1
|
Liu Y, He Y, Xu H, Remmo A, Wiekhorst F, Heymann F, Liu H, Schellenberger E, Häckel A, Hauptmann R, Taupitz M, Shen Y, Yilmaz EY, Müller DN, Heidemann L, Schmidt R, Savic LJ. The Role of Glycocalyx Diversity and Thickness for Nanoparticle Internalization in M1-/M2-like Macrophages. NANO LETTERS 2024; 24:15607-15614. [PMID: 39621943 PMCID: PMC11638944 DOI: 10.1021/acs.nanolett.4c04004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/12/2024]
Abstract
Very small superparamagnetic iron oxide nanoparticles (VSOPs) show diagnostic value in multiple diseases as a promising MRI contrast agent. Macrophages predominantly ingest VSOPs, but the mechanism remains unclear. This study identifies differences in VSOP uptake between pro-inflammatory M1 and anti-inflammatory M2 macrophages and explores the role of the pericellular glycocalyx. Glycosaminoglycans (GAG) synthesis activities and the pericellular glycocalyx for M1/M2-like macrophages were assessed by RT-qPCR, Click-iT reaction, and WGA-FITC staining. The uptake of europium-VSOP and Synomag by the two subtypes was measured using Prussian blue staining, fluorescent microscopy, and magnetic particle spectroscopy. The findings revealed that M2-like macrophages had higher GAG synthesis activity, a thicker glycocalyx, and increased nanoparticle uptake compared to M1-like macrophages. Enzymatic glycocalyx degradation significantly decreased nanoparticle uptake. This study demonstrates a positive correlation between glycocalyx and nanoparticle uptake that could be exploited for imaging and targeted therapy, particularly in cancer, where macrophage subtypes play distinct roles.
Collapse
Affiliation(s)
- Yu Liu
- Department
of Radiology, Campus Virchow-Klinikum (CVK), Charité-Universitätsmedizin Berlin, Berlin 13353, Germany
- Experimental
and Clinical Research Center, a joint cooperation
of Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin
Berlin, Berlin 13125, Germany
| | - Yubei He
- Department
of Radiology, Campus Virchow-Klinikum (CVK), Charité-Universitätsmedizin Berlin, Berlin 13353, Germany
- Experimental
and Clinical Research Center, a joint cooperation
of Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin
Berlin, Berlin 13125, Germany
| | - Han Xu
- Department
of Radiology, Campus Virchow-Klinikum (CVK), Charité-Universitätsmedizin Berlin, Berlin 13353, Germany
- Experimental
and Clinical Research Center, a joint cooperation
of Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin
Berlin, Berlin 13125, Germany
| | - Amani Remmo
- Physikalisch-Technische
Bundesanstalt, Berlin 10587, Germany
| | - Frank Wiekhorst
- Physikalisch-Technische
Bundesanstalt, Berlin 10587, Germany
| | - Felix Heymann
- Department
of Hepatology, Campus Virchow-Klinikum (CVK), Charité-Universitätsmedizin Berlin, Berlin 13353, Germany
| | - Hanyang Liu
- Department
of Hepatology, Campus Virchow-Klinikum (CVK), Charité-Universitätsmedizin Berlin, Berlin 13353, Germany
| | - Eyk Schellenberger
- Department
of Radiology, Campus Charité Mitte (CCM), Charité-Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Akvile Häckel
- Department
of Radiology, Campus Charité Mitte (CCM), Charité-Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Ralf Hauptmann
- Department
of Radiology, Campus Charité Mitte (CCM), Charité-Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Matthias Taupitz
- Department
of Radiology, Campus Benjamin Franklin (CBF), Charité-Universitätsmedizin Berlin, Berlin 12203, Germany
| | - Yu Shen
- Deutsches
Rheuma-Forschungszentrum (DRFZ), Berlin 10117, Germany
| | - Emine Yaren Yilmaz
- Department
of Radiology, Campus Virchow-Klinikum (CVK), Charité-Universitätsmedizin Berlin, Berlin 13353, Germany
- Experimental
and Clinical Research Center, a joint cooperation
of Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin
Berlin, Berlin 13125, Germany
| | - Dominik N. Müller
- Experimental
and Clinical Research Center, a joint cooperation
of Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin
Berlin, Berlin 13125, Germany
- Max
Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany
- Charité-Universitätsmedizin
Berlin, Berlin 13125, Germany
| | - Luisa Heidemann
- Department
of Radiology, Campus Virchow-Klinikum (CVK), Charité-Universitätsmedizin Berlin, Berlin 13353, Germany
- Experimental
and Clinical Research Center, a joint cooperation
of Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin
Berlin, Berlin 13125, Germany
| | - Robin Schmidt
- Department
of Radiology, Campus Virchow-Klinikum (CVK), Charité-Universitätsmedizin Berlin, Berlin 13353, Germany
- Experimental
and Clinical Research Center, a joint cooperation
of Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin
Berlin, Berlin 13125, Germany
| | - Lynn Jeanette Savic
- Department
of Radiology, Campus Virchow-Klinikum (CVK), Charité-Universitätsmedizin Berlin, Berlin 13353, Germany
- Experimental
and Clinical Research Center, a joint cooperation
of Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin
Berlin, Berlin 13125, Germany
- Berlin
Institute of Health at Charité-Universitätsmedizin
Berlin, Berlin 10178, Germany
| |
Collapse
|
2
|
Dong S, Shewarega A, Chapiro J, Cai Z, Hyder F, Coman D, Duncan JS. High-resolution extracellular pH imaging of liver cancer with multiparametric MR using Deep Image Prior. NMR IN BIOMEDICINE 2024; 37:e5145. [PMID: 38488205 DOI: 10.1002/nbm.5145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 07/11/2024]
Abstract
Noninvasive extracellular pH (pHe) mapping with Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) using MR spectroscopic imaging (MRSI) has been demonstrated on 3T clinical MR scanners at 8 × 8 × 10 mm3 spatial resolution and applied to study various liver cancer treatments. Although pHe imaging at higher resolution can be achieved by extending the acquisition time, a postprocessing method to increase the resolution is preferable, to minimize the duration spent by the subject in the MR scanner. In this work, we propose to improve the spatial resolution of pHe mapping with BIRDS by incorporating anatomical information in the form of multiparametric MRI and using an unsupervised deep-learning technique, Deep Image Prior (DIP). Specifically, we used high-resolution T 1 , T 2 , and diffusion-weighted imaging (DWI) MR images of rabbits with VX2 liver tumors as inputs to a U-Net architecture to provide anatomical information. U-Net parameters were optimized to minimize the difference between the output super-resolution image and the experimentally acquired low-resolution pHe image using the mean-absolute error. In this way, the super-resolution pHe image would be consistent with both anatomical MR images and the low-resolution pHe measurement from the scanner. The method was developed based on data from 49 rabbits implanted with VX2 liver tumors. For evaluation, we also acquired high-resolution pHe images from two rabbits, which were used as ground truth. The results indicate a good match between the spatial characteristics of the super-resolution images and the high-resolution ground truth, supported by the low pixelwise absolute error.
