1
|
Smolders A, Czerska K, Celicanin Z, Lomax A, Albertini F. The influence of daily imaging and target margin reduction on secondary cancer risk in image-guided and adaptive proton therapy. Phys Med Biol 2024; 69:225004. [PMID: 39481231 DOI: 10.1088/1361-6560/ad8da3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/31/2024] [Indexed: 11/02/2024]
Abstract
Objective. Image-guided and adaptive proton therapy rely on daily CBCT or CT imaging, which increases radiation dose and radiation-induced cancer risk. Online adaptation however also reduces setup uncertainty, and the additional risk might be compensated by reducing the setup robustness margin. This work developed a framework to investigate how much this robustness margin should be reduced to offset the secondary cancer risk from additional imaging dose and applied it to proton therapy for head-and-neck cancer.Approach. For five patients with head-and-neck cancer, voxel-wise CT and CBCT imaging doses were estimated with Monte Carlo radiation transport simulations, calibrated with air and PMMA phantom measurements. The total dose of several image-guided and adaptive treatments protocols was calculated by summing the planning CT dose, daily and weekly CBCT or CT dose, and therapy dose, robustly optimized with setup margins between 0 and 4 mm. These were compared to a reference protocol with 4 mm setup margin without daily imaging. All plans further used 3% range robustness. Organ-wise excess absolute risk (EAR) of cancer was calculated with three models to determine at which setup margin the total EAR of image-guided and adaptive treatment protocols was equal to the total EAR of the reference.Results. The difference between the simulated and measured CT and CBCT doses was within 10%. Using the Monte Carlo models, we found that a 1 mm setup margin reduction was sufficient for most patients, treatment protocols, and cancer risk models to compensate the additional risk imposed by daily and weekly imaging. For some protocols, even a smaller reduction sufficed, depending on the imaging frequency and type. The risk reduction by reducing the margin was mainly due to reducing the risk for carcinomas in the brain and, for some patients, the oral cavity.Significance. Our framework allows to compare an increased imaging dose with the reduced treatment dose from margin reductions in terms of radiation-induced cancer risk. It is extendable to different treatment sites, modalities, and imaging protocols, in clinic-specific or even patient-specific assessments.
Collapse
Affiliation(s)
- A Smolders
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
- Department of Physics, ETH Zurich, Zurich, Switzerland
| | - K Czerska
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | - Z Celicanin
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | - A Lomax
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
- Department of Physics, ETH Zurich, Zurich, Switzerland
| | - F Albertini
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| |
Collapse
|
2
|
Ravenscroft L, Baker L. The influence of miscentering on radiation dose during computed tomography head examinations and the role of localiser orientation: A phantom study. Radiography (Lond) 2024; 30:1517-1523. [PMID: 39303328 DOI: 10.1016/j.radi.2024.09.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/22/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
INTRODUCTION Computed Tomography (CT) chest, abdomen and pelvis research demonstrates a relationship between vertical phantom positioning and radiation dose. Moving the phantom closer or further from the x-ray source results in magnification or minimisation of the localiser. As automatic tube current modulation (ATCM) algorithms use localisers to estimate patient size and calculate required tube current, magnification or minimisation results in the incorrect provision of radiation dose. Radiation dose changes also depend on localiser orientation, changes with anteroposterior (AP) and posteroanterior (PA) localisers demonstrating an inverse relationship. However, within CT head literature often attributes radiation dose changes on impaired function of the bow-tie filter instead. The current study investigated the role of miscentering on ATCM function within CT head, paying particular attention to localiser orientation. METHODS Head scanning was performed with an anthropomorphic phantom at the isocentre, alongside ten vertically miscentered positions. This was performed three times, with an AP, PA and lateral localiser. CT dose index values at each miscentered level were compared across conditions. RESULTS Vertical miscentering altered radiation dose in both AP and PA conditions, radiation dose linearly increasing (up to 17.05%) when positioning the phantom closer to the x-ray source and decreasing when positioning away (up to -13.13%). Changes across AP and PA conditions demonstrated an inverse relationship. Radiation dose was unaffected in the lateral condition. CONCLUSIONS Miscentering during CT head alters ATCM function due to magnification/minimisation of the localiser image, causing ATCM algorithms to misinterpret patient size and miscalculate required tube current. IMPLICATIONS FOR PRACTICE Radiographers should be accurate when centering for CT head, avoiding any potential radiation dose changes. Further research into vertical miscentering and image quality during CT head is recommended.
Collapse
Affiliation(s)
- L Ravenscroft
- University Hospitals of Derby and Burton NHS Foundation Trust, Staffordshire, UK.
| | - L Baker
- Research and Development Imaging Support Unit, Nottingham University Hospitals NHS Trust, Nottingham, UK.
| |
Collapse
|
3
|
Chen XF, Zhang YC, Ding N, Liu L, Ji YD, Zhang C, Chi J. Radiation dose reduction and image quality in pediatric paranasal sinus CT: with automatic tube current modulation and iterative reconstruction technique. RADIATION PROTECTION DOSIMETRY 2024; 200:1470-1476. [PMID: 39270666 DOI: 10.1093/rpd/ncae192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/31/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024]
Abstract
Our objective is to evaluate radiation dose and image quality in pediatric paranasal sinus computed tomography (CT) with automatic tube current modulation (ATCM) and sinogram-affirmed iterative reconstruction algorithm (SAFIRE). CT scans from 80 patients were divided into two groups: Group A [80 kVp, pitch 1.5, 40 mAs, the filtered back projection (FBP) algorithm] and Group B (70 kVp, pitch 3, ATCM with reference at 40 mAs, SAFIRE strengths 1-5). We have evaluated image quality and radiation dose. Group B demonstrated significantly lower volume computed tomography dose index, dose-length product, and effective dose than Group A (0.13 ± 0.03 vs. 1.57 ± 0.01 mGy, 2.27 ± 0.82 vs. 19.88 ± 2.01 mGy·cm, and 0.0081 ± 0.0017 vs. 0.079 ± 0.013 mSv, respectively; P < .001). Increasing SAFIRE strengths correlated with noise reduction and SNR enhancement. Group B's noise and SNRsoft at SAFIRE strength 5 were comparable with Group A. Images reconstructed with SAFIRE strength 5 in Group B exhibit comparable image quality with FBP in Group A.
Collapse
Affiliation(s)
- Xiao-Fang Chen
- Department of Radiology, Suzhou Ninth People's Hospital Affiliated to Soochow University, No. 2666 Ludang Rd, Wujiang District, Suzhou, Jiangsu 215200, China
| | - Yi-Chi Zhang
- Department of Radiology, Suzhou Ninth People's Hospital Affiliated to Soochow University, No. 2666 Ludang Rd, Wujiang District, Suzhou, Jiangsu 215200, China
| | - Ning Ding
- Department of Radiology, Suzhou Ninth People's Hospital Affiliated to Soochow University, No. 2666 Ludang Rd, Wujiang District, Suzhou, Jiangsu 215200, China
| | - Li Liu
- Department of Radiology, Suzhou Ninth People's Hospital Affiliated to Soochow University, No. 2666 Ludang Rd, Wujiang District, Suzhou, Jiangsu 215200, China
| | - Yi-Ding Ji
- Department of Radiology, Suzhou Ninth People's Hospital Affiliated to Soochow University, No. 2666 Ludang Rd, Wujiang District, Suzhou, Jiangsu 215200, China
| | - Chao Zhang
- Department of Anesthesiology, Suzhou Ninth People's Hospital Affiliated to Soochow University, No. 2666 Ludang Rd, Wujiang District, Suzhou, Jiangsu 215200, China
| | - Jing Chi
- Department of Radiology, Suzhou Ninth People's Hospital Affiliated to Soochow University, No. 2666 Ludang Rd, Wujiang District, Suzhou, Jiangsu 215200, China
| |
Collapse
|
4
|
Inoue Y, Itoh H, Koizumi K, Sekimoto S, Hata H, Miyatake H, Yamane T, Mitsui K. Effects of organ dose modulation applied to a part of the scan range on radiation dose in computed tomography of the body. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2024; 44:031509. [PMID: 39121874 DOI: 10.1088/1361-6498/ad6d76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/09/2024] [Indexed: 08/12/2024]
Abstract
In computed tomography (CT), organ dose modulation (ODM) reduces radiation exposure from the anterior side to reduce radiation dose received by the radiosensitive organs located anteriorly. We investigated the effects of ODM applied to a part of the scan range on radiation dose in body CT. The thorax and thoraco-abdominopelvic region of an anthropomorphic whole-body phantom were imaged with and without ODM. ODM was applied to various regions, and the tube current modulation curves were compared. Additionally, the dose indices were compared with and without ODM in thoracic and thoraco-abdominopelvic CTs in 800 patients. ODM was applied to the thyroid in male patients and to the thyroid and breast in female patients. In phantom imaging of the thorax, the application of ODM below the scan range decreased the tube current, and that to the breast showed a further decrease. Decreased tube current was also observed in phantom imaging of the thoraco-abdominopelvic regions with ODM below the scan range, and the application of ODM to the whole scan range, thyroid, breast, and both thyroid and breast further reduced the tube current in the region to which ODM was applied. In patient imaging, the dose indices were significantly lower with ODM than without ODM, regardless of the scan range or sex. The absolute reduction in dose-length product was larger for thoraco-abdominopelvic CT (male, 43.2 mGy cm; female, 59.7 mGy cm) than for thoracic CT (male, 30.8 mGy cm; female, 37.6 mGy cm) in both sexes, indicating dose reduction in the abdominopelvic region to which ODM was not applied. In conclusion, The application of ODM in body CT reduces radiation dose not only in the region to which ODM is applied but also outside the region. In radiation dose management, it should be considered that even ODM applied to a limited region affects the dose indices.
Collapse
Affiliation(s)
- Yusuke Inoue
- Department of Diagnostic Radiology, Kitasato University School of Medicine, Sagamihara 252-0374, Kanagawa, Japan
| | - Hiroyasu Itoh
- Department of Radiology, Kitasato University Hospital, Sagamihara 252-0375, Kanagawa, Japan
| | - Koji Koizumi
- Department of Diagnostic Radiology, Kitasato University School of Medicine, Sagamihara 252-0374, Kanagawa, Japan
| | - Saori Sekimoto
- Department of Diagnostic Radiology, Kitasato University School of Medicine, Sagamihara 252-0374, Kanagawa, Japan
| | - Hirofumi Hata
- Department of Radiology, Kitasato University Hospital, Sagamihara 252-0375, Kanagawa, Japan
| | - Hiroki Miyatake
- Department of Radiology, Kitasato University Hospital, Sagamihara 252-0375, Kanagawa, Japan
| | - Takuro Yamane
- Department of Diagnostic Radiology, Kitasato University School of Medicine, Sagamihara 252-0374, Kanagawa, Japan
- Department of Radiology, JCHO Sagamino Hospital, 1-2-30 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, Japan
| | - Kohei Mitsui
- Department of Diagnostic Radiology, Kitasato University School of Medicine, Sagamihara 252-0374, Kanagawa, Japan
| |
Collapse
|
5
|
Mikami T, Yokomachi K, Mizuno K, Kobayashi M. Feasibility of Epicardial Adipose Tissue Quantification Using Non-electrocardiogram-Gated Chest Computed Tomography Images. J Comput Assist Tomogr 2024:00004728-990000000-00351. [PMID: 39146220 DOI: 10.1097/rct.0000000000001662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
OBJECTIVE Epicardial adipose tissue (EAT) is an important imaging indicator of cardiovascular risk. EAT volume is usually measured using electrocardiogram (ECG) gating. However, there are concerns regarding the influence of motion artifacts when measuring EAT volume on non-ECG-gated plain chest computed tomography (CT) images. Few studies have evaluated the EAT volume using non-ECG gating. This study aimed to validate the accuracy of EAT quantification using non-ECG-gated chest CT imaging. METHODS We included 100 patients (64 males, 36 females) who underwent simultaneous coronary artery calcification score imaging (ECG gated) and plain chest CT imaging (non-ECG gated). Images taken using non-ECG gating were reconstructed using the same field of view and slice thickness as those obtained with ECG gating. The EAT capacity of each image was measured and compared. An AZE Virtual Place (Canon) was used for the measurements. The Mann-Whitney U test and intraclass correlation coefficient were used for statistical analyses. P values <0.05 were considered statistically significant. Concordance was evaluated using Bland-Altman analysis. RESULTS The mean EAT volume measured by ECG-gated imaging was 156.5 ± 66.9 mL and 155.4 ± 67.9 mL by non-ECG-gated imaging, with no significant difference between the two groups ( P = 0.86). Furthermore, the EAT volumes measured using ECG-gated and non-ECG-gated imaging showed a strong correlation ( r = 0.95, P < 0.05). Bland-Altman analysis revealed that the mean error of the EAT volume (non-ECG-gated imaging - ECG-gated imaging) was -1.02 ± 2.95 mL (95% confidence interval, -6.49 to 4.76). CONCLUSIONS The EAT volume obtained using non-ECG-gated imaging was equivalent to that obtained using ECG-gated imaging.
