
- Jules L. Nelissen
- Biomedical NMR, Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, The Netherlands
- * E-mail:
| | - Larry de Graaf
- Biomedical NMR, Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Willeke A. Traa
- Soft Tissue Biomechanics and Engineering, Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Tom J. L. Schreurs
- Biomedical NMR, Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, The Netherlands
| | - Kevin M. Moerman
- Center for Extreme Bionics, Media lab, MIT, Cambridge, MA, United States of America
| | - Aart J. Nederveen
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Ralph Sinkus
- Image Sciences & Biomedical Engineering, King’s College London, London, United Kingdom
| | - Cees W. J. Oomens
- Soft Tissue Biomechanics and Engineering, Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Klaas Nicolay
- Biomedical NMR, Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Gustav J. Strijkers
- Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
32
|
Boissenot T, Fattal E, Bordat A, Houvenagel S, Valette J, Chacun H, Gueutin C, Tsapis N. Paclitaxel-loaded PEGylated nanocapsules of perfluorooctyl bromide as theranostic agents. Eur J Pharm Biopharm 2016; 108:136-144. [PMID: 27594209 DOI: 10.1016/j.ejpb.2016.08.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/24/2016] [Accepted: 08/31/2016] [Indexed: 12/11/2022]
Abstract
We optimize the encapsulation of paclitaxel (PTX) into nanocapsules made of a shell of poly(lactide-co-glycolide)-polyethylene glycol and a core of perfluorooctyl bromide (PFOB) to serve as theranostic agents. Two main challenges were met: keeping the imaging moiety (PFOB) encapsulated while loading the polymer shell with a hydrophobic drug very prone to crystallization. Encapsulation is performed by a modified emulsion-evaporation method leading to 120nm diameter nanocapsules with a drug loading compatible with tumor treatment. The optimized formulation tested in vitro on CT-26 colon cancer cells yields a similar IC50 as the generic Taxol® formulation. In vivo, 19F-MRI shows that PTX encapsulation does not modify the ability of nanocapsules to accumulate passively in CT-26 tumors in mice by the enhanced permeation and retention (EPR) effect. This accumulation leads to a promising and statistically significant twofold reduction in tumor growth as compared with negative control and generic Taxol® group. Altogether these results advocate for an interesting potential of these paclitaxel-loaded theranostic agents.
Collapse
Affiliation(s)
- Tanguy Boissenot
- Institut Galien Paris-Sud, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Elias Fattal
- Institut Galien Paris-Sud, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Alexandre Bordat
- Institut Galien Paris-Sud, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Sophie Houvenagel
- Institut Galien Paris-Sud, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Julien Valette
- Commissariat à l'Energie Atomique (CEA), Institut d'Imagerie Biomédicale (I(2)BM), Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses, France
| | - Hélène Chacun
- Institut Galien Paris-Sud, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Claire Gueutin
- Institut Galien Paris-Sud, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Nicolas Tsapis
- Institut Galien Paris-Sud, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| |
Collapse
|
33
|
O'Shea T, Bamber J, Fontanarosa D, van der Meer S, Verhaegen F, Harris E. Review of ultrasound image guidance in external beam radiotherapy part II: intra-fraction motion management and novel applications. Phys Med Biol 2016; 61:R90-137. [PMID: 27002558 DOI: 10.1088/0031-9155/61/8/r90] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Imaging has become an essential tool in modern radiotherapy (RT), being used to plan dose delivery prior to treatment and verify target position before and during treatment. Ultrasound (US) imaging is cost-effective in providing excellent contrast at high resolution for depicting soft tissue targets apart from those shielded by the lungs or cranium. As a result, it is increasingly used in RT setup verification for the measurement of inter-fraction motion, the subject of Part I of this review (Fontanarosa et al 2015 Phys. Med. Biol. 60 R77-114). The combination of rapid imaging and zero ionising radiation dose makes US highly suitable for estimating intra-fraction motion. The current paper (Part II of the review) covers this topic. The basic technology for US motion estimation, and its current clinical application to the prostate, is described here, along with recent developments in robust motion-estimation algorithms, and three dimensional (3D) imaging. Together, these are likely to drive an increase in the number of future clinical studies and the range of cancer sites in which US motion management is applied. Also reviewed are selections of existing and proposed novel applications of US imaging to RT. These are driven by exciting developments in structural, functional and molecular US imaging and analytical techniques such as backscatter tissue analysis, elastography, photoacoustography, contrast-specific imaging, dynamic contrast analysis, microvascular and super-resolution imaging, and targeted microbubbles. Such techniques show promise for predicting and measuring the outcome of RT, quantifying normal tissue toxicity, improving tumour definition and defining a biological target volume that describes radiation sensitive regions of the tumour. US offers easy, low cost and efficient integration of these techniques into the RT workflow. US contrast technology also has potential to be used actively to assist RT by manipulating the tumour cell environment and by improving the delivery of radiosensitising agents. Finally, US imaging offers various ways to measure dose in 3D. If technical problems can be overcome, these hold potential for wide-dissemination of cost-effective pre-treatment dose verification and in vivo dose monitoring methods. It is concluded that US imaging could eventually contribute to all aspects of the RT workflow.
