1
|
Brandt Y, Lubrecht JM, Adriaans BP, Aben JP, Gerretsen SC, Ghossein-Doha C, Spaanderman MEA, Prinzen FW, Kooi ME. Quantification of left ventricular myocardial strain: Comparison between MRI tagging, MRI feature tracking, and ultrasound speckle tracking. NMR IN BIOMEDICINE 2024; 37:e5164. [PMID: 38664924 DOI: 10.1002/nbm.5164] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 08/07/2024]
Abstract
Ultrasound speckle tracking is frequently used to quantify myocardial strain, and magnetic resonance imaging (MRI) feature tracking is rapidly gaining interest. Our aim is to validate cardiac MRI feature tracking by comparing it with the gold standard method (i.e., MRI tagging) in healthy subjects and patients. Furthermore, we aim to perform an indirect validation by comparing ultrasound speckle tracking with MRI feature tracking. Forty-two subjects (17 formerly preeclamptic women, three healthy women, and 22 left bundle branch block patients of both sexes) received 3-T cardiac MRI and echocardiography. Cine and tagged MRI, and B-mode ultrasound images, were acquired. Intrapatient global and segmental left ventricular circumferential (MRI tagging vs. MRI feature tracking) and longitudinal (MRI feature tracking vs. ultrasound speckle tracking) peak strain and time to peak strain were compared between the three techniques. Intraclass correlation coefficient (ICC) (< 0.50 = poor, 0.50-0.75 = moderate, > 0.75-0.90 = good, > 0.90 = excellent) and Bland-Altman analysis were used to assess correlation and bias; p less than 0.05 indicates a significant ICC or bias. Global peak strain parameters showed moderate-to-good correlations between methods (ICC = 0.71-0.83, p < 0.01) with no significant biases. Global time to peak strain parameters showed moderate-to-good correlations (ICC = 0.56-0.82, p < 0.01) with no significant biases. Segmental peak strains showed significant biases in all parameters and moderate-to-good correlation (ICC = 0.62-0.77, p < 0.01), except for lateral longitudinal peak strain (ICC = 0.23, p = 0.22). Segmental time to peak strain parameters showed moderate-to-good correlation (ICC = 0.58-0.74, p < 0.01) with no significant biases. MRI feature tracking is a valid method to examine myocardial strain, but there is bias in absolute segmental strain values between imaging techniques. MRI feature tracking shows adequate comparability with ultrasound speckle tracking.
Collapse
Affiliation(s)
- Yentl Brandt
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Jolijn M Lubrecht
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | - Bouke P Adriaans
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Department of Cardiology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Jean-Paul Aben
- Department of Research and Development, Pie Medical Imaging B.V., Maastricht, The Netherlands
| | - Suzanne C Gerretsen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Chahinda Ghossein-Doha
- Department of Cardiology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Marc E A Spaanderman
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre, Maastricht, The Netherlands
- Department of Obstetrics and Gynecology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Frits W Prinzen
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | - M Eline Kooi
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
2
|
Kühle H, Cho SKS, Barber N, Goolaub DS, Darby JRT, Morrison JL, Haller C, Sun L, Seed M. Advanced imaging of fetal cardiac function. Front Cardiovasc Med 2023; 10:1206138. [PMID: 37288263 PMCID: PMC10242056 DOI: 10.3389/fcvm.2023.1206138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023] Open
Abstract
Over recent decades, a variety of advanced imaging techniques for assessing cardiovascular physiology and cardiac function in adults and children have been applied in the fetus. In many cases, technical development has been required to allow feasibility in the fetus, while an appreciation of the unique physiology of the fetal circulation is required for proper interpretation of the findings. This review will focus on recent advances in fetal echocardiography and cardiovascular magnetic resonance (CMR), providing examples of their application in research and clinical settings. We will also consider future directions for these technologies, including their ongoing technical development and potential clinical value.
