1
|
Fu Q, Yang X, Wang M, Zhu K, Wang Y, Song J. Activatable Probes for Ratiometric Imaging of Endogenous Biomarkers In Vivo. ACS NANO 2024; 18:3916-3968. [PMID: 38258800 DOI: 10.1021/acsnano.3c10659] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Dynamic variations in the concentration and abnormal distribution of endogenous biomarkers are strongly associated with multiple physiological and pathological states. Therefore, it is crucial to design imaging systems capable of real-time detection of dynamic changes in biomarkers for the accurate diagnosis and effective treatment of diseases. Recently, ratiometric imaging has emerged as a widely used technique for sensing and imaging of biomarkers due to its advantage of circumventing the limitations inherent to conventional intensity-dependent signal readout methods while also providing built-in self-calibration for signal correction. Here, the recent progress of ratiometric probes and their applications in sensing and imaging of biomarkers are outlined. Ratiometric probes are classified according to their imaging mechanisms, and ratiometric photoacoustic imaging, ratiometric optical imaging including photoluminescence imaging and self-luminescence imaging, ratiometric magnetic resonance imaging, and dual-modal ratiometric imaging are discussed. The applications of ratiometric probes in the sensing and imaging of biomarkers such as pH, reactive oxygen species (ROS), reactive nitrogen species (RNS), glutathione (GSH), gas molecules, enzymes, metal ions, and hypoxia are discussed in detail. Additionally, this Review presents an overview of challenges faced in this field along with future research directions.
Collapse
Affiliation(s)
- Qinrui Fu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Xiao Yang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Mengzhen Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Kang Zhu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Jibin Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
2
|
Liu X, Wang F, Liu L, Li T, Zhong X, Lin H, Zhang Y, Xue W. Functionalized polydopamine nanospheres as in situ spray for photothermal image-guided tumor precise surgical resection. Biosens Bioelectron 2023; 222:114995. [PMID: 36516631 DOI: 10.1016/j.bios.2022.114995] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/18/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
Surgical resection is a critical procedure for treatment of solid tumor, which commonly suffers from postoperative local recurrence due to the possibility of positive surgical margin. Although the widely used clinical imaging techniques (CT, MRI, PET, etc.) show beneficial effects in providing a macroscopic view of preoperative tumor position, they are still failing to provide intraoperative real-time imaging navigation during the surgery and need oral or intravenous injection contrast agents with risk of adverse effects. In this work, we present a nano-spray assisted photothermal imaging system for in vitro cells discrimination as well as in vivo visualization of tumor position and border that guides real-time precise tumor resection during surgery (even for tiny tumor less than 3 mm). Herein, the nano-spray were prepared by RGD peptide functionalized polydopamine (PDA-RGD) nanospheres with excellent photothermal conversion efficiency (54.27%), stability and reversibility, which target ανβ3 integrin overexpressed tumor cells. Such PDA-RGD serve as nanothermometers that convert and amplify biological signal to intuitive thermal image signal, depicting the tumor margin in situ. In comparison to conventional imaging techniques, our approach through topical spraying together with portable infrared camera has the characteristics of low cost, convenient, no radiation hazard, real-time intraoperative imaging-guidance and avoiding the adverse effects risk of oral or intravenous contrast agent. This technology provides a new universal tool for potentially assisting surgeons' decision in real-time during surgery and aiding to improved outcome.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China; Center for Hybrid Nanostructure (CHyN), Department of Physics, University of Hamburg, Hamburg, 22761, Germany
| | - Fan Wang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Li Liu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Tiantian Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Xiangyu Zhong
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Hongsheng Lin
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
| | - Yi Zhang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China.
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China; MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
3
|
Waldner MJ, Neurath MF. Molecular Endoscopy for the Diagnosis and Therapeutic Monitoring of Colorectal Cancer. Front Oncol 2022; 12:835256. [PMID: 35280747 PMCID: PMC8913894 DOI: 10.3389/fonc.2022.835256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/26/2022] [Indexed: 11/23/2022] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer related death in the western world. Its successful treatment requires early detection and removal of precursor lesions as well as individualized treatment of advanced disease. During recent years, molecular imaging techniques have shown promising results to improve current clinical practice. For instance, molecular endoscopy resulted in higher detection rates of precursors in comparison to conventional endoscopy in preclinical and clinical studies. Molecular confocal endomicroscopy allowed a further classification of suspect lesions as well as the prediction and monitoring of the therapeutic response. In this review, we summarize recent achievements for molecular imaging of CRC in preclinical studies, initial clinical trials and the remaining challenges for future translation into clinical practice.
Collapse
Affiliation(s)
- Maximilian J Waldner
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
4
|
Ermann J. Pathogenesis of Axial Spondyloarthritis - Sources and Current State of Knowledge. Rheum Dis Clin North Am 2021; 46:193-206. [PMID: 32340695 DOI: 10.1016/j.rdc.2020.01.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Scientific breakthroughs have culminated in the development of the spondyloarthritis (SpA) concept as a family of rheumatic diseases, distinct from rheumatoid arthritis. The demonstration of inflammatory lesions in the sacroiliac joints and spine of patients with axial symptoms of SpA who lacked radiographic features of ankylosing spondylitis (AS) helped refine the SpA concept. Axial SpA includes patients with AS and patients with axial symptoms previously categorized as undifferentiated SpA. This review examines the sources of knowledge that inform axial SpA pathogenesis, highlighting current limitations, and a basic working model of axial SpA pathogenesis.
Collapse
Affiliation(s)
- Joerg Ermann
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, HBTM, Room 06002P, 60 Fenwood Road, Boston, MA 02115, USA.
| |
Collapse
|
5
|
Aminolroayaei F, Shahbazi‐Gahrouei D, Shahbazi‐Gahrouei S, Rasouli N. Recent nanotheranostics applications for cancer therapy and diagnosis: A review. IET Nanobiotechnol 2021; 15:247-256. [PMID: 34694670 PMCID: PMC8675832 DOI: 10.1049/nbt2.12021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/20/2020] [Accepted: 10/27/2020] [Indexed: 12/19/2022] Open
Abstract
Nanotheranostics has attracted much attention due to its widespread application in molecular imaging and cancer therapy. Molecular imaging using nanoparticles has attracted special attention in the diagnosis of cancer at early stages. With the progress made in nanotheranostics, studying drug release, accumulation in the target tissue, biodistribution, and treatment effectiveness are other important factors. However, according to the studies conducted in this regard, each nanoparticle has some advantages and limitations that should be examined and then used in clinical applications. The main goal of this review is to explore the recent advancements in nanotheranostics for cancer therapy and diagnosis. Then, it is attempted to present recent studies on nanotheranostics used as a contrast agent in various imaging modalities and a platform for cancer therapy.
Collapse
Affiliation(s)
- Fahimeh Aminolroayaei
- Department of Medical PhysicsSchool of MedicineIsfahan University of Medical SciencesIsfahanIran
| | | | | | - Naser Rasouli
- Department of Medical PhysicsSchool of MedicineIsfahan University of Medical SciencesIsfahanIran
| |
Collapse
|
6
|
Lai LY, Jiang Y, Su GP, Wu M, Lu XF, Fu SZ, Yang L, Shu J. Gadolinium-chelate functionalized magnetic CuFeSe 2 ternary nanocrystals for T1-T2 dual MRI and CT imaging in vitro and in vivo. MATERIALS RESEARCH EXPRESS 2021; 8:045001. [DOI: 10.1088/2053-1591/abf1a2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Abstract
CuFeSe2 nanomaterial with high thermal conversion efficiency, well superparamagnetism, effective x-ray attenuation ability, multifunctional groups and excellent biocompatibility is beneficial to the construction of multimodal imaging probes which can combine various imaging modes to provide a synergistic advantage over a single imaging mode. This study aimed to develop a novel multimodal nanocontrast agent CuFeSe2@diethylenetriaminepentaacetic acid (DTPA)-Gd to obtain imaging information with high specificity, high sensitivity and high contrast. The morphology and physical characteristics of CuFeSe2@DTPA-Gd were detected by transmission electron microscope, scanning electron microscope, x-ray single crystal diffraction, vibrating sample magnetometer and fourier transform infrared spectrometer. The toxicity of CuFeSe2@DTPA-Gd in vivo was evaluated by hematoxylin-eosin staining. The imaging capability of CuFeSe2@DTPA-Gd in vitro and in vivo was evaluated by magnetic resonance imaging (MRI) and computed tomography (CT). This study successfully prepared nanoparticles CuFeSe2@DTPA-Gd, and experimental results in this study demonstrated CuFeSe2@DTPA-Gd is expected to be a useful CT and MRI T1-weighted imaging/T2-weighted imaging three-modal contrast agent in clinic.
Collapse
|
7
|
Mondal SB, Achilefu S. Virtual and Augmented Reality Technologies in Molecular and Anatomical Imaging. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00066-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
8
|
Rivlin M, Navon G. Molecular imaging of tumors by chemical exchange saturation transfer MRI of glucose analogs. Quant Imaging Med Surg 2019; 9:1731-1746. [PMID: 31728315 DOI: 10.21037/qims.2019.09.12] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Early detection of the cancerous process would benefit greatly from imaging at the cellular and molecular level. Increased glucose demand has been recognized as one of the hallmarks of cancerous cells (the "Warburg effect"), hence glucose and its analogs are commonly used for cancer imaging. One example is FDG-PET technique, that led to the use of chemical exchange saturation transfer (CEST) MRI of glucose ("glucoCEST") for tumor imaging. This technique combines high-resolution MRI obtained by conventional imaging with simultaneous molecular information obtained from the exploitation of agents with exchangeable protons from amine, amide or hydroxyl residues with the water signal. In the case of glucoCEST, these agents are based on glucose or its analogs. Recently, preclinical glucoCEST studies demonstrated the ability to increase the sensitivity of MRI to the level of metabolic activity, enabling identification of tumor staging, biologic potential, treatment planning, therapy response and local recurrence, in addition to guiding target biopsy for clinically suspected cancer. However, natural glucose limits this method because of its rapid conversion to lactic acid, leading to reduced CEST effect and short signal duration. For that reason, a variety of glucose analogs have been tested as alternatives to the original glucoCEST. This review discusses the merits of these analogs, including new data on glucose analogs heretofore not reported in the literature. This summarized preclinical data may help strengthen the translation of CEST MRI of glucose analogs into the clinic, improving cancer imaging to enable early intervention without the need for invasive techniques. The data should also broaden our knowledge of fundamental biological processes.
