1
|
Berry DB, Gordon JA, Adair V, Frank LR, Ward SR. From Voxels to Physiology: A Review of Diffusion Magnetic Resonance Imaging Applications in Skeletal Muscle. J Magn Reson Imaging 2025; 61:595-615. [PMID: 39031753 PMCID: PMC11659509 DOI: 10.1002/jmri.29489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 07/22/2024] Open
Abstract
Skeletal muscle has a classic structure function relationship; both skeletal muscle microstructure and architecture are directly related to force generating capacity. Biopsy, the gold standard for evaluating muscle microstructure, is highly invasive, destructive to muscle, and provides only a small amount of information about the entire volume of a muscle. Similarly, muscle fiber lengths and pennation angles, key features of muscle architecture predictive of muscle function, are traditionally studied via cadaveric dissection. Noninvasive techniques such as diffusion magnetic resonance imaging (dMRI) offer quantitative approaches to study skeletal muscle microstructure and architecture. Despite its prevalence in applications for musculoskeletal research, clinical adoption is hindered by a lack of understanding regarding its sensitivity to clinically important biomarkers such as muscle fiber cross-sectional area. This review aims to elucidate how dMRI has been utilized to study skeletal muscle, covering fundamentals of muscle physiology, dMRI acquisition techniques, dMRI modeling, and applications where dMRI has been leveraged to noninvasively study skeletal muscle changes in response to disease, aging, injury, and human performance. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- David B. Berry
- Department of Orthopaedic SurgeryUniversity of CaliforniaSan DiegoCaliforniaUSA
| | - Joseph A. Gordon
- Department of Orthopaedic SurgeryUniversity of CaliforniaSan DiegoCaliforniaUSA
| | - Vincent Adair
- Department of MedicineUniversity of CaliforniaSan DiegoCaliforniaUSA
| | - Lawrence R. Frank
- Center for Scientific Computation in ImagingUniversity of CaliforniaSan DiegoCaliforniaUSA
| | - Samuel R. Ward
- Department of Orthopaedic SurgeryUniversity of CaliforniaSan DiegoCaliforniaUSA
- Department of RadiologyUniversity of CaliforniaSan DiegoCaliforniaUSA
- Department of BioengineeringUniversity of CaliforniaSan DiegoCaliforniaUSA
| |
Collapse
|
2
|
Winn BJ, Haight DJ, Williams DSB, Kirby BS. Skeletal muscle elastic modulus in marathon distance runners. Eur J Appl Physiol 2025:10.1007/s00421-025-05708-2. [PMID: 39847073 DOI: 10.1007/s00421-025-05708-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 01/06/2025] [Indexed: 01/24/2025]
Abstract
Skeletal muscle shear elastic modulus is a non-invasive surrogate for early detection of muscle damage and soreness consequent to unaccustomed eccentric muscle work. We investigated the influence of marathon distance running on skeletal muscle shear elastic modulus. Shear modulus of the rectus femoris was measured via ultrasound shear wave elastography in 80 participants (30 female, 50 male) before and after running a World Marathon Major. Experience level, muscle soreness and run readiness were surveyed. Pre-marathon shear elastic modulus was lower in competitive vs recreational runners (13.0 ± 4.6 vs 15.6 ± 5.6 kPa; P = 0.0014), lower for fastest vs slowest finish times (11.6 ± 3.0 vs 16.9 ± 6.5 kPa; P = < 0.0001) and associated with marathon finish time (r = - 0.40; P < 0.0003). Marathon running increased shear modulus (~ 23%), irrespective of experience, sex or course, but was blunted in runners wearing highly cushioned footwear with plates who had matched finish times (Other = ~ 31% vs Vaporfly = ~ 17%). Muscle soreness was strongly associated with run readiness (R2 = 0.995; P = 0.0026), and marathon recovery time was longer in runners with greater increases in marathon-mediated shear modulus. Skeletal muscle elastic modulus may reflect both short- and long-term muscle adaptation as a function of marathon running, or factors occurring before or after a marathon itself, such as exercise capacity or recovery time. These data are consistent with marathon-mediated muscle damage and soreness, but equally highlight a possibility to monitor and modulate outcomes in favor of a runner.
Collapse
Affiliation(s)
- Brad J Winn
- Nike Sport Research Lab, Nike, Inc., One Bowerman Drive, Beaverton, OR, 97005, USA
| | - Derek J Haight
- Nike Sport Research Lab, Nike, Inc., One Bowerman Drive, Beaverton, OR, 97005, USA
| | - D S Blaise Williams
- Nike Sport Research Lab, Nike, Inc., One Bowerman Drive, Beaverton, OR, 97005, USA
| | - Brett S Kirby
- Nike Sport Research Lab, Nike, Inc., One Bowerman Drive, Beaverton, OR, 97005, USA.
| |
Collapse
|
3
|
Marth AA, Sommer S, Feiweier T, Sutter R, Nanz D, von Deuster C. Stimulated echo acquisition mode (STEAM) diffusion tensor imaging with different diffusion encoding times in the supraspinatus muscle: Test-retest reliability and comparison to spin echo diffusion tensor imaging. NMR IN BIOMEDICINE 2025; 38:e5279. [PMID: 39448060 PMCID: PMC11602640 DOI: 10.1002/nbm.5279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
Diffusion tensor imaging (DTI) provides insight into the skeletal muscle microstructure and can be acquired using a stimulated echo acquisition mode (STEAM)-based approach to quantify time-dependent tissue diffusion. This study examined diffusion metrics and signal-to-noise ratio (SNR) in the supraspinatus muscle obtained with a STEAM-DTI sequence with different diffusion encoding times (Δ) and compared them to measures from a spin echo (SE) sequence. Ten healthy subjects (mean age 31.5 ± 4.7 years; five females) underwent 3-Tesla STEAM and SE-DTI of the shoulder in three sessions. STEAM was acquired with Δ of 100/200/400/600 ms. The diffusion encoding time in SE scans was 19 ms (b = 500 s/mm2). Region of interest-based measurement of fractional anisotropy (FA), mean diffusivity (MD), and SNR was performed. Intraclass correlation coefficients (ICCs) were computed to assess test-retest reliability. ANOVA with post-hoc pairwise tests was used to compare measures between different Δ of STEAM as well as STEAM and SE, respectively. FA was significantly higher (FASTEAM: 0.38-0.46 vs. FASE: 0.26) and MD significantly lower (MDSTEAM: 1.20-1.33 vs. MDSE: 1.62 × 10-3 mm2/s) in STEAM compared to SE (p < 0.001, respectively). SNR was significantly higher for SE (72.3 ± 8.7) than for STEAM (p < 0.001). ICCs were excellent for FA in STEAM (≥0.911) and SE (0.960). For MD, ICCs were good for STEAM100ms-600ms (≥0.759) and SE (0.752). STEAM and SE exhibited excellent reliability for FA and good reliability for MD in the supraspinatus muscle. SNR was significantly higher in SE compared to STEAM.
Collapse
Affiliation(s)
- Adrian Alexander Marth
- Swiss Center for Musculoskeletal Imaging (SCMI)Balgrist Campus AGZurichSwitzerland
- Department of RadiologyBalgrist University HospitalZurichSwitzerland
| | - Stefan Sommer
- Swiss Center for Musculoskeletal Imaging (SCMI)Balgrist Campus AGZurichSwitzerland
- Advanced Clinical Imaging TechnologySiemens Healthineers International AGZurichSwitzerland
| | | | - Reto Sutter
- Department of RadiologyBalgrist University HospitalZurichSwitzerland
- Medical FacultyUniversity of Zurich (UZH)ZurichSwitzerland
| | - Daniel Nanz
- Swiss Center for Musculoskeletal Imaging (SCMI)Balgrist Campus AGZurichSwitzerland
- Medical FacultyUniversity of Zurich (UZH)ZurichSwitzerland
| | - Constantin von Deuster
- Swiss Center for Musculoskeletal Imaging (SCMI)Balgrist Campus AGZurichSwitzerland
- Advanced Clinical Imaging TechnologySiemens Healthineers International AGZurichSwitzerland
| |
Collapse
|
4
|
Rauh SS, Cameron D, Gurney-Champion OJ, Smithuis F, Maas M, Froeling M, Kan HE, Nederveen AJ, Strijkers GJ, Hooijmans MT. Investigating skeletal muscle micro-trauma with time-dependent diffusion and the random permeable barrier model. Sci Rep 2024; 14:31998. [PMID: 39738708 DOI: 10.1038/s41598-024-83644-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025] Open
Abstract
Repeated muscle micro-trauma may cause severe muscle damage. Diffusion tensor imaging (DTI) exhibits sensitivity to microstructural changes in skeletal muscle. We hypothesize that longer diffusion times enhance sensitivity to micro-trauma and that membrane permeability increases with micro-trauma. We obtained DTI scans of the thighs in ten male runners 1 week before (TP-0), 24-48 h after (TP-1), and 2 weeks after (TP-2) they completed a marathon. Diffusion times were 28.1, 116.7, and 316.7 ms. The random permeable barrier model (RPBM) was fitted to the radial diffusivities to obtain estimates for fiber diameter and membrane permeability. Hamstring and quadriceps muscles were manually segmented. A linear mixed model assessed variations across time points and diffusion times within the DTI and RPBM parameters and assessed sensitivity to micro-trauma by comparing %-changes in DTI parameters at TP-1 and TP-2 to TP-0. All DTI parameters except FA significantly changed between TP-0 and TP-1, and between TP-1 and TP-2. The %-change did not differ between diffusion times. The permeability increased at TP-1 and TP-2 compared to TP-0. In conclusion, longer diffusion times did not improve sensitivity to micro-trauma. The increased permeability post-marathon underscores the potential of RPBM-derived parameters as a biomarker for micro-trauma and muscle injuries.
Collapse
Affiliation(s)
- Susanne S Rauh
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Center, Amsterdam, The Netherlands.
- Amsterdam Movement Sciences, Sports, Amsterdam, The Netherlands.
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Donnie Cameron
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Oliver J Gurney-Champion
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Frank Smithuis
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Mario Maas
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Martijn Froeling
- Department of Radiology, Utrecht University Medical Center, Utrecht, The Netherlands
| | - Hermien E Kan
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Aart J Nederveen
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Gustav J Strijkers
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Center, Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Sports, Amsterdam, The Netherlands
| | - Melissa T Hooijmans
- Amsterdam Movement Sciences, Sports, Amsterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Cheng Y, Li X. Advanced quantitative magnetic resonance imaging of lower extremity muscle microtrauma after marathon: a mini review. Front Sports Act Living 2024; 6:1481731. [PMID: 39534527 PMCID: PMC11554461 DOI: 10.3389/fspor.2024.1481731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
This article reviews the existing literature and outlines recent advances in quantitative Magnetic Resonance Imaging (MRI) techniques for the assessment of lower extremity muscle microtrauma following a marathon. Single-modality quantitative MRI techniques include T2 mapping to assess the dynamics of muscle inflammatory edema and variability at the site of injury, Diffusion Tensor Imaging (DTI) to detect subclinical changes in muscle injury, Intravoxel Incoherent Motion (IVIM) imaging to provide simultaneous information on perfusion and diffusion in muscle tissue without the need for intravenous contrast, and Magnetic Resonance Spectroscopy (MRS) to noninvasively detect intramyocellular lipid (IMCL) content in muscle before and after marathon exercise to explain the use of fatty acids as an energy source in skeletal muscle during long-distance running. As well as Chemical Exchange Saturation Transfer (CEST) is particularly suitable for detecting changes in free creatine, pH values and lactate concentrations in muscles before and after exercise, providing a more detailed picture of muscle physiology and chemistry. These metabolic MRI methods enhance the understanding of biochemical alterations occurring in muscles pre- and post-exercise. Multimodal techniques combine different modalities to provide a comprehensive evaluation of muscle structural and functional changes. These advanced techniques aim to better assess microtrauma and guide clinical treatment, though further validation with larger studies is needed to establish their potential over traditional qualitative methods.
Collapse
Affiliation(s)
| | - Xiaokai Li
- School of Sports and Health, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
6
|
Sinha U, Sinha S. Magnetic Resonance Imaging Biomarkers of Muscle. Tomography 2024; 10:1411-1438. [PMID: 39330752 PMCID: PMC11436019 DOI: 10.3390/tomography10090106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024] Open
Abstract
This review is focused on the current status of quantitative MRI (qMRI) of skeletal muscle. The first section covers the techniques of qMRI in muscle with the focus on each quantitative parameter, the corresponding imaging sequence, discussion of the relation of the measured parameter to underlying physiology/pathophysiology, the image processing and analysis approaches, and studies on normal subjects. We cover the more established parametric mapping from T1-weighted imaging for morphometrics including image segmentation, proton density fat fraction, T2 mapping, and diffusion tensor imaging to emerging qMRI features such as magnetization transfer including ultralow TE imaging for macromolecular fraction, and strain mapping. The second section is a summary of current clinical applications of qMRI of muscle; the intent is to demonstrate the utility of qMRI in different disease states of the muscle rather than a complete comprehensive survey.
Collapse
Affiliation(s)
- Usha Sinha
- Department of Physics, San Diego State University, San Diego, CA 92182, USA
| | - Shantanu Sinha
- Muscle Imaging and Modeling Lab., Department of Radiology, University of California at San Diego, San Diego, CA 92037, USA
| |
Collapse
|
7
|
Rubin EB, Schmidt AM, Koff MF, Kogan F, Gao K, Majumdar S, Potter H, Gold GE. Advanced MRI Approaches for Evaluating Common Lower Extremity Injuries in Basketball Players: Current and Emerging Techniques. J Magn Reson Imaging 2024; 59:1902-1913. [PMID: 37854004 DOI: 10.1002/jmri.29019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 10/20/2023] Open
Abstract
Magnetic resonance imaging (MRI) can provide accurate and non-invasive diagnoses of lower extremity injuries in athletes. Sport-related injuries commonly occur in and around the knee and can affect the articular cartilage, patellar tendon, hamstring muscles, and bone. Sports medicine physicians utilize MRI to evaluate and diagnose injury, track recovery, estimate return to sport timelines, and assess the risk of recurrent injury. This article reviews the current literature and describes novel developments of quantitative MRI tools that can further advance our understanding of sports injury diagnosis, prevention, and treatment while minimizing injury risk and rehabilitation time. Innovative approaches for enhancing the early diagnosis and treatment of musculoskeletal injuries in basketball players span a spectrum of techniques. These encompass the utilization of T2, T1ρ, and T2* quantitative MRI, along with dGEMRIC and Na-MRI to assess articular cartilage injuries, 3D-Ultrashort echo time MRI for patellar tendon injuries, diffusion tensor imaging for acute myotendinous injuries, and sagittal short tau inversion recovery and axial long-axis T1-weighted, and 3D Cube sequences for bone stress imaging. Future studies should further refine and validate these MR-based quantitative techniques while exploring the lifelong cumulative impact of basketball on players' knees. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Elka B Rubin
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Andrew M Schmidt
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Matthew F Koff
- Department of Radiology and Imaging, Hospital for Special Surgery, New York City, New York, USA
| | - Feliks Kogan
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Kenneth Gao
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Sharmila Majumdar
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Hollis Potter
- Department of Radiology and Imaging, Hospital for Special Surgery, New York City, New York, USA
| | - Garry E Gold
- Department of Radiology, Stanford University, Stanford, California, USA
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
- Department of Bioengineering, Stanford University, Stanford, California, USA
| |
Collapse
|
8
|
Nava S, Conte G, Triulzi FM, Comi GP, Magri F, Velardo D, Cinnante CM. Diffusion tensor imaging reveals subclinical alterations in muscles of patients with Becker muscular dystrophy. Br J Radiol 2024; 97:947-953. [PMID: 38574384 DOI: 10.1093/bjr/tqae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/21/2023] [Accepted: 03/27/2024] [Indexed: 04/06/2024] Open
Abstract
OBJECTIVES Becker muscular dystrophy (BMD) is a relatively less investigated neuromuscular disease, partially overlapping the phenotype of Duchenne dystrophy (DMD). Physiopathological and anatomical patterns are still not comprehensively known, despite recent effort in the search of early biomarkers. Aim of this study was to selectively compare normal appearing muscles of BMD with healthy controls. METHODS Among a pool of 40 BMD patients and 20 healthy controls, Sartorius and gracilis muscles were selected on the basis of a blinded clinical quantitative/qualitative evaluation, if classified as normal (0 or 1 on Mercuri scale) and subsequently segmented on diffusion tensor MRI scans with a tractographic approach. Diffusion derived parameters were extracted. RESULTS Non-parametric testing revealed significant differences between normal and normal appearing BMD derived parameters in both muscles, the difference being more evident in sartorius. Bonferroni-corrected P-values (<.05) of Mann-Whitney test could discriminate between BMD and controls for standard deviation of all diffusion parameters (mean diffusivity, fractional anisotropy, axial and radial diffusivity) in both sartorius and gracilis, while in sartorius the significant difference was found also in the average values of the same parameters (with exception of RD). CONCLUSIONS This method could identify microstructural alterations in BMD normal appearing sartorius and gracilis. ADVANCES IN KNOWLEDGE Diffusion based MRI could be able to identify possible early or subclinical microstructural alterations in dystrophic patients with BMD.
