1
|
Weng D, Guo R, Dong C, Luo Y, Qiu D, Xu L, Xu G. Magnetic Resonance Imaging of Fibroblast Activation Protein Using a Targeted Gadolinium-Based Contrast Agent. Mol Pharm 2024. [PMID: 39159402 DOI: 10.1021/acs.molpharmaceut.3c01250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The aim of this study was to synthesize a quinoline-based MRI contrast agent, Gd-DOTA-FAPI04, and assess its capacity for targeting fibroblast activation protein (FAP)-positive tumors in vivo. Gd-DOTA-FAPI04 was synthesized by attaching a 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) complex of gadolinium(III) to FAP inhibitor FAPI04. The longitudinal relaxation time (T1) of the contrast agent was measured using a Siemens Prisma 3.0T MR system, and the CCK-8 assay was performed to evaluate its potential cytotoxicity. Male nude mice bearing tumors grown from FAP-expressing fibrosarcoma cells were divided into experimental (n = 4) and control (n = 4) groups, and T1-weighted image enhancement was measured at different times (0, 10, 30, 60, 90, and 120 min) postinjection of Gd-DOTA-FAPI04. The control group received an additional preinjection of excess FAPI04. FAP expression in tumor tissue was investigated by using immunohistochemistry with an anti-FAP antibody. The longitudinal relaxivities of gadodiamide and Gd-DOTA-FAPI04 were measured to be 3.734 mM-1 s-1 and 5.323 mM-1 s-1, respectively. The CCK-8 assay demonstrated that Gd-DOTA-FAPI04 has minimal toxicity to cultured human fibrosarcoma cells. In vivo MRI showed that peak accumulation of Gd-DOTA-FAPI04 in FAP-expressing tumors occurred 1 h postinjection and could be blocked by preinjection of excess FAPI04. Immunohistochemical analysis of harvested tumor tissue supported the above findings. Gd-DOTA-FAPI04 is a promising contrast agent for in vivo imaging of FAP.
Collapse
Affiliation(s)
- Dinghu Weng
- Department of Medical Imaging, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuchang District, Wuhan 430071, Hubei, China
- Hubei Provincial Engineering Research Center of Multimodal Medical Imaging Technology and Clinical Application, Wuhan 430071, Hubei, China
- Wuhan Clinical Research and Development Center of Brain Resuscitation and Functional Imaging, Wuhan 430071, Hubei, China
| | - Rong Guo
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430000, Hubei, China
| | - Changling Dong
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuchang District, Wuhan 430071, Hubei, China
| | - Yuan Luo
- Department of Medical Imaging, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuchang District, Wuhan 430071, Hubei, China
- Hubei Provincial Engineering Research Center of Multimodal Medical Imaging Technology and Clinical Application, Wuhan 430071, Hubei, China
- Wuhan Clinical Research and Development Center of Brain Resuscitation and Functional Imaging, Wuhan 430071, Hubei, China
| | - Dasheng Qiu
- Department of Nuclear Medicine, Hubei Cancer Hospital, Wuhan 430079, Hubei, China
| | - Liying Xu
- Department of Medical Imaging, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuchang District, Wuhan 430071, Hubei, China
- Hubei Provincial Engineering Research Center of Multimodal Medical Imaging Technology and Clinical Application, Wuhan 430071, Hubei, China
- Wuhan Clinical Research and Development Center of Brain Resuscitation and Functional Imaging, Wuhan 430071, Hubei, China
| | - Guobin Xu
- Department of Medical Imaging, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuchang District, Wuhan 430071, Hubei, China
- Hubei Provincial Engineering Research Center of Multimodal Medical Imaging Technology and Clinical Application, Wuhan 430071, Hubei, China
- Wuhan Clinical Research and Development Center of Brain Resuscitation and Functional Imaging, Wuhan 430071, Hubei, China
| |
Collapse
|
2
|
Song J, Qin BF, Feng QY, Zhang JJ, Zhao GY, Luo Z, Sun HM. Albiflorin ameliorates thioacetamide-induced hepatic fibrosis: The involvement of NURR1-mediated inflammatory signaling cascades in hepatic stellate cells activation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116334. [PMID: 38626607 DOI: 10.1016/j.ecoenv.2024.116334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/11/2024] [Accepted: 04/12/2024] [Indexed: 04/18/2024]
Abstract
Thioacetamide (TAA) within the liver generates hepatotoxic metabolites that can be induce hepatic fibrosis, similar to the clinical pathological features of chronic human liver disease. The potential protective effect of Albiflorin (ALB), a monoterpenoid glycoside found in Paeonia lactiflora Pall, against hepatic fibrosis was investigated. The mouse hepatic fibrosis model was induced with an intraperitoneal injection of TAA. Hepatic stellate cells (HSCs) were subjected to treatment with transforming growth factor-beta (TGF-β), while lipopolysaccharide/adenosine triphosphate (LPS/ATP) was added to stimulate mouse peritoneal macrophages (MPMs), leading to the acquisition of conditioned medium. For TAA-treated mice, ALB reduced ALT, AST, HYP levels in serum or liver. The administration of ALB reduced histopathological abnormalities, and significantly regulated the expressions of nuclear receptor-related 1 protein (NURR1) and the P2X purinoceptor 7 receptor (P2×7r) in liver. ALB could suppress HSCs epithelial-mesenchymal transition (EMT), extracellular matrix (ECM) deposition, and pro-inflammatory factor level. ALB also remarkably up-regulated NURR1, inhibited P2×7r signaling pathway, and worked as working as C-DIM12, a NURR1 agonist. Moreover, deficiency of NURR1 in activated HSCs and Kupffer cells weakened the regulatory effect of ALB on P2×7r inhibition. NURR1-mediated inhibition of inflammatory contributed to the regulation of ALB ameliorates TAA-induced hepatic fibrosis, especially based on involving in the crosstalk of HSCs-macrophage. Therefore, ALB plays a significant part in the mitigation of TAA-induced hepatotoxicity this highlights the potential of ALB as a protective intervention for hepatic fibrosis.
Collapse
Affiliation(s)
- Jian Song
- College of Pharmacy, Beihua University, Jilin, Jilin Province 132013, China
| | - Bo-Feng Qin
- College of Pharmacy, Beihua University, Jilin, Jilin Province 132013, China
| | - Qi-Yuan Feng
- College of Pharmacy, Beihua University, Jilin, Jilin Province 132013, China
| | - Jin-Jin Zhang
- College of Pharmacy, Beihua University, Jilin, Jilin Province 132013, China
| | - Gui-Yun Zhao
- College of Pharmacy, Beihua University, Jilin, Jilin Province 132013, China.
| | - Zheng Luo
- College of Pharmacy, Beihua University, Jilin, Jilin Province 132013, China.
| | - Hai-Ming Sun
- College of Pharmacy, Beihua University, Jilin, Jilin Province 132013, China.