Collapse
Affiliation(s)
- Siyuan Dong
- Department of Electrical Engineering, Yale University, New Haven, Connecticut, USA
| | - Annabella Shewarega
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, USA
| | - Julius Chapiro
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, USA
| | - Zhuotong Cai
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
- Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an, China
| | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, USA
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Daniel Coman
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, USA
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - James S Duncan
- Department of Electrical Engineering, Yale University, New Haven, Connecticut, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, USA
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
3
|
Mishra SK, Santana JG, Mihailovic J, Hyder F, Coman D. Transmembrane pH gradient imaging in rodent glioma models. NMR IN BIOMEDICINE 2024; 37:e5102. [PMID: 38263680 PMCID: PMC10987279 DOI: 10.1002/nbm.5102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/28/2023] [Accepted: 12/16/2023] [Indexed: 01/25/2024]
Abstract
A unique feature of the tumor microenvironment is extracellular acidosis in relation to intracellular milieu. Metabolic reprogramming in tumors results in overproduction of H+ ions (and lactate), which are extruded from the cells to support tumor survival and progression. As a result, the transmembrane pH gradient (ΔpH), representing the difference between intracellular pH (pHi) and extracellular pH (pHe), is posited to be larger in tumors compared with normal tissue. Controlling the transmembrane pH difference has promise as a potential therapeutic target in cancer as it plays an important role in regulating drug delivery into cells. The current study shows successful development of an MRI/MRSI-based technique that provides ΔpH imaging at submillimeter resolution. We applied this technique to image ΔpH in rat brains with RG2 and U87 gliomas, as well as in mouse brains with GL261 gliomas. pHi was measured with Amine and Amide Concentration-Independent Detection (AACID), while pHe was measured with Biosensor Imaging of Redundant Deviation in Shifts (BIRDS). The results indicate that pHi was slightly higher in tumors (7.40-7.43 in rats, 7.39-7.47 in mice) compared with normal brain (7.30-7.38 in rats, 7.32-7.36 in mice), while pHe was significantly lower in tumors (6.62-6.76 in rats, 6.74-6.84 in mice) compared with normal tissue (7.17-7.22 in rats, 7.20-7.21 in mice). As a result, ΔpH was higher in tumors (0.64-0.81 in rats, 0.62-0.65 in mice) compared with normal brain (0.13-0.16 in rats, 0.13-0.16 in mice). This work establishes an MRI/MRSI-based platform for ΔpH imaging at submillimeter resolution in gliomas.
Collapse
Affiliation(s)
- Sandeep Kumar Mishra
- Yale University, Department of Radiology & Biomedical Imaging, New Haven, CT 06510, USA
| | | | - Jelena Mihailovic
- Yale University, Department of Radiology & Biomedical Imaging, New Haven, CT 06510, USA
| | - Fahmeed Hyder
- Yale University, Department of Radiology & Biomedical Imaging, New Haven, CT 06510, USA
- Yale University, Department of Biomedical Engineering, New Haven, CT 06510, USA
| | - Daniel Coman
- Yale University, Department of Radiology & Biomedical Imaging, New Haven, CT 06510, USA
- Yale University, Department of Biomedical Engineering, New Haven, CT 06510, USA
| |
Collapse
|
4
|
Ma X, Mao M, He J, Liang C, Xie HY. Nanoprobe-based molecular imaging for tumor stratification. Chem Soc Rev 2023; 52:6447-6496. [PMID: 37615588 DOI: 10.1039/d3cs00063j] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
The responses of patients to tumor therapies vary due to tumor heterogeneity. Tumor stratification has been attracting increasing attention for accurately distinguishing between responders to treatment and non-responders. Nanoprobes with unique physical and chemical properties have great potential for patient stratification. This review begins by describing the features and design principles of nanoprobes that can visualize specific cell types and biomarkers and release inflammatory factors during or before tumor treatment. Then, we focus on the recent advancements in using nanoprobes to stratify various therapeutic modalities, including chemotherapy, radiotherapy (RT), photothermal therapy (PTT), photodynamic therapy (PDT), chemodynamic therapy (CDT), ferroptosis, and immunotherapy. The main challenges and perspectives of nanoprobes in cancer stratification are also discussed to facilitate probe development and clinical applications.
Collapse
Affiliation(s)
- Xianbin Ma
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Mingchuan Mao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Jiaqi He
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Chao Liang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Hai-Yan Xie
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Chemical Biology Center, Peking University, Beijing, 100191, P. R. China.
