1
|
Casamitjana A, Mancini M, Robinson E, Peter L, Annunziata R, Althonayan J, Crampsie S, Blackburn E, Billot B, Atzeni A, Puonti O, Balbastre Y, Schmidt P, Hughes J, Augustinack JC, Edlow BL, Zöllei L, Thomas DL, Kliemann D, Bocchetta M, Strand C, Holton JL, Jaunmuktane Z, Iglesias JE. A next-generation, histological atlas of the human brain and its application to automated brain MRI segmentation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.579016. [PMID: 39282320 PMCID: PMC11398399 DOI: 10.1101/2024.02.05.579016] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Magnetic resonance imaging (MRI) is the standard tool to image the human brain in vivo. In this domain, digital brain atlases are essential for subject-specific segmentation of anatomical regions of interest (ROIs) and spatial comparison of neuroanatomy from different subjects in a common coordinate frame. High-resolution, digital atlases derived from histology (e.g., Allen atlas [7], BigBrain [13], Julich [15]), are currently the state of the art and provide exquisite 3D cytoarchitectural maps, but lack probabilistic labels throughout the whole brain. Here we present NextBrain, a next-generation probabilistic atlas of human brain anatomy built from serial 3D histology and corresponding highly granular delineations of five whole brain hemispheres. We developed AI techniques to align and reconstruct ~10,000 histological sections into coherent 3D volumes with joint geometric constraints (no overlap or gaps between sections), as well as to semi-automatically trace the boundaries of 333 distinct anatomical ROIs on all these sections. Comprehensive delineation on multiple cases enabled us to build the first probabilistic histological atlas of the whole human brain. Further, we created a companion Bayesian tool for automated segmentation of the 333 ROIs in any in vivo or ex vivo brain MRI scan using the NextBrain atlas. We showcase two applications of the atlas: automated segmentation of ultra-high-resolution ex vivo MRI and volumetric analysis of Alzheimer's disease and healthy brain ageing based on ~4,000 publicly available in vivo MRI scans. We publicly release: the raw and aligned data (including an online visualisation tool); the probabilistic atlas; the segmentation tool; and ground truth delineations for a 100 μm isotropic ex vivo hemisphere (that we use for quantitative evaluation of our segmentation method in this paper). By enabling researchers worldwide to analyse brain MRI scans at a superior level of granularity without manual effort or highly specific neuroanatomical knowledge, NextBrain holds promise to increase the specificity of MRI findings and ultimately accelerate our quest to understand the human brain in health and disease.
Collapse
Affiliation(s)
- Adrià Casamitjana
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
- Research Institute of Computer Vision and Robotics, University of Girona, Girona, Spain
| | - Matteo Mancini
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
- Department of Cardiovascular, Endocrine-Metabolic Diseases and Aging, Italian National Institute of Health, Rome, Italy
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, United Kingdom
| | - Eleanor Robinson
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Loïc Peter
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Roberto Annunziata
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Juri Althonayan
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Shauna Crampsie
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Emily Blackburn
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Benjamin Billot
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Alessia Atzeni
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Oula Puonti
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Yaël Balbastre
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Peter Schmidt
- Advanced Research Computing Centre, University College London, London, United Kingdom
| | - James Hughes
- Advanced Research Computing Centre, University College London, London, United Kingdom
| | - Jean C Augustinack
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Brian L Edlow
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Lilla Zöllei
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - David L Thomas
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Dorit Kliemann
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, United States
| | - Martina Bocchetta
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Centre for Cognitive and Clinical Neuroscience, Division of Psychology, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, United Kingdom
| | - Catherine Strand
- Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Janice L Holton
- Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Zane Jaunmuktane
- Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Juan Eugenio Iglesias
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
2
|
Frankl S, Viaene A, Vossough A, Waldman A, Hopkins S, Banwell B. Solitary Tumefactive Demyelinating Lesions in Children: Clinical and Magnetic Resonance Imaging Features, Pathologic Characteristics, and Outcomes. Pediatr Neurol 2024; 157:141-150. [PMID: 38917518 DOI: 10.1016/j.pediatrneurol.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/03/2024] [Accepted: 05/14/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Isolated tumefactive demyelinating lesions (≥2 cm) may be difficult to distinguish from contrast-enhancing brain tumors, central nervous system infections, and (rarely) tissue dysgenesis, which may all occur with increased signal on T2-weighted images. Establishing an accurate diagnosis is essential for management, and we delineate our single-center experience. METHODS We performed a retrospective review of medical records, imaging, and biopsy specimens for patients under 18 years presenting with isolated tumefactive demyelination over a 10-year period. RESULTS Ten children (eight female) met inclusion criteria, with a median age of 14.1 years. Lesions were most likely to involve the thalamus (six of 10), brainstem (five of 10), basal ganglia (four of 10), or corpus callosum (four of 10). Eighty percent had perilesional edema at presentation, and 60% had midline shift. Biopsies demonstrated demyelination with perivascular lymphocytic infiltration and axonal damage ranging from mild to severe. All patients were initially treated with high-dose corticosteroids, and eight of 10 required additional medical therapies such as intravenous immunoglobulin, plasmapheresis, cyclophosphamide, or rituximab. Increased intracranial pressure was managed aggressively with two of 10 patients requiring decompressive craniectomies. Clinical outcomes varied. CONCLUSIONS Solitary tumefactive demyelinating lesions are rare, and aggressive management of inflammation and increased intracranial pressure is essential. Biopsy is helpful to evaluate for other diagnoses on the differential and maximize therapies. Treatment beyond initial therapy with corticosteroids is often required. Isolated tumefactive demyelinating lesions are uncommon; multicenter natural history studies are needed to better delineate differential diagnoses and optimal therapies.
Collapse
Affiliation(s)
- Sarah Frankl
- Department of Neurology, C.S. Mott Children's Hospital, Ann Arbor, Michigan
| | - Angela Viaene
- Division of Anatomic Pathology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Arastoo Vossough
- Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Amy Waldman
- Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Sarah Hopkins
- Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.
| | - Brenda Banwell
- Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
3
|
Hu Y, Zhang K. Noninvasive assessment of Ki-67 labeling index in glioma patients based on multi-parameters derived from advanced MR imaging. Front Oncol 2024; 14:1362990. [PMID: 38826787 PMCID: PMC11140042 DOI: 10.3389/fonc.2024.1362990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 05/02/2024] [Indexed: 06/04/2024] Open
Abstract
Purpose To investigate the predictive value of multi-parameters derived from advanced MR imaging for Ki-67 labeling index (LI) in glioma patients. Materials and Methods One hundred and nine patients with histologically confirmed gliomas were evaluated retrospectively. These patients underwent advanced MR imaging, including dynamic susceptibility-weighted contrast enhanced MR imaging (DSC), MR spectroscopy imaging (MRS), diffusion-weighted imaging (DWI) and diffusion-tensor imaging (DTI), before treatment. Twenty-one parameters were extracted, including the maximum, minimum and mean values of relative cerebral blood flow (rCBF), relative cerebral blood volume (rCBV), relative mean transit time (rMTT), relative apparent diffusion coefficient (rADC), relative fractional anisotropy (rFA) and relative mean diffusivity (rMD) respectively, and ration of choline (Cho)/creatine (Cr), Cho/N-acetylaspartate (NAA) and NAA/Cr. Stepwise multivariate regression was performed to build multivariate models to predict Ki-67 LI. Pearson correlation analysis was used to investigate the correlation between imaging parameters and the grade of glioma. One-way analysis of variance (ANOVA) was used to explore the differences of the imaging parameters among the gliomas of grade II, III, and IV. Results The multivariate regression showed that the model of five parameters, including rCBVmax (RC=0.282), rCBFmax (RC=0.151), rADCmin (RC= -0.14), rFAmax (RC=0.325) and Cho/Cr ratio (RC=0.157) predicted the Ki-67 LI with a root mean square (RMS) error of 0. 0679 (R2 = 0.8025).The regression check of this model showed that there were no multicollinearity problem (variance inflation factor: rCBVmax, 3.22; rCBFmax, 3.14; rADCmin, 1.96; rFAmax, 2.51; Cho/Cr ratio, 1.64), and the functional form of this model was appropriate (F test: p=0.682). The results of Pearson correlation analysis showed that the rCBVmax, rCBFmax, rFAmax, the ratio of Cho/Cr and Cho/NAA were positively correlated with Ki-67 LI and the grade of glioma, while the rADCmin and rMDmin were negatively correlated with Ki-67 LI and the grade of glioma. Conclusion Combining multiple parameters derived from DSC, DTI, DWI and MRS can precisely predict the Ki-67 LI in glioma patients.
Collapse
Affiliation(s)
- Ying Hu
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Kai Zhang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Manning P, Srinivas S, Bolar DS, Rajaratnam MK, Piccioni DE, McDonald CR, Hattangadi-Gluth JA, Farid N. Arterial spin labeled perfusion MRI for the assessment of radiation-treated meningiomas. FRONTIERS IN RADIOLOGY 2024; 4:1345465. [PMID: 38562528 PMCID: PMC10982483 DOI: 10.3389/fradi.2024.1345465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
Purpose Conventional contrast-enhanced MRI is currently the primary imaging technique used to evaluate radiation treatment response in meningiomas. However, newer perfusion-weighted MRI techniques, such as 3D pseudocontinuous arterial spin labeling (3D pCASL) MRI, capture physiologic information beyond the structural information provided by conventional MRI and may provide additional complementary treatment response information. The purpose of this study is to assess 3D pCASL for the evaluation of radiation-treated meningiomas. Methods Twenty patients with meningioma treated with surgical resection followed by radiation, or by radiation alone, were included in this retrospective single-institution study. Patients were evaluated with 3D pCASL and conventional contrast-enhanced MRI before and after radiation (median follow up 6.5 months). Maximum pre- and post-radiation ASL normalized cerebral blood flow (ASL-nCBF) was measured within each meningioma and radiation-treated meningioma (or residual resected and radiated meningioma), and the contrast-enhancing area was measured for each meningioma. Wilcoxon signed-rank tests were used to compare pre- and post-radiation ASL-nCBF and pre- and post-radiation area. Results All treated meningiomas demonstrated decreased ASL-nCBF following radiation (p < 0.001). Meningioma contrast-enhancing area also decreased after radiation (p = 0.008) but only for approximately half of the meningiomas (9), while half (10) remained stable. A larger effect size (Wilcoxon signed-rank effect size) was seen for ASL-nCBF measurements (r = 0.877) compared to contrast-enhanced area measurements (r = 0.597). Conclusions ASL perfusion may provide complementary treatment response information in radiation-treated meningiomas. This complementary information could aid clinical decision-making and provide an additional endpoint for clinical trials.
Collapse
Affiliation(s)
- Paul Manning
- Department of Radiology, University of California, San Diego, San Diego, CA, United States
- Center for Multimodal Imaging and Genetics, University of California, San Diego, San Diego, CA, United States
| | - Shanmukha Srinivas
- Center for Multimodal Imaging and Genetics, University of California, San Diego, San Diego, CA, United States
| | - Divya S. Bolar
- Department of Radiology, University of California, San Diego, San Diego, CA, United States
- Center for Functional Magnetic Resonance Imaging, University of California, San Diego, San Diego, CA, United States
| | - Matthew K. Rajaratnam
- Center for Multimodal Imaging and Genetics, University of California, San Diego, San Diego, CA, United States
| | - David E. Piccioni
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| | - Carrie R. McDonald
- Center for Multimodal Imaging and Genetics, University of California, San Diego, San Diego, CA, United States
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Jona A. Hattangadi-Gluth
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, San Diego, CA, United States
| | - Nikdokht Farid
- Department of Radiology, University of California, San Diego, San Diego, CA, United States
- Center for Multimodal Imaging and Genetics, University of California, San Diego, San Diego, CA, United States
- Center for Functional Magnetic Resonance Imaging, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
5
|
Lambrecht S, Liu D, Dzaye O, Kamson DO, Reis J, Liebig T, Holdhoff M, Van Zijl P, Qin Q, Lin DDM. Velocity-Selective Arterial Spin Labeling Perfusion in Monitoring High Grade Gliomas Following Therapy: Clinical Feasibility at 1.5T and Comparison with Dynamic Susceptibility Contrast Perfusion. Brain Sci 2024; 14:126. [PMID: 38391701 PMCID: PMC10886779 DOI: 10.3390/brainsci14020126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 02/24/2024] Open
Abstract
MR perfusion imaging is important in the clinical evaluation of primary brain tumors, particularly in differentiating between true progression and treatment-induced change. The utility of velocity-selective ASL (VSASL) compared to the more commonly utilized DSC perfusion technique was assessed in routine clinical surveillance MR exams of 28 patients with high-grade gliomas at 1.5T. Using RANO criteria, patients were assigned to two groups, one with detectable residual/recurrent tumor ("RT", n = 9), and the other with no detectable residual/recurrent tumor ("NRT", n = 19). An ROI was drawn to encompass the largest dimension of the lesion with measures normalized against normal gray matter to yield rCBF and tSNR from VSASL, as well as rCBF and leakage-corrected relative CBV (lc-rCBV) from DSC. VSASL (rCBF and tSNR) and DSC (rCBF and lc-rCBV) metrics were significantly higher in the RT group than the NRT group allowing adequate discrimination (p < 0.05, Mann-Whitney test). Lin's concordance analyses showed moderate to excellent concordance between the two methods, with a stronger, moderate correlation between VSASL rCBF and DSC lc-rCBV (r = 0.57, p = 0.002; Pearson's correlation). These results suggest that VSASL is clinically feasible at 1.5T and has the potential to offer a noninvasive alternative to DSC perfusion in monitoring high-grade gliomas following therapy.