Collapse
Affiliation(s)
- Simone Nava
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy
| | - Giorgio Conte
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy
| | - Fabio M Triulzi
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy
| | - Giacomo P Comi
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, via Francesco Sforza 35, 20122 MilanItaly
| | - Francesca Magri
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, via Francesco Sforza 35, 20122 MilanItaly
| | - Daniele Velardo
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, via Francesco Sforza 35, 20122 MilanItaly
| | - Claudia M Cinnante
- Radiology Department, Istituto Auxologico Italiano IRCCS, Piazzale Brescia 20, 20149 Milan, Italy
| |
Collapse
|
9
|
Hooijmans MT, Lockard CA, Zhou X, Coolbaugh C, Pineda Guzman R, Kersh ME, Damon BM. A registration strategy to characterize DTI-observed changes in skeletal muscle architecture due to passive shortening. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.11.589123. [PMID: 38645028 PMCID: PMC11030449 DOI: 10.1101/2024.04.11.589123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Skeletal muscle architecture is a key determinant of muscle function. Architectural properties such as fascicle length, pennation angle, and curvature can be characterized using Diffusion Tensor Imaging (DTI), but acquiring these data during a contraction is not currently feasible. However, an image registration-based strategy may be able to convert muscle architectural properties observed at rest to their contracted state. As an initial step toward this long-term objective, the aim of this study was to determine if an image registration strategy could be used to convert the whole-muscle average architectural properties observed in the extended joint position to those of a flexed position, following passive rotation. DTI and high-resolution fat/water scans were acquired in the lower leg of seven healthy participants on a 3T MR system in +20° (plantarflexion) and -10° (dorsiflexion) foot positions. The diffusion and anatomical images from the two positions were used to propagate DTI fiber-tracts from seed points along a mesh representation of the aponeurosis of fiber insertion. The -10° and +20° anatomical images were registered and the displacement fields were used to transform the mesh and fiber-tracts from the +20° to the -10° position. Student's paired t-tests were used to compare the mean architectural parameters between the original and transformed fiber-tracts. The whole-muscle average fiber-tract length, pennation angle, curvature, and physiological cross-sectional areas estimates did not differ significantly. DTI fiber-tracts in plantarflexion can be transformed to dorsiflexion position without significantly affecting the average architectural characteristics of the fiber-tracts. In the future, a similar approach could be used to evaluate muscle architecture in a contracted state.
Collapse
Affiliation(s)
- Melissa T. Hooijmans
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Carle Clinical Imaging Research Program, Stephens Family Clinical Research Institute, Carle Health, Urbana, IL, United States of America
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Carly A. Lockard
- Carle Clinical Imaging Research Program, Stephens Family Clinical Research Institute, Carle Health, Urbana, IL, United States of America
| | - Xingyu Zhou
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Carle Clinical Imaging Research Program, Stephens Family Clinical Research Institute, Carle Health, Urbana, IL, United States of America
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States of America
| | - Crystal Coolbaugh
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Roberto Pineda Guzman
- Carle Clinical Imaging Research Program, Stephens Family Clinical Research Institute, Carle Health, Urbana, IL, United States of America
| | - Mariana E. Kersh
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Bruce M. Damon
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Carle Clinical Imaging Research Program, Stephens Family Clinical Research Institute, Carle Health, Urbana, IL, United States of America
- Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, United States of America
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| |
Collapse
|
10
|
Torres-Velázquez M, Wille CM, Hurley SA, Kijowski R, Heiderscheit BC, McMillan AB. MRI radiomics for hamstring strain injury identification and return to sport classification: a pilot study. Skeletal Radiol 2024; 53:637-648. [PMID: 37728629 DOI: 10.1007/s00256-023-04449-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023]
Abstract
OBJECTIVE To determine if MRI-based radiomics from hamstring muscles are related to injury and if the features could be used to perform a time to return to sport (RTS) classification. We hypothesize that radiomics from hamstring muscles, especially T2-weighted and diffusion tensor imaging-based features, are related to injury and can be used for RTS classification. SUBJECTS AND METHODS MRI data from 32 athletes at the University of Wisconsin-Madison that sustained a hamstring strain injury were collected. Diffusion tensor imaging and T1- and T2-weighted images were processed, and diffusion maps were calculated. Radiomics features were extracted from the four hamstring muscles in each limb and for each MRI modality, individually. Feature selection was performed and multiple support vector classifiers were cross-validated to differentiate between involved and uninvolved limbs and perform binary (≤ or > 25 days) and multiclass (< 14 vs. 14-42 vs. > 42 days) classification of RTS. RESULT The combination of radiomics features from all diffusion tensor imaging and T2-weighted images provided the most accurate differentiation between involved and uninvolved limbs (AUC ≈ 0.84 ± 0.16). For the binary RTS classification, the combination of all extracted radiomics offered the most accurate classification (AUC ≈ 0.95 ± 0.15). While for the multiclass RTS classification, the combination of features from all the diffusion tensor imaging maps provided the most accurate classification (weighted one vs. rest AUC ≈ 0.81 ± 0.16). CONCLUSION This pilot study demonstrated that radiomics features from hamstring muscles are related to injury and have the potential to predict RTS.
Collapse
Affiliation(s)
- Maribel Torres-Velázquez
- Department of Biomedical Engineering, College of Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | - Christa M Wille
- Department of Biomedical Engineering, College of Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Orthopedics and Rehabilitation, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Badger Athletic Performance Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Samuel A Hurley
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Richard Kijowski
- Department of Radiology, New York University Grossman School of Medicine, New York University, New York, NY, 10016, USA
| | - Bryan C Heiderscheit
- Department of Biomedical Engineering, College of Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Orthopedics and Rehabilitation, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Badger Athletic Performance Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Alan B McMillan
- Department of Biomedical Engineering, College of Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| |
Collapse
|
11
|
Li J, Wang Y, Zhang X, Wu M, Wang M, Zhang R, Wu T, Zhang P, Zhao J. Diffusion tensor imaging combined with chemical shift-encoded sequence to quantify the adaptive changes of calf muscles in amateur marathoners. Eur J Radiol 2024; 175:111449. [PMID: 38604093 DOI: 10.1016/j.ejrad.2024.111449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024]
Abstract
PURPOSE Calf muscles play an important role in marathon race, and the incidence of injury is high in this process. This study prospectively quantified diffusion tensor metrics, muscle fat fraction (MFF) and cross-sectional area (CSA) of calf muscles induced by endurance exercise in amateur marathoners, and the potential mechanisms underlying the changes in these parameters were analyzed. METHOD In this prospective study, 35 marathoners (27 males, 8 females; mean age (standard deviation, SD), 38.92 (4.83) years) and 26 controls (18 males, 8 females; mean age (SD), 38.35 (6.75) years) underwent magnetic resonance imaging (MRI) from September 2022 to March 2023. The diffusion tensor eigenvalues (λ1, λ2, λ3), radial diffusivity (RD), fractional anisotropy (FA), MFF and CSA of calf muscles were compared between marathoners and controls. A binary logistic regression model with gender correction was performed analyze the relationship between marathon exercise and DTI parameters, CSA and MFF of calf muscles. RESULTS Interobserver agreement was good (κ = 0.71). The results of binary logistic regression model with gender correction showed that the regression coefficients of FA values in anterior group of calf (AC), soleus (SOL), medial gastrocnemius (MG) and lateral gastrocnemius (LG) were negative, and the odds ratios (OR) were 0.33, 0.45, 0.35, 0.05, respectively (P < 0.05). The OR of RD in SOL and λ2 in external group of calf (EC) were relatively higher, 3.74 and 3.26, respectively (P < 0.05). CSA was greater in SOL of marathoners, with an OR value of 1.00(P < 0.05). The MFF in AC and LG was lower in marathoners and OR of two indexes were -0.69 and -0.59, respectively (P < 0.05). CONCLUSIONS Diffusion tensor imaging (DTI) combined with chemical shift-encoded sequence can noninvasively detect and quantify the adaptive changes of calf muscle morphology, microstructure and tissue composition induced by long-term running training in amateur marathoners.
Collapse
Affiliation(s)
- Junfei Li
- Department of CT/MR, Hebei Medical University Third Hospital, No. 139, Ziqiang Street, Qiaoxi District, Shijiazhuang 050051, China.
| | - Yijing Wang
- Department of Radiology, Hebei General Hospital, No. 348, Heping Street, Xinhua District, Shijiazhuang 050051, China.
| | - Xuesong Zhang
- Department of CT/MR, Hebei Medical University Third Hospital, No. 139, Ziqiang Street, Qiaoxi District, Shijiazhuang 050051, China.
| | - Mengfei Wu
- Department of CT/MR, Hebei Medical University Third Hospital, No. 139, Ziqiang Street, Qiaoxi District, Shijiazhuang 050051, China.
| | - Ming Wang
- Department of CT/MR, Hebei Medical University Third Hospital, No. 139, Ziqiang Street, Qiaoxi District, Shijiazhuang 050051, China.
| | - Ranxu Zhang
- Department of CT/MR, Hebei Medical University Third Hospital, No. 139, Ziqiang Street, Qiaoxi District, Shijiazhuang 050051, China.
| | - Tao Wu
- GE Healthcare, Beijing, China.
| | - Ping Zhang
- Department of CT/MR, Hebei Medical University Third Hospital, No. 139, Ziqiang Street, Qiaoxi District, Shijiazhuang 050051, China.
| | - Jian Zhao
- Department of CT/MR, Hebei Medical University Third Hospital, No. 139, Ziqiang Street, Qiaoxi District, Shijiazhuang 050051, China.
| |
Collapse
|
12
|
Rauh SS, Suskens JJM, Monte JR, Smithuis F, Gurney-Champion OJ, Tol JL, Maas M, Nederveen AJ, Strijkers GJ, Hooijmans MT. Accelerated IVIM-corrected DTI in acute hamstring injury: towards a clinically feasible acquisition time. Eur Radiol Exp 2024; 8:38. [PMID: 38499843 PMCID: PMC10948680 DOI: 10.1186/s41747-024-00437-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/15/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Intravoxel incoherent motion (IVIM)-corrected diffusion tensor imaging (DTI) potentially enhances return-to-play (RTP) prediction after hamstring injuries. However, the long scan times hamper clinical implementation. We assessed accelerated IVIM-corrected DTI approaches in acute hamstring injuries and explore the sensitivity of the perfusion fraction (f) to acute muscle damage. METHODS Athletes with acute hamstring injury received DTI scans of both thighs < 7 days after injury and at RTP. For a subset, DTI scans were repeated with multiband (MB) acceleration. Data from standard and MB-accelerated scans were fitted with standard and accelerated IVIM-corrected DTI approach using high b-values only. Segmentations of the injury and contralateral healthy muscles were contoured. The fitting methods as well as the standard and MB-accelerated scan were compared using linear regression analysis. For sensitivity to injury, Δ(injured minus healthy) DTI parameters between the methods and the differences between injured and healthy muscles were compared (Wilcoxon signed-rank test). RESULTS The baseline dataset consisted of 109 athletes (16 with MB acceleration); 64 of them received an RTP scan (8 with MB acceleration). Linear regression of the standard and high-b DTI fitting showed excellent agreement. With both fitting methods, standard and MB-accelerated scans were comparable. Δ(injured minus healthy) was similar between standard and accelerated methods. For all methods, all IVIM-DTI parameters except f were significantly different between injured and healthy muscles. CONCLUSIONS High-b DTI fitting with MB acceleration reduced the scan time from 11:08 to 3:40 min:s while maintaining sensitivity to hamstring injuries; f was not different between healthy and injured muscles. RELEVANCE STATEMENT The accelerated IVIM-corrected DTI protocol, using fewer b-values and MB acceleration, reduced the scan time to under 4 min without affecting the sensitivity of the quantitative outcome parameters to hamstring injuries. This allows for routine clinical monitoring of hamstring injuries, which could directly benefit injury treatment and monitoring. KEY POINTS • Combining high-b DTI-fitting and multiband-acceleration dramatically reduced by two thirds the scan time. • The accelerated IVIM-corrected DTI approaches maintained the sensitivity to hamstring injuries. • The IVIM-derived perfusion fraction was not sensitive to hamstring injuries.
Collapse
Affiliation(s)
- Susanne S Rauh
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.
- Amsterdam Movement Sciences, Sports, Amsterdam, The Netherlands.
| | - Jozef J M Suskens
- Amsterdam Movement Sciences, Sports, Amsterdam, The Netherlands
- Department of Orthopedic Surgery and Sports Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Jithsa R Monte
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Frank Smithuis
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Oliver J Gurney-Champion
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Johannes L Tol
- Department of Orthopedic Surgery and Sports Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Academic Center for Evidence Based Sports Medicine (ACES), Amsterdam, The Netherlands
- Amsterdam Collaboration for Health and Safety in Sports (ACHSS), AMC/VUmc IOC Research Center Amsterdam, Amsterdam, The Netherlands
| | - Mario Maas
- Amsterdam Movement Sciences, Sports, Amsterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Aart J Nederveen
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Gustav J Strijkers
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Sports, Amsterdam, The Netherlands
| | - Melissa T Hooijmans
- Amsterdam Movement Sciences, Sports, Amsterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Eajazi A, Weinschenk C, Chhabra A. Imaging Biomarkers of Peripheral Nerves: Focus on Magnetic Resonance Neurography and Ultrasonography. Semin Musculoskelet Radiol 2024; 28:92-102. [PMID: 38330973 DOI: 10.1055/s-0043-1776427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Peripheral neuropathy is a prevalent and debilitating condition affecting millions of individuals globally. Magnetic resonance neurography (MRN) and ultrasonography (US) are noninvasive methods offering comprehensive visualization of peripheral nerves, using anatomical and functional imaging biomarkers to ensure accurate evaluation. For optimized MRN, superior and high-resolution two-dimensional and three-dimensional imaging protocols are essential. The anatomical MRN and US imaging markers include quantitative measures of nerve and fascicular size and signal, and qualitative markers of course and morphology. Among them, quantitative markers of T2-signal intensity ratio are sensitive to nerve edema-like signal changes, and the T1-mapping technique reveals nerve and muscle tissue fatty and fibrous compositional alterations.The functional markers are derived from physiologic properties of nerves, such as diffusion characteristics or blood flow. They include apparent diffusion coefficient from diffusion-weighted imaging and fractional anisotropy and tractography from diffusion tensor imaging to delve into peripheral nerve microstructure and integrity. Peripheral nerve perfusion using dynamic contrast-enhanced magnetic resonance imaging estimates perfusion parameters, offering insights into nerve health and neuropathies involving edema, inflammation, demyelination, and microvascular alterations in conditions like type 2 diabetes, linking nerve conduction pathophysiology to vascular permeability alterations.Imaging biomarkers thus play a pivotal role in the diagnosis, prognosis, and monitoring of nerve pathologies, thereby ensuring comprehensive assessment and elevating patient care. These biomarkers provide valuable insights into nerve structure, function, and pathophysiology, contributing to the accurate diagnosis and management planning for peripheral neuropathy.
Collapse
Affiliation(s)
- Alireza Eajazi
- Department of Radiology, UT Southwestern Medical Center, Dallas, Texas
| | - Cindy Weinschenk
- Department of Radiology, UT Southwestern Medical Center, Dallas, Texas
| | - Avneesh Chhabra
- Department of Radiology, UT Southwestern Medical Center, Dallas, Texas
- Department of Radiology & Orthopedic Surgery, UT Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
14
|
Marth AA, Auer TA, Bertalan G, Gebert P, Kirchenberger T, Geisel D, Hamm B, Keller S. Advanced muscle imaging in adolescent elite rowers utilizing diffusion tensor imaging: Association of imaging findings with stroke typology. PLoS One 2023; 18:e0294693. [PMID: 38019893 PMCID: PMC10686450 DOI: 10.1371/journal.pone.0294693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023] Open
Abstract
PURPOSE Muscular overuse injuries are a common health issue in elite athletes. Changes in the muscular microenvironment can be depicted by Diffusion Tensor Imaging (DTI). We hypothesize that the biomechanics of different stroke typologies plays a role in muscle injury and tested our hypothesis by magnetic resonance imaging (MRI) examination of the lumbar spine muscles of adolescent rowers utilizing DTI. METHODS AND MATERIALS Twenty-two male elite rowers (12 sweep, 10 scull rowers) with a mean age of 15.8 ± 1.2 years underwent 3-Tesla MRI of the lumbar spine 6 hours after cessation of training. Apparent diffusion coefficient (ADC) and fractional anisotropy (FA) were calculated for the erector spinae and multifidus muscle. Student's t-test was used to test differences of DTI parameters between sweep and scull rowers and a Pearson correlation was utilized to correlate the parameters to training volume. RESULTS ADC values in the erector spinae and multifidus muscle were significantly higher (p = 0.039) and FA values significantly lower (p < 0.001) in sweep rowers compared to scull rowers. There was no significant association between DTI parameters and training volume (r ≤ -0.459, p ≥ 0.074). CONCLUSIONS Our DTI results show that lumbar spine muscle diffusivity is higher in sweep rowers than in scull rowers. Altered muscle diffusivity is suggestive of microscopic tissue disruption and might be attributable to biomechanical differences between stroke typologies.