| |
Collapse
|
5
|
Santana JG, Petukhova-Greenstein A, Gross M, Hyder F, Pekurovsky V, Gottwald LA, Boustani A, Walsh JJ, Kucukkaya AS, Malpani R, Madoff DC, Goldberg SN, Ahmed M, Joshi N, Coman D, Chapiro J. MR Imaging-Based In Vivo Macrophage Imaging to Monitor Immune Response after Radiofrequency Ablation of the Liver. J Vasc Interv Radiol 2023; 34:395-403.e5. [PMID: 36423815 PMCID: PMC11042914 DOI: 10.1016/j.jvir.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 10/27/2022] [Accepted: 11/13/2022] [Indexed: 11/22/2022] Open
Abstract
PURPOSE To establish molecular magnetic resonance (MR) imaging instruments for in vivo characterization of the immune response to hepatic radiofrequency (RF) ablation using cell-specific immunoprobes. MATERIALS AND METHODS Seventy-two C57BL/6 wild-type mice underwent standardized hepatic RF ablation (70 °C for 5 minutes) to generate a coagulation area measuring 6-7 mm in diameter. CD68+ macrophage periablational infiltration was characterized with immunohistochemistry 24 hours, 72 hours, 7 days, and 14 days after ablation (n = 24). Twenty-one mice were subjected to a dose-escalation study with either 10, 15, 30, or 60 mg/kg of rhodamine-labeled superparamagnetic iron oxide nanoparticles (SPIONs) or 2.4, 1.2, or 0.6 mg/kg of gadolinium-160 (160Gd)-labeled CD68 antibody for assessment of the optimal in vivo dose of contrast agent. MR imaging experiments included 9 mice, each receiving 10-mg/kg SPIONs to visualize phagocytes using T2∗-weighted imaging in a horizontal-bore 9.4-T MR imaging scanner, 160Gd-CD68 for T1-weighted MR imaging of macrophages, or 0.1-mmol/kg intravenous gadoterate (control group). Radiological-pathological correlation included Prussian blue staining, rhodamine immunofluorescence, imaging mass cytometry, and immunohistochemistry. RESULTS RF ablation-induced periablational infiltration (206.92 μm ± 12.2) of CD68+ macrophages peaked at 7 days after ablation (P < .01) compared with the untreated lobe. T2∗-weighted MR imaging with SPION contrast demonstrated curvilinear T2∗ signal in the transitional zone (TZ) (186 μm ± 16.9), corresponsing to Iron Prussian blue staining. T1-weighted MR imaging with 160Gd-CD68 antibody showed curvilinear signal in the TZ (164 μm ± 3.6) corresponding to imaging mass cytometry. CONCLUSIONS Both SPION-enhanced T2∗-weighted and 160Gd-enhanced T1-weighted MR imaging allow for in vivo monitoring of macrophages after RF ablation, demonstrating the feasibility of this model to investigate local immune responses.
Collapse
Affiliation(s)
- Jessica G Santana
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut; Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Alexandra Petukhova-Greenstein
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany
| | - Moritz Gross
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany
| | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut; Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Vasily Pekurovsky
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Luzie A Gottwald
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany
| | - Annemarie Boustani
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - John J Walsh
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Ahmet S Kucukkaya
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany
| | - Rohil Malpani
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - David C Madoff
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - S Nahum Goldberg
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard University, Boston, Massachusetts; Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Muneeb Ahmed
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard University, Boston, Massachusetts
| | - Nikhil Joshi
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut
| | - Daniel Coman
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Julius Chapiro
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut.
| |
Collapse
|
6
|
Li B, Feng G, Feng L, Feng X, Zhang Q, Zhang C, Yang H, Du Y. Establishment of a rabbit liver metastasis model by percutaneous puncture of the spleen and implantation of the VX2 tumor strain under CT guidance. Sci Rep 2023; 13:2802. [PMID: 36797324 PMCID: PMC9935920 DOI: 10.1038/s41598-022-26706-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 12/19/2022] [Indexed: 02/18/2023] Open
Abstract
This study aimed to compare the feasibility, success rate, and safety of establishing a rabbit VX2 liver metastasis model by percutaneous splenic implantation under CT guidance and open splenic implantation of the VX2 tumor strain. Fifty-two New Zealand white rabbits were randomly divided into group A (the percutaneous puncture group) (n = 26) and group B (the laparotomy group) (n = 26). In group A, 26 New Zealand white rabbits were implanted with tumor strains by percutaneous splenic puncture under CT guidance. In group B, 26 New Zealand white rabbits were implanted with tumor strains in the spleen by laparotomy. After 2-3 weeks of implantation, both group A and group B underwent MRI to confirm tumor growth in the spleen and metastasis to the liver. Two experimental rabbits randomly selected from groups A and B were killed for pathological examination. The success rate, complication rate, and operation time in groups A and B were compared and analyzed. A total of 23 rabbits in group A were successfully induced, and the success rate was 88.5% (23/26). The average time of operation was 14.42 ± 3.26 min. A total of 22 rabbits in group B were successfully induced, and the success rate was 84.6% (22/26). The average time of operation in group B was 23.69 ± 5.27 min. There was no significant difference in the success rate of induction between the two groups (P > 0.05). The MRI manifestations of liver metastases were multiple nodular and punctate abnormal signal shadows in the liver. Hematoxylin-eosin (HE) staining showed a large number of tumor cells in the tumor area. CT-guided percutaneous splenic implantation of the VX2 tumor strain to establish a rabbit liver metastasis model is a minimally invasive and feasible inducing method. The success rate of this technique is not lower than that of open splenic implantation, with low incidence of complications, and short operation time.
Collapse
Affiliation(s)
- Bing Li
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, 63 Wenhua Road, Nanchong, 637000, Sichuan, People's Republic of China
| | - Guiling Feng
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, 63 Wenhua Road, Nanchong, 637000, Sichuan, People's Republic of China
| | - Lin Feng
- Department of Pain, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, 1 South Maoyuan Road, People's Republic of China
| | - Xu Feng
- Department of Radiology, The Second People's Hospital of YiBin, 96 North Street, Yibin, 644000, Sichuan, People's Republic of China
| | - Qing Zhang
- Department of Ultrasound, Affiliated Hospital of North Sichuan Medical College, 63 Wenhua Road, Nanchong, 637000, Sichuan, People's Republic of China
| | - Chuan Zhang
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, 63 Wenhua Road, Nanchong, 637000, Sichuan, People's Republic of China
| | - Hanfeng Yang
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, 63 Wenhua Road, Nanchong, 637000, Sichuan, People's Republic of China
| | - Yong Du
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, 63 Wenhua Road, Nanchong, 637000, Sichuan, People's Republic of China.
| |
Collapse
|
7
|
Luo W, Geng Y, Gao M, Cao M, Wang J, Yang J, Sun C, Yan X. Isolation and Identification of Bone Marrow Mesenchymal Stem Cells from Forest Musk Deer. Animals (Basel) 2022; 13:ani13010017. [PMID: 36611625 PMCID: PMC9817501 DOI: 10.3390/ani13010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/09/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
The forest musk deer (Moschus berezovskii) is an endangered animal that produces musk that is utilized for medical applications worldwide, and this species primarily lives in China. Animal-derived musk can be employed as an important ingredient in Chinese medicine. To investigate the properties of bone marrow mesenchymal stem cells (MSCs) obtained from the bone marrow of forest deer for future application, MSCs were isolated and cultivated in vitro. The properties and differentiation of these cells were assessed at the cellular and gene levels. The results show that 81,533 expressed genes were detected by RNA sequencing, and marker genes of MSCs were expressed in the cells. Karyotype analysis of the cells determined the karyotype to be normal, and marker proteins of MSCs were observed to be expressed in the cell membranes. Cells were differentiated into osteoblasts, adipocytes, and chondroblasts. The expression of genes related to osteoblasts, adipocytes, and chondroblasts was observed to be increased. The results of this study demonstrate that the properties of the cells isolated from bone marrow were in keeping with the characteristics of MSCs, providing a possible basis for future research.