Collapse
Affiliation(s)
- Michal Rivlin
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Gil Navon
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
9
|
He J, Li C, Ding L, Huang Y, Yin X, Zhang J, Zhang J, Yao C, Liang M, Pirraco RP, Chen J, Lu Q, Baldridge R, Zhang Y, Wu M, Reis RL, Wang Y. Tumor Targeting Strategies of Smart Fluorescent Nanoparticles and Their Applications in Cancer Diagnosis and Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902409. [PMID: 31369176 DOI: 10.1002/adma.201902409] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/30/2019] [Indexed: 06/10/2023]
Abstract
Advantages such as strong signal strength, resistance to photobleaching, tunable fluorescence emissions, high sensitivity, and biocompatibility are the driving forces for the application of fluorescent nanoparticles (FNPs) in cancer diagnosis and therapy. In addition, the large surface area and easy modification of FNPs provide a platform for the design of multifunctional nanoparticles (MFNPs) for tumor targeting, diagnosis, and treatment. In order to obtain better targeting and therapeutic effects, it is necessary to understand the properties and targeting mechanisms of FNPs, which are the foundation and play a key role in the targeting design of nanoparticles (NPs). Widely accepted and applied targeting mechanisms such as enhanced permeability and retention (EPR) effect, active targeting, and tumor microenvironment (TME) targeting are summarized here. Additionally, a freshly discovered targeting mechanism is introduced, termed cell membrane permeability targeting (CMPT), which improves the tumor-targeting rate from less than 5% of the EPR effect to more than 50%. A new design strategy is also summarized, which is promising for future clinical targeting NPs/nanomedicines design. The targeting mechanism and design strategy will inspire new insights and thoughts on targeting design and will speed up precision medicine and contribute to cancer therapy and early diagnosis.
Collapse
Affiliation(s)
- Jiuyang He
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Chenchen Li
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Lin Ding
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Department of Biological Chemistry, The University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yanan Huang
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Xuelian Yin
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Junfeng Zhang
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Jian Zhang
- Universal Medical Imaging Diagnostic Research Center, Shanghai, 200233, P. R. China
| | - Chenjie Yao
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, 02115, USA
| | - Minmin Liang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Rogério P Pirraco
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's PT Government Associate Lab, 4805, Braga/Guimarães, Portugal
| | - Jie Chen
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Quan Lu
- Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, 02115, USA
| | - Ryan Baldridge
- Department of Biological Chemistry, The University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yong Zhang
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Department of Biomedical Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Minghong Wu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's PT Government Associate Lab, 4805, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017, Barco, Guimarães, Portugal
| | - Yanli Wang
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, 02115, USA
| |
Collapse
|
10
|
FA-NBs-IR780: Novel multifunctional nanobubbles as molecule-targeted ultrasound contrast agents for accurate diagnosis and photothermal therapy of cancer. Cancer Lett 2019; 455:14-25. [DOI: 10.1016/j.canlet.2019.04.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/30/2019] [Accepted: 04/17/2019] [Indexed: 12/22/2022]
|
11
|
Boutagy NE, Feher A, Alkhalil I, Umoh N, Sinusas AJ. Molecular Imaging of the Heart. Compr Physiol 2019; 9:477-533. [PMID: 30873600 DOI: 10.1002/cphy.c180007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multimodality cardiovascular imaging is routinely used to assess cardiac function, structure, and physiological parameters to facilitate the diagnosis, characterization, and phenotyping of numerous cardiovascular diseases (CVD), as well as allows for risk stratification and guidance in medical therapy decision-making. Although useful, these imaging strategies are unable to assess the underlying cellular and molecular processes that modulate pathophysiological changes. Over the last decade, there have been great advancements in imaging instrumentation and technology that have been paralleled by breakthroughs in probe development and image analysis. These advancements have been merged with discoveries in cellular/molecular cardiovascular biology to burgeon the field of cardiovascular molecular imaging. Cardiovascular molecular imaging aims to noninvasively detect and characterize underlying disease processes to facilitate early diagnosis, improve prognostication, and guide targeted therapy across the continuum of CVD. The most-widely used approaches for preclinical and clinical molecular imaging include radiotracers that allow for high-sensitivity in vivo detection and quantification of molecular processes with single photon emission computed tomography and positron emission tomography. This review will describe multimodality molecular imaging instrumentation along with established and novel molecular imaging targets and probes. We will highlight how molecular imaging has provided valuable insights in determining the underlying fundamental biology of a wide variety of CVDs, including: myocardial infarction, cardiac arrhythmias, and nonischemic and ischemic heart failure with reduced and preserved ejection fraction. In addition, the potential of molecular imaging to assist in the characterization and risk stratification of systemic diseases, such as amyloidosis and sarcoidosis will be discussed. © 2019 American Physiological Society. Compr Physiol 9:477-533, 2019.
Collapse
Affiliation(s)
- Nabil E Boutagy
- Department of Medicine, Yale Translational Research Imaging Center, Yale University School of Medicine, Section of Cardiovascular Medicine, New Haven, Connecticut, USA
| | - Attila Feher
- Department of Medicine, Yale Translational Research Imaging Center, Yale University School of Medicine, Section of Cardiovascular Medicine, New Haven, Connecticut, USA
| | - Imran Alkhalil
- Department of Medicine, Yale Translational Research Imaging Center, Yale University School of Medicine, Section of Cardiovascular Medicine, New Haven, Connecticut, USA
| | - Nsini Umoh
- Department of Medicine, Yale Translational Research Imaging Center, Yale University School of Medicine, Section of Cardiovascular Medicine, New Haven, Connecticut, USA
| | - Albert J Sinusas
- Department of Medicine, Yale Translational Research Imaging Center, Yale University School of Medicine, Section of Cardiovascular Medicine, New Haven, Connecticut, USA.,Yale University School of Medicine, Department of Radiology and Biomedical Imaging, New Haven, Connecticut, USA
| |
Collapse
|
12
|
Deepak P, Fowler KJ, Fletcher JG, Bruining DH. Novel Imaging Approaches in Inflammatory Bowel Diseases. Inflamm Bowel Dis 2019; 25:248-260. [PMID: 30010908 DOI: 10.1093/ibd/izy239] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel diseases are chronic autoimmune conditions of the gastrointestinal tract, mainly grouped into ulcerative colitis or Crohn's disease. Traditionally, symptoms have been used to guide IBD management, but this approach is fatally flawed, as symptoms don't correlate with disease activity and often fail to predict disease complications, especially with Crohn's disease. Hence, there is increasing recognition of the need for treatment algorithms based on objective measures of bowel inflammation. In this review, we will focus on advancements in the endoscopic and radiological imaging armamentarium that allow detailed assessments from intestinal mucosa to mesentery.
Collapse
Affiliation(s)
- Parakkal Deepak
- Division of Gastroenterology, John T. Milliken Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Kathryn J Fowler
- Department of Radiology, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Joel G Fletcher
- Division of Abdominal Imaging, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - David H Bruining
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota
| |
Collapse
|
13
|
Wallyn J, Anton N, Mertz D, Begin-Colin S, Perton F, Serra CA, Franconi F, Lemaire L, Chiper M, Libouban H, Messaddeq N, Anton H, Vandamme TF. Magnetite- and Iodine-Containing Nanoemulsion as a Dual Modal Contrast Agent for X-ray/Magnetic Resonance Imaging. ACS APPLIED MATERIALS & INTERFACES 2019; 11:403-416. [PMID: 30541280 DOI: 10.1021/acsami.8b19517] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Noninvasive diagnostic by imaging combined with a contrast agent (CA) is by now the most used technique to get insight into human bodies. X-ray and magnetic resonance imaging (MRI) are widely used technologies providing complementary results. Nowadays, it seems clear that bimodal CAs could be an emerging approach to increase the patient compliance, accessing different imaging modalities with a single CA injection. Owing to versatile designs, targeting properties, and high payload capacity, nanocarriers are considered as a viable solution to reach this goal. In this study, we investigated efficient superparamagnetic iron oxide nanoparticle (SPION)-loaded iodinated nano-emulsions (NEs) as dual modal injectable CAs for X-ray imaging and MRI. The strength of this new CA lies not only in its dual modal contrasting properties and biocompatibility, but also in the simplicity of the nanoparticulate assembling: iodinated oily core was synthesized by the triiodo-benzene group grafting on vitamin E (41.7% of iodine) via esterification, and SPIONs were produced by thermal decomposition during 2, 4, and 6 h to generate SPIONs with different morphologies and magnetic properties. SPIONs with most anisotropic shape and characterized by the highest r2/ r1 ratio once encapsulated into iodinated NE were used for animal experimentation. The in vivo investigation showed an excellent contrast modification because of the presence of the selected NEs, for both imaging techniques explored, that is, MRI and X-ray imaging. This work provides the description and in vivo application of a simple and efficient nanoparticulate system capable of enhancing contrast for both preclinical imaging modalities, MRI, and computed tomography.
Collapse
Affiliation(s)
- Justine Wallyn
- Université de Strasbourg, CNRS, CAMB UMR 7199 , F-67000 Strasbourg , France
| | - Nicolas Anton
- Université de Strasbourg, CNRS, CAMB UMR 7199 , F-67000 Strasbourg , France
| | - Damien Mertz
- Université de Strasbourg, CNRS, IPCMS UMR 7504 , F-67000 Strasbourg , France
| | - Sylvie Begin-Colin
- Université de Strasbourg, CNRS, IPCMS UMR 7504 , F-67000 Strasbourg , France
| | - Francis Perton
- Université de Strasbourg, CNRS, IPCMS UMR 7504 , F-67000 Strasbourg , France
| | - Christophe A Serra
- Université de Strasbourg, CNRS, ICS UPR 22 , F-67000 Strasbourg , France
| | - Florence Franconi
- Université d'Angers, PRISM , F-49045 Angers , France
- Université d'Angers, MINT INSERM 1066/CNRS , F-49045 Angers , France
| | - Laurent Lemaire
- Université d'Angers, PRISM , F-49045 Angers , France
- Université d'Angers, MINT INSERM 1066/CNRS , F-49045 Angers , France
| | - Manuela Chiper
- Université de Strasbourg, CNRS, BSC UMR 7242 , F-67412 Strasbourg , France
| | - Hélène Libouban
- Université d'Angers, GEROM, SFR ICAT 42-08, IRIS-IBS , F-49045 Angers , France
| | - Nadia Messaddeq
- Université de Strasbourg, CNRS, INSERM, Collège de France, IGBMC UMR 7104/UMR_S 694 , F-67400 Strasbourg , France
| | - Halina Anton
- Université de Strasbourg, CNRS, LPB UMR 7213 , F-67400 Strasbourg , France
| | - Thierry F Vandamme
- Université de Strasbourg, CNRS, CAMB UMR 7199 , F-67000 Strasbourg , France
| |
Collapse
|
14
|
Tummers WS, Willmann JK, Bonsing BA, Vahrmeijer AL, Gambhir SS, Swijnenburg RJ. Advances in Diagnostic and Intraoperative Molecular Imaging of Pancreatic Cancer. Pancreas 2018; 47:675-689. [PMID: 29894417 PMCID: PMC6003672 DOI: 10.1097/mpa.0000000000001075] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis. To improve outcomes, there is a critical need for improved tools for detection, accurate staging, and resectability assessment. This could improve patient stratification for the most optimal primary treatment modality. Molecular imaging, used in combination with tumor-specific imaging agents, can improve established imaging methods for PDAC. These novel, tumor-specific imaging agents developed to target specific biomarkers have the potential to specifically differentiate between malignant and benign diseases, such as pancreatitis. When these agents are coupled to various types of labels, this type of molecular imaging can provide integrated diagnostic, noninvasive imaging of PDAC as well as image-guided pancreatic surgery. This review provides a detailed overview of the current clinical imaging applications, upcoming molecular imaging strategies for PDAC, and potential targets for imaging, with an emphasis on intraoperative imaging applications.