Collapse
Affiliation(s)
- Tomio Mikami
- From the Department of Radiology, Ichiyokai Harada Hospital
| | | | - Kenji Mizuno
- From the Department of Radiology, Ichiyokai Harada Hospital
| | | |
Collapse
|
6
|
Larson DB. A Vision for Global CT Radiation Dose Optimization. J Am Coll Radiol 2024; 21:1311-1317. [PMID: 38302037 DOI: 10.1016/j.jacr.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 02/03/2024]
Abstract
The topic of CT radiation dose management is receiving renewed attention since the recent approval by CMS for new CT dose measures. Widespread variation in CT dose persists in practices across the world, suggesting that current dose optimization techniques are lacking. The author outlines a proposed strategy for facilitating global CT radiation dose optimization. CT radiation dose optimization can be defined as the routine use of CT scan parameters that consistently produce images just above the minimum threshold of acceptable image quality for a given clinical indication, accounting for relevant patient characteristics, using the most dose-efficient techniques available on the scanner. To accomplish this, an image quality-based target dose must be established for every protocol; for nonhead CT applications, these target dose values must be expressed as a function of patient size. As variation in outcomes is reduced, the dose targets can be decreased to more closely approximate the minimum image quality threshold. Maintaining CT radiation dose optimization requires a process control program, including measurement, evaluation, feedback, and control. This is best accomplished by local teams made up of radiologists, medical physicists, and technologists, supported with protected time and needed tools, including analytics and protocol management applications. Other stakeholders critical to facilitating CT radiation dose management include researchers, funding agencies, industry, regulators, accreditors, payers, and the ACR. Analogous coordinated approaches have transformed quality in other industries and can be the mechanism for achieving the universal goal of CT radiation dose optimization.
Collapse
Affiliation(s)
- David B Larson
- Executive Vice Chair, Department of Radiology, Stanford University School of Medicine, Stanford, California; and Chair, ACR Commission on Quality and Safety.
| |
Collapse
|
7
|
Malik MMUD, Alqahtani M, Hadadi I, AlQhtani AGM, Alqarni A. An Analysis of Computed Tomography Diagnostic Reference Levels in India Compared to Other Countries. Diagnostics (Basel) 2024; 14:1585. [PMID: 39125460 PMCID: PMC11311628 DOI: 10.3390/diagnostics14151585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
Computed Tomography (CT) is vital for diagnosing and monitoring medical conditions. However, increased usage raises concerns about patient radiation exposure. Diagnostic Reference Levels (DRLs) aim to minimize radiation doses in CT imaging. This study examines CT DRLs in India compared to other countries to identify optimization opportunities. A literature review was conducted to gather data from published studies, guidelines, and regulatory authorities. Findings show significant international variations in CT DRLs, with differences up to 50%. In India, DRLs also vary significantly across states. For head CT exams, Indian DRLs are generally 20-30% lower than international standards (27-47 mGy vs. 60 mGy). Conversely, for abdominal CT scans, Indian DRLs are 10-15% higher (12-16 mGy vs. 13 mGy). Factors influencing DRL variations include equipment differences, imaging protocols, patient demographics, and regulatory conditions. Dose-optimization techniques like automatic exposure control and iterative reconstruction can reduce radiation exposure by 25-60% while maintaining image quality. Comparative data highlight best practices, such as the United Kingdom's 30% reduction in CT doses from 1984 to 1995 via DRL implementation. This study suggests that adopting similar practices in India could reduce radiation doses by 20-40% for common CT procedures, promoting responsible CT usage and minimizing patient exposure.
Collapse
Affiliation(s)
- Maajid Mohi Ud Din Malik
- Dr. D.Y. Patil School of Allied Health Sciences, Dr. D.Y. Patil Vidyapeeth, Sant Tukaram Nagar, Pimpri, Pune 411018, MH, India;
| | - Mansour Alqahtani
- Department of Radiological Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia;
| | - Ibrahim Hadadi
- Department of Radiological Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Abdullah G. M. AlQhtani
- Radiology and Medical Imaging Department, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (A.G.M.A.); (A.A.)
| | - Abdullah Alqarni
- Radiology and Medical Imaging Department, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (A.G.M.A.); (A.A.)
| |
Collapse
|
8
|
Xu H, Li C, Zhang L, Ding Z, Lu T, Hu H. Immunotherapy efficacy prediction through a feature re-calibrated 2.5D neural network. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 249:108135. [PMID: 38569256 DOI: 10.1016/j.cmpb.2024.108135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND AND OBJECTIVE Lung cancer continues to be a leading cause of cancer-related mortality worldwide, with immunotherapy emerging as a promising therapeutic strategy for advanced non-small cell lung cancer (NSCLC). Despite its potential, not all patients experience benefits from immunotherapy, and the current biomarkers used for treatment selection possess inherent limitations. As a result, the implementation of imaging-based biomarkers to predict the efficacy of lung cancer treatments offers a promising avenue for improving therapeutic outcomes. METHODS This study presents an automatic system for immunotherapy efficacy prediction on the subjects with lung cancer, facilitating significant clinical implications. Our model employs an advanced 2.5D neural network that incorporates 2D intra-slice feature extraction and 3D inter-slice feature aggregation. We further present a lesion-focused prior to guide the re-calibration for intra-slice features, and a attention-based re-calibration for the inter-slice features. Finally, we design an accumulated back-propagation strategy to optimize network parameters in a memory-efficient fashion. RESULTS We demonstrate that the proposed method achieves impressive performance on an in-house clinical dataset, surpassing existing state-of-the-art models. Furthermore, the proposed model exhibits increased efficiency in inference for each subject on average. To further validate the effectiveness of our model and its components, we conducted comprehensive and in-depth ablation experiments and discussions. CONCLUSION The proposed model showcases the potential to enhance physicians' diagnostic performance due to its impressive performance in predicting immunotherapy efficacy, thereby offering significant clinical application value. Moreover, we conduct adequate comparison experiments of the proposed methods and existing advanced models. These findings contribute to our understanding of the proposed model's effectiveness and serve as motivation for future work in immunotherapy efficacy prediction.
Collapse
Affiliation(s)
- Haipeng Xu
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian 350014, China.
| | - Chenxin Li
- Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong 999077, SAR, China.
| | - Longfeng Zhang
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian 350014, China.
| | - Zhiyuan Ding
- School of Informatics, Xiamen University, Fujian 350014, China.
| | - Tao Lu
- Department of Radiology, Fujian Medical University Cancer Hospital and Fujian Cancer Hospital, Fujian 350014, China.
| | - Huihua Hu
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian 350014, China.
| |
Collapse
|
9
|
Zhang J, Zhang X. Size specific dose estimation in pediatric CT: preliminary study and conversion factors. RADIATION PROTECTION DOSIMETRY 2024; 200:677-686. [PMID: 38678314 DOI: 10.1093/rpd/ncae104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 03/02/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024]
Abstract
The objective of this paper is to compare the differences between volumetric CT dose index (CTDIVOL) and size-specific dose estimate (SSDEWED) based on water equivalent diameter (WED) in radiation dose measurement, and explore a new method for fast calculation of SSDEWED. The imaging data of 1238 cases of head, 1152 cases of chest and 976 cases of abdominopelvic were analyzed retrospectively, and they were divided into five age groups: ≤ 0.5, 0.5 ~ ≤ 1, 1 ~ ≤ 5, 5 ~ ≤ 10 and 10 ~ ≤ 15 years according to age. The area of interest (AR), CT value (CTR), lateral diameter (LAT) and anteroposterior diameter (AP) of the median cross-sectional image of the standard scanning range and the SSDEWED were manually calculated, and a t-test was used to compare the differences between CTDIVOL and SSDEWED in different age groups. Pearson analyzed the correlations between DE and age, DE and WED, f and age, and counted the means of conversion factors in each age group, and analyze the error ratios between SSDE calculated based on the mean age group conversion factors and actual measured SSDE. The CTDIVOL in head was (9.41 ± 1.42) mGy and the SSDEWED was (8.25 ± 0.70) mGy: the difference was statistically significant (t = 55.04, P < 0.001); the CTDIVOL of chest was (2.68 ± 0.91) mGy and the SSDEWED was (5.16 ± 1.16) mGy, with a statistically significant difference (t = -218.78, P < 0.001); the CTDIVOL of abdominopelvic was (3.09 ± 1.58) mGy and the SSDEWED was (5.89 ± 2.19) mGy: the difference was also statistically significant (t = -112.28, P < 0.001). The CTDIVOL was larger than the SSDEWED in the head except for the ≤ 0.5 year subgroup, and CTDIVOL was smaller than SSDEWED within each subgroup in chest and abdominopelvic. There were strong negative correlations between f and age (head: r = -0.81; chest: r = -0.89; abdominopelvic: r = -0.86; P < 0.001). The mean values of f at each examination region were 0.81 ~ 1.01 for head, 1.65 ~ 2.34 for chest and 1.71 ~ 2.35 for abdominopelvic region. The SSDEWED could be accurately estimated using the mean f of each age subgroup. SSDEWED can more accurately measure the radiation dose of children. For children of different ages and examination regions, the SSDEWED conversion factors based on age subgroup can be quickly adjusted and improve the accuracy of radiation dose estimation.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Radiology, Children's Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Xiaojun Zhang
- Department of Radiology, Children's Hospital of Nanjing Medical University, Nanjing 210000, China
| |
Collapse
|
10
|
Yang CC, Lin KW. Improving the detection of hypo-vascular liver metastases in multiphase contrast-enhanced CT with slice thickness less than 5 mm using DenseNet. Radiography (Lond) 2024; 30:759-769. [PMID: 38458104 DOI: 10.1016/j.radi.2024.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/17/2024] [Accepted: 02/27/2024] [Indexed: 03/10/2024]
Abstract
INTRODUCTION Thinner slices are more susceptible in detecting small lesions but suffer from higher statistical fluctuation. This work aimed to reduce image noise in multiphase contrast-enhanced CT reconstructed with slice thickness thinner than the clinical setting (i.e., 5 mm) using convolutional neural network (CNN) for enabling better detection of hypo-vascular liver metastasis. METHODS A DenseNet model was used to generate noise map for multiphase CT reconstructed with slice thickness of 2.5 mm and 1.25 mm. Image denoising was conducted by subtracting the CNN-generated noise map from CT images with reduced photon flux due to thinner slice thickness. The performance of DenseNet was evaluated on CT scans of electron density phantoms and patients with hypovascular liver metastases less than 1.5 cm in terms of Hounsfield Unit (HU) variation, statistical fluctuation, and contrast-to-noise ratio (CNR). RESULTS The phantom study demonstrated that the CNN-based denoising method was able to reduce statistical fluctuation in CT images reconstructed with slice thickness of 2.5 mm and 1.25 mm without causing significant edge blurring or variation in HU values. With regards to patient study, it was found that the denoised 2.5-mm and 1.25-mm slices had higher CNR than the conventional 5-mm slices for hypo-vascular liver metastases in all 4 phases of multiphase CT. CONCLUSION Our results demonstrated that the detection of hypo-vascular liver metastases in multiphase contrast-enhanced CT with slice thickness less than 5 mm could be improved by using the CNN-based denoising method. IMPLICATIONS FOR PRACTICE Reconstruction slice thickness has a strong influence on the image quality of CT imaging. A CNN-based denoising method was used in this work to reduce the image noise in multiphase contrast-enhanced CT reconstructed with slice thickness less than 5 mm.
Collapse
Affiliation(s)
- C-C Yang
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| | - K-W Lin
- Department of Radiology, E-Da Dachang Hospital, Kaohsiung, Taiwan
| |
Collapse
|
11
|
Choi MH, Lee SW, Pak S. Low-dose versus conventional CT urography using dual-source CT with different time-current product values and the same tube voltage: image quality and diagnostic performance in various diagnoses. Br J Radiol 2024; 97:399-407. [PMID: 38308025 DOI: 10.1093/bjr/tqad029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/05/2023] [Accepted: 11/14/2023] [Indexed: 02/04/2024] Open
Abstract
OBJECTIVES To compare the image quality and diagnostic performance of low-dose CT urography to that of concurrently acquired conventional CT using dual-source CT. METHODS This retrospective study included 357 consecutive CT urograms performed by third-generation dual-source CT in a single institution between April 2020 and August 2021. Two-phase CT images (unenhanced phase, excretory phase with split bolus) were obtained with two different tube current-time products (280 mAs for the conventional-dose protocol and 70 mAs for the low-dose protocol) and the same tube voltage (90 kVp) for the two X-ray tubes. Iterative reconstruction was applied for both protocols. Two radiologists independently performed quantitative and qualitative image quality analysis and made diagnoses. The correlation between the noise level or the effective radiation dose and the patients' body weight was evaluated. RESULTS Significantly higher noise levels resulting in a significantly lower liver signal-to-noise ratio and contrast-to-noise ratio were noted in low-dose images compared to conventional images (P < .001). Qualitative analysis by both radiologists showed significantly lower image quality in low-dose CT than in conventional CT images (P < .001). Patient's body weight was positively correlated with noise and effective radiation dose (P < .001). Diagnostic performance for various diseases, including urolithiasis, inflammation, and mass, was not different between the two protocols. CONCLUSIONS Despite inferior image quality, low-dose CT urography with 70 mAs and 90 kVp and iterative reconstruction demonstrated diagnostic performance equivalent to that of conventional CT for identifying various diseases of the urinary tract. ADVANCES IN KNOWLEDGE Low-dose CT (25% radiation dose) with low tube current demonstrated diagnostic performance comparable to that of conventional CT for a variety of urinary tract diseases.