Collapse
Affiliation(s)
- Sebastian Lambrecht
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Institute of Neuroradiology, University Hospital LMU Munich, 81377 Munich, Germany
| | - Dapeng Liu
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Omar Dzaye
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - David O Kamson
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jonas Reis
- Institute of Neuroradiology, University Hospital LMU Munich, 81377 Munich, Germany
| | - Thomas Liebig
- Institute of Neuroradiology, University Hospital LMU Munich, 81377 Munich, Germany
| | - Matthias Holdhoff
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Peter Van Zijl
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Qin Qin
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Doris D M Lin
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
6
|
Wang F, Zhou X, Chen R, Kang J, Yang X, Lin J, Liu F, Cao D, Xing Z. Improved performance of non-preloaded and high flip-angle dynamic susceptibility contrast perfusion-weighted imaging sequences in the presurgical differentiation of brain lymphoma and glioblastoma. Eur Radiol 2023; 33:8800-8808. [PMID: 37439934 DOI: 10.1007/s00330-023-09917-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 03/26/2023] [Accepted: 05/08/2023] [Indexed: 07/14/2023]
Abstract
OBJECTIVE This study aimed to compare the accuracy of relative cerebral blood volume (rCBV) and percentage signal recovery (PSR) obtained from high flip-angle dynamic susceptibility contrast perfusion-weighted imaging (DSC-PWI) sequences with and without contrast agent (CA) preload for presurgical discrimination of brain glioblastoma and lymphoma. METHODS Consecutive 336 patients (glioblastoma, 236; PCNSL, 100) were included. All the patients underwent DSC-PWI on 3.0-T magnetic resonance units before surgery. The rCBV and PSR with preloaded and non-preloaded CA were measured. The means of the continuous variables were compared using Welch's t-test. The diagnostic accuracies of the individual parameters were compared using the receiver operating characteristic curve analysis. RESULTS The rCBV was higher with preloaded CA than with non-preloaded CA (glioblastoma, 10.20 vs. 8.90, p = 0.020; PCNSL, 3.88 vs. 3.27, p = 0.020). The PSR was lower with preloaded CA than with non-preloaded CA (glioblastoma, 0.59 vs. 0.90; PCNSL, 0.70 vs. 1.63; all p < 0.001). Regarding the differentiation of glioblastoma and PCNSL, the AUC of rCBV with preloaded CA was indistinguishable from that of non-preloaded CA (0.940 vs. 0.949, p = 0.703), whereas the area under the curve of PSR with preloaded CA was lower than non-preloaded CA (0.529 vs. 0.884, p < 0.001). CONCLUSION With preloaded CA, diagnostic performance in differentiating glioblastoma and PCNSL did not improve for rCBV and it was decreased for PSR. Therefore, high flip-angle non-preload DSC-PWI sequences offer excellent accuracy and may be of choice sequence for presurgical discrimination of brain lymphoma and glioblastoma. CLINICAL RELEVANCE STATEMENT High flip-angle DSC-PWI using non-preloaded CA may be an excellent diagnostic method for distinguishing glioblastoma from PCNSL. KEY POINTS • Differentiating primary central nervous system lymphoma and glioblastoma accurately is critical for their management. • DSC-PWI sequences optimised for the most accurate CBV calculations may not be the optimal sequences for presurgical brain tumour diagnosis as they could be masquerading leakage phenomena that may provide interesting information in terms of differential diagnosis. • High flip-angle non-preloaded DSC-PWI sequences render the best accuracy in the presurgical differentiation of brain lymphoma and glioblastoma.
Collapse
Affiliation(s)
- Feng Wang
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, 20 Cha-Zhong Road, Fuzhou, Fujian, 350005, People's Republic of China
- Department of Radiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Xiaofang Zhou
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, 20 Cha-Zhong Road, Fuzhou, Fujian, 350005, People's Republic of China
- Department of Radiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Ruiquan Chen
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, 20 Cha-Zhong Road, Fuzhou, Fujian, 350005, People's Republic of China
- Department of Radiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Jie Kang
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, 20 Cha-Zhong Road, Fuzhou, Fujian, 350005, People's Republic of China
- Department of Radiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Xinyi Yang
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, 20 Cha-Zhong Road, Fuzhou, Fujian, 350005, People's Republic of China
- Department of Radiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Jinzhu Lin
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, 20 Cha-Zhong Road, Fuzhou, Fujian, 350005, People's Republic of China
- Department of Radiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Fang Liu
- Department of Hyperbaric Oxygen, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Dairong Cao
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, 20 Cha-Zhong Road, Fuzhou, Fujian, 350005, People's Republic of China.
- Department of Radiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China.
- Department of Radiology, Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China.
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China.
| | - Zhen Xing
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, 20 Cha-Zhong Road, Fuzhou, Fujian, 350005, People's Republic of China.
- Department of Radiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China.
| |
Collapse
|
7
|
Kamimura K, Nakano T, Hasegawa T, Nakajo M, Yamada C, Kamimura Y, Akune K, Ejima F, Ayukawa T, Nagano H, Takumi K, Nakajo M, Higa N, Yonezawa H, Hanaya R, Kirishima M, Tanimoto A, Iwanaga T, Imai H, Feiweier T, Yoshiura T. Differentiating primary central nervous system lymphoma from glioblastoma by time-dependent diffusion using oscillating gradient. Cancer Imaging 2023; 23:114. [PMID: 38037172 PMCID: PMC10691025 DOI: 10.1186/s40644-023-00639-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND This study aimed to elucidate the impact of effective diffusion time setting on apparent diffusion coefficient (ADC)-based differentiation between primary central nervous system lymphomas (PCNSLs) and glioblastomas (GBMs) and to investigate the usage of time-dependent diffusion magnetic resonance imaging (MRI) parameters. METHODS A retrospective study was conducted involving 21 patients with PCNSLs and 66 patients with GBMs using diffusion weighted imaging (DWI) sequences with oscillating gradient spin-echo (Δeff = 7.1 ms) and conventional pulsed gradient (Δeff = 44.5 ms). In addition to ADC maps at the two diffusion times (ADC7.1 ms and ADC44.5 ms), we generated maps of the ADC changes (cADC) and the relative ADC changes (rcADC) between the two diffusion times. Regions of interest were placed on enhancing regions and non-enhancing peritumoral regions. The mean and the fifth and 95th percentile values of each parameter were compared between PCNSLs and GBMs. The area under the receiver operating characteristic curve (AUC) values were used to compare the discriminating performances among the indices. RESULTS In enhancing regions, the mean and fifth and 95th percentile values of ADC44.5 ms and ADC7.1 ms in PCNSLs were significantly lower than those in GBMs (p = 0.02 for 95th percentile of ADC44.5 ms, p = 0.04 for ADC7.1 ms, and p < 0.01 for others). Furthermore, the mean and fifth and 95th percentile values of cADC and rcADC were significantly higher in PCNSLs than in GBMs (each p < 0.01). The AUC of the best-performing index for ADC7.1 ms was significantly lower than that for ADC44.5 ms (p < 0.001). The mean rcADC showed the highest discriminating performance (AUC = 0.920) among all indices. In peritumoral regions, no significant difference in any of the three indices of ADC44.5 ms, ADC7.1 ms, cADC, and rcADC was observed between PCNSLs and GBMs. CONCLUSIONS Effective diffusion time setting can have a crucial impact on the performance of ADC in differentiating between PCNSLs and GBMs. The time-dependent diffusion MRI parameters may be useful in the differentiation of these lesions.
Collapse
Affiliation(s)
- Kiyohisa Kamimura
- Department of Advanced Radiological Imaging, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan.
| | - Tsubasa Nakano
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Tomohito Hasegawa
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Masanori Nakajo
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Chihiro Yamada
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Yoshiki Kamimura
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Kentaro Akune
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Fumitaka Ejima
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Takuro Ayukawa
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Hiroaki Nagano
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Koji Takumi
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Masatoyo Nakajo
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Nayuta Higa
- Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Hajime Yonezawa
- Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Ryosuke Hanaya
- Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Mari Kirishima
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Akihide Tanimoto
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Takashi Iwanaga
- Department of Radiological Technology, Kagoshima University Hospital, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Hiroshi Imai
- Siemens Healthcare K.K., Gate City Osaki West Tower, 1-11-1 Osaki, Shinagawa-Ku, Tokyo, 141-8644, Japan
| | | | - Takashi Yoshiura
- Department of Advanced Radiological Imaging, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| |
Collapse
|
8
|
Nierobisch N, Ludovichetti R, Kadali K, Fierstra J, Hüllner M, Michels L, Achangwa NR, Alcaide-Leon P, Weller M, Kulcsar Z, Hainc N. Comparison of clinically available dynamic susceptibility contrast post processing software to differentiate progression from pseudoprogression in post-treatment high grade glioma. Eur J Radiol 2023; 167:111076. [PMID: 37666072 DOI: 10.1016/j.ejrad.2023.111076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/16/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
INTRODUCTION The purpose of this retrospective study was to compare two, widely available software packages for calculation of Dynamic Susceptibility Contrast (DSC) perfusion MRI normalized relative Cerebral Blood Volume (rCBV) values to differentiate tumor progression from pseudoprogression in treated high-grade glioma patients. MATERIAL AND METHODS rCBV maps processed by Siemens Syngo.via (Siemens Healthineers) and Olea Sphere (Olea Medical) software packages were co-registered to contrast-enhanced T1 (T1-CE). Regions of interest based on T1-CE were transferred to the rCBV maps. rCBV was calculated using mean values and normalized using contralateral normal- appearing white matter. The Wilcoxon test was performed to assess for significant differences, and software-specific optimal rCBV cutoff values were determined using the Youden index. Interrater reliability was evaluated for two raters using the intraclass correlation coefficient. RESULTS 41 patients (18 females; median age = 59 years; range 21-77 years) with 49 new or size-increasing post-treatment contrast-enhancing lesions were included (tumor progression = 40 lesions; pseudoprogression = 9 lesions). Optimal rCBV cutoffs of 1.31 (Syngo.via) and 2.40 (Olea) were significantly different, with an AUC of 0.74 and 0.78, respectively. Interrater reliability was 0.85. DISCUSSION We demonstrate that different clinically available MRI DSC-perfusion software packages generate significantly different rCBV cutoff values for the differentiation of tumor progression from pseudoprogression in standard-of-care treated high grade gliomas. Physicians may want to determine the unique value of their perfusion software packages on an institutional level in order to maximize diagnostic accuracy when faced with this clinical challenge. Furthermore, combined with implementation of current DSC-perfusion recommendations, multi-center comparability will be improved.
Collapse
Affiliation(s)
- Nathalie Nierobisch
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Switzerland
| | - Riccardo Ludovichetti
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Switzerland
| | | | - Jorn Fierstra
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Switzerland
| | - Martin Hüllner
- Department of Nuclear Medicine, University Hospital of Zurich, University of Zurich, Switzerland
| | - Lars Michels
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Ngwe Rawlings Achangwa
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Switzerland
| | - Paula Alcaide-Leon
- Department of Medical Imaging, University of Toronto, Toronto, Canada; Joint Department of Medical Imaging, University Health Network, Toronto, Canada
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Switzerland
| | - Zsolt Kulcsar
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Switzerland
| | - Nicolin Hainc
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Switzerland.
| |
Collapse
|
9
|
Loken EK, Huang RY. Advanced Meningioma Imaging. Neurosurg Clin N Am 2023; 34:335-345. [PMID: 37210124 DOI: 10.1016/j.nec.2023.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Noninvasive imaging methods are used to accurately diagnose meningiomas and track their growth and location. These techniques, including computed tomography, MRI, and nuclear medicine, are also being used to gather more information about the biology of the tumors and potentially predict their grade and impact on prognosis. In this article, we will discuss the current and developing uses of these imaging techniques including additional analysis using radiomics in the diagnosis and treatment of meningiomas, including treatment planning and prediction of tumor behavior.
Collapse
Affiliation(s)
- Erik K Loken
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| | - Raymond Y Huang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| |
Collapse
|
10
|
Wang K, Guo H, Tian X, Miao Y, Han P, Jin F. Efficacy of three-dimensional arterial spin labeling and how it compares against that of contrast enhanced magnetic resonance imaging in preoperative grading of brain gliomas. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 37040330 DOI: 10.1002/tox.23800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
PURPOSE To evaluate the efficacy of three-dimensional arterial spin labeling (3D-ASL) imaging in preoperative grading of brain gliomas, and compare the discrepancy between images obtained from 3D-ASL and contrast enhanced magnetic resonance imaging (CE-MRI) in grading of gliomas. METHODS Fifty-one patients with brain gliomas received plain MRI, CE-MRI and 3D-ASL scanning before surgery. In 3D-ASL images, the maximum tumor blood flow (TBF) of tumor parenchyma was measured, relative TBF-M and rTBF-WM were calculated. The cases were categorized into "ASL dominant" and "CE dominant" to compare the discrepancy between 3D-ASL and CE-MRI results. Independent samples t test, Mann-Whitney and U test and one-way analysis of variance (ANOVA) were performed to test the differences of TBF, rTBF-M and rTBF-WM values among brain gliomas with different grades. Spearman rank correlation analysis was performed to assess the correlation between TBF, rTBF-M, rTBF-WM and glioma grades respectively. To compare the discrepancy between 3D-ASL and CE-MRI results. RESULTS In high-grade gliomas (HGG) group, TBF, rTBF-M and rTBF-WM values were higher than those in low-grade gliomas (LGG) group (p < .05). Multiple comparison showed TBF and rTBF-WM values were different between grade I and IV gliomas, grade II and IV gliomas (both p < .05), the rTBF-M value was different between grade I and IV gliomas (p < .05). The values of all 3D-ASL derived parameters were positively correlated with gliomas grading (all p < .001). TBF showed highest specificity (89.3%) and rTBF-WM showed highest sensitivity (96.4%) when discriminating LGG and HGG using ROC curve. There were 29 CE dominant cases (23 cases were HGG), 9 ASL dominant cases (4 cases were HGG). CONCLUSION: 3D-ASL is of significance to preoperative grading of brain gliomas and might be more sensitive than CE-MRI in detection of tumor perfusion.
Collapse
Affiliation(s)
- Kai Wang
- Department of Neurosurgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Huanxuan Guo
- Department of Radiology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Xiaoyan Tian
- Department of Radiology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Yanping Miao
- Department of Radiology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Ping Han
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Jin
- Department of Radiology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
11
|
Eraky AM. Radiological Biomarkers for Brain Metastases Prognosis: Quantitative Magnetic Resonance Imaging (MRI) Modalities As Non-invasive Biomarkers for the Effect of Radiotherapy. Cureus 2023; 15:e38353. [PMID: 37266043 PMCID: PMC10229388 DOI: 10.7759/cureus.38353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2023] [Indexed: 06/03/2023] Open
Abstract
Radiotherapy effect is achieved by its ability to cause DNA damage and induce apoptosis. In contrast, radiation can induce tumor cells' proliferation, invasiveness, and epithelial-mesenchymal transition (EMT). Besides developing radioresistance, this paradoxical effect of radiotherapy is considered a challenging problem in the field of radiotherapy. This highlights the importance of developing new modalities to diagnose radioresistance early to avoid any unnecessary exposure to radiation and differentiate between metastases recurrence versus post-radiation changes. Quantitative magnetic resonance imaging (MRI) techniques including diffusion-weighted imaging (DWI), dynamic susceptibility contrast (DSC), arterial spin labeling (ASL), and dynamic contrast-enhanced (DCE) represent potential biomarkers to diagnose metastases recurrence and radioresistance. In this review, we will focus on recent studies discussing the possibility of using DWI, DSC, ASL, and DCE to diagnose radioresistance and recurrence in patients with brain metastases.