Collapse
Affiliation(s)
- Willemieke S. Tummers
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA. Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Juergen K. Willmann
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA. Juergen K. Willmann died January 8, 2018
| | - Bert A. Bonsing
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Sanjiv S. Gambhir
- Address correspondence to: R.J. Swijnenburg, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands (). Tel: +31 71 526 4005, Fax: +31 71 526 6750
| | - Rutger-Jan Swijnenburg
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| |
Collapse
|
15
|
Lai WF, Rogach AL, Wong WT. Chemistry and engineering of cyclodextrins for molecular imaging. Chem Soc Rev 2018; 46:6379-6419. [PMID: 28930330 DOI: 10.1039/c7cs00040e] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyclodextrins (CDs) are naturally occurring cyclic oligosaccharides bearing a basket-shaped topology with an "inner-outer" amphiphilic character. The abundance of hydroxyl groups enables CDs to be functionalized with multiple targeting ligands and imaging elements. The imaging time, and the payload of different imaging elements, can be tuned by taking advantage of the commercial availability of CDs with different sizes of the cavity. This review aims to offer an outlook of the chemistry and engineering of CDs for the development of molecular probes. Complexation thermodynamics of CDs, and the corresponding implications for probe design, are also presented with examples demonstrating the structural and physiochemical roles played by CDs in the full ambit of molecular imaging. We hope that this review not only offers a synopsis of the current development of CD-based molecular probes, but can also facilitate translation of the incremental advancements from the laboratory to real biomedical applications by illuminating opportunities and challenges for future research.
Collapse
Affiliation(s)
- Wing-Fu Lai
- School of Pharmaceutical Sciences, Health Science Centre, Shenzhen University, Shenzhen, China.
| | | | | |
Collapse
|
16
|
Anderson CJ, Lewis JS. Current status and future challenges for molecular imaging. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2017; 375:rsta.2017.0023. [PMID: 29038378 DOI: 10.1098/rsta.2017.0023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/06/2017] [Indexed: 06/07/2023]
Abstract
Molecular imaging (MI), used in its wider sense of biology at the molecular level, is a field that lies at the intersection of molecular biology and traditional medical imaging. As advances in medicine have exponentially expanded over the last few decades, so has our need to better understand the fundamental behaviour of living organisms in a non-invasive and timely manner. This commentary draws from topics the authors addressed in their presentations at the 2017 Royal Society Meeting 'Challenges for chemistry in molecular imaging', as well as a discussion of where MI is today and where it is heading in the future.This article is part of the themed issue 'Challenges for chemistry in molecular imaging'.
Collapse
Affiliation(s)
- Carolyn J Anderson
- Departments of Medicine, Radiology, Bioengineering, and Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Jason S Lewis
- Department of Radiology and the Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
17
|
Wang H, Felt SA, Guracar I, Taviani V, Zhou J, Sigrist RMS, Zhang H, Liau J, Vilches-Moure JG, Tian L, Saenz Y, Bettinger T, Hargreaves BA, Lutz AM, Willmann JK. Anatomical Road Mapping Using CT and MR Enterography for Ultrasound Molecular Imaging of Small Bowel Inflammation in Swine. Eur Radiol 2017; 28:2068-2076. [PMID: 29170798 DOI: 10.1007/s00330-017-5148-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/27/2017] [Accepted: 10/18/2017] [Indexed: 10/18/2022]
Abstract
OBJECTIVES To evaluate the feasibility and time saving of fusing CT and MR enterography with ultrasound for ultrasound molecular imaging (USMI) of inflammation in an acute small bowel inflammation of swine. METHODS Nine swine with ileitis were scanned with either CT (n = 3) or MR (n = 6) enterography. Imaging times to load CT/MR images onto a clinical ultrasound machine, fuse them to ultrasound with an anatomical landmark-based approach, and identify ileitis were compared to the imaging times without anatomical road mapping. Inflammation was then assessed by USMI using dual selectin-targeted (MBSelectin) and control (MBControl) contrast agents in diseased and healthy control bowel segments, followed by ex vivo histology. RESULTS Cross-sectional image fusion with ultrasound was feasible with an alignment error of 13.9 ± 9.7 mm. Anatomical road mapping significantly reduced (P < 0.001) scanning times by 40%. Localising ileitis was achieved within 1.0 min. Subsequently performed USMI demonstrated significantly (P < 0.001) higher imaging signal using MBSelectin compared to MBControl and histology confirmed a significantly higher inflammation score (P = 0.006) and P- and E-selectin expression (P ≤ 0.02) in inflamed vs. healthy bowel. CONCLUSIONS Fusion of CT and MR enterography data sets with ultrasound in real time is feasible and allows rapid anatomical localisation of ileitis for subsequent quantification of inflammation using USMI. KEY POINTS • Real-time fusion of CT/MRI with ultrasound to localise ileitis is feasible. • Anatomical road mapping using CT/MRI significantly decreases the scanning time for USMI. • USMI allows quantification of inflammation in swine, verified with ex vivo histology.
Collapse
Affiliation(s)
- Huaijun Wang
- Department of Radiology, Stanford University, School of Medicine, 300 Pasteur Drive, Room H1307, Stanford, CA, 94305-5621, USA
| | - Stephen A Felt
- Department of Comparative Medicine, Stanford University, Stanford, CA, USA
| | - Ismayil Guracar
- Siemens Healthcare, Ultrasound Business Unit, Mountain View, CA, USA
| | - Valentina Taviani
- Department of Radiology, Stanford University, School of Medicine, 300 Pasteur Drive, Room H1307, Stanford, CA, 94305-5621, USA
| | - Jianhua Zhou
- Department of Radiology, Stanford University, School of Medicine, 300 Pasteur Drive, Room H1307, Stanford, CA, 94305-5621, USA
| | - Rosa Maria Silveira Sigrist
- Department of Radiology, Stanford University, School of Medicine, 300 Pasteur Drive, Room H1307, Stanford, CA, 94305-5621, USA
| | - Huiping Zhang
- Department of Radiology, Stanford University, School of Medicine, 300 Pasteur Drive, Room H1307, Stanford, CA, 94305-5621, USA
| | - Joy Liau
- Department of Radiology, Stanford University, School of Medicine, 300 Pasteur Drive, Room H1307, Stanford, CA, 94305-5621, USA
| | | | - Lu Tian
- Department of Health, Research & Policy, Stanford University, Stanford, CA, USA
| | - Yamil Saenz
- Department of Comparative Medicine, Stanford University, Stanford, CA, USA
| | | | - Brian A Hargreaves
- Department of Radiology, Stanford University, School of Medicine, 300 Pasteur Drive, Room H1307, Stanford, CA, 94305-5621, USA
| | - Amelie M Lutz
- Department of Radiology, Stanford University, School of Medicine, 300 Pasteur Drive, Room H1307, Stanford, CA, 94305-5621, USA
| | - Jürgen K Willmann
- Department of Radiology, Stanford University, School of Medicine, 300 Pasteur Drive, Room H1307, Stanford, CA, 94305-5621, USA.
| |
Collapse
|
18
|
Volz KR, Evans KD, Kanner CD, Buford JA, Freimer M, Sommerich CM, Basso DM. Molecular Ultrasound Imaging for the Detection of Neural Inflammation: A Longitudinal Dosing Pilot Study. JOURNAL OF DIAGNOSTIC MEDICAL SONOGRAPHY 2017. [DOI: 10.1177/8756479317736250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Molecular ultrasound imaging provides the ability to detect physiologic processes noninvasively by targeting a variety of biomarkers in vivo. The current study was performed by exploiting an inflammatory biomarker, P-selectin, known to be present following spinal cord injury. Using a murine model (n = 6), molecular ultrasound imaging was performed using contrast microbubbles modified to target and adhere to P-selectin, prior to spinal cord injury (0D), acute stage postinjury (7D), and chronic stage (42D). Additionally, two imaging sessions were performed on each subject at specific time points, using doses of 30 μL and 100 μL. Upon analysis, targeted contrast analysis parameters were appreciably increased during the 7D scan compared with the 42D scan, without statistical significance. When examining the dose levels, the 30-μL dose demonstrated greater values than the 100-μL dose but lacked statistical significance. These findings provide additional preclinical evidence for the use of molecular ultrasound imaging for the possible detection of inflammation.
Collapse
Affiliation(s)
- Kevin R. Volz
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Kevin D. Evans
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | | | - John A. Buford
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Miriam Freimer
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | | | - D. Michele Basso
- College of Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
19
|
Abstract
PURPOSE The accurate detection of lymph node metastases in prostate cancer patients is important to direct treatment decisions. Our goal was to develop an intraoperative imaging approach to distinguish normal from metastasized lymph nodes. We aimed at developing and testing gold-silica surface-enhanced resonance Raman spectroscopy (SERRS) nanoparticles that demonstrate high uptake within normal lymphatic tissue and negligible uptake in areas of metastatic replacement. PROCEDURES We evaluated the ability of SERRS nanoparticles to delineate lymph node metastases in an orthotopic prostate cancer mouse model using PC-3 cells transduced with mCherry fluorescent protein. Tumor-bearing mice (n = 6) and non-tumor-bearing control animals (n = 4) were injected intravenously with 30 fmol/g SERRS nanoparticles. After 16-18 h, the retroperitoneal lymph nodes were scanned in situ and ex vivo with a Raman imaging system and a handheld Raman scanner and data corroborated with fluorescence imaging for mCherry protein expression and histology. RESULTS The SERRS nanoparticles demonstrated avid homing to normal lymph nodes, but not to metastasized lymph nodes. In cases where lymph nodes were partially infiltrated by tumor cells, the SERRS signal correctly identified, with sub-millimeter precision, healthy from metastasized components. CONCLUSIONS This study serves as a first proof-of-principle that SERRS nanoparticles enable high precision and rapid intraoperative discrimination between normal and metastasized lymph nodes.
Collapse
|
20
|
Volz KR, Evans KD, Kanner CD, Buford JA, Freimer M, Sommerich CM. Molecular Ultrasound Imaging of the Spinal Cord for the Detection of Acute Inflammation. JOURNAL OF DIAGNOSTIC MEDICAL SONOGRAPHY 2017. [DOI: 10.1177/8756479317729671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Molecular ultrasound imaging provides the ability to detect physiologic processes non-invasively by targeting a wide variety of biological markers in vivo. The current study investigates the novel application of molecular ultrasound imaging for the detection of neural inflammation. Using a murine model with acutely injured spinal cords (n=31), subjects were divided into four groups, each being administered ultrasound contrast microbubbles bearing antibodies against various known inflammatory molecules (P-selectin, vascular cell adhesion protein 1 [VCAM-1], intercellular adhesion molecule 1 [ICAM-1], and isotype control) during molecular ultrasound imaging. Upon administration of the targeted contrast agent, ultrasound imaging of the injured spinal cord was performed at 40MHz for seven minutes, followed by a bursting pulse. We observed significantly enhanced signals from contrast targeted to P-selectin and VCAM-1, using a variety of outcome measures. These findings provide preclinical evidence that molecular ultrasound imaging could be a useful tool in the detection of neural inflammation.