Collapse
Affiliation(s)
- Henriette Kühle
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Department of Cardiac and Thoracic Surgery, University Hospital Magdeburg, Otto von Guericke University Magdeburg, Magdeburg, Germany
- Division of Cardiac Surgery, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Steven K. S. Cho
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia
| | - Nathaniel Barber
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Datta Singh Goolaub
- Translational Medicine Program, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Jack R. T. Darby
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia
| | - Janna L. Morrison
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia
- Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Christoph Haller
- Division of Cardiac Surgery, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Liqun Sun
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Translational Medicine Program, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Mike Seed
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Translational Medicine Program, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Department of Diagnostic Imaging, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Yang W, Li H, He J, Yin G, An J, Forman C, Schmidt M, Zhao S, Lu M. Left Ventricular Strain Measurements Derived from MR Feature Tracking: A Head-to-Head Comparison of a Higher Temporal Resolution Method With a Conventional Method. J Magn Reson Imaging 2022; 56:801-811. [PMID: 35005810 DOI: 10.1002/jmri.28053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Magnetic resonance feature tracking (MR-FT) is an imaging technique that quantifies both global and regional myocardial strain. Currently, conventional MR-FT provides a superior signal and contrast-to-noise ratio but has a relatively low temporal resolution. A higher temporal resolution MR-FT technique may provide improved results. PURPOSE To explore the impact of higher temporal resolution on left ventricular (LV) myocardial strain measurements using MR-FT. STUDY TYPE Prospective. POPULATION One hundred and fifty-three participants including five healthy subjects and patients with various cardiac diseases referred to MR for cardiac assessment. FIELD STRENGTH 3 T, balanced steady-state free precession sequence with and without compressed sensing (temporal resolution: 10 msec and 40 msec, respectively). ASSESSMENT Conventional (40 msec) and higher (10 msec) temporal resolution data were acquired in all subjects during the same scanning session. Global circumferential strain (GCS), global longitudinal strain (GLS), and global radial strain (GRS) as well as peak systolic and diastolic strain rates (SRs) were measured by MR-FT and compared between the two temporal resolutions. We also performed subgroup analyses according to heart rates (HRs) and LV ejection fraction (LVEF). STATISTICAL TESTS Paired t-test, Wilcoxon signed-rank test, linear regression analyses, Bland-Altman plots. A P value <0.05 was considered to be statistically significant. RESULTS GCS and GRS were significantly higher in the 10-msec temporal resolution studies compared to the 40-msec temporal resolution studies (GCS: -13.00 ± 6.58% vs. -12.51 ± 5.76%; GRS: 21.97 ± 14.54% vs. 20.62 ± 12.52%). In the subgroup analyses, significantly higher GLS, GCS, and GRS values were obtained in subjects with LVEF ≥50%, and significantly higher GCS and GRS values were obtained in subjects with HRs <70 bpm when assessed with the 10-msec vs. the 40-msec temporal resolutions. All the peak systolic and diastolic SRs were significantly higher in the higher temporal resolution acquisitions. This was also true for all subgroups. DATA CONCLUSIONS Higher temporal resolution resulted in significantly higher cardiac strain and SR values using MR-FT and could be beneficial, particularly in patients with LVEF ≥50% and HR <70 bpm. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Wenjing Yang
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongwen Li
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jian He
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gang Yin
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing An
- Digital Imaging Department, Siemens Shenzhen Magnetic Resonance Ltd., Shenzhen, China
| | - Christoph Forman
- Cardiovascular MR Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Michaela Schmidt
- Cardiovascular MR Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Shihua Zhao
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Minjie Lu
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Cardiovascular Imaging (Cultivation), Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Biederman RWW. Does chance really favor (only) the prepared mind? The role of MRI tissue-tagging in solving a most vexing problem for the interventionalist. Int J Cardiovasc Imaging 2021; 37:3069-3072. [PMID: 34392442 DOI: 10.1007/s10554-021-02364-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 10/20/2022]
Affiliation(s)
- Robert W W Biederman
- Cardiovascular Magnetic Resonance Imaging, Allegheny General Hospital, Temple University School of Medicine, Allegheny Health Network, Carnegie Mellon University, 320 E. North Avenue, Pittsburgh, PA, 15212, USA.
| |
Collapse
|
5
|