| |
Collapse
|
3
|
Liu J, Liu X, Shan Y, Ting HJ, Yu X, Wang JW, Liu B. Targeted platelet with hydrogen peroxide responsive behavior for non-alcoholic steatohepatitis detection. Biomaterials 2024; 306:122506. [PMID: 38354517 DOI: 10.1016/j.biomaterials.2024.122506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
The most common chronic liver illness, non-alcoholic fatty liver disease (NAFLD), refers to a range of abnormalities of the liver with varying degrees of steatosis. When the clinical symptoms including liver damage, inflammation, and fibrosis, are added to the initial steatosis, NAFLD becomes non-alcoholic steatohepatitis (NASH), the problematic and severe stage. The diagnosis of NASH at the right time could therefore effectively prevent deterioration of the disease. Considering that platelets (PLTs) could migrate to the sites of inflamed liver sinusoids with oxidative stress during the development of NASH, we purified the PLTs from fresh blood and engineered their surface with hydrogen peroxide (H2O2) responsive fluorescent probe (5-DP) through lipid fusion. The engineered PLT-DPs were recruited and trapped in the inflammation foci of the liver with NASH through interaction with the extracellular matrix, including hyaluronan and Kupffer cells. Additionally, the fluorescence of 5-DP on the surface of PLT-DP was significantly enhanced upon reacting with the elevated level of H2O2 in the NASH liver. Thus, PLT-DP has great promise for NASH fluorescence imaging with high selectivity and sensitivity.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, China
| | - Xingang Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Yi Shan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Hui Jun Ting
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; Nanomedicine Translational Research Program, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117609, Singapore
| | - Xiaodong Yu
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; Nanomedicine Translational Research Program, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117609, Singapore
| | - Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; Nanomedicine Translational Research Program, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117609, Singapore; Cardiovascular Research Institute, National University Heart Centre Singapore, Singapore 117599, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| |
Collapse
|
4
|
Jordan VC, Sojoodi M, Shroff S, Pagan PG, Barrett SC, Wellen J, Tanabe KK, Chung RT, Caravan P, Gale EM. Molecular magnetic resonance imaging of liver inflammation using an oxidatively activated probe. JHEP Rep 2023; 5:100850. [PMID: 37818152 PMCID: PMC10561122 DOI: 10.1016/j.jhepr.2023.100850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 10/12/2023] Open
Abstract
Background & Aims Many liver diseases are driven by inflammation, but imaging to non-invasively diagnose and quantify liver inflammation has been underdeveloped. The inflammatory liver microenvironment is aberrantly oxidising owing in part to reactive oxygen species generated by myeloid leucocytes. We hypothesised that magnetic resonance imaging using the oxidatively activated probe Fe-PyC3A will provide a non-invasive biomarker of liver inflammation. Methods A mouse model of drug-induced liver injury was generated through intraperitoneal injection of a hepatoxic dose of acetaminophen. A mouse model of steatohepatitis was generated via a choline-deficient, l-amino acid defined high-fat diet (CDAHFD). Images were acquired dynamically before and after intravenous injection of Fe-PyC3A. The contrast agent gadoterate meglumine was used as a non-oxidatively activated negative control probe in mice fed CDAHFD. The (post-pre) Fe-PyC3A injection change in liver vs. muscle contrast-to-noise ratio (ΔCNR) recorded 2 min post-injection was correlated with liver function test values, histologic scoring assigned using the NASH Clinical Research Network criteria, and intrahepatic myeloid leucocyte composition determined by flow cytometry. Results For mice receiving i.p. injections of acetaminophen, intrahepatic neutrophil composition correlated poorly with liver test values but positively and significantly with ΔCNR (r = 0.64, p <0.0001). For mice fed CDAHFD, ΔCNR generated by Fe-PyC3A in the left lobe was significantly greater in mice meeting histologic criteria strongly associated with a diagnosis NASH compared to mice where histology was consistent with likely non-NASH (p = 0.0001), whereas no differential effect was observed using gadoterate meglumine. In mice fed CDAHFD, ΔCNR did not correlate strongly with fractional composition of any specific myeloid cell subpopulation as determined by flow cytometry. Conclusions Magnetic resonance imaging using Fe-PyC3A merits further evaluation as a non-invasive biomarker for liver inflammation. Impact and implications Non-invasive tests to diagnose and measure liver inflammation are underdeveloped. Inflammatory cells such as neutrophils release reactive oxygen species which creates an inflammatory liver microenvironment that can drive chemical oxidation. We recently invented a new class of magnetic resonance imaging probe that is made visible to the scanner only after chemical oxidation. Here, we demonstrate how this imaging technology could be applied as a non-invasive biomarker for liver inflammation.
Collapse
Affiliation(s)
- Veronica Clavijo Jordan
- Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Mozhdeh Sojoodi
- Harvard Medical School, Boston, MA, USA
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Stuti Shroff
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Patricia Gonzalez Pagan
- Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Stephen Cole Barrett
- Harvard Medical School, Boston, MA, USA
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Boston, MA, USA
| | | | - Kenneth K. Tanabe
- Harvard Medical School, Boston, MA, USA
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Raymond T. Chung
- Harvard Medical School, Boston, MA, USA
- Gastroenterology Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Eric M. Gale
- Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Xu Q, Feng M, Ren Y, Liu X, Gao H, Li Z, Su X, Wang Q, Wang Y. From NAFLD to HCC: Advances in noninvasive diagnosis. Biomed Pharmacother 2023; 165:115028. [PMID: 37331252 DOI: 10.1016/j.biopha.2023.115028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/10/2023] [Accepted: 06/14/2023] [Indexed: 06/20/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has gradually become one of the major liver health problems in the world. The dynamic course of the disease goes through steatosis, inflammation, fibrosis, and carcinoma. Before progressing to carcinoma, timely and effective intervention will make the condition better, which highlights the importance of early diagnosis. With the further study of the biological mechanism in the pathogenesis and progression of NAFLD, some potential biomarkers have been discovered, and the possibility of their clinical application is gradually being discussed. At the same time, the progress of imaging technology and the emergence of new materials and methods also provide more possibilities for the diagnosis of NAFLD. This article reviews the diagnostic markers and advanced diagnostic methods of NAFLD in recent years.
Collapse
Affiliation(s)
- Qinchen Xu
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Maoxiao Feng
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, Shandong Province, China
| | - Yidan Ren
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Xiaoyan Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, Shandong Province, China
| | - Huiru Gao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Zigan Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Xin Su
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Qin Wang
- Department of Anesthesiology, Qilu Hospital, Shandong University, 107 Wenhua Xi Road, Jinan 250012, China.
| | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, Shandong Province, China.
