1
|
Yon M, Billotey C, Marty JD. Gadolinium-based contrast agents: From gadolinium complexes to colloidal systems. Int J Pharm 2019; 569:118577. [DOI: 10.1016/j.ijpharm.2019.118577] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/16/2019] [Accepted: 07/25/2019] [Indexed: 01/22/2023]
|
2
|
Dai Y, Su J, Wu K, Ma W, Wang B, Li M, Sun P, Shen Q, Wang Q, Fan Q. Multifunctional Thermosensitive Liposomes Based on Natural Phase-Change Material: Near-Infrared Light-Triggered Drug Release and Multimodal Imaging-Guided Cancer Combination Therapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:10540-10553. [PMID: 30807086 DOI: 10.1021/acsami.8b22748] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Multifunctional theranostic nanoplatforms (NPs) in response to environment stimulations for on-demand drug release are highly desirable. Herein, the near-infrared (NIR)-absorbing dye, indocyanine green (ICG), and the antitumor drug, doxorubicin (DOX), were efficiently coencapsulated into the thermosensitive liposomes based on natural phase-change material. Folate and conjugated gadolinium (Gd) chelate-modified liposome shells enhance active targeting and magnetic resonance performance of the NPs while maintaining the size of the NPs. The ICG/DOX-loaded and gadolinium chelate conjugated temperature-sensitive liposome nanoplatforms (ID@TSL-Gd NPs) exhibited NIR-triggered drug release and prominent chemo-, photothermal, and photodynamic therapy properties. With the coencapsulated ICG, DOX, and the conjugated gadolinium chelates, the ID@TSL-Gd NPs can be used for triple-modal imaging (fluorescence/photoacoustic/magnetic resonance imaging)-guided combination tumor therapy (chemotherapy, photothermotherapy, and photodynamic therapy). After tail vein injection, the ID@TSL-Gd NPs accumulated effectively in subcutaneous HeLa tumor of mice. The tumor was effectively suppressed by accurate imaging-guided NIR-triggered phototherapy and chemotherapy, and no tumor regression and side effects were observed. In summary, the prepared ID@TSL-Gd NPs achieved multimodal imaging-guided cancer combination therapy, providing a promising platform for improving diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Yeneng Dai
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , Nanjing 210023 , China
| | - Jinzhong Su
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , Nanjing 210023 , China
| | - Kun Wu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , Nanjing 210023 , China
| | - Wenkang Ma
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , Nanjing 210023 , China
| | - Bing Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , Nanjing 210023 , China
| | - Meixing Li
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , Nanjing 210023 , China
| | - Pengfei Sun
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , Nanjing 210023 , China
| | - Qingming Shen
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , Nanjing 210023 , China
| | - Qi Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , Nanjing 210023 , China
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , Nanjing 210023 , China
| |
Collapse
|
3
|
Abstract
Magnetic resonance (MR) is one of the most widely used imaging modalities in contemporary medicine to obtain images of pathological areas. Still, there is a big effort to facilitate the accumulation of contrast in the required zone and further increase a local spatial concentration of a contrast agent for better imaging. Certain particulate carriers able to carry multiple contrast moieties can be used for an efficient delivery of contrast agents to areas of interest and enhancing a signal from these areas. Among those carriers, liposomes draw special attention because of their easily controlled properties and good pharmacological characteristics. To enhance the signal intensity from a given reporter metal in liposomes, one may attempt to increase the net quantity of carrier-associated reporter metal by using polylysine (PLL)-based polychelating amphiphilic polymers (PAP). In addition to heavy load of reporter metal onto the pharmaceutical nanocarrier (liposome), the accumulation of the contrast nanoparticles in organs and tissues of interest (such as tumors) can be significantly enhanced by targeting such particles both "passively," via the so-called enhanced permeability and retention (EPR) effect, or "actively," using various target-specific ligands, such as monoclonal antibodies. Combining three different properties-heavy load with gadolinium (Gd) via the liposome membrane-incorporated PAP and tumor specificity mediated by the liposome-attached mAb 2C5-in a single nanoparticle of long-circulating (PEGylated) liposomes could provide a new contrast agent for highly specific and efficient tumor MRI.
Collapse
Affiliation(s)
- Suna Erdogan
- Faculty of Pharmacy, Department of Radiopharmacy, Hacettepe University, Sıhhıye, Ankara, 06100, Turkey.
| | - Vladimir P Torchilin
- Department of Pharmaceutical Sciences and Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, USA
| |
Collapse
|
4
|
Affiliation(s)
- Yukihiro Namba
- Lipid Project Nippon Fine Chemical Co. Ltd. Takasago, Hyogo 676, Japan
| | - Naoto Oku
- Department of Radiobiochemistry University of Shizuoka Yada, Shizuoka 422, Japan
| |
Collapse
|
5
|
Jackson AW, Chandrasekharan P, Shi J, Rannard SP, Liu Q, Yang CT, He T. Synthesis and in vivo magnetic resonance imaging evaluation of biocompatible branched copolymer nanocontrast agents. Int J Nanomedicine 2015; 10:5895-907. [PMID: 26425088 PMCID: PMC4583124 DOI: 10.2147/ijn.s88764] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Branched copolymer nanoparticles (Dh =20–35 nm) possessing 1,4,7, 10-tetraazacyclododecane-N,N′,N″,N‴-tetraacetic acid macrocycles within their cores have been synthesized and applied as magnetic resonance imaging (MRI) nanosized contrast agents in vivo. These nanoparticles have been generated from novel functional monomers via reversible addition–fragmentation chain transfer polymerization. The process is very robust and synthetically straightforward. Chelation with gadolinium and preliminary in vivo experiments have demonstrated promising characteristics as MRI contrast agents with prolonged blood retention time, good biocompatibility, and an intravascular distribution. The ability of these nanoparticles to perfuse and passively target tumor cells through the enhanced permeability and retention effect is also demonstrated. These novel highly functional nanoparticle platforms have succinimidyl ester-activated benzoate functionalities within their corona, which make them suitable for future peptide conjugation and subsequent active cell-targeted MRI or the conjugation of fluorophores for bimodal imaging. We have also demonstrated that these branched copolymer nanoparticles are able to noncovalently encapsulate hydrophobic guest molecules, which could allow simultaneous bioimaging and drug delivery.
Collapse
Affiliation(s)
- Alexander W Jackson
- Institute of Chemical and Engineering Sciences (ICES), National University of Singapore, Singapore
| | - Prashant Chandrasekharan
- Laboratory of Molecular Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research(A STAR), National University of Singapore, Singapore
| | - Jian Shi
- Department of Biological Science, National University of Singapore, Singapore
| | - Steven P Rannard
- Department of Chemistry, University of Liverpool, Liverpool, United Kingdom
| | - Quan Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Chang-Tong Yang
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Tao He
- Institute of Chemical and Engineering Sciences (ICES), National University of Singapore, Singapore ; School of Chemistryand Chemical Engineering, HeFei University of Technology, Anhui, People's Republic of China
| |
Collapse
|
6
|
Kaittanis C, Shaffer TM, Thorek DLJ, Grimm J. Dawn of advanced molecular medicine: nanotechnological advancements in cancer imaging and therapy. Crit Rev Oncog 2014; 19:143-76. [PMID: 25271430 DOI: 10.1615/critrevoncog.2014011601] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Nanotechnology plays an increasingly important role not only in our everyday life (with all its benefits and dangers) but also in medicine. Nanoparticles are to date the most intriguing option to deliver high concentrations of agents specifically and directly to cancer cells; therefore, a wide variety of these nanomaterials has been developed and explored. These span the range from simple nanoagents to sophisticated smart devices for drug delivery or imaging. Nanomaterials usually provide a large surface area, allowing for decoration with a large amount of moieties on the surface for either additional functionalities or targeting. Besides using particles solely for imaging purposes, they can also carry as a payload a therapeutic agent. If both are combined within the same particle, a theranostic agent is created. The sophistication of highly developed nanotechnology targeting approaches provides a promising means for many clinical implementations and can provide improved applications for otherwise suboptimal formulations. In this review we will explore nanotechnology both for imaging and therapy to provide a general overview of the field and its impact on cancer imaging and therapy.
