1
|
Amini M, Salimi Y, Hajianfar G, Mainta I, Hervier E, Sanaat A, Rahmim A, Shiri I, Zaidi H. Fully Automated Region-Specific Human-Perceptive-Equivalent Image Quality Assessment: Application to 18 F-FDG PET Scans. Clin Nucl Med 2024; 49:1079-1090. [PMID: 39466652 DOI: 10.1097/rlu.0000000000005526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
INTRODUCTION We propose a fully automated framework to conduct a region-wise image quality assessment (IQA) on whole-body 18 F-FDG PET scans. This framework (1) can be valuable in daily clinical image acquisition procedures to instantly recognize low-quality scans for potential rescanning and/or image reconstruction, and (2) can make a significant impact in dataset collection for the development of artificial intelligence-driven 18 F-FDG PET analysis models by rejecting low-quality images and those presenting with artifacts, toward building clean datasets. PATIENTS AND METHODS Two experienced nuclear medicine physicians separately evaluated the quality of 174 18 F-FDG PET images from 87 patients, for each body region, based on a 5-point Likert scale. The body regisons included the following: (1) the head and neck, including the brain, (2) the chest, (3) the chest-abdomen interval (diaphragmatic region), (4) the abdomen, and (5) the pelvis. Intrareader and interreader reproducibility of the quality scores were calculated using 39 randomly selected scans from the dataset. Utilizing a binarized classification, images were dichotomized into low-quality versus high-quality for physician quality scores ≤3 versus >3, respectively. Inputting the 18 F-FDG PET/CT scans, our proposed fully automated framework applies 2 deep learning (DL) models on CT images to perform region identification and whole-body contour extraction (excluding extremities), then classifies PET regions as low and high quality. For classification, 2 mainstream artificial intelligence-driven approaches, including machine learning (ML) from radiomic features and DL, were investigated. All models were trained and evaluated on scores attributed by each physician, and the average of the scores reported. DL and radiomics-ML models were evaluated on the same test dataset. The performance evaluation was carried out on the same test dataset for radiomics-ML and DL models using the area under the curve, accuracy, sensitivity, and specificity and compared using the Delong test with P values <0.05 regarded as statistically significant. RESULTS In the head and neck, chest, chest-abdomen interval, abdomen, and pelvis regions, the best models achieved area under the curve, accuracy, sensitivity, and specificity of [0.97, 0.95, 0.96, and 0.95], [0.85, 0.82, 0.87, and 0.76], [0.83, 0.76, 0.68, and 0.80], [0.73, 0.72, 0.64, and 0.77], and [0.72, 0.68, 0.70, and 0.67], respectively. In all regions, models revealed highest performance, when developed on the quality scores with higher intrareader reproducibility. Comparison of DL and radiomics-ML models did not show any statistically significant differences, though DL models showed overall improved trends. CONCLUSIONS We developed a fully automated and human-perceptive equivalent model to conduct region-wise IQA over 18 F-FDG PET images. Our analysis emphasizes the necessity of developing separate models for body regions and performing data annotation based on multiple experts' consensus in IQA studies.
Collapse
Affiliation(s)
- Mehdi Amini
- From the Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
| | - Yazdan Salimi
- From the Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
| | - Ghasem Hajianfar
- From the Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
| | - Ismini Mainta
- From the Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
| | - Elsa Hervier
- From the Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
| | - Amirhossein Sanaat
- From the Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
| | | | - Isaac Shiri
- From the Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
| | | |
Collapse
|
2
|
Pascuzzo R, Garattini SK, Doniselli FM. Clinical Application of Radiomics in Oncology: Where Do We Stand? J Magn Reson Imaging 2024; 60:2745-2746. [PMID: 38477019 DOI: 10.1002/jmri.29340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Affiliation(s)
- Riccardo Pascuzzo
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Silvio Ken Garattini
- Department of Medical Oncology, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
| | - Fabio M Doniselli
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
3
|
Bakas S, Vollmuth P, Galldiks N, Booth TC, Aerts HJWL, Bi WL, Wiestler B, Tiwari P, Pati S, Baid U, Calabrese E, Lohmann P, Nowosielski M, Jain R, Colen R, Ismail M, Rasool G, Lupo JM, Akbari H, Tonn JC, Macdonald D, Vogelbaum M, Chang SM, Davatzikos C, Villanueva-Meyer JE, Huang RY. Artificial Intelligence for Response Assessment in Neuro Oncology (AI-RANO), part 2: recommendations for standardisation, validation, and good clinical practice. Lancet Oncol 2024; 25:e589-e601. [PMID: 39481415 DOI: 10.1016/s1470-2045(24)00315-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 11/02/2024]
Abstract
Technological advancements have enabled the extended investigation, development, and application of computational approaches in various domains, including health care. A burgeoning number of diagnostic, predictive, prognostic, and monitoring biomarkers are continuously being explored to improve clinical decision making in neuro-oncology. These advancements describe the increasing incorporation of artificial intelligence (AI) algorithms, including the use of radiomics. However, the broad applicability and clinical translation of AI are restricted by concerns about generalisability, reproducibility, scalability, and validation. This Policy Review intends to serve as the leading resource of recommendations for the standardisation and good clinical practice of AI approaches in health care, particularly in neuro-oncology. To this end, we investigate the repeatability, reproducibility, and stability of AI in response assessment in neuro-oncology in studies on factors affecting such computational approaches, and in publicly available open-source data and computational software tools facilitating these goals. The pathway for standardisation and validation of these approaches is discussed with the view of trustworthy AI enabling the next generation of clinical trials. We conclude with an outlook on the future of AI-enabled neuro-oncology.
Collapse
Affiliation(s)
- Spyridon Bakas
- Department of Pathology & Laboratory Medicine, Division of Computational Pathology, Indiana University, Indianopolis, IN, USA; Department of Radiology & Imaging Sciences, School of Medicine, Indiana University, Indianapolis, IN, USA; Department of Neurological Surgery, School of Medicine, Indiana University, Indianapolis, IN, USA; Department of Biostatistics and Health Data Science, School of Medicine, Indiana University, Indianapolis, IN, USA; Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianopolis, IN, USA; Department of Computer Science, Luddy School of Informatics, Computing, and Engineering, Indiana University, Indianapolis, IN, USA.
| | - Philipp Vollmuth
- Division for Computational Radiology and Clinical AI, Clinic for Neuroradiology, University Hospital Bonn, Bonn, Germany; Faculty of Medicine, University of Bonn, Bonn, Germany; Division for Medical Image Computing, German Cancer Research Center, Heidelberg, Germany
| | - Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Institute of Neuroscience and Medicine, Research Center Juelich, Juelich, Germany
| | - Thomas C Booth
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Department of Neuroradiology, King's College Hospital NHS Foundation Trust, London, UK
| | - Hugo J W L Aerts
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Artificial Intelligence in Medicine Program, Mass General Brigham, Harvard Medical School, Boston, MA, USA; Radiology and Nuclear Medicine, Maastricht University, Maastricht, Netherlands
| | - Wenya Linda Bi
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Benedikt Wiestler
- Department of Neuroradiology, University Hospital, Technical University of Munich, Munich, Germany
| | - Pallavi Tiwari
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Sarthak Pati
- Department of Pathology & Laboratory Medicine, Division of Computational Pathology, Indiana University, Indianopolis, IN, USA
| | - Ujjwal Baid
- Department of Pathology & Laboratory Medicine, Division of Computational Pathology, Indiana University, Indianopolis, IN, USA; Department of Radiology & Imaging Sciences, School of Medicine, Indiana University, Indianapolis, IN, USA; Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianopolis, IN, USA
| | - Evan Calabrese
- Department of Radiology, School of Medicine, Duke University, Durham, NC, USA
| | - Philipp Lohmann
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Martha Nowosielski
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Rajan Jain
- Department of Radiology and Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, USA
| | - Rivka Colen
- Department of Radiology, Neuroradiology Division, Center for Artificial Intelligence Innovation in Medical Imaging, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marwa Ismail
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Ghulam Rasool
- Department of Machine Learning, H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Janine M Lupo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Hamed Akbari
- Department of Bioengineering, School of Engineering, Santa Clara University, Santa Clara, CA, USA
| | - Joerg C Tonn
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany; German Cancer Consortium, Partner Site Munich, Munich, Germany
| | | | - Michael Vogelbaum
- Department of Neuro-Oncology, H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA; Department of Neurosurgery, H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA; H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Susan M Chang
- Department of Neurological Surgery, Division of Neuro-Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Christos Davatzikos
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Artificial Intelligence for Integrated Diagnostics and Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, USA
| | - Javier E Villanueva-Meyer
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Raymond Y Huang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Gharibi O, Hajianfar G, Sabouri M, Mohebi M, Bagheri S, Arian F, Yasemi MJ, Bitarafan Rajabi A, Rahmim A, Zaidi H, Shiri I. Myocardial perfusion SPECT radiomic features reproducibility assessment: Impact of image reconstruction and harmonization. Med Phys 2024. [PMID: 39470363 DOI: 10.1002/mp.17490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 09/05/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Coronary artery disease (CAD) has one of the highest mortality rates in humans worldwide. Single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) provides clinicians with myocardial metabolic information non-invasively. However, there are some limitations to interpreting SPECT images performed by physicians or automatic quantitative approaches. Radiomics analyzes images objectively by extracting quantitative features and can potentially reveal biological characteristics that the human eye cannot detect. However, the reproducibility and repeatability of some radiomic features can be highly susceptible to segmentation and imaging conditions. PURPOSE We aimed to assess the reproducibility of radiomic features extracted from uncorrected MPI-SPECT images reconstructed with 15 different settings before and after ComBat harmonization, along with evaluating the effectiveness of ComBat in realigning feature distributions. MATERIALS AND METHODS A total of 200 patients (50% normal and 50% abnormal) including rest and stress (without attenuation and scatter corrections) MPI-SPECT images were included. Images were reconstructed using 15 combinations of filter cut-off frequencies, filter orders, filter types, reconstruction algorithms, number of iterations and subsets resulting in 6000 images. Image segmentation was performed on the left ventricle in the first reconstruction for each patient and applied to 14 others. A total of 93 radiomic features were extracted from the segmented area, and ComBat was used to harmonize them. The intraclass correlation coefficient (ICC) and overall concordance correlation coefficient (OCCC) tests were performed before and after ComBat to examine the impact of each parameter on feature robustness and to assess harmonization efficiency. The ANOVA and the Kruskal-Wallis tests were performed to evaluate the effectiveness of ComBat in correcting feature distributions. In addition, the Student's t-test, Wilcoxon rank-sum, and signed-rank tests were implemented to assess the significance level of the impacts made by each parameter of different batches and patient groups (normal vs. abnormal) on radiomic features. RESULTS Before applying ComBat, the majority of features (ICC: 82, OCCC: 61) achieved high reproducibility (ICC/OCCC ≥ 0.900) under every batch except Reconstruction. The largest and smallest number of poor features (ICC/OCCC < 0.500) were obtained by IterationSubset and Order batches, respectively. The most reliable features were from the first-order (FO) and gray-level co-occurrence matrix (GLCM) families. Following harmonization, the minimum number of robust features increased (ICC: 84, OCCC: 78). Applying ComBat showed that Order and Reconstruction were the least and the most responsive batches, respectively. The most robust families, in a descending order, were found to be FO, neighborhood gray-tone difference matrix (NGTDM), GLCM, gray-level run length matrix (GLRLM), gray-level size zone matrix (GLSZM), and gray-level dependence matrix (GLDM) under Cut-off, Filter, and Order batches. The Wilcoxon rank-sum test showed that the number of robust features significantly differed under most batches in the Normal and Abnormal groups. CONCLUSION The majority of radiomic features show high levels of robustness across different OSEM reconstruction parameters in uncorrected MPI-SPECT. ComBat is effective in realigning feature distributions and enhancing radiomic features reproducibility.