Collapse
Affiliation(s)
- Tuathan O'Shea
- Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Sutton, London SM2 5NG, UK
| | | | | | | | | | | |
Collapse
|
34
|
Jugé L, Pong AC, Bongers A, Sinkus R, Bilston LE, Cheng S. Changes in Rat Brain Tissue Microstructure and Stiffness during the Development of Experimental Obstructive Hydrocephalus. PLoS One 2016; 11:e0148652. [PMID: 26848844 PMCID: PMC4743852 DOI: 10.1371/journal.pone.0148652] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 01/21/2016] [Indexed: 11/18/2022] Open
Abstract
Understanding neural injury in hydrocephalus and how the brain changes during the course of the disease in-vivo remain unclear. This study describes brain deformation, microstructural and mechanical properties changes during obstructive hydrocephalus development in a rat model using multimodal magnetic resonance (MR) imaging. Hydrocephalus was induced in eight Sprague-Dawley rats (4 weeks old) by injecting a kaolin suspension into the cisterna magna. Six sham-injected rats were used as controls. MR imaging (9.4T, Bruker) was performed 1 day before, and at 3, 7 and 16 days post injection. T2-weighted MR images were collected to quantify brain deformation. MR elastography was used to measure brain stiffness, and diffusion tensor imaging (DTI) was conducted to observe brain tissue microstructure. Results showed that the enlargement of the ventricular system was associated with a decrease in the cortical gray matter thickness and caudate-putamen cross-sectional area (P < 0.001, for both), an alteration of the corpus callosum and periventricular white matter microstructure (CC+PVWM) and rearrangement of the cortical gray matter microstructure (P < 0.001, for both), while compression without gross microstructural alteration was evident in the caudate-putamen and ventral internal capsule (P < 0.001, for both). During hydrocephalus development, increased space between the white matter tracts was observed in the CC+PVWM (P < 0.001), while a decrease in space was observed for the ventral internal capsule (P < 0.001). For the cortical gray matter, an increase in extracellular tissue water was significantly associated with a decrease in tissue stiffness (P = 0.001). To conclude, this study characterizes the temporal changes in tissue microstructure, water content and stiffness in different brain regions and their association with ventricular enlargement. In summary, whilst diffusion changes were larger and statistically significant for majority of the brain regions studied, the changes in mechanical properties were modest. Moreover, the effect of ventricular enlargement is not limited to the CC+PVWM and ventral internal capsule, the extent of microstructural changes vary between brain regions, and there is regional and temporal variation in brain tissue stiffness during hydrocephalus development.