Collapse
Affiliation(s)
- Moon Hyung Choi
- Department of Radiology, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 03312, Republic of Korea
| | - Sheen-Woo Lee
- Department of Radiology, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 03312, Republic of Korea
| | - Seongyong Pak
- Siemens Healthineers Ltd, Seoul 06620, Republic of Korea
| |
Collapse
|
12
|
Usanase N, Uzun B, Ozsahin DU, Ozsahin I. A look at radiation detectors and their applications in medical imaging. Jpn J Radiol 2024; 42:145-157. [PMID: 37733205 DOI: 10.1007/s11604-023-01486-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/28/2023] [Indexed: 09/22/2023]
Abstract
The effectiveness and precision of disease diagnosis and treatment have increased, thanks to developments in clinical imaging over the past few decades. Science is developing and progressing steadily in imaging modalities, and effective outcomes are starting to show up as a result of the shorter scanning periods needed as well as the higher-resolution images generated. The choice of one clinical device over another is influenced by technical disparities among the equipment, such as detection medium, shorter scan time, patient comfort, cost-effectiveness, accessibility, greater sensitivity and specificity, and spatial resolution. Lately, computational algorithms, artificial intelligence (AI), in particular, have been incorporated with diagnostic and treatment techniques, including imaging systems. AI is a discipline comprised of multiple computational and mathematical models. Its applications aided in manipulating sophisticated data in imaging processes and increased imaging tests' accuracy and precision during diagnosis. Computed tomography (CT), positron emission tomography (PET), and Single Photon Emission Computed Tomography (SPECT) along with their corresponding radiation detectors have been reviewed in this study. This review will provide an in-depth explanation of the above-mentioned imaging modalities as well as the radiation detectors that are their essential components. From the early development of these medical instruments till now, various modifications and improvements have been done and more is yet to be established for better performance which calls for a necessity to capture the available information and record the gaps to be filled for better future advances.
Collapse
Affiliation(s)
- Natacha Usanase
- Operational Research Centre in Healthcare, Near East University, Mersin 10, Nicosia, Turkey.
| | - Berna Uzun
- Operational Research Centre in Healthcare, Near East University, Mersin 10, Nicosia, Turkey
- Department of Statistics, Carlos III Madrid University, Getafe, Madrid, Spain
| | - Dilber Uzun Ozsahin
- Operational Research Centre in Healthcare, Near East University, Mersin 10, Nicosia, Turkey
- Medical Diagnostic Imaging Department, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Ilker Ozsahin
- Operational Research Centre in Healthcare, Near East University, Mersin 10, Nicosia, Turkey
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY, 10065, USA
| |
Collapse
|
13
|
Inoue Y, Mori M, Itoh H, Mitsui K, Miyatake H, Yamane T, Hata H. Age-Dependent Changes in Effective Dose in Pediatric Brain CT: Comparisons of Estimation Methods. Tomography 2023; 10:14-24. [PMID: 38250948 PMCID: PMC10821001 DOI: 10.3390/tomography10010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
The effective dose (ED) in computed tomography (CT) may be calculated by multiplying the dose-length product (DLP) by a conversion factor. As children grow, automatic exposure control increases the DLP, while the conversion factor decreases; these two changes affect the ED in opposite ways. The aim of this study was to investigate the methods of ED estimation according to age in pediatric brain CT. We retrospectively analyzed 980 brain CT scans performed for various clinical indications in children. The conversion factor at each age, in integer years, was determined based on the values at 0, 1, 5, and 10 years provided by the International Commission on Radiological Protection (ICRP), using a curve (curve method) or lines (linear method). In the simple method, the ED was estimated using the ICRP conversion factor for the closest age. We also analyzed the ED estimated by a radiation dose management system. Although the median DLP at each age increased with age, the median ED estimated by the curve method was highest at 0 years, decreased with age, and then plateaued at 9 years. The linear method yielded mildly different results, especially at 2 and 3 years. The ED estimated by the simple method or the radiation dose management system showed inconsistent, up-and-down changes with age. In conclusion, the ED in pediatric brain CT decreases with age despite increased DLP. Determination of the conversion factor at each age using a curve is expected to contribute to estimating the ED in pediatric CT according to age.
Collapse
Affiliation(s)
- Yusuke Inoue
- Department of Diagnostic Radiology, Kitasato University School of Medicine, Sagamihara 252-0374, Japan; (M.M.); (K.M.); (T.Y.)
| | - Masahiro Mori
- Department of Diagnostic Radiology, Kitasato University School of Medicine, Sagamihara 252-0374, Japan; (M.M.); (K.M.); (T.Y.)
| | - Hiroyasu Itoh
- Department of Radiology, Kitasato University Hospital, Sagamihara 252-0375, Japan; (H.I.); (H.M.); (H.H.)
| | - Kohei Mitsui
- Department of Diagnostic Radiology, Kitasato University School of Medicine, Sagamihara 252-0374, Japan; (M.M.); (K.M.); (T.Y.)
| | - Hiroki Miyatake
- Department of Radiology, Kitasato University Hospital, Sagamihara 252-0375, Japan; (H.I.); (H.M.); (H.H.)
| | - Takuro Yamane
- Department of Diagnostic Radiology, Kitasato University School of Medicine, Sagamihara 252-0374, Japan; (M.M.); (K.M.); (T.Y.)
| | - Hirofumi Hata
- Department of Radiology, Kitasato University Hospital, Sagamihara 252-0375, Japan; (H.I.); (H.M.); (H.H.)
| |
Collapse
|
14
|
Bouchareb Y, Al-Maimani A, Al-Balushi AY, Al-Kalbani M, Al-Maskari H, Al-Dhuhli H, Al-Kindi F. Establishment of diagnostic reference levels in computed tomography in two large hospitals in Oman. RADIATION PROTECTION DOSIMETRY 2023; 199:2148-2155. [PMID: 37594414 DOI: 10.1093/rpd/ncad225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/19/2023]
Abstract
This study aimed to estimate diagnostic reference levels (DRLs) for the most frequent computed tomography (CT) imaging examinations to monitor and better control radiation doses delivered to patients. Seven CT imaging examinations: Head, Chest, Chest High Resolution (CHR), Abdomen Pelvis (AP), Chest Abdomen Pelvis (CAP), Kidneys Ureters Bladder (KUB) and Cardiac, were considered. CT dosimetric quantities and patient demographics were collected from data storage systems. Local typical values for DRLs were calculated for CTDIvol (mGy), dose length product (DLP) (mGy·cm) and effective doses (mSv) were estimated for each examination. The calculated DRLs were given as (median CTDIvol (mGy):median DLP (mGy·cm)): Head: 39:657; Chest: 13:451; CHR: 6:228; AP: 12:578; CAP: 20:807; KUB: 7:315, and Cardiac: 2:31. Estimated effective doses for Head, Chest, CHR, AP, CAP, KUB and Cardiac were 1.3, 12.7, 6.3, 12.5, 18.1, 5.8 and 0.8 mSv, respectively. The estimated DRLs will act as guidance doses to prevent systematic excess of patient doses.
Collapse
Affiliation(s)
- Yassine Bouchareb
- Sultan Qaboos University, College of Medicine & Health Sciences, Muscat, Oman
| | - Amal Al-Maimani
- Sultan Qaboos University Hospital, Radiology and Molecular Imaging, Muscat, Oman
| | | | | | | | - Humoud Al-Dhuhli
- Sultan Qaboos University Hospital, Radiology and Molecular Imaging, Muscat, Oman
| | - Faiza Al-Kindi
- Radiology Department, Royal Hospital, PO. Box 1331, Muscat, Oman
| |
Collapse
|
15
|
Vöth T, Koenig T, Eulig E, Knaup M, Wiesmann V, Hörndler K, Kachelrieß M. Real-time 3D reconstruction of guidewires and stents using two update X-ray projections in a rotating imaging setup. Med Phys 2023; 50:5312-5330. [PMID: 37458680 DOI: 10.1002/mp.16612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND Vascular diseases are often treated minimally invasively. The interventional material (stents, guidewires, etc.) used during such percutaneous interventions are visualized by some form of image guidance. Today, this image guidance is usually provided by 2D X-ray fluoroscopy, that is, a live 2D image. 3D X-ray fluoroscopy, that is, a live 3D image, could accelerate existing and enable new interventions. However, existing algorithms for the 3D reconstruction of interventional material require either too many X-ray projections and therefore dose, or are only capable of reconstructing single, curvilinear structures. PURPOSE Using only two new X-ray projections per 3D reconstruction, we aim to reconstruct more complex arrangements of interventional material than was previously possible. METHODS This is achieved by improving a previously presented deep learning-based reconstruction pipeline, which assumes that the X-ray images are acquired by a continuously rotating biplane system, in two ways: (a) separation of the reconstruction of different object types, (b) motion compensation using spatial transformer networks. RESULTS Our pipeline achieves submillimeter accuracy on measured data of a stent and two guidewires inside an anthropomorphic phantom with respiratory motion. In an ablation study, we find that the aforementioned algorithmic changes improve our two figures of merit by 75 % (1.76 mm → 0.44 mm) and 59 % (1.15 mm → 0.47 mm) respectively. A comparison of our measured dose area product (DAP) rate to DAP rates of 2D fluoroscopy indicates a roughly similar dose burden. CONCLUSIONS This dose efficiency combined with the ability to reconstruct complex arrangements of interventional material makes the presented algorithm a promising candidate to enable 3D fluoroscopy.
Collapse
Affiliation(s)
- Tim Vöth
- Division of X-Ray Imaging and Computed Tomography, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
- R&D Advanced Technologies, Ziehm Imaging GmbH, Nürnberg, Germany
| | - Thomas Koenig
- R&D Advanced Technologies, Ziehm Imaging GmbH, Nürnberg, Germany
| | - Elias Eulig
- Division of X-Ray Imaging and Computed Tomography, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Michael Knaup
- Division of X-Ray Imaging and Computed Tomography, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Veit Wiesmann
- R&D Advanced Technologies, Ziehm Imaging GmbH, Nürnberg, Germany
| | - Klaus Hörndler
- Managing Director, Ziehm Imaging GmbH, Nürnberg, Germany
| | - Marc Kachelrieß
- Division of X-Ray Imaging and Computed Tomography, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
16
|
Inoue Y, Itoh H, Nagahara K, Hata H, Mitsui K. Relationships of Radiation Dose Indices with Body Size Indices in Adult Body Computed Tomography. Tomography 2023; 9:1381-1392. [PMID: 37489478 PMCID: PMC10366833 DOI: 10.3390/tomography9040110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/08/2023] [Accepted: 07/12/2023] [Indexed: 07/26/2023] Open
Abstract
We investigated the relationships between radiation dose indices and body size indices in adult body computed tomography (CT). A total of 3200 CT scans of the thoracic, abdominal, abdominopelvic, or thoraco-abdominopelvic regions performed using one of four CT scanners were analyzed. Volume CT dose index (CTDIvol) and dose length product (DLP) were compared with various body size indices derived from CT images (water-equivalent diameter, WED; effective diameter, ED) and physical measurements (weight, weight/height, body mass index, and body surface area). CTDIvol showed excellent positive linear correlations with WED and ED. CTDIvol also showed high linear correlations with physical measurement-based indices, whereas the correlation coefficients were lower than for WED and ED. Among the physical measurement-based indices, weight/height showed the strongest correlations, followed by weight. Compared to CTDIvol, the correlation coefficients with DLP tended to be lower for WED, ED, and weight/height and higher for weight. The standard CTDIvol values at 60 kg and dose increase ratios with increasing weight, estimated using the regression equations, differed among scanners. Radiation dose indices closely correlated with body size indices such as WED, ED, weight/height, and weight. The relationships between dose and body size differed among scanners, indicating the significance of dose management considering body size.