Collapse
Affiliation(s)
- Akram M Eraky
- Neurological Surgery, Medical College of Wisconsin, Milwaukee, USA
| |
Collapse
|
12
|
Fioni F, Chen SJ, Lister INE, Ghalwash AA, Long MZ. Differentiation of high grade glioma and solitary brain metastases by measuring relative cerebral blood volume and fractional anisotropy: a systematic review and meta-analysis of MRI diagnostic test accuracy studies. Br J Radiol 2023; 96:20220052. [PMID: 36278795 PMCID: PMC10997014 DOI: 10.1259/bjr.20220052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE This study aims to research the efficacy of MRI (I) for differentiating high-grade glioma (HGG) (P) with solitary brain metastasis (SBM) (C) by creating a combination of relative cerebral blood volume (rCBV) (O) and fractional anisotropy (FA) (O) in patients with intracerebral tumors. METHODS Searches were conducted on September 2021 with no publication date restriction, using an electronic search for related articles published in English, from PubMed (1994 to September 2021), Scopus (1977 to September 2021), Web of Science (1985 to September 2021), and Cochrane (1997 to September 2021). A total of 1056 studies were found, with 23 used for qualitative and quantitative data synthesis. Inclusion criteria were: patients diagnosed with HGG and SBM without age, sex, or race restriction; MRI examination of rCBV and FA; reliable histopathological diagnostic method as the gold-standard for all conditions of interest; observational and clinical studies. Newcastle-Ottawa quality assessment Scale (NOS) and Cochrane risk of bias tool (ROB) for observational and clinical trial studies were managed to appraise the quality of individual studies included. Data extraction results were managed using Mendeley and Excel, pooling data synthesis was completed using the Review Manager 5.4 software with random effect model to discriminate HGG and SBM, and divided into four subgroups. RESULTS There were 23 studies included with a total sample size of 597 HGG patients and 373 control groups/SBM. The analysis was categorized into four subgroups: (1) the subgroup with rCBV values in the central area of the tumor/intratumoral (399 HGG and 232 SBM) shows that HGG patients are not significantly different from SBM/controls group (SMD [95% CI] = -0.27 [-0.66, 0.13]), 2) the subgroup with rCBV values in the peritumoral area (452 HGG and 274 SBM) shows that HGG patients are significantly higher than SBM (SMD [95% CI] = -1.23 [-1.45 to -1.01]), (3) the subgroup with FA values in the central area of the tumor (249 HGG and 156 SBM) shows that HGG patients are significantly higher than SBM (SMD [95% CI] = - 0.44 [-0.84,-0.04]), furthermore (4) the subgroup with FA values in the peritumoral area (261 HGG and 168 SBM) shows that the HGG patients are significantly higher than the SBM (SMD [95% CI] = -0.59 [-1.02,-0.16]). CONCLUSION Combining rCBV and FA measurements in the peritumoral region and FA in the intratumoral region increase the accuracy of MRI examination to differentiate between HGG and SBM patients effectively. Confidence in the accuracy of our results may be influenced by major interstudy heterogeneity. Whereas the I2 for the rCBV in the intratumoral subgroup was 80%, I2 for the rCBV in the peritumoral subgroup was 39%, and I2 for the FA in the intratumoral subgroup was 69%, and I2 for the FA in the peritumoral subgroup was 74%. The predefined accurate search criteria, and precise selection and evaluation of methodological quality for included studies, strengthen this studyOur study has no funder, no conflict of interest, and followed an established PROSPERO protocol (ID: CRD42021279106). ADVANCES IN KNOWLEDGE The combination of rCBV and FA measurements' results is promising in differentiating HGG and SBM.
Collapse
Affiliation(s)
- Fioni Fioni
- Department of Radiology, Nanjing Medical University, first
affiliated hospital (Jiangsu Provincial People’s
Hospital), Jiangsu, China
| | - Song Jia Chen
- Department of Radiology, Nanjing Medical University, first
affiliated hospital (Jiangsu Provincial People’s
Hospital), Jiangsu, China
| | - I Nyoman Ehrich Lister
- Medicine, Universitas Prima Indonesia and Royal Prima
Hospital, Medan, North Sumatera, Indoneisa
| | | | - Ma Zhan Long
- Department of Radiology, Nanjing Medical University, first
affiliated hospital (Jiangsu Provincial People’s
Hospital), Jiangsu, China
| |
Collapse
|
13
|
Henssen D, Meijer F, Verburg FA, Smits M. Challenges and opportunities for advanced neuroimaging of glioblastoma. Br J Radiol 2023; 96:20211232. [PMID: 36062962 PMCID: PMC10997013 DOI: 10.1259/bjr.20211232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 08/10/2022] [Accepted: 08/25/2022] [Indexed: 11/05/2022] Open
Abstract
Glioblastoma is the most aggressive of glial tumours in adults. On conventional magnetic resonance (MR) imaging, these tumours are observed as irregular enhancing lesions with areas of infiltrating tumour and cortical expansion. More advanced imaging techniques including diffusion-weighted MRI, perfusion-weighted MRI, MR spectroscopy and positron emission tomography (PET) imaging have found widespread application to diagnostic challenges in the setting of first diagnosis, treatment planning and follow-up. This review aims to educate readers with regard to the strengths and weaknesses of the clinical application of these imaging techniques. For example, this review shows that the (semi)quantitative analysis of the mentioned advanced imaging tools was found useful for assessing tumour aggressiveness and tumour extent, and aids in the differentiation of tumour progression from treatment-related effects. Although these techniques may aid in the diagnostic work-up and (post-)treatment phase of glioblastoma, so far no unequivocal imaging strategy is available. Furthermore, the use and further development of artificial intelligence (AI)-based tools could greatly enhance neuroradiological practice by automating labour-intensive tasks such as tumour measurements, and by providing additional diagnostic information such as prediction of tumour genotype. Nevertheless, due to the fact that advanced imaging and AI-diagnostics is not part of response assessment criteria, there is no harmonised guidance on their use, while at the same time the lack of standardisation severely hampers the definition of uniform guidelines.
Collapse
Affiliation(s)
- Dylan Henssen
- Department of Medical Imaging, Radboud university medical
center, Nijmegen, The Netherlands
| | - Frederick Meijer
- Department of Medical Imaging, Radboud university medical
center, Nijmegen, The Netherlands
| | - Frederik A. Verburg
- Department of Medical Imaging, Radboud university medical
center, Nijmegen, The Netherlands
| | - Marion Smits
- Department of Medical Imaging, Radboud university medical
center, Nijmegen, The Netherlands
| |
Collapse
|
14
|
Wang Y, Zha H. Neuroimaging for differential diagnosis of transient neurological attacks. Brain Behav 2022; 12:e2780. [PMID: 36350080 PMCID: PMC9759151 DOI: 10.1002/brb3.2780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/04/2022] [Accepted: 09/14/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Rapid yet comprehensive neuroimaging protocols are required for patients with suspected acute stroke. However, stroke mimics can account for approximately one in five clinically diagnosed acute ischemic strokes and the rate of thrombolyzed mimics can be as high as 17%. Therefore, to accurately determine the diagnosis and differentiate mimics from true transient ischemic attacks, acute ischemic stroke is a challenge to every clinician. DISCUSSION Medical history and neurological examination, noncontract head computed tomography, and routine magnetic resonance imaging play important roles in the assessment and management of patients with transient neurological attacks in the emergency department. This review attempts to summarize how neuroimaging can be utilized to help differentiate the most common mimics from transient ischemic attack and acute ischemic stroke. CONCLUSION Although imaging can help direct critical triage decisions for intravenous thrombolysis or endovascular therapy, more detailed medical history and neurological examination are crucial for making a prompt and accurate diagnosis for transient neurological attack patients.
Collapse
Affiliation(s)
- Ying Wang
- Department of Neurology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hao Zha
- Department of Reproductive and Genetics, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
15
|
Li AY, Iv M. Conventional and Advanced Imaging Techniques in Post-treatment Glioma Imaging. FRONTIERS IN RADIOLOGY 2022; 2:883293. [PMID: 37492665 PMCID: PMC10365131 DOI: 10.3389/fradi.2022.883293] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/06/2022] [Indexed: 07/27/2023]
Abstract
Despite decades of advancement in the diagnosis and therapy of gliomas, the most malignant primary brain tumors, the overall survival rate is still dismal, and their post-treatment imaging appearance remains very challenging to interpret. Since the limitations of conventional magnetic resonance imaging (MRI) in the distinction between recurrence and treatment effect have been recognized, a variety of advanced MR and functional imaging techniques including diffusion-weighted imaging (DWI), diffusion tensor imaging (DTI), perfusion-weighted imaging (PWI), MR spectroscopy (MRS), as well as a variety of radiotracers for single photon emission computed tomography (SPECT) and positron emission tomography (PET) have been investigated for this indication along with voxel-based and more quantitative analytical methods in recent years. Machine learning and radiomics approaches in recent years have shown promise in distinguishing between recurrence and treatment effect as well as improving prognostication in a malignancy with a very short life expectancy. This review provides a comprehensive overview of the conventional and advanced imaging techniques with the potential to differentiate recurrence from treatment effect and includes updates in the state-of-the-art in advanced imaging with a brief overview of emerging experimental techniques. A series of representative cases are provided to illustrate the synthesis of conventional and advanced imaging with the clinical context which informs the radiologic evaluation of gliomas in the post-treatment setting.
Collapse
Affiliation(s)
- Anna Y. Li
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States
| | - Michael Iv
- Division of Neuroimaging and Neurointervention, Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
16
|
Kouwenberg V, van Santwijk L, Meijer FJA, Henssen D. Reliability of dynamic susceptibility contrast perfusion metrics in pre- and post-treatment glioma. Cancer Imaging 2022; 22:28. [PMID: 35715866 PMCID: PMC9205029 DOI: 10.1186/s40644-022-00466-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/26/2022] [Indexed: 11/26/2022] Open
Abstract
Background In neuro-oncology, dynamic susceptibility contrast magnetic resonance (DSC-MR) perfusion imaging emerged as a tool to aid in the diagnostic work-up and to surveil effectiveness of treatment. However, it is believed that a significant variability exists with regard to the measured in DSC-MR perfusion parameters. The aim of this study was to assess the observer variability in measured DSC-MR perfusion parameters in patients before and after treatment. In addition, we investigated whether region-of-interest (ROI) shape impacted the observer variability. Materials and methods Twenty non-treated patients and a matched group of twenty patients post-treatment (neurosurgical resection and post-chemoradiotherapy) were included. Six ROIs were independently placed by three readers: circular ROIs and polygonal ROIs covering 1) the tumor hotspot; 2) the peritumoral region (T2/FLAIR-hyperintense region) and 3) the whole tumor region. A two-way random Intra-class coefficient (ICC) model was used to assess variability in measured DSC-MRI perfusion parameters. The perfusion metrics as assessed by the circular and the polygonal ROI were compared by use of the dependent T-test. Results In the non-treated group, circular ROIs showed good–excellent overlap (ICC-values ranging from 0.741–0.963) with the exception of those representing the tumor hotspot. Polygonal ROIs showed lower ICC-values, ranging from 0.113 till 0.856. ROI-placement in the posttreatment group showed to be highly variable with a significant deterioration of ICC-values. Furthermore, perfusion metric assessment in similar tumor regions was not impacted by ROI shape. Discussion This study shows that posttreatment quantitative interpretation of DSC-MR perfusion imaging is highly variable and should be carried out with precaution. Pretreatment assessment of DSC-MR images, however, could be carried out be a single reader in order to provide valid data for further analyses. • DSC-MR perfusion imaging measurements in non-treated glioma is highly reliable between readers, even readers with little experience. • DSC-MR perfusion imaging measurements in treated glioma is show to be inconsistent between readers. • When using DSC-MR perfusion imaging as a quantitative surveillance tool for the recurrence of glioma after treatment, double-reading should be preferred.
Collapse
Affiliation(s)
- Valentina Kouwenberg
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 EZ, Nijmegen, The Netherlands
| | - Lusien van Santwijk
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 EZ, Nijmegen, The Netherlands
| | - Frederick J A Meijer
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 EZ, Nijmegen, The Netherlands
| | - Dylan Henssen
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 EZ, Nijmegen, The Netherlands.
| |
Collapse
|
17
|
Grading Trigone Meningiomas Using Conventional Magnetic Resonance Imaging With Susceptibility-Weighted Imaging and Perfusion-Weighted Imaging. J Comput Assist Tomogr 2022; 46:103-109. [PMID: 35027521 DOI: 10.1097/rct.0000000000001256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To compare conventional magnetic resonance imaging (MRI), susceptibility-weighted imaging (SWI), and perfusion-weighted imaging (PWI) characteristics in different grades of trigone meningiomas. METHODS Thirty patients with trigone meningiomas were enrolled in this retrospective study. Conventional MRI was performed in all patients; SWI (17 cases), dynamic contrast-enhanced PWI (10 cases), and dynamic susceptibility contrast PWI (6 cases) were performed. Demographics, conventional MRI features, SWI- and PWI-derived parameters were compared between different grades of trigone meningiomas. RESULTS On conventional MRI, the irregularity of tumor shape (ρ = 0.497, P = 0.005) and the extent of peritumoral edema (ρ = 0.187, P = 0.022) might help distinguish low-grade and high-grade trigone meningiomas. On multiparametric functional MRI, rTTPmax (1.17 ± 0.06 vs 1.30 ± 0.05, P = 0.048), Kep, Ve, and iAUC demonstrated their potentiality to predict World Health Organization grades I, II, and III trigone meningiomas. CONCLUSIONS Conventional MRI combined with dynamic susceptibility contrast and dynamic contrast-enhanced can help predict the World Health Organization grade of trigone meningiomas.
Collapse
|
18
|
Woodall RT, Sahoo P, Cui Y, Chen BT, Shiroishi MS, Lavini C, Frankel P, Gutova M, Brown CE, Munson JM, Rockne RC. Repeatability of tumor perfusion kinetics from dynamic contrast-enhanced MRI in glioblastoma. Neurooncol Adv 2022; 3:vdab174. [PMID: 34988454 PMCID: PMC8715899 DOI: 10.1093/noajnl/vdab174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background Dynamic contrast-enhanced MRI (DCE-MRI) parameters have been shown to be biomarkers for treatment response in glioblastoma (GBM). However, variations in analysis and measurement methodology complicate determination of biological changes measured via DCE. The aim of this study is to quantify DCE-MRI variations attributable to analysis methodology and image quality in GBM patients. Methods The Extended Tofts model (eTM) and Leaky Tracer Kinetic Model (LTKM), with manually and automatically segmented vascular input functions (VIFs), were used to calculate perfusion kinetic parameters from 29 GBM patients with double-baseline DCE-MRI data. DCE-MRI images were acquired 2-5 days apart with no change in treatment. Repeatability of kinetic parameters was quantified with Bland-Altman and percent repeatability coefficient (%RC) analysis. Results The perfusion parameter with the least RC was the plasma volume fraction (v p ), with a %RC of 53%. The extra-cellular extra-vascular volume fraction (v e ) %RC was 82% and 81%, for extended Tofts-Kety Model (eTM) and LTKM respectively. The %RC of the volume transfer rate constant (K trans ) was 72% for the eTM, and 82% for the LTKM, respectively. Using an automatic VIF resulted in smaller %RCs for all model parameters, as compared to manual VIF. Conclusions As much as 72% change in K trans (eTM, autoVIF) can be attributable to non-biological changes in the 2-5 days between double-baseline imaging. Poor K trans repeatability may result from inferior temporal resolution and short image acquisition time. This variation suggests DCE-MRI repeatability studies should be performed institutionally, using an automatic VIF method and following quantitative imaging biomarkers alliance guidelines.