Collapse
Affiliation(s)
- Kevin R. Volz
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Kevin D. Evans
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | | | - John A. Buford
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Miriam Freimer
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | | |
Collapse
|
21
|
Chang EH, Chong WK, Kasoji SK, Fielding JR, Altun E, Mullin LB, Kim JI, Fine JP, Dayton PA, Rathmell WK. Diagnostic accuracy of contrast-enhanced ultrasound for characterization of kidney lesions in patients with and without chronic kidney disease. BMC Nephrol 2017; 18:266. [PMID: 28793871 PMCID: PMC5551034 DOI: 10.1186/s12882-017-0681-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/28/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Patients with chronic kidney disease are at increased risk of cystic kidney disease that requires imaging monitoring in many cases. However, these same patients often have contraindications to contrast-enhanced computed tomography and magnetic resonance imaging. This study evaluates the accuracy of contrast-enhanced ultrasound (CEUS), which is safe for patients with chronic kidney disease, for the characterization of kidney lesions in patients with and without chronic kidney disease. METHODS We performed CEUS on 44 patients, both with and without chronic kidney disease, with indeterminate or suspicious kidney lesions (both cystic and solid). Two masked radiologists categorized lesions using CEUS images according to contrast-enhanced ultrasound adapted criteria. CEUS designation was compared to histology or follow-up imaging in cases without available tissue in all patients and the subset with chronic kidney disease to determine sensitivity, specificity and overall accuracy. RESULTS Across all patients, CEUS had a sensitivity of 96% (95% CI: 84%, 99%) and specificity of 50% (95% CI: 32%, 68%) for detecting malignancy. Among patients with chronic kidney disease, CEUS sensitivity was 90% (95% CI: 56%, 98%), and specificity was 55% (95% CI: 36%, 73%). CONCLUSIONS CEUS has high sensitivity for identifying malignancy of kidney lesions. However, because specificity is low, modifications to the classification scheme for contrast-enhanced ultrasound could be considered as a way to improve contrast-enhanced ultrasound specificity and thus overall performance. Due to its sensitivity, among patients with chronic kidney disease or other contrast contraindications, CEUS has potential as an imaging test to rule out malignancy. TRIAL REGISTRATION This trial was registered in clinicaltrials.gov, NCT01751529 .
Collapse
Affiliation(s)
- Emily Hueywen Chang
- University of North Carolina, 7024 Burnett Womack, CB 7155, Chapel Hill, NC, 27599, USA.
| | - Wui Kheong Chong
- Diagnostic Radiology, Abdominal Imaging Section, The University of Texas MD Anderson Cancer Center, Unit 1473 FCT15.5092, 1400 Pressler Street, Houston, TX, 77030, USA.,Department of Radiology, University of North Carolina at Chapel Hill, CB 7510, Chapel Hill, NC, 27599, USA
| | - Sandeep Kumar Kasoji
- Joint Biomedical Engineering Department, University of North Carolina at Chapel Hill/NCSU, CB 7575, Chapel Hill, NC, 27599, USA
| | - Julia Rose Fielding
- Present address: University of Texas Southwestern at Dallas, 5323 Harry Hines Boulevard, Dallas, TX, 75390-8827, USA.,Department of Radiology, University of North Carolina at Chapel Hill, CB 7510, Chapel Hill, NC, 27599, USA
| | - Ersan Altun
- Department of Radiology, University of North Carolina at Chapel Hill, CB 7510, Chapel Hill, NC, 27599, USA
| | - Lee B Mullin
- Joint Biomedical Engineering Department, University of North Carolina at Chapel Hill/NCSU, CB 7575, Chapel Hill, NC, 27599, USA
| | - Jung In Kim
- Department of Biostatistics, University of North Carolina, 3101 McGavran-Greenberg Hall, CB #7420, Chapel Hill, NC, 27599-7420, USA
| | - Jason Peter Fine
- Department of Biostatistics, University of North Carolina, 3101 McGavran-Greenberg Hall, CB #7420, Chapel Hill, NC, 27599-7420, USA
| | - Paul Alexander Dayton
- Joint Biomedical Engineering Department, University of North Carolina at Chapel Hill/NCSU, CB 7575, Chapel Hill, NC, 27599, USA
| | - Wendy Kimryn Rathmell
- Present address: Department of Medicine, Division of Hematology and Oncology, Vanderbilt University, 777 Preston Research Building, Nashville, TN, 37232, USA.,University of North Carolina, Lineberger Cancer Center, NC 27599, Chapel Hill, USA
| |
Collapse
|
22
|
Mullick Chowdhury S, Lee T, Willmann JK. Ultrasound-guided drug delivery in cancer. Ultrasonography 2017; 36:171-184. [PMID: 28607323 PMCID: PMC5494871 DOI: 10.14366/usg.17021] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/23/2017] [Accepted: 05/01/2017] [Indexed: 12/14/2022] Open
Abstract
Recent advancements in ultrasound and microbubble (USMB) mediated drug delivery technology has shown that this approach can improve spatially confined delivery of drugs and genes to target tissues while reducing systemic dose and toxicity. The mechanism behind enhanced delivery of therapeutics is sonoporation, the formation of openings in the vasculature, induced by ultrasound-triggered oscillations and destruction of microbubbles. In this review, progress and challenges of USMB mediated drug delivery are summarized, with special focus on cancer therapy.
Collapse
Affiliation(s)
| | - Taehwa Lee
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jürgen K. Willmann
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
23
|
Abstract
The unique spectral signatures and biologically inert compositions of surface-enhanced resonance Raman scattering (SERRS) nanoparticles make them promising contrast agents for in vivo cancer imaging. Our SERRS nanoparticles consist of a 60-nm gold nanoparticle core that is encapsulated in a 15-nm-thick silica shell wherein the resonant Raman reporter is embedded. Subtle aspects of their preparation can shift their limit of detection by orders of magnitude. In this protocol, we present the optimized, step-by-step procedure for generating reproducible SERRS nanoparticles with femtomolar (10-15 M) limits of detection. We provide ways of characterizing the optical properties of SERRS nanoparticles using UV/VIS and Raman spectroscopy, and their physicochemical properties using transmission electron microscopy and nanoparticle tracking analysis. We introduce several applications of these nanoprobes for biomedical research, with a focus on intraoperative cancer imaging via Raman imaging. A detailed account is provided for successful i.v. administration of SERRS nanoparticles such that delineation of cancerous lesions can be achieved in vivo and ex vivo on resected tissues without the need for specific biomarker targeting. This straightforward, yet comprehensive, protocol-from initial de novo gold nanoparticle synthesis to SERRS nanoparticle contrast-enhanced preclinical Raman imaging in animal models-takes ∼96 h.
Collapse
|
24
|
Abstract
The fields of biomedical nanotechnology and theranostics have enjoyed exponential growth in recent years. The "Molecular Imaging in Nanotechnology and Theranostics" (MINT) Interest Group of the World Molecular Imaging Society (WMIS) was created in order to provide a more organized and focused forum on these topics within the WMIS and at the World Molecular Imaging Conference (WMIC). The interest group was founded in 2015 and was officially inaugurated during the 2016 WMIC. The overarching goal of MINT is to bring together the many scientists who work on molecular imaging approaches using nanotechnology and those that work on theranostic agents. MINT therefore represents scientists, labs, and institutes that are very diverse in their scientific backgrounds and areas of expertise, reflecting the wide array of materials and approaches that drive these fields. In this short review, we attempt to provide a condensed overview over some of the key areas covered by MINT. Given the breadth of the fields and the given space constraints, we have limited the coverage to the realm of nanoconstructs, although theranostics is certainly not limited to this domain. We will also focus only on the most recent developments of the last 3-5 years, in order to provide the reader with an intuition of what is "in the pipeline" and has potential for clinical translation in the near future.
Collapse
Affiliation(s)
- Chrysafis Andreou
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Suchetan Pal
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Lara Rotter
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Jiang Yang
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Moritz F Kircher
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Center for Molecular Imaging and Nanotechnology (CMINT), Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Department of Radiology, Weill Cornell Medical College, New York, NY, 10065, USA.
| |
Collapse
|
25
|
Serkova NJ. Nanoparticle-Based Magnetic Resonance Imaging on Tumor-Associated Macrophages and Inflammation. Front Immunol 2017; 8:590. [PMID: 28588582 PMCID: PMC5439008 DOI: 10.3389/fimmu.2017.00590] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 05/04/2017] [Indexed: 01/22/2023] Open
Abstract
The inflammatory response, mediated by tissue-resident or newly recruited macrophages, is an underlying pathophysiological condition for many diseases, including diabetes, obesity, neurodegeneration, atherosclerosis, and cancer. Paradoxically, inflammation is a double-edged sword in oncology. Macrophages are, generally speaking, the major drivers of inflammatory insult. For many solid tumors, high density of cells expressing macrophage-associated markers have generally been found in association with a poor clinical outcome, characterized by inflamed microenvironment, a high level of dissemination and resistance to conventional chemotherapies. On another hand, radiation treatment also triggers an inflammatory response in tumors (often referred to as pseudoprogression), which can be associated with a positive treatment response. As such, non-invasive imaging of cancer inflammation and tumor-associated macrophages (TAMs) provides a revolutionary diagnostic tool and monitoring strategy for anti-inflammatory, immuno- and radiotherapies. Recently, quantitative T2-weighted magnetic resonance imaging (qT2wMRI), using injection of superparamagnetic iron oxide nanoparticles (SPIONs), has been reported for the assessment of TAMs non-invasively in animal models and in human trials. The SPIONs are magnetic resonance imaging (MRI) contrast agents that significantly decrease T2 MR relaxation times in inflamed tissues due to the macrophage-specific uptake and retention. It has been shown that macrophage-populated tumors and metastases will accumulate iron oxide nanoparticles and decrease T2-relaxation time that will result in a negative (dark) contrast in qT2wMRI. Non-invasive imaging of TAMs using SPION holds a great promise for staging the inflammatory microenvironment of primary and metastatic tumors as well monitoring the treatment response of cancer patients treated with radiation and immunotherapy.