Collapse
Affiliation(s)
- Yusuke Inoue
- Department of Diagnostic Radiology, Kitasato University School of Medicine, Sagamihara 252-0374, Japan
| | - Hiroyasu Itoh
- Department of Radiology, Kitasato University Hospital, Sagamihara 252-0375, Japan
| | - Kazunori Nagahara
- Department of Radiology, Kitasato University Hospital, Sagamihara 252-0375, Japan
| | - Hirofumi Hata
- Department of Radiology, Kitasato University Hospital, Sagamihara 252-0375, Japan
| | - Kohei Mitsui
- Department of Diagnostic Radiology, Kitasato University School of Medicine, Sagamihara 252-0374, Japan
| |
Collapse
|
17
|
Bohang SAM, Sohaimi N. An Overview on the Alignment of Radiation Protection in Computed Tomography with Maqasid al-Shari'ah in the Context of al-Dharuriyat. Malays J Med Sci 2023; 30:60-72. [PMID: 37425388 PMCID: PMC10325131 DOI: 10.21315/mjms2023.30.3.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 01/08/2022] [Indexed: 07/11/2023] Open
Abstract
The increasing utilisation of computed tomography (CT) in the medical field has raised a greater concern regarding the radiation-induced health effects as CT imposes high radiation risks on the exposed individual. Adherence to radiation protection measures in CT as endorsed by regulatory bodies; justification, optimisation and dose limit, is essential to minimise radiation risks. Islam values every human being and Maqasid al-Shari'ah helps to protect human beings through its sacred principles which aim to fulfil human beings' benefits (maslahah) and prevent mischief (mafsadah). Alignment of the concept of radiation protection in CT within the framework of al-Dharuriyat; protection of faith or religion (din), protection of life (nafs), protection of lineage (nasl), protection of intellect ('aql) and protection of property (mal) is essential. This strengthens the concept and practices of radiation protection in CT among radiology personnel, particularly Muslim radiographers. The alignment provides supplementary knowledge towards the integration of knowledge fields between Islamic worldview and radiation protection in medical imaging, particularly in CT. This paper is hoped to set a benchmark for future studies on the integration of knowledge between the Islamic worldview and radiation protection in medical imaging in terms of other classifications of Maqasid al-Shari'ah; al-Hajiyat and al-Tahsiniyat.
Collapse
Affiliation(s)
- Siti Aisyah Munirah Bohang
- Department of Diagnostic Imaging and Radiotherapy, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Pahang, Malaysia
| | - Norhanna Sohaimi
- Department of Diagnostic Imaging and Radiotherapy, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Pahang, Malaysia
| |
Collapse
|
18
|
Inoue Y. Radiation Dose Management in Computed Tomography: Introduction to the Practice at a Single Facility. Tomography 2023; 9:955-966. [PMID: 37218938 DOI: 10.3390/tomography9030078] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/24/2023] Open
Abstract
Although the clinical benefits of computed tomography (CT) are undoubtedly high, radiation doses received by patients are also relatively high; therefore, radiation dose management is mandatory to optimize CT radiation doses and prevent excessive radiation events. This article describes CT dose management practice at a single facility. Many imaging protocols are used in CT depending on the clinical indications, scan region, and CT scanner; thus, managing the protocols is the first step for optimization. The appropriateness of the radiation dose for each protocol and scanner is verified, while answering whether the dose is the minimum to obtain diagnostic-quality images. Moreover, examinations with exceptionally high doses are identified, and the cause and clinical validity of the high dose are assessed. Daily imaging practice should follow standardized procedures, avoiding operator-dependent errors, and information required for radiation dose management should be recorded at each examination. The imaging protocols and procedures are reviewed for continuous improvement based on regular dose analysis and multidisciplinary team collaboration. The participation of many staff members in the dose management process is expected to contribute to promoting radiation safety through increased staff awareness.
Collapse
Affiliation(s)
- Yusuke Inoue
- Department of Diagnostic Radiology, Kitasato University School of Medicine, Sagamihara 252-0374, Japan
| |
Collapse
|
19
|
Fujii K, Inoue Y, Itoh H, Sasa R, Hata H, Mitsui K. Size-specific dose estimates in pediatric brain CT in relation to age and weight. RADIATION PROTECTION DOSIMETRY 2023:7133666. [PMID: 37083027 DOI: 10.1093/rpd/ncad133] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/24/2023] [Accepted: 03/21/2023] [Indexed: 05/03/2023]
Abstract
The size-specific dose estimate (SSDE) is used for radiation dose management in computed tomography (CT) and represents patient's absorbed dose more accurately than volume CT dose index. The relationship between SSDE and age or weight was investigated using 980 pediatric brain CT scans. Monolinear, power, and bilinear functions were fitted to the plots of SSDE against age or weight, and SSDE was estimated using the obtained functions. SSDE showed a biphasic increase with increasing age and weight: a rapid initial increase and subsequent a slow increase. Bilinear and power functions were successfully fitted to the plots, and mean estimation errors were close to 0, irrespective of the age or weight group. The standard SSDE values estimated from the obtained functions agreed well with the median values for each age or weight group. The curve-fitting method is expected to aid radiation dose management for pediatric brain CT using SSDE.
Collapse
Affiliation(s)
- Kaoru Fujii
- Department of Diagnostic Radiology, Kitasato University School of Medicine, Sagamihara 252-0374, Japan
| | - Yusuke Inoue
- Department of Diagnostic Radiology, Kitasato University School of Medicine, Sagamihara 252-0374, Japan
| | - Hiroyasu Itoh
- Department of Radiology, Kitasato University Hospital, Sagamihara 252-0329, Japan
| | - Ryosuke Sasa
- Department of Radiology, Kitasato University Hospital, Sagamihara 252-0329, Japan
| | - Hirofumi Hata
- Department of Radiology, Kitasato University Hospital, Sagamihara 252-0329, Japan
| | - Kohei Mitsui
- Department of Diagnostic Radiology, Kitasato University School of Medicine, Sagamihara 252-0374, Japan
| |
Collapse
|
20
|
A new approach to dose reference levels in pediatric CT: Age and size-specific dose estimation. Radiat Phys Chem Oxf Engl 1993 2023. [DOI: 10.1016/j.radphyschem.2022.110698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Urikura A, Miyauchi Y, Yoshida T, Ishita Y, Takiguchi K, Endo M, Aramaki T. Patient dose increase caused by posteroanterior CT localizer radiographs. Radiography (Lond) 2023; 29:334-339. [PMID: 36709524 DOI: 10.1016/j.radi.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/28/2023]
Abstract
INTRODUCTION The aim of this study was to compare the output dose (volume CT dose index [ CTDIvol], and dose length product [DLP]) of automatic tube current modulation (ATCM) determined by localizer radiographs obtained in the anteroposterior (AP) and posteroanterior (PA) directions. METHODS One hundred and twenty-four patients who underwent upper abdomen and/or chest-to-pelvis computed tomography (CT) were included. Patients underwent two series of CT examinations, and localizer radiographs were obtained in the AP and PA directions. The horizontal diameter of the localizer radiograph, scan length, CTDIvol, and DLP were measured. RESULTS There was no significant difference in the scan length; however, all the other values were significantly higher in the PA direction. The mean horizontal diameter was 33.1 ± 2.6 cm and 35.4 ± 2.9 cm in the AP and PA directions of the localizer radiographs, respectively. The CTDIvol and DLP in the PA direction increased by approximately 7-8%. Bland-Altman plots between AP and PA localizer directions in upper abdominal CT showed a positive bias of 1.1 mGy and 30.0 mGy cm for CTDIvol and DLP, respectively. Correspondingly, chest-to-pelvic CT showed a positive bias of 0.93 mGy and 69.3 mGy cm for CTDIvol and DLP, respectively. CONCLUSION The output dose of ATCM determined by localizer radiographs obtained in the PA direction was increased compared to the AP direction. Localizer radiographs obtained in the AP direction should be preferred for optimizing the output dose using ATCM. IMPLICATIONS FOR PRACTICE Based on the evidence of this study, localizer radiographs obtained in the AP direction should be preferred for optimizing the output dose in CT examinations.
Collapse
Affiliation(s)
- Atsushi Urikura
- Division of Diagnostic Radiology, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi, Sunto, Shizuoka 411-8777, Japan; Department of Radiological Technology, Radiological Diagnosis, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| | - Yosuke Miyauchi
- Division of Diagnostic Radiology, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi, Sunto, Shizuoka 411-8777, Japan.
| | - Tsukasa Yoshida
- Division of Diagnostic Radiology, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi, Sunto, Shizuoka 411-8777, Japan.
| | - Yuya Ishita
- Division of Diagnostic Radiology, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi, Sunto, Shizuoka 411-8777, Japan.
| | - Keisuke Takiguchi
- Division of Diagnostic Radiology, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi, Sunto, Shizuoka 411-8777, Japan.
| | - Masahiro Endo
- Division of Comprehensive Radiology Center, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8677, Japan.
| | - Takeshi Aramaki
- Division of Diagnostic Radiology, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi, Sunto, Shizuoka 411-8777, Japan; Division of Interventional Radiology, Shizuoka Cancer Center, 1007 Shimonagakubo Nagaizumi-cho, Sunto-gun, Shizuoka 411-8777, Japan.
| |
Collapse
|
22
|
Mehnati P, Malekzadeh R, Hussein HA, Obaid NH, Ebrahimiyan S, Sooteh MY, Refahi S. Trade-off between breast dose and image quality using composite bismuth shields in computed tomography: A phantom study. J Med Imaging Radiat Sci 2023; 54:145-152. [PMID: 36646544 DOI: 10.1016/j.jmir.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/26/2022] [Accepted: 12/07/2022] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Many researchers have suggested that bismuth composite shields (BCS) reduce breast dose remarkably; however, the level of this reduction and its impact on image quality has not been assessed. This study aimed to evaluate the efficiency of nano- and micro- BCS in reducing the dose and image quality during chest computed tomography (CT) scans. MATERIALS AND METHODS Bismuth shields composed of 15 weighting percentage (wt%) and 20 wt% bismuth oxide (Bi2O3) nano- and micro-particles mixed in silicon rubber polymer were constructed in 1 and 1.5 mm thicknesses. The physical properties of nanoparticles were assessed using a scanning electron microscope (SEM), X-ray diffraction (XRD), and energy-dispersive X-ray (EDX). Breast radiation doses were measured experimentally during chest CT using PMMA standard dosimetry phantom (body phantom, 76-419-4150, Fluke Biomedical) in the presence of the shields. The image quality was assessed by calculating signal and noise values in different regions. RESULTS The SEM images showed that the average size of Bi2O3 nano- and micro-particles was about 70 nm and 150 μm, respectively. The breast doses were reduced by increasing the shield thickness/bismuth weight percentage. The maximum dose reduction was related to the 20% weight of Bi2O3 nano-particles and a thickness of 1.5 mm. The minimum dose reduction was related to the 15% weight of Bi2O3 micro-particles with a thickness of 1 mm. The mean noise was higher in nano-particle bismuth shields than in micro-particles. CONCLUSION Composite shields containing bismuth nano- and micro-particles can reduce the breast dose during chest CT examinations while negatively impacting diagnostic image quality. Several critical factors, such as bismuth concentration, particle size, and shield thickness, directly affect the efficiency.
Collapse
Affiliation(s)
- Parinaz Mehnati
- Department of Medical Physics, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Malekzadeh
- Department of Medical Physics, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Noor H Obaid
- Anesthesia Techniques Department, Al-Mustaqbal University College, Babylon, Iraq
| | - Saadat Ebrahimiyan
- Department of Medical Physics and Radiology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Mohammad Yousefi Sooteh
- Department of Medical Physics, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Refahi
- Department of Medical Physics, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
23
|
Qu S, Liu H, Xie T, Giger ML, Quan G, Zaidi H. Patient-specific fetal radiation dosimetry for pregnant patients undergoing abdominal and pelvic CT imaging. Med Phys 2023. [PMID: 36799714 DOI: 10.1002/mp.16304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/18/2023] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Accurate estimation of fetal radiation dose is crucial for risk-benefit analysis of radiological imaging, while the radiation dosimetry studies based on individual pregnant patient are highly desired. PURPOSE To use Monte Carlo calculations for estimation of fetal radiation dose from abdominal and pelvic computed tomography (CT) examinations for a population of patients with a range of variations in patients' anatomy, abdominal circumference, gestational age (GA), fetal depth (FD), and fetal development. METHODS Forty-four patient-specific pregnant female models were constructed based on CT imaging data of pregnant patients, with gestational ages ranging from 8 to 35 weeks. The simulation of abdominal and pelvic helical CT examinations was performed on three validated commercial scanner systems to calculate organ-level fetal radiation dose. RESULTS The absorbed radiation dose to the fetus ranged between 0.97 and 2.24 mGy, with an average of 1.63 ± 0.33 mGy. The CTDIvol -normalized fetal dose ranged between 0.56 and 1.30, with an average of 0.94 ± 0.25. The normalized fetal organ dose showed significant correlations with gestational age, maternal abdominal circumference (MAC), and fetal depth. The use of ATCM technique increased the fetal radiation dose in some patients. CONCLUSION A technique enabling the calculation of organ-level radiation dose to the fetus was developed from models of actual anatomy representing a range of gestational age, maternal size, and fetal position. The developed maternal and fetal models provide a basis for reliable and accurate radiation dose estimation to fetal organs.