Collapse
Affiliation(s)
- Charalambos Kaittanis
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Travis M Shaffer
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Daniel L J Thorek
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Jan Grimm
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY
| |
Collapse
|
7
|
Chan KWY, Yu T, Qiao Y, Liu Q, Yang M, Patel H, Liu G, Kinzler KW, Vogelstein B, Bulte JWM, van Zijl PCM, Hanes J, Zhou S, McMahon MT. A diaCEST MRI approach for monitoring liposomal accumulation in tumors. J Control Release 2014; 180:51-9. [PMID: 24548481 DOI: 10.1016/j.jconrel.2014.02.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/30/2014] [Accepted: 02/07/2014] [Indexed: 11/28/2022]
Abstract
Nanocarrier-based chemotherapy allows preferential delivery of therapeutics to tumors and has been found to improve the efficacy of cancer treatment. However, difficulties in tracking nanocarriers and evaluating their pharmacological fates in patients have limited judicious selection of patients to those who might most benefit from nanotherapeutics. To enable the monitoring of nanocarriers in vivo, we developed MRI-traceable diamagnetic Chemical Exchange Saturation Transfer (diaCEST) liposomes. The diaCEST liposomes were based on the clinical formulation of liposomal doxorubicin (i.e. DOXIL®) and were loaded with barbituric acid (BA), a small, organic, biocompatible diaCEST contrast agent. The optimized diaCEST liposomal formulation with a BA-to-lipid ratio of 25% exhibited 30% contrast enhancement at B1=4.7μT in vitro. The contrast was stable, with ~80% of the initial CEST signal sustained over 8h in vitro. We used the diaCEST liposomes to monitor the response to tumor necrosis factor-alpha (TNF-α), an agent in clinical trials that increases vascular permeability and uptake of nanocarriers into tumors. After systemic administration of diaCEST liposomes to mice bearing CT26 tumors, we found an average diaCEST contrast at the BA frequency (5ppm) of 0.4% at B1=4.7μT while if TNF-α was co-administered the contrast increased to 1.5%. This novel approach provides a non-radioactive, non-metallic, biocompatible, semi-quantitative, and clinically translatable approach to evaluate the tumor targeting of stealth liposomes in vivo, which may enable personalized nanomedicine.
Collapse
Affiliation(s)
- Kannie W Y Chan
- Russell H. Morgan Department of Radiology and Radiological Sciences, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore 21287, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore 21205, USA; Center for Nanomedicine, The Johns Hopkins University School of Medicine, Baltimore 21287, USA; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore 21205, USA
| | - Tao Yu
- Center for Nanomedicine, The Johns Hopkins University School of Medicine, Baltimore 21287, USA; Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore 21205, USA
| | - Yuan Qiao
- The Ludwig Center and Howard Hughes Medical Institute at the Hopkins-Kimmel Comprehensive Cancer Center, Baltimore 21287, USA
| | - Qiang Liu
- The Ludwig Center and Howard Hughes Medical Institute at the Hopkins-Kimmel Comprehensive Cancer Center, Baltimore 21287, USA
| | - Ming Yang
- Center for Nanomedicine, The Johns Hopkins University School of Medicine, Baltimore 21287, USA; Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore 21205, USA
| | - Himatkumar Patel
- Center for Nanomedicine, The Johns Hopkins University School of Medicine, Baltimore 21287, USA
| | - Guanshu Liu
- Russell H. Morgan Department of Radiology and Radiological Sciences, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore 21287, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore 21205, USA
| | - Kenneth W Kinzler
- The Ludwig Center and Howard Hughes Medical Institute at the Hopkins-Kimmel Comprehensive Cancer Center, Baltimore 21287, USA
| | - Bert Vogelstein
- The Ludwig Center and Howard Hughes Medical Institute at the Hopkins-Kimmel Comprehensive Cancer Center, Baltimore 21287, USA
| | - Jeff W M Bulte
- Russell H. Morgan Department of Radiology and Radiological Sciences, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore 21287, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore 21205, USA; Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore 21205, USA; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore 21205, USA
| | - Peter C M van Zijl
- Russell H. Morgan Department of Radiology and Radiological Sciences, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore 21287, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore 21205, USA
| | - Justin Hanes
- Center for Nanomedicine, The Johns Hopkins University School of Medicine, Baltimore 21287, USA; Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore 21205, USA; Department of Ophthalmology, The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore 21287, USA
| | - Shibin Zhou
- The Ludwig Center and Howard Hughes Medical Institute at the Hopkins-Kimmel Comprehensive Cancer Center, Baltimore 21287, USA
| | - Michael T McMahon
- Russell H. Morgan Department of Radiology and Radiological Sciences, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore 21287, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore 21205, USA; Center for Nanomedicine, The Johns Hopkins University School of Medicine, Baltimore 21287, USA.
| |
Collapse
|
8
|
Pothayee N, Chen DY, Aronova MA, Qian C, Bouraoud N, Dodd S, Leapman RD, Koretsky AP. Self-organized Mn 2+-Block Copolymer Complexes and Their Use for In Vivo MR Imaging of Biological Processes. J Mater Chem B 2014; 2:7055-7064. [PMID: 25364506 PMCID: PMC4213148 DOI: 10.1039/c4tb00911h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Manganese-block copolymer complexes (MnBCs) that contain paramagnetic Mn ions complexed with ionic-nonionic poly(ethylene oxide-b-poly(methacrylate) have been developed for use as a T1-weighted MRI contrast agent. By encasing Mn ion within ionized polymer matrices, r1 values could be increased by 250-350 % in comparison with free Mn ion at relative high fields of 4.7 to 11.7 T. MnBCs were further manipulated by treatment with NaOH to achieve more stable complexes (iMnBCs). iMnBCs delayed release of Mn2+ which could be accelerated by low pH, indeed by cellular uptake via endocytosis into acidic compartments. Both complexes exhibited good T1 contrast signal enhancement in liver following intravenous infusion. The contrast was observed in gallbladder due to the clearance of Mn ion from liver to biliary process. iMnBCs, notably, showed a delayed contrast enhancement profile in gallbladder, which was interpreted to be due to degradation and excretion of Mn2+ ions into the gallbladder. Intracortical injection of iMnBCs into the rat brain also led to delayed neuronal transport to thalamus. The delayed enhancement feature may have benefits for targeting MRI contrast to specific cells and surface receptors that are known to be internalized by endocytosis.