| |
Collapse
|
6
|
Zhang J, Jiang S, Li S, Jiang J, Mei J, Chen Y, Ma Y, Liu Y, Liu Y. Nanotechnology: A New Strategy for Lung Cancer Treatment Targeting Pro-Tumor Neutrophils. ENGINEERING 2023; 27:106-126. [DOI: 10.1016/j.eng.2022.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Liu J, Yu X, Ting HJ, Wang X, Xu S, Wang Y, Zhang S, Wang JW, Liu B. Myeloperoxidase-Sensitive T1 and T2 Switchable MR Imaging for Diagnosis of Nonalcoholic Steatohepatitis. ACS NANO 2023; 17:3324-3333. [PMID: 36773320 DOI: 10.1021/acsnano.2c06233] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is the critical stage in the development of nonalcoholic fatty liver disease (NAFLD) from simple and reversible steatosis to irreversible cirrhosis and even hepatocellular carcinoma (HCC). Thus, the diagnosis of NASH is important for preventing the progress of NAFLD into a fatal condition. The oxidative enzyme myeloperoxidase (MPO), which is mostly produced by polymorphonuclear neutrophil granulocytes (NEU), has been identified as a key player in lipid peroxidation in inflamed tissues. Considering that the expression of MPO was much higher in NASH than in the nonalcoholic fatty liver (NAFL) with steatosis, we designed a nanoparticle platform based on ultrasmall iron oxide (USIO) nanoparticles to realize MPO-sensitive NASH diagnosis. After modification of USIO nanoparticles with amphiphilic poly(ethylene glycol) (PEG) and conjugation with 5-hydroxytryptamine (5HT), a physiological substrate for MPO, the final nanocomposite (USIO-DA-PEG-5HT) revealed MPO-mediated aggregation at the inflammatory site of NASH. Meanwhile, the intrinsic T1-weighted magnetic resonance (MR) signal of dispersed USIO-DA-PEG-5HT nanoparticles diminishes, while the T2-weighted MR signal is amplified owing to the aggregation effect. These USIO-DA-PEG-5HT nanoprobes offer great potential for improving NASH MR imaging diagnostic accuracy and sensitivity compared to existing molecular MR contrast agents with a single imaging modality.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Xiaodong Yu
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117609, Singapore
| | - Hui Jun Ting
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117609, Singapore
| | - Xiaoyuan Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117609, Singapore
| | - Shidang Xu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Yuanbo Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Sitong Zhang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117609, Singapore
| | - Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117609, Singapore
- Cardiovascular Research Institute, National University Heart Centre Singapore, Singapore 117599, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| |
Collapse
|
8
|
Increased Adherence to the Mediterranean Diet after Lifestyle Intervention Improves Oxidative and Inflammatory Status in Patients with Non-Alcoholic Fatty Liver Disease. Antioxidants (Basel) 2022; 11:antiox11081440. [PMID: 35892642 PMCID: PMC9332159 DOI: 10.3390/antiox11081440] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022] Open
Abstract
Background: A Mediterranean diet (MedDiet) is recommended as a therapy for non-alcoholic fatty liver disease (NAFLD) because there is no specific pharmacological treatment for this disease. Objective: To assess the relationship between the adherence to the Mediterranean diet and the intrahepatic fat content (IFC), levels of oxidative stress, and inflammation biomarkers after a 6-month lifestyle intervention in NAFLD patients. Methods: Patients diagnosed with NAFLD (n = 60 adults; 40–60 years old) living in the Balearic Islands, Spain, were classified into two groups, according to the adherence to the MedDiet after 6 months of lifestyle intervention. Anthropometry, blood pressure, IFC, maximal oxygen uptake, and pro/antioxidant and inflammatory biomarkers were measured in plasma and in PBMCs before and after the intervention. Results: Reductions in weight, body mass index, IFC, blood pressure levels, circulating glucose, glycosylated hemoglobin, and markers of liver damage—aspartate aminotransferase (AST), alanine aminotransferase (ALT), gamma-glutamyl transferase (GGT), and cytokeratin 18 (CK-18)—were observed after the intervention. The highest reductions were observed in the group with the best adherence to the MedDiet. A significant improvement in cardiorespiratory fitness was also observed in the group with a higher adherence. The activities of catalase in plasma and catalase and superoxide dismutase in blood mononuclear cells increased only in the group with a higher adherence, as well as the catalase gene expression in the blood mononuclear cells. The plasma levels of malondialdehyde and myeloperoxidase decreased, and resolvin-D1 increased in both groups after the intervention, whereas interleukin-6 levels decreased only in the group with a higher adherence to the MedDiet. Conclusions: A greater adherence to the MedDiet is related to greater improvements in IFC, cardiorespiratory fitness, and pro-oxidative and proinflammatory status in NAFLD patients after a 6-month nutritional intervention based on the MedDiet.
Collapse
|
9
|
Meng Y, Sun J, Zhang G, Yu T, Piao H. Approaches for neutrophil imaging: an important step in personalized medicine. Bioengineered 2022; 13:14844-14855. [PMID: 36469646 PMCID: PMC9728467 DOI: 10.1080/21655979.2022.2096303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022] Open
Abstract
Neutrophils are the most abundant circulating leukocytes and the first line of defense against invading pathogens. They are key components of the innate immune system. Neutrophils also cause tissue damage in various autoimmune and inflammatory diseases and play an important role in cancer progression. Due to the complex relationship between various diseases and neutrophils, these cells have become potentially important targets for therapeutic interventions. Monitoring neutrophils in the tumor microenvironment is critical for tumor treatment and prognostic analysis but remains challenging. Molecular imaging technology has made great progress as a valuable tool for noninvasively visualizing biological events and establishing effective cancer diagnoses and treatment methods. Molecular probes designed based on the characteristics of neutrophils, such as their flexible morphology, the abundance of surface receptors, and the absence of immunogenicity, have shown great potential. This has created an opportunity for novel ideas and research methods for the diagnosis and targeted therapy of inflammatory diseases and tumors, with the goal of integrated diagnosis and treatment. This review discusses the diverse tumor detection and diagnostic imaging strategies based on neutrophils. It is anticipated that neutrophil-based imaging will soon be gradually integrated into clinical applications.
Collapse
Affiliation(s)
- Yiming Meng
- Department of Central Laboratory, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Jing Sun
- Department of Biobank, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Guirong Zhang
- Department of Central Laboratory, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Tao Yu
- Department of Medical Imaging, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China,CONTACT Tao Yu Department of Medical Imaging, Cancer Hospital of China Medical University, Liaoning Province Cancer Hospital, No. 44, Xiaoheyan Road, Dadong District, Shenyang, Liaoning110042, China
| | - Haozhe Piao
- Department of Central Laboratory, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China,Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China,Haozhe Piao Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Province Cancer Hospital, No. 44, Xiaoheyan Road, Dadong District Shenyang, Liaoning 110042, China
| |
Collapse
|
10
|
Tang L, He S, Yin Y, Li J, Xiao Q, Wang R, Gao L, Wang W. Combining nanotechnology with the multifunctional roles of neutrophils against cancer and inflammatory disease. NANOSCALE 2022; 14:1621-1645. [PMID: 35079756 DOI: 10.1039/d1nr07725b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Neutrophils, the most abundant leukocytes in humans, play a crucial role in acute inflammation during infection and tumorigenesis. Neutrophils are the major types of cells recruited to the inflammation sites induced by pathogens, exhibiting great homing ability towards inflammatory disorders and tumor sites. Therefore, a neutrophil-based drug delivery system (NDDS) has become a promising platform for anti-cancer and anti-inflammatory treatment. Recent decades have witnessed the huge progress of applying nanomaterials in drug delivery. Nanomaterials are regarded as innovative components to enrich the field of neutrophil-based therapies due to their unique physiochemical characteristics. In this review, the latest advancement of combining diverse nanomaterials with an NDDS for cancer and inflammatory disease treatment will be summarized. It is discussed how nanomaterials empower the therapeutic area of an NDDS and how an NDDS circumvents the limitations of nanomaterials. Moreover, based on the finding that neutrophils are closely involved in the progression of cancer and inflammatory diseases, emerging therapeutic strategies that target neutrophils will be outlined. Finally, as neutrophils were demonstrated to play a central role in the immunopathology of COVID-19, which causes necroinflammation that is responsible for the cytokine storm and sepsis during coronavirus infections, novel therapeutic approaches that anchor neutrophils against the pathological consequences related to COVID-19 will be highlighted as well.