Collapse
Affiliation(s)
- Omid Gharibi
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ghasem Hajianfar
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
| | - Maziar Sabouri
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Mobin Mohebi
- Department of Biomedical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Soroush Bagheri
- Department of Medical Physics, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Arian
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Yasemi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Science, Tehran, Iran
| | - Ahmad Bitarafan Rajabi
- Echocardiography Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
- Cardiovascular Intervention Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Arman Rahmim
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark
- University Research and Innovation Center, Óbuda University, Budapest, Hungary
| | - Isaac Shiri
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
5
|
Santinha J, Pinto Dos Santos D, Laqua F, Visser JJ, Groot Lipman KBW, Dietzel M, Klontzas ME, Cuocolo R, Gitto S, Akinci D'Antonoli T. ESR Essentials: radiomics-practice recommendations by the European Society of Medical Imaging Informatics. Eur Radiol 2024:10.1007/s00330-024-11093-9. [PMID: 39453470 DOI: 10.1007/s00330-024-11093-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/07/2024] [Accepted: 08/22/2024] [Indexed: 10/26/2024]
Abstract
Radiomics is a method to extract detailed information from diagnostic images that cannot be perceived by the naked eye. Although radiomics research carries great potential to improve clinical decision-making, its inherent methodological complexities make it difficult to comprehend every step of the analysis, often causing reproducibility and generalizability issues that hinder clinical adoption. Critical steps in the radiomics analysis and model development pipeline-such as image, application of image filters, and selection of feature extraction parameters-can greatly affect the values of radiomic features. Moreover, common errors in data partitioning, model comparison, fine-tuning, assessment, and calibration can reduce reproducibility and impede clinical translation. Clinical adoption of radiomics also requires a deep understanding of model explainability and the development of intuitive interpretations of radiomic features. To address these challenges, it is essential for radiomics model developers and clinicians to be well-versed in current best practices. Proper knowledge and application of these practices is crucial for accurate radiomics feature extraction, robust model development, and thorough assessment, ultimately increasing reproducibility, generalizability, and the likelihood of successful clinical translation. In this article, we have provided researchers with our recommendations along with practical examples to facilitate good research practices in radiomics. KEY POINTS: Radiomics' inherent methodological complexity should be understood to ensure rigorous radiomic model development to improve clinical decision-making. Adherence to radiomics-specific checklists and quality assessment tools ensures methodological rigor. Use of standardized radiomics tools and best practices enhances clinical translation of radiomics models.
Collapse
Affiliation(s)
- João Santinha
- Digital Surgery LAB, Champalimaud Research, Champalimaud Foundation, Av. Brasília, 1400-038, Lisbon, Portugal.
- Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisbon, Portugal.
| | - Daniel Pinto Dos Santos
- Department of Radiology, University Hospital of Cologne, Cologne, Germany
- Department of Radiology, University Hospital of Frankfurt, Frankfurt, Germany
| | - Fabian Laqua
- Department of Diagnostic and Interventional Radiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Jacob J Visser
- Department of Radiology & Nuclear Medicine, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Kevin B W Groot Lipman
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Matthias Dietzel
- Department of Radiology, University Hospital Erlangen, Maximiliansplatz 3, 91054, Erlangen, Germany
| | - Michail E Klontzas
- Department of Radiology, School of Medicine, University of Crete, Heraklion, Crete, Greece
- Department of Medical Imaging, University Hospital of Heraklion, Crete, Greece
- Division of Radiology, Department of Clinical Science Intervention and Technology (CLINTEC), Karolinska Institute, Solna, Sweden
| | - Renato Cuocolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy
| | - Salvatore Gitto
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Tugba Akinci D'Antonoli
- Institute of Radiology and Nuclear Medicine, Cantonal Hospital Baselland, Liestal, Switzerland
| |
Collapse
|
6
|
Duman A, Sun X, Thomas S, Powell JR, Spezi E. Reproducible and Interpretable Machine Learning-Based Radiomic Analysis for Overall Survival Prediction in Glioblastoma Multiforme. Cancers (Basel) 2024; 16:3351. [PMID: 39409970 PMCID: PMC11476262 DOI: 10.3390/cancers16193351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/20/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
PURPOSE To develop and validate an MRI-based radiomic model for predicting overall survival (OS) in patients diagnosed with glioblastoma multiforme (GBM), utilizing a retrospective dataset from multiple institutions. MATERIALS AND METHODS Pre-treatment MRI images of 289 GBM patients were collected. From each patient's tumor volume, 660 radiomic features (RFs) were extracted and subjected to robustness analysis. The initial prognostic model with minimum RFs was subsequently enhanced by including clinical variables. The final clinical-radiomic model was derived through repeated three-fold cross-validation on the training dataset. Performance evaluation included assessment of concordance index (C-Index), integrated area under curve (iAUC) alongside patient stratification into low and high-risk groups for overall survival (OS). RESULTS The final prognostic model, which has the highest level of interpretability, utilized primary gross tumor volume (GTV) and one MRI modality (T2-FLAIR) as a predictor and integrated the age variable with two independent, robust RFs, achieving moderately good discriminatory performance (C-Index [95% confidence interval]: 0.69 [0.62-0.75]) with significant patient stratification (p = 7 × 10-5) on the validation cohort. Furthermore, the trained model exhibited the highest iAUC at 11 months (0.81) in the literature. CONCLUSION We identified and validated a clinical-radiomic model for stratification of patients into low and high-risk groups based on OS in patients with GBM using a multicenter retrospective dataset. Future work will focus on the use of deep learning-based features, with recently standardized convolutional filters on OS tasks.
Collapse
Affiliation(s)
- Abdulkerim Duman
- School of Engineering, Cardiff University, Cardiff CF24 3AA, UK;
| | - Xianfang Sun
- School of Computer Science and Informatics, Cardiff University, Cardiff CF24 4AG, UK;
| | - Solly Thomas
- Maidstone and Tunbridge Wells NHS Trust, Kent ME16 9QQ, UK;
| | - James R. Powell
- Department of Oncology, Velindre University NHS Trust, Cardiff CF14 2TL, UK;
| | - Emiliano Spezi
- School of Engineering, Cardiff University, Cardiff CF24 3AA, UK;
| |
Collapse
|
7
|
Shiri I, Balzer S, Baj G, Bernhard B, Hundertmark M, Bakula A, Nakase M, Tomii D, Barbati G, Dobner S, Valenzuela W, Rominger A, Caobelli F, Siontis GCM, Lanz J, Pilgrim T, Windecker S, Stortecky S, Gräni C. Multi-modality artificial intelligence-based transthyretin amyloid cardiomyopathy detection in patients with severe aortic stenosis. Eur J Nucl Med Mol Imaging 2024:10.1007/s00259-024-06922-4. [PMID: 39307861 DOI: 10.1007/s00259-024-06922-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024]
Abstract
PURPOSE Transthyretin amyloid cardiomyopathy (ATTR-CM) is a frequent concomitant condition in patients with severe aortic stenosis (AS), yet it often remains undetected. This study aims to comprehensively evaluate artificial intelligence-based models developed based on preprocedural and routinely collected data to detect ATTR-CM in patients with severe AS planned for transcatheter aortic valve implantation (TAVI). METHODS In this prospective, single-center study, consecutive patients with AS were screened with [99mTc]-3,3-diphosphono-1,2-propanodicarboxylic acid ([99mTc]-DPD) for the presence of ATTR-CM. Clinical, laboratory, electrocardiogram, echocardiography, invasive measurements, 4-dimensional cardiac CT (4D-CCT) strain data, and CT-radiomic features were used for machine learning modeling of ATTR-CM detection and for outcome prediction. Feature selection and classifier algorithms were applied in single- and multi-modality classification scenarios. We split the dataset into training (70%) and testing (30%) samples. Performance was assessed using various metrics across 100 random seeds. RESULTS Out of 263 patients with severe AS (57% males, age 83 ± 4.6years) enrolled, ATTR-CM was confirmed in 27 (10.3%). The lowest performances for detection of concomitant ATTR-CM were observed in invasive measurements and ECG data with area under the curve (AUC) < 0.68. Individual clinical, laboratory, interventional imaging, and CT-radiomics-based features showed moderate performances (AUC 0.70-0.76, sensitivity 0.79-0.82, specificity 0.63-0.72), echocardiography demonstrated good performance (AUC 0.79, sensitivity 0.80, specificity 0.78), and 4D-CT-strain showed the highest performance (AUC 0.85, sensitivity 0.90, specificity 0.74). The multi-modality model (AUC 0.84, sensitivity 0.87, specificity 0.76) did not outperform the model performance based on 4D-CT-strain only data (p-value > 0.05). The multi-modality model adequately discriminated low and high-risk individuals for all-cause mortality at a mean follow-up of 13 months. CONCLUSION Artificial intelligence-based models using collected pre-TAVI evaluation data can effectively detect ATTR-CM in patients with severe AS, offering an alternative diagnostic strategy to scintigraphy and myocardial biopsy.