Collapse
Affiliation(s)
- Nikorn Pothayee
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Der-Yow Chen
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Maria A Aronova
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892
| | - Chunqi Qian
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Nadia Bouraoud
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Stephen Dodd
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Richard D Leapman
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892
| | - Alan P Koretsky
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
9
|
Langereis S, Geelen T, Grüll H, Strijkers GJ, Nicolay K. Paramagnetic liposomes for molecular MRI and MRI-guided drug delivery. NMR IN BIOMEDICINE 2013; 26:728-44. [PMID: 23703874 DOI: 10.1002/nbm.2971] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/04/2013] [Accepted: 04/05/2013] [Indexed: 05/07/2023]
Abstract
Liposomes are a versatile class of nanoparticles with tunable properties, and multiple liposomal drug formulations have been clinically approved for cancer treatment. In recent years, an extensive library of gadolinium (Gd)-containing liposomal MRI contrast agents has been developed for molecular and cellular imaging of disease-specific markers and for image-guided drug delivery. This review discusses the advances in the development and novel applications of paramagnetic liposomes in molecular and cellular imaging, and in image-guided drug delivery. A high targeting specificity has been achieved in vitro using ligand-conjugated paramagnetic liposomes. On targeting of internalizing cell receptors, the effective longitudinal relaxivity r1 of paramagnetic liposomes is modulated by compartmentalization effects. This provides unique opportunities to monitor the biological fate of liposomes. In vivo contrast-enhanced MRI studies with nontargeted liposomes have shown the extravasation of liposomes in diseases associated with endothelial dysfunction, such as tumors and myocardial infarction. The in vivo use of targeted paramagnetic liposomes has facilitated the specific imaging of pathophysiological processes, such as angiogenesis and inflammation. Paramagnetic liposomes loaded with drugs have been utilized for therapeutic interventions. MR image-guided drug delivery using such liposomes allows the visualization and quantification of local drug delivery.
Collapse
Affiliation(s)
- Sander Langereis
- Department of Minimally Invasive Healthcare, Philips Research Eindhoven, Eindhoven, the Netherlands
| | | | | | | | | |
Collapse
|
10
|
Imaging of Cells and Nanoparticles: Implications for Drug Delivery to the Brain. Pharm Res 2012; 29:3213-34. [DOI: 10.1007/s11095-012-0826-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 07/05/2012] [Indexed: 01/03/2023]
|
11
|
Naresh NK, Xu Y, Klibanov AL, Vandsburger MH, Meyer CH, Leor J, Kramer CM, French BA, Epstein FH. Monocyte and/or macrophage infiltration of heart after myocardial infarction: MR imaging by using T1-shortening liposomes. Radiology 2012; 264:428-35. [PMID: 22723500 DOI: 10.1148/radiol.12111863] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE To test the hypothesis that magnetic resonance (MR) imaging R1 (R1 = 1/T1) mapping after selectively labeling monocytes with a T1-shortening contrast agent in vivo would enable the quantitative measurement of their spatiotemporal kinetics in the setting of infarct healing. MATERIALS AND METHODS All procedures were performed in mice and were approved by the institutional committee on animal research. One hundred microliters of dual-labeled liposomes (DLLs) containing gadolinium (Gd)-diethylenetriaminepentaacetic acid (DTPA)-bis(stearylamide) and DiI dye were used to label monocytes 2 days before myocardial infarction (MI). MI was induced by occlusion of the left anterior descending coronary artery for 1 hour, followed by reperfusion. MR imaging R1 mapping of mouse hearts was performed at baseline on day -3, on day 0 before MI, and on days 1, 4, and 7 after MI. Mice without labeling were used as controls. ΔR1 was calculated as the difference in R1 between mice with labeling and those without labeling. CD68 immunohistochemistry and DiI fluorescence microscopy were used to confirm that labeled monocytes and/or macrophages infiltrated the postinfarct myocardium. Statistical analysis was performed by using two-way analysis of variance and the unpaired two-sample t test. RESULTS Infarct zone ΔR1 was slightly but nonsignificantly increased on day 1, maximum on day 4 (P < .05 vs all other days), and started to decrease by day 7 (P < .05 vs days -3, 0, and 1) after MI, closely reflecting the time course of monocyte and/or macrophage infiltration of the infarcted myocardium shown by prior histologic studies. Histologic results confirmed the presence and location of DLL-labeled monocytes and/or macrophages in the infarct zone on day 4 after MI. CONCLUSION R1 mapping after labeling monocytes with T1-shortening DLLs enables the measurement of post-MI monocyte and/or macrophage spatiotemporal kinetics.
Collapse
Affiliation(s)
- Nivedita K Naresh
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Shen AJ, Li DL, Cai XJ, Dong CY, Dong HQ, Wen HY, Dai GH, Wang PJ, Li YY. Multifunctional nanocomposite based on graphene oxide for in vitro hepatocarcinoma diagnosis and treatment. J Biomed Mater Res A 2012; 100:2499-506. [PMID: 22623284 DOI: 10.1002/jbm.a.34148] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 01/24/2012] [Indexed: 11/09/2022]
Abstract
Because of its unique chemical and physical properties, graphene oxide (GO) has attracted a large number of researchers to explore its biomedical applications in the past few years. Here, we synthesized a novel multifunctional nanocomposite based on GO and systemically investigated its applications for in vitro hepatocarcinoma diagnosis and treatment. This multifunctional nanocomposite named GO-PEG-FA/Gd/DOX was obtained as the following procedures: gadolinium-diethylenetriamine-pentaacetic acid-poly(diallyl dimethylammonium) chloride (Gd-DTPA-PDDA) as magnetic resonance imaging (MRI) probe was applied to modify GO by simple physical sorption with a loading efficiency of Gd(3+) up to 0.314 mg mg(-1). In order to improve its tumor targeting imaging and treatment efficiency, the obtained intermediate product was further modified with folic acid (FA). Finally, the nanocomposite was allowed to load anticancer drug doxorubicin hydrochloride via π-π stacking and hydrophobic interaction with the loading capacity reaching 1.38 mg mg(-1). MRI test revealed that GO-PEG-FA/Gd/DOX exhibit superior tumor targeting imaging efficiency over free Gd(3+). The in vitro release of DOX from the nanocomposite under tumor relevant condition (pH 5.5) was fast at the initial 10 h and then become relatively slow afterward. Moreover, we experimentally demonstrated that the multifunctional nanocomposite exhibited obviously cytotoxic effect upon cancer cells. Above results are promising for the next in vivo experiment and make it possible to be a potential candidate for malignancy early detection and specific treatment.