Collapse
Affiliation(s)
- Lu Tang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Shun He
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Yue Yin
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Jing Li
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Qiaqia Xiao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Ruotong Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Lijun Gao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Wei Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| |
Collapse
|
11
|
Sofias AM, De Lorenzi F, Peña Q, Azadkhah Shalmani A, Vucur M, Wang JW, Kiessling F, Shi Y, Consolino L, Storm G, Lammers T. Therapeutic and diagnostic targeting of fibrosis in metabolic, proliferative and viral disorders. Adv Drug Deliv Rev 2021; 175:113831. [PMID: 34139255 PMCID: PMC7611899 DOI: 10.1016/j.addr.2021.113831] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/30/2021] [Accepted: 06/10/2021] [Indexed: 02/07/2023]
Abstract
Fibrosis is a common denominator in many pathologies and crucially affects disease progression, drug delivery efficiency and therapy outcome. We here summarize therapeutic and diagnostic strategies for fibrosis targeting in atherosclerosis and cardiac disease, cancer, diabetes, liver diseases and viral infections. We address various anti-fibrotic targets, ranging from cells and genes to metabolites and proteins, primarily focusing on fibrosis-promoting features that are conserved among the different diseases. We discuss how anti-fibrotic therapies have progressed over the years, and how nanomedicine formulations can potentiate anti-fibrotic treatment efficacy. From a diagnostic point of view, we discuss how medical imaging can be employed to facilitate the diagnosis, staging and treatment monitoring of fibrotic disorders. Altogether, this comprehensive overview serves as a basis for developing individualized and improved treatment strategies for patients suffering from fibrosis-associated pathologies.
Collapse
Affiliation(s)
- Alexandros Marios Sofias
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany; Mildred Scheel School of Oncology (MSSO), Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO(ABCD)), University Hospital Aachen, Aachen, Germany; Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Federica De Lorenzi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Quim Peña
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Armin Azadkhah Shalmani
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Mihael Vucur
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty at Heinrich-Heine-University, Duesseldorf, Germany
| | - Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Cardiovascular Research Institute, National University Heart Centre Singapore, Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Fabian Kiessling
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Yang Shi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Lorena Consolino
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
| | - Gert Storm
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Department of Targeted Therapeutics, University of Twente, Enschede, the Netherlands.
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Department of Targeted Therapeutics, University of Twente, Enschede, the Netherlands.
| |
Collapse
|
12
|
Wegrzyniak O, Rosestedt M, Eriksson O. Recent Progress in the Molecular Imaging of Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2021; 22:7348. [PMID: 34298967 PMCID: PMC8306605 DOI: 10.3390/ijms22147348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
Pathological fibrosis of the liver is a landmark feature in chronic liver diseases, including nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). Diagnosis and assessment of progress or treatment efficacy today requires biopsy of the liver, which is a challenge in, e.g., longitudinal interventional studies. Molecular imaging techniques such as positron emission tomography (PET) have the potential to enable minimally invasive assessment of liver fibrosis. This review will summarize and discuss the current status of the development of innovative imaging markers for processes relevant for fibrogenesis in liver, e.g., certain immune cells, activated fibroblasts, and collagen depositions.
Collapse
Affiliation(s)
- Olivia Wegrzyniak
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, SE-751 83 Uppsala, Sweden; (O.W.); (M.R.)
| | - Maria Rosestedt
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, SE-751 83 Uppsala, Sweden; (O.W.); (M.R.)
| | - Olof Eriksson
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, SE-751 83 Uppsala, Sweden; (O.W.); (M.R.)
- Antaros Medical AB, SE-431 83 Mölndal, Sweden
| |
Collapse
|
13
|
Wang C, Cheng D, Jalali Motlagh N, Kuellenberg EG, Wojtkiewicz GR, Schmidt SP, Stocker R, Chen JW. Highly Efficient Activatable MRI Probe to Sense Myeloperoxidase Activity. J Med Chem 2021; 64:5874-5885. [PMID: 33945286 PMCID: PMC8564765 DOI: 10.1021/acs.jmedchem.1c00038] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Myeloperoxidase (MPO) is a key component of innate immunity but can damage tissues when secreted abnormally. We developed a new generation of a highly efficient MPO-activatable MRI probe (heMAMP) to report MPO activity. heMAMP has improved Gd stability compared to bis-5-HT-Gd-DTPA (MPO-Gd) and demonstrates no significant cytotoxicity. Importantly, heMAMP is more efficiently activated by MPO compared to MPO-Gd, 5HT-DOTA(Gd), and 5HT-DOTAGA-Gd. Molecular docking simulations revealed that heMAMP has increased rigidity via hydrogen bonding intramolecularly and improved binding affinity to the active site of MPO. In animals with subcutaneous inflammation, activated heMAMP showed a 2-3-fold increased contrast-to-noise ratio (CNR) compared to activated MPO-Gd and 4-10 times higher CNR compared to conventional DOTA-Gd. This increased efficacy was further confirmed in a model of unstable atherosclerotic plaque where heMAMP demonstrated a comparable signal increase and responsiveness to MPO inhibition at a 3-fold lower dosage compared to MPO-Gd, further underscoring heMAMP as a potential translational candidate.
Collapse
Affiliation(s)
- Cuihua Wang
- Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - David Cheng
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Negin Jalali Motlagh
- Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Enrico G Kuellenberg
- Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Gregory R Wojtkiewicz
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Stephen P Schmidt
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Roland Stocker
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
- Heart Research Institute, Newton, NSW 2042, Australia
| | - John W Chen
- Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| |
Collapse
|
14
|
Magnetic Resonance Imaging Agents. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00037-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
15
|
Abstract
Molecular magnetic resonance (MR) imaging utilizes molecular probes to provide added biochemical or cellular information to what can already be achieved with anatomical and functional MR imaging. This review provides an overview of molecular MR and focuses specifically on molecular MR contrast agents that provide contrast by shortening the T1 time. We describe the requirements for a successful molecular MR contrast agent and the challenges for clinical translation. The review highlights work from the last 5 years and places an emphasis on new contrast agents that have been validated in multiple preclinical models. Applications of molecular MR include imaging of inflammation, fibrosis, fibrogenesis, thromboembolic disease, and cancers. Molecular MR is positioned to move beyond detection of disease to the quantitative staging of disease and measurement of treatment response.
Collapse
Affiliation(s)
| | | | - Peter Caravan
- The Institute for Innovation in Imaging, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| |
Collapse
|
16
|
Zhou IY, Montesi SB, Akam EA, Caravan P. Molecular Imaging of Fibrosis. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00077-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
17
|
Molecular Magnetic Resonance Imaging of Fibrin Deposition in the Liver as an Indicator of Tissue Injury and Inflammation. Invest Radiol 2020; 55:209-216. [PMID: 31895219 DOI: 10.1097/rli.0000000000000631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
RATIONALE AND OBJECTIVES Liver inflammation is associated with nonalcoholic steatohepatitis and other pathologies, but noninvasive methods to assess liver inflammation are limited. Inflammation causes endothelial disruption and leakage of plasma proteins into the interstitial space and can result in extravascular coagulation with fibrin deposition. Here we assess the feasibility of using the established fibrin-specific magnetic resonance probe EP-2104R for the noninvasive imaging of fibrin as a marker of liver inflammation. METHODS Weekly 100 mg/kg diethylnitrosamine (DEN) dosing was used to generate liver fibrosis in male rats; control animals received vehicle. Magnetic resonance imaging at 1.5 T with EP-2104R, a matched non-fibrin-binding control linear peptide, or the collagen-specific probe EP-3533 was performed at 1 day or 7 days after the last DEN administration. Imaging data were compared with quantitative histological measures of fibrosis and inflammation. RESULTS After 4 or 5 DEN administrations, the liver becomes moderately fibrotic, and fibrosis is the same if the animal is killed 1 day (Ishak score, 3.62 ± 0.31) or 7 days (Ishak score, 3.82 ± 0.25) after the last DEN dose, but inflammation is significantly higher at 1 day compared with 7 days after the last DEN dose (histological activity index from 0-4, 3.54 ± 0.14 vs 1.61 ± 0.16, respectively; P < 0.0001). Peak EP-2104R signal enhancement was significantly higher in animals imaged at 1 day post-DEN compared with 7 days post-DEN or control rats (29.0% ± 3.2% vs 22.4% ± 2.0% vs 17.0% ± 0.2%, respectively; P = 0.017). Signal enhancement with EP-2104R was significantly higher than control linear peptide at 1 day post-DEN but not at 7 days post-DEN indicating specific fibrin binding during the inflammatory phase. Collagen molecular magnetic resonance with EP-3533 showed equivalent T1 change when imaging rats 1 day or 7 days post-DEN, consistent with equivalent fibrosis. CONCLUSIONS EP-2104R can specifically detect fibrin associated with inflammation in a rat model of liver inflammation and fibrosis.