Collapse
Affiliation(s)
- Lauriane Jugé
- Neuroscience Research Australia, Margarete Ainsworth Building, Randwick, Australia
- University of New South Wales, School of Medical Sciences, Wallace Wurth Building, Kensington, Australia
| | - Alice C. Pong
- Neuroscience Research Australia, Margarete Ainsworth Building, Randwick, Australia
| | - Andre Bongers
- University of New South Wales, Biological Resources Imaging Laboratory, Lowy Cancer Research Centre, Kensington, Australia
| | - Ralph Sinkus
- King’s College London, Chair in Biomedical Engineering, Imaging Sciences & Biomedical Engineering Division Kings College, St. Thomas’ Hospital, London, United Kingdom
| | - Lynne E. Bilston
- Neuroscience Research Australia, Margarete Ainsworth Building, Randwick, Australia
- University of New South Wales, Prince of Wales Clinical School, Edmund Blacket Building, Kensington, Australia
| | - Shaokoon Cheng
- Neuroscience Research Australia, Margarete Ainsworth Building, Randwick, Australia
- Macquarie University, Department of Engineering, Faculty of Science, Macquarie University, Sydney, Australia
| |
Collapse
|
35
|
Jugé L, Petiet A, Lambert SA, Nicole P, Chatelin S, Vilgrain V, Van Beers BE, Bilston LE, Sinkus R. Microvasculature alters the dispersion properties of shear waves--a multi-frequency MR elastography study. NMR IN BIOMEDICINE 2015; 28:1763-1771. [PMID: 26768491 DOI: 10.1002/nbm.3438] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 09/25/2015] [Accepted: 10/01/2015] [Indexed: 06/05/2023]
Abstract
Magnetic Resonance Elastography (MRE) uses macroscopic shear wave propagation to quantify mechanical properties of soft tissues. Micro-obstacles are capable of affecting the macroscopic dispersion properties of shear waves. Since disease or therapy can change the mechanical integrity and organization of vascular structures, MRE should be able to sense these changes if blood vessels represent a source for wave scattering. To verify this, MRE was performed to quantify alteration of the shear wave speed cs due to the presence of vascular outgrowths using an aortic ring model. Eighteen fragments of rat aorta included in a Matrigel matrix (n=6 without outgrowths, n=6 with a radial outgrowth extent of ~600 µm and n=6 with ~850 µm) were imaged using a 7 Tesla MR scanner (Bruker, PharmaScan). High resolution anatomical images were acquired in addition to multi-frequency MRE (ν = 100, 115, 125, 135 and 150 Hz). Average cs was measured within a ring of ~900 µm thickness encompassing the aorta and were normalized to cs0 of the corresponding Matrigel. The frequency dependence was fit to the power law model cs ~ν(y). After scanning, optical microscopy was performed to visualize outgrowths. Results demonstrated that in presence of vascular outgrowths (1) normalized cs significantly increased for the three highest frequencies (Kruskal-Wallis test, P = 0.0002 at 125 Hz and P = 0.002 at 135 Hz and P = 0.003 at 150 Hz) but not for the two lowest (Kruskal-Wallis test, P = 0.63 at 100 Hz and P = 0.87 at 115 Hz), and (2) normalized cs followed a power law behavior not seen in absence of vascular outgrowths (ANOVA test, P < 0.0001). These results showed that vascular outgrowths acted as micro-obstacles altering the dispersion relationships of propagating shear waves and that MRE could provide valuable information about microvascular changes.
Collapse
Affiliation(s)
- Lauriane Jugé
- Neuroscience Research Australia, Randwick, Sidney, NSW, Australia
- School of Medical Sciences, University of New South Wales, Kensington, Sidney, NSW, Australia
| | - Anne Petiet
- Fédération de Recherche en Imagerie multimodalité (FRIM), U1148 INSERM, UFR de Médecine, University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Simon A Lambert
- BHF Centre of Excellence, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Pascal Nicole
- Laboratory from inflammation to cancer in digestive diseases, UMR1149 INSERM, University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Simon Chatelin
- Laboratory of Imaging Biomarkers, UMR1149 INSERM, University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Valerie Vilgrain
- Laboratory of Imaging Biomarkers, UMR1149 INSERM, University Paris Diderot, Sorbonne Paris Cité, Paris, France
- Department of Radiology, Beaujon University Hospital Paris Nord, Clichy, France
| | - Bernard E Van Beers
- Laboratory of Imaging Biomarkers, UMR1149 INSERM, University Paris Diderot, Sorbonne Paris Cité, Paris, France
- Department of Radiology, Beaujon University Hospital Paris Nord, Clichy, France
| | - Lynne E Bilston
- Neuroscience Research Australia, Randwick, Sidney, NSW, Australia
- Prince of Wales Clinical School, University of New South Wales, Kensington, Sydney, NSW, Australia
| | - Ralph Sinkus
- BHF Centre of Excellence, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| |
Collapse
|
36
|
Pepin KM, Ehman RL, McGee KP. Magnetic resonance elastography (MRE) in cancer: Technique, analysis, and applications. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2015; 90-91:32-48. [PMID: 26592944 PMCID: PMC4660259 DOI: 10.1016/j.pnmrs.2015.06.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 05/07/2023]
Abstract
Tissue mechanical properties are significantly altered with the development of cancer. Magnetic resonance elastography (MRE) is a noninvasive technique capable of quantifying tissue mechanical properties in vivo. This review describes the basic principles of MRE and introduces some of the many promising MRE methods that have been developed for the detection and characterization of cancer, evaluation of response to therapy, and investigation of the underlying mechanical mechanisms associated with malignancy.