Houbois CP, Nolan M, Somerset E, Shalmon T, Esmaeilzadeh M, Lamacie MM, Amir E, Brezden-Masley C, Koch CA, Thevakumaran Y, Yan AT, Marwick TH, Wintersperger BJ, Thavendiranathan P. Serial Cardiovascular Magnetic Resonance Strain Measurements to Identify Cardiotoxicity in Breast Cancer: Comparison With Echocardiography. JACC Cardiovasc Imaging 2020; 14:962-974. [PMID: 33248962 DOI: 10.1016/j.jcmg.2020.09.039] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/09/2020] [Accepted: 09/23/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVES This study sought to compare the prognostic value of cardiovascular magnetic resonance (CMR) and 2-dimensional echocardiography (2DE) derived left ventricular (LV) strain, volumes, and ejection fraction for cancer therapy-related cardiac dysfunction (CTRCD) in women with early stage breast cancer. BACKGROUND There are limited comparative data on the association of CMR and 2DE derived strain, volumes, and LVEF with CTRCD. METHODS A total of 125 prospectively recruited women with HER2+ early stage breast cancer receiving sequential anthracycline/trastuzumab underwent 5 serial CMR and 6 of 2DE studies before and during treatment. CMR LV volumes, left ventricular ejection fraction tagged-CMR, and feature-tracking (FT) derived global systolic longitudinal (GLS) and global circumferential strain (GCS) and 2DE-based LV volumes, function, GLS, and GCS were measured. CTRCD was defined by the cardiac review and evaluation committee criteria. RESULTS Twenty-eight percent of patients developed CTRCD by CMR and 22% by 2DE. A 15% relative reduction in 2DE-GLS increased the CTRCD odds by 133% at subsequent follow-up, compared with 47%/50% by tagged-CMR GLS/GCS and 87% by FT-GCS. CMR and 2DE-LVEF and indexed left ventricular end-systolic volume (LVESVi) were also associated with subsequent CTRCD. The prognostic threshold change in CMR-left ventricular ejection fraction and FT strain for subsequent CTRCD was similar to the known minimum-detectable difference for these measures, whereas for tagged-CMR strain it was lower than the minimum-detectable difference; for 2DE, only the prognostic threshold for GLS was greater than the minimum-detectable difference. Of all strain methods, 2DE-GLS provided the highest increase in discriminatory value over baseline clinical risk factors for subsequent CTRCD. The combination of 2DE-left ventricular ejection fraction or LVESVi and strain provided greater increase in the area under the curve for subsequent CTRCD over clinical risk factors than CMR left ventricular ejection fraction or LVESVi and strain (18% to 22% vs. 9% to 14%). CONCLUSIONS In women with HER2+ early stage breast cancer, changes in CMR and 2DE strain, left ventricular ejection fraction, and LVESVi were prognostic for subsequent CTRCD. When LVEF can be measured precisely by CMR, FT strain may function as an additional confirmatory prognostic measure, but with 2DE, GLS is the optimal prognostic measure. (Evaluation of Myocardial Changes During BReast Adenocarcinoma Therapy to Detect Cardiotoxicity Earlier With MRI [EMBRACE-MRI]; NCT02306538).
Collapse
Affiliation(s)
- Christian P Houbois
- Joint Department of Medical Imaging, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada; Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Mark Nolan
- Ted Rogers Program in Cardiotoxicity Prevention, Peter Munk Cardiac Center, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada; Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Emily Somerset
- Rogers Computational Program, Ted Rogers Centre for Heart Research, Peter Munk Cardiac Centre, University Health Network, Toronto, Canada
| | - Tamar Shalmon
- Ted Rogers Program in Cardiotoxicity Prevention, Peter Munk Cardiac Center, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Maryam Esmaeilzadeh
- Ted Rogers Program in Cardiotoxicity Prevention, Peter Munk Cardiac Center, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Mariana M Lamacie
- Ted Rogers Program in Cardiotoxicity Prevention, Peter Munk Cardiac Center, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Eitan Amir
- Division of Medical Oncology, Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | | | - C Anne Koch
- Division of Radiation Oncology, Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Yobiga Thevakumaran
- Ted Rogers Program in Cardiotoxicity Prevention, Peter Munk Cardiac Center, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Andrew T Yan
- Keenan Research Centre, Li Ka Shing Knowledge Institute, Division of Cardiology, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | | | - Bernd J Wintersperger
- Joint Department of Medical Imaging, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada; Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Paaladinesh Thavendiranathan
- Joint Department of Medical Imaging, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada; Ted Rogers Program in Cardiotoxicity Prevention, Peter Munk Cardiac Center, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
6
|
Amzulescu MS, De Craene M, Langet H, Pasquet A, Vancraeynest D, Pouleur AC, Vanoverschelde JL, Gerber BL. Myocardial strain imaging: review of general principles, validation, and sources of discrepancies. Eur Heart J Cardiovasc Imaging 2020; 20:605-619. [PMID: 30903139 PMCID: PMC6529912 DOI: 10.1093/ehjci/jez041] [Citation(s) in RCA: 325] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/07/2019] [Indexed: 01/01/2023] Open
Abstract
Myocardial tissue tracking imaging techniques have been developed for a more accurate evaluation of myocardial deformation (i.e. strain), with the potential to overcome the limitations of ejection fraction (EF) and to contribute, incremental to EF, to the diagnosis and prognosis in cardiac diseases. While most of the deformation imaging techniques are based on the similar principles of detecting and tracking specific patterns within an image, there are intra- and inter-imaging modality inconsistencies limiting the wide clinical applicability of strain. In this review, we aimed to describe the particularities of the echocardiographic and cardiac magnetic resonance deformation techniques, in order to understand the discrepancies in strain measurement, focusing on the potential sources of variation: related to the software used to analyse the data, to the different physics of image acquisition and the different principles of 2D vs. 3D approaches. As strain measurements are not interchangeable, it is highly desirable to work with validated strain assessment tools, in order to derive information from evidence-based data. There is, however, a lack of solid validation of the current tissue tracking techniques, as only a few of the commercial deformation imaging softwares have been properly investigated. We have, therefore, addressed in this review the neglected issue of suboptimal validation of tissue tracking techniques, in order to advocate for this matter.