Collapse
Affiliation(s)
- Ai-Jun Shen
- Department of Medical Imaging, Tongji Hospital, Tongji University, Shanghai 200065, China
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Laurent S, Henoumont C, Vander Elst L, Muller RN. Synthesis and Physicochemical Characterisation of Gd-DTPA Derivatives as Contrast Agents for MRI. Eur J Inorg Chem 2012. [DOI: 10.1002/ejic.201101226] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
14
|
Moghaddam MJ, Campo LD, Kirby N, Drummond CJ. Chelating DTPA amphiphiles: ion-tunable self-assembly structures and gadolinium complexes. Phys Chem Chem Phys 2012; 14:12854-62. [DOI: 10.1039/c2cp41300k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Jefferson A, Wijesurendra RS, McAteer MA, Digby JE, Douglas G, Bannister T, Perez-Balderas F, Bagi Z, Lindsay AC, Choudhury RP. Molecular imaging with optical coherence tomography using ligand-conjugated microparticles that detect activated endothelial cells: rational design through target quantification. Atherosclerosis 2011; 219:579-87. [PMID: 21872249 PMCID: PMC3234340 DOI: 10.1016/j.atherosclerosis.2011.07.127] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 07/27/2011] [Accepted: 07/28/2011] [Indexed: 12/26/2022]
Abstract
OBJECTIVES Optical coherence tomography (OCT) is a high resolution imaging technique used to assess superficial atherosclerotic plaque morphology. Utility of OCT may be enhanced by contrast agents targeting molecular mediators of inflammation. METHODS AND RESULTS Microparticles of iron oxide (MPIO; 1 and 4.5 μm diameter) in suspension were visualized and accurately quantified using a clinical optical coherence tomography system. Bound to PECAM-1 on a plane of cultured endothelial cells under static conditions, 1 μm MPIO were also readily detected by OCT. To design a molecular contrast probe that would bind activated endothelium under conditions of shear stress, we quantified the expression (basal vs. TNF-activated; molecules μm(-2)) of VCAM-1 (not detected vs. 16 ± 1); PECAM-1 (132 ± 6 vs. 198 ± 10) and E-selectin (not detected vs. 46 ± 0.6) using quantitative flow cytometry. We then compared the retention of antibody-conjugated MPIO targeting each of these molecules plus a combined VCAM-1 and E-selectin (E+V) probe across a range of physiologically relevant shear stresses. E+V MPIO were consistently retained with highest efficiency (P < 0.001) and at a density that provided conspicuous contrast effects on OCT pullback. CONCLUSION Microparticles of iron oxide were detectable using a clinical OCT system. Assessment of binding under flow conditions recommended an approach that targeted both E-selectin and VCAM-1. Bound to HUVEC under conditions of flow, targeted 1 μm E+V MPIO were readily identified on OCT pullback. Molecular imaging with OCT may be feasible in vivo using antibody targeted MPIO.
Collapse
Affiliation(s)
- Andrew Jefferson
- Department of Cardiovascular Medicine and Oxford Acute Vascular Imaging Centre, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - Rohan S. Wijesurendra
- Department of Cardiovascular Medicine and Oxford Acute Vascular Imaging Centre, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - Martina A. McAteer
- Department of Cardiovascular Medicine and Oxford Acute Vascular Imaging Centre, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - Janet E. Digby
- Department of Cardiovascular Medicine and Oxford Acute Vascular Imaging Centre, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - Gillian Douglas
- Department of Cardiovascular Medicine and Oxford Acute Vascular Imaging Centre, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - Thomas Bannister
- Department of Cardiovascular Medicine and Oxford Acute Vascular Imaging Centre, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - Francisco Perez-Balderas
- Gray Institute for Radiation Oncology and Biology, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, United Kingdom
| | - Zsolt Bagi
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, United Kingdom
| | - Alistair C. Lindsay
- Department of Cardiovascular Medicine and Oxford Acute Vascular Imaging Centre, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - Robin P. Choudhury
- Department of Cardiovascular Medicine and Oxford Acute Vascular Imaging Centre, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| |
Collapse
|
16
|
Ai H. Layer-by-layer capsules for magnetic resonance imaging and drug delivery. Adv Drug Deliv Rev 2011; 63:772-88. [PMID: 21554908 DOI: 10.1016/j.addr.2011.03.013] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 01/20/2011] [Accepted: 03/30/2011] [Indexed: 12/30/2022]
Abstract
Layer-by-layer (LbL) self-assembled polyelectrolyte capsules have demonstrated their unique advantages and capability in drug delivery applications. These ordered micro/nano-structures are also promising candidates as imaging contrast agents for diagnostic and theranostic applications. Magnetic resonance imaging (MRI), one of the most powerful clinical imaging modalities, is moving forward to the molecular imaging field and requires the availability of advanced imaging probes. In this review, we are focusing on the design of MRI visible LbL capsules, which incorporate either paramagnetic metal-ligand complexes or superparamagnetic iron oxide (SPIO) nanoparticles. The design criteria cover the topics of probe sensitivity, biosafety, long-circulation property, targeting ligand decoration, and drug loading strategies. Examples of MRI visible LbL capsules with paramagnetic or superparamagnetic moieties were given and discussed. This carrier platform can also be chosen for other imaging modalities.
Collapse
Affiliation(s)
- Hua Ai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China.
| |
Collapse
|
17
|
Naposomes: a new class of peptide-derivatized, target-selective multimodal nanoparticles for imaging and therapeutic applications. Ther Deliv 2011; 2:235-57. [DOI: 10.4155/tde.10.86] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Modified supramolecular aggregates for selective delivery of contrast agents and/or drugs are examined with a focus on a new class of peptide-derivatized nanoparticles: naposomes. These nanoparticles are based on the co-aggregation of two different amphiphilic monomers that give aggregates of different shapes and sizes (micelles, vesicles and liposomes) with diameters ranging between 10 and 300 nm. Structural properties and in vitro and in vivo behaviors are discussed. For the high relaxitivity values (12–19 mM-1s-1) and to detect for the presence of a surface-exposed peptide, the new peptide-derived supramolecular aggregates are very promising candidates as target-selective MRI contrast agents. The efficiency of surface-exposed peptides in homing these nanovectors to a specific target introduces promising new opportunities for the development of diagnostic and therapeutic agents with high specificity toward the biological target and reduced toxic side effects on nontarget organs.
Collapse
|
18
|
Design and synthesis of novel functional lipid-based bioconjugates for drug delivery and other applications. Methods Mol Biol 2011; 751:357-78. [PMID: 21674343 DOI: 10.1007/978-1-61779-151-2_23] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The modification of biologicals such as proteins/peptides, small molecules, and other polymers with lipids provides an efficient method for mediating their insertion into liposomes and lipid-core micellar nanocarriers. In this chapter, we describe several representative protocols developed in our laboratory for the bioconjugation of liposomes and lipid-core micelles for drug/gene delivery and diagnostic imaging applications.
Collapse
|
19
|
Wijesurendra RS, Jefferson A, Choudhury RP. Target: ligand interactions of the vascular endothelium. Implications for molecular imaging in inflammation. Integr Biol (Camb) 2010; 2:467-82. [PMID: 20830411 DOI: 10.1039/c0ib00022a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular imaging refers to the non-invasive visualisation of biological processes at the molecular and cellular levels within a living organism, and offers a wide range of potential benefits to both clinical medicine and research into novel therapeutic agents. Inflammation plays an important role in a wide variety of pathological processes and imaging the molecular and cellular machinery that underlies chronic inflammation is attractive and feasible. In this review, we present an overview of molecular imaging of inflammation. We start by characterising molecular and cellular events in early inflammation, identifying current and potential future imaging targets. We focus on the imaging of endothelial cells, which mediate the important first steps in inflammation in any tissue, are readily accessible to imaging probes and which present an approach that can be applied across multiple modalities. We then review the generic requirements for imaging contrast agents and focus on the important considerations in respect of ligands, ligand-target interactions and contrast vehicles. We aim to provide an integrated view of current progress with a focus on promising recent developments in experimental and translational molecular imaging.