Collapse
|
37
|
Jamin Y, Boult JK, Li J, Popov S, Garteiser P, Ulloa JL, Cummings C, Box G, Eccles SA, Jones C, Waterton JC, Bamber JC, Sinkus R, Robinson SP. Exploring the biomechanical properties of brain malignancies and their pathologic determinants in vivo with magnetic resonance elastography. Cancer Res 2015; 75:1216-1224. [PMID: 25672978 PMCID: PMC4384983 DOI: 10.1158/0008-5472.can-14-1997] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 01/15/2015] [Indexed: 12/29/2022]
Abstract
Malignant tumors are typically associated with altered rigidity relative to normal host tissue. Magnetic resonance elastography (MRE) enables the noninvasive quantitation of the mechanical properties of deep-seated tissue following application of an external vibrational mechanical stress to that tissue. In this preclinical study, we used MRE to quantify (kPa) the elasticity modulus Gd and viscosity modulus Gl of three intracranially implanted glioma and breast metastatic tumor models. In all these brain tumors, we found a notable softness characterized by lower elasticity and viscosity than normal brain parenchyma, enabling their detection on Gd and Gl parametric maps. The most circumscribed tumor (U-87 MG glioma) was the stiffest, whereas the most infiltrative tumor (MDA-MB-231 metastatic breast carcinoma) was the softest. Tumor cell density and microvessel density correlated significantly and positively with elasticity and viscosity, whereas there was no association with the extent of collagen deposition or myelin fiber entrapment. In conclusion, although malignant tumors tend to exhibit increased rigidity, intracranial tumors presented as remarkably softer than normal brain parenchyma. Our findings reinforce the case for MRE use in diagnosing and staging brain malignancies, based on the association of different tumor phenotypes with different mechanical properties.
Collapse
Affiliation(s)
- Yann Jamin
- Division of Radiotherapy & Imaging, The Institute of Cancer Research and Royal Marsden NHS Trust, London, United Kingdom
| | - Jessica K.R. Boult
- Division of Radiotherapy & Imaging, The Institute of Cancer Research and Royal Marsden NHS Trust, London, United Kingdom
| | - Jin Li
- Division of Radiotherapy & Imaging, The Institute of Cancer Research and Royal Marsden NHS Trust, London, United Kingdom
| | - Sergey Popov
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Philippe Garteiser
- INSERM U1149, CRI, Centre de Recherche sur l’Inflammation, Paris, France
| | | | - Craig Cummings
- Division of Radiotherapy & Imaging, The Institute of Cancer Research and Royal Marsden NHS Trust, London, United Kingdom
| | - Gary Box
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Suzanne A. Eccles
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Chris Jones
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - John C. Waterton
- Personalised Healthcare and Biomarkers, AstraZeneca, Alderley Park, Macclesfield, Cheshire, United Kingdom
| | - Jeffrey C. Bamber
- Division of Radiotherapy & Imaging, The Institute of Cancer Research and Royal Marsden NHS Trust, London, United Kingdom
| | - Ralph Sinkus
- BHF Centre of Excellence, Division of Imaging Sciences and Biomedical Engineering, King’s College London, King’s Health Partners, St. Thomas’ Hospital, London, United Kingdom
| | - Simon P. Robinson
- Division of Radiotherapy & Imaging, The Institute of Cancer Research and Royal Marsden NHS Trust, London, United Kingdom
| |
Collapse
|
38
|
Abstract
Newly developed or advanced methods of ultrasonography and MR imaging provide combined anatomical and quantitative functional information about diffuse and focal liver diseases. Ultrasound elastography has a central role for staging liver fibrosis and an increasing role in grading portal hypertension; dynamic contrast-enhanced ultrasonography may improve tumor characterization. In clinical practice, MR imaging examinations currently include diffusion-weighted and dynamic MR imaging, enhanced with extracellular or hepatobiliary contrast agents. Moreover, quantitative parameters obtained with diffusion-weighted MR imaging, dynamic contrast-enhanced MR imaging and MR elastography have the potential to characterize further diffuse and focal liver diseases, by adding information about tissue cellularity, perfusion, hepatocyte transport function and visco-elasticity. The multiparametric capability of ultrasonography and more markedly of MR imaging gives the opportunity for high diagnostic performance by combining imaging biomarkers. However, image acquisition and post-processing methods should be further standardized and validated in multicenter trials.