Collapse
Affiliation(s)
- Shuiyin Qu
- Institute of Radiation Medicine, Fudan University, Shanghai, China.,Department of Engineering Physics, Tsinghua University, Beijing, China
| | - Haikuan Liu
- Institute of Radiation Medicine, Fudan University, Shanghai, China
| | - Tianwu Xie
- Institute of Radiation Medicine, Fudan University, Shanghai, China.,Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
| | - Maryellen L Giger
- University of Chicago, Department of Radiology, Committee on Medical Physics, Chicago, Illinois, USA
| | - Guotao Quan
- Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland.,Geneva Neuroscience Center, Geneva University, Geneva, Switzerland.,Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.,Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
24
|
Optimized Camera-Based Patient Positioning in CT: Impact on Radiation Exposure. Invest Radiol 2023; 58:126-130. [PMID: 35926075 DOI: 10.1097/rli.0000000000000904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE The aim of this study was to evaluate whether a 3-dimensional (3D) camera can outperform highly trained technicians in precision of patient positioning and whether this transforms into a reduction in patient exposure. MATERIALS AND METHODS In a single-center study, 3118 patients underwent computer tomography (CT) scans of the chest and/or abdomen on a latest generation single-source CT scanner supported with an automated patient positioning system by 3D camera. One thousand five hundred fifty-seven patients were positioned laser-guided by a highly trained radiographer (camera off) and 1561 patients with 3D camera (camera on) guidance. Radiation parameters such as effective dose, organ doses, CT dose index, and dose length product were analyzed and compared. Isocenter accuracy and table height were evaluated between the 2 groups. RESULTS Isocenter positioning was significantly improved with the 3D camera ( P < 0.001) as compared with visual laser-guided positioning. Absolute table height differed significantly ( P < 0.001), being higher with camera positioning (165.6 ± 16.2 mm) as compared with laser-guided positioning (170.0 ± 20.4 mm). Radiation exposure decreased using the 3D camera as indicated by dose length product (321.1 ± 266.6 mGy·cm; camera off: 342.0 ± 280.7 mGy·cm; P = 0.033), effective dose (3.3 ± 2.7 mSv; camera off: 3.5 ± 2.9; P = 0.053), and CT dose index (6.4 ± 4.3 mGy; camera off: 6.8 ± 4.6 mGy; P = 0.011). Exposure of radiation-sensitive organs such as colon ( P = 0.015) and red bone marrow ( P = 0.049) were also lower using the camera. CONCLUSIONS The introduction of a 3D camera improves patient positioning in the isocenter of the scanner, which results in a lower and also better balanced dose reduction for the patients.
Collapse
|
25
|
Burton CS, Frey K, Fahey F, Kaminski MS, Brown RKJ, Pohlen JM, Shulkin BL. Fetal Dose from PET and CT in Pregnant Patients. J Nucl Med 2023; 64:312-319. [PMID: 36215573 DOI: 10.2967/jnumed.122.263959] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 02/04/2023] Open
Abstract
When pregnancy is discovered during or after a diagnostic examination, the physician or the patient may request an estimate of the radiation dose received by the fetus as per guidelines and standard operating procedures. This study provided the imaging community with dose estimates to the fetus from PET/CT with protocols that are adapted to University of Michigan low-dose protocols for patients known to be pregnant. Methods: There were 9 patients analyzed with data for the first, second, and third trimesters, the availability of which is quite rare. These images were used to calculate the size-specific dose estimate (SSDE) from the CT scan portion and the SUV and 18F-FDG uptake dose from the PET scan portion using the MIRD formulation. The fetal dose estimates were tested for correlation with each of the following independent measures: gestational age, fetal volume, average water-equivalent diameter of the patient along the length of the fetus, SSDE, SUV, and percentage of dose from 18F-FDG. Stepwise multiple linear regression analysis was performed to assess the partial correlation of each variable. To our knowledge, this was the first study to determine fetal doses from CT and PET images. Results: Fetal self-doses from 18F for the first, second, and third trimesters were 2.18 mGy (single data point), 0.74-1.82 mGy, and 0.017-0.0017 mGy, respectively. The combined SSDE and fetal self-dose ranged from 1.2 to 8.2 mGy. These types of images from pregnant patients are rare. Conclusion: Our data indicate that the fetal radiation exposure from 18F-FDG PET and CT performed, when medically necessary, on pregnant women with cancer is low. All efforts should be made to minimize fetal radiation exposure by modifying the protocol.
Collapse
Affiliation(s)
| | - Kirk Frey
- Michigan Medicine, Ann Arbor, Michigan
| | | | | | | | | | | |
Collapse
|
26
|
Shapira N, Bharthulwar S, Noël PB. Convolutional Encoder-Decoder Networks for Volumetric Computed Tomography Surviews from Single- and Dual-View Topograms. RESEARCH SQUARE 2023:rs.3.rs-2449089. [PMID: 36711997 PMCID: PMC9882676 DOI: 10.21203/rs.3.rs-2449089/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Computed tomography (CT) is an extensively used imaging modality capable of generating detailed images of a patient's internal anatomy for diagnostic and interventional procedures. High-resolution volumes are created by measuring and combining information along many radiographic projection angles. In current medical practice, single and dual-view two-dimensional (2D) topograms are utilized for planning the proceeding diagnostic scans and for selecting favorable acquisition parameters, either manually or automatically, as well as for dose modulation calculations. In this study, we develop modified 2D to three-dimensional (3D) encoder-decoder neural network architectures to generate CT-like volumes from single and dual-view topograms. We validate the developed neural networks on synthesized topograms from publicly available thoracic CT datasets. Finally, we assess the viability of the proposed transformational encoder-decoder architecture on both common image similarity metrics and quantitative clinical use case metrics, a first for 2D-to-3D CT reconstruction research. According to our findings, both single-input and dual-input neural networks are able to provide accurate volumetric anatomical estimates. The proposed technology will allow for improved (i) planning of diagnostic CT acquisitions, (ii) input for various dose modulation techniques, and (iii) recommendations for acquisition parameters and/or automatic parameter selection. It may also provide for an accurate attenuation correction map for positron emission tomography (PET) with only a small fraction of the radiation dose utilized.
Collapse
Affiliation(s)
- Nadav Shapira
- Perelman School of Medicine of the University of Pennsylvania
| | | | - Peter B Noël
- Perelman School of Medicine of the University of Pennsylvania
| |
Collapse
|
27
|
Automatic Exposure Control Attains Radiation Dose Modulation Matched with the Head Size in Pediatric Brain CT. Tomography 2022; 8:2929-2938. [PMID: 36548538 PMCID: PMC9781261 DOI: 10.3390/tomography8060246] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
We investigated the relationship between the head size and radiation dose in pediatric brain computed tomography (CT) to evaluate the validity of automatic exposure control (AEC). Phantom experiments were performed to assess image noise with and without AEC, and indicated that AEC decreased differences in noise between slices of different section sizes. Retrospective analysis was conducted on 980 pediatric brain CT scans where the tube current was determined using AEC. The water equivalent diameter (WED) was employed as an index of the head size, and mean WED for each image set (WEDmean) and WED for each slice (WEDslice) were used for analysis. For the image-set-based analysis, volume CT dose index (CTDIvol) was compared to WEDmean. For the slice-based analysis, the tube current was compared to WEDslice using 20 of the 980 sets. Additionally, CTDIvol and WEDmean were compared between male and female patients matched for age, weight, or WEDmean. CTDIvol increased with increasing WEDmean, and an exponential curve was closely fitted to the relationship. Tube current changed similarly to the change in WEDslice for each image set, and an exponential curve was well-fitted to the plots of tube current against WEDslice when data from the 20 sets were pooled together. Although CTDIvol and WEDmean were slightly but significantly larger for male than female patients after matching for age or weight, a sex-dependent difference in CTDIvol was not found after matching for WEDmean. This study indicated successful dose modulation using AEC according to the head size for each patient and each slice location. The application of AEC to pediatric brain CT is recommended for radiation dose optimization.
Collapse
|
28
|
Al-Hayek Y, Zheng X, Hayre C, Spuur K. The influence of patient positioning on radiation dose in CT imaging: A narrative review. J Med Imaging Radiat Sci 2022; 53:737-747. [PMID: 36280573 DOI: 10.1016/j.jmir.2022.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/21/2022] [Accepted: 09/29/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND PURPOSE Although it is fundamental for optimal scanner operation, it is generally accepted that accurate patient centring cannot always be achieved. This review aimed to examine the reported knowledge of the negative impact of patient positioning on radiation dose and image quality during CT imaging. Furthermore, the study evaluated the current optimisation tools and techniques used to improve patient positioning relative to the gantry iso-center. METHODOLOGY A comprehensive search through the databases PubMed, Ovid, and Google Scholar was performed. Keywords included patient off-centring, patient positioning, localiser radiograph orientation, radiation dose, and automatic patient positioning (including synonyms). The search was limited to full-text articles that were written in English. After initial title and abstract screening, a total of 52 articles were identified to address the aim of the review. No limitations were imposed on the year of publication. RESULTS Vertical off-centring was reported in up to 95% of patients undergoing chest and abdominal CT examinations, showing a significant influence on radiation dose. Depending on the scanner model and vendor, localiser orientation, bowtie filter used, and patient size, radiation dose varied from a decrease of 36% to an increase of 91%. A significant dose reduction was demonstrated when utilising an AP localiser, aligning with the trend for radiographers to off-center patients below the gantry iso-centre. Utilizing a 3D camera for body contour detection allowed for more accurate patient positioning and promoted further dose reduction. CONCLUSION Patient positioning has shown significant effects on radiation dose and image quality in CT. Developing a good understanding of the key factors influencing patient dose (off-centring direction, localiser orientation, patient size and bowtie filter selection) is critical in optimising CT scanning practices. Utilising a 3D camera for body contour detection is strongly recommended to improve patient positioning accuracy, image quality and to minimise patient dose.
Collapse
Affiliation(s)
- Yazan Al-Hayek
- School of Dentistry and Medical Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia; Department of Medical Imaging, Faculty of Applied Health Sciences, The Hashemite University, Zarqa, 13133, Jordan.
| | - Xiaoming Zheng
- School of Dentistry and Medical Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia.
| | - Christopher Hayre
- Department of Medical Imaging, College of Medicine and Health, University of Exeter, Devon, UK.
| | - Kelly Spuur
- School of Dentistry and Medical Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia.
| |
Collapse
|
29
|
Jansen JT, Shrimpton PC, Edyvean S. CT scanner-specific organ dose coefficients generated by Monte Carlo calculation for the ICRP adult male and female reference computational phantoms. Phys Med Biol 2022; 67. [PMID: 36317285 DOI: 10.1088/1361-6560/ac9e3d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/27/2022] [Indexed: 11/17/2022]
Abstract
Objective.Provide analyses of new organ dose coefficients (hereafter also referred to as normalized doses) for CT that have been developed to update the widely-utilized collection of data published 30 years ago in NRPB-SR250.Approach.In order to reflect changes in technology, and also ICRP recommendations concerning use of the computational phantoms adult male (AM) and adult female (AF), 102 series of new Monte Carlo simulations have been performed covering the range of operating conditions for 12 contemporary models of CT scanner from 4 manufacturers. Normalized doses (relative to free air on axis) have been determined for 39 organs, and for every 8 mm or 4.84 mm slab of AM and AF, respectively.Main results.Analyses of results confirm the significant influence (by up to a few tens of percent), on values of normalized organ (or contributions to effective dose (E103,phan)), for whole body exposure arising from selection of tube voltage and beam shaping filter. Use of partial (when available) rather than a Full fan beam reduced both organ and effective dose by up to 7%. Normalized doses to AF were larger than corresponding figures for AM by up to 30% for organs and by 10% forE103,phan. Additional simulations for whole body exposure have also demonstrated that: practical simplifications in the main modelling (point source, single slice thickness, neglect of patient couch and immobility of phantom arms) have sufficiently small (<5%) effect onE103,phan; mis-centring of the phantom away from the axis of rotation by 5 mm (in any direction) leads to changes in normalized organ dose andE103,phanby up to 20% and 6%, respectively; and angular tube current modulation can result in reductions by up to 35% and <15% in normalized organ dose andE103,phan, respectively, for 100% cosine variation.Significance.These analyses help advance understanding of the influence of operational scanner settings on organ dose coefficients for contemporary CT, in support of improved patient protection. The results will allow the future development of a new dose estimation tool.