Collapse
|
18
|
Zhou IY, Catalano OA, Caravan P. Advances in functional and molecular MRI technologies in chronic liver diseases. J Hepatol 2020; 73:1241-1254. [PMID: 32585160 PMCID: PMC7572718 DOI: 10.1016/j.jhep.2020.06.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 02/06/2023]
Abstract
MRI has emerged as the most comprehensive non-invasive diagnostic tool for liver diseases. In recent years, the value of MRI in hepatology has been significantly enhanced by a wide range of contrast agents, both clinically available and under development, that add functional information to anatomically detailed morphological images, or increase the distinction between normal and pathological tissues by targeting molecular and cellular events. Several classes of contrast agents are available for contrast-enhanced hepatic MRI, including i) conventional non-specific extracellular fluid contrast agents for assessing tissue perfusion; ii) hepatobiliary-specific contrast agents that are taken up by functioning hepatocytes and excreted through the biliary system for evaluating hepatobiliary function; iii) superparamagnetic iron oxide particles that accumulate in Kupffer cells; and iv) novel molecular contrast agents that are biochemically targeted to specific molecular/cellular processes for staging liver diseases or detecting treatment responses. The use of different functional and molecular MRI methods enables the non-invasive assessment of disease burden, progression, and treatment response in a variety of liver diseases. A high diagnostic performance can be achieved with MRI by combining imaging biomarkers.
Collapse
Affiliation(s)
- Iris Y Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States; Harvard Medical School, Boston, MA, USA; Institute for Innovation in Imaging (i(3)), Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Onofrio A Catalano
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States; Harvard Medical School, Boston, MA, USA; Division of Abdominal Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, United States
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States; Harvard Medical School, Boston, MA, USA; Institute for Innovation in Imaging (i(3)), Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA.
| |
Collapse
|
19
|
Wei J, Jiang H, Gu D, Niu M, Fu F, Han Y, Song B, Tian J. Radiomics in liver diseases: Current progress and future opportunities. Liver Int 2020; 40:2050-2063. [PMID: 32515148 PMCID: PMC7496410 DOI: 10.1111/liv.14555] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 02/05/2023]
Abstract
Liver diseases, a wide spectrum of pathologies from inflammation to neoplasm, have become an increasingly significant health problem worldwide. Noninvasive imaging plays a critical role in the clinical workflow of liver diseases, but conventional imaging assessment may provide limited information. Accurate detection, characterization and monitoring remain challenging. With progress in quantitative imaging analysis techniques, radiomics emerged as an efficient tool that shows promise to aid in personalized diagnosis and treatment decision-making. Radiomics could reflect the heterogeneity of liver lesions via extracting high-throughput and high-dimensional features from multi-modality imaging. Machine learning algorithms are then used to construct clinical target-oriented imaging biomarkers to assist disease management. Here, we review the methodological process in liver disease radiomics studies in a stepwise fashion from data acquisition and curation, region of interest segmentation, liver-specific feature extraction, to task-oriented modelling. Furthermore, the applications of radiomics in liver diseases are outlined in aspects of diagnosis and staging, evaluation of liver tumour biological behaviours, and prognosis according to different disease type. Finally, we discuss the current limitations of radiomics in liver disease studies and explore its future opportunities.
Collapse
Affiliation(s)
- Jingwei Wei
- Key Laboratory of Molecular ImagingInstitute of AutomationChinese Academy of SciencesBeijingChina
- Beijing Key Laboratory of Molecular ImagingBeijingChina
| | - Hanyu Jiang
- Department of RadiologyWest China HospitalSichuan UniversityChengduChina
| | - Dongsheng Gu
- Key Laboratory of Molecular ImagingInstitute of AutomationChinese Academy of SciencesBeijingChina
- Beijing Key Laboratory of Molecular ImagingBeijingChina
| | - Meng Niu
- Department of Interventional RadiologyThe First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Fangfang Fu
- Department of Medical ImagingHenan Provincial People’s HospitalZhengzhouHenanChina
- Department of Medical ImagingPeople’s Hospital of Zhengzhou University. ZhengzhouHenanChina
| | - Yuqi Han
- Key Laboratory of Molecular ImagingInstitute of AutomationChinese Academy of SciencesBeijingChina
- Beijing Key Laboratory of Molecular ImagingBeijingChina
| | - Bin Song
- Department of RadiologyWest China HospitalSichuan UniversityChengduChina
| | - Jie Tian
- Key Laboratory of Molecular ImagingInstitute of AutomationChinese Academy of SciencesBeijingChina
- Beijing Key Laboratory of Molecular ImagingBeijingChina
- Beijing Advanced Innovation Center for Big Data‐Based Precision MedicineSchool of MedicineBeihang UniversityBeijingChina
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of EducationSchool of Life Science and TechnologyXidian UniversityXi’anShaanxiChina
| |
Collapse
|
20
|
Tang L, Wang Z, Mu Q, Yu Z, Jacobson O, Li L, Yang W, Huang C, Kang F, Fan W, Ma Y, Wang M, Zhou Z, Chen X. Targeting Neutrophils for Enhanced Cancer Theranostics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002739. [PMID: 32656801 DOI: 10.1002/adma.202002739] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/18/2020] [Indexed: 05/18/2023]
Abstract
Improving tumor accumulation and delivery efficiency is an important goal of nanomedicine. Neutrophils play a vital role in both chemically mediating inflammatory response through myeloperoxidase (MPO) and biologically promoting metastasis during inflammation triggered by the primary tumor or environmental stimuli. Herein, a novel theranostic nanomedicine that targets both the chemical and biological functions of neutrophils in tumor is designed, facilitating the enhanced retention and sustained release of drug cargos for improved cancer theranostics. 5-hydroxytryptamine (5-HT) is equipped onto nanoparticles (NPs) loaded with photosensitizers and Zileuton (a leukotriene inhibitor) to obtain MPO and neutrophil targeting NPs, denoted as HZ-5 NPs. The MPO targeting property of 5-HT modified NPs is confirmed by noninvasive positron emission tomography imaging studies. Furthermore, photodynamic therapy is used to initiate the inflammatory response which further mediated the accumulation and retention of neutrophil targeting NPs in a breast cancer model. This design renders a greatly improved theranostic nanomedicine for efficient tumor suppression, and more importantly, inhibition of neutrophil-mediated lung metastasis via the sustained release of Zileuton. This work presents a novel strategy of targeting neutrophils for improved tumor theranostics, which may open up new avenues in designing nanomedicine through exploiting the tumor microenvironment.