Collapse
Affiliation(s)
- Ryan T Woodall
- Division of Mathematical Oncology, Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope, Duarte, California, USA
| | - Prativa Sahoo
- Division of Mathematical Oncology, Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope, Duarte, California, USA
| | - Yujie Cui
- Division of Biostatistics, Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope, Duarte, California, USA
| | - Bihong T Chen
- Department of Diagnostic Radiology, City of Hope, Duarte, California, USA
| | - Mark S Shiroishi
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Cristina Lavini
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Paul Frankel
- Division of Biostatistics, Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope, Duarte, California, USA
| | - Margarita Gutova
- Department of Stem Cell Biology and Regenerative Medicine, Beckman Research Institute, City of Hope, Duarte, California, USA
| | - Christine E Brown
- Department of Hematology & Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope, Duarte, California, USA.,Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, California, USA
| | - Jennifer M Munson
- Department of Biomedical Engineering & Mechanics, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, Virginia, USA
| | - Russell C Rockne
- Division of Mathematical Oncology, Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope, Duarte, California, USA
| |
Collapse
|
19
|
Luo X, Zhu Y, Zhang Y, Zhang Q, Wang X, Deng X. Parameters of MR perfusion-weighted imaging predict the response and prognosis to high-dose methotrexate-based chemotherapy in immunocompetent patients with primary central nervous system lymphoma. J Clin Neurosci 2022; 95:151-158. [DOI: 10.1016/j.jocn.2021.12.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 11/26/2021] [Accepted: 12/07/2021] [Indexed: 01/04/2023]
|
20
|
Preliminary study of multiple b-value diffusion-weighted images and T1 post enhancement magnetic resonance imaging images fusion with Laplacian Re-decomposition (LRD) medical fusion algorithm for glioma grading. Eur J Radiol Open 2021; 8:100378. [PMID: 34632000 PMCID: PMC8487979 DOI: 10.1016/j.ejro.2021.100378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/20/2021] [Accepted: 09/26/2021] [Indexed: 12/21/2022] Open
Abstract
LRD medical image fusion algorithm can be used for glioma grading. We can use the LRD fusion algorithm with MRI image for glioma grading. Fusing of DWI (b50) and T1 enhancement (T1Gd) by LRD, have highest diagnostic value for glioma grading.
Background Grade of brain tumor is thought to be the most significant and crucial component in treatment management. Recent development in medical imaging techniques have led to the introduce non-invasive methods for brain tumor grading such as different magnetic resonance imaging (MRI) protocols. Combination of different MRI protocols with fusion algorithms for tumor grading is used to increase diagnostic improvement. This paper investigated the efficiency of the Laplacian Re-decomposition (LRD) fusion algorithms for glioma grading. Procedures In this study, 69 patients were examined with MRI. The T1 post enhancement (T1Gd) and diffusion-weighted images (DWI) were obtained. To evaluated LRD performance for glioma grading, we compared the parameters of the receiver operating characteristic (ROC) curves. Findings We found that the average Relative Signal Contrast (RSC) for high-grade gliomas is greater than RSCs for low-grade gliomas in T1Gd images and all fused images. No significant difference in RSCs of DWI images was observed between low-grade and high-grade gliomas. However, a significant RSCs difference was detected between grade III and IV in the T1Gd, b50, and all fussed images. Conclusions This research suggests that T1Gd images are an appropriate imaging protocol for separating low-grade and high-grade gliomas. According to the findings of this study, we may use the LRD fusion algorithm to increase the diagnostic value of T1Gd and DWI picture for grades III and IV glioma distinction. In conclusion, this article has emphasized the significance of the LRD fusion algorithm as a tool for differentiating grade III and IV gliomas.
Collapse
Key Words
- ADC, apparent diffusion coefficient
- AUC, Aera Under Curve
- BOLD, blood oxygen level dependent imaging
- CBV, Cerebral Blood Volume
- DCE, Dynamic contrast enhancement
- DGR, Decision Graph Re-decomposition
- DWI, Diffusion-weighted imaging
- Diffusion-weighted images
- FA, flip angle
- Fusion algorithm
- GBM, glioblastomas
- GDIE, Gradient Domain Image Enhancement
- Glioma
- Grade
- IRS, Inverse Re-decomposition Scheme
- LEM, Local Energy Maximum
- LP, Laplacian Pyramid
- LRD, Laplacian Re-decomposition
- Laplacian Re-decomposition
- MLD, Maximum Local Difference
- MRI, magnetic resonance imaging
- MRS, Magnetic resonance spectroscopy
- MST, Multi-scale transform
- Magnetic resonance imaging
- NOD, Non-overlapping domain
- OD, overlapping domain
- PACS, PACS picture archiving and communication system
- ROC, receiver operating characteristic curve
- ROI, regions of interest
- RSC, Relative Signal Contrast
- SCE, Susceptibility contrast enhancement
- T1Gd, T1 post enhancement
- TE, time of echo
- TI, time of inversion
- TR, repetition time
Collapse
|
21
|
Caan MWA, Nederveen AJ. Editorial for "Quantification of Regional Cerebral Blood Flow Using Diffusion Imaging With Phase-Contrast". J Magn Reson Imaging 2021; 54:1687-1688. [PMID: 34160119 DOI: 10.1002/jmri.27785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 06/04/2021] [Indexed: 11/06/2022] Open
Affiliation(s)
- Matthan W A Caan
- Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Aart J Nederveen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Differentiating Glioblastomas from Solitary Brain Metastases: An Update on the Current Literature of Advanced Imaging Modalities. Cancers (Basel) 2021; 13:cancers13122960. [PMID: 34199151 PMCID: PMC8231515 DOI: 10.3390/cancers13122960] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022] Open
Abstract
Differentiating between glioblastomas and solitary brain metastases proves to be a challenging diagnosis for neuroradiologists, as both present with imaging patterns consisting of peritumoral hyperintensities with similar intratumoral texture on traditional magnetic resonance imaging sequences. Early diagnosis is paramount, as each pathology has completely different methods of clinical assessment. In the past decade, recent developments in advanced imaging modalities enabled providers to acquire a more accurate diagnosis earlier in the patient's clinical assessment, thus optimizing clinical outcome. Dynamic susceptibility contrast has been optimized for detecting relative cerebral blood flow and relative cerebral blood volume. Diffusion tensor imaging can be used to detect changes in mean diffusivity. Neurite orientation dispersion and density imaging is an innovative modality detecting changes in intracellular volume fraction, isotropic volume fraction, and extracellular volume fraction. Magnetic resonance spectroscopy is able to assist by providing a metabolic descriptor while detecting variable ratios of choline/N-acetylaspartate, choline/creatine, and N-acetylaspartate/creatine. Finally, radiomics and machine learning algorithms have been devised to assist in improving diagnostic accuracy while often utilizing more than one advanced imaging protocol per patient. In this review, we provide an update on all the current evidence regarding the identification and differentiation of glioblastomas from solitary brain metastases.
Collapse
|
23
|
Beig Zali S, Alinezhad F, Ranjkesh M, Daghighi MH, Poureisa M. Accuracy of apparent diffusion coefficient in differentiation of glioblastoma from metastasis. Neuroradiol J 2021; 34:205-212. [PMID: 33417503 PMCID: PMC8165902 DOI: 10.1177/1971400920983678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Brain metastasis and glioblastoma multiforme are two of the most common malignant brain neoplasms. There are many difficulties in distinguishing these diseases from each other. PURPOSE The purpose of this study was to determine whether the mean apparent diffusion coefficient and absolute standard deviation derived from apparent diffusion coefficient measurements can be used to differentiate glioblastoma multiforme from brain metastasis based on cellularity levels. MATERIAL AND METHODS Magnetic resonance images of 34 patients with histologically verified brain tumors were evaluated retrospectively. Apparent diffusion coefficient and standard deviation values were measured in the enhancing tumor, peritumoral region, and contralateral healthy white matter. Then, to determine whether there was a statistical difference between brain metastasis and glioblastoma multiforme, we analyzed different variables between the two groups. RESULTS Neither mean apparent diffusion coefficient values and ratios nor standard deviation values and ratios were significantly different between glioblastoma multiforme and brain metastasis. Receiver operating characteristic curve analysis of the logistic model with backward stepwise feature selection yielded an area under the curve of 0.77, a specificity of 84%, a sensitivity of 67%, a positive predictive value of 83.33%, and a negative predictive value of 78.26% for distinguishing between glioblastoma multiforme and brain metastasis. The absolute standard deviation and standard deviation ratios were significantly higher in the peritumoral edema compared to the tumor region in each case. CONCLUSION Apparent diffusion coefficient values and ratios, as well as standard deviation values and ratios in peritumoral edema, cannot be used to differentiate edema with infiltration of tumor cells from vasogenic edema. However, standard deviation values could successfully characterize areas of peritumoral edema from the tumoral region in each case.
Collapse
Affiliation(s)
- Sanaz Beig Zali
- Neuroscience Research Center, Tabriz University of Medical Sciences, Iran
| | - Farbod Alinezhad
- Student Research Committee, Tabriz University of Medical Sciences, Iran
| | - Mahnaz Ranjkesh
- Department of Radiology, Tabriz University of Medical Sciences, Iran
| | | | - Masoud Poureisa
- Department of Radiology, Tabriz University of Medical Sciences, Iran
| |
Collapse
|
24
|
Assessment of tumor hypoxia and perfusion in recurrent glioblastoma following bevacizumab failure using MRI and 18F-FMISO PET. Sci Rep 2021; 11:7632. [PMID: 33828310 PMCID: PMC8027395 DOI: 10.1038/s41598-021-84331-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 02/03/2021] [Indexed: 01/16/2023] Open
Abstract
Tumoral hypoxia correlates with worse outcomes in glioblastoma (GBM). While bevacizumab is routinely used to treat recurrent GBM, it may exacerbate hypoxia. Evofosfamide is a hypoxia-targeting prodrug being tested for recurrent GBM. To characterize resistance to bevacizumab and identify those with recurrent GBM who may benefit from evofosfamide, we ascertained MRI features and hypoxia in patients with GBM progression receiving both agents. Thirty-three patients with recurrent GBM refractory to bevacizumab were enrolled. Patients underwent MR and 18F-FMISO PET imaging at baseline and 28 days. Tumor volumes were determined, MRI and 18F-FMISO PET-derived parameters calculated, and Spearman correlations between parameters assessed. Progression-free survival decreased significantly with hypoxic volume [hazard ratio (HR) = 1.67, 95% confidence interval (CI) 1.14 to 2.46, P = 0.009] and increased significantly with time to the maximum value of the residue (Tmax) (HR = 0.54, 95% CI 0.34 to 0.88, P = 0.01). Overall survival decreased significantly with hypoxic volume (HR = 1.71, 95% CI 1.12 to 12.61, p = 0.01), standardized relative cerebral blood volume (srCBV) (HR = 1.61, 95% CI 1.09 to 2.38, p = 0.02), and increased significantly with Tmax (HR = 0.31, 95% CI 0.15 to 0.62, p < 0.001). Decreases in hypoxic volume correlated with longer overall and progression-free survival, and increases correlated with shorter overall and progression-free survival. Hypoxic volume and volume ratio were positively correlated (rs = 0.77, P < 0.0001), as were hypoxia volume and T1 enhancing tumor volume (rs = 0.75, P < 0.0001). Hypoxia is a key biomarker in patients with bevacizumab-refractory GBM. Hypoxia and srCBV were inversely correlated with patient outcomes. These radiographic features may be useful in evaluating treatment and guiding treatment considerations.
Collapse
|
25
|
Kim M, Park JE, Emblem K, Bjørnerud A, Kim HS. Vessel Type Determined by Vessel Architectural Imaging Improves Differentiation between Early Tumor Progression and Pseudoprogression in Glioblastoma. AJNR Am J Neuroradiol 2021; 42:663-670. [PMID: 33541891 DOI: 10.3174/ajnr.a6984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/01/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND PURPOSE Currently available perfusion parameters are limited in differentiating early tumor progression and pseudoprogression with no insight about vessel size and type. We aimed to investigate differences in vessel size and type between early tumor progression and pseudoprogression in posttreatment glioblastoma and to demonstrate diagnostic performance using vessel architectural imaging. MATERIALS AND METHODS Fifty-eight patients with enlarging contrast-enhancing masses in posttreatment glioblastomas underwent simultaneous gradient recalled-echo and spin-echo dynamic susceptibility contrast imaging. Relative CBV and vessel architectural imaging parameters, including the relative vessel size index, peak shift between gradient recalled echo and spin-echo bolus signal peaks, and arterial dominance scores using spatial dominance of arterial/venous vessel type, were calculated and compared between the 2 conditions. The area under the curve and cross-validation were performed to compare the diagnostic performance of the relative CBV, vessel architectural imaging parameters, and their combinations. RESULTS There were 41 patients with early tumor progression and 17 patients with pseudoprogression. Relative to pseudoprogression, early tumor progression showed a lower peak shift (-0.02 versus 0.33, P = .02) and a lower arterial dominance score (1.46 versus 2.11, P = .001), indicating venous dominance. Patients with early tumor progression had higher relative CBV (1.88 versus 1.38, P = .02) and a tendency toward a larger relative vessel size index (99.67 versus 83.17, P = .15) than those with pseudoprogression. Combining arterial dominance scores and relative CBV showed significantly higher diagnostic performance (area under the curve = 0.82; 95% CI, 0.70-0.94; P = .02) than relative CBV alone (area under the curve = 0.64; 95% CI, 0.49-0.79) in distinguishing early tumor progression from pseudoprogression. CONCLUSIONS Vessel architectural imaging significantly improved the diagnostic performance of relative CBV by demonstrating venous dominance and a tendency toward larger vessel size in early tumor progression.