Collapse
Affiliation(s)
- Isaac Shiri
- Department of Cardiology, Inselspital Bern University Hospital, University of Bern, Freiburgstrasse, Bern, CH - 3010, Switzerland
| | - Sebastian Balzer
- Department of Cardiology, Inselspital Bern University Hospital, University of Bern, Freiburgstrasse, Bern, CH - 3010, Switzerland
| | - Giovanni Baj
- Department of Cardiology, Inselspital Bern University Hospital, University of Bern, Freiburgstrasse, Bern, CH - 3010, Switzerland
- Biostatistics Unit, Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Benedikt Bernhard
- Department of Cardiology, Inselspital Bern University Hospital, University of Bern, Freiburgstrasse, Bern, CH - 3010, Switzerland
| | - Moritz Hundertmark
- Department of Cardiology, Inselspital Bern University Hospital, University of Bern, Freiburgstrasse, Bern, CH - 3010, Switzerland
| | - Adam Bakula
- Department of Cardiology, Inselspital Bern University Hospital, University of Bern, Freiburgstrasse, Bern, CH - 3010, Switzerland
| | - Masaaki Nakase
- Department of Cardiology, Inselspital Bern University Hospital, University of Bern, Freiburgstrasse, Bern, CH - 3010, Switzerland
| | - Daijiro Tomii
- Department of Cardiology, Inselspital Bern University Hospital, University of Bern, Freiburgstrasse, Bern, CH - 3010, Switzerland
| | - Giulia Barbati
- Biostatistics Unit, Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Stephan Dobner
- Department of Cardiology, Inselspital Bern University Hospital, University of Bern, Freiburgstrasse, Bern, CH - 3010, Switzerland
| | - Waldo Valenzuela
- University Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, Bern, 3010, Switzerland
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital Bern University Hospital, University of Bern, Bern, Switzerland
| | - Federico Caobelli
- Department of Nuclear Medicine, Inselspital Bern University Hospital, University of Bern, Bern, Switzerland
| | - George C M Siontis
- Department of Cardiology, Inselspital Bern University Hospital, University of Bern, Freiburgstrasse, Bern, CH - 3010, Switzerland
| | - Jonas Lanz
- Department of Cardiology, Inselspital Bern University Hospital, University of Bern, Freiburgstrasse, Bern, CH - 3010, Switzerland
| | - Thomas Pilgrim
- Department of Cardiology, Inselspital Bern University Hospital, University of Bern, Freiburgstrasse, Bern, CH - 3010, Switzerland
| | - Stephan Windecker
- Department of Cardiology, Inselspital Bern University Hospital, University of Bern, Freiburgstrasse, Bern, CH - 3010, Switzerland
| | - Stefan Stortecky
- Department of Cardiology, Inselspital Bern University Hospital, University of Bern, Freiburgstrasse, Bern, CH - 3010, Switzerland
| | - Christoph Gräni
- Department of Cardiology, Inselspital Bern University Hospital, University of Bern, Freiburgstrasse, Bern, CH - 3010, Switzerland.
| |
Collapse
|
8
|
Yu H, Tang B, Fu Y, Wei W, He Y, Dai G, Xiao Q. Quantifying the reproducibility and longitudinal repeatability of radiomics features in magnetic resonance Image-Guide accelerator Imaging: A phantom study. Eur J Radiol 2024; 181:111735. [PMID: 39276402 DOI: 10.1016/j.ejrad.2024.111735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/22/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
OBJECTIVE This study aimed to quantitatively evaluate the inter-platform reproducibility and longitudinal acquisition repeatability of MRI radiomics features in Fluid-Attenuated Inversion Recovery (FLAIR), T2-weighted (T2W), and T1-weighted (T1W) sequences on MR-Linac systems using an American College of Radiology (ACR) phantom. MATERIALS AND METHODS This study used two MR-Linac systems (A and B) in different cancer centers. The ACR phantom was scanned on system A daily for 30 consecutive days to evaluate longitudinal repeatability. Additionally, retest data were collected after repositioning the phantom. Inter-platform reproducibility was assessed by conducting scans under identical conditions using system B. Regions of interest were delineated on the T1W sequence from system A and mapped to other sequences via rigid registration. Intra-observer and inter-observer comparisons were conducted. Repeatability and reproducibility were assessed using the intraclass correlation coefficient (ICC) and coefficient of variation (CV). Robust radiomics features were identified based on ICC>0.9 and CV<10 %. RESULTS Analysis showed that a higher proportion of radiomics features derived from longitudinal FLAIR sequence (51.65 %) met robustness criteria compared to T2W (48.35 %) and T1W (43.96 %). Additionally, more inter-platform features from the FLAIR sequence (62.64 %) were robust compared to T2W (42.86 %) and T1W (39.56 %). Test-retest and intra-observer repeatability were excellent across all sequences, with a median ICC of 0.99 and CV<5%. However, inter-observer reproducibility was inferior, especially for the T1W sequence. CONCLUSIONS Different sequences show variations in repeatability and reproducibility. The FLAIR sequence demonstrated advantages in both longitudinal repeatability and inter-platform reproducibility. Caution is warranted when interpreting data, particularly in longitudinal or multiplatform radiomics studies.
Collapse
Affiliation(s)
- Hang Yu
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China
| | - Bin Tang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory Of Sichuan Province, Sichuan Cancer Hospital& Institute, Chengdu, Sichuan, China
| | - Yuchuan Fu
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China.
| | - Weige Wei
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China
| | - Yisong He
- Medical Physics Laboratory, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Guyu Dai
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China
| | - Qing Xiao
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China
| |
Collapse
|
9
|
Kocak B, Keles A, Kose F, Sendur A. Quality of radiomics research: comprehensive analysis of 1574 unique publications from 89 reviews. Eur Radiol 2024:10.1007/s00330-024-11057-z. [PMID: 39237770 DOI: 10.1007/s00330-024-11057-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/07/2024]
Abstract
PURPOSE This study aims to comprehensively evaluate the quality of radiomics research by examining unique papers from reviews using the radiomics quality score (RQS). METHODS A literature search was conducted in PubMed (last search date: April 14, 2024). Systematic or non-systematic reviews using the RQS to evaluate radiomic studies were potentially included. Exclusion was applied at two levels: first, at the review level, and second, at the study level (i.e., for the individual articles previously evaluated within the reviews). Score-wise and item-wise analyses were performed, along with trend, multivariable, and subgroup analyses based on baseline study characteristics and validation methods. RESULTS A total of 1574 unique papers (published online between 1999 and 2023) from 89 reviews were included in the final analysis. The median RQS percentage was 31% with an IQR of 25% (25th-75th percentiles, 14-39%). A positive correlation between median RQS percentage and publication year (2014-2023) was found, with Kendall's tau coefficient of 0.908 (p < 0.001), suggesting an improvement in quality over time. The quality of radiomics publications significantly varied according to different subfields of radiology (p < 0.001). Around one-third of the publications (32%) lacked a separate validation set. Papers with internal validation (54%) dominated those with external validation (14%). Higher-quality validation practices were significantly associated with better RQS percentage scores, independent of the validation's effect on the final score. Item-wise analysis revealed significant shortcomings in several areas. CONCLUSION Radiomics research quality is low but improving according to RQS. Significant variation exists across radiology subfields. Critical areas were identified for targeted improvement. CLINICAL RELEVANCE STATEMENT Our study shows that the quality of radiomics research is generally low but improving over time, with item-wise analysis highlighting critical areas needing improvement. It also reveals that the quality of radiomics research differs across subfields and validation methods. KEY POINTS Overall quality of radiomics research remains low and highly variable, although a significant positive trend suggests an improvement in quality over time. Considerable variations exist in the quality of radiomics publications across different subfields of radiology and validation types. The item-wise analysis highlights several critical areas requiring attention, emphasizing the need for targeted improvements.
Collapse
Affiliation(s)
- Burak Kocak
- Department of Radiology, Basaksehir Cam and Sakura City Hospital, University of Health Sciences, Istanbul, Turkey.
| | - Ali Keles
- Department of Radiology, Basaksehir Cam and Sakura City Hospital, University of Health Sciences, Istanbul, Turkey
| | - Fadime Kose
- Department of Radiology, Basaksehir Cam and Sakura City Hospital, University of Health Sciences, Istanbul, Turkey
| | - Abdurrezzak Sendur
- Department of Radiology, Basaksehir Cam and Sakura City Hospital, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
10
|
He W, Huang W, Zhang L, Wu X, Zhang S, Zhang B. Radiogenomics: bridging the gap between imaging and genomics for precision oncology. MedComm (Beijing) 2024; 5:e722. [PMID: 39252824 PMCID: PMC11381657 DOI: 10.1002/mco2.722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 08/06/2024] [Accepted: 08/18/2024] [Indexed: 09/11/2024] Open
Abstract
Genomics allows the tracing of origin and evolution of cancer at molecular scale and underpin modern cancer diagnosis and treatment systems. Yet, molecular biomarker-guided clinical decision-making encounters major challenges in the realm of individualized medicine, consisting of the invasiveness of procedures and the sampling errors due to high tumor heterogeneity. By contrast, medical imaging enables noninvasive and global characterization of tumors at a low cost. In recent years, radiomics has overcomes the limitations of human visual evaluation by high-throughput quantitative analysis, enabling the comprehensive utilization of the vast amount of information underlying radiological images. The cross-scale integration of radiomics and genomics (hereafter radiogenomics) has the enormous potential to enhance cancer decoding and act as a catalyst for digital precision medicine. Herein, we provide a comprehensive overview of the current framework and potential clinical applications of radiogenomics in patient care. We also highlight recent research advances to illustrate how radiogenomics can address common clinical problems in solid tumors such as breast cancer, lung cancer, and glioma. Finally, we analyze existing literature to outline challenges and propose solutions, while also identifying future research pathways. We believe that the perspectives shared in this survey will provide a valuable guide for researchers in the realm of radiogenomics aiming to advance precision oncology.