Collapse
|
39
|
Sahebjavaher RS, Nir G, Gagnon LO, Ischia J, Jones EC, Chang SD, Yung A, Honarvar M, Fazli L, Goldenberg SL, Rohling R, Sinkus R, Kozlowski P, Salcudean SE. MR elastography and diffusion-weighted imaging of ex vivo prostate cancer: quantitative comparison to histopathology. NMR IN BIOMEDICINE 2015; 28:89-100. [PMID: 25382459 PMCID: PMC5478374 DOI: 10.1002/nbm.3203] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 08/10/2014] [Accepted: 08/13/2014] [Indexed: 05/29/2023]
Abstract
The purpose of this work was (1) to develop a magnetic resonance elastography (MRE) system for imaging of the ex vivo human prostate and (2) to assess the diagnostic power of mono-frequency and multi-frequency MRE and diffusion weighted imaging (DWI) alone and combined as correlated with histopathology in a patient study. An electromagnetic driver was designed specifically for MRE studies in small-bore MR scanners. Ex vivo prostate specimens (post-fixation) of 14 patients who underwent radical prostatectomy were imaged with MRE at 7 T (nine cases had DWI). In six patients, the MRE examination was performed at three frequencies (600, 800, 1000 Hz) to extract the power-law exponent Gamma. The images were registered to wholemount pathology slides marked with the Gleason score. The areas under the receiver-operator-characteristic curves (AUC) were calculated. The methods were validated in a phantom study and it was demonstrated that (i) the driver does not interfere with the acquisition process and (ii) the driver can generate amplitudes greater than 100 µm for frequencies less than 1 kHz. In the quantitative study, cancerous tissue with Gleason score at least 3 + 3 was distinguished from normal tissue in the peripheral zone (PZ) with an average AUC of 0.75 (Gd ), 0.75 (Gl ), 0.70 (Gamma-Gd ), 0.68 (apparent diffusion coefficient, ADC), and 0.82 (Gd + Gl + ADC). The differentiation between PZ and central gland was modest for Gd (p < 0.07), Gl (p < 0.06) but not significant for Gamma (p < 0.2). A correlation of 0.4 kPa/h was found between the fixation time of the prostate specimen and the stiffness of the tissue, which could affect the diagnostic power results. DWI and MRE may provide complementary information; in fact MRE performed better than ADC in distinguishing normal from cancerous tissue in some cases. Multi-frequency (Gamma) analysis did not appear to improve the results. However, in light of the effect of tissue fixation, the clinical implication of our results may be inconclusive and more experiments are needed.
Collapse
Affiliation(s)
- Ramin S Sahebjavaher
- University of British Columbia, Electrical and Computer Engineering, Vancouver, BC, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Schneider MJ, Cyran CC, Nikolaou K, Hirner H, Reiser MF, Dietrich O. Monitoring early response to anti-angiogenic therapy: diffusion-weighted magnetic resonance imaging and volume measurements in colon carcinoma xenografts. PLoS One 2014; 9:e106970. [PMID: 25222284 PMCID: PMC4164617 DOI: 10.1371/journal.pone.0106970] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/01/2014] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES To evaluate the use of diffusion-weighted MRI (DW-MRI) and volume measurements for early monitoring of antiangiogenic therapy in an experimental tumor model. MATERIALS AND METHODS 23 athymic nude rats, bearing human colon carcinoma xenografts (HT-29) were examined before and after 6 days of treatment with regorafenib (n = 12) or placebo (n = 11) in a clinical 3-Tesla MRI. For DW-MRI, a single-shot EPI sequence with 9 b-values (10-800 s/mm2) was used. The apparent diffusion coefficient (ADC) was calculated voxelwise and its median value over a region of interest, covering the entire tumor, was defined as the tumor ADC. Tumor volume was determined using T2-weighted images. ADC and volume changes between first and second measurement were evaluated as classifiers by a receiver-operator-characteristic (ROC) analysis individually and combined using Fisher's linear discriminant analysis (FLDA). RESULTS All ADCs and volumes are stated as median±standard deviation. Tumor ADC increased significantly in the therapy group (0.76±0.09×10(-3) mm2/s to 0.90±0.12×10(-3) mm2/s; p<0.001), with significantly higher changes of tumor ADC than in the control group (0.10±0.11×10(-3) mm2/s vs. 0.03±0.09×10(-3) mm2/s; p = 0.027). Tumor volume increased significantly in both groups (therapy: 347.8±449.1 to 405.3±823.6 mm3; p = 0.034; control: 219.7±79.5 to 443.7±141.5 mm3; p<0.001), however, the therapy group showed significantly reduced tumor growth (33.30±47.30% vs. 96.43±31.66%; p<0.001). Area under the curve and accuracy of the ADC-based ROC analysis were 0.773 and 78.3%; and for the volume change 0.886 and 82.6%. The FLDA approach yielded an AUC of 0.985 and an accuracy of 95.7%. CONCLUSIONS Regorafenib therapy significantly increased tumor ADC after 6 days of treatment and also significantly reduced tumor growth. However, ROC analyses using each parameter individually revealed a lack of accuracy in discriminating between therapy and control group. The combination of both parameters using FLDA substantially improved diagnostic accuracy, thus highlighting the potential of multi-parameter MRI as an imaging biomarker for non-invasive early tumor therapy monitoring.