Collapse
Affiliation(s)
- M Kim
- From the Department of Radiology and Research Institute of Radiology (M.K., J.E.P., H.S.K.), University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - J E Park
- From the Department of Radiology and Research Institute of Radiology (M.K., J.E.P., H.S.K.), University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - K Emblem
- Department of Diagnostic Physics, (K.E.)
| | - A Bjørnerud
- Unit for Computational Radiology and Artificial Intelligence (A.B.), Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
- Department of Physics (A.B.), University of Oslo, Oslo, Norway
| | - H S Kim
- From the Department of Radiology and Research Institute of Radiology (M.K., J.E.P., H.S.K.), University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| |
Collapse
|
26
|
Le Fèvre C, Constans JM, Chambrelant I, Antoni D, Bund C, Leroy-Freschini B, Schott R, Cebula H, Noël G. Pseudoprogression versus true progression in glioblastoma patients: A multiapproach literature review. Part 2 - Radiological features and metric markers. Crit Rev Oncol Hematol 2021; 159:103230. [PMID: 33515701 DOI: 10.1016/j.critrevonc.2021.103230] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/10/2021] [Accepted: 01/16/2021] [Indexed: 12/28/2022] Open
Abstract
After chemoradiotherapy for glioblastoma, pseudoprogression can occur and must be distinguished from true progression to correctly manage glioblastoma treatment and follow-up. Conventional treatment response assessment is evaluated via conventional MRI (contrast-enhanced T1-weighted and T2/FLAIR), which is unreliable. The emergence of advanced MRI techniques, MR spectroscopy, and PET tracers has improved pseudoprogression diagnostic accuracy. This review presents a literature review of the different imaging techniques and potential imaging biomarkers to differentiate pseudoprogression from true progression.
Collapse
Affiliation(s)
- Clara Le Fèvre
- Department of Radiotherapy, ICANS, Institut Cancérologie Strasbourg Europe, 17 rue Albert Calmette, 67200, Strasbourg Cedex, France.
| | - Jean-Marc Constans
- Department of Radiology, Amiens-Picardie University Hospital, 1 rond-point du Professeur Christian Cabrol, 80054, Amiens Cedex 1, France.
| | - Isabelle Chambrelant
- Department of Radiotherapy, ICANS, Institut Cancérologie Strasbourg Europe, 17 rue Albert Calmette, 67200, Strasbourg Cedex, France.
| | - Delphine Antoni
- Department of Radiotherapy, ICANS, Institut Cancérologie Strasbourg Europe, 17 rue Albert Calmette, 67200, Strasbourg Cedex, France.
| | - Caroline Bund
- Department of Nuclear Medicine, ICANS, Institut Cancérologie Strasbourg Europe, 17 rue Albert Calmette, 67200, Strasbourg Cedex, France.
| | - Benjamin Leroy-Freschini
- Department of Nuclear Medicine, ICANS, Institut Cancérologie Strasbourg Europe, 17 rue Albert Calmette, 67200, Strasbourg Cedex, France.
| | - Roland Schott
- Departement of Medical Oncology, ICANS, Institut Cancérologie Strasbourg Europe, 17 rue Albert Calmette, 67200, Strasbourg Cedex, France.
| | - Hélène Cebula
- Departement of Neurosurgery, Hautepierre University Hospital, 1, avenue Molière, 67200, Strasbourg, France.
| | - Georges Noël
- Department of Radiotherapy, ICANS, Institut Cancérologie Strasbourg Europe, 17 rue Albert Calmette, 67200, Strasbourg Cedex, France.
| |
Collapse
|
27
|
Guo L, Li X, Cao H, Hua J, Mei Y, Pillai JJ, Wu Y. Inflow-based vascular-space-occupancy (iVASO) might potentially predict IDH mutation status and tumor grade in diffuse cerebral gliomas. J Neuroradiol 2021; 49:267-274. [PMID: 33482231 DOI: 10.1016/j.neurad.2021.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/13/2020] [Accepted: 01/11/2021] [Indexed: 02/08/2023]
Abstract
PURPOSE The aim of the study is to assess the diagnostic performance of inflow-based vascular-space-occupancy (iVASO) MR imaging for differentiating glioblastomas (grade IV, GBM) and lower-grade diffuse gliomas (grade II and III, LGG) and its potential to predict IDH mutation status. METHODS One hundred and two patients with diffuse cerebral glioma (56 males; median age, 43.5 years) underwent iVASO and dynamic susceptibility contrast (DSC) MR imaging. The iVASO-derived arteriolar cerebral blood volume (CBVa), relative CBVa (rCBVa), and the DSC-derived relative cerebral blood volume (rCBV) were obtained, and these measurements were compared between the GBM group (n = 43) and the LGG group (n = 59) and between the IDH-mutation group (n = 54) and the IDH-wild group (n = 48). RESULTS Significant correlation was observed between rCBV and CBVa (P < 0.001) or rCBVa (P < 0.001). Both CBVa (P < 0.001) and rCBVa (P < 0.001) were higher in the GBM group. Both CBVa (P < 0.001) and rCBVa (P < 0.001) were lower in the IDH-mutation group compared to the IDH-wild group. Receiver operating characteristic analyses showed the area under curve (AUC) of 0.95 with CBVa and 0.97 with rCBVa in differentiating GBM from LGG. The AUCs were 0.82 and 0.85 for CBVa and rCBVa in predicting IDH gene status, respectively, which were lower than that of rCBV (AUC = 0.90). Combined rCBV and rCBVa significantly improved the diagnostic performance (AUC = 0.95). CONCLUSIONS iVASO MR imaging has the potential to predict IDH mutation and grade in glioma.
Collapse
Affiliation(s)
- Liuji Guo
- Department of Medical Imaging, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Xiaodan Li
- Department of Medical Imaging, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Haimei Cao
- Department of Medical Imaging, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Jun Hua
- Neurosection, Division of MRI Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Yingjie Mei
- China International Center, Philips Healthcare, Guangzhou, PR China
| | - Jay J Pillai
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yuankui Wu
- Department of Medical Imaging, Nanfang Hospital, Southern Medical University, Guangzhou, PR China.
| |
Collapse
|
28
|
Reuter G, Moïse M, Roll W, Martin D, Lombard A, Scholtes F, Stummer W, Suero Molina E. Conventional and advanced imaging throughout the cycle of care of gliomas. Neurosurg Rev 2021; 44:2493-2509. [PMID: 33411093 DOI: 10.1007/s10143-020-01448-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 10/22/2022]
Abstract
Although imaging of gliomas has evolved tremendously over the last decades, published techniques and protocols are not always implemented into clinical practice. Furthermore, most of the published literature focuses on specific timepoints in glioma management. This article reviews the current literature on conventional and advanced imaging techniques and chronologically outlines their practical relevance for the clinical management of gliomas throughout the cycle of care. Relevant articles were located through the Pubmed/Medline database and included in this review. Interpretation of conventional and advanced imaging techniques is crucial along the entire process of glioma care, from diagnosis to follow-up. In addition to the described currently existing techniques, we expect deep learning or machine learning approaches to assist each step of glioma management through tumor segmentation, radiogenomics, prognostication, and characterization of pseudoprogression. Thorough knowledge of the specific performance, possibilities, and limitations of each imaging modality is key for their adequate use in glioma management.
Collapse
Affiliation(s)
- Gilles Reuter
- Department of Neurosurgery, University Hospital of Liège, Liège, Belgium. .,GIGA-CRC In-vivo Imaging Center, ULiege, Liège, Belgium.
| | - Martin Moïse
- Department of Radiology, University Hospital of Liège, Liège, Belgium
| | - Wolfgang Roll
- Department of Nuclear Medicine, University Hospital of Münster, Münster, Germany
| | - Didier Martin
- Department of Neurosurgery, University Hospital of Liège, Liège, Belgium
| | - Arnaud Lombard
- Department of Neurosurgery, University Hospital of Liège, Liège, Belgium
| | - Félix Scholtes
- Department of Neurosurgery, University Hospital of Liège, Liège, Belgium.,Department of Neuroanatomy, University of Liège, Liège, Belgium
| | - Walter Stummer
- Department of Neurosurgery, University Hospital of Münster, Münster, Germany
| | - Eric Suero Molina
- Department of Neurosurgery, University Hospital of Münster, Münster, Germany
| |
Collapse
|
29
|
Togao O, Chikui T, Tokumori K, Kami Y, Kikuchi K, Momosaka D, Kikuchi Y, Kuga D, Hata N, Mizoguchi M, Iihara K, Hiwatashi A. Gamma distribution model of diffusion MRI for the differentiation of primary central nerve system lymphomas and glioblastomas. PLoS One 2020; 15:e0243839. [PMID: 33315914 PMCID: PMC7737570 DOI: 10.1371/journal.pone.0243839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 11/29/2020] [Indexed: 01/03/2023] Open
Abstract
The preoperative imaging-based differentiation of primary central nervous system lymphomas (PCNSLs) and glioblastomas (GBs) is of high importance since the therapeutic strategies differ substantially between these tumors. In this study, we investigate whether the gamma distribution (GD) model is useful in this differentiation of PNCSLs and GBs. Twenty-seven patients with PCNSLs and 57 patients with GBs were imaged with diffusion-weighted imaging using 13 b-values ranging from 0 to 1000 sec/mm2. The shape parameter (κ) and scale parameter (θ) were obtained with the GD model. Fractions of three different areas under the probability density function curve (f1, f2, f3) were defined as follows: f1, diffusion coefficient (D) <1.0×10-3 mm2/sec; f2, D >1.0×10-3 and <3.0×10-3 mm2/sec; f3, D >3.0 × 10-3 mm2/sec. The GD model-derived parameters were compared between PCNSLs and GBs. Receiver operating characteristic (ROC) curve analyses were performed to assess diagnostic performance. The correlations with intravoxel incoherent motion (IVIM)-derived parameters were evaluated. The PCNSL group's κ (2.26 ± 1.00) was significantly smaller than the GB group's (3.62 ± 2.01, p = 0.0004). The PCNSL group's f1 (0.542 ± 0.107) was significantly larger than the GB group's (0.348 ± 0.132, p<0.0001). The PCNSL group's f2 (0.372 ± 0.098) was significantly smaller than the GB group's (0.508 ± 0.127, p<0.0001). The PCNSL group's f3 (0.086 ± 0.043) was significantly smaller than the GB group's (0.144 ± 0.062, p<0.0001). The combination of κ, f1, and f3 showed excellent diagnostic performance (area under the curve, 0.909). The f1 had an almost perfect inverse correlation with D. The f2 and f3 had very strong positive correlations with D and f, respectively. The GD model is useful for the differentiation of GBs and PCNSLs.
Collapse
Affiliation(s)
- Osamu Togao
- Department of Molecular Imaging & Diagnosis, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toru Chikui
- Department of Oral and Maxillofacial Radiology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Kenji Tokumori
- Department of Clinical Radiology, Faculty of Medical Technology, Teikyo University, Fukuoka, Japan
| | - Yukiko Kami
- Department of Oral and Maxillofacial Radiology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Kazufumi Kikuchi
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Daichi Momosaka
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshitomo Kikuchi
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Daisuke Kuga
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nobuhiro Hata
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masahiro Mizoguchi
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koji Iihara
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akio Hiwatashi
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
30
|
Huang J, Milchenko M, Rao YJ, LaMontagne P, Abraham C, Robinson CG, Huang Y, Shimony JS, Rich KM, Benzinger T. A feasibility study to evaluate early treatment response of brain metastases one week after stereotactic radiosurgery using perfusion weighted imaging. PLoS One 2020; 15:e0241835. [PMID: 33141861 PMCID: PMC7608872 DOI: 10.1371/journal.pone.0241835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/20/2020] [Indexed: 01/06/2023] Open
Abstract
Background To explore if early perfusion-weighted magnetic resonance imaging (PWI) may be a promising imaging biomarker to predict local recurrence (LR) of brain metastases after stereotactic radiosurgery (SRS). Methods This is a prospective pilot study of adult brain metastasis patients who were treated with SRS and imaged with PWI before and 1 week later. Relative cerebral blood volume (rCBV) parameter maps were calculated by normalizing to the mean value of the contralateral white matter on PWI. Cox regression was conducted to explore factors associated with time to LR, with Bonferroni adjusted p<0.0006 for multiple testing correction. LR rates were estimated with the Kaplan-Meier method and compared using the log-rank test. Results Twenty-three patients were enrolled from 2013 through 2016, with 22 evaluable lesions from 16 patients. After a median follow-up of 13.1 months (range: 3.0–53.7), 5 lesions (21%) developed LR after a median of 3.4 months (range: 2.3–5.7). On univariable analysis, larger tumor volume (HR 1.48, 95% CI 1.02–2.15, p = 0.04), lower SRS dose (HR 0.45, 95% CI 0.21–0.97, p = 0.04), and higher rCBV at week 1 (HR 1.07, 95% CI 1.003–1.14, p = 0.04) had borderline association with shorter time to LR. Tumors >2.0cm3 had significantly higher LR than if ≤2.0cm3: 54% vs 0% at 1 year, respectively, p = 0.008. A future study to confirm the association of early PWI and LR of the high-risk cohort of lesions >2.0cm3 is estimated to require 258 patients. Conclusions PWI at week 1 after SRS may have borderline association with LR. Tumors <2.0cm3 have low risk of LR after SRS and may be low-yield for predictive biomarker studies. Information regarding sample size and potential challenges for future imaging biomarker studies may be gleaned from this pilot study.
Collapse
Affiliation(s)
- Jiayi Huang
- Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Mikhail Milchenko
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Yuan J Rao
- Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Pamela LaMontagne
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Christopher Abraham
- Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Clifford G Robinson
- Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Yi Huang
- Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Keith M Rich
- Department of Neurosurgery, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Tammie Benzinger
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| |
Collapse
|
31
|
Cebeci H, Kilincer A, Duran Hİ, Seher N, Şahinoğlu M, Karabağlı H, Karabağlı P, Paksoy Y. Precise discrimination between meningiomas and schwannomas using time-to-signal intensity curves and percentage signal recoveries obtained from dynamic susceptibility perfusion imaging. J Neuroradiol 2020; 48:157-163. [PMID: 33065198 DOI: 10.1016/j.neurad.2020.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND PURPOSE Meningiomas and schwannomas are common extra-axial brain tumors. Discrimination is challenging in some locations when characteristic imaging features are absent. This study investigated the accuracy of percentage signal recoveries obtained from dynamic susceptibility contrast perfusion imaging (DSC-PI) in discriminating meningiomas and schwannomas. MATERIAL AND METHODS Retrospective database research was conducted. Sixty nine meningioma and 15 schwannoma having DSC-PI between January 2016 and February 2020 were included. Time to signal intensity curves (TSIC) were analyzed and grouped as T1-dominant leakage, T2*-dominant leakage and return to baseline. Relative cerebral blood volume (rCBV), relative mean transit time (rMTT), percentage signal recovery 1 (PSR 1) and PSR 2 values were calculated. The differences between the groups were investigated. Receiver operating characteristic curves were operated. RESULTS rCBV, rMTT, PSR 1 and PSR 2 values were statistically different between meningiomas and schwannomas. PSR 2 provided the best discrimination. With the cut off value of 1.08 for PSR 2, meningiomas and schwannomas were differentiated with 95.7% sensitivity and 93.3% specificity. TSICs were also different between two groups. Most of meningiomas showed T2*-dominant leakage (78.2%), whereas most of shwannomas showed T1-dominant leakage (93.3%). CONCLUSION DSC-PI is a useful imaging tool for non-invasive discrimination of meningiomas and schwannomas. Particularly, percentage signal recoveries discriminates meningiomas and schwannomas with high sensitivity and specificity.