Collapse
Affiliation(s)
- Longguang Tang
- The People's Hospital of Gaozhou, Maoming, 525200, China
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Zhantong Wang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Qingchun Mu
- The People's Hospital of Gaozhou, Maoming, 525200, China
| | - Zhiqiang Yu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China
| | - Orit Jacobson
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ling Li
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Weijing Yang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chunming Huang
- The People's Hospital of Gaozhou, Maoming, 525200, China
| | - Fei Kang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Wenpei Fan
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ying Ma
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Maosheng Wang
- The People's Hospital of Gaozhou, Maoming, 525200, China
| | - Zijian Zhou
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
21
|
De Rudder M, Bouzin C, Nachit M, Louvegny H, Vande Velde G, Julé Y, Leclercq IA. Automated computerized image analysis for the user-independent evaluation of disease severity in preclinical models of NAFLD/NASH. J Transl Med 2020; 100:147-160. [PMID: 31506634 DOI: 10.1038/s41374-019-0315-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/25/2019] [Accepted: 08/14/2019] [Indexed: 02/08/2023] Open
Abstract
Pathologists use a semiquantitative scoring system (NAS or SAF score) to facilitate the reporting of disease severity and evolution. Similar scores are applied for the same purposes in rodents. Histological scores have inherent inter- and intra-observer variability and yield discrete and not continuous values. Here we performed an automatic numerical quantification of NASH features on liver sections in common preclinical NAFLD/NASH models. High-fat diet-fed foz/foz mice (Foz HF) or wild-type mice (WT HF) known to develop progressive NASH or an uncomplicated steatosis, respectively, and C57Bl6 mice fed a choline-deficient high-fat diet (CDAA) to induce steatohepatitis were analyzed at various time points. Automated software image analysis of steatosis, inflammation, and fibrosis was performed on digital images from entire liver sections. Data obtained were compared with the NAS score, biochemical quantification, and gene expression. As histologically assessed, WT HF mice had normal liver up to week 34 when they harbor mild steatosis with if any, little inflammation. Foz HF mice exhibited grade 2 steatosis as early as week 4, grade 3 steatosis at week 12 up to week 34; inflammation and ballooning increased gradually with time. Automated measurement of steatosis (macrovesicular steatosis area) revealed a strong correlation with steatosis scores (r = 0.89), micro-CT liver density, liver lipid content (r = 0.89), and gene expression of CD36 (r = 0.87). Automatic assessment of the number of F4/80-immunolabelled crown-like structures strongly correlated with conventional inflammatory scores (r = 0.79). In Foz HF mice, collagen deposition, evident at week 20 and progressing at week 34, was automatically quantified on picrosirius red-stained entire liver sections. The automated procedure also faithfully captured and quantitated macrovesicular steatosis, mixed inflammation, and pericellular fibrosis in CDAA-induced steatohepatitis. In conclusion, the automatic numerical analysis represents a promising quantitative method to rapidly monitor NAFLD activity with high-throughput in large preclinical studies and for accurate monitoring of disease evolution.
Collapse
Affiliation(s)
- Maxime De Rudder
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Caroline Bouzin
- Imaging platform 2IP, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Maxime Nachit
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium.,Department of Imaging and Pathology, Faculty of Medicine & MoSAIC, Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Heloïse Louvegny
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Greetje Vande Velde
- Department of Imaging and Pathology, Faculty of Medicine & MoSAIC, Biomedical Sciences, KU Leuven, Leuven, Belgium
| | | | - Isabelle A Leclercq
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium.
| |
Collapse
|
22
|
Li A, Wu Y, Pulli B, Wojtkiewicz GR, Iwamoto Y, Wang C, Li JH, Ali M, Feng X, Yao Z, Chen JW. Myeloperoxidase Molecular MRI Reveals Synergistic Combination Therapy in Murine Experimental Autoimmune Neuroinflammation. Radiology 2019; 293:158-165. [PMID: 31478802 PMCID: PMC6776885 DOI: 10.1148/radiol.2019182492] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 06/21/2019] [Accepted: 07/19/2019] [Indexed: 01/13/2023]
Abstract
Background Despite advances in immunomodulatory agents, most current therapies for multiple sclerosis target lymphocytes or lymphocytic function. However, therapy response may be less than optimal due to demyelination and axonal damage caused by myeloid cells. Purpose To determine if myeloperoxidase (MPO) molecular MRI can evaluate whether combination therapy targeting both lymphoid and myeloid inflammation can improve autoimmune neuroinflammation compared with either drug alone, even at suboptimal doses. Materials and Methods Four groups of 94 female mice (8-10 weeks old) were induced with experimental autoimmune encephalomyelitis (EAE) from August 2, 2016, to March 30, 2018, and divided into saline control (n = 22), 4-aminobenzoic acid hydrazide (ABAH) therapy group (n = 19), glatiramer acetate (GA) therapy group (n = 22), and combination therapy group (n = 31). Mice were administered suboptimal doses of ABAH, an irreversible inhibitor of MPO; GA, a first-line multiple sclerosis drug; both ABAH and GA; or saline (control). Mice were imaged with bis-5-hydroxytryptamide-diethylenetriaminepentaacetate gadolinium (hereafter, MPO-Gd) MRI. One-way analysis of variance, two-way analysis of variance, Kurskal-Wallis, and log-rank tests were used. P < .05 was considered to indicate statistical significance. Results The combination-treated group showed delayed disease onset (day 11.3 vs day 9.8 for ABAH, day 10.4 for GA, day 9.9 for control; P < .05) and reduced disease severity (clinical score during the acute exacerbation period of 1.8 vs 3.8 for ABAH, 3.1 for GA, 3.9 for control; P < .05). The combination-treated group demonstrated fewer MPO-positive lesions (30.2 vs 73.7 for ABAH, 64.8 for GA, 67.2 for control; P < .05), smaller MPO-positive lesion volume (16.7 mm3 vs 65.2 mm3 for ABAH, 69.9 mm3 for GA, 66.0 mm3 for control; P < .05), and lower intensity of MPO-Gd lesion activation ratio (0.7 vs 1.9 for ABAH, 3.2 for GA, 2.3 for control; P < .05). Reduced disease severity in the combination group was confirmed at histopathologic analysis, where MPO expression (1779 vs 2673 for ABAH, 2898 for GA; P < .05) and demyelination (5.3% vs 9.0% for ABAH, 10.6% for GA; P < .05) were ameliorated. Conclusion Myeloperoxidase molecular MRI can track the treatment response from immunomodulatory drugs even if the drug does not directly target myeloperoxidase, and establishes that combination therapy targeting both myeloid and lymphocytic inflammation is effective for murine autoimmune neuroinflammation, even at suboptimal doses. © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Walczak in this issue.