Collapse
Affiliation(s)
- Natalie J Serkova
- Department of Anesthesiology, Anschutz Medical Center, Aurora, CO, USA.,Department of Radiology, Anschutz Medical Center, Aurora, CO, USA.,Department of Radiation Oncology, Anschutz Medical Center, Aurora, CO, USA.,Animal Imaging Shared Resources, University of Colorado Cancer Center, Anschutz Medical Center, Aurora, CO, USA
| |
Collapse
|
26
|
Volz KR, Evans KD, Kanner CD, Buford JA, Freimer M, Sommerich CM. Targeted Contrast-Enhanced Ultrasound for Inflammation Detection. JOURNAL OF DIAGNOSTIC MEDICAL SONOGRAPHY 2016. [DOI: 10.1177/8756479316678616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Molecular imaging is a form of nanotechnology that enables the noninvasive examination of biological processes in vivo. Radiopharmaceutical agents are used to target biochemical markers, permitting their detection and evaluation. Early visualization of molecular variations indicative of pathophysiological processes can aid in patient diagnoses and management decisions. Molecular imaging is performed by introducing into the body molecular probes, which are often contrast agents that have been nanoengineered to target and tether to molecules, thus enabling their radiologic identification. Through a nanoengineering process, ultrasound contrast agents can be targeted to specific molecules, extending ultrasound’s capabilities from the tissue to molecular level. Molecular ultrasound, or targeted contrast-enhanced ultrasound (TCEUS), has recently emerged as a popular molecular imaging technique due to its ability to provide real-time anatomic and functional information without ionizing radiation. However, molecular ultrasound represents a novel form of molecular imaging and consequently remains largely preclinical. This review explores the commonalities of TCEUS across several molecular targets and points to the need for standardization of kinetic behavior analysis. The literature underscores evidence gaps and the need for additional research. The application of TCEUS is unlimited but needs further standardization to ensure that future research studies are comparable.
Collapse
Affiliation(s)
- Kevin R. Volz
- College of Medicine, School of Health and Rehabilitation Science, The Ohio State University, Columbus, OH, USA
| | - Kevin D. Evans
- College of Medicine, School of Health and Rehabilitation Science, The Ohio State University, Columbus, OH, USA
| | - Christopher D. Kanner
- College of Medicine, School of Health and Rehabilitation Science, The Ohio State University, Columbus, OH, USA
| | - John A. Buford
- College of Medicine, School of Health and Rehabilitation Science, The Ohio State University, Columbus, OH, USA
| | - Miriam Freimer
- College of Medicine, School of Health and Rehabilitation Science, The Ohio State University, Columbus, OH, USA
| | | |
Collapse
|
27
|
Valluru KS, Willmann JK. Clinical photoacoustic imaging of cancer. Ultrasonography 2016; 35:267-80. [PMID: 27669961 PMCID: PMC5040138 DOI: 10.14366/usg.16035] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 08/30/2016] [Accepted: 08/30/2016] [Indexed: 12/12/2022] Open
Abstract
Photoacoustic imaging is a hybrid technique that shines laser light on tissue and measures optically induced ultrasound signal. There is growing interest in the clinical community over this new technique and its possible clinical applications. One of the most prominent features of photoacoustic imaging is its ability to characterize tissue, leveraging differences in the optical absorption of underlying tissue components such as hemoglobin, lipids, melanin, collagen and water among many others. In this review, the state-of-the-art photoacoustic imaging techniques and some of the key outcomes pertaining to different cancer applications in the clinic are presented.
Collapse
Affiliation(s)
- Keerthi S. Valluru
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Juergen K. Willmann
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
28
|
Ektate K, Kapoor A, Maples D, Tuysuzoglu A, VanOsdol J, Ramasami S, Ranjan A. Motion Compensated Ultrasound Imaging Allows Thermometry and Image Guided Drug Delivery Monitoring from Echogenic Liposomes. Am J Cancer Res 2016; 6:1963-74. [PMID: 27570563 PMCID: PMC4997249 DOI: 10.7150/thno.15922] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/20/2016] [Indexed: 12/18/2022] Open
Abstract
Ultrasound imaging is widely used both for cancer diagnosis and to assess therapeutic success, but due to its weak tissue contrast and the short half-life of commercially available contrast agents, it is currently not practical for assessing motion compensated contrast-enhanced tumor imaging, or for determining time-resolved absolute tumor temperature while simultaneously reporting on drug delivery. The objectives of this study were to: 1) develop echogenic heat sensitive liposomes (E-LTSL) and non-thermosensitive liposomes (E-NTSL) to enhance half-life of contrast agents, and 2) measure motion compensated temperature induced state changes in acoustic impedance and Laplace pressure of liposomes to monitor temperature and doxorubicin (Dox) delivery to tumors. LTSL and NTSL containing Dox were co-loaded with an US contrast agent (perfluoropentane, PFP) using a one-step sonoporation method to create E-LTSL and E-NTSL. To determine temperature induced intensity variation with respect to the state change of E-LTSL and E-NTSL in mouse colon tumors, cine acquisition of 20 frames/second for about 20 min (or until wash out) at temperatures of 42°C, 39.5°C, and 37°C was performed. A rigid rotation and translation was applied to each of the "key frames" to adjust for any gross motion that arose due to motion of the animal or the transducer. To evaluate the correlation between ultrasound (US) intensity variation and Dox release at various temperatures, treatment (5 mg Dox/kg) was administered via a tail vein once tumors reached a size of 300-400 mm(3), and mean intensity within regions of interest (ROIs) defined for each sample was computed over the collected frames and normalized in the range of [0,1]. When the motion compensation technique was applied, a > 2-fold drop in standard deviation in mean image intensity of tumor was observed, enabling a more robust estimation of temporal variations in tumor temperatures for 15-20 min. due to state change of E-LTSL and E-NTSL. Consequently, a marked increase in peak intensity at 42°C compared to 37°C that corresponded with enhanced Dox delivery from E-LTSL in tumors was obtained. Our results suggest that echogenic liposomes provide a predictable change in tumor vascular contrast with temperature, and this property could be applicable to nanomonitoring of drug delivery in real time.
Collapse
|
29
|
Andreou C, Neuschmelting V, Tschaharganeh DF, Huang CH, Oseledchyk A, Iacono P, Karabeber H, Colen RR, Mannelli L, Lowe SW, Kircher MF. Imaging of Liver Tumors Using Surface-Enhanced Raman Scattering Nanoparticles. ACS NANO 2016; 10:5015-26. [PMID: 27078225 PMCID: PMC4884645 DOI: 10.1021/acsnano.5b07200] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Complete surgical resection is the ideal first-line treatment for most liver malignancies. This goal would be facilitated by an intraoperative imaging method that enables more precise visualization of tumor margins and detection of otherwise invisible microscopic lesions. To this end, we synthesized silica-encapsulated surface-enhanced Raman scattering (SERS) nanoparticles (NPs) that act as a molecular imaging agent for liver malignancies. We hypothesized that, after intravenous administration, SERS NPs would avidly home to healthy liver tissue but not to intrahepatic malignancies. We tested these SERS NPs in genetically engineered mouse models of hepatocellular carcinoma and histiocytic sarcoma. After intravenous injection, liver tumors in both models were readily identifiable with Raman imaging. In addition, Raman imaging using SERS NPs enabled detection of microscopic lesions in liver and spleen. We compared the performance of SERS NPs to fluorescence imaging using indocyanine green (ICG). We found that SERS NPs delineate tumors more accurately and are less susceptible to photobleaching. Given the known advantages of SERS imaging, namely, high sensitivity and specific spectroscopic detection, these findings hold promise for improved resection of liver cancer.
Collapse
Affiliation(s)
- Chrysafis Andreou
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New
York, NY 10065, USA
| | - Volker Neuschmelting
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New
York, NY 10065, USA
| | | | - Chun-Hao Huang
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer
Center, New York, NY 10065, USA
| | - Anton Oseledchyk
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New
York, NY 10065, USA
| | - Pasquale Iacono
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New
York, NY 10065, USA
| | - Hazem Karabeber
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New
York, NY 10065, USA
| | - Rivka R. Colen
- Department of Radiology, M.D. Anderson Cancer Center, University of
Texas, Houston, Texas, 77030, USA
| | - Lorenzo Mannelli
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New
York, NY 10065, USA
| | - Scott W. Lowe
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer
Center, New York, NY 10065, USA
- Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Moritz F. Kircher
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New
York, NY 10065, USA
- Center for Molecular Imaging and Nanotechnology (CMINT), Memorial
Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Radiology, Weill Cornell Medical College, New York, NY
10065, USA
| |
Collapse
|
30
|
Laeseke PF, Chen R, Jeffrey RB, Brentnall TA, Willmann JK. Combining in Vitro Diagnostics with in Vivo Imaging for Earlier Detection of Pancreatic Ductal Adenocarcinoma: Challenges and Solutions. Radiology 2016; 277:644-61. [PMID: 26599925 DOI: 10.1148/radiol.2015141020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the fourth-leading cause of cancer-related death in the United States and is associated with a dismal prognosis, particularly when diagnosed at an advanced stage. Overall survival is significantly improved if PDAC is detected at an early stage prior to the onset of symptoms. At present, there is no suitable screening strategy for the general population. Available diagnostic serum markers are not sensitive or specific enough, and clinically available imaging modalities are inadequate for visualizing early-stage lesions. In this article, the role of currently available blood biomarkers and imaging tests for the early detection of PDAC will be reviewed. Also, the emerging biomarkers and molecularly targeted imaging agents being developed to improve the specificity of current imaging modalities for PDAC will be discussed. A strategy incorporating blood biomarkers and molecularly targeted imaging agents could lead to improved screening and earlier detection of PDAC in the future. (©) RSNA, 2015.
Collapse
Affiliation(s)
- Paul F Laeseke
- From the Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, 300 Pasteur Dr, Room H1307, Stanford, CA 94305-5621 (P.F.L., R.B.J., J.K.W.); and Department of Medicine, University of Washington, Seattle, Wash (R.C., T.A.B.)
| | - Ru Chen
- From the Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, 300 Pasteur Dr, Room H1307, Stanford, CA 94305-5621 (P.F.L., R.B.J., J.K.W.); and Department of Medicine, University of Washington, Seattle, Wash (R.C., T.A.B.)
| | - R Brooke Jeffrey
- From the Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, 300 Pasteur Dr, Room H1307, Stanford, CA 94305-5621 (P.F.L., R.B.J., J.K.W.); and Department of Medicine, University of Washington, Seattle, Wash (R.C., T.A.B.)
| | - Teresa A Brentnall
- From the Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, 300 Pasteur Dr, Room H1307, Stanford, CA 94305-5621 (P.F.L., R.B.J., J.K.W.); and Department of Medicine, University of Washington, Seattle, Wash (R.C., T.A.B.)
| | - Jürgen K Willmann
- From the Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, 300 Pasteur Dr, Room H1307, Stanford, CA 94305-5621 (P.F.L., R.B.J., J.K.W.); and Department of Medicine, University of Washington, Seattle, Wash (R.C., T.A.B.)
| |
Collapse
|
31
|
Abstract
One early application of PET/MRI in clinical practice may be the imaging of head and neck cancers. This is because the morphologic imaging modalities, CT and MR, are recognized as similarly effective tools in cross-sectional oncological imaging of the head and neck. The addition of PET with FDG is believed to enhance the accuracy of both modalities to a similar degree. However, there are a few specific scenarios in head and neck cancer imaging where MR is thought to provide an edge over CT, including perineural spread of tumors and the infiltration of important anatomical landmarks, such as the prevertebral fascia and great vessel walls. Here, hybrid PET/MR might provide higher diagnostic certainty than PET/CT or a separate acquisition of PET/CT and MR. Another advantage of MR is the availability of several functional techniques. Although some of them might enhance the imaging of head and neck cancer with PET/MR, other functional techniques actually might prove dispensable in the presence of PET. In this overview, we discuss current trends and potential clinical applications of PET/MR in the imaging of head and neck cancers, including clinical protocols. We also discuss potential benefits of implementing functional MR techniques into hybrid PET/MRI of head and neck cancers.