Collapse
Affiliation(s)
- Hakan Cebeci
- Department of Radiology, Selcuk University, Faculty of Medicine, Konya, Turkey.
| | - Abidin Kilincer
- Department of Radiology, Selcuk University, Faculty of Medicine, Konya, Turkey
| | - Halil İbrahim Duran
- Department of Radiology, Selcuk University, Faculty of Medicine, Konya, Turkey
| | - Nusret Seher
- Department of Radiology, Selcuk University, Faculty of Medicine, Konya, Turkey
| | - Mert Şahinoğlu
- Department of Neurosurgery, Selcuk University, Faculty of Medicine, Konya, Turkey
| | - Hakan Karabağlı
- Department of Neurosurgery, Selcuk University, Faculty of Medicine, Konya, Turkey
| | - Pınar Karabağlı
- Department of Pathology, Selcuk University, Faculty of Medicine, Konya, Turkey
| | - Yahya Paksoy
- Department of Radiology, Selcuk University, Faculty of Medicine, Konya, Turkey; Department of Neuroradiology, Hamad Medical Corporation Neuroscience Institute, Doha, Qatar
| |
Collapse
|
32
|
Boxerman JL, Quarles CC, Hu LS, Erickson BJ, Gerstner ER, Smits M, Kaufmann TJ, Barboriak DP, Huang RH, Wick W, Weller M, Galanis E, Kalpathy-Cramer J, Shankar L, Jacobs P, Chung C, van den Bent MJ, Chang S, Al Yung WK, Cloughesy TF, Wen PY, Gilbert MR, Rosen BR, Ellingson BM, Schmainda KM. Consensus recommendations for a dynamic susceptibility contrast MRI protocol for use in high-grade gliomas. Neuro Oncol 2020; 22:1262-1275. [PMID: 32516388 PMCID: PMC7523451 DOI: 10.1093/neuonc/noaa141] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Despite the widespread clinical use of dynamic susceptibility contrast (DSC) MRI, DSC-MRI methodology has not been standardized, hindering its utilization for response assessment in multicenter trials. Recently, the DSC-MRI Standardization Subcommittee of the Jumpstarting Brain Tumor Drug Development Coalition issued an updated consensus DSC-MRI protocol compatible with the standardized brain tumor imaging protocol (BTIP) for high-grade gliomas that is increasingly used in the clinical setting and is the default MRI protocol for the National Clinical Trials Network. After reviewing the basis for controversy over DSC-MRI protocols, this paper provides evidence-based best practices for clinical DSC-MRI as determined by the Committee, including pulse sequence (gradient echo vs spin echo), BTIP-compliant contrast agent dosing (preload and bolus), flip angle (FA), echo time (TE), and post-processing leakage correction. In summary, full-dose preload, full-dose bolus dosing using intermediate (60°) FA and field strength-dependent TE (40-50 ms at 1.5 T, 20-35 ms at 3 T) provides overall best accuracy and precision for cerebral blood volume estimates. When single-dose contrast agent usage is desired, no-preload, full-dose bolus dosing using low FA (30°) and field strength-dependent TE provides excellent performance, with reduced contrast agent usage and elimination of potential systematic errors introduced by variations in preload dose and incubation time.
Collapse
Affiliation(s)
- Jerrold L Boxerman
- Department of Diagnostic Imaging, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Representative of the Eastern Cooperative Oncology Group–American College of Radiology Imaging Network (ECOG-ACRIN) Cancer Research Group
- Representative of the American Society of Neuroradiology (ASNR)
- Representative of the American Society of Functional Neuroradiology (ASFNR)
| | - Chad C Quarles
- Department of Neuroimaging Research and Barrow Neuroimaging Innovation Center, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Leland S Hu
- Department of Radiology, Mayo Clinic, Phoenix, Arizona, USA
- Representative of the Alliance for Clinical Trials in Oncology
- Representative of the American Society of Neuroradiology (ASNR)
| | - Bradley J Erickson
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
- Representative of the Alliance for Clinical Trials in Oncology
- Representative of the RSNA Quantitative Imaging Biomarker Alliance (QIBA)
- Representative of the American Society of Neuroradiology (ASNR)
| | - Elizabeth R Gerstner
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Representative of the Adult Brain Tumor Consortium (ABTC)
| | - Marion Smits
- Department of Radiology and Nuclear Medicine, Erasmus MC–University Medical Center Rotterdam, Rotterdam, Netherlands
- Representative of the European Organisation for Research and Treatment of Cancer (EORTC)
| | - Timothy J Kaufmann
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
- Representative of the Alliance for Clinical Trials in Oncology
| | - Daniel P Barboriak
- Department of Radiology, Duke University School of Medicine, Durham, North Carolina, USA
- Representative of the Eastern Cooperative Oncology Group–American College of Radiology Imaging Network (ECOG-ACRIN) Cancer Research Group
- Representative of the RSNA Quantitative Imaging Biomarker Alliance (QIBA)
- Representative of the American Society of Neuroradiology (ASNR)
| | - Raymond H Huang
- Department of Radiology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women’s Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Wolfgang Wick
- Department of Neurooncology, National Center of Tumor Disease, University Clinic Heidelberg, Heidelberg, Germany
- Representative of the European Organisation for Research and Treatment of Cancer (EORTC)
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
- Representative of the European Organisation for Research and Treatment of Cancer (EORTC)
| | - Evanthia Galanis
- Division of Medical Oncology, Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
- Representative of the Alliance for Clinical Trials in Oncology
| | - Jayashree Kalpathy-Cramer
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Lalitha Shankar
- Division of Cancer Treatment and Diagnosis, National Cancer Institute (NCI), Bethesda, Maryland, USA
| | - Paula Jacobs
- Division of Cancer Treatment and Diagnosis, National Cancer Institute (NCI), Bethesda, Maryland, USA
| | - Caroline Chung
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Representative of the Alliance for Clinical Trials in Oncology
| | - Martin J van den Bent
- Department of Neuro-Oncology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
- Representative of the European Organisation for Research and Treatment of Cancer (EORTC)
| | - Susan Chang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - W K Al Yung
- Department of Neuro-Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Timothy F Cloughesy
- UCLA Neuro-Oncology Program and UCLA Brain Tumor Imaging Laboratory (BTIL), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women’s Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
- Representative of the Adult Brain Tumor Consortium (ABTC)
| | - Mark R Gilbert
- Neuro-Oncology Branch, National Cancer Institute (NCI), Bethesda, Maryland, USA
- Representative of the Radiation Therapy Oncology Group (RTOG)
| | - Bruce R Rosen
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Benjamin M Ellingson
- UCLA Neuro-Oncology Program and UCLA Brain Tumor Imaging Laboratory (BTIL), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- Departments of Radiological Sciences, Psychiatry, and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- Representative of the Adult Brain Tumor Consortium (ABTC)
- Representative of the Ivy Consortium for Early Phase Clinical Trials
- Representative of the Eastern Cooperative Oncology Group–American College of Radiology Imaging Network (ECOG-ACRIN) Cancer Research Group
- Representative of the RSNA Quantitative Imaging Biomarker Alliance (QIBA)
- Representative of the American Society of Neuroradiology (ASNR)
| | - Kathleen M Schmainda
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Representative of the Eastern Cooperative Oncology Group–American College of Radiology Imaging Network (ECOG-ACRIN) Cancer Research Group
| |
Collapse
|
33
|
Huang RY, Bi WL, Griffith B, Kaufmann TJ, la Fougère C, Schmidt NO, Tonn JC, Vogelbaum MA, Wen PY, Aldape K, Nassiri F, Zadeh G, Dunn IF. Imaging and diagnostic advances for intracranial meningiomas. Neuro Oncol 2020; 21:i44-i61. [PMID: 30649491 DOI: 10.1093/neuonc/noy143] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The archetypal imaging characteristics of meningiomas are among the most stereotypic of all central nervous system (CNS) tumors. In the era of plain film and ventriculography, imaging was only performed if a mass was suspected, and their results were more suggestive than definitive. Following more than a century of technological development, we can now rely on imaging to non-invasively diagnose meningioma with great confidence and precisely delineate the locations of these tumors relative to their surrounding structures to inform treatment planning. Asymptomatic meningiomas may be identified and their growth monitored over time; moreover, imaging routinely serves as an essential tool to survey tumor burden at various stages during the course of treatment, thereby providing guidance on their effectiveness or the need for further intervention. Modern radiological techniques are expanding the power of imaging from tumor detection and monitoring to include extraction of biologic information from advanced analysis of radiological parameters. These contemporary approaches have led to promising attempts to predict tumor grade and, in turn, contribute prognostic data. In this supplement article, we review important current and future aspects of imaging in the diagnosis and management of meningioma, including conventional and advanced imaging techniques using CT, MRI, and nuclear medicine.
Collapse
Affiliation(s)
- Raymond Y Huang
- Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Wenya Linda Bi
- Center for Skull Base and Pituitary Surgery, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Brent Griffith
- Department of Radiology, Henry Ford Health System, Detroit, Michigan, USA
| | - Timothy J Kaufmann
- Department of Radiology, Mayo Clinic and Foundation, Rochester, Minnesota, USA
| | - Christian la Fougère
- Nuclear Medicine and Clinical Molecular Imaging, University Hospital Tubingen, Tubingen, Germany
| | - Nils Ole Schmidt
- Department of Neurosurgery, University Medical Center, Hamburg-Eppendorf, Germany
| | - Jöerg C Tonn
- Department of Neurosurgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Michael A Vogelbaum
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Kenneth Aldape
- Department of Laboratory Pathology, National Cancer Institute, National Institute of Health, Bethesda, Maryland, USA.,MacFeeters-Hamilton Center for Neuro-Oncology, Princess Margaret Cancer Center, Toronto, Ontario, Canada
| | - Farshad Nassiri
- Division of Neurosurgery, University Health Network, University of Toronto, Ontario, Canada.,MacFeeters-Hamilton Center for Neuro-Oncology, Princess Margaret Cancer Center, Toronto, Ontario, Canada
| | - Gelareh Zadeh
- Division of Neurosurgery, University Health Network, University of Toronto, Ontario, Canada.,MacFeeters-Hamilton Center for Neuro-Oncology, Princess Margaret Cancer Center, Toronto, Ontario, Canada
| | - Ian F Dunn
- Center for Skull Base and Pituitary Surgery, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
34
|
Jin S, Han S, Stoyanova R, Ackerstaff E, Cho H. Pattern recognition analysis of dynamic susceptibility contrast (DSC)‐MRI curves automatically segments tissue areas with intact blood–brain barrier in a rat stroke model: A feasibility and comparison study. J Magn Reson Imaging 2020; 51:1369-1381. [PMID: 31654463 PMCID: PMC8566029 DOI: 10.1002/jmri.26949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/12/2019] [Indexed: 11/21/2023] Open
Abstract
BackgroundThe manual segmentation of intact blood–brain barrier (BBB) regions in the stroke brain is cumbersome, due to the coexistence of infarction, large blood vessels, ventricles, and intact BBB regions, specifically in areas with weak signal enhancement following contrast agent injection.HypothesisThat from dynamic susceptibility contrast (DSC)‐MRI alone, without user intervention, regions of weak BBB damage can be segmented based on the leakage‐related parameter K
2 and the extent of intact BBB regions, needed to estimate K
2 values, determined.Study TypeFeasibility.Animal ModelTen female Sprague–Dawley rats (SD, 200–250g) underwent 1‐hour middle carotid artery occlusion (MCAO) and 1‐day reperfusion. Two SD rats underwent 1‐hour MCAO with 3‐day and 5‐day reperfusion.Field Strength/Sequence7T; ADC and T1 maps using diffusion‐weighted echo planar imaging (EPI) and relaxation enhancement (RARE) with variable repetition time (TR), respectively. dynamic contrast‐enhanced (DCE)‐MRI using FLASH. DSC‐MRI using gradient‐echo EPI.AssessmentConstrained nonnegative matrix factorization (cNMF) was applied to the dynamic ‐curves of DSC‐MRI (<4 min) in a BBB‐disrupted rat model. Areas of voxels with intact BBB, classified by automated cNMF analyses, were then used in estimating K
1 and K
2 values, and compared with corresponding values from manually‐derived areas.Statistical TestsMean ± standard deviation of ΔT1‐differences between ischemic and healthy areas were displayed with unpaired Student's t‐tests. Scatterplots were displayed with slopes and intercepts and Pearson's r values were evaluated between K
2 maps obtained with automatic (cNMF)‐ and manually‐derived regions of interest (ROIs) of the intact BBB region.ResultsMildly BBB‐damaged areas (indistinguishable from DCE‐MRI (10 min) parameters) were automatically segmented. Areas of voxels with intact BBB, classified by automated cNMF, matched closely the corresponding, manually‐derived areas when respective areas were used in estimating K
2 maps (Pearson's r = 0.97, 12 slices).Data ConclusionAutomatic segmentation of short DSC‐MRI data alone successfully identified areas with intact and compromised BBB in the stroke brain and compared favorably with manual segmentation.Level of Evidence: 3Technical Efficacy: Stage 1J. Magn. Reson. Imaging 2020;51:1369–1381.