Collapse
Affiliation(s)
- M S Amzulescu
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc, Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Av Hippocrate 10/2806, B Brussels, Belgium
| | - M De Craene
- Philips Research, Medical Imaging (Medisys), 33 rue de Verdun, CS60055, Suresnes Cedex, France
| | - H Langet
- Clinical Research Board, Philips Research, 33 rue de Verdun, CS60055, Suresnes Cedex, France
| | - A Pasquet
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc, Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Av Hippocrate 10/2806, B Brussels, Belgium
| | - D Vancraeynest
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc, Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Av Hippocrate 10/2806, B Brussels, Belgium
| | - A C Pouleur
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc, Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Av Hippocrate 10/2806, B Brussels, Belgium
| | - J L Vanoverschelde
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc, Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Av Hippocrate 10/2806, B Brussels, Belgium
| | - B L Gerber
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc, Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Av Hippocrate 10/2806, B Brussels, Belgium
- Corresponding author. Tel: +32 (2) 764 2803; Fax: +32 (2) 764 8980. E-mail:
| |
Collapse
|
7
|
Maceira AM, Guardiola S, Ripoll C, Cosin-Sales J, Belloch V, Salazar J. Detection of subclinical myocardial dysfunction in cocaine addicts with feature tracking cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2020; 22:70. [PMID: 32981526 PMCID: PMC7520970 DOI: 10.1186/s12968-020-00663-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cocaine is an addictive, sympathomimetic drug with potentially lethal effects. We have previously shown with cardiovascular magnetic resonance (CMR) the presence of cardiovascular involvement in a significant percentage of consecutive asymptomatic cocaine addicts. CMR with feature-tracking analysis (CMR-FT) allows for the quantification of myocardial deformation which may detect preclinical involvement. Therefore, we aimed to assess the effects of cocaine on the left ventricular myocardium in a group of asymptomatic cocaine users with CMR-FT. METHODS In a cohort of asymptomatic cocaine addicts (CA) who had been submitted to CMR at 3 T, we used CMR-FT to measure strain, strain rate and dyssynchrony index in CA with mildly decreased left ventricular ejection fraction (CA-LVEFd) and in CA with preserved ejection fraction (CA-LVEFp). We also measured these parameters in 30 age-matched healthy subjects. RESULTS There were no differences according to age. Significant differences were seen in global longitudinal, radial and circumferential strain, in global longitudinal and radial strain rate and in radial and circumferential dyssynchrony index among the groups, with the lowest values in CA-LVEFd and intermediate values in CA-LVEFp. Longitudinal, radial and circumferential strain values were significantly lower in CA-LVEFp with respect to controls. CONCLUSIONS CA-LVEFp show decreased systolic strain and strain rate values, with intermediate values between healthy controls and CA-LVEFd. Signs suggestive of dyssynchrony were also detected. In CA, CMR-FT based strain analysis can detect early subclinical myocardial involvement.
Collapse
Affiliation(s)
- Alicia M. Maceira
- Cardiovascular Unit, Ascires Biomedical Grup, C/ Marques de San Juan Nº6, 46015, Valencia, Spain
- Department of Medicine, Health Sciences School, CEU-Cardenal Herrera University, C/ Santiago Ramón y Cajal, s/n, 46115 Alfara del Patriarca, Moncada-Valencia, Spain
| | - Sara Guardiola
- Cardiovascular Unit, Ascires Biomedical Grup, C/ Marques de San Juan Nº6, 46015, Valencia, Spain
| | - Carmen Ripoll
- Addictions Treatment Unit of Campanar, La Fe Hospital, Valencia, Spain
| | - Juan Cosin-Sales
- Department of Cardiology, Hospital Arnau de Vilanova, Valencia, Spain
| | - Vicente Belloch
- Cardiovascular Unit, Ascires Biomedical Grup, C/ Marques de San Juan Nº6, 46015, Valencia, Spain
| | - Jose Salazar
- Department of Psychiatry, Hospital General Universitario, Valencia, Spain
| |
Collapse
|
8
|
Chen W, Byrd D, Narayanan S, Nayak KS. Intermittently tagged real-time MRI reveals internal tongue motion during speech production. Magn Reson Med 2019; 82:600-613. [PMID: 30919494 PMCID: PMC6510652 DOI: 10.1002/mrm.27745] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/11/2019] [Accepted: 02/28/2019] [Indexed: 12/17/2022]
Abstract
PURPOSE To demonstrate a tagging method compatible with RT-MRI for the study of speech production. METHODS Tagging is applied as a brief interruption to a continuous real-time spiral acquisition. Tagging can be initiated manually by the operator, cued to the speech stimulus, or be automatically applied with a fixed frequency. We use a standard 2D 1-3-3-1 binomial SPAtial Modulation of Magnetization (SPAMM) sequence with 1 cm spacing in both in-plane directions. Tag persistence in tongue muscle is simulated and validated in vivo. The ability to capture internal tongue deformations is tested during speech production of American English diphthongs in native speakers. RESULTS We achieved an imaging window of 650-800 ms at 1.5T, with imaging signal to noise ratio ≥ 17 and tag contrast to noise ratio ≥ 5 in human tongue, providing 36 frames/s temporal resolution and 2 mm in-plane spatial resolution with real-time interactive acquisition and view-sharing reconstruction. The proposed method was able to capture tongue motion patterns and their relative timing with adequate spatiotemporal resolution during the production of American English diphthongs and consonants. CONCLUSION Intermittent tagging during real-time MRI of speech production is able to reveal the internal deformations of the tongue. This capability will allow new investigations of valuable spatiotemporal information on the biomechanics of the lingual subsystems during speech without reliance on binning speech utterance repetition.