Collapse
Affiliation(s)
- Wenle He
- Department of Radiology The First Affiliated Hospital of Jinan University Guangzhou Guangdong China
| | - Wenhui Huang
- Department of Radiology The First Affiliated Hospital of Jinan University Guangzhou Guangdong China
| | - Lu Zhang
- Department of Radiology The First Affiliated Hospital of Jinan University Guangzhou Guangdong China
| | - Xuewei Wu
- Department of Radiology The First Affiliated Hospital of Jinan University Guangzhou Guangdong China
| | - Shuixing Zhang
- Department of Radiology The First Affiliated Hospital of Jinan University Guangzhou Guangdong China
| | - Bin Zhang
- Department of Radiology The First Affiliated Hospital of Jinan University Guangzhou Guangdong China
| |
Collapse
|
11
|
Zeng Y, Zhou X, Zhou T, Liu H, Zhou Y, Lin S, Zhang W. Peritumoral radiomics increases the efficiency of classification of pure ground-glass lung nodules: a multicenter study. J Cardiothorac Surg 2024; 19:505. [PMID: 39215360 PMCID: PMC11363534 DOI: 10.1186/s13019-024-03008-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
PURPOSE We aimed to evaluate the efficiency of computed tomography (CT) radiomic features extracted from gross tumor volume (GTV) and peritumoral volumes (PTV) of 5, 10, and 15 mm to identify the tumor grades corresponding to the new histological grading system proposed in 2020 by the Pathology Committee of the International Association for the Study of Lung Cancer (IASLC). METHODS A total of 151 lung adenocarcinomas manifesting as pure ground-glass lung nodules (pGGNs) were included in this randomized multicenter retrospective study. Four radiomic models were constructed from GTV and GTV + 5/10/15-mm PTV, respectively, and compared. The diagnostic performance of the different models was evaluated using receiver operating characteristic curve analysis RESULTS: The pGGNs were classified into grade 1 (117), 2 (34), and 3 (0), according to the IASLC grading system. In all four radiomic models, pGGNs of grade 2 had significantly higher radiomic scores than those of grade 1 (P < 0.05). The AUC of the GTV and GTV + 5/10/15-mm PTV were 0.869, 0.910, 0.951, and 0.872 in the training cohort and 0.700, 0.715, 0.745, and 0.724 in the validation cohort, respectively. CONCLUSIONS The radiomic features we extracted from the GTV and PTV of pGGNs could effectively be used to differentiate grade-1 and grade-2 tumors. In particular, the radiomic features from the PTV increased the efficiency of the diagnostic model, with GTV + 10 mm PTV exhibiting the highest efficacy.
Collapse
Affiliation(s)
- Ying Zeng
- Department of Radiology, Xiangtan Central Hospital, Xiangtan, Hunan, 411000, China
| | - Xiao Zhou
- Department of Radiology, Xiangtan Central Hospital, Xiangtan, Hunan, 411000, China
| | - Tianzhi Zhou
- School of Mathematics and Computational Science, Xiangtan University, Xiangtan, 411105, China
| | - Haibo Liu
- Department of Radiology, Xiangtan Central Hospital, Xiangtan, Hunan, 411000, China
| | - Yingjun Zhou
- Department of Radiology, Xiangtan Central Hospital, Xiangtan, Hunan, 411000, China
| | - Shanyue Lin
- Department of Radiology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541001, China.
| | - Wei Zhang
- Department of Radiology, Liuzhou People's Hospital Affiliated to Guangxi Medical University, 8 Wenchang Road, Liuzhou, 545006, China.
| |
Collapse
|
12
|
Du Q, Wang L, Chen H. A mixed Mamba U-net for prostate segmentation in MR images. Sci Rep 2024; 14:19976. [PMID: 39198553 PMCID: PMC11358272 DOI: 10.1038/s41598-024-71045-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024] Open
Abstract
The diagnosis of early prostate cancer depends on the accurate segmentation of prostate regions in magnetic resonance imaging (MRI). However, this segmentation task is challenging due to the particularities of prostate MR images themselves and the limitations of existing methods. To address these issues, we propose a U-shaped encoder-decoder network MM-UNet based on Mamba and CNN for prostate segmentation in MR images. Specifically, we first proposed an adaptive feature fusion module based on channel attention guidance to achieve effective fusion between adjacent hierarchical features and suppress the interference of background noise. Secondly, we propose a global context-aware module based on Mamba, which has strong long-range modeling capabilities and linear complexity, to capture global context information in images. Finally, we propose a multi-scale anisotropic convolution module based on the principle of parallel multi-scale anisotropic convolution blocks and 3D convolution decomposition. Experimental results on two public prostate MR image segmentation datasets demonstrate that the proposed method outperforms competing models in terms of prostate segmentation performance and achieves state-of-the-art performance. In future work, we intend to enhance the model's robustness and extend its applicability to additional medical image segmentation tasks.
Collapse
Affiliation(s)
- Qiu Du
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, People's Republic of China
| | - Luowu Wang
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, People's Republic of China
| | - Hao Chen
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, People's Republic of China.
| |
Collapse
|
13
|
Levi R, Mollura M, Savini G, Garoli F, Battaglia M, Ammirabile A, Cappellini LA, Superbi S, Grimaldi M, Barbieri R, Politi LS. A reference framework for standardization and harmonization of CT radiomics features on cadaveric sample. Sci Rep 2024; 14:19259. [PMID: 39164314 PMCID: PMC11336160 DOI: 10.1038/s41598-024-68158-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024] Open
Abstract
Radiomics features (RFs) serve as quantitative metrics to characterize shape, density/intensity, and texture patterns in radiological images. Despite their promise, RFs exhibit reproducibility challenges across acquisition settings, thus limiting implementation into clinical practice. In this investigation, we evaluate the effects of different CT scanners and CT acquisition protocols (KV, mA, field-of-view, and reconstruction kernel settings) on RFs extracted from lumbar vertebrae of a cadaveric trunk. Employing univariate and multivariate Generalized Linear Models (GLM), we evaluated the impact of each acquisition parameter on RFs. Our findings indicate that variations in mA had negligible effects on RFs, while alterations in kV resulted in exponential changes in several RFs, notably First Order (94.4%), GLCM (87.5%), and NGTDM (100%). Moreover, we demonstrated that a tailored GLM model was superior to the ComBat algorithm in harmonizing CT images. GLM achieved R2 > 0.90 in 21 RFs (19.6%), contrasting ComBat's mean R2 above 0.90 in only 1 RF (0.9%). This pioneering study unveils the effects of CT acquisition parameters on bone RFs in cadaveric specimens, highlighting significant variations across parameters and scanner datasets. The proposed GLM model presents a robust solution for mitigating these differences, potentially advancing harmonization efforts in Radiomics-based studies across diverse CT protocols and vendors.
Collapse
Affiliation(s)
- Riccardo Levi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele, 20072, Milan, Italy
- Neuroradiology Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - Maximiliano Mollura
- Department of Electronic, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milan, Italy
| | - Giovanni Savini
- Neuroradiology Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - Federico Garoli
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele, 20072, Milan, Italy
| | - Massimiliano Battaglia
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele, 20072, Milan, Italy
| | - Angela Ammirabile
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele, 20072, Milan, Italy
| | - Luca A Cappellini
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele, 20072, Milan, Italy
| | - Simona Superbi
- Neuroradiology Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - Marco Grimaldi
- Neuroradiology Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - Riccardo Barbieri
- Department of Electronic, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milan, Italy
| | - Letterio S Politi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele, 20072, Milan, Italy.
- Neuroradiology Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, Milan, Italy.
| |
Collapse
|
14
|
Ma Z, Zhang J, Liu X, Teng X, Huang YH, Zhang X, Li J, Pan Y, Sun J, Dong Y, Li T, Chan LWC, Chang ATY, Siu SWK, Cheung ALY, Yang R, Cai J. Comparative Analysis of Repeatability in CT Radiomics and Dosiomics Features under Image Perturbation: A Study in Cervical Cancer Patients. Cancers (Basel) 2024; 16:2872. [PMID: 39199643 PMCID: PMC11352227 DOI: 10.3390/cancers16162872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
This study aims to evaluate the repeatability of radiomics and dosiomics features via image perturbation of patients with cervical cancer. A total of 304 cervical cancer patients with planning CT images and dose maps were retrospectively included. Random translation, rotation, and contour randomization were applied to CT images and dose maps before radiomics feature extraction. The repeatability of radiomics and dosiomics features was assessed using intra-class correlation of coefficient (ICC). Pearson correlation coefficient (r) was adopted to quantify the correlation between the image characteristics and feature repeatability. In general, the repeatability of dosiomics features was lower compared with CT radiomics features, especially after small-sigma Laplacian-of-Gaussian (LoG) and wavelet filtering. More repeatable features (ICC > 0.9) were observed when extracted from the original, Large-sigma LoG filtered, and LLL-/LLH-wavelet filtered images. Positive correlations were found between image entropy and high-repeatable feature number in both CT and dose (r = 0.56, 0.68). Radiomics features showed higher repeatability compared to dosiomics features. These findings highlight the potential of radiomics features for robust quantitative imaging analysis in cervical cancer patients, while suggesting the need for further refinement of dosiomics approaches to enhance their repeatability.
Collapse
Affiliation(s)
- Zongrui Ma
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (Z.M.); (J.Z.); (Y.D.)
| | - Jiang Zhang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (Z.M.); (J.Z.); (Y.D.)
| | - Xi Liu
- Department of Radiation Oncology, Cancer Center, Peking University Third Hospital, Beijing 100191, China; (X.L.)
- School of Physics, Beihang University, Beijing 102206, China
| | - Xinzhi Teng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (Z.M.); (J.Z.); (Y.D.)
| | - Yu-Hua Huang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (Z.M.); (J.Z.); (Y.D.)
| | - Xile Zhang
- Department of Radiation Oncology, Cancer Center, Peking University Third Hospital, Beijing 100191, China; (X.L.)
| | - Jun Li
- Department of Radiation Oncology, Cancer Center, Peking University Third Hospital, Beijing 100191, China; (X.L.)
| | - Yuxi Pan
- Department of Radiation Oncology, Cancer Center, Peking University Third Hospital, Beijing 100191, China; (X.L.)
| | - Jiachen Sun
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (Z.M.); (J.Z.); (Y.D.)
| | - Yanjing Dong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (Z.M.); (J.Z.); (Y.D.)
| | - Tian Li
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (Z.M.); (J.Z.); (Y.D.)
| | - Lawrence Wing Chi Chan
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (Z.M.); (J.Z.); (Y.D.)
| | - Amy Tien Yee Chang
- Comprehensive Oncology Centre, Hong Kong Sanatorium & Hospital, Hong Kong, China
| | | | - Andy Lai-Yin Cheung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (Z.M.); (J.Z.); (Y.D.)