Collapse
Affiliation(s)
- Marcelo A Queiroz
- Research and Education Institute, Hospital Sirio-Libanes, Sao Paulo, Brazil; Department of Radiology, Cancer Institute, Hospital das Clinicas/University of Sao Paulo, Sao Paulo, Brazil
| | - Martin W Huellner
- Research and Education Institute, Hospital Sirio-Libanes, Sao Paulo, Brazil; Department of Medical Radiology, Divisions of Nuclear Medicine and Neuroradiology,University Hospital Zurich/University of Zurich, Zurich, Switzerland.
| |
Collapse
|
32
|
Qin J, Wang TY, Willmann JK. Sonoporation: Applications for Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 880:263-91. [PMID: 26486343 DOI: 10.1007/978-3-319-22536-4_15] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Therapeutic efficacy of both traditional chemotherapy and gene therapy in cancer is highly dependent on the ability to deliver drugs across natural barriers, such as the vessel wall or tumor cell membranes. In this regard, sonoporation induced by ultrasound-guided microbubble (USMB) destruction has been widely investigated in the enhancement of therapeutic drug delivery given it can help overcome these natural barriers, thereby increasing drug delivery into cancer. In this chapter we discuss challenges in current cancer therapy and how some of these challenges could be overcome using USMB-mediated drug delivery. We particularly focus on recent advances in delivery approaches that have been developed to further improve therapeutic efficiency and specificity of various cancer treatments. An example of clinical translation of USMB-mediated drug delivery is also shown.
Collapse
Affiliation(s)
- Jiale Qin
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, School of Medicine, Stanford, CA, USA
| | - Tzu-Yin Wang
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, School of Medicine, Stanford, CA, USA
| | - Jürgen K Willmann
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, School of Medicine, Stanford, CA, USA.
| |
Collapse
|
33
|
Benz MR, Vargas HA, Sala E. Functional MR Imaging Techniques in Oncology in the Era of Personalized Medicine. Magn Reson Imaging Clin N Am 2015; 24:1-10. [PMID: 26613872 DOI: 10.1016/j.mric.2015.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DW and DCE MR imaging contribute significantly to diagnosis, treatment planning, response assessment, and prognosis in personalized cancer medicine. Nevertheless, the need for further standardization of these techniques needs to be addressed. Whole-body DW MR imaging is an exciting field; however, future studies need to investigate in more depth the biologic significance of the findings depicted, their prognostic relevance, and cost-effectiveness in comparison with MDCT and PET/CT. New MR imaging probes, such as targeted or activatable contrast agents and dynamic nuclear hyperpolarization, show great promise to further improve the care of patients with cancer in the near future.
Collapse
Affiliation(s)
- Matthias R Benz
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Clinic of Radiology and Nuclear Medicine, University of Basel Hospital, Petersgraben 4, Basel 4031, Switzerland.
| | - Hebert Alberto Vargas
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Evis Sala
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
34
|
Harmsen S, Huang R, Wall MA, Karabeber H, Samii JM, Spaliviero M, White JR, Monette S, O'Connor R, Pitter KL, Sastra SA, Saborowski M, Holland EC, Singer S, Olive KP, Lowe SW, Blasberg RG, Kircher MF. Surface-enhanced resonance Raman scattering nanostars for high-precision cancer imaging. Sci Transl Med 2015; 7:271ra7. [PMID: 25609167 DOI: 10.1126/scitranslmed.3010633] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The inability to visualize the true extent of cancers represents a significant challenge in many areas of oncology. The margins of most cancer types are not well demarcated because the cancer diffusely infiltrates the surrounding tissues. Furthermore, cancers may be multifocal and characterized by the presence of microscopic satellite lesions. Such microscopic foci represent a major reason for persistence of cancer, local recurrences, and metastatic spread, and are usually impossible to visualize with currently available imaging technologies. An imaging method to reveal the true extent of tumors is desired clinically and surgically. We show the precise visualization of tumor margins, microscopic tumor invasion, and multifocal locoregional tumor spread using a new generation of surface-enhanced resonance Raman scattering (SERRS) nanoparticles, which are termed SERRS nanostars. The SERRS nanostars feature a star-shaped gold core, a Raman reporter resonant in the near-infrared spectrum, and a primer-free silication method. In genetically engineered mouse models of pancreatic cancer, breast cancer, prostate cancer, and sarcoma, and in one human sarcoma xenograft model, SERRS nanostars enabled accurate detection of macroscopic malignant lesions, as well as microscopic disease, without the need for a targeting moiety. Moreover, the sensitivity (1.5 fM limit of detection) of SERRS nanostars allowed imaging of premalignant lesions of pancreatic and prostatic neoplasias. High sensitivity and broad applicability, in conjunction with their inert gold-silica composition, render SERRS nanostars a promising imaging agent for more precise cancer imaging and resection.
Collapse
Affiliation(s)
- Stefan Harmsen
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ruimin Huang
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Matthew A Wall
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Department of Chemistry, Hunter College, City University of New York, New York, NY 10065, USA
| | - Hazem Karabeber
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jason M Samii
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Massimiliano Spaliviero
- Urology Service, Department of Surgery, Sidney Kimmel Center for Prostate and Urologic Cancers, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Julie R White
- Tri-Institutional Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, The Rockefeller University, and Weill Cornell Medical College, New York, NY 10065, USA. Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sébastien Monette
- Tri-Institutional Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, The Rockefeller University, and Weill Cornell Medical College, New York, NY 10065, USA. Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Rachael O'Connor
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kenneth L Pitter
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Stephen A Sastra
- Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA. Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Michael Saborowski
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Eric C Holland
- Human Biology Division and Solid Tumor Translational Research, Fred Hutchinson Cancer Research Center, Alvord Brain Tumor Center, University of Washington, Seattle, WA 98109, USA
| | - Samuel Singer
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kenneth P Olive
- Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA. Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Scott W Lowe
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Ronald G Blasberg
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Center for Molecular Imaging and Nanotechnology (CMINT), Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Moritz F Kircher
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Center for Molecular Imaging and Nanotechnology (CMINT), Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Department of Radiology, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
35
|
Maples D, McLean K, Sahoo K, Newhardt R, Venkatesan P, Wood B, Ranjan A. Synthesis and characterisation of ultrasound imageable heat-sensitive liposomes for HIFU therapy. Int J Hyperthermia 2015; 31:674-85. [PMID: 26185910 DOI: 10.3109/02656736.2015.1057622] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND/OBJECTIVE Novel approaches allowing efficient, readily translatable image-guided drug delivery (IGDD) against solid tumours is needed. The objectives of this study were to: 1) develop echogenic low temperature sensitive liposomes (E-LTSLs) loaded with an ultrasound (US) contrast agent (perfluoropentane, PFP), 2) determine the in vitro and in vivo stability of contrast agent encapsulation, 3) co-encapsulate and characterise doxorubicin (Dox) E-LTSL, and cellular uptake and cytotoxicity in combination with high intensity focused ultrasound (HIFU). METHOD E-LTSLs were loaded passively with PFP and actively with Dox. PFP encapsulation in E-LTSL was determined by transmission electron microscopy (TEM), and US imageability was determined in tissue-mimicking phantoms and mouse tumour model. Dox release from E-LTSL in physiological buffer was quantified by fluorescence spectroscopy. Cellular uptake and cytotoxicity of E-LTSL in the presence of HIFU-induced mild hyperthermia (∼40-42 °C) was determined in a 3D tumour spheroid model. RESULTS TEM and US confirmed that the PFP emulsion was contained within LTSLs. Phantom and animal studies showed that the E-LTSLs were echogenic. Temperature versus size increase and Dox release kinetics of E-LTSLs demonstrated no difference compared to LTSL alone. Dox release was <5% within 1 h at baseline (25 °C) and body (37 °C) temperatures, and was >99% under hyperthermia. E-LTSL plus HIFU achieved significantly greater Dox uptake in spheroids and cytotoxicity compared to body temperature. CONCLUSION A stable US-imageable liposome co-loaded with Dox and PFP for in vivo IGDD was developed. Data suggest that HIFU can induce cellular uptake and toxicity with E-LTSLs.
Collapse
Affiliation(s)
- Danny Maples
- a Center for Veterinary Health Sciences, Oklahoma State University , Stillwater , Oklahoma and
| | - Kevin McLean
- a Center for Veterinary Health Sciences, Oklahoma State University , Stillwater , Oklahoma and
| | - Kaustuv Sahoo
- a Center for Veterinary Health Sciences, Oklahoma State University , Stillwater , Oklahoma and
| | - Ryan Newhardt
- a Center for Veterinary Health Sciences, Oklahoma State University , Stillwater , Oklahoma and
| | - Perumal Venkatesan
- a Center for Veterinary Health Sciences, Oklahoma State University , Stillwater , Oklahoma and
| | - Bradford Wood
- b Center for Interventional Oncology, National Institutes of Health , Bethesda , Maryland , USA
| | - Ashish Ranjan
- a Center for Veterinary Health Sciences, Oklahoma State University , Stillwater , Oklahoma and
| |
Collapse
|
36
|
Andreou C, Kishore SA, Kircher MF. Surface-Enhanced Raman Spectroscopy: A New Modality for Cancer Imaging. J Nucl Med 2015; 56:1295-9. [PMID: 26182971 DOI: 10.2967/jnumed.115.158196] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 07/09/2015] [Indexed: 01/15/2023] Open
Abstract
Although surface-enhanced Raman scattering (SERS) spectroscopy has traditionally been used as an in vitro analytic tool, in the past few years the first reports of the feasibility of in vivo imaging of cancer with biocompatible SERS probes have emerged. SERS imaging has great potential in the field of medical imaging because it offers several major advantages over other molecular imaging methods. Medical imaging using SERS nanoprobes can yield higher sensitivity and higher signal specificity than other imaging modalities, while also offering multiplexing capabilities that allow for unique applications. This article reviews the principles of SERS and highlights recent advances for in vivo cancer imaging. To present the abilities of this method as accurately as possible, the discussion is limited to studies in which the imaging data were confirmed by histological correlation.