Collapse
Affiliation(s)
- Weiyi Chen
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | - Dani Byrd
- Department of Linguistics, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, USA
| | - Shrikanth Narayanan
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
- Department of Linguistics, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, USA
| | - Krishna S. Nayak
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
9
|
Quantification of myocardial deformation by deformable registration–based analysis of cine MRI: validation with tagged CMR. Eur Radiol 2019; 29:3658-3668. [DOI: 10.1007/s00330-019-06019-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/05/2018] [Accepted: 01/18/2019] [Indexed: 10/27/2022]
|
10
|
Regional Myocardial Strain and Function: From Novel Techniques to Clinical Applications. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/978-1-4939-8841-9_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
11
|
Schneider S, Dolde K, Engler J, Hoffmann A, Pfaffenberger A. Commissioning of a 4D MRI phantom for use in MR-guided radiotherapy. Med Phys 2018; 46:25-33. [DOI: 10.1002/mp.13261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/14/2018] [Accepted: 10/15/2018] [Indexed: 12/25/2022] Open
Affiliation(s)
- Sergej Schneider
- Institute of Radiooncology - OncoRay; Helmholtz-Zentrum Dresden-Rossendorf; Dresden Germany
- OncoRay - National Center for Radiation Research in Oncology; Faculty of Medicine; University Hospital Carl Gustav Carus; Technische Universität Dresden; Helmholtz-Zentrum Dresden-Rossendorf; Dresden Germany
| | - Kai Dolde
- German Cancer Research Center (DKFZ); Medical Physics in Radiotherapy; Heidelberg Germany
- National Center for Radiation Research in Oncology; Heidelberg Institute for Radiooncology; Heidelberg Germany
- Department of Physics and Astronomy; University of Heidelberg; Heidelberg Germany
| | - Johanna Engler
- OncoRay - National Center for Radiation Research in Oncology; Faculty of Medicine; University Hospital Carl Gustav Carus; Technische Universität Dresden; Helmholtz-Zentrum Dresden-Rossendorf; Dresden Germany
| | - Aswin Hoffmann
- Institute of Radiooncology - OncoRay; Helmholtz-Zentrum Dresden-Rossendorf; Dresden Germany
- OncoRay - National Center for Radiation Research in Oncology; Faculty of Medicine; University Hospital Carl Gustav Carus; Technische Universität Dresden; Helmholtz-Zentrum Dresden-Rossendorf; Dresden Germany
- Department of Radiotherapy and Radiation Oncology; Faculty of Medicine; University Hospital Carl Gustav Carus; Technische Universität Dresden; Dresden Germany
| | - Asja Pfaffenberger
- German Cancer Research Center (DKFZ); Medical Physics in Radiotherapy; Heidelberg Germany
- National Center for Radiation Research in Oncology; Heidelberg Institute for Radiooncology; Heidelberg Germany
| |
Collapse
|
12
|
Zhang C, Deng Y, Liu Y, Xu Y, Liu Y, Zhang L, Chen X, Xie M, Ge S. Preclinical cardiovascular changes in children with obesity: A real-time 3-dimensional speckle tracking imaging study. PLoS One 2018; 13:e0205177. [PMID: 30308043 PMCID: PMC6181343 DOI: 10.1371/journal.pone.0205177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 09/20/2018] [Indexed: 01/17/2023] Open
Abstract
The aims of this study were (1) to quantify changes in 3-dimensional (3D) strain in obese children using real-time 3D echocardiography (RT3DE) and 3D speckle tracking echocardiography (3DSTE), and (2) to investigate the utility of left ventricular (LV) strain variables in measuring early cardiovascular changes in children with obesity. A total of 181 obese children (study group) aged 4–18 years old were prospectively enrolled and compared with 229 healthy subjects (control group). We acquired demographic, clinical, biochemical, and 2D echocardiography/Doppler data. Also, RT3DE and 3DSTE were performed to measure LV volume, left ventricular ejection fraction (LVEF), LV mass (LVM), LV peak systolic global longitudinal strain (GLS), radial strain (GRS), circumferential strain (GCS), and global strain (GS). There were significant differences in anthropometric measurements, blood pressures, Cholesterol, C-reactive protein (CRP), Intima-media thickness (IMT), left atrium end-systolic dimension (LASD), interventricular septal end-diastolic dimension (IVSD), LV posterior wall end-diastolic dimension (LVPWD), LV end-diastolic dimension (LVEDD), LV end-systolic dimension (LVESD), LV end-diastolic volumes (LVEDV), and LV end-systolic volumes (LVESV), E and A velocities, E/A,e’, e’/a’, E/e’, LVM, LV mass index (LVMI), GLS, GRS, GCS, and GS between the study and control groups. The receiver operating characteristic curves (ROC) for the statistically significant echocardiographic variables showed that the range of areas of ROC curves varied from 0.76 (GLS), 0.74 (GRS), 0.72 (LASD), to 0.58 (LVESD), respectively. In conclusion, LV 3D strain variables by RT3DE and 3DSTE decrease in obese children. LV 3D strain is more sensitive than other echocardiographic and vascular ultrasound variables in detecting cardiovascular changes in children with obesity.