- Department of Clinical Oncology, St. Paul’s Hospital, Hong Kong, China
| | - Ruijie Yang
- Department of Radiation Oncology, Cancer Center, Peking University Third Hospital, Beijing 100191, China; (X.L.)
| | - Jing Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (Z.M.); (J.Z.); (Y.D.)
| |
Collapse
|
15
|
Sannasi Chakravarthy SR, Bharanidharan N, Vinothini C, Vinoth Kumar V, Mahesh TR, Guluwadi S. Adaptive Mish activation and ranger optimizer-based SEA-ResNet50 model with explainable AI for multiclass classification of COVID-19 chest X-ray images. BMC Med Imaging 2024; 24:206. [PMID: 39123118 PMCID: PMC11313131 DOI: 10.1186/s12880-024-01394-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024] Open
Abstract
A recent global health crisis, COVID-19 is a significant global health crisis that has profoundly affected lifestyles. The detection of such diseases from similar thoracic anomalies using medical images is a challenging task. Thus, the requirement of an end-to-end automated system is vastly necessary in clinical treatments. In this way, the work proposes a Squeeze-and-Excitation Attention-based ResNet50 (SEA-ResNet50) model for detecting COVID-19 utilizing chest X-ray data. Here, the idea lies in improving the residual units of ResNet50 using the squeeze-and-excitation attention mechanism. For further enhancement, the Ranger optimizer and adaptive Mish activation function are employed to improve the feature learning of the SEA-ResNet50 model. For evaluation, two publicly available COVID-19 radiographic datasets are utilized. The chest X-ray input images are augmented during experimentation for robust evaluation against four output classes namely normal, pneumonia, lung opacity, and COVID-19. Then a comparative study is done for the SEA-ResNet50 model against VGG-16, Xception, ResNet18, ResNet50, and DenseNet121 architectures. The proposed framework of SEA-ResNet50 together with the Ranger optimizer and adaptive Mish activation provided maximum classification accuracies of 98.38% (multiclass) and 99.29% (binary classification) as compared with the existing CNN architectures. The proposed method achieved the highest Kappa validation scores of 0.975 (multiclass) and 0.98 (binary classification) over others. Furthermore, the visualization of the saliency maps of the abnormal regions is represented using the explainable artificial intelligence (XAI) model, thereby enhancing interpretability in disease diagnosis.
Collapse
Affiliation(s)
- S R Sannasi Chakravarthy
- Department of Electronics and Communication Engineering, Bannari Amman Institute of Technology, Sathyamangalam, India
| | - N Bharanidharan
- School of Computer Science Engineering and Information Systems, Vellore Institute of Technology, Vellore, 632014, India
| | - C Vinothini
- Department of Computer Science and Engineering, Dayananda Sagar College of Engineering, Bangalore, India
| | - Venkatesan Vinoth Kumar
- School of Computer Science Engineering and Information Systems, Vellore Institute of Technology, Vellore, 632014, India
| | - T R Mahesh
- Department of Computer Science and Engineering, JAIN (Deemed-to-Be University), Bengaluru, 562112, India
| | - Suresh Guluwadi
- Adama Science and Technology University, Adama, 302120, Ethiopia.
| |
Collapse
|
16
|
Hajianfar G, Hosseini SA, Bagherieh S, Oveisi M, Shiri I, Zaidi H. Impact of harmonization on the reproducibility of MRI radiomic features when using different scanners, acquisition parameters, and image pre-processing techniques: a phantom study. Med Biol Eng Comput 2024; 62:2319-2332. [PMID: 38536580 DOI: 10.1007/s11517-024-03071-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 03/05/2024] [Indexed: 07/31/2024]
Abstract
This study investigated the impact of ComBat harmonization on the reproducibility of radiomic features extracted from magnetic resonance images (MRI) acquired on different scanners, using various data acquisition parameters and multiple image pre-processing techniques using a dedicated MRI phantom. Four scanners were used to acquire an MRI of a nonanatomic phantom as part of the TCIA RIDER database. In fast spin-echo inversion recovery (IR) sequences, several inversion durations were employed, including 50, 100, 250, 500, 750, 1000, 1500, 2000, 2500, and 3000 ms. In addition, a 3D fast spoiled gradient recalled echo (FSPGR) sequence was used to investigate several flip angles (FA): 2, 5, 10, 15, 20, 25, and 30 degrees. Nineteen phantom compartments were manually segmented. Different approaches were used to pre-process each image: Bin discretization, Wavelet filter, Laplacian of Gaussian, logarithm, square, square root, and gradient. Overall, 92 first-, second-, and higher-order statistical radiomic features were extracted. ComBat harmonization was also applied to the extracted radiomic features. Finally, the Intraclass Correlation Coefficient (ICC) and Kruskal-Wallis's (KW) tests were implemented to assess the robustness of radiomic features. The number of non-significant features in the KW test ranged between 0-5 and 29-74 for various scanners, 31-91 and 37-92 for three times tests, 0-33 to 34-90 for FAs, and 3-68 to 65-89 for IRs before and after ComBat harmonization, with different image pre-processing techniques, respectively. The number of features with ICC over 90% ranged between 0-8 and 6-60 for various scanners, 11-75 and 17-80 for three times tests, 3-83 to 9-84 for FAs, and 3-49 to 3-63 for IRs before and after ComBat harmonization, with different image pre-processing techniques, respectively. The use of various scanners, IRs, and FAs has a great impact on radiomic features. However, the majority of scanner-robust features is also robust to IR and FA. Among the effective parameters in MR images, several tests in one scanner have a negligible impact on radiomic features. Different scanners and acquisition parameters using various image pre-processing might affect radiomic features to a large extent. ComBat harmonization might significantly impact the reproducibility of MRI radiomic features.
Collapse
Affiliation(s)
- Ghasem Hajianfar
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva, Switzerland
| | - Seyyed Ali Hosseini
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montréal, Québec, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Sara Bagherieh
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrdad Oveisi
- Department of Computer Science, University of British Columbia, Vancouver, BC, Canada
| | - Isaac Shiri
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva, Switzerland
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva, Switzerland.
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.
- Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark.
- University Research and Innovation Center, Óbuda University, Budapest, Hungary.
| |
Collapse
|
17
|
Yang L, Zhang H, Sheng J, Wang M, Liu Y, Xu M, Yang X, Wang B, He X, Gao L, Zheng C. Contrast enhancement boost improves the image quality of CT angiography derived from 80-kVp cerebral CT perfusion data. BMC Med Imaging 2024; 24:193. [PMID: 39080580 PMCID: PMC11290218 DOI: 10.1186/s12880-024-01373-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024] Open
Abstract
RATIONALE AND OBJECTIVE To investigate the impact of the contrast enhancement boost (CE-boost) technique on the image quality of CT angiography (CTA) derived from 80-kVp cerebral CT perfusion (CTP) data, and to compare it with conventional CTApeak as well as other currently employed methods for enhancing CTA images, such as CTAtMIP and CTAtAve extracted from CTP. MATERIALS AND METHODS The data of forty-seven patients who underwent CTP at 80 kVp were retrospectively collected. Four sets of images: CTApeak, CTAtMIP, CTAtAve, and CE-boost images. The CTApeak image represents the arterial phase at its peak value, captured as a single time point. CTAtMIP and CTAtAve are 4D CTA images that provide maximum density projection and average images from the three most prominent time points. CE-boost is a postprocessing technique used to enhance contrast in the arterial phase at its peak value. We compared the average CT value, standard deviation (SD), signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) of the internal carotid artery (ICA) and basilar artery (BA) among the four groups. Image quality was evaluated using a 5-point scale. RESULTS The CE-boost demonstrated and CNR in the ICA and BA (all p < 0.001). Compared with the other three CTA reconstructed images, the CE-boost images had the best subjective image quality, with the highest scores of 4.77 ± 0.43 and 4.87 ± 0.34 for each reader (all p < 0.001). CONCLUSION Compared with other currently used techniques,CE-boost enhances the image quality of CTA derived from 80-kVp CTP data, leading to improved visualization of intracranial arteries.
Collapse
Affiliation(s)
- Lin Yang
- Department of Radiology, Hanzhong Central Hospital, Hanzhong City, Shannxi Province, China
| | - Haiwei Zhang
- Department of General Medicine, Hanzhong Central Hospital, Hanzhong, China
| | - Jiexin Sheng
- Department of Radiology, Hanzhong Central Hospital, Hanzhong City, Shannxi Province, China
| | - Meng Wang
- Department of Radiology, Hanzhong Central Hospital, Hanzhong City, Shannxi Province, China
| | - Yaliang Liu
- Department of Radiology, Hanzhong Central Hospital, Hanzhong City, Shannxi Province, China
| | - Min Xu
- Canon Medical Systems (China), Beijing, China
| | - Xiao Yang
- Canon Medical Systems (China), Beijing, China
| | - Bo Wang
- Department of Radiology, Hanzhong Central Hospital, Hanzhong City, Shannxi Province, China
| | - Xiaolong He
- Department of Radiology, Hanzhong Central Hospital, Hanzhong City, Shannxi Province, China
| | - Lei Gao
- Department of Nneurology, Hanzhong Central Hospital, Hanzhong, China
| | - Chao Zheng
- Department of Radiology, Hanzhong Central Hospital, Hanzhong City, Shannxi Province, China.
| |
Collapse
|
18
|
Wang F, Sun YN, Zhang BT, Yang Q, He AD, Xu WY, Liu J, Liu MX, Li XH, Yu YQ, Zhu J. Value of fractional-order calculus (FROC) model diffusion-weighted imaging combined with simultaneous multi-slice (SMS) acceleration technology for evaluating benign and malignant breast lesions. BMC Med Imaging 2024; 24:190. [PMID: 39075336 PMCID: PMC11285176 DOI: 10.1186/s12880-024-01368-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND This study explores the diagnostic value of combining fractional-order calculus (FROC) diffusion-weighted model with simultaneous multi-slice (SMS) acceleration technology in distinguishing benign and malignant breast lesions. METHODS 178 lesions (73 benign, 105 malignant) underwent magnetic resonance imaging with diffusion-weighted imaging using multiple b-values (14 b-values, highest 3000 s/mm2). Independent samples t-test or Mann-Whitney U test compared image quality scores, FROC model parameters (D,, ), and ADC values between two groups. Multivariate logistic regression analysis identified independent variables and constructed nomograms. Model discrimination ability was assessed with receiver operating characteristic (ROC) curve and calibration chart. Spearman correlation analysis and Bland-Altman plot evaluated parameter correlation and consistency. RESULTS Malignant lesions exhibited lower D, and ADC values than benign lesions (P < 0.05), with higher values (P < 0.05). In SSEPI-DWI and SMS-SSEPI-DWI sequences, the AUC and diagnostic accuracy of D value are maximal, with D value demonstrating the highest diagnostic sensitivity, while value exhibits the highest specificity. The D and combined model had the highest AUC and accuracy. D and ADC values showed high correlation between sequences, and moderate. Bland-Altman plot demonstrated unbiased parameter values. CONCLUSION SMS-SSEPI-DWI FROC model provides good image quality and lesion characteristic values within an acceptable time. It shows consistent diagnostic performance compared to SSEPI-DWI, particularly in D and values, and significantly reduces scanning time.