Collapse
Affiliation(s)
- Chrysafis Andreou
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sirish A Kishore
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Moritz F Kircher
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York Center for Molecular Imaging and Nanotechnology (CMINT), Memorial Sloan Kettering Cancer Center, New York, New York; and Department of Radiology, Weill Cornell Medical College, New York, New York
| |
Collapse
|
37
|
Anatomical, Physiological, and Molecular Imaging for Pancreatic Cancer: Current Clinical Use and Future Implications. BIOMED RESEARCH INTERNATIONAL 2015; 2015:269641. [PMID: 26146615 PMCID: PMC4471256 DOI: 10.1155/2015/269641] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 12/21/2022]
Abstract
Pancreatic adenocarcinoma is one of the deadliest human malignancies. Early detection is difficult and effective treatment is limited. Verifying the presence of micrometastatic dissemination and vessel invasion remains elusive, limiting radiological staging once this diagnosis is made. Diagnostic imaging provides independent tools to evaluate and characterize the biologic behavior of pancreatic cancer. Conventional anatomic imaging alone with either CT or MRI yields useful information on organ involvement but is limited in providing molecular and physiological information. Molecular imaging techniques such as PET or MRS provide information on metabolic and signaling pathways. Advanced MR sequences that target physiological parameters expand imaging options to characterize these tumors. By considering the parametric data from these three imaging approaches (anatomic, molecular, and physiological) we can better define specific tumor signatures. Such parametric characterization can provide insight into tumor metabolism, cellular density, protein expression, focal perfusion, and vascular permeability of these tumors. Radiogenomics research has already demonstrated ability to obtain information about cancer's genotype and phenotype; this is without invasive procedures or surgery. Further advances in these areas of experimental imaging hold promise to enable future clinical advances in detection and therapy of pancreatic cancer.
Collapse
|
38
|
Abou-Elkacem L, Bachawal SV, Willmann JK. Ultrasound molecular imaging: Moving toward clinical translation. Eur J Radiol 2015; 84:1685-93. [PMID: 25851932 DOI: 10.1016/j.ejrad.2015.03.016] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 03/13/2015] [Indexed: 12/11/2022]
Abstract
Ultrasound is a widely available, cost-effective, real-time, non-invasive and safe imaging modality widely used in the clinic for anatomical and functional imaging. With the introduction of novel molecularly-targeted ultrasound contrast agents, another dimension of ultrasound has become a reality: diagnosing and monitoring pathological processes at the molecular level. Most commonly used ultrasound molecular imaging contrast agents are micron sized, gas-containing microbubbles functionalized to recognize and attach to molecules expressed on inflamed or angiogenic vascular endothelial cells. There are several potential clinical applications currently being explored including earlier detection, molecular profiling, and monitoring of cancer, as well as visualization of ischemic memory in transient myocardial ischemia, monitoring of disease activity in inflammatory bowel disease, and assessment of arteriosclerosis. Recently, a first clinical grade ultrasound contrast agent (BR55), targeted at a molecule expressed in neoangiogenesis (vascular endothelial growth factor receptor type 2; VEGFR2) has been introduced and safety and feasibility of VEGFR2-targeted ultrasound imaging is being explored in first inhuman clinical trials in various cancer types. This review describes the design of ultrasound molecular imaging contrast agents, imaging techniques, and potential future clinical applications of ultrasound molecular imaging.
Collapse
Affiliation(s)
- Lotfi Abou-Elkacem
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, School of Medicine, Stanford, CA, USA
| | - Sunitha V Bachawal
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, School of Medicine, Stanford, CA, USA
| | - Jürgen K Willmann
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, School of Medicine, Stanford, CA, USA.
| |
Collapse
|
39
|
Shaffer T, Wall MA, Harmsen S, Longo VA, Drain CM, Kircher MF, Grimm J. Silica nanoparticles as substrates for chelator-free labeling of oxophilic radioisotopes. NANO LETTERS 2015; 15:864-8. [PMID: 25559467 PMCID: PMC4412311 DOI: 10.1021/nl503522y] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Chelator-free nanoparticles for intrinsic radiolabeling are highly desirable for whole-body imaging and therapeutic applications. Several reports have successfully demonstrated the principle of intrinsic radiolabeling. However, the work done to date has suffered from much of the same specificity issues as conventional molecular chelators, insofar as there is no singular nanoparticle substrate that has proven effective in binding a wide library of radiosotopes. Here we present amorphous silica nanoparticles as general substrates for chelator-free radiolabeling and demonstrate their ability to bind six medically relevant isotopes of various oxidation states with high radiochemical yield. We provide strong evidence that the stability of the binding correlates with the hardness of the radioisotope, corroborating the proposed operating principle. Intrinsically labeled silica nanoparticles prepared by this approach demonstrate excellent in vivo stability and efficacy in lymph node imaging.
Collapse
Affiliation(s)
- Travis
M. Shaffer
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10065, United
States
- Department
of Chemistry, Hunter College of the City
University of New York, New York, New York 10065, United States
- Molecular Pharmacology
and Chemistry Program and Center for Molecular Imaging and
Nanotechnology, Memorial Sloan Kettering
Cancer Center, New York, New York 10065, United
States
| | - Matthew A. Wall
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10065, United
States
- Department
of Chemistry, Hunter College of the City
University of New York, New York, New York 10065, United States
| | - Stefan Harmsen
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10065, United
States
| | - Valerie A. Longo
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10065, United
States
| | - Charles Michael Drain
- Department
of Chemistry, Hunter College of the City
University of New York, New York, New York 10065, United States
| | - Moritz F. Kircher
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10065, United
States
- Molecular Pharmacology
and Chemistry Program and Center for Molecular Imaging and
Nanotechnology, Memorial Sloan Kettering
Cancer Center, New York, New York 10065, United
States
- Department
of Radiology, Weill Cornell Medical College, New York, New York 10065, United States
- E-mail:
| | - Jan Grimm
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10065, United
States
- Molecular Pharmacology
and Chemistry Program and Center for Molecular Imaging and
Nanotechnology, Memorial Sloan Kettering
Cancer Center, New York, New York 10065, United
States
- Department
of Radiology, Weill Cornell Medical College, New York, New York 10065, United States
- Department
of Pharmacology, Weill Cornell Medical College, New York, New York 10065, United States
- E-mail:
| |
Collapse
|
40
|
Abstract
During the past century, cardiac imaging technologies have revolutionized the diagnosis and treatment of acquired and congenital heart disease. Many important contributions to the field of cardiac imaging were initially reported in Radiology. The field developed from the early stages of cardiac imaging, including the use of coronary x-ray angiography and roentgen kymography, to nowadays the widely used echocardiographic, nuclear medicine, cardiac computed tomographic (CT), and magnetic resonance (MR) applications. It is surprising how many of these techniques were not recognized for their potential during their early inception. Some techniques were described in the literature but required many years to enter the clinical arena and presently continue to expand in terms of clinical application. The application of various CT and MR contrast agents for the diagnosis of myocardial ischemia is a case in point, as the utility of contrast agents continues to expand the noninvasive characterization of myocardium. The history of cardiac imaging has included a continuous process of advances in our understanding of the anatomy and physiology of the cardiovascular system, along with advances in imaging technology that continue to the present day.
Collapse
Affiliation(s)
- Albert de Roos
- From the Department of Radiology, Leiden University Medical Center, C2-S, Albinusdreef 2, Leiden, South-Holland 2333 ZA, the Netherlands (A.d.R); and Department of Radiology, University of California-San Francisco, San Francisco, Calif (C.B.H.)
| | | |
Collapse
|
41
|
Arosio P, Orsini F, Piras AM, Sandreschi S, Chiellini F, Corti M, Masa M, Múčková M, Schmidtová Ľ, Ravagli C, Baldi G, Nicolato E, Conti G, Marzola P, Lascialfari A. MR imaging and targeting of human breast cancer cells with folate decorated nanoparticles. RSC Adv 2015. [DOI: 10.1039/c5ra04880j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Folate decorated organic nanocarriers loaded with magnetite nanoparticles and paclitaxel provide a specific and prolonged negative contrast of breast cancers on T2-weighted MR images.
Collapse
|
42
|
Abstract
Ultrasound-mediated gene delivery with microbubbles has emerged as an attractive nonviral vector system for site-specific and noninvasive gene therapy. Ultrasound promotes intracellular uptake of therapeutic agents, particularly in the presence of microbubbles, by increasing vascular and cell membrane permeability. Several preclinical studies have reported successful gene delivery into solid tumors with significant therapeutic effects using this novel approach. This review provides background information on gene therapy and ultrasound bioeffects and discusses the current progress and overall perspectives on the application of ultrasound and microbubble-mediated gene delivery in cancer.
Collapse
|
43
|
Xue S, Wang Y, Wang M, Zhang L, Du X, Gu H, Zhang C. Iodinated oil-loaded, fluorescent mesoporous silica-coated iron oxide nanoparticles for magnetic resonance imaging/computed tomography/fluorescence trimodal imaging. Int J Nanomedicine 2014; 9:2527-38. [PMID: 24904212 PMCID: PMC4039419 DOI: 10.2147/ijn.s59754] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In this study, a novel magnetic resonance imaging (MRI)/computed tomography (CT)/fluorescence trifunctional probe was prepared by loading iodinated oil into fluorescent mesoporous silica-coated superparamagnetic iron oxide nanoparticles (i-fmSiO4@SPIONs). Fluorescent mesoporous silica-coated superparamagnetic iron oxide nanoparticles (fmSiO4@SPIONs) were prepared by growing fluorescent dye-doped silica onto superparamagnetic iron oxide nanoparticles (SPIONs) directed by a cetyltrimethylammonium bromide template. As prepared, fmSiO4@SPIONs had a uniform size, a large surface area, and a large pore volume, which demonstrated high efficiency for iodinated oil loading. Iodinated oil loading did not change the sizes of fmSiO4@SPIONs, but they reduced the MRI T2 relaxivity (r2) markedly. I-fmSiO4@SPIONs were stable in their physical condition and did not demonstrate cytotoxic effects under the conditions investigated. In vitro studies indicated that the contrast enhancement of MRI and CT, and the fluorescence signal intensity of i-fmSiO4@SPION aqueous suspensions and macrophages, were intensified with increased i-fmSiO4@SPION concentrations in suspension and cell culture media. Moreover, for the in vivo study, the accumulation of i-fmSiO4@SPIONs in the liver could also be detected by MRI, CT, and fluorescence imaging. Our study demonstrated that i-fmSiO4@SPIONs had great potential for MRI/CT/fluorescence trimodal imaging.