Collapse
Affiliation(s)
- Adrian Alexander Marth
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Timo Alexander Auer
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Clinician Scientist Program, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Gergely Bertalan
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Pimrapat Gebert
- Institute for Biometry, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Timo Kirchenberger
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dominik Geisel
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Bernd Hamm
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sarah Keller
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
15
|
Malis V, Sinha U, Smitaman E, Obra JKL, Langer HT, Mossakowski AA, Baar K, Sinha S. Time-dependent diffusion tensor imaging and diffusion modeling of age-related differences in the medial gastrocnemius and feasibility study of correlations to histopathology. NMR IN BIOMEDICINE 2023; 36:e4996. [PMID: 37434581 PMCID: PMC10592510 DOI: 10.1002/nbm.4996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 07/13/2023]
Abstract
PURPOSE Implement STEAM-DTI to model time-dependent diffusion eigenvalues using the random permeable barrier model (RPBM) to study age-related differences in the medial gastrocnemius (MG) muscle. Validate diffusion model-extracted fiber diameter for histological assessment. METHODS Diffusion imaging at different diffusion times (Δ) was performed on seven young and six senior participants. Time-dependent diffusion eigenvalues (λ2 (t), λ3 (t), and D⊥ (t); average of λ2 (t) and λ3 (t)) were fit to the RPBM to extract tissue microstructure parameters. Biopsy of the MG tissue for histological assessment was performed on a subset of participants (four young, six senior). RESULTS λ3 (t) was significantly higher in the senior cohort for the range of diffusion times. RPBM fits to λ2 (t) yielded fiber diameters in agreement to those from histology for both cohorts. The senior cohort had lower values of volume fraction of membranes, ζ, in fits to λ2 (t), λ3 (t), and D⊥ (t) (significant for fit to λ3 (t)). Fits of fiber diameter from RPBM to that from histology had the highest correlation for the fit to λ2 (t). CONCLUSION The age-related patterns in λ2 (t) and λ3 (t) could tentatively be explained from RPBM fits; these patterns may potentially arise from a decrease in fiber asymmetry and an increase in permeability with age.
Collapse
Affiliation(s)
- Vadim Malis
- Physics, UC San Diego, San Diego, California, USA
- Muscle Imaging and Modeling Lab, Department of Radiology, UC San Diego, San Diego, California, USA
| | - Usha Sinha
- Physics, San Diego State University, San Diego, California, USA
| | - Edward Smitaman
- Department of Radiology, UC San Diego, San Diego, California, USA
| | - Jed Keenan Lim Obra
- Department of Physiology and Membrane Biology, UC Davis, Davis, California, USA
| | - Henning T Langer
- Department of Physiology and Membrane Biology, UC Davis, Davis, California, USA
| | - Agata A Mossakowski
- Department of Physiology and Membrane Biology, UC Davis, Davis, California, USA
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Keith Baar
- Department of Physiology and Membrane Biology, UC Davis, Davis, California, USA
| | - Shantanu Sinha
- Muscle Imaging and Modeling Lab, Department of Radiology, UC San Diego, San Diego, California, USA
| |
Collapse
|
16
|
Engelke K, Chaudry O, Gast L, Eldib MAB, Wang L, Laredo JD, Schett G, Nagel AM. Magnetic resonance imaging techniques for the quantitative analysis of skeletal muscle: State of the art. J Orthop Translat 2023; 42:57-72. [PMID: 37654433 PMCID: PMC10465967 DOI: 10.1016/j.jot.2023.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/04/2023] [Accepted: 07/19/2023] [Indexed: 09/02/2023] Open
Abstract
Background Magnetic resonance imaging (MRI) is the dominant 3D imaging modality to quantify muscle properties in skeletal muscle disorders, in inherited and acquired muscle diseases, and in sarcopenia, in cachexia and frailty. Methods This review covers T1 weighted and Dixon sequences, introduces T2 mapping, diffusion tensor imaging (DTI) and non-proton MRI. Technical concepts, strengths, limitations and translational aspects of these techniques are discussed in detail. Examples of clinical applications are outlined. For comparison 31P-and 13C-MR Spectroscopy are also addressed. Results MRI technology provides a rich toolset to assess muscle deterioration. In addition to classical measures such as muscle atrophy using T1 weighted imaging and fat infiltration using Dixon sequences, parameters characterizing inflammation from T2 maps, tissue sodium using non-proton MRI techniques or concentration or fiber architecture using diffusion tensor imaging may be useful for an even earlier diagnosis of the impairment of muscle quality. Conclusion Quantitative MRI provides new options for muscle research and clinical applications. Current limitations that also impair its more widespread use in clinical trials are lack of standardization, ambiguity of image segmentation and analysis approaches, a multitude of outcome parameters without a clear strategy which ones to use and the lack of normal data.
Collapse
Affiliation(s)
- Klaus Engelke
- Department of Medicine III, Friedrich-Alexander University of Erlangen-Nürnberg, University Hospital Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
- Institute of Medical Physics (IMP), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Henkestr. 91, 91052, Erlangen, Germany
- Clario Inc, Germany
| | - Oliver Chaudry
- Department of Medicine III, Friedrich-Alexander University of Erlangen-Nürnberg, University Hospital Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Lena Gast
- Institute of Radiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Maximiliansplatz 3, 91054, Erlangen, Germany
| | | | - Ling Wang
- Department of Radiology, Beijing Jishuitan Hospital, Beijing, China
| | - Jean-Denis Laredo
- Service d’Imagerie Médicale, Institut Mutualiste Montsouris & B3OA, UMR CNRS 7052, Inserm U1271 Université de Paris-Cité, Paris, France
| | - Georg Schett
- Department of Medicine III, Friedrich-Alexander University of Erlangen-Nürnberg, University Hospital Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Armin M. Nagel
- Institute of Radiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Maximiliansplatz 3, 91054, Erlangen, Germany
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| |
Collapse
|
17
|
Martín-Noguerol T, Barousse R, Wessell DE, Rossi I, Luna A. Clinical applications of skeletal muscle diffusion tensor imaging. Skeletal Radiol 2023; 52:1639-1649. [PMID: 37083977 DOI: 10.1007/s00256-023-04350-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023]
Abstract
Diffusion tensor imaging (DTI) may allow the determination of new threshold values, based on water anisotropy, to differentiate between healthy muscle and various pathological processes. Additionally, it may quantify treatment monitoring or training effects. Most current studies have evaluated the potential of DTI of skeletal muscle to assess sports-related injuries or therapy, and training monitoring. Another critical area of application of this technique is the characterization and monitoring of primary and secondary myopathies. In this manuscript, we review the application of DTI in the evaluation of skeletal muscle in these and other novel clinical scenarios, with emphasis on the use of quantitative imaging-derived biomarkers. Finally, the main limitations of the introduction of DTI in the clinical setting and potential areas of future use are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Antonio Luna
- MRI Unit, Radiology Department, HT Médica, Jaén, Spain
| |
Collapse
|
18
|
Hayashi D, Roemer FW, Tol JL, Heiss R, Crema MD, Jarraya M, Rossi I, Luna A, Guermazi A. Emerging Quantitative Imaging Techniques in Sports Medicine. Radiology 2023; 308:e221531. [PMID: 37552087 DOI: 10.1148/radiol.221531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
This article describes recent advances in quantitative imaging of musculoskeletal extremity sports injuries, citing the existing literature evidence and what additional evidence is needed to make such techniques applicable to clinical practice. Compositional and functional MRI techniques including T2 mapping, diffusion tensor imaging, and sodium imaging as well as contrast-enhanced US have been applied to quantify pathophysiologic processes and biochemical compositions of muscles, tendons, ligaments, and cartilage. Dual-energy and/or spectral CT has shown potential, particularly for the evaluation of osseous and ligamentous injury (eg, creation of quantitative bone marrow edema maps), which is not possible with standard single-energy CT. Recent advances in US technology such as shear-wave elastography or US tissue characterization as well as MR elastography enable the quantification of mechanical, elastic, and physical properties of tissues in muscle and tendon injuries. The future role of novel imaging techniques such as photon-counting CT remains to be established. Eventual prediction of return to play (ie, the time needed for the injury to heal sufficiently so that the athlete can get back to playing their sport) and estimation of risk of repeat injury is desirable to help guide sports physicians in the treatment of their patients. Additional values of quantitative analyses, as opposed to routine qualitative analyses, still must be established using prospective longitudinal studies with larger sample sizes.
Collapse
Affiliation(s)
- Daichi Hayashi
- From the Department of Radiology, Tufts Medical Center, Tufts University School of Medicine, Boston, Mass (D.H.); Quantitative Imaging Center, Department of Radiology, Boston University School of Medicine, Boston, Mass (D.H., F.W.R., M.D.C., A.G.); Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (F.W.R., R.H.); University of Amsterdam Academic Center for Evidence-based Sports Medicine, Amsterdam, the Netherlands (J.L.T.); Institute of Sports Imaging, French National Institute of Sports, Paris, France (M.D.C.); Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (M.J.); Centro Rossi, Buenos Aires, Argentina (I.R.); Department of Radiology, HT Medica, Jaén, Spain (A.L.); and Department of Radiology, VA Boston Healthcare System, Boston University School of Medicine, 1400 VFW Parkway, Suite 1B105, West Roxbury, MA 02132 (A.G.)
| | - Frank W Roemer
- From the Department of Radiology, Tufts Medical Center, Tufts University School of Medicine, Boston, Mass (D.H.); Quantitative Imaging Center, Department of Radiology, Boston University School of Medicine, Boston, Mass (D.H., F.W.R., M.D.C., A.G.); Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (F.W.R., R.H.); University of Amsterdam Academic Center for Evidence-based Sports Medicine, Amsterdam, the Netherlands (J.L.T.); Institute of Sports Imaging, French National Institute of Sports, Paris, France (M.D.C.); Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (M.J.); Centro Rossi, Buenos Aires, Argentina (I.R.); Department of Radiology, HT Medica, Jaén, Spain (A.L.); and Department of Radiology, VA Boston Healthcare System, Boston University School of Medicine, 1400 VFW Parkway, Suite 1B105, West Roxbury, MA 02132 (A.G.)
| | - Johannes L Tol
- From the Department of Radiology, Tufts Medical Center, Tufts University School of Medicine, Boston, Mass (D.H.); Quantitative Imaging Center, Department of Radiology, Boston University School of Medicine, Boston, Mass (D.H., F.W.R., M.D.C., A.G.); Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (F.W.R., R.H.); University of Amsterdam Academic Center for Evidence-based Sports Medicine, Amsterdam, the Netherlands (J.L.T.); Institute of Sports Imaging, French National Institute of Sports, Paris, France (M.D.C.); Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (M.J.); Centro Rossi, Buenos Aires, Argentina (I.R.); Department of Radiology, HT Medica, Jaén, Spain (A.L.); and Department of Radiology, VA Boston Healthcare System, Boston University School of Medicine, 1400 VFW Parkway, Suite 1B105, West Roxbury, MA 02132 (A.G.)
| | - Rafael Heiss
- From the Department of Radiology, Tufts Medical Center, Tufts University School of Medicine, Boston, Mass (D.H.); Quantitative Imaging Center, Department of Radiology, Boston University School of Medicine, Boston, Mass (D.H., F.W.R., M.D.C., A.G.); Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (F.W.R., R.H.); University of Amsterdam Academic Center for Evidence-based Sports Medicine, Amsterdam, the Netherlands (J.L.T.); Institute of Sports Imaging, French National Institute of Sports, Paris, France (M.D.C.); Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (M.J.); Centro Rossi, Buenos Aires, Argentina (I.R.); Department of Radiology, HT Medica, Jaén, Spain (A.L.); and Department of Radiology, VA Boston Healthcare System, Boston University School of Medicine, 1400 VFW Parkway, Suite 1B105, West Roxbury, MA 02132 (A.G.)
| | - Michel D Crema
- From the Department of Radiology, Tufts Medical Center, Tufts University School of Medicine, Boston, Mass (D.H.); Quantitative Imaging Center, Department of Radiology, Boston University School of Medicine, Boston, Mass (D.H., F.W.R., M.D.C., A.G.); Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (F.W.R., R.H.); University of Amsterdam Academic Center for Evidence-based Sports Medicine, Amsterdam, the Netherlands (J.L.T.); Institute of Sports Imaging, French National Institute of Sports, Paris, France (M.D.C.); Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (M.J.); Centro Rossi, Buenos Aires, Argentina (I.R.); Department of Radiology, HT Medica, Jaén, Spain (A.L.); and Department of Radiology, VA Boston Healthcare System, Boston University School of Medicine, 1400 VFW Parkway, Suite 1B105, West Roxbury, MA 02132 (A.G.)
| | - Mohamed Jarraya
- From the Department of Radiology, Tufts Medical Center, Tufts University School of Medicine, Boston, Mass (D.H.); Quantitative Imaging Center, Department of Radiology, Boston University School of Medicine, Boston, Mass (D.H., F.W.R., M.D.C., A.G.); Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (F.W.R., R.H.); University of Amsterdam Academic Center for Evidence-based Sports Medicine, Amsterdam, the Netherlands (J.L.T.); Institute of Sports Imaging, French National Institute of Sports, Paris, France (M.D.C.); Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (M.J.); Centro Rossi, Buenos Aires, Argentina (I.R.); Department of Radiology, HT Medica, Jaén, Spain (A.L.); and Department of Radiology, VA Boston Healthcare System, Boston University School of Medicine, 1400 VFW Parkway, Suite 1B105, West Roxbury, MA 02132 (A.G.)
| | - Ignacio Rossi
- From the Department of Radiology, Tufts Medical Center, Tufts University School of Medicine, Boston, Mass (D.H.); Quantitative Imaging Center, Department of Radiology, Boston University School of Medicine, Boston, Mass (D.H., F.W.R., M.D.C., A.G.); Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (F.W.R., R.H.); University of Amsterdam Academic Center for Evidence-based Sports Medicine, Amsterdam, the Netherlands (J.L.T.); Institute of Sports Imaging, French National Institute of Sports, Paris, France (M.D.C.); Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (M.J.); Centro Rossi, Buenos Aires, Argentina (I.R.); Department of Radiology, HT Medica, Jaén, Spain (A.L.); and Department of Radiology, VA Boston Healthcare System, Boston University School of Medicine, 1400 VFW Parkway, Suite 1B105, West Roxbury, MA 02132 (A.G.)
| | - Antonio Luna
- From the Department of Radiology, Tufts Medical Center, Tufts University School of Medicine, Boston, Mass (D.H.); Quantitative Imaging Center, Department of Radiology, Boston University School of Medicine, Boston, Mass (D.H., F.W.R., M.D.C., A.G.); Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (F.W.R., R.H.); University of Amsterdam Academic Center for Evidence-based Sports Medicine, Amsterdam, the Netherlands (J.L.T.); Institute of Sports Imaging, French National Institute of Sports, Paris, France (M.D.C.); Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (M.J.); Centro Rossi, Buenos Aires, Argentina (I.R.); Department of Radiology, HT Medica, Jaén, Spain (A.L.); and Department of Radiology, VA Boston Healthcare System, Boston University School of Medicine, 1400 VFW Parkway, Suite 1B105, West Roxbury, MA 02132 (A.G.)
| | - Ali Guermazi
- From the Department of Radiology, Tufts Medical Center, Tufts University School of Medicine, Boston, Mass (D.H.); Quantitative Imaging Center, Department of Radiology, Boston University School of Medicine, Boston, Mass (D.H., F.W.R., M.D.C., A.G.); Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (F.W.R., R.H.); University of Amsterdam Academic Center for Evidence-based Sports Medicine, Amsterdam, the Netherlands (J.L.T.); Institute of Sports Imaging, French National Institute of Sports, Paris, France (M.D.C.); Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (M.J.); Centro Rossi, Buenos Aires, Argentina (I.R.); Department of Radiology, HT Medica, Jaén, Spain (A.L.); and Department of Radiology, VA Boston Healthcare System, Boston University School of Medicine, 1400 VFW Parkway, Suite 1B105, West Roxbury, MA 02132 (A.G.)
| |
Collapse
|
19
|
Monte JR, Hooijmans MT, Froeling M, Oudeman J, Tol JL, Strijkers GJ, Nederveen AJ, Maas M. Diffusion tensor imaging and quantitative T2 mapping to monitor muscle recovery following hamstring injury. NMR IN BIOMEDICINE 2023; 36:e4902. [PMID: 36630472 DOI: 10.1002/nbm.4902] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 06/15/2023]
Abstract
MRI examinations are accurate for diagnosing sports-related acute hamstring injuries. However, sensitive imaging methods for assessing recovery of these injuries are lacking. Diffusion tensor imaging (DTI) and quantitative T2 (qT2) mapping have both shown promise for assessing recovery of muscle micro trauma and exercise effects. The purpose of this study was to explore the potential of DTI and qT2 mapping for monitoring the muscle recovery processes after acute hamstring injury. In this prospective study, athletes with an acute hamstring injury underwent a 3-T MRI examination of the injured and contralateral hamstrings including DTI and qT2 measurements at three time points: (1) within 1 week after sustaining the injury, (2) 2 weeks after time point 1, and (3) return to play (RTP). A linear mixed model was used for time-effect analysis and paired t-tests for the detection of differences between injured and uninjured muscles. Forty-one athletes (age 27.8 ± 7 years; two females and 39 males) were included. Mean RTP time was 50 (range 12-169) days. A significant time effect was found for mean diffusivity, radial diffusivity, and the second and third eigenvalues (p ≤ 0.001) in the injured muscles. Fractional anisotropy (p = 0.40), first eigenvalue (p = 0.02), and qT2 (p = 0.61) showed no significant time effect. All DTI indices, except for fractional anisotropy, were significantly elevated compared with control muscles right after the injury (p < 0.001). Values normalized during the recovery period, with no significant differences between control and injured muscles at RTP (p values ranged from 0.08 to 0.51). Mean qT2 relaxation times in injured muscles were not significantly elevated compared with control muscles at any time point (p > 0.04). In conclusion, DTI can be used to monitor recovery after an acute hamstring injury. Future work should explore the potential of DTI indices to predict RTP and recovery times in athletes after an acute strain injury.