Collapse
Affiliation(s)
- Rohan S Wijesurendra
- Department of Cardiovascular Medicine, John Radcliffe Hospital, University of Oxford, UK
| | | | | |
Collapse
|
20
|
Jeong SY, Kim HJ, Kwak BK, Lee HY, Seong H, Shin BC, Yuk SH, Hwang SJ, Cho SH. Biocompatible Polyhydroxyethylaspartamide-based Micelles with Gadolinium for MRI Contrast Agents. NANOSCALE RESEARCH LETTERS 2010; 5:1970-6. [PMID: 21170410 PMCID: PMC2991228 DOI: 10.1007/s11671-010-9734-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 08/05/2010] [Indexed: 05/30/2023]
Abstract
Biocompatible poly-[N-(2-hydroxyethyl)-d,l-aspartamide]-methoxypoly(ethyleneglycol)-hexadecylamine (PHEA-mPEG-C(16)) conjugated with 1,4,7,10-tetraazacyclododecan-1,4,7,10-tetraacetic acid-gadolinium (DOTA-Gd) via ethylenediamine (ED) was synthesized as a magnetic resonance imaging (MRI) contrast agent. Amphiphilic PHEA-mPEG-C(16)-ED-DOTA-Gd forms micelle in aqueous solution. All the synthesized materials were characterized by proton nuclear magnetic resonance ((1)H NMR). Micelle size and shape were examined by dynamic light scattering (DLS) and atomic force microscopy (AFM). Micelles with PHEA-mPEG-C(16)-ED-DOTA-Gd showed higher relaxivities than the commercially available gadolinium contrast agent. Moreover, the signal intensity of a rabbit liver was effectively increased after intravenous injection of PHEA-mPEG-C(16)-ED-DOTA-Gd.
Collapse
Affiliation(s)
- Sang Young Jeong
- College of Pharmacy, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon, 305-764, South Korea
| | - Hyo Jeong Kim
- Center for Drug Discovery Technology, KRICT, 100 Jang-dong, Yuseong-gu, Daejeon, 305-600, South Korea
| | - Byung-Kook Kwak
- College of Medicine, Chung-Ang University, 224-1 Heuksuk-dong, Dongjak-gu, Seoul, 156-756, South Korea
| | - Ha-Young Lee
- Center for Drug Discovery Technology, KRICT, 100 Jang-dong, Yuseong-gu, Daejeon, 305-600, South Korea
| | - Hasoo Seong
- Center for Drug Discovery Technology, KRICT, 100 Jang-dong, Yuseong-gu, Daejeon, 305-600, South Korea
| | - Byung Cheol Shin
- Center for Drug Discovery Technology, KRICT, 100 Jang-dong, Yuseong-gu, Daejeon, 305-600, South Korea
| | - Soon Hong Yuk
- Center for Drug Discovery Technology, KRICT, 100 Jang-dong, Yuseong-gu, Daejeon, 305-600, South Korea
| | - Sung-Joo Hwang
- College of Pharmacy, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon, 305-764, South Korea
| | - Sun Hang Cho
- Center for Drug Discovery Technology, KRICT, 100 Jang-dong, Yuseong-gu, Daejeon, 305-600, South Korea
| |
Collapse
|
21
|
Villaraza AJL, Bumb A, Brechbiel MW. Macromolecules, dendrimers, and nanomaterials in magnetic resonance imaging: the interplay between size, function, and pharmacokinetics. Chem Rev 2010; 110:2921-59. [PMID: 20067234 PMCID: PMC2868950 DOI: 10.1021/cr900232t] [Citation(s) in RCA: 474] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Aaron Joseph L. Villaraza
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ambika Bumb
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Martin W. Brechbiel
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
22
|
MacKinnon N, Guérin G, Liu B, Gradinaru CC, Rubinstein JL, Macdonald PM. Triggered instability of liposomes bound to hydrophobically modified core-shell PNIPAM hydrogel beads. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:1081-1089. [PMID: 19754070 DOI: 10.1021/la902423v] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The ability to trigger a destabilization of the membrane integrity of liposomes bound to environmentally sensitive hydrophobically modified core-shell hydrogel beads is demonstrated. Hydrogel beads with a core composed of poly(N-isopropylacrylamide) lightly cross-linked with bisacrylamide (BA) (pNIPAM) and a shell composed of NIPAM highly cross-linked with BA and containing varying amounts of acrylic acid (AA) [p(NIPAM-co-AA)] undergo a volume phase transition (VPT) at approximately 32 degrees C, as determined from (1)H magic angle spinning (MAS) NMR, regardless of the AA content of the shell. When the shell was hydrophobically modified with either decylamine or tetradecylamine, binding of extruded large unilamellar vesicles (eLUVs) composed of 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) was quantitative, as determined via fluorescence spectroscopy. Fluorescence microscopy showed that such bound eLUVs did not fuse. Hydrogel-bound eLUV membrane permeability was assessed using (31)P MAS NMR in the presence of the chemical shift agent praseodymium and demonstrated that only at lower degrees of hydrophobic modification of the core-shell hydrogels was eLUV membrane barrier integrity maintained when T < VPT. At a low degree of hydrophobic modification, cycling the temperature above the VPT even for short periods caused the eLUV membranes to become leaky. Hence, eLUV membrane permeability was coupled to the hydrogel VPT, a situation that would be useful in applications requiring triggered release of liposomal contents.
Collapse
Affiliation(s)
- Neil MacKinnon
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
Magnetic resonance (MR) is one of the most widely used imaging modalities in contemporary medicine to obtain images of pathological areas. Still, there is a big effort to facilitate the accumulation of contrast in the required zone and further increase a local spatial concentration of a contrast agent for better imaging. Certain particulate carriers able to carry multiple contrast moieties can be used for an efficient delivery of contrast agents to areas of interest and enhancing a signal from these areas. Among those carriers, liposomes draw special attention because of their easily controlled properties and good pharmacological characteristics. To enhance the signal intensity from a given reporter metal in liposomes, one may attempt to increase the net quantity of carrier-associated reporter metal by using polylysine (PLL)-based polychelating amphiphilic polymers (PAP). In addition to heavy load of reporter metal onto the pharmaceutical nanocarrier (liposome), the accumulation of the contrast nanoparticles in organs and tissues of interest (such as tumors) can be significantly enhanced by targeting such particles both "passively," via the so-called enhanced permeability and retention (EPR) effect, or "actively," using various target-specific ligands, such as monoclonal antibodies. Combining three different properties--heavy load with Gd via the liposome membrane-incorporated PAP and tumor specificity mediated by the liposome-attached mAb 2C5--in a single nanoparticle of long-circulating (PEGylated) liposomes could provide a new contrast agent for highly specific and efficient tumor MRI.