Collapse
Affiliation(s)
- Fei Wang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No.218, Jixi Road, Hefei, 230032, China
- Department of Radiology, Anqing Municipal Hospital, No.352, Renmin Road, Anqing, 246003, China
| | - Yi-Nan Sun
- Department of Radiology, Anqing Municipal Hospital, No.352, Renmin Road, Anqing, 246003, China
| | - Bao-Ti Zhang
- Department of Radiology, Anqing Municipal Hospital, No.352, Renmin Road, Anqing, 246003, China
| | - Qing Yang
- Department of Radiology, Anqing Municipal Hospital, No.352, Renmin Road, Anqing, 246003, China
| | - An-Dong He
- Department of Radiology, Anqing Municipal Hospital, No.352, Renmin Road, Anqing, 246003, China
| | - Wang-Yan Xu
- Department of Radiology, Anqing Municipal Hospital, No.352, Renmin Road, Anqing, 246003, China
| | - Jun Liu
- Department of Radiology, Anqing Municipal Hospital, No.352, Renmin Road, Anqing, 246003, China
| | - Meng-Xiao Liu
- MR Research & Marketing Department, Siemens Healthineers Co., Ltd, No.278, Zhouzugong Road, Shanghai, 201318, China
| | - Xiao-Hu Li
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No.218, Jixi Road, Hefei, 230032, China
| | - Yong-Qiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No.218, Jixi Road, Hefei, 230032, China.
| | - Juan Zhu
- Department of Radiology, Anqing Municipal Hospital, No.352, Renmin Road, Anqing, 246003, China.
| |
Collapse
|
19
|
Zhu L, Dong H, Sun J, Wang L, Xing Y, Hu Y, Lu J, Yang J, Chu J, Yan C, Yuan F, Zhong J. Robustness of radiomics among photon-counting detector CT and dual-energy CT systems: a texture phantom study. Eur Radiol 2024:10.1007/s00330-024-10976-1. [PMID: 39048741 DOI: 10.1007/s00330-024-10976-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/18/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVES To evaluate the robustness of radiomics features among photon-counting detector CT (PCD-CT) and dual-energy CT (DECT) systems. METHODS A texture phantom consisting of twenty-eight materials was scanned with one PCD-CT and four DECT systems (dual-source, rapid kV-switching, dual-layer, and sequential scanning) at three dose levels twice. Thirty sets of virtual monochromatic images at 70 keV were reconstructed. Regions of interest were delineated for each material with a rigid registration. Ninety-three radiomics were extracted per PyRadiomics. The test-retest repeatability between repeated scans was assessed by Bland-Altman analysis. The intra-system reproducibility between dose levels, and inter-system reproducibility within the same dose level, were evaluated by intraclass correlation coefficient (ICC) and concordance correlation coefficient (CCC). Inter-system variability among five scanners was assessed by coefficient of variation (CV) and quartile coefficient of dispersion (QCD). RESULTS The test-retest repeatability analysis presented that 97.1% of features were repeatable between scan-rescans. The mean ± standard deviation ICC and CCC were 0.945 ± 0.079 and 0.945 ± 0.079 for intra-system reproducibility, respectively, and 86.0% and 85.7% of features were with ICC > 0.90 and CCC > 0.90, respectively, between different dose levels. The mean ± standard deviation ICC and CCC were 0.157 ± 0.174 and 0.157 ± 0.174 for inter-system reproducibility, respectively, and none of the features were with ICC > 0.90 or CCC > 0.90 within the same dose level. The inter-system variability suggested that 6.5% and 12.8% of features were with CV < 10% and QCD < 10%, respectively, among five CT systems. CONCLUSION The radiomics features were non-reproducible with significant variability in values among different CT techniques. CLINICAL RELEVANCE STATEMENT Radiomics features are non-reproducible with significant variability in values among photon-counting detector CT and dual-energy CT systems, necessitating careful attention to improve the cross-system generalizability of radiomic features before implementation of radiomics analysis in clinical routine. KEY POINTS CT radiomics stability should be guaranteed before the implementation in the clinical routine. Radiomics robustness was on a low level among photon-counting detectors and dual-energy CT techniques. Limited inter-system robustness of radiomic features may impact the generalizability of models.
Collapse
Affiliation(s)
- Lan Zhu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Haipeng Dong
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jing Sun
- Department of General Surgery, Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lingyun Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yue Xing
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Yangfan Hu
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Junjie Lu
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jiarui Yang
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Jingshen Chu
- Department of Science and Technology Development, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chao Yan
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Fei Yuan
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Jingyu Zhong
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| |
Collapse
|
20
|
Wu J, Meng H, Zhou L, Wang M, Jin S, Ji H, Liu B, Jin P, Du C. Habitat radiomics and deep learning fusion nomogram to predict EGFR mutation status in stage I non-small cell lung cancer: a multicenter study. Sci Rep 2024; 14:15877. [PMID: 38982267 PMCID: PMC11233600 DOI: 10.1038/s41598-024-66751-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024] Open
Abstract
Develop a radiomics nomogram that integrates deep learning, radiomics, and clinical variables to predict epidermal growth factor receptor (EGFR) mutation status in patients with stage I non-small cell lung cancer (NSCLC). We retrospectively included 438 patients who underwent curative surgery and completed driver-gene mutation tests for stage I NSCLC from four academic medical centers. Predictive models were established by extracting and analyzing radiomic features in intratumoral, peritumoral, and habitat regions of CT images to identify EGFR mutation status in stage I NSCLC. Additionally, three deep learning models based on the intratumoral region were constructed. A nomogram was developed by integrating representative radiomic signatures, deep learning, and clinical features. Model performance was assessed by calculating the area under the receiver operating characteristic (ROC) curve. The established habitat radiomics features demonstrated encouraging performance in discriminating between EGFR mutant and wild-type, with predictive ability superior to other single models (AUC 0.886, 0.812, and 0.790 for the training, validation, and external test sets, respectively). The radiomics-based nomogram exhibited excellent performance, achieving the highest AUC values of 0.917, 0.837, and 0.809 in the training, validation, and external test sets, respectively. Decision curve analysis (DCA) indicated that the nomogram provided a higher net benefit than other radiomics models, offering valuable information for treatment.
Collapse
Affiliation(s)
- Jingran Wu
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, 110840, China
| | - Hao Meng
- Department of Thoracic Surgery, General Hospital of Northern Theater Command, Shenyang, 110840, China
| | - Lin Zhou
- Department of Thoracic Surgery, Yuebei People's Hospital Affiliated to Shantou University Medical College, Shaoguan, 512025, China
| | - Meiling Wang
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, 110840, China
| | - Shanxiu Jin
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, 110840, China
| | - Hongjuan Ji
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, 110840, China
| | - Bona Liu
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, 110840, China.
| | - Peng Jin
- Department of Oncology, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, China.
| | - Cheng Du
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, 110840, China.
| |
Collapse
|
21
|
Horvat N, Papanikolaou N, Koh DM. Radiomics Beyond the Hype: A Critical Evaluation Toward Oncologic Clinical Use. Radiol Artif Intell 2024; 6:e230437. [PMID: 38717290 PMCID: PMC11294952 DOI: 10.1148/ryai.230437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 04/14/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024]
Abstract
Radiomics is a promising and fast-developing field within oncology that involves the mining of quantitative high-dimensional data from medical images. Radiomics has the potential to transform cancer management, whereby radiomics data can be used to aid early tumor characterization, prognosis, risk stratification, treatment planning, treatment response assessment, and surveillance. Nevertheless, certain challenges have delayed the clinical adoption and acceptability of radiomics in routine clinical practice. The objectives of this report are to (a) provide a perspective on the translational potential and potential impact of radiomics in oncology; (b) explore frequent challenges and mistakes in its derivation, encompassing study design, technical requirements, standardization, model reproducibility, transparency, data sharing, privacy concerns, quality control, as well as the complexity of multistep processes resulting in less radiologist-friendly interfaces; (c) discuss strategies to overcome these challenges and mistakes; and (d) propose measures to increase the clinical use and acceptability of radiomics, taking into account the different perspectives of patients, health care workers, and health care systems. Keywords: Radiomics, Oncology, Cancer Management, Artificial Intelligence © RSNA, 2024.