Collapse
|
8
|
Ma X, Zhang MJ, Wang J, Zhang T, Xue P, Kang Y, Sun ZJ, Xu Z. Emerging Biomaterials Imaging Antitumor Immune Response. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204034. [PMID: 35728795 DOI: 10.1002/adma.202204034] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Immunotherapy is one of the most promising clinical modalities for the treatment of malignant tumors and has shown excellent therapeutic outcomes in clinical settings. However, it continues to face several challenges, including long treatment cycles, high costs, immune-related adverse events, and low response rates. Thus, it is critical to predict the response rate to immunotherapy by using imaging technology in the preoperative and intraoperative. Here, the latest advances in nanosystem-based biomaterials used for predicting responses to immunotherapy via the imaging of immune cells and signaling molecules in the immune microenvironment are comprehensively summarized. Several imaging methods, such as fluorescence imaging, magnetic resonance imaging, positron emission tomography imaging, ultrasound imaging, and photoacoustic imaging, used in immune predictive imaging, are discussed to show the potential of nanosystems for distinguishing immunotherapy responders from nonresponders. Nanosystem-based biomaterials aided by various imaging technologies are expected to enable the effective prediction and diagnosis in cases of tumors, inflammation, and other public diseases.
Collapse
Affiliation(s)
- Xianbin Ma
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Meng-Jie Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Jingting Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Tian Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Peng Xue
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Yuejun Kang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Zhigang Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
9
|
Tran A, Moon JT, Shaikh J, Nezami N. Acetazolamide enhanced drug-eluting beads: manipulating the hepatocellular carcinoma microenvironment. MINIM INVASIV THER 2022; 31:973-977. [DOI: 10.1080/13645706.2022.2040535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Andrew Tran
- Division of Interventional Radiology and Image-Guided Medicine, Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - John T. Moon
- Division of Interventional Radiology and Image-Guided Medicine, Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Jamil Shaikh
- Department of Vascular and Interventional Radiology, Tampa General Hospital, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - Nariman Nezami
- Division of Vascular and Interventional Radiology, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Experimental Therapeutics Program, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| |
Collapse
|
10
|
Berz AM, Santana JG, Iseke S, Gross M, Pekurovsky V, Laage Gaupp F, Savic LJ, Borde T, Gottwald LA, Boustani AM, Gebauer B, Lin M, Zhang X, Schlachter T, Madoff DC, Chapiro J. Impact of Chemoembolic Regimen on Immune Cell Recruitment and Immune Checkpoint Marker Expression following Transcatheter Arterial Chemoembolization in a VX2 Rabbit Liver Tumor Model. J Vasc Interv Radiol 2022; 33:764-774.e4. [PMID: 35346859 PMCID: PMC9344951 DOI: 10.1016/j.jvir.2022.03.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/02/2022] [Accepted: 03/15/2022] [Indexed: 10/18/2022] Open
Abstract
PURPOSE To characterize the effects of commonly used transcatheter arterial chemoembolization (TACE) regimens on the immune response and immune checkpoint marker expression using a VX2 rabbit liver tumor model. MATERIALS AND METHODS Twenty-four VX2 liver tumor-bearing New Zealand white rabbits were assigned to 7 groups (n = 3 per group) undergoing locoregional therapy as follows: (a) bicarbonate infusion without embolization, (b) conventional TACE (cTACE) using a water-in-oil emulsion containing doxorubicin mixed 1:2 with Lipiodol, drug-eluting embolic-TACE with either (c) idarubicin-eluting Oncozene microspheres (40 μm) or (d) doxorubicin-eluting Lumi beads (40-90 μm). For each therapy arm (b-d), a tandem set of 3 animals with additional bicarbonate infusion before TACE was added, to evaluate the effect of pH modification on the immune response. Three untreated rabbits served as controls. Tissue was harvested 24 hours after treatment, followed by digital immunohistochemistry quantification (counts/μm2 ± SEM) of tumor-infiltrating cluster of differentiation 3+ T-lymphocytes, human leukocyte antigen DR type antigen-presenting cells (APCs), cytotoxic T-lymphocyte-associated protein-4 (CTLA-4), and programmed cell death protein-1 (PD-1)/PD-1 ligand (PD-L1) pathway axis expression. RESULTS Lumi-bead TACE induced significantly more intratumoral T-cell and APC infiltration than cTACE and Oncozene-microsphere TACE. Additionally, tumors treated with Lumi-bead TACE expressed significantly higher intratumoral immune checkpoint markers compared with cTACE and Oncozene-microsphere TACE. Neoadjuvant bicarbonate demonstrated the most pronounced effect on cTACE and resulted in a significant increase in intratumoral cluster of differentiation 3+ T-cell infiltration compared with cTACE alone. CONCLUSIONS This preclinical study revealed significant differences in evoked tumor immunogenicity depending on the choice of chemoembolic regimen for TACE.
Collapse
Affiliation(s)
- Antonia M Berz
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology Berlin, Germany
| | - Jessica G Santana
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Simon Iseke
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut; Department of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, Rostock University Medical Center, Rostock, Germany
| | - Moritz Gross
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology Berlin, Germany
| | - Vasily Pekurovsky
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Fabian Laage Gaupp
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Lynn J Savic
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology Berlin, Germany; Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Tabea Borde
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology Berlin, Germany
| | - Luzie A Gottwald
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology Berlin, Germany
| | - Anne Marie Boustani
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Bernhard Gebauer
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology Berlin, Germany
| | - MingDe Lin
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut; Visage Imaging, Inc., San Diego, California
| | - Xuchen Zhang
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Todd Schlachter
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - David C Madoff
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut; Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Julius Chapiro
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut.