Collapse
Affiliation(s)
- Seokha Jin
- Department of Biomedical Engineering Ulsan National Institute of Science and Technology Ulsan South Korea
| | - SoHyun Han
- Center of Neuroscience Imaging Research Sungkyunkwan University Suwon South Korea
| | - Radka Stoyanova
- Department of Radiation Oncology Miller School of Medicine, University of Miami Miami Florida USA
| | - Ellen Ackerstaff
- Department of Medical Physics Memorial Sloan Kettering Cancer Center New York New York USA
| | - HyungJoon Cho
- Department of Biomedical Engineering Ulsan National Institute of Science and Technology Ulsan South Korea
| |
Collapse
|
35
|
Park JE, Kim HS. [Current Applications and Future Perspectives of Brain Tumor Imaging]. TAEHAN YONGSANG UIHAKHOE CHI 2020; 81:467-487. [PMID: 36238631 PMCID: PMC9431910 DOI: 10.3348/jksr.2020.81.3.467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 11/29/2022]
Abstract
뇌종양의 진단 및 치료 반응 평가의 기본이 되는 영상기법은 해부학적 영상이다. 현재 임상에서 사용 가능한 영상기법들 중 확산 강조 영상 및 관류 영상이 추가적인 정보를 제공하고 있다. 최근에는 종양의 유전체 변이와 이질성 평가가 중요해지면서 라디오믹스와 딥러닝을 이용한 영상분석기법의 임상 응용이 기대되고 있다. 본 종설에서는 뇌종양 영상 임상 적용에서 여전히 중요한 해부학적 영상을 중심으로 한 자기공명영상 촬영 권고안, 최신 영상기법 중 확산 강조 영상 및 관류 영상의 기본 원리, 병태생리학적 배경 및 임상응용, 마지막으로 최근 컴퓨터 기술의 발전으로 많이 연구되고 있는 라디오믹스와 딥러닝의 뇌종양에서의 향후 활용가치에 대해 기술하고자 한다.
Collapse
|
36
|
Li X, Wang D, Liao S, Guo L, Xiao X, Liu X, Xu Y, Hua J, Pillai JJ, Wu Y. Discrimination between Glioblastoma and Solitary Brain Metastasis: Comparison of Inflow-Based Vascular-Space-Occupancy and Dynamic Susceptibility Contrast MR Imaging. AJNR Am J Neuroradiol 2020; 41:583-590. [PMID: 32139428 DOI: 10.3174/ajnr.a6466] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 02/03/2020] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Accurate differentiation between glioblastoma and solitary brain metastasis is of vital importance clinically. This study aimed to investigate the potential value of the inflow-based vascular-space-occupancy MR imaging technique, which has no need for an exogenous contrast agent, in differentiating glioblastoma and solitary brain metastasis and to compare it with DSC MR imaging. MATERIALS AND METHODS Twenty patients with glioblastoma and 22 patients with solitary brain metastasis underwent inflow-based vascular-space-occupancy and DSC MR imaging with a 3T clinical scanner. Two neuroradiologists independently measured the maximum inflow-based vascular-space-occupancy-derived arteriolar CBV and DSC-derived CBV values in intratumoral regions and peritumoral T2-hyperintense regions, which were normalized to the contralateral white matter (relative arteriolar CBV and relative CBV, inflow-based vascular-space-occupancy relative arteriolar CBV, and DSC-relative CBV). The intraclass correlation coefficient, Student t test, or Mann-Whitney U test and receiver operating characteristic analysis were performed. RESULTS All parameters of both regions had good or excellent interobserver reliability (0.74∼0.89). In peritumoral T2-hyperintese regions, DSC-relative CBV (P < .001), inflow-based vascular-space-occupancy arteriolar CBV (P = .001), and relative arteriolar CBV (P = .005) were significantly higher in glioblastoma than in solitary brain metastasis, with areas under the curve of 0.94, 0.83, and 0.72 for discrimination, respectively. In the intratumoral region, both inflow-based vascular-space-occupancy arteriolar CBV and relative arteriolar CBV were significantly higher in glioblastoma than in solitary brain metastasis (both P < .001), with areas under the curve of 0.91 and 0.90, respectively. Intratumoral DSC-relative CBV showed no significant difference (P = .616) between the 2 groups. CONCLUSIONS Inflow-based vascular-space-occupancy has the potential to discriminate glioblastoma from solitary brain metastasis, especially in the intratumoral region.
Collapse
Affiliation(s)
- X Li
- From the Department of Medical Imaging (X. Li, S.L., L.G., X.X., X. Liu, Y.X., Y.W.), Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - D Wang
- School of Biomedical Engineering (D.W.), Shanghai Jiao Tong University, Shanghai, P.R. China
| | - S Liao
- From the Department of Medical Imaging (X. Li, S.L., L.G., X.X., X. Liu, Y.X., Y.W.), Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
- Division of CT and MR, Radiology Department (S.L.), First Affiliated Hospital of Gannan Medical University, Ganzhou, P.R. China
| | - L Guo
- From the Department of Medical Imaging (X. Li, S.L., L.G., X.X., X. Liu, Y.X., Y.W.), Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - X Xiao
- From the Department of Medical Imaging (X. Li, S.L., L.G., X.X., X. Liu, Y.X., Y.W.), Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - X Liu
- From the Department of Medical Imaging (X. Li, S.L., L.G., X.X., X. Liu, Y.X., Y.W.), Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Y Xu
- From the Department of Medical Imaging (X. Li, S.L., L.G., X.X., X. Liu, Y.X., Y.W.), Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - J Hua
- Neurosection, Division of MR Research (J.H.)
- F.M. Kirby Research Center for Functional Brain Imaging (J.H.), Kennedy Krieger Institute, Baltimore, Maryland
| | - J J Pillai
- Division of Neuroradiology (J.P.); Russell H. Morgan Department of Radiology and Radiological Science and
- Department of Neurosurgery (J.P.), Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Y Wu
- From the Department of Medical Imaging (X. Li, S.L., L.G., X.X., X. Liu, Y.X., Y.W.), Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| |
Collapse
|
37
|
Gaudino S, Benenati M, Martucci M, Botto A, Infante A, Marrazzo A, Ramaglia A, Marziali G, Guadalupi P, Colosimo C. Investigating dynamic susceptibility contrast-enhanced perfusion-weighted magnetic resonance imaging in posterior fossa tumors: differences and similarities with supratentorial tumors. Radiol Med 2020; 125:416-422. [PMID: 31916104 DOI: 10.1007/s11547-019-01128-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 12/27/2019] [Indexed: 01/26/2023]
Abstract
PURPOSE To assess the accuracy of dynamic susceptibility contrast-enhanced perfusion-weighted magnetic resonance imaging in glioma grading and brain tumor characterization of infratentorial tumors, and to investigate differences from supratentorial tumors. METHODS This retrospective study, approved by the institutional review board, included 246 patients with brain tumors (184 supratentorial, 62 infratentorial), grouped by tumor type: high-grade gliomas (HGG), low-grade gliomas (LGG), metastases (Met), and primary central nervous system lymphoma (PCNSL). Relative cerebral blood volume (rCBV) and mean percentage of signal recovery (PSR) were calculated. For statistical analyses, lesions were grouped by location and histology. Differences were tested with Mann-Whitney U tests. From ROC curves, we calculated accuracy, sensitivity, specificity, PPV, and NPV, for rCBV and PSR. RESULTS For infratentorial tumors, rCBV was highly accurate in differentiating HGG from LGG (AUC = 0.938). Mean PSR showed high accuracy in differentiating PCNSL and HGG from Met (AUC = 0.978 and AUC = 0.881, respectively). Infratentorial and supratentorial tumors had similarly high rCBV in HGG, high mean PSR in PCNSL, and low mean PSR in Met. The main differences were the optimum threshold rCBV values (3.04 for supratentorial, 1.77 for infratentorial tumors) and the mean PSR, which was significantly higher in LGG than in HGG in supratentorial (p = 0.035), but not infratentorial gliomas. Using infratentorial rCBV threshold values for supratentorial tumors decreased the sensitivity and specificity. CONCLUSION rCBV and mean PSR were useful in grading and differentiating infratentorial tumors. Proper cutoff values were important in the accuracy of perfusion-weighted imaging in posterior fossa tumors.
Collapse
Affiliation(s)
- Simona Gaudino
- UOC Radiodiagnostica e Neuroradiologia, Dipartimento di Diagnostica per Immagini, Radioterapia, Oncologia ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Massimo Benenati
- UOC Radiodiagnostica e Neuroradiologia, Dipartimento di Diagnostica per Immagini, Radioterapia, Oncologia ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Matia Martucci
- UOC di Neuroradiologia, Azienda Ospedaliera - Università di Padova, Padua, Italy
| | - Annibale Botto
- UOC di Neuroradiologia, AOU S. Giovanni di Dio e Ruggi d'Aragona, Salerno, Italy
| | - Amato Infante
- Dipartimento di Diagnostica per Immagini, Radioterapia, Oncologia ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Antonio Marrazzo
- UOC Radiodiagnostica e Neuroradiologia, Dipartimento di Diagnostica per Immagini, Radioterapia, Oncologia ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Antonia Ramaglia
- UOC Radiodiagnostica e Neuroradiologia, Dipartimento di Diagnostica per Immagini, Radioterapia, Oncologia ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giammaria Marziali
- UOC Radiodiagnostica e Neuroradiologia, Dipartimento di Diagnostica per Immagini, Radioterapia, Oncologia ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Pamela Guadalupi
- UOC Radiodiagnostica e Neuroradiologia, Dipartimento di Diagnostica per Immagini, Radioterapia, Oncologia ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Cesare Colosimo
- UOC Radiodiagnostica e Neuroradiologia, Dipartimento di Diagnostica per Immagini, Radioterapia, Oncologia ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
38
|
Hasan AMS, Hasan AK, Megally HI, Khallaf M, Haseib A. The combined role of MR spectroscopy and perfusion imaging in preoperative differentiation between high- and low-grade gliomas. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2019. [DOI: 10.1186/s43055-019-0078-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Brain tumors are an important health problem. The preoperative classification of gliomas by non-invasive techniques is a significant problem. Relative cerebral blood volume and spectroscopy have the ability to sample the entire lesion non-invasively. The present study aims to evaluate the combined role of dynamic susceptibility perfusion and spectroscopy in the classification of primary brain tumors. The combination of both provides overall diagnostic accuracy (100%). Relative cerebral blood volume in peritumoral region plays an important additional role in this regard.
Results
On the basis of histopathology, among 50 patients with brain tumors, high-grade gliomas accounted for 58%, while low-grade gliomas accounted for 42%. The relative cerebral blood volume in the tumor had the best sensitivity, specificity, and accuracy of 96.8%, 95.3%, and 96, respectively. The use of relative cerebral blood volume and choline/N-acetyl Aspartate increased diagnostic accuracy by 100%.
Conclusion
The combination of magnetic resonance spectroscopy and perfusion can increase sensitivity and positive predictive value to define the degree of glioma.
Collapse
|
39
|
Qin J, Li Y, Liang D, Zhang Y, Yao W. Histogram analysis of absolute cerebral blood volume map can distinguish glioblastoma from solitary brain metastasis. Medicine (Baltimore) 2019; 98:e17515. [PMID: 31626111 PMCID: PMC6824738 DOI: 10.1097/md.0000000000017515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Glioblastoma multiforme (GBM) is difficult to be separated from solitary brain metastasis (sBM) in clinical practice. This study aimed to distinguish two entities by the histogram analysis of absolute cerebral blood volume (CBV) map.From March 2016 to June 2018, 24 patients with GBM and 18 patients with sBM were included in this retrospective study. The enhancing area was first segmented on the post-contrast T1WI, then the segmentation was copied to the absolute CBV map and histogram analysis was finally performed. Unpaired t test was used to select the features that could separate two entities and receiving operating curve was used to test the diagnostic performance. Finally, a machine learning method was used to test the diagnostic performance combing all the selected features.Six of 19 features were feasible to distinguish GBM from sBM (all P < .001), among which energy had the highest diagnostic performance (area under curve, 0.84; accuracy, 88%), while a machine learning method could improve the diagnostic performance (area under curve, 0.94; accuracy, 95%).Histogram analysis of the absolute CBV in the enhancing area could help us distinguish GBM from sBM, in addition, a machine learning method with combined features is preferable. It is quite helpful in the condition that the biological nature of peritumoral edema could not separate these two entities.
Collapse
Affiliation(s)
- Jianhua Qin
- School of Medicine, Qingdao University, Qingdao
- Department of Radiology, Rizhao Central Hospital, Rizhao, P. R. China
| | | | - Donghai Liang
- Department of Radiology, Rizhao Central Hospital, Rizhao, P. R. China
| | - Yuanna Zhang
- Department of Radiology, Rizhao Central Hospital, Rizhao, P. R. China
| | - Weicheng Yao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, China
| |
Collapse
|
40
|
Costabile JD, Thompson JA, Alaswad E, Ormond DR. Biopsy Confirmed Glioma Recurrence Predicted by Multi-Modal Neuroimaging Metrics. J Clin Med 2019; 8:E1287. [PMID: 31450732 PMCID: PMC6780506 DOI: 10.3390/jcm8091287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/13/2019] [Accepted: 08/20/2019] [Indexed: 12/21/2022] Open
Abstract
Histopathological verification is currently required to differentiate tumor recurrence from treatment effects related to adjuvant therapy in patients with glioma. To bypass the complications associated with collecting neural tissue samples, non-invasive classification methods are needed to alleviate the burden on patients while providing vital information to clinicians. However, uncertainty remains as to which tissue features on magnetic resonance imaging (MRI) are useful. The primary objective of this study was to quantitatively assess the reliability of combining MRI and diffusion tensor imaging metrics to discriminate between tumor recurrence and treatment effects in histopathologically identified biopsy samples. Additionally, this study investigates the noise adjuvant radiation therapy introduces when discriminating between tissue types. In a sample of 41 biopsy specimens, from a total of 10 patients, we derived region-of-interest samples from MRI data in the ipsilateral hemisphere that encompassed biopsies obtained during resective surgery. This study compares normalized intensity values across histopathology classifications and contralesional volumes reflected across the midline. Radiation makes noninvasive differentiation of abnormal-nontumor tissue to tumor recurrence much more difficult. This is because radiation exhibits opposing behavior on key MRI modalities: specifically, on post-contrast T1, FLAIR, and GFA. While radiation makes noninvasive differentiation of tumor recurrence more difficult, using a novel analysis of combined MRI metrics combined with clinical annotation and histopathological correlation, we observed that it is possible to successfully differentiate tumor tissue from other tissue types. Additional work will be required to expand upon these findings.