Collapse
Affiliation(s)
- Natally Horvat
- From the Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (N.H.); Department of Radiology, University of São Paulo, São Paulo, Brazil (N.H.); Computational Clinical Imaging Group, Champalimaud Foundation, Portugal (N.P.); and Department of Radiology, Royal Marsden Hospital, Downs Rd, Sutton SM2 5PT, United Kingdom (N.P., D.M.K.)
| | - Nikolaos Papanikolaou
- From the Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (N.H.); Department of Radiology, University of São Paulo, São Paulo, Brazil (N.H.); Computational Clinical Imaging Group, Champalimaud Foundation, Portugal (N.P.); and Department of Radiology, Royal Marsden Hospital, Downs Rd, Sutton SM2 5PT, United Kingdom (N.P., D.M.K.)
| | - Dow-Mu Koh
- From the Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (N.H.); Department of Radiology, University of São Paulo, São Paulo, Brazil (N.H.); Computational Clinical Imaging Group, Champalimaud Foundation, Portugal (N.P.); and Department of Radiology, Royal Marsden Hospital, Downs Rd, Sutton SM2 5PT, United Kingdom (N.P., D.M.K.)
| |
Collapse
|
22
|
Bijari S, Sayfollahi S, Mardokh-Rouhani S, Bijari S, Moradian S, Zahiri Z, Rezaeijo SM. Radiomics and Deep Features: Robust Classification of Brain Hemorrhages and Reproducibility Analysis Using a 3D Autoencoder Neural Network. Bioengineering (Basel) 2024; 11:643. [PMID: 39061725 PMCID: PMC11273742 DOI: 10.3390/bioengineering11070643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
This study evaluates the reproducibility of machine learning models that integrate radiomics and deep features (features extracted from a 3D autoencoder neural network) to classify various brain hemorrhages effectively. Using a dataset of 720 patients, we extracted 215 radiomics features (RFs) and 15,680 deep features (DFs) from CT brain images. With rigorous screening based on Intraclass Correlation Coefficient thresholds (>0.75), we identified 135 RFs and 1054 DFs for analysis. Feature selection techniques such as Boruta, Recursive Feature Elimination (RFE), XGBoost, and ExtraTreesClassifier were utilized alongside 11 classifiers, including AdaBoost, CatBoost, Decision Trees, LightGBM, Logistic Regression, Naive Bayes, Neural Networks, Random Forest, Support Vector Machines (SVM), and k-Nearest Neighbors (k-NN). Evaluation metrics included Area Under the Curve (AUC), Accuracy (ACC), Sensitivity (SEN), and F1-score. The model evaluation involved hyperparameter optimization, a 70:30 train-test split, and bootstrapping, further validated with the Wilcoxon signed-rank test and q-values. Notably, DFs showed higher accuracy. In the case of RFs, the Boruta + SVM combination emerged as the optimal model for AUC, ACC, and SEN, while XGBoost + Random Forest excelled in F1-score. Specifically, RFs achieved AUC, ACC, SEN, and F1-scores of 0.89, 0.85, 0.82, and 0.80, respectively. Among DFs, the ExtraTreesClassifier + Naive Bayes combination demonstrated remarkable performance, attaining an AUC of 0.96, ACC of 0.93, SEN of 0.92, and an F1-score of 0.92. Distinguished models in the RF category included SVM with Boruta, Logistic Regression with XGBoost, SVM with ExtraTreesClassifier, CatBoost with XGBoost, and Random Forest with XGBoost, each yielding significant q-values of 42. In the DFs realm, ExtraTreesClassifier + Naive Bayes, ExtraTreesClassifier + Random Forest, and Boruta + k-NN exhibited robustness, with 43, 43, and 41 significant q-values, respectively. This investigation underscores the potential of synergizing DFs with machine learning models to serve as valuable screening tools, thereby enhancing the interpretation of head CT scans for patients with brain hemorrhages.
Collapse
Affiliation(s)
- Salar Bijari
- Department of Radiology, Faculty of Paramedical, Kurdistan University of Medical Sciences, Sanandaj P.O. Box 66177-13446, Iran;
| | - Sahar Sayfollahi
- Department of Neurosurgery, School of Medicine, Iran University of Medical Sciences, Tehran P.O. Box 14496-14535, Iran;
| | - Shiwa Mardokh-Rouhani
- Mechanical Engineering Group, Faculty of Engineering, University of Kurdistan, Sanandaj P.O. Box 66177-15175, Iran;
| | - Sahar Bijari
- Department of Aging and Health, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd P.O. Box 89151-73160, Iran;
| | - Sadegh Moradian
- Department of Radiology, Tehran University of Medical Sciences, Tehran P.O. Box 14197-33151, Iran;
| | - Ziba Zahiri
- Department of Radiation Oncology, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz P.O. Box 61357-15794, Iran;
| | - Seyed Masoud Rezaeijo
- Department of Medical Physics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz P.O. Box 61357-15794, Iran
- Cancer Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz P.O. Box 61357-15794, Iran
| |
Collapse
|
23
|
Malik I, Iqbal A, Gu YH, Al-antari MA. Deep Learning for Alzheimer's Disease Prediction: A Comprehensive Review. Diagnostics (Basel) 2024; 14:1281. [PMID: 38928696 PMCID: PMC11202897 DOI: 10.3390/diagnostics14121281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Alzheimer's disease (AD) is a neurological disorder that significantly impairs cognitive function, leading to memory loss and eventually death. AD progresses through three stages: early stage, mild cognitive impairment (MCI) (middle stage), and dementia. Early diagnosis of Alzheimer's disease is crucial and can improve survival rates among patients. Traditional methods for diagnosing AD through regular checkups and manual examinations are challenging. Advances in computer-aided diagnosis systems (CADs) have led to the development of various artificial intelligence and deep learning-based methods for rapid AD detection. This survey aims to explore the different modalities, feature extraction methods, datasets, machine learning techniques, and validation methods used in AD detection. We reviewed 116 relevant papers from repositories including Elsevier (45), IEEE (25), Springer (19), Wiley (6), PLOS One (5), MDPI (3), World Scientific (3), Frontiers (3), PeerJ (2), Hindawi (2), IO Press (1), and other multiple sources (2). The review is presented in tables for ease of reference, allowing readers to quickly grasp the key findings of each study. Additionally, this review addresses the challenges in the current literature and emphasizes the importance of interpretability and explainability in understanding deep learning model predictions. The primary goal is to assess existing techniques for AD identification and highlight obstacles to guide future research.
Collapse
Affiliation(s)
- Isra Malik
- Department of Computer Science, COMSATS University Islamabad, Wah Campus, Wah Cantt 44000, Pakistan
| | - Ahmed Iqbal
- Department of Computer Science, Sir Syed Case Institute of Technology, Islamabad 45230, Pakistan
| | - Yeong Hyeon Gu
- Department of Artificial Intelligence and Data Science, College of AI Convergence, Daeyang AI Center, Sejong University, Seoul 05006, Republic of Korea
| | - Mugahed A. Al-antari
- Department of Artificial Intelligence and Data Science, College of AI Convergence, Daeyang AI Center, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
24
|
Yang Y, Zhang L, Wang H, Zhao J, Liu J, Chen Y, Lu J, Duan Y, Hu H, Peng H, Ye L. Development and validation of a risk prediction model for invasiveness of pure ground-glass nodules based on a systematic review and meta-analysis. BMC Med Imaging 2024; 24:149. [PMID: 38886695 PMCID: PMC11184730 DOI: 10.1186/s12880-024-01313-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Assessing the aggressiveness of pure ground glass nodules early on significantly aids in making informed clinical decisions. OBJECTIVE Developing a predictive model to assess the aggressiveness of pure ground glass nodules in lung adenocarcinoma is the study's goal. METHODS A comprehensive search for studies on the relationship between computed tomography(CT) characteristics and the aggressiveness of pure ground glass nodules was conducted using databases such as PubMed, Embase, Web of Science, Cochrane Library, Scopus, Wanfang, CNKI, VIP, and CBM, up to December 20, 2023. Two independent researchers were responsible for screening literature, extracting data, and assessing the quality of the studies. Meta-analysis was performed using Stata 16.0, with the training data derived from this analysis. To identify publication bias, Funnel plots and Egger tests and Begg test were employed. This meta-analysis facilitated the creation of a risk prediction model for invasive adenocarcinoma in pure ground glass nodules. Data on clinical presentation and CT imaging features of patients treated surgically for these nodules at the Third Affiliated Hospital of Kunming Medical University, from September 2020 to September 2023, were compiled and scrutinized using specific inclusion and exclusion criteria. The model's effectiveness for predicting invasive adenocarcinoma risk in pure ground glass nodules was validated using ROC curves, calibration curves, and decision analysis curves. RESULTS In this analysis, 17 studies were incorporated. Key variables included in the model were the largest diameter of the lesion, average CT value, presence of pleural traction, and spiculation. The derived formula from the meta-analysis was: 1.16×the largest lesion diameter + 0.01 × the average CT value + 0.66 × pleural traction + 0.44 × spiculation. This model underwent validation using an external set of 512 pure ground glass nodules, demonstrating good diagnostic performance with an ROC curve area of 0.880 (95% CI: 0.852-0.909). The calibration curve indicated accurate predictions, and the decision analysis curve suggested high clinical applicability of the model. CONCLUSION We established a predictive model for determining the invasiveness of pure ground-glass nodules, incorporating four key radiological indicators. This model is both straightforward and effective for identifying patients with a high likelihood of invasive adenocarcinoma.
Collapse
Affiliation(s)
- Yantao Yang
- Department of Thoracic and Cardiovascular Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, No. 519 Kunzhou Road, Xishan District, Kunming, China
| | - Libin Zhang
- Department of Thoracic Surgery, The First People's Hospital Of Yunnan Province, Kunming City, Yunnan Province, China
| | - Han Wang
- Department of Thoracic Surgery, The First People's Hospital Of Yunnan Province, Kunming City, Yunnan Province, China
| | - Jie Zhao
- Department of Thoracic and Cardiovascular Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, No. 519 Kunzhou Road, Xishan District, Kunming, China
| | - Jun Liu
- Department of Thoracic Surgery, The First People's Hospital Of Yunnan Province, Kunming City, Yunnan Province, China
| | - Yun Chen
- Department of Thoracic Surgery, The First People's Hospital Of Yunnan Province, Kunming City, Yunnan Province, China
| | - Jiagui Lu
- Department of Thoracic Surgery, The First People's Hospital Of Yunnan Province, Kunming City, Yunnan Province, China
| | - Yaowu Duan
- Department of Thoracic and Cardiovascular Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, No. 519 Kunzhou Road, Xishan District, Kunming, China
| | - Huilian Hu
- Department of Thoracic and Cardiovascular Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, No. 519 Kunzhou Road, Xishan District, Kunming, China
| | - Hao Peng
- Department of Thoracic Surgery, The First People's Hospital Of Yunnan Province, Kunming City, Yunnan Province, China.
| | - Lianhua Ye
- Department of Thoracic and Cardiovascular Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, No. 519 Kunzhou Road, Xishan District, Kunming, China.