| |
Collapse
|
11
|
Zhang L, Gong M, Lei S, Cui C, Liu Y, Xiao S, Kang X, Sun T, Xu Z, Zhou C, Zhang S, Zhang D. Targeting visualization of malignant tumor based on the alteration of DWI signal generated by hTERT promoter-driven AQP1 overexpression. Eur J Nucl Med Mol Imaging 2022; 49:2310-2322. [PMID: 35044495 DOI: 10.1007/s00259-022-05684-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/09/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE To specifically diagnose malignant tumors in DWI using the human telomerase reverse transcriptase (hTERT) promoter-driven AQP1 expression. METHODS The human telomerase reverse transcriptase (hTERT) promoter-driven AQP1 gene overexpression lentivirus system (hTERT-AQP1) and cytomegalovirus (CMV) promoter-driven AQP1 gene overexpression lentivirus system (CMV-AQP1) were prepared, and transduced into telomerase-positive and -negative cells. The AQP1 expression and DWI signal intensity (SI) change in transduced cells were analyzed. Balb/C nude mice subcutaneous xenograft models derived from lentivirus-transduced telomerase-positive and -negative cells were used to evaluate AQP1 expression and DWI SI change in vivo. We further established another group of subcutaneous xenograft model using pristine telomerase-positive and -negative cells, followed by injecting the lentiviral vectors intratumorally or intravenously, to determine the malignant tumor-targeted imaging of hTERT-AQP1. RESULTS The hTERT-AQP1 and CMV-AQP1 were successfully prepared. After transduction, hTERT-AQP1 could induce the specific overexpression of AQP1 in telomerase-positive cells. Compared with untransduced cells, all CMV-AQP1-pretransduced cells and hTERT-AQP1-pretransduced telomerase-positive cells showed decreased SI and increased apparent diffusion coefficient (ADC) in DWI, while hTERT-AQP1-pretransduced telomerase-negative cells showed no obvious SI and ADC change. Correspondingly, hTERT-AQP1-transduced telomerase-positive tumors and CMV-AQP1-transduced telomerase-positive and -negative tumors showed decreased DWI SI and increased ADC, while hTERT-AQP1-transduced telomerase-negative tumor had no SI and ADC changes. After intratumoral or intravenous injection, CMV-AQP1 could upregulate AQP1 expression and induce DWI SI and ADC alteration in both telomerase-positive and -negative tumors, while hTERT-AQP1 worked in telomerase-positive tumors specifically. CONCLUSION Cancers can be specifically visualized based on the DWI signal alteration which triggered by hTERT-AQP1 lentivirus system that combined AQP1 gene and hTERT promoter.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Radiology, Xinqiao Hospital, Army Medical University, No. 183, Xinqiao street Shapingba district, Chongqing, China
| | - Mingfu Gong
- Department of Radiology, Xinqiao Hospital, Army Medical University, No. 183, Xinqiao street Shapingba district, Chongqing, China.
| | - Sheng Lei
- Department of Radiology, Xinqiao Hospital, Army Medical University, No. 183, Xinqiao street Shapingba district, Chongqing, China
| | - Chun Cui
- Department of Radiology, Xinqiao Hospital, Army Medical University, No. 183, Xinqiao street Shapingba district, Chongqing, China
| | - Yun Liu
- Department of Radiology, Xinqiao Hospital, Army Medical University, No. 183, Xinqiao street Shapingba district, Chongqing, China
| | - Shilin Xiao
- Department of Radiology, Xinqiao Hospital, Army Medical University, No. 183, Xinqiao street Shapingba district, Chongqing, China
| | - Xun Kang
- Department of Radiology, Xinqiao Hospital, Army Medical University, No. 183, Xinqiao street Shapingba district, Chongqing, China
| | - Tao Sun
- Department of Radiology, Xinqiao Hospital, Army Medical University, No. 183, Xinqiao street Shapingba district, Chongqing, China
| | - Zhongsheng Xu
- Department of Radiology, Xinqiao Hospital, Army Medical University, No. 183, Xinqiao street Shapingba district, Chongqing, China
| | - Chunyu Zhou
- Department of Radiology, Xinqiao Hospital, Army Medical University, No. 183, Xinqiao street Shapingba district, Chongqing, China
| | - Si Zhang
- Department of Radiology, Xinqiao Hospital, Army Medical University, No. 183, Xinqiao street Shapingba district, Chongqing, China
| | - Dong Zhang
- Department of Radiology, Xinqiao Hospital, Army Medical University, No. 183, Xinqiao street Shapingba district, Chongqing, China.
| |
Collapse
|
12
|
Doemel LA, Santana JG, Savic LJ, Gaupp FML, Borde T, Petukhova-Greenstein A, Kucukkaya AS, Schobert IT, Hamm CA, Gebauer B, Walsh JJ, Rexha I, Hyder F, Lin M, Madoff DC, Schlachter T, Chapiro J, Coman D. Comparison of metabolic and immunologic responses to transarterial chemoembolization with different chemoembolic regimens in a rabbit VX2 liver tumor model. Eur Radiol 2022; 32:2437-2447. [PMID: 34718844 PMCID: PMC9359419 DOI: 10.1007/s00330-021-08337-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 08/12/2021] [Accepted: 09/09/2021] [Indexed: 12/30/2022]
Abstract
OBJECTIVES The goal of this study was to investigate the effects of TACE using Lipiodol, Oncozene™ drug-eluting embolics (DEEs), or LUMI™-DEEs alone, or combined with bicarbonate on the metabolic and immunological tumor microenvironment in a rabbit VX2 tumor model. METHODS VX2 liver tumor-bearing rabbits were assigned to five groups. MRI and extracellular pH (pHe) mapping using Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) were performed before and after intra-arterial therapy with conventional TACE (cTACE), DEE-TACE with Idarubicin-eluting Oncozene™-DEEs, or Doxorubicin-eluting LUMI™-DEEs, each with or without prior bicarbonate infusion, and in untreated rabbits or treated with intra-arterial bicarbonate only. Imaging results were validated with immunohistochemistry (IHC) staining of cell viability (PCNA, TUNEL) and immune response (HLA-DR, CD3). Statistical analysis was performed using Mann-Whitney U test. RESULTS pHe mapping revealed that combining cTACE with prior bicarbonate infusion significantly increased tumor pHe compared to control (p = 0.0175) and cTACE alone (p = 0.0025). IHC staining revealed peritumoral accumulation of HLA-DR+ antigen-presenting cells and CD3 + T-lymphocytes in controls. cTACE-treated tumors showed reduced immune infiltration, which was restored through combination with bicarbonate. DEE-TACE with Oncozene™-DEEs induced moderate intratumoral and marked peritumoral infiltration, which was slightly reduced with bicarbonate. Addition of bicarbonate prior to LUMI™-beads enhanced peritumoral immune cell infiltration compared to LUMI™-beads alone and resulted in the strongest intratumoral immune cell infiltration across all treated groups. CONCLUSIONS The choice of chemoembolic regimen for TACE strongly affects post-treatment TME pHe and the ability of immune cells to accumulate and infiltrate the tumor tissue. KEY POINTS • Combining conventional transarterial chemotherapy with prior bicarbonate infusion increases the pHe towards a more physiological value (p = 0.0025). • Peritumoral infiltration and intratumoral accumulation patterns of antigen-presenting cells and T-lymphocytes after transarterial chemotherapy were dependent on the choice of the chemoembolic regimen. • Combination of intra-arterial treatment with Doxorubicin-eluting LUMI™-beads and bicarbonate infusion resulted in the strongest intratumoral presence of immune cells (positivity index of 0.47 for HLADR+-cells and 0.62 for CD3+-cells).