Collapse
Affiliation(s)
- Jithsa R Monte
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Melissa T Hooijmans
- Department of Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Martijn Froeling
- Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jos Oudeman
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Johannes L Tol
- Department of Orthopaedic Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
- Academic Center for Evidence Based Sports Medicine (ACES), Amsterdam, the Netherlands
- Amsterdam Collaboration for Health and Safety in Sports (ACHSS), AMC/VUmc IOC Research Center, Amsterdam, the Netherlands
| | - Gustav J Strijkers
- Department of Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Aart J Nederveen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Mario Maas
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| |
Collapse
|
20
|
Chianca V, Albano D, Rizzo S, Maas M, Sconfienza LM, Del Grande F. Inter-vendor and inter-observer reliability of diffusion tensor imaging in the musculoskeletal system: a multiscanner MR study. Insights Imaging 2023; 14:32. [PMID: 36757529 PMCID: PMC9911574 DOI: 10.1186/s13244-023-01374-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/09/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND To evaluate the inter-observer and inter-vendor reliability of diffusion tensor imaging parameters in the musculoskeletal system. METHODS This prospective study included six healthy volunteers three men (mean age: 42; range: 31-52 years) and three women (mean age: 36; range: 30-44 years). Each subject was scanned using different 3 Tesla magnetic resonance scanners from three different vendors at three different sites bilaterally. First, the intra-class correlation coefficient was used to determine between-observers agreement for overall measurements and clinical sites. Next, between-group comparisons were made through the nonparametric Friedman's test. Finally, the Bland-Altman method was used to determine agreement among the three scanner measurements, comparing them two by two. RESULTS A total of 792 measurement were calculated. ICC reported high levels of agreement between the two observers. ICC related to MD, FA, and RD measurements ranged from 0.88 (95% CI 0.85-0.90) to 0.95 (95% CI 0.94-0.96), from 0.85 (95% CI 0.81-0.88) to 0.95 (95% CI 0.93-0.96), and from 0.89 (0.85-0.90) to 0.92 (0.90-0.94). No statistically significant inter-vendor differences were observed. The Bland-Altmann method confirmed a high correlation between parameter values. CONCLUSION An excellent inter-observer and inter-vendor reliability was found in our study.
Collapse
Affiliation(s)
- Vito Chianca
- Clinica di Radiologia EOC IIMSI, Lugano, Switzerland. .,Ospedale Evangelico Betania, Via Argine 604, 80147, Naples, Italy.
| | - Domenico Albano
- grid.417776.4IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | | | - Mario Maas
- grid.7177.60000000084992262Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands ,Amsterdam Movement Sciences Research Institute, Amsterdam, The Netherlands
| | - Luca Maria Sconfienza
- grid.417776.4IRCCS Istituto Ortopedico Galeazzi, Milan, Italy ,grid.4708.b0000 0004 1757 2822Department of Biomedical Sciences for Health, University of Milano, Milan, Italy
| | | |
Collapse
|
21
|
Martín-Noguerol T, Barousse R, Wessell DE, Rossi I, Luna A. A handbook for beginners in skeletal muscle diffusion tensor imaging: physical basis and technical adjustments. Eur Radiol 2022; 32:7623-7631. [PMID: 35554647 DOI: 10.1007/s00330-022-08837-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/09/2022] [Accepted: 04/14/2022] [Indexed: 01/03/2023]
Abstract
Magnetic resonance imaging (MRI) of skeletal muscle is routinely performed using morphological sequences to acquire anatomical information. Recently, there is an increasing interest in applying advanced MRI techniques that provide pathophysiologic information for skeletal muscle evaluation to complement standard morphologic information. Among these advanced techniques, diffusion tensor imaging (DTI) has emerged as a potential tool to explore muscle microstructure. DTI can noninvasively assess the movement of water molecules in well-organized tissues with anisotropic diffusion, such as skeletal muscle. The acquisition of DTI studies for skeletal muscle assessment requires specific technical adjustments. Besides, knowledge of DTI physical basis and skeletal muscle physiopathology facilitates the evaluation of this advanced sequence and both image and parameter interpretation. Parameters derived from DTI provide a quantitative assessment of muscle microstructure with potential to become imaging biomarkers of normal and pathological skeletal muscle. KEY POINTS: • Diffusion tensor imaging (DTI) allows to evaluate the three-dimensional movement of water molecules inside biological tissues. • The skeletal muscle structure makes it suitable for being evaluated with DTI. • Several technical adjustments have to be considered for obtaining robust and reproducible DTI studies for skeletal muscle assessment, minimizing potential artifacts.
Collapse
Affiliation(s)
- Teodoro Martín-Noguerol
- MRI Section, Radiology Department, SERCOSA, HT Médica, Carmelo Torres 2, 23007, Jaén, Spain.
| | | | | | | | - Antonio Luna
- MRI Section, Radiology Department, SERCOSA, HT Médica, Carmelo Torres 2, 23007, Jaén, Spain
| |
Collapse
|
22
|
Charles J, Kissane R, Hoehfurtner T, Bates KT. From fibre to function: are we accurately representing muscle architecture and performance? Biol Rev Camb Philos Soc 2022; 97:1640-1676. [PMID: 35388613 PMCID: PMC9540431 DOI: 10.1111/brv.12856] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 12/11/2022]
Abstract
The size and arrangement of fibres play a determinate role in the kinetic and energetic performance of muscles. Extrapolations between fibre architecture and performance underpin our understanding of how muscles function and how they are adapted to power specific motions within and across species. Here we provide a synopsis of how this 'fibre to function' paradigm has been applied to understand muscle design, performance and adaptation in animals. Our review highlights the widespread application of the fibre to function paradigm across a diverse breadth of biological disciplines but also reveals a potential and highly prevalent limitation running through past studies. Specifically, we find that quantification of muscle architectural properties is almost universally based on an extremely small number of fibre measurements. Despite the volume of research into muscle properties, across a diverse breadth of research disciplines, the fundamental assumption that a small proportion of fibre measurements can accurately represent the architectural properties of a muscle has never been quantitatively tested. Subsequently, we use a combination of medical imaging, statistical analysis, and physics-based computer simulation to address this issue for the first time. By combining diffusion tensor imaging (DTI) and deterministic fibre tractography we generated a large number of fibre measurements (>3000) rapidly for individual human lower limb muscles. Through statistical subsampling simulations of these measurements, we demonstrate that analysing a small number of fibres (n < 25) typically used in previous studies may lead to extremely large errors in the characterisation of overall muscle architectural properties such as mean fibre length and physiological cross-sectional area. Through dynamic musculoskeletal simulations of human walking and jumping, we demonstrate that recovered errors in fibre architecture characterisation have significant implications for quantitative predictions of in-vivo dynamics and muscle fibre function within a species. Furthermore, by applying data-subsampling simulations to comparisons of muscle function in humans and chimpanzees, we demonstrate that error magnitudes significantly impact both qualitative and quantitative assessment of muscle specialisation, potentially generating highly erroneous conclusions about the absolute and relative adaption of muscles across species and evolutionary transitions. Our findings have profound implications for how a broad diversity of research fields quantify muscle architecture and interpret muscle function.
Collapse
Affiliation(s)
- James Charles
- Structure and Motion Lab, Comparative Biomedical SciencesRoyal Veterinary CollegeHawkshead LaneHatfieldHertfordshireAL9 7TAU.K.
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical SciencesUniversity of LiverpoolThe William Henry Duncan Building, 6 West Derby StreetLiverpoolL7 8TXU.K.
| | - Roger Kissane
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical SciencesUniversity of LiverpoolThe William Henry Duncan Building, 6 West Derby StreetLiverpoolL7 8TXU.K.
| | - Tatjana Hoehfurtner
- School of Life SciencesUniversity of Lincoln, Joseph Banks LaboratoriesGreen LaneLincolnLN6 7DLU.K.
| | - Karl T. Bates
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical SciencesUniversity of LiverpoolThe William Henry Duncan Building, 6 West Derby StreetLiverpoolL7 8TXU.K.
| |
Collapse
|
23
|
Forsting J, Rehmann R, Rohm M, Güttsches AK, Froeling M, Kan HE, Tegenthoff M, Vorgerd M, Schlaffke L. Robustness and stability of volume-based tractography in a multicenter setting. NMR IN BIOMEDICINE 2022; 35:e4707. [PMID: 35102637 DOI: 10.1002/nbm.4707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Muscle diffusion tensor imaging (mDTI)-based tractography is a promising tool with which to detect subclinical changes in muscle injuries and to evaluate pathophysiology in neuromuscular diseases. Classic region of interest (ROI)-based tractography is very time-consuming and requires an examiner with extensive experience. (Semi)automatic approaches such as volume-based tractography (VBT) can diminish this problem but its robustness and stability are unknown. The aim of the current study was to assess the performance of VBT in a multicenter setting and to evaluate semiautomatic segmentation approaches in the analysis of VBT-derived data in terms of the comparability of the outcome measures. Five traveling volunteers underwent 3-T mDTI of seven calf muscles of both legs at six different MR sites. Tract properties and diffusion metrics were calculated using VBT. Within-subject coefficients of variance (wsCVs) and intraclass correlation coefficients (ICCs) were calculated to assess the multicenter reproducibility of tract properties such as tract density (TD), mean tract length, volume and tract propagation angle, and diffusion metrics such as fractional anisotropy, mean diffusivity, axial diffusivity (λ1 ) and radial diffusivity in traveling subjects. Furthermore, 50 individual datasets from five different centers (10 datasets per center) were pooled to assess the feasibility of VBT with manual and semiautomatic segmentation. To assess the differences of tract properties and diffusion metrics between segmentation approaches an ANOVA was performed, and ICC and Bland-Altman plots were analyzed. wsCVs and ICCs showed good reproducibility of the tract properties TD and volume, as well as diffusion metrics. ANOVA showed no significant differences between manual and semiautomatic approaches. ICCs were excellent (≥ 0.992) and Bland-Altman analysis did not reveal any systemic bias between the methods. Tract properties and diffusion metrics derived from VBT showed good comparability among centers. Semiautomatic approaches revealed excellent agreement with gold standard of manual segmentation. These findings suggest that pooling data from different centers to construct a reference database for tractography results is feasible using semiautomatic segmentation approaches.
Collapse
Affiliation(s)
- Johannes Forsting
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Robert Rehmann
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
- Department of Neurology, Klinikum Dortmund, University Witten-Herdecke, Dortmund, Germany
| | - Marlena Rohm
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Bochum, Germany
| | - Anne-Katrin Güttsches
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Bochum, Germany
| | - Martijn Froeling
- Department of Radiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Hermien E Kan
- C. J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Duchenne Center, Leiden, The Netherlands
| | - Martin Tegenthoff
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Matthias Vorgerd
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Bochum, Germany
| | - Lara Schlaffke
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Bochum, Germany
| |
Collapse
|
24
|
Fouré A, Besson T, Stauffer E, Skinner SC, Bouvier J, Féasson L, Connes P, Hautier CA, Millet GY. Sex-related differences and effects of short and long trail running races on resting muscle-tendon mechanical properties. Scand J Med Sci Sports 2022; 32:1477-1492. [PMID: 35730335 DOI: 10.1111/sms.14203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/13/2022] [Accepted: 06/13/2022] [Indexed: 11/29/2022]
Abstract
The purpose of the study was to assess sex-related differences in resting mechanical properties and adaptations of skeletal muscles and tendons in response to trail running races of different distances using multi-site shear wave elastography assessments of the lower limb, force capacity and blood analyses. Sex differences in resting mechanical properties of knee extensor and plantar flexor muscles and tendons were characterized by shear wave velocity measurements in healthy males (N=42) and females (N=25) trained in long distance running. Effects of running distance on muscle and tendon properties were assessed in short (<60km, N=23) vs. long (>100km, N=26) distance races. Changes in isometric maximal voluntary contraction torque, serum C-reactive protein and creatine kinase activity were also quantified after running races. Higher shear wave velocity of relaxed triceps surae muscle was detected in females as compared to males before running races (+4.8%, p=0.006), but the significant increases in triceps surae muscle group (+7.0%, p=0.001) and patellar tendon shear wave velocity (+15.4%, p=0.001) after short-distance races were independent of sex. A significant decrease in triceps surae muscle shear wave velocity was found after long-distance races in the whole experimental population (-3.1%, p=0.049). Post-races increase in C-reactive protein and creatine kinase activity were significantly correlated to the relative decreases in triceps surae and quadriceps femoris skeletal muscle shear wave velocity (ρ=-0.56, p=0.001 and ρ=-0.51, p=0.001, respectively). Resting mechanical properties of muscles and tendons are affected by sex, and that adaptations to trail races are related to running distance. Exercise-induced changes in resting skeletal muscle mechanical properties are associated with enhanced indirect markers of inflammation and muscle damage.
Collapse
Affiliation(s)
- Alexandre Fouré
- Univ Lyon, Université Claude Bernard Lyon 1 (UCBL1), Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM), Villeurbanne, France
| | - Thibault Besson
- Université Jean Monnet de Saint-Etienne, Université de Lyon, Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM), Campus Santé Innovations-IRMIS, Saint Priest en Jarez, France
| | - Emeric Stauffer
- Univ Lyon, Université Claude Bernard Lyon 1 (UCBL1), Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM), Villeurbanne, France.,Hospices Civils de Lyon, Exploration Fonctionnelle Respiratoire, Médecine du Sport et de l'Activité Physique, Lyon, France.,Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
| | - Sarah C Skinner
- Univ Lyon, Université Claude Bernard Lyon 1 (UCBL1), Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM), Villeurbanne, France.,Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
| | - Jérémie Bouvier
- Univ Lyon, Université Claude Bernard Lyon 1 (UCBL1), Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM), Villeurbanne, France
| | - Léonard Féasson
- Université Jean Monnet de Saint-Etienne, Université de Lyon, Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM), Campus Santé Innovations-IRMIS, Saint Priest en Jarez, France.,CHU St Etienne, Unité de Myologie, Centre Référent Maladies Neuromusculaires Rares, Euro-NmD, Saint-Etienne, France
| | - Philippe Connes
- Univ Lyon, Université Claude Bernard Lyon 1 (UCBL1), Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM), Villeurbanne, France.,Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France.,Institut Universitaire de France, Paris, France
| | - Christophe A Hautier
- Univ Lyon, Université Claude Bernard Lyon 1 (UCBL1), Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM), Villeurbanne, France
| | - Guillaume Y Millet
- Université Jean Monnet de Saint-Etienne, Université de Lyon, Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM), Campus Santé Innovations-IRMIS, Saint Priest en Jarez, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|
25
|
Markus I, Constantini K, Goldstein N, Amedi R, Bornstein Y, Stolkovsky Y, Vidal M, Lev-Ari S, Balaban R, Leibou S, Blumenfeld-Katzir T, Ben-Eliezer N, Peled D, Assaf Y, Jensen D, Constantini N, Dubnov-Raz G, Halperin I, Gepner Y. Age Differences in Recovery Rate Following an Aerobic-Based Exercise Protocol Inducing Muscle Damage Among Amateur, Male Athletes. Front Physiol 2022; 13:916924. [PMID: 35774290 PMCID: PMC9239318 DOI: 10.3389/fphys.2022.916924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose: Compare recovery rates between active young (Y) and middle-aged (MA) males up to 48H post aerobically based, exercise-induced muscle damage (EIMD) protocol. A secondary aim was to explore the relationships between changes in indices associated with EIMD and recovery throughout this timeframe. Methods: Twenty-eight Y (n = 14, 26.1 ± 2.9y, 74.5 ± 9.3 kg) and MA (n = 14, 43.6 ± 4.1y, 77.3 ± 12.9 kg) physically active males, completed a 60-min downhill running (DHR) on a treadmill at −10% incline and at 65% of maximal heart rate (HR). Biochemical, biomechanical, psychological, force production and muscle integrity (using MRI diffusion tensor imaging) markers were measured at baseline, immediately-post, and up to 48H post DHR. Results: During the DHR, HR was lower (p < 0.05) in MA compared to Y, but running pace and distance covered were comparable between groups. No statistical or meaningful differences were observed between groups for any of the outcomes. Yet, Significant (p < 0.05) time-effects within each group were observed: markers of muscle damage, cadence and perception of pain increased, while TNF-a, isometric and dynamic force production and stride-length decreased. Creatine-kinase at 24H-post and 48H-post were correlated (p < 0.05, r range = −0.57 to 0.55) with pain perception, stride-length, and cadence at 24H-post and 48H-post. Significant (p < 0.05) correlations were observed between isometric force production at all time-points and IL-6 at 48H-post DHR (r range = −0.62 to (−0.74). Conclusion: Y and MA active male amateur athletes recover in a comparable manner following an EIMD downhill protocol. These results indicate that similar recovery strategies can be used by trainees from both age groups following an aerobic-based EIMD protocol.