Collapse
Affiliation(s)
- Moritz Jörg Schneider
- Josef Lissner Laboratory for Biomedical Imaging, Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
- * E-mail:
| | - Clemens Christian Cyran
- Laboratory for Experimental Radiology, Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
| | - Konstantin Nikolaou
- Laboratory for Experimental Radiology, Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany
| | - Heidrun Hirner
- Laboratory for Experimental Radiology, Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
| | - Maximilian F. Reiser
- Josef Lissner Laboratory for Biomedical Imaging, Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
- Laboratory for Experimental Radiology, Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
| | - Olaf Dietrich
- Josef Lissner Laboratory for Biomedical Imaging, Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
| |
Collapse
|
41
|
Qin EC, Jugé L, Lambert SA, Paradis V, Sinkus R, Bilston LE. In vivo anisotropic mechanical properties of dystrophic skeletal muscles measured by anisotropic MR elastographic imaging: the mdx mouse model of muscular dystrophy. Radiology 2014; 273:726-35. [PMID: 25105354 DOI: 10.1148/radiol.14132661] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To evaluate the utility of mechanical anisotropy (shear storage modulus parallel to fiber/shear storage modulus perpendicular to fiber) measured by combined magnetic resonance (MR) elastography and diffusion-tensor imaging ( DTI diffusion-tensor imaging ) technique (anisotropic MR elastography) to distinguish between healthy and necrotic muscle with different degrees of muscle necrosis in the mdx mouse model of muscular dystrophy. MATERIALS AND METHODS The experimental protocol was approved by the regional animal ethics committee. Twenty-one mdx and 21 wild-type ( WT wild type ) mice were used in our study. Animals were divided into exercised and sedentary groups. Anisotropic MR elastography was used to obtain mechanical anisotropic shear moduli for the lateral gastrocnemius and plantaris muscles in a 7-T MR imager, from which the mechanical anisotropic ratio was calculated. The animals were imaged before and after 10 weeks of a horizontal treadmill running protocol. Spearman rank correlations were used to compare MR elastographic data with muscle necrotic area percentage from histologic analysis. Mechanical anisotropy in WT wild type and mdx mice muscle were compared by using t test and one-way analysis of variance, and receiver operating characteristic curves were constructed by using statistical software. RESULTS Anisotropic MR elastography was able to be used to distinguish between the muscles of mdx and WT wild type mice, with an area under the receiver operating characteristic curve of 0.8. Strong negative correlation (rs = -0.701; P < .001) between the mechanical anisotropic ratio and the percentage of muscle necrotic area was found. By comparing mice with no or mild (0%-5% mean necrotic area) and severe (>5% mean necrotic area) muscle necrosis, an area under the receiver operating characteristic curve of 0.964 was achieved. Diffusion parameters alone were unable to distinguish between the WT wild type and mdx mice at any time point. CONCLUSION The mechanical anisotropic ratio of the shear storage moduli measured by an anisotropic MR elastographic technique can distinguish between healthy muscle and dystrophic muscle.