Collapse
Affiliation(s)
- Luzie A Doemel
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
- Department of Diagnostic and Interventional Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Jessica G Santana
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Lynn J Savic
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
- Department of Diagnostic and Interventional Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, 10117, Berlin, Germany
- Berlin Institute of Health, 10178, Berlin, Germany
| | - Fabian M Laage Gaupp
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Tabea Borde
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
- Department of Diagnostic and Interventional Radiology, Klinikum Rechts Der Isar, Technische Universitat München, Munich, Germany
| | - Alexandra Petukhova-Greenstein
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
- Department of Diagnostic and Interventional Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Ahmet S Kucukkaya
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
- Department of Diagnostic and Interventional Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Isabel T Schobert
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
- Department of Diagnostic and Interventional Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Charlie A Hamm
- Department of Diagnostic and Interventional Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, 10117, Berlin, Germany
- Institute for Diagnostic Radiology and Neuroradiology, Greifswald University Hospital, Ferdinand-Sauerbruch-Strasse, 17475, Greifswald, Germany
| | - Bernhard Gebauer
- Department of Diagnostic and Interventional Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, 10117, Berlin, Germany
| | - John J Walsh
- Department of Biomedical Engineering, School of Engineering & Applied Science, 17 Hillhouse Avenue, New Haven, CT, 06510, USA
| | - Irvin Rexha
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
- Department of Diagnostic and Interventional Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
- Department of Biomedical Engineering, School of Engineering & Applied Science, 17 Hillhouse Avenue, New Haven, CT, 06510, USA
- Yale Cancer Center, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - MingDe Lin
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
- Visage Imaging, Inc., San Diego, CA, 92130, USA
| | - David C Madoff
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
- Yale Cancer Center, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
- Division of Medical Oncology, Department of Medicine, Yale School of Medicine, New Haven, CT, 06510, USA
- Yale Liver Center, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
- Smilow Cancer Hospital Care Center - North Haven, 6 Devine Street, Fl 2, North Haven, CT, 06473, USA
| | - Todd Schlachter
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Julius Chapiro
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA.
- Yale Cancer Center, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA.
| | - Daniel Coman
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
- Yale Cancer Center, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| |
Collapse
|
13
|
Ng TSC, Allen HH, Rashidian M, Miller MA. Probing immune infiltration dynamics in cancer by in vivo imaging. Curr Opin Chem Biol 2022; 67:102117. [PMID: 35219177 PMCID: PMC9118268 DOI: 10.1016/j.cbpa.2022.102117] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 12/11/2022]
Abstract
Cancer immunotherapies typically aim to stimulate the accumulation and activity of cytotoxic T-cells or pro-inflammatory antigen-presenting cells, reduce immunosuppressive myeloid cells or regulatory T-cells, or elicit some combination of effects thereof. Notwithstanding the encouraging results, immunotherapies such as PD-1/PD-L1-targeted immune checkpoint blockade act heterogeneously across individual patients. It remains challenging to predict and monitor individual responses, especially across multiple sites of metastasis or sites of potential toxicity. To address this need, in vivo imaging of both adaptive and innate immune cell populations has emerged as a tool to quantify spatial leukocyte accumulation in tumors non-invasively. Here we review recent progress in the translational development of probes for in vivo leukocyte imaging, focusing on complementary perspectives provided by imaging of T-cells, phagocytic macrophages, and their responses to therapy.
Collapse
Affiliation(s)
- Thomas S C Ng
- Center for Systems Biology, Massachusetts General Hospital Research Institute, 185 Cambridge St, Boston, MA 02114, United States; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Boston, MA 02114, United States
| | - Harris H Allen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, MA 02115, United States
| | - Mohammad Rashidian
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, MA 02115, United States; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, United States
| | - Miles A Miller
- Center for Systems Biology, Massachusetts General Hospital Research Institute, 185 Cambridge St, Boston, MA 02114, United States; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Boston, MA 02114, United States.
| |
Collapse
|
14
|
Yang P, Li Z, Du W, Wu C, Xiong W. Hepatoprotective role of peroxisome proliferator-activated receptor-α in non-cancerous hepatic tissues following transcatheter arterial embolization. Open Life Sci 2022; 17:827-838. [PMID: 36045714 PMCID: PMC9372709 DOI: 10.1515/biol-2022-0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/10/2022] [Accepted: 03/12/2022] [Indexed: 12/24/2022] Open
Abstract
Transcatheter arterial embolization (TAE) is a widely used technique in treating hepatic carcinoma but may cause liver injury in some cases. This study investigated the hepatoprotective effect of the preprocessed peroxisome proliferator-activated receptor-α (PPAR-α) agonist-WY-14643 following TAE. A total of 60 rabbit liver cancer models were developed and divided into a combined treatment (WY-14643 and TAE), TAE, and control groups. After TAE, we examined the histopathological picture and liver functions. Further, the expression of antioxidant enzymes, tumor necrosis factor-α (TNF-α), nuclear factor of κ-light chain of enhancer-activated B cells (NF-κB), PPAR-α, and B-cell lymphoma-2 (Bcl-2) was analyzed. Liver function tests, pathology score, and apoptosis index significantly worsened in the TAE group but were normalized in the combined treatment group. In addition, ELISA results showed that antioxidant enzyme activity significantly increased, while the malondialdehyde content and level of inflammatory cytokines were significantly reduced in the combined treatment group. Furthermore, compared to the TAE group, the expressions of PPAR-α, antioxidant enzymes superoxide dismutase1 (SOD1) and SOD2, and Bcl-2 were significantly elevated, while NF-κB was significantly reduced in the combined treatment group. On the other hand, the expression of NF-κB in tumor tissues was significantly reduced by pretreatment with WY-14643. Therefore, PPAR-α can ameliorate liver injury by exerting its anti-oxidative, anti-inflammatory, and anti-apoptotic functions.