Collapse
Affiliation(s)
- Irit Markus
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, and Sylvan Adams Sports Institute, Tel-Aviv University, Tel-Aviv, Israel
| | - Keren Constantini
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, and Sylvan Adams Sports Institute, Tel-Aviv University, Tel-Aviv, Israel
| | - Nir Goldstein
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, and Sylvan Adams Sports Institute, Tel-Aviv University, Tel-Aviv, Israel
| | - Roee Amedi
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, and Sylvan Adams Sports Institute, Tel-Aviv University, Tel-Aviv, Israel
| | - Yael Bornstein
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, and Sylvan Adams Sports Institute, Tel-Aviv University, Tel-Aviv, Israel
| | - Yael Stolkovsky
- Department of Health Promotion, School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Merav Vidal
- Department of Health Promotion, School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Shahar Lev-Ari
- Department of Health Promotion, School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Roy Balaban
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Stav Leibou
- Sackler School of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | | | - Noam Ben-Eliezer
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel-Aviv, Israel
- Center for Advanced Imaging Innovation and Research (CAI2R), New-York University Langone Medical Center, New York, NY, United States
| | - David Peled
- Sagol School of Neuroscience, Tel Aviv University, Tel-Aviv, Israel
| | - Yaniv Assaf
- Sagol School of Neuroscience, Tel Aviv University, Tel-Aviv, Israel
- Department of Neurobiology, Faculty of Life Sciences, Tel-Aviv, Israel
- The Strauss Center for Neuroimaging, Tel Aviv University, Tel Aviv, Israel
| | - Dennis Jensen
- Clinical Exercise & Respiratory Physiology Laboratory, Department of Kinesiology and Physical Education, Faculty of Education, McGill University, Montreal, QC, Canada
| | - Naama Constantini
- Shaare Zedek Medical center affiliated to the Hebrew University, Jerusalem, Israel
| | - Gal Dubnov-Raz
- Sports and Exercise Medicine Clinic, Sheba Medical Center, Sackler Faculty of Medicine, Tel Aviv, Israel
| | - Israel Halperin
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, and Sylvan Adams Sports Institute, Tel-Aviv University, Tel-Aviv, Israel
| | - Yftach Gepner
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, and Sylvan Adams Sports Institute, Tel-Aviv University, Tel-Aviv, Israel
- *Correspondence: Yftach Gepner,
| |
Collapse
|
26
|
Englund EK, Berry DB, Behun JJ, Ward SR, Frank LR, Shahidi B. IVIM Imaging of Paraspinal Muscles Following Moderate and High-Intensity Exercise in Healthy Individuals. FRONTIERS IN REHABILITATION SCIENCES 2022; 3. [PMID: 35959464 PMCID: PMC9365030 DOI: 10.3389/fresc.2022.910068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Background Quantification of the magnitude and spatial distribution of muscle blood flow changes following exercise may improve our understanding of the effectiveness of various exercise prescriptions. Intravoxel incoherent motion (IVIM) magnetic resonance imaging (MRI) is a technique that quantifies molecular diffusion and microvascular blood flow, and has recently gained momentum as a method to evaluate a muscle's response to exercise. It has also been shown to predict responses to exercise-based physical therapy in individuals with low back pain. However, no study has evaluated the sensitivity of IVIM-MRI to exercise of varying intensity in humans. Here, we aimed to evaluate IVIM signal changes of the paraspinal muscles in response to moderate and high intensity lumbar extension exercise in healthy individuals. Methods IVIM data were collected in 11 healthy volunteers before and immediately after a 3-min bout of moderate and high-intensity resisted lumbar extension. IVIM data were analyzed to determine the average perfusion fraction (f), pseudo-diffusion coefficient (D*), and diffusion coefficient (D) in the bilateral paraspinal muscles. Changes in IVIM parameters were compared between the moderate and high intensity exercise bouts. Results Exercise increased all IVIM parameters, regardless of intensity (p < 0.003). Moderate intensity exercise resulted in a 11.2, 19.6, and 3.5% increase in f, D* and D, respectively. High intensity exercise led to a similar increase in f (12.2%), but much greater changes in D* (48.6%) and D (7.9%). Conclusion IVIM parameter increases suggest that both the moderate and high-intensity exercise conditions elicited measurable changes in blood flow (increased f and D*) and extravascular molecular diffusion rates (increased D), and that there was a dose-dependence of exercise intensity on D* and D.
Collapse
Affiliation(s)
- Erin K. Englund
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA, United States
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - David B. Berry
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA, United States
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, United States
| | - John J. Behun
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA, United States
| | - Samuel R. Ward
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA, United States
- Department of Radiology, University of California, San Diego, La Jolla, CA, United States
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Lawrence R. Frank
- Department of Radiology, University of California, San Diego, La Jolla, CA, United States
| | - Bahar Shahidi
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA, United States
- *Correspondence: Bahar Shahidi
| |
Collapse
|
27
|
Ran J, Dai B, Liu C, Zhang H, Li Y, Hou B, Li X. The diagnostic value of T2 map, diffusion tensor imaging, and diffusion kurtosis imaging in differentiating dermatomyositis from muscular dystrophy. Acta Radiol 2022; 63:467-473. [PMID: 33641450 DOI: 10.1177/0284185121999006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Dermatomyositis (DM) and muscular dystrophy are clinically difficult to differentiate. PURPOSE To confirm the feasibility and assess the accuracy of conventional magnetic resonance imaging (MRI), T2 map, diffusion tensor imaging (DTI), and diffusion kurtosis imaging (DKI) in the differentiation of DM from muscular dystrophy. MATERIAL AND METHODS Forty-two patients with DM proven by diagnostic criteria were enrolled in the study along with 23 patients with muscular dystrophy. Conventional MR, T2 map, DTI, and DKI images were obtained in the thigh musculature for all patients. Intramuscular T2 value, apparent diffusion coefficient (ADC), fractional anisotropy (FA), mean diffusivity (MD), and mean kurtosis (MK) values were compared between the patients with DM and muscular dystrophy. Student's t-tests and receiver operating characteristic (ROC) curve analyses were performed for all parameters. P values < 0.05 were considered statistically significant. RESULTS The intramuscular T2, ADC, FA, MD, and MK values within muscles were statistically significantly different between the DM and muscular dystrophy groups (P<0.01). The MK value was statistically significantly different between the groups in comparison with T2 and FA value. As a supplement to conventional MRI, the parameters of MD and MK differentiated DM and muscular dystrophy may be valuable. The optimal cut-off value of ADC and MD values (with respective AUC, sensitivity, and specificity) between DM and muscular dystrophy were 1.698 ×10-3mm2/s (0.723, 54.1%, and 78.1%) and 1.80 ×10-3mm2/s (61.9% and 70.2%), respectively. CONCLUSION Thigh muscle ADC and MD parameters may be useful in differentiating patients with DM from those with muscular dystrophy.
Collapse
Affiliation(s)
- Jun Ran
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, PR China
| | - Bin Dai
- Department of Hepatobiliary Surgery, Wuhan No. 1 Hospital, Wuhan, Hubei Province, PR China
| | - Chanyuan Liu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, PR China
| | - Huayue Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, PR China
| | - Yitong Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, PR China
| | - Bowen Hou
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, PR China
| | - Xiaoming Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, PR China
| |
Collapse
|
28
|
Waterval NFJ, Meekes VL, Hooijmans MT, Froeling M, Jaspers RT, Oudeman J, Nederveen AJ, Brehm MA, Nollet F. The relationship between quantitative magnetic resonance imaging of the ankle plantar flexors, muscle function during walking and maximal strength in people with neuromuscular diseases. Clin Biomech (Bristol, Avon) 2022; 94:105609. [PMID: 35247697 DOI: 10.1016/j.clinbiomech.2022.105609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Progression of plantar flexor weakness in neuromuscular diseases is usually monitored by muscle strength measurements, although they poorly relate to muscle function during walking. Pathophysiological changes such as intramuscular adipose tissue affect dynamic muscle function independent from isometric strength. Diffusion tensor imaging and T2 imaging are quantitative MRI measures reflecting muscular pathophysiological changes, and are therefore potential biomarkers to monitor plantar flexor functioning during walking in people with neuromuscular diseases. METHODS In fourteen individuals with plantar flexor weakness diffusion tensor imaging and T2 scans of the plantar flexors were obtained, and the diffusion indices fractional anisotropy and mean diffusivity calculated. With a dynamometer, maximal isometric plantar flexor strength was measured. 3D gait analysis was used to assess maximal ankle moment and power during walking. FINDINGS Fractional anisotropy, mean diffusivity and T2 relaxation time all moderately correlated with maximal plantar flexor strength (r > 0.512). Fractional anisotropy and mean diffusivity were not related with ankle moment or power (r < 0.288). T2 relaxation time was strongly related to ankle moment (r = -0.789) and ankle power (r = -0.798), and moderately related to maximal plantar flexor strength (r < 0.600). INTERPRETATION In conclusion, T2 relaxation time, indicative of multiple pathophysiological changes, was strongly related to plantar flexor function during walking, while fractional anisotropy and mean diffusivity, indicative of fiber size, only related to maximal plantar flexor strength. This indicates that these measures may be suitable to monitor muscle function and gain insights into the pathophysiological changes underlying a poor plantar flexor functioning during gait in people with neuromuscular diseases.
Collapse
Affiliation(s)
- N F J Waterval
- Amsterdam UMC, University of Amsterdam, Department of Rehabilitation Medicine, Amsterdam Movement Sciences, Meibergdreef 9, Amsterdam, the Netherlands.
| | - V L Meekes
- Amsterdam UMC, University of Amsterdam, Department of Rehabilitation Medicine, Amsterdam Movement Sciences, Meibergdreef 9, Amsterdam, the Netherlands
| | - M T Hooijmans
- Amsterdam UMC, University of Amsterdam, Department of Radiology and Nuclear Medicine, Meibergdreef 9, Amsterdam, the Netherlands
| | - M Froeling
- University Medical Center Utrecht, Department of Radiology, Heidelberglaan 100, Utrecht, the Netherlands
| | - R T Jaspers
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, the Netherlands
| | - J Oudeman
- University Medical Center Utrecht, Department of Radiology, Heidelberglaan 100, Utrecht, the Netherlands
| | - A J Nederveen
- Amsterdam UMC, University of Amsterdam, Department of Radiology and Nuclear Medicine, Meibergdreef 9, Amsterdam, the Netherlands
| | - M A Brehm
- Amsterdam UMC, University of Amsterdam, Department of Rehabilitation Medicine, Amsterdam Movement Sciences, Meibergdreef 9, Amsterdam, the Netherlands
| | - F Nollet
- Amsterdam UMC, University of Amsterdam, Department of Rehabilitation Medicine, Amsterdam Movement Sciences, Meibergdreef 9, Amsterdam, the Netherlands
| |
Collapse
|
29
|
Ng KCG. CORR Insights®: How Does Chondrolabral Damage and Labral Repair Influence the Mechanics of the Hip in the Setting of Cam Morphology? A Finite-Element Modeling Study. Clin Orthop Relat Res 2022; 480:616-618. [PMID: 34797232 PMCID: PMC8846352 DOI: 10.1097/corr.0000000000002056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/26/2021] [Indexed: 01/31/2023]
Affiliation(s)
- K C Geoffrey Ng
- Robarts Research Institute, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
- Department of Medical Imaging, Western University, London, Ontario, Canada
- Department of Surgery, Western University, London, Ontario, Canada
| |
Collapse
|
30
|
Anderssen KE, Kranz M, Syed S, Stormo SK. Diffusion tensor imaging for spatially-resolved characterization of muscle fiber structure in seafood. Food Chem 2022; 380:132099. [PMID: 35081477 DOI: 10.1016/j.foodchem.2022.132099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 11/04/2022]
Abstract
The fiber structure of tissue in meat and seafood has a significant impact on their perceived quality. However, quantifiable description of muscle structure is challenging. We investigate diffusion tensor imaging (DTI) magnetic resonance imaging (MRI) as a method to quantitatively describe tissue structure. DTI measures the anisotropy of water molecule diffusion within muscle fibers. A pilot study evaluated three different cod loin samples: one of high-quality, one of medium-quality, and one of poor-quality. DTI parameters such as fractional anisotropy, axial diffusion and radial diffusion showed clear differences between the sample qualities. Changes in the DTI metrics consistent with freezing and thawing damage to the tissue were observed. The DTI maps were compared to T2-weighted images and DTI detected significant details that were not visible in T2-weighted images. Overall, these results indicate that DTI is a promising method for spatially-resolved characterization of tissue structure in seafood and meat.
Collapse
Affiliation(s)
- Kathryn E Anderssen
- Department of Seafood Industry, Nofima AS, P.O. Box 6122, 9291 Tromsø, Norway.
| | - Mathias Kranz
- PET Imaging Center Tromsø, University Hospital North-Norway (UNN), 9009 Tromsø, Norway; Nuclear Medicine and Radiation Biology Research Group, The Arctic University of Norway, UiT, 9009 Tromsø, Norway
| | - Shaheen Syed
- Department of Seafood Industry, Nofima AS, P.O. Box 6122, 9291 Tromsø, Norway
| | | |
Collapse
|
31
|
Yokohama T, Iwasaki M, Oura D, Furuya S, Niiya Y. Increased muscle fiber fractional anisotropy value using diffusion tensor imaging after compression without fiber injury. Acta Radiol 2021; 64:139-146. [PMID: 34854736 DOI: 10.1177/02841851211058282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Recent studies have indicated that injuries such as muscle tears modify the microstructural integrity of muscle, leading to substantial alterations in measured diffusion parameters. Therefore, the fractional anisotropy (FA) value decreases. However, we hypothesized that soft tissue, such as muscle tissue, undergoes reversible changes under conditions of compression without fiber injury. PURPOSE To evaluate the FA change due to compression in muscle tissue without fiber injury. MATERIAL AND METHODS Diffusion tensor imaging (DTI) was performed on both feet of 10 healthy volunteers (mean age = 35.0 ± 10.39 years; age range = 23-52 years) using a 3.0-T magnetic resonance imaging (MRI) scanner with an eight-channel phased array knee coil. An MRI-compatible sphygmomanometer was applied to the individuals' lower legs and individuals were placed in a compressed state. Then, rest intervals of 5 min were set in re-rest state after compression. The FA value, apparent diffusion coefficient (ADC), and eigenvalues (λ1, λ2, λ3) of the gastrocnemius and soleus muscle were measured at each state. RESULTS The mean FA values increased in all muscles in a compressed state, while the mean λ3 decreased. In all muscles, significant differences were found between the rest and compressed states in terms of mean FA and λ3 (P < 0.0001). CONCLUSION We confirmed the reversibility of the DTI metrics, which suggests that there was no muscle injury during this study. In cases of compression without fiber injury, the FA value increases, because fibers are strongly aligned in the longitudinal direction.
Collapse
Affiliation(s)
- Takumi Yokohama
- Department of Radiology, Otaru General Hospital, Otaru, Hokkaido, Japan
| | - Motoyuki Iwasaki
- Department of Neurosurgery, Otaru General Hospital, Otaru, Hokkaido, Japan
| | - Daisuke Oura
- Department of Radiology, Otaru General Hospital, Otaru, Hokkaido, Japan
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Sho Furuya
- Department of Nuclear of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yoshimasa Niiya
- Department of Neurosurgery, Otaru General Hospital, Otaru, Hokkaido, Japan
| |
Collapse
|
32
|
Caroca S, Villagran D, Chabert S. Four functional magnetic resonance imaging techniques for skeletal muscle exploration, a systematic review. Eur J Radiol 2021; 144:109995. [PMID: 34628310 DOI: 10.1016/j.ejrad.2021.109995] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND The study of muscle health has become more relevant lately, due to global aging and a higher incidence of musculoskeletal pathologies. Current exploration techniques, such as electromyography, do not provide accurate spatial information. OBJECTIVE The objective of this work is to perform a systematic review of the literature to synthesize the contributions that can offer functional MRI techniques commonly used in neuroimaging, applied to skeletal muscle: Blood Oxygen Level Dependent (BOLD), IntraVoxel Incoherent Motion (IVIM), Arterial Spin Labeling (ASL) and Dynamic Contrast Enhanced (DCE). EVIDENCE ACQUISITION Web of Science and Medline databases were searched, over the last 10 years, focused on the use of BOLD, ASL, IVIM or DCE in skeletal muscle. EVIDENCE SYNTHESIS 59 articles were included after applying the selection criteria. 37 studies were performed in healthy subjects, and 22 in patients with different pathologies: in peripheral arterial disease, systemic sclerosis, diabetes, osteoporosis, adolescent idiopathic scoliosis, and dermatomyositis. Reference values in healthy subjects still vary in some cases. CONCLUSION The studies show the feasibility of implementing functional MRI through BOLD, ASL, IVIM or DCE imaging in several muscles and their possible utility in different pathologies. A synthesis of how to implement such exploration is given here. CLINICAL IMPACT These four techniques are based on sequences already present in clinical MRI scanners, therefore, their use for functional muscle exploration does not require additional investment. These techniques allow visualization and quantification of parameters associated with the vascular health of the muscles and represent interesting support for musculoskeletal exploration.