Collapse
Affiliation(s)
- Chunquan Zhang
- Department of Ultrasound, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yiwen Deng
- Department of Ultrasound, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yanna Liu
- Department of Ultrasound, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yan Xu
- Department of Ultrasound, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yanling Liu
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Li Zhang
- Department of Ultrasound, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Xiongwen Chen
- Department of Physiology, Temple University School of Medicine, Philadelphia, PA, United States of America
| | - Mingxing Xie
- Department of Ultrasound, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Shuping Ge
- The Heart Center, St. Christopher's Hospital for Children and Drexel University College of Medicine, Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
13
|
Puntmann VO, Valbuena S, Hinojar R, Petersen SE, Greenwood JP, Kramer CM, Kwong RY, McCann GP, Berry C, Nagel E. Society for Cardiovascular Magnetic Resonance (SCMR) expert consensus for CMR imaging endpoints in clinical research: part I - analytical validation and clinical qualification. J Cardiovasc Magn Reson 2018; 20:67. [PMID: 30231886 PMCID: PMC6147157 DOI: 10.1186/s12968-018-0484-5] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/05/2018] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease remains a leading cause of morbidity and mortality globally. Changing natural history of the disease due to improved care of acute conditions and ageing population necessitates new strategies to tackle conditions which have more chronic and indolent course. These include an increased deployment of safe screening methods, life-long surveillance, and monitoring of both disease activity and tailored-treatment, by way of increasingly personalized medical care. Cardiovascular magnetic resonance (CMR) is a non-invasive, ionising radiation-free method, which can support a significant number of clinically relevant measurements and offers new opportunities to advance the state of art of diagnosis, prognosis and treatment. The objective of the SCMR Clinical Trial Taskforce was to summarizes the evidence to emphasize where currently CMR-guided clinical care can indeed translate into meaningful use and efficient deployment of resources results in meaningful and efficient use. The objective of the present initiative was to provide an appraisal of evidence on analytical validation, including the accuracy and precision, and clinical qualification of parameters in disease context, clarifying the strengths and weaknesses of the state of art, as well as the gaps in the current evidence This paper is complementary to the existing position papers on standardized acquisition and post-processing ensuring robustness and transferability for widespread use. Themed imaging-endpoint guidance on trial design to support drug-discovery or change in clinical practice (part II), will be presented in a follow-up paper in due course. As CMR continues to undergo rapid development, regular updates of the present recommendations are foreseen.
Collapse
Affiliation(s)
- Valentina O Puntmann
- Institute of Experimental and Translational Cardiovascular Imaging, Goethe University Hospital Frankfurt, Frankfurt, Germany
- Department of Cardiology, Goethe University Hospital Frankfurt, Frankfurt, Germany
| | - Silvia Valbuena
- Department of Cardiology, University Hospital La Paz, Madrid, Germany
| | - Rocio Hinojar
- Department of Cardiology, University Hospital Ramón y Cajal, Madrid, Spain
| | - Steffen E Petersen
- William Harvey Research Institute, Queen Mary University of London, Barts and the London NIHR Biomedical Research Centre at Barts, London, UK
| | - John P Greenwood
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Christopher M Kramer
- Department of Medicine (Cardiology) and Radiology, Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Raymond Y Kwong
- Cardiovascular Division, Department of Medicine, Brigham and Womens' Hospital, Boston, Massachusetts, USA
| | - Gerry P McCann
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- the NIHR Leicester Cardiovascular Biomedical Centre, University Hospitals of Leicester NHS Trust, Glenfield Hospital, Leicester, UK
| | - Colin Berry
- British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Clydebank, UK
| | - Eike Nagel
- Institute of Experimental and Translational Cardiovascular Imaging, Goethe University Hospital Frankfurt, Frankfurt, Germany.