Collapse
Affiliation(s)
- Peiyu Yang
- School of Clinical Medicine, Dali University, Dali City, Yunnan Province 671000, China
| | - Zhengliang Li
- Department of Radiology, The First Affiliated Hospital of Dali University, No. 32, Jiashibo Street, Dali City, Yunnan Province 671000, People’s Republic of China
| | - Wei Du
- Department of Radiology, The First Affiliated Hospital of Dali University, No. 32, Jiashibo Street, Dali City, Yunnan Province 671000, People’s Republic of China
| | - Chunhua Wu
- Department of Radiology, The First Affiliated Hospital of Dali University, No. 32, Jiashibo Street, Dali City, Yunnan Province 671000, People’s Republic of China
| | - Wencui Xiong
- School of Clinical Medicine, Dali University, Dali City, Yunnan Province 671000, China
| |
Collapse
|
15
|
Yue X, Dong X, Huang M, Yang H, Qian K, Yi C, Alwalid O, Ren Y, Han P, Li Q. Early Assessment of Response to Radiofrequency Ablation With CT Perfusion Imaging in Rabbit VX2 Liver Tumor Model. Front Oncol 2021; 11:728781. [PMID: 34900679 PMCID: PMC8656278 DOI: 10.3389/fonc.2021.728781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Objectives To discriminate viable tumors from benign periablational enhancement (BPE) in early stage after radiofrequency ablation (RFA) is a major confounding problem. The goal of this study is to evaluate quantitative assessment and diagnostic value of CT perfusion between viable tumors and BPE after RFA in the rabbit liver VX2 tumor model, with pathological results as the standard. Methods Twenty-eight VX2 liver tumors were treated with RFA, on days 1, 3, 7, and 14, seven rabbits were randomly chosen for CT perfusion and performed pathology examinations immediately. The perfusion parameters along with the profile of time-density curves (TDCs) and pseudo-color images of the parameters were observed in both BPE and viable tumors, then compared with the pathology results. The perfusion parameters included blood flow (BF), blood volume (BV), time to peak (TTP), permeability (P), arterial liver perfusion (ALP), portal venous perfusion (PVP) and hepatic perfusion index (HPI). Results A total of 26/28 rabbits successfully underwent CT perfusion, while 6/26 lesions were confirmed to be viable tumors. The TDCs of BPE were mainly speed-up platform curves (15/26), while the viable tumors showed mainly speed-up speed-down (3/6) and speed-up platform (2/6) curves. The PVP values were significantly higher, and the HPI values were significantly lower for BPE at all time points than viable tumors (P < 0.05). Both of PVP value and HPI value have high efficiency for the differential diagnosis of the viable tumors and BPE at each time point. These characteristics of CT perfusion parameters were consistent with pathological changes. Conclusions The TDCs, PVP and HPI have the potential to indicate BPE and viable tumors effectively early after RFA treatment, the results were highly consistent with pathology. CT perfusion has advantages with great efficacy in monitoring the therapeutic effect early after RFA treatment.
Collapse
Affiliation(s)
- Xiaofei Yue
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Xiangjun Dong
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Mengting Huang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Hongli Yang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Kun Qian
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Changhong Yi
- Department of Radiology, The Second Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Osamah Alwalid
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yanqiao Ren
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Ping Han
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Qian Li
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| |
Collapse
|
16
|
Chen Q, Chen AZ, Jia G, Li J, Zheng C, Chen K. Molecular Imaging of Tumor Microenvironment to Assess the Effects of Locoregional Treatment for Hepatocellular Carcinoma. Hepatol Commun 2021; 6:652-664. [PMID: 34738743 PMCID: PMC8948593 DOI: 10.1002/hep4.1850] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/12/2021] [Accepted: 10/17/2021] [Indexed: 12/22/2022] Open
Abstract
Liver cancer is one of the leading causes of cancer deaths worldwide. Among all primary liver cancers, hepatocellular carcinoma (HCC) is the most common type, representing 75%‐85% of all primary liver cancer cases. Median survival following diagnosis of HCC is approximately 6 to 20 months due to late diagnosis in its course and few effective treatment options. Interventional therapy with minimal invasiveness is recognized as a promising treatment for HCC. However, due to the heterogeneity of HCC and the complexity of the tumor microenvironment, the long‐term efficacy of treatment for HCC remains a challenge in the clinic. Tumor microenvironment, including factors such as hypoxia, angiogenesis, low extracellular pH, interstitial fluid pressure, aerobic glycolysis, and various immune responses, has emerged as a key contributor to tumor residual and progression after locoregional treatment for HCC. New approaches to noninvasively assess the treatment response and assist in the clinical decision‐making process are therefore urgently needed. Molecular imaging tools enabling such an assessment may significantly advance clinical practice by allowing real‐time optimization of treatment protocols for the individual patient. This review discusses recent advances in the application of molecular imaging technologies for noninvasively assessing changes occurring in the microenvironment of HCC after locoregional treatment.
Collapse
Affiliation(s)
- Quan Chen
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Austin Z Chen
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Guorong Jia
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jindian Li
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Chen
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
17
|
HCC: role of pre- and post-treatment tumor biology in driving adverse outcomes and rare responses to therapy. Abdom Radiol (NY) 2021; 46:3686-3697. [PMID: 34195886 DOI: 10.1007/s00261-021-03192-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022]
Abstract
Liver cancer is the fastest-growing cause of cancer deaths in the United States and is a complex disease. The response of hepatocellular carcinoma (HCC) to treatment can be variable. Predicting response to determine the most effective therapy is an active area of research. Our understanding of underlying factors which drive response to therapy is continually increasing. As more therapies for the treatment of this disease evolve, it is crucial to identify and match the ideal therapy for a particular tumor and patient. The potential predicative imaging features of tumor behavior, while of research interest, have not been validated for clinical use and do not currently inform treatment planning. If further validated though, prognostic features may be used in the future to personalize treatment plans according to individual patients and tumors. Unexpected post-treatment responses such as potential tumor biology changes and abscopal effect which are important to be aware of. This review is intended for radiologists who routinely interpret post treatment HCC imaging and is designed to increase their cognizance about how HCC tumor biology drives response to therapy and explore rare responses to therapy.