Collapse
Affiliation(s)
- Sergio Caroca
- Biomedical Engineering Department, Universidad de Valparaiso, Valparaíso, Chile
| | - Diego Villagran
- Servicio de Imagenología, Hospital Carlos van Buren, Valparaíso, Chile
| | - Steren Chabert
- Biomedical Engineering Department, Universidad de Valparaiso, Valparaíso, Chile; CINGS, Centro de Investigación y Desarrollo en INGeniería en Salud, Universidad de Valparaiso, Valparaíso, Chile; Millennium Nucleus for Cardiovascular Magnetic Resonance, Chile.
| |
Collapse
|
33
|
High Inter-Rater Reliability of Manual Segmentation and Volume-Based Tractography in Healthy and Dystrophic Human Calf Muscle. Diagnostics (Basel) 2021; 11:diagnostics11091521. [PMID: 34573863 PMCID: PMC8466691 DOI: 10.3390/diagnostics11091521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Muscle diffusion tensor imaging (mDTI) is a promising surrogate biomarker in the evaluation of muscular injuries and neuromuscular diseases. Since mDTI metrics are known to vary between different muscles, separation of different muscles is essential to achieve muscle-specific diffusion parameters. The commonly used technique to assess DTI metrics is parameter maps based on manual segmentation (MSB). Other techniques comprise tract-based approaches, which can be performed in a previously defined volume. This so-called volume-based tractography (VBT) may offer a more robust assessment of diffusion metrics and additional information about muscle architecture through tract properties. The purpose of this study was to assess DTI metrics of human calf muscles calculated with two segmentation techniques-MSB and VBT-regarding their inter-rater reliability in healthy and dystrophic calf muscles. METHODS 20 healthy controls and 18 individuals with different neuromuscular diseases underwent an MRI examination in a 3T scanner using a 16-channel Torso XL coil. DTI metrics were assessed in seven calf muscles using MSB and VBT. Coefficients of variation (CV) were calculated for both techniques. MSB and VBT were performed by two independent raters to assess inter-rater reliability by ICC analysis and Bland-Altman plots. Next to analysis of DTI metrics, the same assessments were also performed for tract properties extracted with VBT. RESULTS For both techniques, low CV were found for healthy controls (≤13%) and neuromuscular diseases (≤17%). Significant differences between methods were found for all diffusion metrics except for λ1. High inter-rater reliability was found for both MSB and VBT (ICC ≥ 0.972). Assessment of tract properties revealed high inter-rater reliability (ICC ≥ 0.974). CONCLUSIONS Both segmentation techniques can be used in the evaluation of DTI metrics in healthy controls and different NMD with low rater dependency and high precision but differ significantly from each other. Our findings underline that the same segmentation protocol must be used to ensure comparability of mDTI data.
Collapse
|
34
|
Upadhyaya V, Choudur HN. Update on sports imaging. J Clin Orthop Trauma 2021; 21:101555. [PMID: 34458092 PMCID: PMC8379491 DOI: 10.1016/j.jcot.2021.101555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/27/2022] Open
Abstract
Sports Imaging has dramatically increased in the past decade with increasing number of adolescents, young and middle-aged adults participating in non-competitive/hobby sports. Therefore, sports injuries are no longer confined to elite athletes. Furthermore, newer forms of sports such as mountain climbing, pickle ball and curling etc. are gaining popularity. Majority of the injuries in sports medicine are from musculoskeletal trauma. Therefore, it is imperative that the musculoskeletal radiologist becomes familiar with various sports related injury patterns as these are commonly encountered in daily practice. This update aims to briefly encapsulate the major aspects of sports imaging. It includes the imaging manifestations of various types of musculoskeletal injuries on different modalities (commonly US and MRI) and briefly mentions the various image guided interventions, performed both on the sports field and in the hospital setting.
Collapse
Affiliation(s)
- Vaishali Upadhyaya
- MRI Division, Department of Radiology, Vivekananda Polyclinic and Institute of Medical Sciences, Lucknow, 226007, India
| | - Hema N. Choudur
- Division of MSK Imaging, McMaster University, Staff MSK Radiologist: Hamilton General Hospital, Hamilton Health Sciences, 237 Barton St.E, Hamilton, Ontario L9L 2X2, Canada,Corresponding author.
| |
Collapse
|
35
|
Lemberskiy G, Feiweier T, Gyftopoulos S, Axel L, Novikov DS, Fieremans E. Assessment of myofiber microstructure changes due to atrophy and recovery with time-dependent diffusion MRI. NMR IN BIOMEDICINE 2021; 34:e4534. [PMID: 34002901 DOI: 10.1002/nbm.4534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 03/24/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
Current clinical MRI evaluation of musculature largely focuses on nonquantitative assessments (including T1-, T2- and PD-weighted images), which may vary greatly between imaging systems and readers. This work aims to determine the efficacy of a quantitative approach to study the microstructure of muscles at the cellular level with the random permeable barrier model (RPBM) applied to time-dependent diffusion tensor imaging (DTI) for varying diffusion time. Patients (N = 15, eight males and seven females) with atrophied calf muscles due to immobilization of one leg in a nonweight-bearing cast, were enrolled after providing informed consent. Their calf muscles were imaged with stimulated echo diffusion for DTI, T1-mapping and RPBM modeling. Specifically, After cast removal, both calf muscles (atrophied and contralateral control leg) were imaged with MRI for all patients, with follow-up scans to monitor recovery of the atrophied leg for six patients after 4 and 8 weeks. We compare RPBM-derived microstructural metrics: myofiber diameter, a, and sarcolemma permeability, κ, along with macroscopic anatomical parameters (muscle cross-sectional area, fiber orientation, <θ>, and T1 relaxation). ROC analysis was used to compare parameters between control and atrophied muscle, while the Friedman test was used to evaluate the atrophied muscle longitudinally. We found that the RPBM framework enables measurement of microstructural parameters from diffusion time-dependent DTI, of which the myofiber diameter is a stronger predictor of intramuscular morphological changes than either macroscopic (anatomical) measurements or empirical diffusion parameters. This work demonstrates the potential of RPBM to assess pathological changes in musculature that seem undetectable with standard diffusion and anatomical MRI.
Collapse
Affiliation(s)
- Gregory Lemberskiy
- Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, New York, USA
| | | | - Soterios Gyftopoulos
- Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, New York, USA
| | - Leon Axel
- Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, New York, USA
| | - Dmitry S Novikov
- Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, New York, USA
| | - Els Fieremans
- Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, New York, USA
| |
Collapse
|
36
|
Rehmann R, Schneider-Gold C, Froeling M, Güttsches AK, Rohm M, Forsting J, Vorgerd M, Schlaffke L. Diffusion Tensor Imaging Shows Differences Between Myotonic Dystrophy Type 1 and Type 2. J Neuromuscul Dis 2021; 8:949-962. [PMID: 34180419 DOI: 10.3233/jnd-210660] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Myotonic Dystrophies type 1 and type 2 are hereditary myopathies with dystrophic muscle degeneration in varying degrees. Differences in muscle diffusion between both diseases have not been evaluated yet. OBJECTIVE To evaluate the ability to of muscle diffusion tensor imaging (mDTI) and Dixon fat-quantification to distinguish between Myotonic dystrophy (DM) type 1 and type 2 and if both diseases show distinct muscle involvement patterns. METHODS We evaluated 6 thigh and 7 calf muscles (both legs) of 10 DM 1 and 13 DM 2 and 28 healthy controls (HC) with diffusion tensor imaging, T1w and mDixonquant sequences in a 3T MRI scanner. The quantitative mDTI-values axial diffusivity (λ1), mean diffusivity (MD), radial diffusivity (RD) and fractional anisotropy (FA) as well as fat-fraction were analysed. CTG-Triplett repeat-length of DM 1 patients was correlated to diffusion metrics and fat-fraction. RESULTS mDTI showed significant differences between DM 1 and DM 2 vs. healthy controls in diffusion parameters of the thigh (all p < 0.001) except for FA (p = 0.0521 / 0.8337). In calf muscles mDTI showed significant differences between DM 1 and DM 2 patients (all p < 0.0001) as well as between DM 1 patients and controls (all p = 0.0001). Thigh muscles had a significant higher fat-fraction in both groups vs. controls (p < 0.05). There was no correlation of CTG triplet length with mDTI values and fat-fraction. DISCUSSION mDTI reveals specific changes of the diffusion parameters and fat-fraction in muscles of DM 1 and DM 2 patients. Thus, the quantitative MRI methods presented in this study provide a powerful tool in differential diagnosis and follow-up of DM 1 and DM 2, however, the data must be validated in larger studies.
Collapse
Affiliation(s)
- R Rehmann
- Department of Neurology, Heimer Institute for muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - C Schneider-Gold
- Department of Neurology, University Hospital St. Josef, Ruhr-University Bochum, Bochum, Germany
| | - M Froeling
- Department of Radiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - A K Güttsches
- Department of Neurology, Heimer Institute for muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - M Rohm
- Department of Neurology, Heimer Institute for muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - J Forsting
- Department of Neurology, Heimer Institute for muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - M Vorgerd
- Department of Neurology, Heimer Institute for muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - L Schlaffke
- Department of Neurology, Heimer Institute for muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
37
|
Van Dyck P, Froeling M, Heusdens CHW, Sijbers J, Ribbens A, Billiet T. Diffusion tensor imaging of the anterior cruciate ligament following primary repair with internal bracing: A longitudinal study. J Orthop Res 2021; 39:1318-1330. [PMID: 32270563 DOI: 10.1002/jor.24684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/17/2020] [Accepted: 03/28/2020] [Indexed: 02/04/2023]
Abstract
Diffusion tensor imaging (DTI) provides information about tissue microstructure and its degree of organization by quantifying water diffusion. We aimed to monitor longitudinal changes in DTI parameters (fractional isotropy, FA; mean diffusivity, MD; axial diffusivity, AD; radial diffusivity, RD) of the anterior cruciate ligament (ACL) following primary repair with internal bracing (IBLA). Fourteen patients undergoing IBLA were enrolled prospectively and scheduled for clinical follow-up, including instrumented laxity testing, and DTI at 3, 6, 12, and 24 months postoperatively. DTI was also performed in seven healthy subjects. Fiber tractography was used for 3D segmentation of the whole ACL volume, from which median DTI parameters were calculated. The posterior cruciate ligament (PCL) served as a control. Longitudinal DTI changes were assessed using a linear mixed model, and repeated measures correlations were calculated between DTI parameters and clinical laxity tests. At follow-up, thirteen patients had a stable knee and one patient sustained an ACL rerupture after 12 months postoperatively. The ACL repair showed a significant decrease of FA within the first 12 months after surgery, followed by stable FA values thereafter, while ACL diffusivities decreased over time returning towards normal values at 24 months postoperatively. For PCL there were no significant DTI changes over time. There was a significant correlation between ACL FA and laxity tests (r = -0.42, P = .017). This study has shown the potential of DTI to longitudinally monitor diffusion changes in the ACL following IBLA. The DTI findings suggest that healing of the ACL repair is incomplete at 24 months postoperatively.
Collapse
Affiliation(s)
- Pieter Van Dyck
- Department of Radiology, Antwerp University Hospital and University of Antwerp, Edegem, Belgium
| | - Martijn Froeling
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Jan Sijbers
- Imec-Vision Lab, Department of Physics, University of Antwerp, Wilrijk, Belgium
| | | | | |
Collapse
|
38
|
Nguyen HT, Grenier T, Leporq B, Le Goff C, Gilles B, Grange S, Grange R, Millet GP, Beuf O, Croisille P, Viallon M. Quantitative Magnetic Resonance Imaging Assessment of the Quadriceps Changes during an Extreme Mountain Ultramarathon. Med Sci Sports Exerc 2021; 53:869-881. [PMID: 33044438 DOI: 10.1249/mss.0000000000002535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION/PURPOSE Extreme ultra-endurance races are growing in popularity, but their effects on skeletal muscles remain mostly unexplored. This longitudinal study explores physiological changes in mountain ultramarathon athletes' quadriceps using quantitative magnetic resonance imaging (MRI) coupled with serological biomarkers. The study aimed to monitor the longitudinal effect of the race and recovery and to identify local inflammatory and metabolic muscle responses by codetection of biological markers. METHODS An automatic image processing framework was designed to extract imaging-based biomarkers from quantitative MRI acquisitions of the upper legs of 20 finishers at three time points. The longitudinal effect of the race was demonstrated by analyzing the image markers with dedicated biostatistical analysis. RESULTS Our framework allows for a reliable calculation of statistical data not only inside the whole quadriceps volume but also within each individual muscle head. Local changes in MRI parameters extracted from quantitative maps were described and found to be significantly correlated with principal serological biomarkers of interest. A decrease in the PDFF after the race and a stable paramagnetic susceptibility value were found. Pairwise post hoc tests suggested that the recovery process differs among the muscle heads. CONCLUSIONS This longitudinal study conducted during a prolonged and extreme mechanical stress showed that quantitative MRI-based markers of inflammation and metabolic response can detect local changes related to the prolonged exercise, with differentiated involvement of each head of the quadriceps muscle as expected in such eccentric load. Consistent and efficient extraction of the local biomarkers enables to highlight the interplay/interactions between blood and MRI biomarkers. This work indeed proposes an automatized analytic framework to tackle the time-consuming and mentally exhausting segmentation task of muscle heads in large multi-time-point cohorts.
Collapse
Affiliation(s)
- Hoai-Thu Nguyen
- Univ-Lyon, UJM-Saint-Etienne, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Saint-Etienne, FRANCE
| | - Thomas Grenier
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, Villeurbanne, FRANCE
| | - Benjamin Leporq
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, Villeurbanne, FRANCE
| | - Caroline Le Goff
- Department of Clinical Chemistry, University of Liège, CHU Sart-Tilman, Liège, BELGIUM
| | | | | | | | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, SWITZERLAND
| | - Olivier Beuf
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, Villeurbanne, FRANCE
| | | | | |
Collapse
|
39
|
He C, Zhou X, Cheng J, Qin L, Dong F, Zhang R, Chen B, Hu H. Diffusion tensor imaging in evaluating testicular injury after unilateral testicular torsion and detorsion in rat model: A preliminary study. Andrologia 2021; 53:e14012. [PMID: 33616285 DOI: 10.1111/and.14012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 11/27/2022] Open
Abstract
Diffusion tensor imaging (DTI) is a functional magnetic resonance sequence based on the movement of water molecules. This study attempted to investigate the feasibility of DTI in evaluating testicular injury after testicular torsion and detorsion. Seventy-two rats were randomly divided into the sham group, torsion group and detorsion group. The left testis in the sham group was brought out through a scrotal incision for 1 hr, and that of the torsion group was twisted 720o clockwise for 1 hr and fixed to the scrotum, while the detorsion group was restored after being twisted 720° for 1 hr. Rats were further divided into four subgroups according to the set time, then performed DTI and histology analysis. The mean diffusion of the torsion and detorsion groups increased within 24 hr (p <.01), while it in the detorsion-1-week-group was lower than that in the detorsion-24-hr-group (p <.05). The fraction anisotropy of both experimental groups decreased in the acute phase (p <.01), while that of the detorsion-1-week-group increased (p <.01). Cosentino score in both experimental groups showed an increasing trend (p <.05). Besides, the spermatogenic ability of the detorsion-1-week-group decreased (p <.05). In conclusion, DTI was able to evaluate the injury after testicular torsion and detorsion.