Collapse
Affiliation(s)
- Eric C Qin
- From the Neuroscience Research Australia, Barker St, Randwick, 2031, Australia (E.C.Q., L.J., L.E.B.); University of New South Wales, Prince of Wales Clinical School, Randwick, Australia (E.C.Q., L.E.B.); Université Paris Diderot, Sorbonne Paris Cité, CRB3, UMR 773, Inserm, Clichy, France (S.A.L.); Department of Pathologic Anatomy, Hôpital Beaujon, Clichy, France (V.P.); and Department of Biomedical Engineering, King's College London, London, England (R.S.)
| | | | | | | | | | | |
Collapse
|
42
|
Li J, Jamin Y, Boult JKR, Cummings C, Waterton JC, Ulloa J, Sinkus R, Bamber JC, Robinson SP. Tumour biomechanical response to the vascular disrupting agent ZD6126 in vivo assessed by magnetic resonance elastography. Br J Cancer 2014; 110:1727-32. [PMID: 24569471 PMCID: PMC3974089 DOI: 10.1038/bjc.2014.76] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/05/2013] [Accepted: 01/21/2014] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Magnetic resonance elastography (MRE) is an emerging imaging technique that affords non-invasive quantitative assessment and visualization of tissue mechanical properties in vivo. METHODS In this study, MRE was used to quantify (kPa) the absolute value of the complex shear modulus |G*|, elasticity Gd and viscosity Gl of SW620 human colorectal cancer xenografts before and 24 h after treatment with either 200 mg kg(-1) of the vascular disrupting agent ZD6126 (N-acetylcolchinol-O-phosphate) or vehicle control, and the data were compared with changes in water diffusivity measured by diffusion-weighted magnetic resonance imaging. RESULTS A heterogeneous distribution of |G*|, Gd and Gl was observed pre-treatment with an intertumoral coefficient of variation of 13% for |G*|. There were no significant changes in the vehicle-treated cohort. In contrast, ZD6126 induced a significant decrease in the tumour-averaged |G*| (P<0.01), Gd (P<0.01) and Gl (P<0.05), and this was associated with histologically confirmed central necrosis. This reduction in tumour viscoelasticity occurred at a time when no significant change in tumour apparent diffusion coefficient (ADC) was observed. CONCLUSIONS These data demonstrate that MRE can provide early imaging biomarkers for treatment-induced tumour necrosis.
Collapse
Affiliation(s)
- J Li
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, 15 Cotswold Road, Belmont, Sutton, Surrey SM2 5NG, UK
| | - Y Jamin
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, 15 Cotswold Road, Belmont, Sutton, Surrey SM2 5NG, UK
| | - J K R Boult
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, 15 Cotswold Road, Belmont, Sutton, Surrey SM2 5NG, UK
| | - C Cummings
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, 15 Cotswold Road, Belmont, Sutton, Surrey SM2 5NG, UK
| | - J C Waterton
- Personalised Healthcare and Biomarkers, AstraZeneca, Alderley Park, Macclesfield, Cheshire SK10 4TG, UK
| | - J Ulloa
- Personalised Healthcare and Biomarkers, AstraZeneca, Alderley Park, Macclesfield, Cheshire SK10 4TG, UK
| | - R Sinkus
- BHF Centre of Excellence, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St Thomas' Hospital, London, SE1 7EH, UK
| | - J C Bamber
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, 15 Cotswold Road, Belmont, Sutton, Surrey SM2 5NG, UK
| | - S P Robinson
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, 15 Cotswold Road, Belmont, Sutton, Surrey SM2 5NG, UK
| |
Collapse
|
43
|
Comparison of shear-wave and strain ultrasound elastography in the differentiation of benign and malignant breast lesions. AJR Am J Roentgenol 2013; 201:W347-56. [PMID: 23883252 DOI: 10.2214/ajr.12.10416] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The purpose of this article is to compare the diagnostic performances of shearwave and strain elastography for the differentiation of benign and malignant breast lesions. MATERIALS AND METHODS B-mode ultrasound and shear-wave and strain elastography were performed in 150 breast lesions; 71 were malignant. BI-RADS final assessment, elasticity values in kilopascals, and elasticity scores on a 5-point scale were assessed before biopsy. The results were compared using the area under the receiver operating characteristic curve (AUC). RESULTS The AUC for shear-wave elastography was similar to that of strain elastography (0.928 vs 0.943). The combined use of B-mode ultrasound and either elastography technique improved diagnostic performance in the differentiation of benign and malignant breast lesions compared with the use of B-mode ultrasound alone (B-mode alone, AUC = 0.851; B-mode plus shear-wave elastography, AUC = 0.964; B-mode plus strain elastography, AUC = 0.965; p < 0.001). With the best cutoff points of 80 kPa on shear-wave elastography and a score between 3 and 4 on strain elastography, the sensitivity was higher in shear-wave elastography, and specificity was higher in strain elastography (95.8% vs 81.7%, p = 0.002; 93.7% vs 84.8%, p = 0.016). In cases of infiltrating ductal carcinoma, mean elasticity scores were lower in grade 3 than in grade 1 and 2 cancers (p = 0.017) with strain elastography causing false-negative findings. CONCLUSION The diagnostic performance of shear-wave and strain elastography was similar. Either elastography technique can improve overall diagnostic performance in the differentiation of benign and malignant lesions when combined with B-mode ultrasound. However, the sensitivity and specificity of shear-wave and strain elastography were different according to lesion histologic profile, tumor grade, and breast thickness.