Collapse
Affiliation(s)
- Jamie D Costabile
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - John A Thompson
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Elsa Alaswad
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - D Ryan Ormond
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
41
|
Quantitative and Visual Characteristics of Primary Central Nervous System Lymphoma on 18F-FDG-PET. Interdiscip Sci 2019; 11:300-306. [DOI: 10.1007/s12539-019-00333-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/14/2019] [Accepted: 04/30/2019] [Indexed: 11/26/2022]
|
42
|
Kayed MH, Saleh TR, Reda IS, Elsirafy MN, Farhoud AH, Abdelzaher E. The added value of advanced neuro-imaging (MR diffusion, perfusion and proton spectroscopy) in diagnosis of primary CNS lymphoma. ALEXANDRIA JOURNAL OF MEDICINE 2019. [DOI: 10.1016/j.ajme.2013.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
43
|
Técnicas avanzadas de resonancia magnética en patología tumoral de cabeza y cuello. RADIOLOGIA 2019; 61:191-203. [DOI: 10.1016/j.rx.2018.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/11/2018] [Accepted: 12/20/2018] [Indexed: 11/19/2022]
|
44
|
|
45
|
Li X, Liao S, Hua J, Guo L, Wang D, Xiao X, Zhou J, Liu X, Tan Y, Lu L, Xu Y, Wu Y. Association of Glioma Grading With Inflow-Based Vascular-Space-Occupancy MRI: A Preliminary Study at 3T. J Magn Reson Imaging 2019; 50:1817-1823. [PMID: 30932289 DOI: 10.1002/jmri.26741] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Inflow-based vascular-space-occupancy (iVASO) MRI is a noninvasive perfusion technique that does not require administration of exogenous contrast agents. Arteriolar cerebral blood volume (CBVa) obtained from iVASO MRI is hypothesized to be an indicator of tumor microvasculature. PURPOSE To assess the diagnostic performance of iVASO MRI implemented at 3T in predicting histologic grades of cerebral gliomas. STUDY TYPE Retrospective. SUBJECTS Forty-five patients (31 males) consisting of 14 WHO grade IV glioblastoma multiformes, 14 grade III, and 17 grade II gliomas. FIELD STRENGTH/SEQUENCE At 3T we acquired CBVa data using an iVASO sequence. ASSESSMENT The maximum and mean CBVa (CBVa_max and CBVa_mean) values were calculated in the tumor and normalized to the contralateral thalamus (nCBVa_max and nCBVa_mean). STATISTICAL TESTS Kruskal-Wallis test, Mann-Whitney test, and receiver operating characteristics (ROC) curve were used for statistical analysis. RESULTS Both CBVa_max and nCBVa_max increased with tumor grade (P < 0.001). Grade II gliomas showed CBVa_max <0.78 ml / 100 ml in 10/17 cases and nCBVa_max <1.20 in 11/17 cases. Grade III gliomas showed both CBVa_max >0.78 ml / 100 ml and nCBVa_max >1.20 in 13/14 cases, and CBVa_max <2.06 ml / 100 ml in 13/14 cases and nCBVa_max <2.33 in 11/14 cases. Grade IV gliomas showed CBVa_max >2.06 ml / 100 ml in 9/14 cases and nCBVa_max >2.33 in 13/14 cases. The areas under the ROC curve, sensitivity, and specificity were 0.839 (P < 0.001), 92.9% (26/28), and 64.7% (11/17) for CBVa_max, and 0.883 (P < 0.001), 92.9% (26/28), and 70.6% (12/17) for nCBVa_max in the discrimination between grade II and high-grade (grade III and grade IV) tumors, respectively. DATA CONCLUSION: iVASO MRI might be used to help determine and predict glioma grade. LEVEL OF EVIDENCE 4 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;50:1817-1823.
Collapse
Affiliation(s)
- Xiaodan Li
- Department of Medical Imaging, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Shukun Liao
- Department of Medical Imaging, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China.,Division of CT & MR, Radiology Department, First Affiliated Hospital of Gannan Medical University, Ganzhou, P.R. China
| | - Jun Hua
- Neurosection, Division of MRI Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Liuji Guo
- Department of Medical Imaging, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Danni Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Minhang District, Shanghai, P.R. China
| | - Xiang Xiao
- Department of Medical Imaging, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Jun Zhou
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Xiaomin Liu
- Department of Medical Imaging, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Yuefa Tan
- Department of Medical Imaging, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Lijun Lu
- School of Biomedical Engineering and Guangdong Provincal Key Laboratory of Medical Image Processing, Southern Medical University, Baiyun District, Guangzhou, P.R. China
| | - Yikai Xu
- Department of Medical Imaging, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Yuankui Wu
- Department of Medical Imaging, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China.,Neurosection, Division of MRI Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
46
|
Hua J, Liu P, Kim T, Donahue M, Rane S, Chen JJ, Qin Q, Kim SG. MRI techniques to measure arterial and venous cerebral blood volume. Neuroimage 2019; 187:17-31. [PMID: 29458187 PMCID: PMC6095829 DOI: 10.1016/j.neuroimage.2018.02.027] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 12/14/2022] Open
Abstract
The measurement of cerebral blood volume (CBV) has been the topic of numerous neuroimaging studies. To date, however, most in vivo imaging approaches can only measure CBV summed over all types of blood vessels, including arterial, capillary and venous vessels in the microvasculature (i.e. total CBV or CBVtot). As different types of blood vessels have intrinsically different anatomy, function and physiology, the ability to quantify CBV in different segments of the microvascular tree may furnish information that is not obtainable from CBVtot, and may provide a more sensitive and specific measure for the underlying physiology. This review attempts to summarize major efforts in the development of MRI techniques to measure arterial (CBVa) and venous CBV (CBVv) separately. Advantages and disadvantages of each type of method are discussed. Applications of some of the methods in the investigation of flow-volume coupling in healthy brains, and in the detection of pathophysiological abnormalities in brain diseases such as arterial steno-occlusive disease, brain tumors, schizophrenia, Huntington's disease, Alzheimer's disease, and hypertension are demonstrated. We believe that the continual development of MRI approaches for the measurement of compartment-specific CBV will likely provide essential imaging tools for the advancement and refinement of our knowledge on the exquisite details of the microvasculature in healthy and diseased brains.
Collapse
Affiliation(s)
- Jun Hua
- Neurosection, Div. of MRI Research, Dept. of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.
| | - Peiying Liu
- Neurosection, Div. of MRI Research, Dept. of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Tae Kim
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Manus Donahue
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Swati Rane
- Radiology, University of Washington Medical Center, Seattle, WA, USA
| | - J Jean Chen
- Rotman Research Institute, Baycrest Centre, Canada; Department of Medical Biophysics, University of Toronto, Canada
| | - Qin Qin
- Neurosection, Div. of MRI Research, Dept. of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, South Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
47
|
Lyndon D, Lansley JA, Evanson J, Krishnan AS. Dural masses: meningiomas and their mimics. Insights Imaging 2019; 10:11. [PMID: 30725238 PMCID: PMC6365311 DOI: 10.1186/s13244-019-0697-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 01/15/2019] [Indexed: 02/08/2023] Open
Abstract
Meningiomas are the most common dural tumour. They are regularly being seen as an incidental finding on brain imaging and treated conservatively. However, there are many other dural masses which mimic their appearances, including primary neoplastic processes, metastases, granulomatous diseases and infection. While some of these are rare, others such as metastases and tuberculosis arise relatively frequently in practice. Although not pathognomonic, key features which increase the probability of a lesion being a meningioma include intralesional calcifications, skull hyperostosis, local dural enhancement and increased perfusion. It is important to have an awareness of these entities as well as their main imaging findings, as they have a wide range of prognoses and differing management strategies. This review outlines several of the most important mimics along with their imaging findings on both standard and advanced techniques with key features which may be used to help differentiate them from meningiomas.
Collapse
Affiliation(s)
- Daniel Lyndon
- Department of Neuroradiology, St Bartholomew's and the Royal London Hospitals, Whitechapel, London, E1 1BB, UK.
| | - Joseph A Lansley
- Department of Neuroradiology, St Bartholomew's and the Royal London Hospitals, Whitechapel, London, E1 1BB, UK
| | - Jane Evanson
- Department of Neuroradiology, St Bartholomew's and the Royal London Hospitals, Whitechapel, London, E1 1BB, UK
| | - Anant S Krishnan
- Department of Neuroradiology, St Bartholomew's and the Royal London Hospitals, Whitechapel, London, E1 1BB, UK
| |
Collapse
|
48
|
Differentiation of Glioblastoma and Solitary Brain Metastasis by Gradient of Relative Cerebral Blood Volume in the Peritumoral Brain Zone Derived from Dynamic Susceptibility Contrast Perfusion Magnetic Resonance Imaging. J Comput Assist Tomogr 2019; 43:13-17. [PMID: 30015801 DOI: 10.1097/rct.0000000000000771] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVE The purpose of our study was to evaluate the efficacy of the relative cerebral blood volume (rCBV) gradient in the peritumoral brain zone (PBZ)-the difference in the rCBV values from the area closest to the enhancing lesion to the area closest to the healthy white matter-in differentiating glioblastoma (GB) from solitary brain metastasis (MET). METHODS A 3.0-T magnetic resonance imaging (MRI) machine was used to perform dynamic susceptibility contrast perfusion MRI (DSC-MRI) on 43 patients with a solitary brain tumor (24 GB, 19 MET). The rCBV ratios were acquired by DSC-MRI data in 3 regions of the PBZ (near the enhancing tumor, G1; intermediate distance from the enhancing tumor, G2; far from the enhancing tumor, G3). The maximum rCBV ratios in the PBZ (rCBVp) and the enhancing tumor were also calculated, respectively. The perfusion parameters were evaluated using the nonparametric Mann-Whitney test. The sensitivity, specificity, accuracy, and the area under the receiver operating characteristic curve were identified. RESULTS The rCBVp ratios and rCBV gradient in the PBZ were significantly higher in GB compared with MET (P < 0.05 for both rCBVp ratios and rCBV gradient). The threshold values of 0.50 or greater for rCBVp ratios provide sensitivity and specificity of 57.69% and 79.17%, respectively, for differentiation of GB from MET. Compared with rCBVp ratios, rCBV gradient had higher sensitivity (94.44%) and specificity (91.67%) using the threshold value of greater than 0.06. CONCLUSIONS The parameter of rCBV gradient derived from DSC-MRI in the PBZ seems to be the most efficient parameter to differentiate GB from METs.
Collapse
|
49
|
Gruber P, Schwyzer L, Klinger E, Burn F, Diepers M, Anon J, Fathi A, Fandino J, Remonda L, Roelcke U, Berberat J. Longitudinal Imaging of Tumor Volume, Diffusivity, and Perfusion After Preoperative Endovascular Embolization in Supratentorial Hemispheric Meningiomas. World Neurosurg 2018; 120:e357-e364. [DOI: 10.1016/j.wneu.2018.08.078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/09/2018] [Accepted: 08/11/2018] [Indexed: 10/28/2022]
|
50
|
Qin L, Li X, Li A, Cheng S, Qu J, Reinshagen K, Hu J, Himes N, Lu G, Xu X, Young GS. Clinical Validation of Automatable Gaussian Normalized CBV in Brain Tumor Analysis: Superior Reproducibility and Slightly Better Association with Survival than Current Standard Manual Normal Appearing White Matter Normalization. Transl Oncol 2018; 11:1398-1405. [PMID: 30216765 PMCID: PMC6138997 DOI: 10.1016/j.tranon.2018.07.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/23/2018] [Accepted: 07/30/2018] [Indexed: 10/28/2022] Open
Abstract
PURPOSE To validate Gaussian normalized cerebral blood volume (GN-nCBV) by association with overall survival (OS) in newly diagnosed glioblastoma patients and compare this association with current standard white matter normalized cerebral blood volume (WN-nCBV). METHODS We retrieved spin-echo echo-planar dynamic susceptibility contrast MRI acquired after maximal resection and prior to radiation therapy between 2006 and 2011 in 51 adult patients (28 male, 23 female; age 23-87 years) with newly diagnosed glioblastoma. Software code was developed in house to perform Gaussian normalization of CBV to the standard deviation of the whole brain CBV. Three expert readers manually selected regions of interest in tumor and normal-appearing white matter on CBV maps. Receiver operating characteristics (ROC) curves associating nCBV with 15-month OS were calculated for both GN-nCBV and WN-nCBV. Reproducibility and interoperator variability were compared using within-subject coefficient of variation (wCV) and intraclass correlation coefficients (ICCs). RESULTS GN-nCBV ICC (≥0.82) and wCV (≤21%) were superior to WN-nCBV ICC (0.54-0.55) and wCV (≥46%). The area under the ROC curve analysis demonstrated both GN-nCBV and WN-nCBV to be good predictors of OS, but GN-nCBV was consistently superior, although the difference was not statistically significant. CONCLUSION GN-nCBV has a slightly better association with clinical gold standard OS than conventional WM-nCBV in our glioblastoma patient cohort. This equivalent or superior validity, combined with the advantages of higher reproducibility, lower interoperator variability, and easier automation, makes GN-nCBV superior to WM-nCBV for clinical and research use in glioma patients. We recommend widespread adoption and incorporation of GN-nCBV into commercial dynamic susceptibility contrast processing software.
Collapse
Affiliation(s)
- Lei Qin
- Dana-Farber Cancer Institute, Department of Imaging, Boston, MA, USA; Harvard Medical School, Department of Radiology, Boston, MA, USA
| | - Xiang Li
- Brigham and Women's Hospital, Department of Radiology, Boston, MA, USA; Affiliated Cancer Hospital of Zhengzhou University, Department of Radiology, Zhengzhou, Henan, China
| | - Angie Li
- Brigham and Women's Hospital, Department of Radiology, Boston, MA, USA; The Robert Larner, M.D. College of Medicine at the University of Vermont, Burlington, VT, USA
| | - Suchun Cheng
- Dana-Farber Cancer Institute, Department of Biostatistics and Computational Biology, Boston, MA, USA
| | - Jinrong Qu
- Brigham and Women's Hospital, Department of Radiology, Boston, MA, USA; Affiliated Cancer Hospital of Zhengzhou University, Department of Radiology, Zhengzhou, Henan, China
| | - Katherine Reinshagen
- Harvard Medical School, Department of Radiology, Boston, MA, USA; Brigham and Women's Hospital, Department of Radiology, Boston, MA, USA; Massachusetts Eye and Ear Infirmary, Department of Radiology, Boston, MA, USA
| | - Jiani Hu
- Dana-Farber Cancer Institute, Department of Biostatistics and Computational Biology, Boston, MA, USA
| | - Nathan Himes
- Brigham and Women's Hospital, Department of Radiology, Boston, MA, USA; Medical Imaging of Lehigh Valley, Lehigh Valley Hospital, Allentown, PA, USA
| | - Gao Lu
- Brigham and Women's Hospital, Department of Radiology, Boston, MA, USA; Peking Union Medical College Hospital, Department of Neurosurgery, Beijing, China
| | - Xiaoyin Xu
- Peking Union Medical College Hospital, Department of Neurosurgery, Beijing, China; Peking Union Medical College Hospital, Department of Neurosurgery, Beijing, China
| | - Geoffrey S Young
- Dana-Farber Cancer Institute, Department of Imaging, Boston, MA, USA; Harvard Medical School, Department of Radiology, Boston, MA, USA; Brigham and Women's Hospital, Department of Radiology, Boston, MA, USA.
| |
Collapse
|