| |
Collapse
|
25
|
Zhuang M, Li X, Qiu Z, Guan J. Does consensus contour improve robustness and accuracy in 18F-FDG PET radiomic features? EJNMMI Phys 2024; 11:48. [PMID: 38839641 PMCID: PMC11153434 DOI: 10.1186/s40658-024-00652-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024] Open
Abstract
PURPOSE The purpose of our study is to validate the robustness and accuracy of consensus contour in 2-deoxy-2-[18 F]fluoro-D-glucose (18 F-FDG) PET radiomic features. METHODS 225 nasopharyngeal carcinoma (NPC) and 13 extended cardio-torso (XCAT) simulated data were enrolled. All segmentation were performed with four segmentation methods under two different initial masks, respectively. Consensus contour (ConSeg) was then developed using the majority vote rule. 107 radiomic features were extracted by Pyradiomics based on segmentation and the intraclass correlation coefficient (ICC) was calculated for each feature between masks or among segmentation, respectively. In XCAT ICC between segmentation and simulated ground truth were also calculated to access the accuracy. RESULTS ICC varied with the dataset, segmentation method, initial mask and feature type. ConSeg presented higher ICC for radiomic features in robustness tests and similar ICC in accuracy tests, compared with the average of four segmentation results. Higher ICC were also generally observed in irregular initial masks compared with rectangular masks in both robustness and accuracy tests. Furthermore, 19 features (17.76%) had ICC ≥ 0.75 in both robustness and accuracy tests for any of the segmentation methods or initial masks. The dataset was observed to have a large impact on the correlation relationships between radiomic features, but not the segmentation method or initial mask. CONCLUSIONS The consensus contour combined with irregular initial mask could improve the robustness and accuracy in radiomic analysis to some extent. The correlation relationships between radiomic features and feature clusters largely depended on the dataset, but not segmentation method or initial mask.
Collapse
Affiliation(s)
- Mingzan Zhuang
- Department of Nuclear Medicine, Meizhou People's Hospital, Meizhou, China.
- Guangdong Engineering Technological Research Center of Clinical Molecular Diagnosis and Antibody Drugs, Meizhou People's Hospital, Meizhou, China.
| | - Xianru Li
- Department of Nuclear Medicine, Meizhou People's Hospital, Meizhou, China
| | - Zhifen Qiu
- Department of Nuclear Medicine, Meizhou People's Hospital, Meizhou, China
| | - Jitian Guan
- Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
26
|
Klontzas ME. Radiomics feature reproducibility: The elephant in the room. Eur J Radiol 2024; 175:111430. [PMID: 38508090 DOI: 10.1016/j.ejrad.2024.111430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 03/22/2024]
Affiliation(s)
- Michail E Klontzas
- Department of Medical Imaging, University Hospital of Heraklion, Heraklion, Crete, Greece; Department of Radiology, School of Medicine, University of Crete, Heraklion, Crete, Greece; Computational Biomedicine Laboratory, Institute of Computer Science, Foundation for Research and Technology (FORTH), Heraklion, Crete, Greece; Division of Radiology, Department for Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
27
|
Kocak B, Borgheresi A, Ponsiglione A, Andreychenko AE, Cavallo AU, Stanzione A, Doniselli FM, Vernuccio F, Triantafyllou M, Cannella R, Trotta R, Ghezzo S, Akinci D'Antonoli T, Cuocolo R. Explanation and Elaboration with Examples for CLEAR (CLEAR-E3): an EuSoMII Radiomics Auditing Group Initiative. Eur Radiol Exp 2024; 8:72. [PMID: 38740707 PMCID: PMC11091004 DOI: 10.1186/s41747-024-00471-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024] Open
Abstract
Overall quality of radiomics research has been reported as low in literature, which constitutes a major challenge to improve. Consistent, transparent, and accurate reporting is critical, which can be accomplished with systematic use of reporting guidelines. The CheckList for EvaluAtion of Radiomics research (CLEAR) was previously developed to assist authors in reporting their radiomic research and to assist reviewers in their evaluation. To take full advantage of CLEAR, further explanation and elaboration of each item, as well as literature examples, may be useful. The main goal of this work, Explanation and Elaboration with Examples for CLEAR (CLEAR-E3), is to improve CLEAR's usability and dissemination. In this international collaborative effort, members of the European Society of Medical Imaging Informatics-Radiomics Auditing Group searched radiomics literature to identify representative reporting examples for each CLEAR item. At least two examples, demonstrating optimal reporting, were presented for each item. All examples were selected from open-access articles, allowing users to easily consult the corresponding full-text articles. In addition to these, each CLEAR item's explanation was further expanded and elaborated. For easier access, the resulting document is available at https://radiomic.github.io/CLEAR-E3/ . As a complementary effort to CLEAR, we anticipate that this initiative will assist authors in reporting their radiomics research with greater ease and transparency, as well as editors and reviewers in reviewing manuscripts.Relevance statement Along with the original CLEAR checklist, CLEAR-E3 is expected to provide a more in-depth understanding of the CLEAR items, as well as concrete examples for reporting and evaluating radiomic research.Key points• As a complementary effort to CLEAR, this international collaborative effort aims to assist authors in reporting their radiomics research, as well as editors and reviewers in reviewing radiomics manuscripts.• Based on positive examples from the literature selected by the EuSoMII Radiomics Auditing Group, each CLEAR item explanation was further elaborated in CLEAR-E3.• The resulting explanation and elaboration document with examples can be accessed at https://radiomic.github.io/CLEAR-E3/ .
Collapse
Affiliation(s)
- Burak Kocak
- Department of Radiology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Basaksehir, Istanbul, Turkey.
| | - Alessandra Borgheresi
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, Ancona, Italy
- Department of Radiology, University Hospital "Azienda Ospedaliero Universitaria delle Marche", Via Conca 71, 60126, Ancona, Italy
| | - Andrea Ponsiglione
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Anna E Andreychenko
- Laboratory for Digital Public Health Technologies, ITMO University, St. Petersburg, Russian Federation
| | - Armando Ugo Cavallo
- Division of Radiology, Istituto Dermopatico dell'Immacolata (IDI) IRCCS, Rome, Italy
| | - Arnaldo Stanzione
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Fabio M Doniselli
- Neuroradiology Unit, Fondazione Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milano, Italy
| | - Federica Vernuccio
- Section of Radiology, Department of Biomedicine, Neuroscience and Advanced Diagnosis (Bi.N.D), University of Palermo, 90127, Palermo, Italy
| | - Matthaios Triantafyllou
- Department of Medical Imaging, University Hospital of Heraklion, 71110, Crete, Voutes, Greece
| | - Roberto Cannella
- Section of Radiology - Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| | - Romina Trotta
- Department of Radiology - Fatima Hospital, Seville, Spain
| | | | - Tugba Akinci D'Antonoli
- Institute of Radiology and Nuclear Medicine, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Renato Cuocolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy
| |
Collapse
|
28
|
Khodabakhshi Z, Motisi L, Bink A, Broglie MA, Rupp NJ, Fleischmann M, von der Grün J, Guckenberger M, Tanadini-Lang S, Balermpas P. MRI-based radiomics for predicting histology in malignant salivary gland tumors: methodology and "proof of principle". Sci Rep 2024; 14:9945. [PMID: 38688932 PMCID: PMC11061101 DOI: 10.1038/s41598-024-60200-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/18/2024] [Indexed: 05/02/2024] Open
Abstract
Defining the exact histological features of salivary gland malignancies before treatment remains an unsolved problem that compromises the ability to tailor further therapeutic steps individually. Radiomics, a new methodology to extract quantitative information from medical images, could contribute to characterizing the individual cancer phenotype already before treatment in a fast and non-invasive way. Consequently, the standardization and implementation of radiomic analysis in the clinical routine work to predict histology of salivary gland cancer (SGC) could also provide improvements in clinical decision-making. In this study, we aimed to investigate the potential of radiomic features as imaging biomarker to distinguish between high grade and low-grade salivary gland malignancies. We have also investigated the effect of image and feature level harmonization on the performance of radiomic models. For this study, our dual center cohort consisted of 126 patients, with histologically proven SGC, who underwent curative-intent treatment in two tertiary oncology centers. We extracted and analyzed the radiomics features of 120 pre-therapeutic MRI images with gadolinium (T1 sequences), and correlated those with the definitive post-operative histology. In our study the best radiomic model achieved average AUC of 0.66 and balanced accuracy of 0.63. According to the results, there is significant difference between the performance of models based on MRI intensity normalized images + harmonized features and other models (p value < 0.05) which indicates that in case of dealing with heterogeneous dataset, applying the harmonization methods is beneficial. Among radiomic features minimum intensity from first order, and gray level-variance from texture category were frequently selected during multivariate analysis which indicate the potential of these features as being used as imaging biomarker. The present bicentric study presents for the first time the feasibility of implementing MR-based, handcrafted radiomics, based on T1 contrast-enhanced sequences and the ComBat harmonization method in an effort to predict the formal grading of salivary gland carcinoma with satisfactory performance.
Collapse
Affiliation(s)
- Zahra Khodabakhshi
- Department of Radiation Oncology, Zurich University Hospital, Zurich, Switzerland
| | - Laura Motisi
- Department of Radiation Oncology, Zurich University Hospital, Zurich, Switzerland
| | - Andrea Bink
- Department of Neuroradadiology, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Martina A Broglie
- Department of Otorhinolaryngology, Zurich University Hospital, Zurich, Switzerland
| | - Niels J Rupp
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Maximilian Fleischmann
- Department of Radiation Oncology, J.W. Goethe University Hospital Frankfurt, Frankfurt, Germany
| | - Jens von der Grün
- Department of Radiation Oncology, Zurich University Hospital, Zurich, Switzerland
| | | | | | - Panagiotis Balermpas
- Department of Radiation Oncology, Zurich University Hospital, Zurich, Switzerland.
| |
Collapse
|
29
|
Huisman M, Akinci D'Antonoli T. What a Radiologist Needs to Know About Radiomics, Standardization, and Reproducibility. Radiology 2024; 310:e232459. [PMID: 38319170 DOI: 10.1148/radiol.232459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Affiliation(s)
- Merel Huisman
- From the Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands (M.H.); and Institute of Radiology and Nuclear Medicine, Cantonal Hospital Baselland, Liestal, Switzerland (T.A.D.)
| | - Tugba Akinci D'Antonoli
- From the Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands (M.H.); and Institute of Radiology and Nuclear Medicine, Cantonal Hospital Baselland, Liestal, Switzerland (T.A.D.)
| |
Collapse
|