Collapse
Affiliation(s)
- Sihan Xue
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yao Wang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Mengxing Wang
- Shanghai Key Laboratory of Magnetic Resonance, Department of Physics, East China Normal University, Shanghai, People's Republic of China
| | - Lu Zhang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xiaoxia Du
- Shanghai Key Laboratory of Magnetic Resonance, Department of Physics, East China Normal University, Shanghai, People's Republic of China
| | - Hongchen Gu
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Chunfu Zhang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, People's Republic of China ; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
44
|
Zhang E, Kircher MF, Koch M, Eliasson L, Goldberg SN, Renström E. Dynamic magnetic fields remote-control apoptosis via nanoparticle rotation. ACS NANO 2014; 8:3192-201. [PMID: 24597847 PMCID: PMC4004315 DOI: 10.1021/nn406302j] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 03/05/2014] [Indexed: 05/19/2023]
Abstract
The ability to control the movement of nanoparticles remotely and with high precision would have far-reaching implications in many areas of nanotechnology. We have designed a unique dynamic magnetic field (DMF) generator that can induce rotational movements of superparamagnetic iron oxide nanoparticles (SPIONs). We examined whether the rotational nanoparticle movement could be used for remote induction of cell death by injuring lysosomal membrane structures. We further hypothesized that the shear forces created by the generation of oscillatory torques (incomplete rotation) of SPIONs bound to lysosomal membranes would cause membrane permeabilization, lead to extravasation of lysosomal contents into the cytoplasm, and induce apoptosis. To this end, we covalently conjugated SPIONs with antibodies targeting the lysosomal protein marker LAMP1 (LAMP1-SPION). Remote activation of slow rotation of LAMP1-SPIONs significantly improved the efficacy of cellular internalization of the nanoparticles. LAMP1-SPIONs then preferentially accumulated along the membrane in lysosomes in both rat insulinoma tumor cells and human pancreatic beta cells due to binding of LAMP1-SPIONs to endogenous LAMP1. Further activation of torques by the LAMP1-SPIONs bound to lysosomes resulted in rapid decrease in size and number of lysosomes, attributable to tearing of the lysosomal membrane by the shear force of the rotationally activated LAMP1-SPIONs. This remote activation resulted in an increased expression of early and late apoptotic markers and impaired cell growth. Our findings suggest that DMF treatment of lysosome-targeted nanoparticles offers a noninvasive tool to induce apoptosis remotely and could serve as an important platform technology for a wide range of biomedical applications.
Collapse
Affiliation(s)
- Enming Zhang
- Department of Clinical Sciences Malmö, Lund University, Malmö 205 02, Sweden
- Address correspondence to ,
| | - Moritz F. Kircher
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, United States
- Department of Radiology, Weill Cornell Medical College, New York, New York 10038, United States
- Center for Molecular Imaging and Nanotechnology, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, United States
| | - Martin Koch
- Stetter Elektronik, Seeheim-Jugenheim, Hessen 64342, Germany
| | - Lena Eliasson
- Department of Clinical Sciences Malmö, Lund University, Malmö 205 02, Sweden
| | - S. Nahum Goldberg
- Laboratory for Minimally Invasive Tumor Therapies, Department of Radiology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts 02215, United States
- Division of Image-guided Therapy and Interventional Oncology, Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Erik Renström
- Department of Clinical Sciences Malmö, Lund University, Malmö 205 02, Sweden
- Address correspondence to ,
| |
Collapse
|
45
|
Koonjoo N, Parzy E, Massot P, Lepetit-Coiffé M, Marque SRA, Franconi JM, Thiaudiere E, Mellet P. In vivo Overhauser-enhanced MRI of proteolytic activity. CONTRAST MEDIA & MOLECULAR IMAGING 2014; 9:363-71. [PMID: 24729587 DOI: 10.1002/cmmi.1586] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 10/21/2013] [Accepted: 10/31/2013] [Indexed: 01/22/2023]
Abstract
There is an increasing interest in developing novel imaging strategies for sensing proteolytic activities in intact organisms in vivo. Overhauser-enhanced MRI (OMRI) offers the possibility to reveal the proteolysis of nitroxide-labeled macromolecules thanks to a sharp decrease of the rotational correlation time of the nitroxide moiety upon cleavage. In this paper, this concept is illustrated in vivo at 0.2 T using nitroxide-labeled elastin orally administered in mice. In vitro, this elastin derivative was OMRI-visible and gave rise to high Overhauser enhancements (19-fold at 18 mm nitroxide) upon proteolysis by pancreatic porcine elastase. In vivo three-dimensional OMRI detection of proteolysis was carried out. A keyhole fully balanced steady-state free precession sequence was used, which allowed 3D OMRI acquisition within 20 s at 0.125 mm(3) resolution. About 30 min after mouse gavage, proteolysis was detected in the duodenum, where Overhauser enhancements were 7.2 ± 2.4 (n = 7) and was not observed in the stomach. Conversely, orally administered free nitroxides or pre-digested nitroxide-labeled elastin were detected in the mouse's stomach by OMRI. Combined with specific molecular probes, this Overhauser-enhanced MRI technique can be used to evaluate unregulated proteolytic activities in various models of experimental diseases and for drug testing.
Collapse
Affiliation(s)
- Neha Koonjoo
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536 CNRS Université Bordeaux Segalen, Bordeaux, France
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Hussain T, Nguyen QT. Molecular imaging for cancer diagnosis and surgery. Adv Drug Deliv Rev 2014; 66:90-100. [PMID: 24064465 DOI: 10.1016/j.addr.2013.09.007] [Citation(s) in RCA: 220] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 09/07/2013] [Accepted: 09/13/2013] [Indexed: 12/11/2022]
Abstract
Novel molecular imaging techniques have the potential to significantly enhance the diagnostic and therapeutic approaches for cancer treatment. For solid tumors in particular, novel molecular enhancers for imaging modalities such as US, CT, MRI and PET may facilitate earlier and more accurate diagnosis and staging which are prerequisites for successful surgical therapy. Enzymatically activatable "smart" molecular MRI probes seem particularly promising because of their potential to image tumors before and after surgical removal without re-administration of the probe to evaluate completeness of surgical resection. Furthermore, the use of "smart" MR probes as part of screening programs may enable detection of small tumors throughout the body in at-risk patient populations. Dual labeling of molecular MR probes with fluorescent dyes can add real time intraoperative guidance facilitating complete tumor resection and preservation of important structures. A truly theranostic approach with the further addition of therapeutic agents to the molecular probe for adjuvant therapy is conceivable for the future.
Collapse
|
47
|
Povoski SP, Hall NC. Recognizing the role of surgical oncology and cancer imaging in the multidisciplinary approach to cancer: an important area of future scholarly growth for BMC Cancer. BMC Cancer 2013; 13:355. [PMID: 23879552 PMCID: PMC3724699 DOI: 10.1186/1471-2407-13-355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 07/15/2013] [Indexed: 11/15/2022] Open
|
48
|
Schellpfeffer MA. Ultrasound imaging in research and clinical medicine. ACTA ACUST UNITED AC 2013; 99:83-92. [DOI: 10.1002/bdrc.21032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Michael A. Schellpfeffer
- Medical College of Wisconsin, Department of Cell Biology, Neurobiology and Anatomy; Milwaukee; Wisconsin
| |
Collapse
|
49
|
Liu Y, Yang Y, Zhang C. A concise review of magnetic resonance molecular imaging of tumor angiogenesis by targeting integrin αvβ3 with magnetic probes. Int J Nanomedicine 2013; 8:1083-93. [PMID: 23515638 PMCID: PMC3600999 DOI: 10.2147/ijn.s39880] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Angiogenesis is an essential step for the growth and spread of malignant tumors. Accurate detection and quantification of tumor angiogenesis is important for early diagnosis of cancers as well as post therapy assessment of antiangiogenic drugs. The cell adhesion molecule integrin αvβ3 is a specific marker of angiogenesis, which is highly expressed on activated and proliferating endothelial cells, but generally not on quiescent endothelial cells. Therefore, in recent years, many different approaches have been developed for imaging αvβ3 expression, for the detection and characterization of tumor angiogenesis. The present review provides an overview of the current status of magnetic resonance molecular imaging of integrin αvβ3, including the new development of high sensitive contrast agents and strategies for improving the specificity of targeting probes and the biological effects of imaging probes on αvβ3 positive cells.
Collapse
Affiliation(s)
- Yajie Liu
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | | | | |
Collapse
|
50
|
Panje CM, Wang DS, Pysz MA, Paulmurugan R, Ren Y, Tranquart F, Tian L, Willmann JK. Ultrasound-mediated gene delivery with cationic versus neutral microbubbles: effect of DNA and microbubble dose on in vivo transfection efficiency. Am J Cancer Res 2012; 2:1078-91. [PMID: 23227124 PMCID: PMC3516840 DOI: 10.7150/thno.4240] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 05/25/2012] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE To assess the effect of varying microbubble (MB) and DNA doses on the overall and comparative efficiencies of ultrasound (US)-mediated gene delivery (UMGD) to murine hindlimb skeletal muscle using cationic versus neutral MBs. MATERIALS AND METHODS Cationic and control neutral MBs were characterized for size, charge, plasmid DNA binding, and ability to protect DNA against endonuclease degradation. UMGD of a codon optimized firefly luciferase (Fluc) reporter plasmid to endothelial cells (1 MHz, 1 W/cm², 20% duty cycle, 1 min) was performed in cell culture using cationic, neutral, or no MBs. In vivo UMGD to mouse hindlimb muscle was performed by insonation (1 MHz, 2 W/cm², 50% duty cycle, 5 min) after intravenous administration of Fluc combined with cationic, neutral, or no MBs. Gene delivery efficiency was assessed by serial in vivo bioluminescence imaging. Efficiency of in vivo UMGD with cationic versus neutral MBs was systematically evaluated by varying plasmid DNA dose (10, 17.5, 25, 37.5, and 50 µg) while maintaining a constant MB dose of 1x10(8) MBs and by changing MB dose (1x10(7), 5x10(7), 1x10(8), or 5x10(8) MBs) while keeping a constant DNA dose of 50 µg. RESULTS Cationic and size-matched control neutral MBs differed significantly in zeta potential with cationic MBs being able to bind plasmid DNA (binding capacity of 0.03 pg/MB) and partially protect DNA from nuclease degradation while neutral MBs could not. Cationic MBs enhanced UMGD compared to neutral MBs as well as no MB and no US controls both in cell culture (P < 0.001) and in vivo (P < 0.05). Regardless of MB type, in vivo UMGD efficiency increased dose-dependently with DNA dose and showed overall maximum transfection with 50 µg DNA. However, there was an inverse correlation (ρ = -0.90; P = 0.02) between DNA dose and the degree of enhanced UMGD efficiency observed with using cationic MBs instead of neutral MBs. The delivery efficiency advantage associated with cationic MBs was most prominent at the lowest investigated DNA dose (7.5-fold increase with cationic versus neutral MBs at a DNA dose of 10 µg; P = 0.02) compared to only a 1.4-fold increase at a DNA dose of 50 µg (P < 0.01). With increasing MB dose, overall in vivo UMGD efficiency increased dose-dependently with a maximum reached at a dose of 1x10(8) MBs with no further significant increase with 5x10(8) MBs (P = 0.97). However, compared to neutral MBs, cationic MBs enhanced UMGD efficiency the most at low MB doses. Relative enhancement of UMGD efficiency using cationic over neutral MBs decreased from a factor of 27 for 1x10(7) MBs (P = 0.02) to a factor of 1.4 for 1x10(8) MBs (P < 0.01) and no significant difference for 5x10(8) MBs. CONCLUSIONS Cationic MBs enhance UMGD to mouse skeletal muscle relative to neutral MBs but this is dependent on MB and DNA dose. The enhancement effect of cationic MBs on UMGD efficiency is more evident when lower doses of MBs or DNA are used, whereas the advantage of cationic MBs over neutral MBs is substantially reduced in the presence of excess MBs or DNA.
Collapse
|