Collapse
Affiliation(s)
- Jan Tm Jansen
- Radiation, Chemical and Environmental Hazards, United Kingdom Health Security Agency, Chilton, Didcot, Oxfordshire, OX11 0RQ, United Kingdom
| | - Paul C Shrimpton
- Radiation, Chemical and Environmental Hazards, United Kingdom Health Security Agency, Chilton, Didcot, Oxfordshire, OX11 0RQ, United Kingdom.,Retired, United Kingdom
| | - Sue Edyvean
- Radiation, Chemical and Environmental Hazards, United Kingdom Health Security Agency, Chilton, Didcot, Oxfordshire, OX11 0RQ, United Kingdom
| |
Collapse
|
30
|
Salimi Y, Shiri I, Akhavanallaf A, Mansouri Z, Sanaat A, Pakbin M, Ghasemian M, Arabi H, Zaidi H. Deep Learning-based Calculation of Patient Size and Attenuation Surrogates from Localizer Image: Toward Personalized Chest CT Protocol Optimization. Eur J Radiol 2022; 157:110602. [DOI: 10.1016/j.ejrad.2022.110602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 11/02/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
|
31
|
Jusoh II, Abdullah KA, Ali MH. DIAGNOSTIC REFERENCE LEVELS FOR COMMON CT EXAMINATIONS: RESULTS FROM A STATEWIDE DOSE SURVEY. RADIATION PROTECTION DOSIMETRY 2022; 198:1417-1423. [PMID: 36093894 DOI: 10.1093/rpd/ncac182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/09/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
The aim of this study was to investigate the current radiation doses for CT examinations throughout a state in Malaysia and, based on this data, to propose local diagnostic reference levels (DRLs) for the most common CT examinations. A study was conducted in three of the four hospitals that have provided CT services throughout the state. A survey booklet was designed to facilitate collection of pertinent CT scan data. The following information were extracted and recorded for each study: tube voltage, tube current, number of scans phases, CT dose index volume (CTDIvol) and dose length product (DLP). Proposed local DRLs of CT brain and thorax were up to 12% lower than the current national DRLs. However, an increase of DLP (median value) for CT abdomen was also found as compared to the 75th percentile of national DRLs. Therefore, considerable optimisation should be made to achieve a better dose reduction.
Collapse
Affiliation(s)
- Irwan Iskandar Jusoh
- School of Medical Imaging, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Kuala Nerus, Terengganu 21300, Malaysia
| | - Kamarul Amin Abdullah
- School of Medical Imaging, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Kuala Nerus, Terengganu 21300, Malaysia
| | - Mohd Hanafi Ali
- Discipline of Medical Imaging Science, Sydney School of Health Sciences, Faculty of Medicine and Health, Level 7, University of Sydney, D18 Susan Wakil Health Building, Western Avenue, Camperdown, NSW 2006, Australia
| |
Collapse
|
32
|
Patient positioning during pediatric cardiothoracic computed tomography using a high-resilience pad system and pre-scan measurement of chest thickness. Sci Rep 2022; 12:16618. [PMID: 36198731 PMCID: PMC9534888 DOI: 10.1038/s41598-022-21018-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 09/21/2022] [Indexed: 11/09/2022] Open
Abstract
Patient positioning at the isocenter of the CT gantry is important for optimizing image quality and radiation dose, but accurate positioning is challenging in pediatric patients. We evaluated whether the high-resilience pad and pre-scan measurement of chest thickness allow accurate positioning in pediatric patients with congenital heart disease. Sixty-seven patients aged 7 years or younger who underwent cardiothoracic CT were enrolled. The ideal table height, defined as the position at which the scanner’s and patient’s isocenters coincided, was determined by radiographers either manually (manual group) or based on the pad’s and chest’s thickness (calculated group). The distance between the two isocenters and image quality were evaluated. The calculated group demonstrated smaller isocenter distance and standard deviation (distance: 0.2 ± 5.8 mm vs. − 8.3 ± 11.6 mm, p < 0.01; absolute value: 4.1 [1.9–8.0] mm vs. 12.3 [5.1–16.3] mm, p < 0.01), and higher signal-to-noise ratio (SNR) and dose-normalized SNR (SNRD) in the descending aorta than the manual group (SNR: 39.8 [31.0–53.7] vs. 31.9 [28.9–36.6], p = 0.048, SNRD: 39.8 [31.0–53.7] vs. 31.9 [28.9–36.6], p = 0.04). The system allowed for more accurate positioning in pediatric cardiothoracic CT, yielding higher image quality.
Collapse
|
33
|
Inoue Y, Itoh H, Shiibashi N, Sasa R, Mitsui K. Sample Size and Estimation of Standard Radiation Doses for Pediatric Brain CT. Tomography 2022; 8:2486-2497. [PMID: 36287806 PMCID: PMC9612354 DOI: 10.3390/tomography8050207] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/24/2022] [Accepted: 09/29/2022] [Indexed: 11/04/2022] Open
Abstract
Estimation of the standard radiation dose at each imaging facility is required for radiation dose management, including establishment and utilization of the diagnostic reference levels. We investigated methods to estimate the standard dose for pediatric brain computed tomography (CT) using a small number of data. From 980 pediatric brain CT examinations, 25, 50, and 100 examinations were randomly extracted to create small, medium, and large datasets, respectively. The standard dose was estimated by applying grouping and curve-fitting methods for 20 datasets of each sample size. For the grouping method, data were divided into groups according to age or body weight, and the standard dose was defined as a median value in each group. For the curve-fitting methods, logarithmic, power, and bilinear functions were fitted to plots of radiation dose against age or weight, and the standard dose was calculated at the designated age or weight using the derived equation. When the sample size was smaller, the random variations of the estimated standard dose were larger. Better estimation of the standard dose was achieved with the curve-fitting methods than with the grouping method. Power fitting appeared to be more effective than logarithmic and bilinear fittings for suppressing random variation. Determination of the standard dose for pediatric brain CT by the curve-fitting method is recommended to improve radiation dose optimization at facilities performing the imaging procedure infrequently.
Collapse
Affiliation(s)
- Yusuke Inoue
- Department of Diagnostic Radiology, Kitasato University School of Medicine, Sagamihara 252-0374, Kanagawa, Japan
| | - Hiroyasu Itoh
- Department of Radiology, Kitasato University Hospital, Sagamihara 252-0374, Kanagawa, Japan
| | - Nao Shiibashi
- Department of Diagnostic Radiology, Kitasato University School of Medicine, Sagamihara 252-0374, Kanagawa, Japan
| | - Ryosuke Sasa
- Department of Radiology, Kitasato University Hospital, Sagamihara 252-0374, Kanagawa, Japan
| | - Kohei Mitsui
- Department of Diagnostic Radiology, Kitasato University School of Medicine, Sagamihara 252-0374, Kanagawa, Japan
| |
Collapse
|
34
|
Zhao D, Zhang W, Yu S, Xia SL, Liu YN, Yang GJ. Application of MOF-based nanotherapeutics in light-mediated cancer diagnosis and therapy. J Nanobiotechnology 2022; 20:421. [PMID: 36153522 PMCID: PMC9509633 DOI: 10.1186/s12951-022-01631-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/11/2022] [Indexed: 12/24/2022] Open
Abstract
Light-mediated nanotherapeutics have recently emerged as promising strategies to precisely control the activation of therapeutic reagents and imaging probe both in vitro and in vivo, largely ascribed to their unique properties, including minimally invasive capabilities and high spatiotemporal resolution. Nanoscale metal-organic frameworks (NMOFs), a new family of hybrid materials consisting of metal attachment sites and bridging ligands, have been explored as a new platform for enhanced cancer diagnosis and therapy due to their tunable size, modifiable surface, good biocompatibility, high agent loading and, most significantly, their ability to be preferentially deposited in tumors through enhanced permeability and retention (EPR). Especially the light-driven NMOF-based therapeutic platform, which not only allow for increased laser penetration depth and enhanced targeting, but also enable imaging-guided or combined treatments. This review provides up-to-date developments of NMOF-based therapeutic platforms for cancer treatment with emphasis on light-triggered therapeutic strategies and introduces their advances in cancer diagnosis and therapy in recent years.
Collapse
Affiliation(s)
- Dan Zhao
- School of Marine Science, Ningbo University, Ningbo, 315211, Zhejiang, China.
| | - Wang Zhang
- School of Marine Science, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Shuang Yu
- Department of Food Science and Engineering, Ningbo University, Ningbo, 315211, China
| | - Si-Lei Xia
- School of Marine Science, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Ya-Nan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo, 315211, China.
| | - Guan-Jun Yang
- School of Marine Science, Ningbo University, Ningbo, 315211, Zhejiang, China.
| |
Collapse
|
35
|
PET/contrast-enhanced CT in oncology: “to do, or not to do, that is the question”. Radiol Med 2022; 127:925-927. [DOI: 10.1007/s11547-022-01496-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/20/2022] [Indexed: 10/16/2022]
|
36
|
Mäkelä T, Kortesniemi M, Kaasalainen T. The impact of vertical off-centering on image noise and breast dose in chest CT with organ-based tube current modulation: A phantom study. Phys Med 2022; 100:153-163. [PMID: 35853275 DOI: 10.1016/j.ejmp.2022.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/11/2022] [Accepted: 06/28/2022] [Indexed: 10/17/2022] Open
Abstract
PURPOSE To determine the effects of patient vertical off-centering when using organ-based tube current modulation (OBTCM) in chest computed tomography (CT) with focus on breast dose. MATERIALS AND METHODS An anthropomorphic adult female phantom with two different breast attachment sizes was scanned on GE Revolution EVO and Siemens Definition Edge CT systems using clinical chest CT protocols and anterior-to-posterior scouts. Scans with and without OBTCM were performed at different table heights (GE: centered, ±6 cm, and ± 3 cm; Siemens: centered, -6 cm, and ± 3 cm). The dose effects were studied with metal-oxidesemiconductor field-effect transistor dosimeters with complementary Monte Carlo simulations to determine full dose maps. Changes in image noise were studied using standard deviations of subtraction images from repeated acquisitions without dosimeters. RESULTS Patient off-centering affected both the behavior of the normal tube current modulation as well as the extent of the OBTCM. Generally, both OBTCM techniques provided a substantial decrease in the breast doses (up to 30% local decrease). Lateral breast regions may, however, in some cases receive higher doses when OBTCM is enabled. This effect becomes more prominent when the patient is centered too low in the CT gantry. Changes in noise roughly followed the expected inverse of the change in dose. CONCLUSIONS Patient off-centering was shown to affect the outcome of OBTCM in chest CT examination, and on some occasions, resulting in higher exposure. The use of modern dose optimization tools such as OBTCM emphasizes the importance of proper centering when preparing patients to CT scans.
Collapse
Affiliation(s)
- Teemu Mäkelä
- HUS Diagnostic Center, Radiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Physics, University of Helsinki, Finland.
| | - Mika Kortesniemi
- HUS Diagnostic Center, Radiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Touko Kaasalainen
- HUS Diagnostic Center, Radiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
37
|
Kobayashi Y, Morizumi T, Okumura G, Nagamatsu K, Shimizu Y, Sasaki T, Sato A, Sekijima Y, Hongo K. Visualization of thrombus using iterative reconstruction and maximum intensity projection of thin-slice CT images. Neuroradiology 2022; 64:2373-2379. [PMID: 35705738 PMCID: PMC9200622 DOI: 10.1007/s00234-022-02996-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/09/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Iterative reconstruction (IR) is a noise reduction method that facilitates the synthesis of maximum intensity projection (MIP) from a larger number of slices while maintaining resolution. The present study aimed to analyze whether CT evaluation using IR and MIP is ideal for thrombus evaluation of large vessel occlusions in patients with acute ischemic stroke. METHODS Three types of images for each patient were reconstructed and categorized into three groups: the "conventional group," evaluated using 0.5-mm slice CT, the "MIP group," evaluated using 0.5-mm slice CT processed with MIP, and the "IR + MIP group," evaluated with 0.5-mm slice CT processed with IR and MIP. Noise and image quality were evaluated with noise standard deviation (Noise SD) and contrast-to-noise ratio (CNR). Three experts evaluated the thrombus edge coordinates, made a visual assessment, and compared the data with the digital subtraction angiography (DSA) of the mechanical thrombectomy. RESULTS Twenty-nine patients with cerebral infarction having large vessel occlusion were included in this study. The IR + MIP group had a lower Noise SD and a statistically higher CNR, leading to more favorable image evaluations. The thrombus assessment showed no inter-rater variability in thrombus edge identification, and the visual assessment and comparison with DSA were statistically better in the IR + MIP group. CONCLUSIONS IR reduces noise and improves resolution. MIP in combination with IR facilitates visualization of thrombus.