Collapse
|
44
|
Evaluation of Nonradiative Clinical Imaging Techniques for the Longitudinal Assessment of Tumour Growth in Murine CT26 Colon Carcinoma. INTERNATIONAL JOURNAL OF MOLECULAR IMAGING 2013; 2013:983534. [PMID: 23936648 PMCID: PMC3713650 DOI: 10.1155/2013/983534] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 05/22/2013] [Indexed: 12/03/2022]
Abstract
Background and Objectives. To determine the most appropriate technique for tumour followup in experimental therapeutics, we compared ultrasound (US) and magnetic resonance imaging (MRI) to characterize ectopic and orthotopic colon carcinoma models. Methods. CT26 tumours were implanted subcutaneously (s.c.) in Balb/c mice for the ectopic model or into the caecum for the orthotopic model. Tumours were evaluated by histology, spectrofluorescence, MRI, and US. Results. Histology of CT26 tumour showed homogeneously dispersed cancer cells and blood vessels. The visualization of the vascular network using labelled albumin showed that CT26 tumours were highly vascularized and disorganized. MRI allowed high-resolution and accurate 3D tumour measurements and provided additional anatomical and functional information. Noninvasive US imaging allowed good delineation of tumours despite an hypoechogenic signal. Monitoring of tumour growth with US could be accomplished as early as 5 days after implantation with a shorter acquisition time (<5 min) compared to MRI. Conclusion. MRI and US afforded excellent noninvasive imaging techniques to accurately follow tumour growth of ectopic and orthotopic CT26 tumours. These two techniques can be appropriately used for tumour treatment followup, with a preference for US imaging, due to its short acquisition time and simplicity of use.
Collapse
|
45
|
Stiffness of tumours measured by shear-wave elastography correlated with subtypes of breast cancer. Eur Radiol 2013; 23:2450-8. [PMID: 23673574 DOI: 10.1007/s00330-013-2866-2] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/15/2013] [Accepted: 03/22/2013] [Indexed: 01/11/2023]
Abstract
OBJECTIVE To evaluate the correlation between stiffness values obtained by shear-wave elastography (SWE) and breast cancer subtypes. METHODS This was an institutional review board-approved retrospective study with a waiver of informed consent. The stiffness of 337 invasive breast cancers in 337 women was evaluated by SWE and mean stiffness values (kPa) and qualitative colour scores (1-5) of tumours were obtained. The results were analysed according to BI-RADS category, tumour size, grade and tumour subtype (triple-negative [TN], human epidermal growth factor receptor 2 [HER2]-positive, and oestrogen receptor [ER]-positive) using a multiple linear regression analysis. RESULTS The mean stiffness values and colour scores were: 146.8 kPa ± 57.0 and 4.1 ± 1.1; 165.8 kPa ± 48.5 and 4.6 ± 0.7 for TN tumours (n = 64), 160.3 kPa ± 56.2 and 4.3 ± 1.0 for HER2-positive tumours (n = 55) and 136.9 kPa ± 57.2 and 4.0 ± 1.1 for ER-positive tumours (n = 218; P < 0.0001). All three breast cancers classified as BI-RADS category 3 on B-mode ultrasound were TN subtype. A multiple linear regression analysis revealed that tumour size, histological grade and tumour subtype were independent factors that influenced the stiffness values. CONCLUSION High stiffness values correlated with aggressive subtypes of breast cancer. KEY POINTS • Shear-wave elastography is increasingly used to measure the stiffness of breast tumours. • Triple-negative and HER2-positive tumours showed greater stiffness than ER-positive tumours. • All breast cancers classified as BI-RADS 3 on B-mode ultrasound were triple-negative subtype. • Tumour size, histological grade and subtype were independent factors influencing SWE stiffness.
Collapse
|