Collapse
|
24
|
Kozlowska D, Foran P, MacMahon P, Shelly MJ, Eustace S, O'Kennedy R. Molecular and magnetic resonance imaging: The value of immunoliposomes. Adv Drug Deliv Rev 2009; 61:1402-11. [PMID: 19796661 DOI: 10.1016/j.addr.2009.09.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 09/04/2009] [Accepted: 09/10/2009] [Indexed: 01/30/2023]
Abstract
Molecular imaging has the potential to transform the field of diagnostic imaging through enabling far more detailed investigation and characterisation of disease processes than is currently possible. Magnetic resonance imaging (MRI) is capable of three-dimensional non-invasive imaging of opaque tissues at near cellular resolution. Among the imaging techniques available today, MRI has, perhaps, the greatest potential to exploit the possibilities that molecular imaging presents. Nanoparticles are the focus of intense research, due to a wide variety of potential applications in the biomedical, optical, and electronic fields. In this article we examine the progress made in the development of nanoparticles as targeted contrast agents for molecular magnetic resonance imaging. In particular, we will examine the potential of antibody-targeted liposomes (immunoliposomes) as vehicles for delivering MRI contrast agents to cellular biomarkers, thus enabling visualisation of structures and processes at the molecular level. We will address some of the challenges that must be faced by researchers in this field before the progress made in the laboratory can be translated into improved clinical diagnostics and therapeutics.
Collapse
|
25
|
Supramolecular aggregates containing lipophilic Gd(III) complexes as contrast agents in MRI. Coord Chem Rev 2009. [DOI: 10.1016/j.ccr.2009.01.015] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
MacKinnon N, Guérin G, Liu B, Gradinaru CC, Macdonald PM. Liposome-hydrogel bead complexes prepared via biotin-avidin conjugation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:9413-9423. [PMID: 19603800 DOI: 10.1021/la900163r] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Liposomes immobilized onto polymeric hydrogel microbeads have potential advantages both in tissue engineering applications and as drug delivery vehicles. Here we demonstrate, quantify, and optimize lipid vesicle binding to polymeric hydrogel microbeads via the avidin-biotin conjugation system and characterize the stability of the resulting microgel-bound liposomes. Microgels consisting of a copolymer of N-isopropylacrylamide (NIPAM) and acrylic acid (AA), cross-linked with bis-acrylamide, that is, p(NIPAM-co-AA), were biotinylated using aqueous carbodiimide chemistry. Extruded liposomes consisting of 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) plus a small fraction of a biotin-derivatized phosphatidylethanolamine (B-PE) were saturated with avidin and allowed to bind to biotinylated hydrogel beads. Using a combination of fluorescence spectroscopy, quenching, and microscopy and 31P NMR static and magic angle spinning (MAS) spectroscopies, we demonstrate conditions for near-quantitative liposome binding to p(NIPAM-co-AA) microbeads and show that liposome fusion does not occur under such conditions, that the liposomes remain intact and impermeable when so bound, and that they can function as slow release vehicles for entrapped aqueous species.
Collapse
Affiliation(s)
- Neil MacKinnon
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, Ontario, Canada, M5S 3H6
| | | | | | | | | |
Collapse
|
27
|
Mody VV, Nounou MI, Bikram M. Novel nanomedicine-based MRI contrast agents for gynecological malignancies. Adv Drug Deliv Rev 2009; 61:795-807. [PMID: 19427886 DOI: 10.1016/j.addr.2009.04.020] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 04/28/2009] [Indexed: 11/16/2022]
Abstract
Gynecological cancers result in significant morbidity and mortality in women despite advances in treatment and diagnosis. This is due to detection of the disease in the late stages following metastatic spread in which treatment options become limited and may not result in positive outcomes. In addition, traditional contrast agents are not very effective in detecting primary metastatic tumors and cells due to a lack of specificity and sensitivity of the diagnostic tools, which limits their effectiveness. Recently, the field of nanomedicine-based contrast agents offers a great opportunity to develop highly sophisticated devices that can overcome many traditional hurdles of contrast agents including solubility, cell-specific targeting, toxicities, and immunological responses. These nanomedicine-based contrast agents including liposomes, micelles, dendrimers, multifunctional magnetic polymeric nanohybrids, fullerenes, and nanotubes represent improvements over their traditional counterparts, which can significantly advance the field of molecular imaging.
Collapse
Affiliation(s)
- Vicky V Mody
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Texas Medical Center Campus, 1441 Moursund Street, Houston, Texas 77030, USA
| | | | | |
Collapse
|
28
|
Lin W, Hyeon T, Lanza GM, Zhang M, Meade TJ. Magnetic Nanoparticles for Early Detection of Cancer by Magnetic Resonance Imaging. MRS BULLETIN 2009; 34:441-448. [PMID: 26166945 PMCID: PMC4495966 DOI: 10.1557/mrs2009.120] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
This article provides a brief overview of recent progress in the synthesis and functionalization of magnetic nanoparticles and their applications in the early detection of malignant tumors by magnetic resonance imaging (MRI). The intrinsic low sensitivity of MRI necessitates the use of large quantities of exogenous contrast agents in many imaging studies. Magnetic nanoparticles have recently emerged as highly efficient MRI contrast agents because these nanometer-scale materials can carry high payloads while maintaining the ability to move through physiological systems. Superparamagnetic ferrite nanoparticles (such as iron oxide) provide excellent negative contrast enhancement. Recent refinement of synthetic methodologies has led to ferrite nanoparticles with narrow size distributions and high crystallinity. Target-specific tumor imaging becomes possible through functionalization of ferrite nanoparticles with targeting agents to allow for site-specific accumulation. Nanoparticulate contrast agents capable of positive contrast enhancement have recently been developed in order to overcome the drawbacks of negative contrast enhancement afforded by ferrite nanoparticles. These newly developed magnetic nanoparticles have the potential to enable physicians to diagnose cancer at the earliest stage possible and thus can have an enormous impact on more effective cancer treatment.
Collapse
|
29
|
Erdogan S, Roby A, Sawant R, Hurley J, Torchilin VP. Gadolinium-Loaded Polychelating Polymer-Containing Cancer Cell-Specific Immunoliposomes. J Liposome Res 2008; 16:45-55. [PMID: 16556549 DOI: 10.1080/08982100500528784] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Liposome loading with Gd via the membrane-incorporated polychelating amphiphilic polymers (PAPs) significantly increases the Gd content and relaxivity (T1 parameter) of PEGylated liposomes, which can be used as contrast agents for magnetic resonance imaging (MRI). Here, we demonstrate that such Gd-containing liposomes can be additionally modified with the monoclonal anticancer antibody 2C5 (mAb 2C5) possessing the nucleosome(NS)-restricted specificity via the PEG spacer. Liposome-bound antibody preserves its specific activity (ELISA) and such Gd-loaded PEGylated 2C5-immunoliposomes specifically recognize various cancer cells in vitro and target an increased amount of Gd to their surface compared to antibody-free Gd-liposomes or Gd-liposomes modified with tumor nonspecific antibody. Gd-loaded cancer cell-targeted immunoliposomes may represent promising agents for enhanced tumor MRI.