Collapse
Affiliation(s)
- Yuya Kobayashi
- Department of Neurology, Ina Central Hospital, 1313-1, Ina, Nagano, 396-8555, Japan.
| | - Teruya Morizumi
- Department of Neurology, Ina Central Hospital, 1313-1, Ina, Nagano, 396-8555, Japan
| | - Gaku Okumura
- Department of Neurology, Ina Central Hospital, 1313-1, Ina, Nagano, 396-8555, Japan
| | - Kiyoshiro Nagamatsu
- Department of Neurology, Ina Central Hospital, 1313-1, Ina, Nagano, 396-8555, Japan
| | - Yusaku Shimizu
- Department of Neurology, Ina Central Hospital, 1313-1, Ina, Nagano, 396-8555, Japan
| | - Tetsuo Sasaki
- Department of Neurosurgery, Ina Central Hospital, 1313-1, Ina, Nagano, 396-8555, Japan
| | - Atsushi Sato
- Department of Neurosurgery, Ina Central Hospital, 1313-1, Ina, Nagano, 396-8555, Japan
| | - Yoshiki Sekijima
- Department of Medicine (Neurology & Rheumatology), Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Kazuhiro Hongo
- Department of Neurosurgery, Ina Central Hospital, 1313-1, Ina, Nagano, 396-8555, Japan
| |
Collapse
|
38
|
Inoue Y, Takahashi K, Miyatake H, Nagahara K, Iwasaki R. Factors affecting dose-length product of computed tomography component in whole-body positron emission tomography/computed tomography. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2022; 42:021525. [PMID: 35472765 DOI: 10.1088/1361-6498/ac6a89] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
In whole-body positron emission tomography (PET)/computed tomography (CT), it is important to optimise the CT radiation dose. We have investigated factors affecting the dose-length product (DLP) of the CT component of whole-body PET/CT and derived equations to predict the DLP. In this retrospective study, 1596 whole-body oncology PET/CT examinations with18F-fluorodeoxyglucose were analysed. Automatic exposure control was used to modulate radiation dose in CT. Considering age, weight, sex, arm position (up, down, one arm up), scan range (up to the mid-thigh or feet), scan mode (spiral or respiratory-triggered nonspiral) and the presence of a metal prosthesis as potential factors, multivariate analysis was performed to identify independent predictors of DLP and to determine equations to predict DLP. DLP values were predicted using the obtained equations, and compared with actual values. Among body size indices, weight best correlated with DLP in examinations performed under the standard imaging conditions (arms: up; scan range: up to the mid-thigh; scan mode: spiral; and no metal prosthesis). Multivariate analysis indicated that weight, arm position, scan range and scan mode were substantial independent predictors; lowering the arms, extending the scan range and using respiratory-triggered imaging, as well as increasing weight, increased DLP. The degree of the DLP increase tended to increase with increasing weight. The DLP values were predicted using equations that considered these parameters were in excellent agreement with the actual values. The DLP for the CT component of whole-body PET/CT is affected by weight, arm position, scan range and scan mode, and can be predicted with excellent accuracy using these factors.
Collapse
Affiliation(s)
- Yusuke Inoue
- Department of Diagnostic Radiology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, Japan
| | - Keita Takahashi
- Department of Radiology, Kitasato University Hospital, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, Japan
| | - Hiroki Miyatake
- Department of Radiology, Kitasato University Hospital, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, Japan
| | - Kazunori Nagahara
- Department of Radiology, Kitasato University Hospital, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, Japan
| | - Rie Iwasaki
- Department of Diagnostic Radiology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, Japan
| |
Collapse
|
39
|
Kozuma K, Chikamori T, Hashimoto J, Honye J, Ikeda T, Ishiwata S, Kato M, Kondo H, Matsubara K, Matsumoto K, Matsumoto N, Motoyama S, Obunai K, Sakamoto H, Soejima K, Suzuki S, Abe K, Amano H, Hioki H, Iimori T, Kawai H, Kosuge H, Nakama T, Suzuki Y, Takeda K, Ueda A, Yamashita T, Hirao K, Kimura T, Nagai R, Nakamura M, Shimizu W, Tamaki N. JCS 2021 Guideline on Radiation Safety in Cardiology. Circ J 2022; 86:1148-1203. [DOI: 10.1253/circj.cj-21-0379] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ken Kozuma
- Division of Cardiology, Teikyo University Hospital
| | | | - Jun Hashimoto
- Department of Radiology, Tokai University School of Medicine
| | - Junko Honye
- Department of Cardiology, Kikuna Memorial Hospital
| | - Takanori Ikeda
- Department of Cardiovascular Medicine, Toho University Faculty of Medicine
| | | | - Mamoru Kato
- Department of Radiology, Akita Cerebrospinal and Cardiovascular Center
| | | | - Kosuke Matsubara
- Department of Quantum Medical Technology, Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Kazuma Matsumoto
- Department of Radiological Technology, Hyogo College of Medicine College Hospital
| | | | | | | | - Hajime Sakamoto
- Department of Radiological Technology, Faculty of Health Science, Juntendo University
| | - Kyoko Soejima
- Department of Cardiology, Kyorin University Hospital
| | - Shigeru Suzuki
- Department of Radiology, Totsuka Kyouritsu Daini Hospital
| | - Koichiro Abe
- Department of Diagnostic Imaging and Nuclear Medicine, Tokyo Women's Medical University
| | - Hideo Amano
- Department of Cardiovascular Medicine, Toho University Faculty of Medicine
| | | | | | - Hideki Kawai
- Department of Cardiology, Fujita Health University
| | | | | | | | | | - Akiko Ueda
- Division of Advanced Arrhythmia Management, Kyorin University Hospital
| | | | - Kenzo Hirao
- Division of Cardiovascular Medicine, AOI Universal Hospital
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine
| | - Ryozo Nagai
- Department of Cardiovascular Medicine, Jichi Medical University
| | - Masato Nakamura
- Division of Cardiovascular Medicine, Toho University Ohashi Medical Center
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Nippon Medical School
| | - Nagara Tamaki
- Department of Radiology, Kyoto Prefectural University of Medicine
| | | |
Collapse
|
40
|
Martens B, Bosschee JGA, Van Kuijk SMJ, Jeukens CRLPN, Brauer MTH, Wildberger JE, Mihl C. Finding the optimal tube current and iterative reconstruction strength in liver imaging; two needles in one haystack. PLoS One 2022; 17:e0266194. [PMID: 35390018 PMCID: PMC8989341 DOI: 10.1371/journal.pone.0266194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 03/15/2022] [Indexed: 11/19/2022] Open
Abstract
Objectives
The aim of the study was to find the lowest possible tube current and the optimal iterative reconstruction (IR) strength in abdominal imaging.
Material and methods
Reconstruction software was used to insert noise, simulating the use of a lower tube current. A semi-anthropomorphic abdominal phantom (Quality Assurance in Radiology and Medicine, QSA-543, Moehrendorf, Germany) was used to validate the performance of the ReconCT software (S1 Appendix). Thirty abdominal CT scans performed with a standard protocol (120 kVref, 150 mAsref) scanned at 90 kV, with dedicated contrast media (CM) injection software were selected. There were no other in- or exclusion criteria. The software was used to insert noise as if the scans were performed with 90, 80, 70 and 60% of the full dose. Consequently, the different scans were reconstructed with filtered back projection (FBP) and IR strength 2, 3 and 4. Both objective (e.g. Hounsfield units [HU], signal to noise ratio [SNR] and contrast to noise ratio [CNR]) and subjective image quality were evaluated. In addition, lesion detection was graded by two radiologists in consensus in another 30 scans (identical scan protocol) with various liver lesions, reconstructed with IR 3, 4 and 5.
Results
A tube current of 60% still led to diagnostic objective image quality (e.g. SNR and CNR) when IR strength 3 or 4 were used. IR strength 4 was preferred for lesion detection. The subjective image quality was rated highest for the scans performed at 90% with IR 4.
Conclusion
A tube current reduction of 10–40% is possible in case IR 4 is used, leading to the highest image quality (10%) or still diagnostic image quality (40%), shown by a pairwise comparison in the same patients.
Collapse
Affiliation(s)
- Bibi Martens
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
- * E-mail:
| | | | - Sander M. J. Van Kuijk
- Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Cécile R. L. P. N. Jeukens
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Maikel T. H. Brauer
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Joachim E. Wildberger
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Casper Mihl
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
41
|
Hasan N, Rizk C, Babikir E. National diagnostic reference levels based on clinical indications and patient size for adults’ computed tomography in the Kingdom of Bahrain. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110147] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
42
|
Inoue Y, Itoh H, Waga A, Sasa R, Mitsui K. Radiation Dose Management in Pediatric Brain CT According to Age and Weight as Continuous Variables. Tomography 2022; 8:985-998. [PMID: 35448713 PMCID: PMC9027691 DOI: 10.3390/tomography8020079] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/26/2022] [Accepted: 03/31/2022] [Indexed: 12/28/2022] Open
Abstract
The diagnostic reference levels (DRLs) for pediatric brain computed tomography (CT) are provided for groups divided according to age. We investigated the relationships of radiation dose indices (volume CT dose index and dose length product) with age and weight, as continuous variables, in pediatric brain CT. In a retrospective analysis, 980 pediatric brain CT examinations were analyzed. Curve fitting was performed for plots of the CT dose indices versus age and weight, and equations to estimate age- and weight-dependent standard dose indices were derived. Standard dose indices were estimated using the equations, and the errors were calculated. The results showed a biphasic increase in dose indices with increasing age and weight, characterized by a rapid initial and subsequent slow increase. Logarithmic, power, and bilinear functions were well fitted to the plots, allowing estimation of standard dose indices at an arbitrary age or weight. Error analysis suggested that weight was mildly better than age and that the best results were obtained with the bilinear function. Curve fitting of the relationship between CT dose indices and age or weight facilitates the determination of standard dose indices in pediatric brain CT at each facility and is expected to aid the establishment and application of the DRLs.
Collapse
Affiliation(s)
- Yusuke Inoue
- Department of Diagnostic Radiology, Kitasato University School of Medicine, Sagamihara 252-0374, Japan; (A.W.); (K.M.)
| | - Hiroyasu Itoh
- Department of Radiology, Kitasato University Hospital, Sagamihara 252-0375, Japan; (H.I.); (R.S.)
| | - Anri Waga
- Department of Diagnostic Radiology, Kitasato University School of Medicine, Sagamihara 252-0374, Japan; (A.W.); (K.M.)
| | - Ryosuke Sasa
- Department of Radiology, Kitasato University Hospital, Sagamihara 252-0375, Japan; (H.I.); (R.S.)
| | - Kohei Mitsui
- Department of Diagnostic Radiology, Kitasato University School of Medicine, Sagamihara 252-0374, Japan; (A.W.); (K.M.)
| |
Collapse
|
43
|
Bian Z, Zhong J, Dominic J, Christensen GE, Hatt CR, Burris NS. Validation of a robust method for quantification of three-dimensional growth of the thoracic aorta using deformable image registration. Med Phys 2022; 49:2514-2530. [PMID: 35106769 PMCID: PMC9305918 DOI: 10.1002/mp.15496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 12/14/2021] [Accepted: 01/10/2022] [Indexed: 11/06/2022] Open
Abstract
PURPOSE Accurate assessment of thoracic aortic aneurysm (TAA) growth is important for appropriate clinical management. Maximal aortic diameter is the primary metric that is used to assess growth, but it suffers from substantial measurement variability. A recently proposed technique, termed vascular deformation mapping (VDM), is able to quantify three-dimensional aortic growth using clinical computed tomography angiography (CTA) data using an approach based on deformable image registration (DIR). However, the accuracy and robustness of VDM remains undefined given the lack of ground truth from clinical CTA data, and, furthermore, the performance of VDM relative to standard manual diameter measurements is unknown. METHODS To evaluate the performance of the VDM pipeline for quantifying aortic growth, we developed a novel and systematic evaluation process to generate 76 unique synthetic CTA growth phantoms (based on 10 unique cases) with variable degrees and locations of aortic wall deformation. Aortic deformation was quantified using two metrics: area ratio (AR), defined as the ratio of surface area in triangular mesh elements and the magnitude of deformation in the normal direction (DiN) relative to the aortic surface. Using these phantoms, we further investigated the effects on VDM's measurement accuracy resulting from factors that influence the quality of clinical CTA data such as respiratory translations, slice thickness, and image noise. Lastly, we compare the measurement error of VDM TAA growth assessments against two expert raters performing standard diameter measurements of synthetic phantom images. RESULTS Across our population of 76 synthetic growth phantoms, the median absolute error was 0.063 (IQR: 0.073-0.054) for AR and 0.181 mm (interquartile range [IQR]: 0.214-0.143 mm) for DiN. Median relative error was 1.4% for AR and3.3 % $3.3\%$ for DiN at the highest tested noise level (contrast-to-noise ratio [CNR] = 2.66). Error in VDM output increased with slice thickness, with the highest median relative error of 1.5% for AR and 4.1% for DiN at a slice thickness of 2.0 mm. Respiratory motion of the aorta resulted in maximal absolute error of 3% AR and 0.6 mm in DiN, but bulk translations in aortic position had a very small effect on measured AR and DiN values (relative errors< 1 % $< 1\%$ ). VDM-derived measurements of magnitude and location of maximal diameter change demonstrated significantly high accuracy and lower variability compared to two expert manual raters (p < 0.03 $p<0.03$ across all comparisons). CONCLUSIONS VDM yields an accurate, three-dimensional assessment of aortic growth in TAA patients and is robust to factors such as image noise, respiration-induced translations, and differences in patient position. Further, VDM significantly outperformed two expert manual raters in assessing the magnitude and location of aortic growth despite optimized experimental measurement conditions. These results support validation of the VDM technique for accurate quantification of aortic growth in patients and highlight several important advantages over diameter measurements.