Collapse
Affiliation(s)
- Anning Li
- From the Center for Systems Biology, Massachusetts General Hospital
and Harvard Medical School, 185 Cambridge St, Boston, Mass 02114 (A.L., Y.W.,
B.P., G.R.W., Y.I., C.W., J.L., M.A., J.W.C.); Institute for Innovation in
Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Mass
(B.P., C.W., J.W.C.); Department of Radiology, Qilu Hospital of Shandong
University, Jinan, China (A.L.); and Department of Radiology, Huashan Hospital,
Fudan University, Shanghai, China (A.L., Y.W., X.F., Z.Y.)
| | - Yue Wu
- From the Center for Systems Biology, Massachusetts General Hospital
and Harvard Medical School, 185 Cambridge St, Boston, Mass 02114 (A.L., Y.W.,
B.P., G.R.W., Y.I., C.W., J.L., M.A., J.W.C.); Institute for Innovation in
Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Mass
(B.P., C.W., J.W.C.); Department of Radiology, Qilu Hospital of Shandong
University, Jinan, China (A.L.); and Department of Radiology, Huashan Hospital,
Fudan University, Shanghai, China (A.L., Y.W., X.F., Z.Y.)
| | - Benjamin Pulli
- From the Center for Systems Biology, Massachusetts General Hospital
and Harvard Medical School, 185 Cambridge St, Boston, Mass 02114 (A.L., Y.W.,
B.P., G.R.W., Y.I., C.W., J.L., M.A., J.W.C.); Institute for Innovation in
Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Mass
(B.P., C.W., J.W.C.); Department of Radiology, Qilu Hospital of Shandong
University, Jinan, China (A.L.); and Department of Radiology, Huashan Hospital,
Fudan University, Shanghai, China (A.L., Y.W., X.F., Z.Y.)
| | - Gregory R. Wojtkiewicz
- From the Center for Systems Biology, Massachusetts General Hospital
and Harvard Medical School, 185 Cambridge St, Boston, Mass 02114 (A.L., Y.W.,
B.P., G.R.W., Y.I., C.W., J.L., M.A., J.W.C.); Institute for Innovation in
Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Mass
(B.P., C.W., J.W.C.); Department of Radiology, Qilu Hospital of Shandong
University, Jinan, China (A.L.); and Department of Radiology, Huashan Hospital,
Fudan University, Shanghai, China (A.L., Y.W., X.F., Z.Y.)
| | - Yoshiko Iwamoto
- From the Center for Systems Biology, Massachusetts General Hospital
and Harvard Medical School, 185 Cambridge St, Boston, Mass 02114 (A.L., Y.W.,
B.P., G.R.W., Y.I., C.W., J.L., M.A., J.W.C.); Institute for Innovation in
Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Mass
(B.P., C.W., J.W.C.); Department of Radiology, Qilu Hospital of Shandong
University, Jinan, China (A.L.); and Department of Radiology, Huashan Hospital,
Fudan University, Shanghai, China (A.L., Y.W., X.F., Z.Y.)
| | - Cuihua Wang
- From the Center for Systems Biology, Massachusetts General Hospital
and Harvard Medical School, 185 Cambridge St, Boston, Mass 02114 (A.L., Y.W.,
B.P., G.R.W., Y.I., C.W., J.L., M.A., J.W.C.); Institute for Innovation in
Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Mass
(B.P., C.W., J.W.C.); Department of Radiology, Qilu Hospital of Shandong
University, Jinan, China (A.L.); and Department of Radiology, Huashan Hospital,
Fudan University, Shanghai, China (A.L., Y.W., X.F., Z.Y.)
| | - Jing-Hui Li
- From the Center for Systems Biology, Massachusetts General Hospital
and Harvard Medical School, 185 Cambridge St, Boston, Mass 02114 (A.L., Y.W.,
B.P., G.R.W., Y.I., C.W., J.L., M.A., J.W.C.); Institute for Innovation in
Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Mass
(B.P., C.W., J.W.C.); Department of Radiology, Qilu Hospital of Shandong
University, Jinan, China (A.L.); and Department of Radiology, Huashan Hospital,
Fudan University, Shanghai, China (A.L., Y.W., X.F., Z.Y.)
| | - Muhammad Ali
- From the Center for Systems Biology, Massachusetts General Hospital
and Harvard Medical School, 185 Cambridge St, Boston, Mass 02114 (A.L., Y.W.,
B.P., G.R.W., Y.I., C.W., J.L., M.A., J.W.C.); Institute for Innovation in
Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Mass
(B.P., C.W., J.W.C.); Department of Radiology, Qilu Hospital of Shandong
University, Jinan, China (A.L.); and Department of Radiology, Huashan Hospital,
Fudan University, Shanghai, China (A.L., Y.W., X.F., Z.Y.)
| | - Xiaoyuan Feng
- From the Center for Systems Biology, Massachusetts General Hospital
and Harvard Medical School, 185 Cambridge St, Boston, Mass 02114 (A.L., Y.W.,
B.P., G.R.W., Y.I., C.W., J.L., M.A., J.W.C.); Institute for Innovation in
Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Mass
(B.P., C.W., J.W.C.); Department of Radiology, Qilu Hospital of Shandong
University, Jinan, China (A.L.); and Department of Radiology, Huashan Hospital,
Fudan University, Shanghai, China (A.L., Y.W., X.F., Z.Y.)
| | - Zhenwei Yao
- From the Center for Systems Biology, Massachusetts General Hospital
and Harvard Medical School, 185 Cambridge St, Boston, Mass 02114 (A.L., Y.W.,
B.P., G.R.W., Y.I., C.W., J.L., M.A., J.W.C.); Institute for Innovation in
Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Mass
(B.P., C.W., J.W.C.); Department of Radiology, Qilu Hospital of Shandong
University, Jinan, China (A.L.); and Department of Radiology, Huashan Hospital,
Fudan University, Shanghai, China (A.L., Y.W., X.F., Z.Y.)
| | - John W. Chen
- From the Center for Systems Biology, Massachusetts General Hospital
and Harvard Medical School, 185 Cambridge St, Boston, Mass 02114 (A.L., Y.W.,
B.P., G.R.W., Y.I., C.W., J.L., M.A., J.W.C.); Institute for Innovation in
Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Mass
(B.P., C.W., J.W.C.); Department of Radiology, Qilu Hospital of Shandong
University, Jinan, China (A.L.); and Department of Radiology, Huashan Hospital,
Fudan University, Shanghai, China (A.L., Y.W., X.F., Z.Y.)
| |
Collapse
|
23
|
Rodríguez-Rodríguez A, Shuvaev S, Rotile N, Jones CM, Probst CK, Dos Santos Ferreira D, Graham-O′Regan K, Boros E, Knipe RS, Griffith JW, Tager AM, Bogdanov A, Caravan P. Peroxidase Sensitive Amplifiable Probe for Molecular Magnetic Resonance Imaging of Pulmonary Inflammation. ACS Sens 2019; 4:2412-2419. [PMID: 31397156 DOI: 10.1021/acssensors.9b01010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
An amplifiable magnetic resonance imaging (MRI) probe that combines the stability of the macrocyclic Gd-DOTAGA core with a peroxidase-reactive 5-hydroxytryptamide (5-HT) moiety is reported. The incubation of the complex under enzymatic oxidative conditions led to a 1.7-fold increase in r1 at 1.4 T that was attributed to an oligomerization of the probe upon oxidation. This probe, Gd-5-HT-DOTAGA, provided specific detection of lung inflammation by MRI in bleomycin-injured mice.