Collapse
Affiliation(s)
- Suna Erdogan
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
30
|
Schwendener RA. Liposomes as carriers for paramagnetic gadolinium chelates as organ specific contrast agents for magnetic resonance imaging (mri). J Liposome Res 2008. [DOI: 10.3109/08982109409018603] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
31
|
Pütz B, Barsky D, Schulten K. Mechanisms of liposomal contrast agents in magnetic resonance imaging. J Liposome Res 2008. [DOI: 10.3109/08982109409018599] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
32
|
Holmberg E, Maruyama K, Kennel S, Klibanov A, Torchilin V, Ryan U, Huang L. Target-Specific Binding of Immunoliposomes in Vivo. J Liposome Res 2008. [DOI: 10.3109/08982109009036003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
33
|
Tilcock C. Liposomal blood pool agents for nuclear medicine and magnetic resonance imaging. J Liposome Res 2008. [DOI: 10.3109/08982109409018609] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
34
|
Muschick P, Sachse A, Leike J, Wehrmann D, Krause W. Lipid Dependent Cardio- Haemodynamic Tolerability of Liposomes in Rats. J Liposome Res 2008. [DOI: 10.3109/08982109509012691] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
35
|
Hu Q, van Rooijen N, Liu D. Effect of Macrophage Elimination Using Liposome-Encapsulated Dichloromethylene Diphosphonate on Tissue Distribution of Liposomes. J Liposome Res 2008. [DOI: 10.3109/08982109609039921] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
36
|
Liu D, Huang L. Size Homogeneity of a Liposome Preparation is Crucial for Liposome Biodistribution in Vivo. J Liposome Res 2008. [DOI: 10.3109/08982109209039901] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
37
|
Literature Alerts. J Microencapsul 2008. [DOI: 10.3109/02652048709021827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
38
|
Sofou S, Sgouros G. Antibody-targeted liposomes in cancer therapy and imaging. Expert Opin Drug Deliv 2008; 5:189-204. [DOI: 10.1517/17425247.5.2.189] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
39
|
Yigit MV, Mazumdar D, Lu Y. MRI detection of thrombin with aptamer functionalized superparamagnetic iron oxide nanoparticles. Bioconjug Chem 2008; 19:412-7. [PMID: 18173225 DOI: 10.1021/bc7003928] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Design of smart MRI contrast agent based on superparamagnetic iron oxide nanoparticles and aptamers has been described for the detection of human alpha-thrombin protein. The contrast agent is based on the assembly of the aptamer functionalized nanoparticles in the presence of thrombin. A detectable change in MRI signal is observed with 25 nM thrombin in human serum. Changes were neither observed with control analytes, streptavidin, or bovine serum albumin, nor with inactive aptamer functionalized nanoparticles.
Collapse
Affiliation(s)
- Mehmet Veysel Yigit
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, USA
| | | | | |
Collapse
|
40
|
Abstract
The efficacy of therapies based on neural stem cells (NSC) has been demonstrated in preclinical models of several central nervous system (CNS) diseases. Before any potential human application of such promising therapies can be envisaged, there are some important issues that need to be solved. The most relevant one is the requirement for a noninvasive technique capable of monitoring NSC delivery, homing to target sites and trafficking. Knowledge of the location and temporospatial migration of either transplanted or genetically modified NSC is of the utmost importance in analyzing mechanisms of correction and cell distribution. Further, such a technique may represent a crucial step toward clinical application of NSC-based approaches in humans, for both designing successful protocols and monitoring their outcome. Among the diverse imaging approaches available for noninvasive cell tracking, such as nuclear medicine techniques, fluorescence and bioluminescence, magnetic resonance imaging (MRI) has unique advantages. Its high temporospatial resolution, high sensitivity and specificity render MRI one of the most promising imaging modalities available, since it allows dynamic visualization of migration of transplanted cells in animal models and patients during clinically useful time periods. Different cellular and molecular labeling approaches for MRI depiction of NSC are described and discussed in this review, as well as the most relevant issues to be considered in optimizing molecular imaging techniques for clinical application.
Collapse
Affiliation(s)
- Letterio S Politi
- Neuroradiology Department, San Raffaele Scientific Institute, Via Olgettina 60, Milano, Italy.
| |
Collapse
|
41
|
Su CH, Sheu HS, Lin CY, Huang CC, Lo YW, Pu YC, Weng JC, Shieh DB, Chen JH, Yeh CS. Nanoshell Magnetic Resonance Imaging Contrast Agents. J Am Chem Soc 2007; 129:2139-46. [PMID: 17263533 DOI: 10.1021/ja0672066] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nanocontrast agents have great potential in magnetic resonance (MR) molecular imaging applications for clinical diagnosis. We synthesized Au(3)Cu(1) (gold and copper) nanoshells that showed a promising MR contrast effect. For in vitro MR images, the large proton r1 relaxivities brightened T(1)-weighted images. As for the proton-dephasing effect in T(2), Au(3)Cu(1) lightened MR images at the low concentration of 0.125 mg mL(-1) (3.84 x 10(-7) mM), and then the signal continuously decreased as the concentration increased. For in vivo MR imaging, Au(3)Cu(1) nanocontrast agents enhanced the contrast of blood vessels and suggested their potential use in MR angiography as blood-pool agents. We propose that (1) the cooperativity originating from the form of the nanoparticles and (2) the large surface area coordinated to water from their porous hollow morphology are important for efficient relaxivity. In a cytotoxicity and animal survival assay, Au(3)Cu(1) nanocontrast agents showed a dose-dependent toxic effect: the viability rate of experimental mice reached 83% at a dose of 20 mg kg(-1) and as much as 100% at 2 mg kg(-1).
Collapse
Affiliation(s)
- Chia-Hao Su
- Department of Chemistry and Center for Micro/Nano Science and Technology and Institute of Oral Medicine and Molecular Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Sharma P, Brown SC, Walter G, Santra S, Scott E, Ichikawa H, Fukumori Y, Moudgil BM. Gd nanoparticulates: from magnetic resonance imaging to neutron capture therapy. ADV POWDER TECHNOL 2007. [DOI: 10.1163/156855207782515030] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
43
|
Zheng J, Perkins G, Kirilova A, Allen C, Jaffray DA. Multimodal Contrast Agent for Combined Computed Tomography and Magnetic Resonance Imaging Applications. Invest Radiol 2006; 41:339-48. [PMID: 16481918 DOI: 10.1097/01.rli.0000186568.50265.64] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The objective of this study was to examine the feasibility of a multimodal system to effectively induce and maintain contrast enhancement in both computed tomography (CT) and magnetic resonance (MR) for radiation therapy applications. MATERIALS AND METHODS The physicochemical characteristics of a liposome-encapsulated iohexol and gadoteridol formulation were assessed in terms of agent loading efficiencies, size and morphology, in vitro stability, and release kinetics. The imaging properties of the liposome formulation were assessed based on T1 and T2 relaxivity measurements and in vitro CT and MR imaging in a phantom. A preliminary imaging-based evaluation of the in vivo stability of this multimodal contrast agent was also performed in a lupine model. RESULTS The average agent loading levels achieved were 26.5+/-3.8 mg/mL for iodine and 6.6+/- 1.5 mg/mL for gadolinium. These concentrations correspond to approximately 10% of that found in the commercially available preparations of each of these agents. However, this liposome-based formulation is expected to have a smaller volume of distribution and prolonged circulation lifetime in vivo. This multimodal system was found to have high agent retention in vitro, which translated into maintained contrast enhancement (up to 3 days) and stability in vivo. CONCLUSIONS This study demonstrated the feasibility of engineering a multimodal contrast agent with prolonged contrast enhancement in vivo for use in CT and MR. This contrast agent may serve as a valuable tool for cardiovascular imaging as well as image registration and guidance applications in radiation therapy.