Collapse
Affiliation(s)
- Chengbin He
- Department of Radiology, Sir Run Run Shaw Hospital (SRRSH), Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoxuan Zhou
- Department of Radiology, Sir Run Run Shaw Hospital (SRRSH), Zhejiang University School of Medicine, Hangzhou, China
| | - Jianmin Cheng
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou City, China
| | - Le Qin
- Department of Pediatric Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou City, China
| | - Fenglei Dong
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou City, China
| | - Rui Zhang
- Department of Radiology, Sir Run Run Shaw Hospital (SRRSH), Zhejiang University School of Medicine, Hangzhou, China
| | - Bo Chen
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou City, China
| | - Hongjie Hu
- Department of Radiology, Sir Run Run Shaw Hospital (SRRSH), Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
40
|
Gao Y, Lu Z, Lyu X, Liu Q, Pan S. A Longitudinal Study of T2 Mapping Combined With Diffusion Tensor Imaging to Quantitatively Evaluate Tissue Repair of Rat Skeletal Muscle After Frostbite. Front Physiol 2021; 11:597638. [PMID: 33569011 PMCID: PMC7868413 DOI: 10.3389/fphys.2020.597638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/30/2020] [Indexed: 11/30/2022] Open
Abstract
Purpose: T2 mapping and diffusion tensor imaging (DTI) enable the detection of changes in the skeletal muscle microenvironment. We assessed T2 relaxation times, DTI metrics, performed histological characterization of frostbite-induced skeletal muscle injury and repair, and provided diagnostic imaging biomarkers. Design and Methods: Thirty-six Sprague Dawley rats (200 ± 10 g) were obtained. Thirty rats were used for establishing a skeletal muscle frostbite model, and six were untreated controls. Functional MR sequences were performed on rats on days 0, 3, 5, 10, and 14 (n = 6 per time point). Rats were then sacrificed to obtain the quadriceps muscles. Tensor eigenvalues (λ1, λ2, and λ3), mean diffusivity (MD), fractional anisotropy (FA), and T2 values were compared between the frostbite model and control rats. ImageJ was used to measure the extracellular area fraction (EAF), muscle fiber cross-sectional area (fCSA), and skeletal muscle tumor necrosis factor α (TNF-α), and Myod1 expression. The correlation between the histological and imaging parameters of the frostbitten skeletal muscle was evaluated. Kolmogorov–Smirnoff test, Leven’s test, one-way ANOVA, and Spearman coefficient were used for analysis. Results: T2 relaxation time of frostbitten skeletal muscle was higher at all time points (p < 0.01). T2 relaxation time correlated with EAF, and TNF-α and Myod1 expression (r = 0.42, p < 0.05; r = 0.86, p < 0.01; r = 0.84, p < 0.01). The average tensor metrics (MD, λ1, λ2, and λ3) of skeletal muscle at 3 and 5 days of frostbite increased (p < 0.05), and fCSA correlated with λ1, λ2, and λ3, and MD (r = 0.65, p < 0.01; r = 0.48, p < 0.01; r = 0.52, p < 0.01; r = 0.62, p < 0.01). Conclusion: T2 mapping and DTI imaging detect frostbite-induced skeletal muscle injury early. This combined approach can quantitatively assess skeletal muscle repair and regeneration within 2 weeks of frostbite. Imaging biomarkers for the diagnosis of frostbite were suggested.
Collapse
Affiliation(s)
- Yue Gao
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhao Lu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaohong Lyu
- Department of Radiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Qiang Liu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shinong Pan
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
41
|
Forsting J, Rehmann R, Rohm M, Froeling M, Schlaffke L. Evaluation of interrater reliability of different muscle segmentation techniques in diffusion tensor imaging. NMR IN BIOMEDICINE 2021; 34:e4430. [PMID: 33217106 DOI: 10.1002/nbm.4430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
INTRODUCTION Muscle diffusion tensor imaging (mDTI) is a quantitative MRI technique that can provide information about muscular microstructure and integrity. Ultrasound and DTI studies have shown intramuscular differences, and therefore separation of different muscles for analysis is essential. The commonly used methods to assess DTI metrics in muscles are manual segmentation and tract-based analysis. Recently methods such as volume-based tractography have been applied to optimize muscle architecture estimation, but can also be used to assess DTI metrics. PURPOSE To evaluate diffusion metrics obtained using three different methods-volume-based tractography, manual segmentation-based analysis and tract-based analysis-with respect to their interrater reliability and their ability to detect intramuscular variance. MATERIALS AND METHODS 30 volunteers underwent an MRI examination in a 3 T scanner using a 16-channel Torso XL coil. Diffusion-weighted images were acquired to obtain DTI metrics. These metrics were evaluated in six thigh muscles using volume-based tractography, manual segmentation and standard tractography. All three methods were performed by two independent raters to assess interrater reliability by ICC analysis and Bland-Altman plots. Ability to assess intramuscular variance was compared using an ANOVA with muscle as a between-subjects factor. RESULTS Interrater reliability for all methods was found to be excellent. The highest interrater reliability was found for volume-based tractography (ICC ≥ 0.967). Significant differences for the factor muscle in all examined diffusion parameters were shown in muscles using all methods (main effect p < 0.001). CONCLUSIONS Diffusion data can be assessed by volume tractography, standard tractography and manual segmentation with high interrater reliability. Each method produces different results for the investigated DTI parameters. Volume-based tractography was superior to conventional manual segmentation and tractography regarding interrater reliability and detection of intramuscular variance, while tract-based analysis showed the lowest coefficients of variation.
Collapse
Affiliation(s)
- Johannes Forsting
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Robert Rehmann
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Marlena Rohm
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Martijn Froeling
- Department of Radiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Lara Schlaffke
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
42
|
Exercise-induced muscle damage: mechanism, assessment and nutritional factors to accelerate recovery. Eur J Appl Physiol 2021; 121:969-992. [PMID: 33420603 DOI: 10.1007/s00421-020-04566-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022]
Abstract
There have been a multitude of reviews written on exercise-induced muscle damage (EIMD) and recovery. EIMD is a complex area of study as there are a host of factors such as sex, age, nutrition, fitness level, genetics and familiarity with exercise task, which influence the magnitude of performance decrement and the time course of recovery following EIMD. In addition, many reviews on recovery from exercise have ranged from the impact of nutritional strategies and recovery modalities, to complex mechanistic examination of various immune and endocrine signaling molecules. No one review can adequately address this broad array of study. Thus, in this present review, we aim to examine EIMD emanating from both endurance exercise and resistance exercise training in recreational and competitive athletes and shed light on nutritional strategies that can enhance and accelerate recovery following EIMD. In addition, the evaluation of EIMD and recovery from exercise is often complicated and conclusions often depend of the specific mode of assessment. As such, the focus of this review is also directed at the available techniques used to assess EIMD.
Collapse
|
43
|
Secondulfo L, Ogier AC, Monte JR, Aengevaeren VL, Bendahan D, Nederveen AJ, Strijkers GJ, Hooijmans MT. Supervised segmentation framework for evaluation of diffusion tensor imaging indices in skeletal muscle. NMR IN BIOMEDICINE 2021; 34:e4406. [PMID: 33001508 PMCID: PMC7757256 DOI: 10.1002/nbm.4406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 05/05/2023]
Abstract
Diffusion tensor imaging (DTI) is becoming a relevant diagnostic tool to understand muscle disease and map muscle recovery processes following physical activity or after injury. Segmenting all the individual leg muscles, necessary for quantification, is still a time-consuming manual process. The purpose of this study was to evaluate the impact of a supervised semi-automatic segmentation pipeline on the quantification of DTI indices in individual upper leg muscles. Longitudinally acquired MRI datasets (baseline, post-marathon and follow-up) of the upper legs of 11 subjects were used in this study. MR datasets consisted of a DTI and Dixon acquisition. Semi-automatic segmentations for the upper leg muscles were performed using a transversal propagation approach developed by Ogier et al on the out-of-phase Dixon images at baseline. These segmentations were longitudinally propagated for the post-marathon and follow-up time points. Manual segmentations were performed on the water image of the Dixon for each of the time points. Dice similarity coefficients (DSCs) were calculated to compare the manual and semi-automatic segmentations. Bland-Altman and regression analyses were performed, to evaluate the impact of the two segmentation methods on mean diffusivity (MD), fractional anisotropy (FA) and the third eigenvalue (λ3 ). The average DSC for all analyzed muscles over all time points was 0.92 ± 0.01, ranging between 0.48 and 0.99. Bland-Altman analysis showed that the 95% limits of agreement for MD, FA and λ3 ranged between 0.5% and 3.0% for the transversal propagation and between 0.7% and 3.0% for the longitudinal propagations. Similarly, regression analysis showed good correlation for MD, FA and λ3 (r = 0.99, p < 60; 0.0001). In conclusion, the supervised semi-automatic segmentation framework successfully quantified DTI indices in the upper-leg muscles compared with manual segmentation while only requiring manual input of 30% of the slices, resulting in a threefold reduction in segmentation time.
Collapse
Affiliation(s)
- Laura Secondulfo
- Department of Biomedical Engineering and Physics, Amsterdam University Medical CentersUniversity of AmsterdamThe Netherlands
| | - Augustin C. Ogier
- Aix Marseille Universite, Universite de Toulon, CNRS, LISMarseilleFrance
- Aix Marseille Universite, CNRS, CRMBMMarseilleFrance
| | - Jithsa R. Monte
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical CentersUniversity of AmsterdamThe Netherlands
| | - Vincent L. Aengevaeren
- Radboud Institute for Health Sciences, Department of PhysiologyRadboud University Medical CenterNijmegenThe Netherlands
| | | | - Aart J. Nederveen
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical CentersUniversity of AmsterdamThe Netherlands
| | - Gustav J. Strijkers
- Department of Biomedical Engineering and Physics, Amsterdam University Medical CentersUniversity of AmsterdamThe Netherlands
| | - Melissa T. Hooijmans
- Department of Biomedical Engineering and Physics, Amsterdam University Medical CentersUniversity of AmsterdamThe Netherlands
| |
Collapse
|
44
|
Klontzas ME, Papadakis GZ, Marias K, Karantanas AH. Musculoskeletal trauma imaging in the era of novel molecular methods and artificial intelligence. Injury 2020; 51:2748-2756. [PMID: 32972725 DOI: 10.1016/j.injury.2020.09.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/14/2020] [Accepted: 09/15/2020] [Indexed: 02/08/2023]
Abstract
Over the past decade rapid advancements in molecular imaging (MI) and artificial intelligence (AI) have revolutionized traditional musculoskeletal radiology. Molecular imaging refers to the ability of various methods to in vivo characterize and quantify biological processes, at a molecular level. The extracted information provides the tools to understand the pathophysiology of diseases and thus to early detect, to accurately evaluate the extend and to apply and evaluate targeted treatments. At present, molecular imaging mainly involves CT, MRI, radionuclide, US, and optical imaging and has been reported in many clinical and preclinical studies. Although originally MI techniques targeted at central nervous system disorders, later on their value on musculoskeletal disorders was also studied in depth. Meaningful exploitation of the large volume of imaging data generated by molecular and conventional imaging techniques, requires state-of-the-art computational methods that enable rapid handling of large volumes of information. AI allows end-to-end training of computer algorithms to perform tasks encountered in everyday clinical practice including diagnosis, disease severity classification and image optimization. Notably, the development of deep learning algorithms has offered novel methods that enable intelligent processing of large imaging datasets in an attempt to automate decision-making in a wide variety of settings related to musculoskeletal trauma. Current applications of AI include the diagnosis of bone and soft tissue injuries, monitoring of the healing process and prediction of injuries in the professional sports setting. This review presents the current applications of novel MI techniques and methods and the emerging role of AI regarding the diagnosis and evaluation of musculoskeletal trauma.
Collapse
Affiliation(s)
- Michail E Klontzas
- Department of Medical Imaging, Heraklion University Hospital, Crete, 70110, Greece; Advanced Hybrid Imaging Systems, Institute of Computer Science, Foundation for Research and Technology (FORTH), N. Plastira 100, Vassilika Vouton 70013, Heraklion, Crete, Greece.
| | - Georgios Z Papadakis
- Advanced Hybrid Imaging Systems, Institute of Computer Science, Foundation for Research and Technology (FORTH), N. Plastira 100, Vassilika Vouton 70013, Heraklion, Crete, Greece; Computational Biomedicine Laboratory (CBML), Foundation for Research and Technology Hellas (FORTH), 70013, Heraklion, Crete, Greece; Department of Radiology, School of Medicine, University of Crete, 70110 Greece.
| | - Kostas Marias
- Computational Biomedicine Laboratory (CBML), Foundation for Research and Technology Hellas (FORTH), 70013, Heraklion, Crete, Greece; Department of Electrical and Computer Engineering, Hellenic Mediterranean University, 71410, Heraklion, Crete, Greece.
| | - Apostolos H Karantanas
- Department of Medical Imaging, Heraklion University Hospital, Crete, 70110, Greece; Advanced Hybrid Imaging Systems, Institute of Computer Science, Foundation for Research and Technology (FORTH), N. Plastira 100, Vassilika Vouton 70013, Heraklion, Crete, Greece; Computational Biomedicine Laboratory (CBML), Foundation for Research and Technology Hellas (FORTH), 70013, Heraklion, Crete, Greece; Department of Radiology, School of Medicine, University of Crete, 70110 Greece.
| |
Collapse
|
45
|
Hooijmans MT, Froeling M, Koeks Z, Verschuuren JJ, Webb A, Niks EH, Kan HE. Multi-parametric MR in Becker muscular dystrophy patients. NMR IN BIOMEDICINE 2020; 33:e4385. [PMID: 32754921 PMCID: PMC7687231 DOI: 10.1002/nbm.4385] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 05/14/2023]
Abstract
Quantitative MRI and MRS of muscle are increasingly being used to measure individual pathophysiological processes in Becker muscular dystrophy (BMD). In particular, muscle fat fraction was shown to be highly associated with functional tests in BMD. However, the muscle strength per unit of contractile cross-sectional area is lower in patients with BMD compared with healthy controls. This suggests that the quality of the non-fat-replaced (NFR) muscle tissue is lower than in healthy controls. Consequently, a measure that reflects changes in muscle tissue itself is needed. Here, we explore the potential of water T2 relaxation times, diffusion parameters and phosphorus metabolic indices as early disease markers in patients with BMD. For this purpose, we examined these measures in fat-replaced (FR) and NFR lower leg muscles in patients with BMD and compared these values with those in healthy controls. Quantitative proton MRI (three-point Dixon, multi-spin-echo and diffusion-weighted spin-echo echo planar imaging) and 2D chemical shift imaging 31 P MRS data were acquired in 24 patients with BMD (age 18.8-66.2 years) and 13 healthy controls (age 21.3-63.6 years). Muscle fat fractions, phosphorus metabolic indices, and averages and standard deviations (SDs) of the water T2 relaxation times and diffusion tensor imaging (DTI) parameters were assessed in six individual leg muscles. Phosphodiester levels were increased in the NFR and FR tibialis anterior, FR peroneus and FR gastrocnemius lateralis muscles. No clear pattern was visible for the other metabolic indices. Increased T2 SD was found in the majority of FR muscles compared with NFR and healthy control muscles. No differences in average water T2 relaxation times or DTI indices were found between groups. Overall, our results indicate that primarily muscles that are further along in the disease process showed increases in T2 heterogeneity and changes in some metabolic indices. No clear differences were found for the DTI indices between groups.
Collapse
Affiliation(s)
- Melissa T. Hooijmans
- C.J. Gorter Center, Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
- Department of Biomedical Engineering & PhysicsAmsterdam University Medical CentersAmsterdamThe Netherlands
| | - Martijn Froeling
- Department of RadiologyUtrecht University Medical CenterUtrechtThe Netherlands
| | - Zaida Koeks
- Department of NeurologyLeiden University Medical CenterLeidenThe Netherlands
| | - Jan J.G.M. Verschuuren
- Department of NeurologyLeiden University Medical CenterLeidenThe Netherlands
- Duchenne Center NetherlandsThe Netherlands
| | - Andrew Webb
- C.J. Gorter Center, Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Erik H. Niks
- Department of NeurologyLeiden University Medical CenterLeidenThe Netherlands
- Duchenne Center NetherlandsThe Netherlands
| | - Hermien E. Kan
- C.J. Gorter Center, Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
- Duchenne Center NetherlandsThe Netherlands
| |
Collapse
|
46
|
Stouge A, Khan KS, Kristensen AG, Tankisi H, Schlaffke L, Froeling M, Væggemose M, Andersen H. MRI of Skeletal Muscles in Participants with Type 2 Diabetes with or without Diabetic Polyneuropathy. Radiology 2020; 297:608-619. [PMID: 33048033 DOI: 10.1148/radiol.2020192647] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BackgroundDiabetic polyneuropathy (DPN) is associated with loss of muscle strength. MRI including diffusion-tensor imaging (DTI) may enable detection of muscle abnormalities related to type 2 diabetes mellitus (DM2) and DPN.PurposeTo assess skeletal muscle abnormalities in participants with DM2 with or without DPN by using MRI.Materials and MethodsThis prospective cross-sectional study included participants with DM2 and DPN (DPN positive), participants with DM2 without DPN (DPN negative), and healthy control (HC) participants enrolled between August 2017 and June 2018. Muscle strength at the knee and ankle was determined with isokinetic dynamometry. MRI of the lower extremities included the Dixon sequence, multicomponent T2 mapping, and DTI calculated fat fractions (FFs), T2 relaxation of muscle (T2water), fractional anisotropy (FA), and diffusivity (mean, axial, and radial). One-way analysis of variance and Tukey honestly significant difference were applied for comparison between groups, and multivariate regression models were used for association between MRI parameters, nerve conduction, strength, and body mass index (BMI).ResultsTwenty participants with DPN (mean age, 65 years ± 9 [standard deviation]; 70% men; mean BMI, 34 kg/m2 ± 5), 20 participants without DPN (mean age, 64 years ± 9; 55% men; mean BMI, 30 kg/m2 ± 6), and 20 HC participants (mean age, 61 years ± 10; 55% men; mean BMI, 27 kg/m2 ± 5) were enrolled in this study. Muscle strength adjusted for age, sex, and BMI was lower in participants with DPN than in DPN-negative and HC participants in the upper and lower leg (plantar flexors [PF], 62% vs 78% vs 89%; P < .001; knee extensors [KE], 73% vs 95% vs 93%; P < .001). FF was higher in leg muscle groups of participants with DPN than in DPN-negative and HC participants (PF, 20% vs 10% vs 8%; P < .001; KE, 13% vs 8% vs 6%; P < .001). T2water was prolonged in leg muscle groups of participants with DPN when compared with HC participants (PF, 33 msec vs 31 msec; P < .001; KE, 32 msec vs 31 msec; P = .002) and in the lower leg when compared with participants without DPN (PF, 33 msec vs 32 msec; P = .03). In multivariate regression models, strength was associated with FA (b = -0.0004), T2water (b = -0.03 msec), and FF (b = -0.1%) at thigh level (P < .001). Furthermore, FA (b = -0.007), T2water (b = -0.53 msec), and FF (b = -4.0%) were associated with nerve conduction at calf level (P < .001).ConclusionMRI of leg muscle groups revealed fat accumulation, differences in water composition, and structural changes in participants with type 2 diabetes mellitus and neuropathy. Abnormalities were most pronounced in the plantar flexors.© RSNA, 2020Online supplemental material is available for this article.See also the editorial by Sneag and Tan in this issue.