| |
Collapse
|
14
|
Illman JE, Arunachalam SP, Arani A, Chang ICY, Glockner JF, Dispenzieri A, Grogan M, Araoz PA. MRI feature tracking strain is prognostic for all-cause mortality in AL amyloidosis. Amyloid 2018; 25:101-108. [PMID: 29733684 PMCID: PMC6405287 DOI: 10.1080/13506129.2018.1465406] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVES Cardiac involvement is a major determinate of mortality in light chain (AL) amyloidosis. Cardiac magnetic resonance imaging (MRI) feature tracking (FT) strain is a new method for measuring myocardial strain. This study retrospectively evaluated the association of MRI FT strain with all-cause mortality in AL amyloidosis. MATERIALS AND METHODS Seventy-six patients with newly diagnosed AL amyloidosis underwent cardiac MRI. 75 had images suitable for MRI FT strain analysis. MRI delayed enhancement, morphologic and functional evaluation, cardiac biomarker staging and transthoracic echocardiography were also performed. Subjects' charts were reviewed for all-cause mortality. Cox proportional hazards analysis was used to evaluate survival in univariate and multivariate analysis. RESULTS There were 52 deaths. Median follow-up of surviving patients was 1.7 years. In univariate analysis, global radial (Hazard Ratio (HR) = 0.95, p <.01), circumferential (HR = 1.09, p < .01) and longitudinal (HR = 1.08, p < .01) strain were associated with all-cause mortality. In separate multivariate models, radial (HR = 0.96, p = .02), circumferential (HR = 1.09, p = .03) and longitudinal strain (HR = 1.07, p = .04) remained prognostic when combined with presence of biomarker stage 3. CONCLUSIONS MRI FT strain is associated with all-cause mortality in patients with AL amyloidosis.
Collapse
Affiliation(s)
| | | | - Arvin Arani
- a Department of Radiology , Mayo Clinic , Rochester , MN , USA
| | | | | | - Angela Dispenzieri
- c Department of Medicine, Division of Hematology , Mayo Clinic , Rochester , MN , USA
| | - Martha Grogan
- b Department of Cardiovascular Diseases , Mayo Clinic , MN , USA
| | - Philip A Araoz
- a Department of Radiology , Mayo Clinic , Rochester , MN , USA
| |
Collapse
|
15
|
Dardeer AM, Hudsmith L, Wesolowski R, Clift P, Steeds RP. The potential role of feature tracking in adult congenital heart disease: advantages and disadvantages in measuring myocardial deformation by cardiovascular magnetic resonance. JOURNAL OF CONGENITAL CARDIOLOGY 2018. [DOI: 10.1186/s40949-018-0015-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
16
|
Panayiotou M, Housden RJ, Ishak A, Brost A, Rinaldi CA, Sieniewicz B, Behar JM, Kurzendorfer T, Rhode KS. LV function validation of computer-assisted interventional system for cardiac resyncronisation therapy. Int J Comput Assist Radiol Surg 2018; 13:777-786. [PMID: 29603064 PMCID: PMC5974009 DOI: 10.1007/s11548-018-1748-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/21/2018] [Indexed: 12/01/2022]
Abstract
PURPOSE Cardiac resynchronisation therapy (CRT) is an established treatment for symptomatic patients with heart failure, a prolonged QRS duration, and impaired left ventricular (LV) function; however, non-response rates remain high. Recently proposed computer-assisted interventional platforms for CRT provide new routes to improving outcomes. Interventional systems must process information in an accurate, fast and highly automated way that is easy for the interventional cardiologists to use. In this paper, an interventional CRT platform is validated against two offline diagnostic tools to demonstrate that accurate information processing is possible in the time critical interventional setting. METHODS The study consisted of 3 healthy volunteers and 16 patients with heart failure and conventional criteria for CRT. Data analysis included the calculation of end-diastolic volume, end-systolic volume, stroke volume and ejection fraction; computation of global volume over the cardiac cycle as well as time to maximal contraction expressed as a percentage of the total cardiac cycle. RESULTS The results showed excellent correlation ([Formula: see text] values of [Formula: see text] and Pearson correlation coefficient of [Formula: see text]) with comparable offline diagnostic tools. CONCLUSION Results confirm that our interventional system has good accuracy in everyday clinical practice and can be of clinical utility in identification of CRT responders and LV function assessment.