Collapse
Affiliation(s)
- Aurora Rodríguez-Rodríguez
- The Institute for Innovation in Imaging, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Sergey Shuvaev
- The Institute for Innovation in Imaging, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Nicholas Rotile
- The Institute for Innovation in Imaging, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Chloe M. Jones
- The Institute for Innovation in Imaging, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Clemens K. Probst
- Division of Pulmonary and Critical Care Medicine and the Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Diego Dos Santos Ferreira
- The Institute for Innovation in Imaging, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Katherine Graham-O′Regan
- The Institute for Innovation in Imaging, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Eszter Boros
- The Institute for Innovation in Imaging, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Rachel S. Knipe
- Division of Pulmonary and Critical Care Medicine and the Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Jason W. Griffith
- Division of Pulmonary and Critical Care Medicine and the Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Andrew M. Tager
- Division of Pulmonary and Critical Care Medicine and the Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Alexei Bogdanov
- Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, United States
| | - Peter Caravan
- The Institute for Innovation in Imaging, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
24
|
Evaluation of diffusion kurtosis imaging in stratification of nonalcoholic fatty liver disease and early diagnosis of nonalcoholic steatohepatitis in a rabbit model. Magn Reson Imaging 2019; 63:267-273. [PMID: 31445117 DOI: 10.1016/j.mri.2019.08.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE To examine the feasibility of MR diffusion kurtosis imaging (DKI) for characterizing nonalcoholic fatty liver disease (NAFLD) and diagnosing nonalcoholic steatohepatitis (NASH). METHODS Thirty-two rabbits on high fat diet with different severities of NAFLD were imaged at 3 T MR including diffusion weighted imaging (DWI) and DKI using b values of 0, 400, 800 s/mm2 with 15 diffusion directions at each b value. Apparent diffusion coefficient (ADC) was derived from the linear exponential DWI model. Mean diffusion (MD) and mean kurtosis (MK) were derived from the quadratic exponential model of DKI. Correlations between MR parameters and hepatic pathology determined by the NAFLD activity scoring system were analyzed by Spearman rank correlation analysis. Receiver operating characteristic analyses were applied to determine the cutoff values of MD, MK as well as ADC in distinguishing NASH from non-NASH. The diagnostic efficacies of MD and MK in detecting NASH were compared with that of ADC. RESULTS Values for ADC and MD significantly decreased as the severity of NAFLD increased (ρ = -0.529, -0.904, respectively; P < 0.05). MK values significantly increased as the severity of NAFLD increased (ρ = 0.761; P < 0.05). In addition, both MD and MK values were significantly different between borderline NASH and NASH groups (MD: 1.729 ± 0.144 vs. 1.458 ± 0.240[×10-3 mm2/s]; MK: 1.096 ± 0.079 vs. 1.237 ± 0.180; P < 0.05). Moreover, there was a significantly higher area under the curve (AUC) for both MD (0.955) and MK (0.905), as compared to ADC (0.736). CONCLUSION Diffusion kurtosis imaging was feasible for stratifying NAFLD, and more accurately discriminated NASH from non-NASH when compared with DWI.
Collapse
|
25
|
Wang H, Jordan VC, Ramsay IA, Sojoodi M, Fuchs BC, Tanabe KK, Caravan P, Gale EM. Molecular Magnetic Resonance Imaging Using a Redox-Active Iron Complex. J Am Chem Soc 2019; 141:5916-5925. [PMID: 30874437 PMCID: PMC6726119 DOI: 10.1021/jacs.9b00603] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We introduce a redox-active iron complex, Fe-PyC3A, as a biochemically responsive MRI contrast agent. Switching between Fe3+-PyC3A and Fe2+-PyC3A yields a full order of magnitude relaxivity change that is field-independent between 1.4 and 11.7 T. The oxidation of Fe2+-PyC3A to Fe3+-PyC3A by hydrogen peroxide is very rapid, and we capitalized on this behavior for the molecular imaging of acute inflammation, which is characterized by elevated levels of reactive oxygen species. Injection of Fe2+-PyC3A generates strong, selective contrast enhancement of inflamed pancreatic tissue in a mouse model (caerulein/LPS model). No significant signal enhancement is observed in normal pancreatic tissue (saline-treated mice). Importantly, signal enhancement of the inflamed pancreas correlates strongly and significantly with ex vivo quantitation of the pro-inflammatory biomarker myeloperoxidase. This is the first example of using metal ion redox for the MR imaging of pathologic change in vivo. Redox-active Fe3+/2+ complexes represent a new design paradigm for biochemically responsive MRI contrast agents.
Collapse
Affiliation(s)
- Huan Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, 149 Thirteenth Street, Charlestown, Massachusetts 02129, United States
| | - Veronica Clavijo Jordan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, 149 Thirteenth Street, Charlestown, Massachusetts 02129, United States
- Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Ian A. Ramsay
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, 149 Thirteenth Street, Charlestown, Massachusetts 02129, United States
| | - Mozhdeh Sojoodi
- Division of Surgical Oncology, Massachusetts General Hospital/Harvard Medical School, WRN401, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Bryan C. Fuchs
- Division of Surgical Oncology, Massachusetts General Hospital/Harvard Medical School, WRN401, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Kenneth K. Tanabe
- Division of Surgical Oncology, Massachusetts General Hospital/Harvard Medical School, WRN401, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, 149 Thirteenth Street, Charlestown, Massachusetts 02129, United States
- Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Eric M. Gale
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, 149 Thirteenth Street, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
26
|
Kiessling F. Molecular Imaging Unravels Cerebral Malaria. Radiology 2019; 290:368-369. [DOI: 10.1148/radiol.2018182461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Fabian Kiessling
- From the Center for Biohybrid Medical Systems, Institute for Experimental Molecular Imaging, Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Forckenbeckstrasse 55, 52074 Aachen, Germany; and Fraunhofer MEVIS, Institute for Medical Image Computing, Aachen, Germany
| |
Collapse
|
27
|
Montesi SB, Désogère P, Fuchs BC, Caravan P. Molecular imaging of fibrosis: recent advances and future directions. J Clin Invest 2019; 129:24-33. [PMID: 30601139 DOI: 10.1172/jci122132] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Fibrosis, the progressive accumulation of connective tissue that occurs in response to injury, causes irreparable organ damage and may result in organ failure. The few available antifibrotic treatments modify the rate of fibrosis progression, but there are no available treatments to reverse established fibrosis. Thus, more effective therapies are urgently needed. Molecular imaging is a promising biomedical methodology that enables noninvasive visualization of cellular and subcellular processes. It provides a unique means to monitor and quantify dysregulated molecular fibrotic pathways in a noninvasive manner. Molecular imaging could be used for early detection, disease staging, and prognostication, as well as for assessing disease activity and treatment response. As fibrotic diseases are often molecularly heterogeneous, molecular imaging of a specific pathway could be used for patient stratification and cohort enrichment with the goal of improving clinical trial design and feasibility and increasing the ability to detect a definitive outcome for new therapies. Here we review currently available molecular imaging probes for detecting fibrosis and fibrogenesis, the active formation of new fibrous tissue, and their application to models of fibrosis across organ systems and fibrotic processes. We provide our opinion as to the potential roles of molecular imaging in human fibrotic diseases.
Collapse
Affiliation(s)
| | - Pauline Désogère
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Athinoula A. Martinos Center for Biomedical Imaging and.,Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Bryan C Fuchs
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Peter Caravan
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Athinoula A. Martinos Center for Biomedical Imaging and.,Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
28
|
Chartampilas E. Imaging of nonalcoholic fatty liver disease and its clinical utility. Hormones (Athens) 2018; 17:69-81. [PMID: 29858854 DOI: 10.1007/s42000-018-0012-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/04/2017] [Indexed: 12/21/2022]
Abstract
The prevalence of nonalcoholic fatty liver disease has been continuously rising over the last three decades and is projected to become the most common indication for liver transplantation in the near future. Its pathophysiology and complex interplay with diabetes and the metabolic syndrome are not as yet fully understood despite growing scientific interest and research. Modern imaging techniques offer significant assistance in this field by enabling the study of the liver noninvasively and evaluation of the degree of both steatosis and fibrosis, and even in attempting to diagnose the presence of inflammation (steatohepatitis). The derived measurements are highly precise, accurate and reproducible, performing better than biopsy in terms of quantification. In this article, these imaging techniques are overviewed and their performance regarding diagnosis, stratification and monitoring are evaluated. Their expanding role both in the research arena and in clinical practice along with their limitations is also discussed.
Collapse
|