Collapse
Affiliation(s)
- Anders Stouge
- From the Departments of Neurology and International Diabetic Neuropathy Consortium (A.S., K.S.K., H.A.), Clinical Neurophysiology and International Diabetic Neuropathy Consortium (A.G.K.), Clinical Neurophysiology (H.T.), and Neurology (M.V.), Neurologisk Afdeling, Aarhus University Hospital, Nørrebrogade 44, 8000 Aarhus, Denmark; Image Division, Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands (L.S., M.F.); and Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany (L.S.)
| | - Karolina S Khan
- From the Departments of Neurology and International Diabetic Neuropathy Consortium (A.S., K.S.K., H.A.), Clinical Neurophysiology and International Diabetic Neuropathy Consortium (A.G.K.), Clinical Neurophysiology (H.T.), and Neurology (M.V.), Neurologisk Afdeling, Aarhus University Hospital, Nørrebrogade 44, 8000 Aarhus, Denmark; Image Division, Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands (L.S., M.F.); and Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany (L.S.)
| | - Alexander G Kristensen
- From the Departments of Neurology and International Diabetic Neuropathy Consortium (A.S., K.S.K., H.A.), Clinical Neurophysiology and International Diabetic Neuropathy Consortium (A.G.K.), Clinical Neurophysiology (H.T.), and Neurology (M.V.), Neurologisk Afdeling, Aarhus University Hospital, Nørrebrogade 44, 8000 Aarhus, Denmark; Image Division, Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands (L.S., M.F.); and Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany (L.S.)
| | - Hatice Tankisi
- From the Departments of Neurology and International Diabetic Neuropathy Consortium (A.S., K.S.K., H.A.), Clinical Neurophysiology and International Diabetic Neuropathy Consortium (A.G.K.), Clinical Neurophysiology (H.T.), and Neurology (M.V.), Neurologisk Afdeling, Aarhus University Hospital, Nørrebrogade 44, 8000 Aarhus, Denmark; Image Division, Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands (L.S., M.F.); and Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany (L.S.)
| | - Lara Schlaffke
- From the Departments of Neurology and International Diabetic Neuropathy Consortium (A.S., K.S.K., H.A.), Clinical Neurophysiology and International Diabetic Neuropathy Consortium (A.G.K.), Clinical Neurophysiology (H.T.), and Neurology (M.V.), Neurologisk Afdeling, Aarhus University Hospital, Nørrebrogade 44, 8000 Aarhus, Denmark; Image Division, Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands (L.S., M.F.); and Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany (L.S.)
| | - Martijn Froeling
- From the Departments of Neurology and International Diabetic Neuropathy Consortium (A.S., K.S.K., H.A.), Clinical Neurophysiology and International Diabetic Neuropathy Consortium (A.G.K.), Clinical Neurophysiology (H.T.), and Neurology (M.V.), Neurologisk Afdeling, Aarhus University Hospital, Nørrebrogade 44, 8000 Aarhus, Denmark; Image Division, Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands (L.S., M.F.); and Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany (L.S.)
| | - Michael Væggemose
- From the Departments of Neurology and International Diabetic Neuropathy Consortium (A.S., K.S.K., H.A.), Clinical Neurophysiology and International Diabetic Neuropathy Consortium (A.G.K.), Clinical Neurophysiology (H.T.), and Neurology (M.V.), Neurologisk Afdeling, Aarhus University Hospital, Nørrebrogade 44, 8000 Aarhus, Denmark; Image Division, Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands (L.S., M.F.); and Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany (L.S.)
| | - Henning Andersen
- From the Departments of Neurology and International Diabetic Neuropathy Consortium (A.S., K.S.K., H.A.), Clinical Neurophysiology and International Diabetic Neuropathy Consortium (A.G.K.), Clinical Neurophysiology (H.T.), and Neurology (M.V.), Neurologisk Afdeling, Aarhus University Hospital, Nørrebrogade 44, 8000 Aarhus, Denmark; Image Division, Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands (L.S., M.F.); and Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany (L.S.)
| |
Collapse
|
47
|
Haddock B, Hansen SK, Lindberg U, Nielsen JL, Frandsen U, Aagaard P, Larsson HBW, Suetta C. Physiological responses of human skeletal muscle to acute blood flow restricted exercise assessed by multimodal MRI. J Appl Physiol (1985) 2020; 129:748-759. [PMID: 32853108 DOI: 10.1152/japplphysiol.00171.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Important physiological quantities for investigating muscle hypertrophy include blood oxygenation, cell swelling, and changes in blood flow. The purpose of this study was to compare the acute changes of these parameters in human skeletal muscle induced by low-load (20% 1-RM) blood flow-restricted (BFR-20) knee extensor exercise compared with free-flow work-matched (FF-20WM) and free-flow 50% 1-RM (FF-50) knee extensor exercise using multimodal magnetic resonance imaging (MRI). Subjects (n = 11) completed acute exercise sessions for each exercise mode in an MRI scanner, where interleaved measures of muscle R2 (indicator of edema), [Formula: see text] (indicator of deoxyhemoglobin), macrovascular blood flow, and diffusion were performed before, between sets, and after the final set for each exercise protocol. BFR-20 exercise resulted in larger acute decreases in R2 and greater increases in cross-sectional area than FF-20WM and FF-50 (P < 0.01). Blood oxygenation decreased between sets during BFR-20, as indicated by a 13.6% increase in [Formula: see text] values (P < 0.01)), whereas they remained unchanged for FF-20WM and decreased during FF-50 exercise. Quadriceps blood flow between sets was highest for the heavier load (FF-50), averaging 305 mL/min, and lowest for BFR-20 at 123 ± 73 mL/min until post-exercise cuff release, where blood flow rates in BFR-20 exceeded both FF protocols (P < 0.01). Acute changes in diffusion rates were similar for all exercise protocols. This study was able to differentiate the acute exercise response of selected physiological factors associated with skeletal muscle hypertrophy. Marked differences in these parameters were found to exist between BFR and FF exercise conditions, which contribute to explain the anabolic potential of low-load blood flow restricted muscle exercise.NEW & NOTEWORTHY Acute changes in blood flow, diffusion, blood oxygenation, cross-sectional area, and the "T2 shift" are evaluated in human skeletal muscle in response to blood flow-restricted (BFR) and conventional free-flow knee extensor exercise performed in an MRI scanner. The acute physiological response to exercise was dependent on the magnitude of load and the application of BFR. Physiological variables changed markedly and established a steady state rapidly after the first of four exercise sets.
Collapse
Affiliation(s)
- Bryan Haddock
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Sofie K Hansen
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Geriatric Research Unit, Bispebjerg-Frederiksberg and Herlev-Gentofte Hospitals, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ulrich Lindberg
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jakob Lindberg Nielsen
- Department of Sport Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Ulrik Frandsen
- Department of Sport Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Per Aagaard
- Department of Sport Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Henrik B W Larsson
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Suetta
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Geriatric Research Unit, Bispebjerg-Frederiksberg and Herlev-Gentofte Hospitals, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
48
|
Giraudo C, Cavaliere A, Lupi A, Guglielmi G, Quaia E. Established paths and new avenues: a review of the main radiological techniques for investigating sarcopenia. Quant Imaging Med Surg 2020; 10:1602-1613. [PMID: 32742955 PMCID: PMC7378089 DOI: 10.21037/qims.2019.12.15] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/19/2019] [Indexed: 12/18/2022]
Abstract
Sarcopenia is a clinical condition mainly affecting the elderly that can be associated in a long run with severe consequences like malnutrition and frailty. Considering the progressive ageing of the world population and the socio-economic impact of this disease, much effort is devoted and has to be further focused on an early and accurate diagnostic assessment of muscle loss. Currently, several radiological techniques can be applied for evaluating sarcopenia. If dual-energy X-ray absorptiometry (DXA) is still considered the main tool and it is even recommended as reference by the most current guidelines of the European working group on sarcopenia in older people (EWGSOP), the role of ultrasound (US), computed tomography (CT), peripheral quantitative CT (pQCT), and magnetic resonance imaging (MRI) should not be overlooked. Indeed, such techniques can provide robust qualitative and quantitative information. In particular, regarding MRI, the use of sequences like diffusion-weighted imaging (DWI), diffusion tensor imaging (DTI), magnetic resonance spectroscopy (MRS) and mapping that could provide further insights into the physiopathological features of sarcopenia, should be fostered. In an era pointing to the quantification and automatic evaluation of diseases, we call for future research extending the application of organ tailored protocols, taking advantage of the most recent technical developments.
Collapse
Affiliation(s)
- Chiara Giraudo
- Radiology Institute, Department of Medicine—DIMED, University of Padova, Padova, Italy
| | - Annachiara Cavaliere
- Radiology Institute, Department of Medicine—DIMED, University of Padova, Padova, Italy
| | - Amalia Lupi
- Radiology Institute, Department of Medicine—DIMED, University of Padova, Padova, Italy
| | - Giuseppe Guglielmi
- Department of Radiology, Scientific Institute “Casa Sollievo della Sofferenza” Hospital, University of Foggia, Foggia, Italy
| | - Emilio Quaia
- Radiology Institute, Department of Medicine—DIMED, University of Padova, Padova, Italy
| |
Collapse
|
49
|
Rehmann R, Froeling M, Rohm M, Forsting J, Kley RA, Schmidt-Wilcke T, Karabul N, Meyer-Frießem CH, Vollert J, Tegenthoff M, Vorgerd M, Schlaffke L. Diffusion tensor imaging reveals changes in non-fat infiltrated muscles in late onset Pompe disease. Muscle Nerve 2020; 62:541-549. [PMID: 32654203 DOI: 10.1002/mus.27021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 12/20/2022]
Abstract
MRI is a helpful tool for monitoring disease progression in late-onset Pompe disease (LOPD). Our study aimed to evaluate if muscle diffusion tensor imaging (mDTI) shows alterations in muscles of LOPD patients with <10% fat-fraction. We evaluated 6 thigh and 7 calf muscles (both legs) of 18 LOPD and 29 healthy controls (HC) with muscle diffusion tensor imaging (mDTI), T1w, and mDixonquant sequences in a 3T MRI scanner. The quantitative mDTI-values axial diffusivity (λ1 ), mean diffusivity (MD), radial diffusivity (RD), and fractional anisotropy (FA) as well as fat-fraction were analyzed. 6-Minute Walk Test (6-MWT) data were correlated to diffusion metrics. We found that mDTI showed significant differences between LOPD and HC in diffusion parameters (P < .05). Thigh muscles with <10% fat-fraction showed significant differences in MD, RD, and λ1-3 . MD positively correlated with 6-MWT (P = .06). To conclude, mDTI reveals diffusion restrictions in muscles of LOPD with and without fat-infiltration and reflects structural changes prior to fatty degeneration.
Collapse
Affiliation(s)
- Robert Rehmann
- Department of Neurology, Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Martijn Froeling
- Department of Radiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Marlena Rohm
- Department of Neurology, Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Johannes Forsting
- Department of Neurology, Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Rudolf André Kley
- Department of Neurology, Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany.,Department of Neurology, St. Marien-Hospital Borken, Borken, Germany
| | - Tobias Schmidt-Wilcke
- St. Mauritius Therapieklinik, Meerbusch, Germany.,Institute of Clinical Neuroscience and Medical Psychology, University Hospital, University of Düsseldorf, Düsseldorf, Germany
| | - Nesrin Karabul
- Endokrinologikum Frankfurt a. Main, Center of Hormonal and Metabolic Diseases, Rheumatology, Osteology and Neurology, Frankfurt a. M, Germany
| | - Christine H Meyer-Frießem
- Department of Anaesthesiology Intensive Care Medicine and Pain Management, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Jan Vollert
- Pain Research, Department of Surgery and Cancer, Imperial College, London, UK.,Neurophysiology, Center of Biomedicine and Medical Technology Mannheim CBTM, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Martin Tegenthoff
- Department of Neurology, Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Matthias Vorgerd
- Department of Neurology, Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Lara Schlaffke
- Department of Neurology, Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
50
|
Van Dyck P, Billiet T, Desbuquoit D, Verdonk P, Heusdens CH, Roelant E, Sijbers J, Froeling M. Diffusion tensor imaging of the anterior cruciate ligament graft following reconstruction: a longitudinal study. Eur Radiol 2020; 30:6673-6684. [PMID: 32666318 DOI: 10.1007/s00330-020-07051-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/19/2020] [Accepted: 06/29/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To longitudinally monitor remodeling of human autograft following anterior cruciate ligament (ACL) reconstruction with DTI. METHODS Twenty-eight patients underwent DTI follow-up at 3, 8, and 14 months after clinically successful ACL reconstruction with tendon autograft. Among these, 18 patients had a concomitant lateral extra-articular procedure (LET). DTI data from 7 healthy volunteers was also obtained. Diffusion parameters (fractional anisotropy, FA; mean diffusivity, MD; axial diffusivity, AD; and radial diffusivity, RD) were evaluated within the fiber tractography volumes of the ACL graft and posterior cruciate ligament (PCL) in all patients. Data were analyzed using a linear mixed-effects model with post hoc testing using Bonferroni-Holm correction for multiple testing. The effect of additional LET was studied. RESULTS The ACL graft showed a significant decrease of FA over time (F = 4.00, p = 0.025), while the diffusivities did not significantly change over time. For PCL there were no significant DTI changes over time. A different evolution over time between patients with and without LET was noted for all diffusivity values of the ACL graft with reduced AD values in patients with LET at 8 months postoperatively (p = 0.048; adjusted p = 0.387). DTI metrics of the ACL graft differed largely from both native ACL and tendon at 14 months postoperatively. CONCLUSION Our study has shown the potential of DTI to longitudinally monitor the remodeling process in human ACL reconstruction. DTI analysis indicates that graft remodeling is incomplete at 14 months postoperatively. KEY POINTS • DTI can be used to longitudinally monitor the remodeling process in human ACL reconstruction. • DTI analysis indicates that autograft remodeling is incomplete at 14 months postoperatively. • DTI may be helpful for evaluating new ACL treatments.
Collapse
Affiliation(s)
- Pieter Van Dyck
- Department of Radiology, Antwerp University Hospital and University of Antwerp, Wilrijkstraat 10, 2650, Edegem, Belgium.
| | - Thibo Billiet
- Icometrix, Kolonel Begaultlaan 1b, 3012, Leuven, Belgium
| | - Damien Desbuquoit
- Department of Radiology, Antwerp University Hospital and University of Antwerp, Wilrijkstraat 10, 2650, Edegem, Belgium
| | - Peter Verdonk
- Monica Orthopedic Research (MoRe) Foundation, Monica Hospital, Stevenslei 20, 2100, Deurne, Belgium
| | - Christiaan H Heusdens
- Department of Orthopedics, Antwerp University Hospital and University of Antwerp, Wilrijkstraat 10, 2650, Edegem, Belgium
| | - Ella Roelant
- Clinical Trial Center (CTC), CRC Antwerp, Antwerp University Hospital and University of Antwerp, Wilrijkstraat 10, 2650, Edegem, Belgium
| | - Jan Sijbers
- Imec-Vision Lab, Department of Physics, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Martijn Froeling
- Department of Radiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| |
Collapse
|