Collapse
Affiliation(s)
- Jinzi Zheng
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
44
|
Zhang JS, Liu F, Conwell CC, Tan Y, Huang L. Mechanistic studies of sequential injection of cationic liposome and plasmid DNA. Mol Ther 2006; 13:429-37. [PMID: 16242997 DOI: 10.1016/j.ymthe.2005.08.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2004] [Revised: 08/19/2005] [Accepted: 08/19/2005] [Indexed: 11/26/2022] Open
Abstract
We previously reported that sequential injection of cationic liposome and plasmid DNA leads to notably reduced inflammatory toxicity and improved transfection in the lung (Y. Tan et al., 2001, Mol. Ther. 3, 673-682). The purpose of the current study was to explore the mechanism involved in sequential injection. It was observed that sequential injection resulted in dramatically lower DNA uptake by the liver and higher DNA levels in the lung than the lipoplex injection. In vitro experiments with macrophage cells further showed that sequential addition of liposomes and DNA could diminish the cellular uptake of DNA by these cells. The contributions of serum to the enhanced bioactivity and decreased toxicity were examined by injecting mice with samples of premixed liposome with serum and then DNA (LSD sample), and the resulting activities were compared to those obtained with injection of lipoplex-serum mixtures (LDS sample). LSD yielded 80% lower TNF-alpha levels and over 10-fold higher transfection than lipoplex, which is consistent with the reported findings with sequential injection. In contrast, LDS resulted in the same TNF-alpha levels and comparable transfection with lipoplex. Thus, the results suggest that the primary interaction of serum with liposome is a critical factor contributing to the superior activity and reduced toxicity of sequential injection. Studies on the interaction between mouse serum, liposomes, and DNA showed that DNA could bind negatively charged liposome-serum complex to form a ternary complex, which has a density similar to that of the ternary complex formed between lipoplex with serum. Further in vitro tests showed that LSD and LDS were similar in particle size and protein content, but different in protein composition as observed by 2-D gel electrophoresis. In addition, DNA in LSD was more readily displaced by dextran sulfate, an anionic polymer, than in LDS. The above findings suggest that the inhibition of opsonin protein binding on the particle surface with the sequential injection may contribute to the reduced macrophage uptake and cytokine induction and that the high ability of DNA release from the particles formed after sequential injection may contribute to the improved lung gene transfection.
Collapse
Affiliation(s)
- Jing-Shi Zhang
- Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, PA 15213, USA
| | | | | | | | | |
Collapse
|
45
|
Baía P, André JP, Geraldes CFGC, Martins JA, Merbach AE, Tóth É. Lanthanide(III) Chelates of DTPA Bis(amide) Glycoconjugates: Potential Imaging Agents Targeted at the Asyaloglycoprotein Receptor. Eur J Inorg Chem 2005. [DOI: 10.1002/ejic.200400766] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
46
|
Mahmood U, Josephson L. Molecular MR Imaging Probes. PROCEEDINGS OF THE IEEE. INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS 2005; 93:800-808. [PMID: 19194516 PMCID: PMC2633635 DOI: 10.1109/jproc.2005.844264] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Magnetic resonance imaging (MRI) has been successfully applied to many of the applications of molecular imaging. This review discusses by example some of the advances in areas such as multimodality MR-optical agents, receptor imaging, apoptosis imaging, angiogenesis imaging, noninvasive cell tracking, and imaging of MR marker genes.
Collapse
Affiliation(s)
- Umar Mahmood
- The authors are with the Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129 USA
| | | |
Collapse
|
47
|
Parac-Vogt T, Kimpe K, Laurent S, Piérart C, Elst L, Muller R, Binnemans K. Gadolinium DTPA-Monoamide Complexes Incorporated into Mixed Micelles as Possible MRI Contrast Agents. Eur J Inorg Chem 2004. [DOI: 10.1002/ejic.200400187] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
48
|
Luciani A, Olivier JC, Clement O, Siauve N, Brillet PY, Bessoud B, Gazeau F, Uchegbu IF, Kahn E, Frija G, Cuenod CA. Glucose-Receptor MR Imaging of Tumors: Study in Mice with PEGylated Paramagnetic Niosomes. Radiology 2004; 231:135-42. [PMID: 15068944 DOI: 10.1148/radiol.2311021559] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To evaluate a magnetic resonance (MR) imaging contrast agent for tumor detection based on paramagnetic nonionic vesicles (niosomes) bearing polyethylene glycol (PEG) and glucose conjugates for the targeting of overexpressed glucose receptors. MATERIALS AND METHODS Four gadobenate dimeglumine-loaded niosome preparations including nonconjugated niosomes, niosomes bearing glucose conjugates (N-palmitoyl glucosamine [NPG]), niosomes bearing PEG 4400, and niosomes bearing both PEG and NPG were tested. In vitro cellular uptake was measured at electron paramagnetic resonance (EPR) after incubation with human prostate carcinoma, PC3, cells. In vivo distribution was studied at MR imaging 6, 12, and 24 hours after injection, with assessment of tumor, brain, liver, and muscle signal intensity (SI) in 49 mice bearing PC3 cells. Efficiency of targeted contrast agents was assessed with tumor-to-muscle contrast-to-noise ratio (CNR). Testing for differences was performed with analysis of variance followed by a posteriori Fisher test. RESULTS In vitro, gadolinium could be detected at EPR only in cell pellets incubated with niosomes bearing glucose conjugates or niosomes bearing both glucose conjugates and PEG (4.9. 10(-15) and 4.5. 10(-15) mol gadolinium per PC3 cell). In vivo, marked predominant tumor enhancement was demonstrated 24 hours after injection of glycosylated PEG niosomes (P <.01); no significant differences were observed following injection of nonconjugated niosomes, glycosylated niosomes, or PEG 4400 niosomes. Twenty-four hours after injection, sole presence of NPG or PEG 4400 on the surface of the niosome led to higher tumor-to-muscle CNR than that observed after injection of nonconjugated niosomes (CNR of 3.3 +/- 0.7 [SD], 3.4 +/- 2.2, and 0 +/- 1.9). Combination of NPG and PEG led to even higher tumor-to-muscle CNR (6.3 +/- 2.2). CONCLUSION Combination of PEG and glucose conjugates on the surface of niosomes significantly improved tumor targeting of an encapsulated paramagnetic agent assessed with MR imaging in a human carcinoma xenograft model.
Collapse
Affiliation(s)
- Alain Luciani
- Radiology Department, Hôpital Européen Georges Pompidou, INSERM U494, LRI, Faculté Necker, 20 Rue Leblanc, 75015 Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Affiliation(s)
- Jeff W Bulte
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
50
|
Tournier H, Hyacinthe R, Schneider M. Gadolinium-containing mixed micelle formulations: a new class of blood pool MRI/MRA contrast agents. Acad Radiol 2002; 9 Suppl 1:S20-8. [PMID: 12019868 DOI: 10.1016/s1076-6332(03)80389-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Hervé Tournier
- Bracco Research SA, CH-1228 Plan-les-Ouates/Geneva, Switzerland
| | | | | |
Collapse
|