Collapse
Affiliation(s)
- Zhangxing Bian
- Department of RadiologyUniversity of MichiganAnn ArborMIUSA
- Department of Electrical Engineering and Computer ScienceUniversity of MichiganAnn ArborMIUSA
| | - Jiayang Zhong
- Department of RadiologyUniversity of MichiganAnn ArborMIUSA
- Department of Electrical Engineering and Computer ScienceUniversity of MichiganAnn ArborMIUSA
| | - Jeffrey Dominic
- Department of RadiologyUniversity of MichiganAnn ArborMIUSA
- Department of Electrical Engineering and Computer ScienceUniversity of MichiganAnn ArborMIUSA
| | - Gary E. Christensen
- Department of Electrical and Computer EngineeringUniversity of IowaIowa CityIowaUSA
| | - Charles R. Hatt
- Department of RadiologyUniversity of MichiganAnn ArborMIUSA
- ImbioLLCMinneapolisMinnesotaUSA
| | - Nicholas S. Burris
- Department of RadiologyUniversity of MichiganAnn ArborMIUSA
- Department of Biomedical EngineeringUniversity of MichignaAnn ArborMIUSA
| |
Collapse
|
44
|
Kim H, Lee J, Yoon J. A phantom study on usefulness of modifying image parameters to reduce radiation exposure and maintain image quality in chest HRCT. Clin Imaging 2022; 86:89-93. [PMID: 35395435 DOI: 10.1016/j.clinimag.2022.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 11/17/2022]
Abstract
PURPOSE To investigate the feasibility of reducing radiation dose by modifying tube voltage, window settings, and algorithm while maintaining image quality, based on the qualitative evaluation of its quality and the radiation dose, using raw data acquired in chest high-resolution computed tomography (HRCT). METHODS Radiation exposure was measured using a Fluke dosimeter while modifying the tube voltage to 80 and 100 from 120 kVp in a 64-slice multi-detector computed tomography for comparison and analysis. Changes in image quality as a result of the different tube voltage settings, 3 different window settings (-550, -600, and -700), and 2 algorithms (standard and edge) were analyzed using ImageJ. RESULTS Relative to 120kVp, the dose decreased by approximately 67.8% and 36.9% at 80 and 100 kVp, respectively. Image quality assessment showed that changing the window setting to -700 (window level) after scanning with the tube voltage set at 100 kVp and applying the edge algorithm reduced the radiation dose while maintaining the image quality. CONCLUSIONS The findings are significant with respect to the reduction of scan dose in that they demonstrate how radiation exposure can be reduced in a clinical scenario by altering the settings on an existing HRCT apparatus. Additional clinical trials and image assessments should be conducted on human participants to confirm the feasibility of altering HRCT settings for reducing scan doses.
Collapse
Affiliation(s)
- Hyeonju Kim
- Department of Radiological Science, Dongnam Health University, Suwan, Republic of Korea
| | - Junho Lee
- Department of Radiological Science, Dongnam Health University, Suwan, Republic of Korea.
| | - Joon Yoon
- Department of Radiological Science, Dongnam Health University, Suwan, Republic of Korea
| |
Collapse
|
45
|
Ataei A, Eikhout J, van Leeuwen RGH, Tanck E, Eggermont F. The effect of variations in CT scan protocol on femoral finite element failure load assessment using phantomless calibration. PLoS One 2022; 17:e0265524. [PMID: 35303026 PMCID: PMC8932617 DOI: 10.1371/journal.pone.0265524] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 03/03/2022] [Indexed: 11/18/2022] Open
Abstract
Recently, it was shown that fracture risk assessment in patients with femoral bone metastases using Finite Element (FE) modeling can be performed using a calibration phantom or air-fat-muscle calibration and that non-patient-specific calibration was less favorable. The purpose of this study was to investigate if phantomless calibration can be used instead of phantom calibration when different CT protocols are used. Differences in effect of CT protocols on Hounsfield units (HU), calculated bone mineral density (BMD) and FE failure loads between phantom and two methods of phantomless calibrations were studied. Five human cadaver lower limbs were scanned atop a calibration phantom according to a standard scanning protocol and seven additional commonly deviating protocols including current, peak kilovoltage (kVp), slice thickness, rotation time, field of view, reconstruction kernel, and reconstruction algorithm. The HUs of the scans were calibrated to BMD (in mg/cm3) using the calibration phantom as well as using air-fat-muscle and non-patient-specific calibration, resulting in three models for each scan. FE models were created, and failure loads were calculated by simulating an axial load on the femur. HU, calculated BMD and failure load of all protocols were compared between the three calibration methods. The different protocols showed little variation in HU, BMD and failure load. However, compared to phantom calibration, changing the kVp resulted in a relatively large decrease of approximately 10% in mean HU and BMD of the trabecular and cortical region of interest (ROI), resulting in a 13.8% and 13.4% lower failure load when air-fat-muscle and non-patient-specific calibrations were used, respectively. In conclusion, while we observed significant correlations between air-fat-muscle calibration and phantom calibration as well as between non-patient-specific calibration and phantom calibration, our sample size was too small to prove that either of these calibration approaches was superior. Further studies are necessary to test whether air-fat-muscle or non-patient-specific calibration could replace phantom calibration in case of different scanning protocols.
Collapse
Affiliation(s)
- Ali Ataei
- Orthopaedic Research Lab, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- * E-mail:
| | - Jelle Eikhout
- Orthopaedic Research Lab, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ruud G. H. van Leeuwen
- Department of Radiotherapy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Esther Tanck
- Orthopaedic Research Lab, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Florieke Eggermont
- Orthopaedic Research Lab, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
46
|
Sookpeng S, Martin CJ. A PHANTOM EVALUATION OF THE USE OF CT AUTOMATIC TUBE CURRENT MODULATION WITH LOW TUBE POTENTIALS FOR IODINATED CONTRAST STUDIES. RADIATION PROTECTION DOSIMETRY 2022; 198:188-195. [PMID: 35224645 DOI: 10.1093/rpd/ncac023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/29/2021] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
This paper aimed to investigate effects of different tube voltage and image quality settings on radiation dose and image quality for patients undergoing computed tomography iodinated contrast studies using automatic tube current modulation system and to recommend settings to achieve improved radiation dose and image quality values. A Pagoda phantom with an additional rod of iodine contrast was scanned using different tube voltages and noise index (NI) settings. Size-specific dose estimate (SSDE) and image quality (noise, contrast, contrast-to-noise ratio (CNR) and figure of merit (FOM)) were analysed. Values of SSDE were maintained with similar NI settings. Contrast and CNR were higher for lower tube voltage settings. Better FOM values can be achieved with higher NI settings with the lower kVs. To achieve better CNR and SSDE compared with the standard setting of 120 kV, a 80 kV with an NI setting of 15 was recommended.
Collapse
Affiliation(s)
- Supawitoo Sookpeng
- Department of Radiological Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Colin J Martin
- Department of Clinical Physics and Bioengineering, University of Glasgow, Gartnavel Royal Hospital, Glasgow G12 0XH, UK
| |
Collapse
|
47
|
|
48
|
Montoya JC, Zhang C, Li Y, Li K, Chen GH. Reconstruction of three-dimensional tomographic patient models for radiation dose modulation in CT from two scout views using deep learning. Med Phys 2022; 49:901-916. [PMID: 34908175 PMCID: PMC9080958 DOI: 10.1002/mp.15414] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND A tomographic patient model is essential for radiation dose modulation in x-ray computed tomography (CT). Currently, two-view scout images (also known as topograms) are used to estimate patient models with relatively uniform attenuation coefficients. These patient models do not account for the detailed anatomical variations of human subjects, and thus, may limit the accuracy of intraview or organ-specific dose modulations in emerging CT technologies. PURPOSE The purpose of this work was to show that 3D tomographic patient models can be generated from two-view scout images using deep learning strategies, and the reconstructed 3D patient models indeed enable accurate prescriptions of fluence-field modulated or organ-specific dose delivery in the subsequent CT scans. METHODS CT images and the corresponding two-view scout images were retrospectively collected from 4214 individual CT exams. The collected data were curated for the training of a deep neural network architecture termed ScoutCT-NET to generate 3D tomographic attenuation models from two-view scout images. The trained network was validated using a cohort of 55 136 images from 212 individual patients. To evaluate the accuracy of the reconstructed 3D patient models, radiation delivery plans were generated using ScoutCT-NET 3D patient models and compared with plans prescribed based on true CT images (gold standard) for both fluence-field-modulated CT and organ-specific CT. Radiation dose distributions were estimated using Monte Carlo simulations and were quantitatively evaluated using the Gamma analysis method. Modulated dose profiles were compared against state-of-the-art tube current modulation schemes. Impacts of ScoutCT-NET patient model-based dose modulation schemes on universal-purpose CT acquisitions and organ-specific acquisitions were also compared in terms of overall image appearance, noise magnitude, and noise uniformity. RESULTS The results demonstrate that (1) The end-to-end trained ScoutCT-NET can be used to generate 3D patient attenuation models and demonstrate empirical generalizability. (2) The 3D patient models can be used to accurately estimate the spatial distribution of radiation dose delivered by standard helical CTs prior to the actual CT acquisition; compared to the gold-standard dose distribution, 95.0% of the voxels in the ScoutCT-NET based dose maps have acceptable gamma values for 5 mm distance-to-agreement and 10% dose difference. (3) The 3D patient models also enabled accurate prescription of fluence-field modulated CT to generate a more uniform noise distribution across the patient body compared to tube current-modulated CT. (4) ScoutCT-NET 3D patient models enabled accurate prescription of organ-specific CT to boost image quality for a given body region-of-interest under a given radiation dose constraint. CONCLUSION 3D tomographic attenuation models generated by ScoutCT-NET from two-view scout images can be used to prescribe fluence-field-modulated or organ-specific CT scans with high accuracy for the overall objective of radiation dose reduction or image quality improvement for a given imaging task.
Collapse
Affiliation(s)
- Juan C Montoya
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Chengzhu Zhang
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Yinsheng Li
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Ke Li
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Guang-Hong Chen
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
49
|
Inoue Y, Yonekura Y, Nagahara K, Uehara A, Ikuma H. Conversion from dose-length product to effective dose in computed tomography venography of the lower extremities. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2022; 42:011521. [PMID: 35008078 DOI: 10.1088/1361-6498/ac49d6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
For radiation dose assessment of computed tomography (CT), effective dose (ED) is often estimated by multiplying the dose-length product (DLP), provided automatically by the CT scanner, by a conversion factor. We investigated such conversion in CT venography of the lower extremities performed in conjunction with CT pulmonary angiography. The study subjects consisted of eight groups imaged using different scanners and different imaging conditions (five and three groups for the GE and Siemens scanners, respectively). Each group included ten men and ten women. The scan range was divided into four anatomical regions (trunk, proximal thigh, knee and distal leg), and DLP was calculated for each region (regional DLP). Regional DLP was multiplied by a conversion factor for the respective region, to convert it to ED. The sum of the ED values for the four regions was obtained as standard ED. Additionally, the sum of the four regional DLP values, an approximate of the scanner-derived DLP, was multiplied by the conversion factor for the trunk (0.015 mSv mGy cm-1), as a simplified method to obtain ED. When using the simplified method, ED was overestimated by 32.3%-70.2% and 56.5%-66.2% for the GE and Siemens scanners, respectively. The degree of overestimation was positively and closely correlated with the contribution of the middle and distal portions of the lower extremities to total radiation exposure. ED/DLP averaged within each group, corresponding to the conversion factor, was 0.0089-0.0114 and 0.0091-0.0096 mSv mGy cm-1for the GE and Siemens scanners, respectively. In CT venography of the lower extremities, ED is greatly overestimated by multiplying the scanner-derived DLP by the conversion factor for the trunk. The degree of overestimation varies widely depending on the imaging conditions. It is recommended to divide the scan range and calculate ED as a sum of regional ED values.
Collapse
Affiliation(s)
- Yusuke Inoue
- Department of Diagnostic Radiology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, Japan
| | - Yuka Yonekura
- Department of Diagnostic Radiology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, Japan
| | - Kazunori Nagahara
- Department of Radiology, Kitasato University Hospital, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, Japan
| | - Ayuka Uehara
- Department of Radiology, Kitasato University Hospital, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, Japan
| | - Hideki Ikuma
- Department of Radiology, Kitasato University Hospital, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, Japan
| |
Collapse
|
50
|
Inoue Y, Ohkubo Y, Nagahara K, Uehara A, Takano M. Conversion from dose length product to effective dose for the CT component of whole-body PET/CT. Ann Nucl Med 2022; 36:411-419. [DOI: 10.1007/s12149-022-01720-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/17/2022] [Indexed: 11/28/2022]
|