Collapse
|
18
|
Schobert IT, Savic LJ. Current Trends in Non-Invasive Imaging of Interactions in the Liver Tumor Microenvironment Mediated by Tumor Metabolism. Cancers (Basel) 2021; 13:3645. [PMID: 34359547 PMCID: PMC8344973 DOI: 10.3390/cancers13153645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 11/17/2022] Open
Abstract
With the increasing understanding of resistance mechanisms mediated by the metabolic reprogramming in cancer cells, there is a growing clinical interest in imaging technologies that allow for the non-invasive characterization of tumor metabolism and the interactions of cancer cells with the tumor microenvironment (TME) mediated through tumor metabolism. Specifically, tumor glycolysis and subsequent tissue acidosis in the realms of the Warburg effect may promote an immunosuppressive TME, causing a substantial barrier to the clinical efficacy of numerous immuno-oncologic treatments. Thus, imaging the varying individual compositions of the TME may provide a more accurate characterization of the individual tumor. This approach can help to identify the most suitable therapy for each individual patient and design new targeted treatment strategies that disable resistance mechanisms in liver cancer. This review article focuses on non-invasive positron-emission tomography (PET)- and MR-based imaging techniques that aim to visualize the crosstalk between tumor cells and their microenvironment in liver cancer mediated by tumor metabolism.
Collapse
Affiliation(s)
- Isabel Theresa Schobert
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany;
| | - Lynn Jeanette Savic
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany;
- Berlin Institute of Health, 10178 Berlin, Germany
| |
Collapse
|
19
|
Collettini F, Reimann C, Brangsch J, Chapiro J, Savic LJ, Onthank DC, Robinson SP, Karst U, Buchholz R, Keller S, Hamm B, Goldberg SN, Makowski MR. Elastin-specific MRI of extracellular matrix-remodelling following hepatic radiofrequency-ablation in a VX2 liver tumor model. Sci Rep 2021; 11:6814. [PMID: 33767303 PMCID: PMC7994448 DOI: 10.1038/s41598-021-86417-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/12/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatic radiofrequency ablation (RFA) induces a drastic alteration of the biomechanical environment in the peritumoral liver tissue. The resulting increase in matrix stiffness has been shown to significantly influence carcinogenesis and cancer progression after focal RF ablation. To investigate the potential of an elastin-specific MR agent (ESMA) for the assessment of extracellular matrix (ECM) remodeling in the periablational rim following RFA in a VX2 rabbit liver tumor-model, twelve New-Zealand-White-rabbits were implanted in the left liver lobe with VX2 tumor chunks from donor animals. RFA of tumors was performed using a perfused RF needle-applicator with a mean tip temperature of 70 °C. Animals were randomized into four groups for MR imaging and scanned at four different time points following RFA (week 0 [baseline], week 1, week 2 and week 3 after RFA), followed by sacrifice and histopathological analysis. ESMA-enhanced MR imaging was used to assess ECM remodeling. Gadobutrol was used as a third-space control agent. Molecular MR imaging using an elastin-specific probe demonstrated a progressive increase in contrast-to-noise ratio (CNR) (week 3: ESMA: 28.1 ± 6.0; gadobutrol: 3.5 ± 2.0), enabling non-invasive imaging of the peritumoral zone with high spatial-resolution, and accurate assessment of elastin deposition in the periablational rim. In vivo CNR correlated with ex vivo histomorphometry (ElasticaVanGiesson-stain, y = 1.2x - 1.8, R2 = 0.89, p < 0.05) and gadolinium concentrations at inductively coupled mass spectroscopy (ICP-MS, y = 0.04x + 1.2, R2 = 0.95, p < 0.05). Laser-ICP-MS confirmed colocalization of elastin-specific probe with elastic fibers. Following thermal ablation, molecular imaging using an elastin-specific MR probe is feasible and provides a quantifiable biomarker for the assessment of the ablation-induced remodeling of the ECM in the periablational rim.
Collapse
Affiliation(s)
- Federico Collettini
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch 2, 10178, Berlin, Germany
| | - Carolin Reimann
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
- Department of Veterinary Medicine, Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Königsweg 67, 14163, Berlin, Germany
| | - Julia Brangsch
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.
- Department of Veterinary Medicine, Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Königsweg 67, 14163, Berlin, Germany.
| | - Julius Chapiro
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Lynn Jeanette Savic
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch 2, 10178, Berlin, Germany
| | | | | | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Rebecca Buchholz
- Institute of Inorganic and Analytical Chemistry, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Sarah Keller
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Bernd Hamm
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - S Nahum Goldberg
- Department of Radiology, Hadassah Hebrew University Medical Center, 9112001, Jerusalem, Israel
| | - Marcus R Makowski
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK
- BHF Centre of Excellence, King's College London, London, UK
- Department of Radiology, TU München, Ismaninger Straße 22, 81675, München, Germany
| |
Collapse
|
20
|
Hyder F, Coman D. Imaging Extracellular Acidification and Immune Activation in Cancer. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021; 18. [PMID: 33997581 DOI: 10.1016/j.cobme.2021.100278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Metabolism reveals pathways by which cells, in healthy and disease tissues, use nutrients to fuel their function and (re)growth. However, gene-centric views have dominated cancer hallmarks, relegating metabolic reprogramming that all cells in the tumor niche undergo as an incidental phenomenon. Aerobic glycolysis in cancer is well known, but recent evidence suggests that diverse symbolic traits of cancer cells are derived from oncogene-directed metabolism required for their sustenance and evolution. Cells in the tumor milieu actively metabolize different nutrients, but proficiently secrete acidic by-products using diverse mechanisms to create a hostile ecosystem for host cells, and where local immune cells suffer collateral damage. Since metabolic interactions between cancer and immune cells hold promise for future cancer therapies, here we focus on translational magnetic resonance methods enabling in vivo and simultaneous detection of tumor habitat acidification and immune activation - innovations for monitoring personalized treatments.
Collapse
Affiliation(s)
- Fahmeed Hyder
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA
- Quantitative Neuroimaging with Magnetic Resonance (QNMR) Research Program, Yale University, New Haven, CT, USA
| | - Daniel Coman
- Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA
| |
Collapse
|