Collapse
Affiliation(s)
- Maria Panayiotou
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK.
| | - R James Housden
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Athanasius Ishak
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | | | - Christopher A Rinaldi
- Department of Cardiology, Guy's and St. Thomas' Hospitals NHS Foundation Trust, London, UK
| | - Benjamin Sieniewicz
- Department of Cardiology, Guy's and St. Thomas' Hospitals NHS Foundation Trust, London, UK
| | - Jonathan M Behar
- Department of Cardiology, Guy's and St. Thomas' Hospitals NHS Foundation Trust, London, UK
| | | | - Kawal S Rhode
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| |
Collapse
|
17
|
Almutairi HM, Boubertakh R, Miquel ME, Petersen SE. Myocardial deformation assessment using cardiovascular magnetic resonance-feature tracking technique. Br J Radiol 2017; 90:20170072. [PMID: 28830199 DOI: 10.1259/bjr.20170072] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Cardiovascular magnetic resonance (CMR) imaging is an important modality that allows the assessment of regional myocardial function by measuring myocardial deformation parameters, such as strain and strain rate throughout the cardiac cycle. Feature tracking is a promising quantitative post-processing technique that is increasingly used. It is commonly applied to cine images, in particular steady-state free precession, acquired during routine CMR examinations. OBJECTIVE To review the studies that have used feature tracking techniques in healthy subjects or patients with cardiovascular diseases. The article emphasizes the advantages and limitations of feature tracking when applied to regional deformation parameters. The challenges of applying the techniques in clinics and potential solutions are also reviewed. RESULTS Research studies in healthy volunteers and/or patients either applied CMR-feature tracking alone to assess myocardial motion or compared it with either established CMR-tagging techniques or to speckle tracking echocardiography. These studies assessed the feasibility and reliability of calculating or determining global and regional myocardial deformation strain parameters. Regional deformation parameters are reviewed and compared. Better reproducibility for global deformation was observed compared with segmental parameters. Overall, studies demonstrated that circumferential was the most reproducible deformation parameter, usually followed by longitudinal strain; in contrast, radial strain showed high variability. CONCLUSION Although feature tracking is a promising tool, there are still discrepancies in the results obtained using different software packages. This highlights a clear need for standardization of MRI acquisition parameters and feature tracking analysis methodologies. Validation, including physical and numerical phantoms, is still required to facilitate the use of feature tracking in routine clinical practice.
Collapse
Affiliation(s)
- Haifa M Almutairi
- 1 Centre for Advanced Cardiovascular Imaging and Research, William Harvey Research Institute, Queen Mary University London, London, UK
| | - Redha Boubertakh
- 1 Centre for Advanced Cardiovascular Imaging and Research, William Harvey Research Institute, Queen Mary University London, London, UK.,2 Clinical Physics, Barts Health NHS Trust, London, United Kingdom
| | - Marc E Miquel
- 1 Centre for Advanced Cardiovascular Imaging and Research, William Harvey Research Institute, Queen Mary University London, London, UK.,2 Clinical Physics, Barts Health NHS Trust, London, United Kingdom
| | - Steffen E Petersen
- 1 Centre for Advanced Cardiovascular Imaging and Research, William Harvey Research Institute, Queen Mary University London, London, UK.,3 Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom
| |
Collapse
|
18
|
Foley JRJ, Swoboda PP, Fent GJ, Garg P, McDiarmid AK, Ripley DP, Erhayiem B, Musa TA, Dobson LE, Plein S, Witte KK, Greenwood JP. Quantitative deformation analysis differentiates ischaemic and non-ischaemic cardiomyopathy: sub-group analysis of the VINDICATE trial. Eur Heart J Cardiovasc Imaging 2017; 19:816-823. [DOI: 10.1093/ehjci/jex235] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/16/2017] [Indexed: 12/20/2022] Open
Affiliation(s)
- James R J Foley
- Multidisciplinary Cardiovascular Research Centre (MCRC) & Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Clarendon Way, Leeds LS2 9JT, UK
| | - Peter P Swoboda
- Multidisciplinary Cardiovascular Research Centre (MCRC) & Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Clarendon Way, Leeds LS2 9JT, UK
| | - Graham J Fent
- Multidisciplinary Cardiovascular Research Centre (MCRC) & Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Clarendon Way, Leeds LS2 9JT, UK
| | - Pankaj Garg
- Multidisciplinary Cardiovascular Research Centre (MCRC) & Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Clarendon Way, Leeds LS2 9JT, UK
| | - Adam K McDiarmid
- Multidisciplinary Cardiovascular Research Centre (MCRC) & Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Clarendon Way, Leeds LS2 9JT, UK
| | - David P Ripley
- Multidisciplinary Cardiovascular Research Centre (MCRC) & Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Clarendon Way, Leeds LS2 9JT, UK
| | - Bara Erhayiem
- Multidisciplinary Cardiovascular Research Centre (MCRC) & Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Clarendon Way, Leeds LS2 9JT, UK
| | - Tarique Al Musa
- Multidisciplinary Cardiovascular Research Centre (MCRC) & Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Clarendon Way, Leeds LS2 9JT, UK
| | - Laura E Dobson
- Multidisciplinary Cardiovascular Research Centre (MCRC) & Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Clarendon Way, Leeds LS2 9JT, UK
| | - Sven Plein
- Multidisciplinary Cardiovascular Research Centre (MCRC) & Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Clarendon Way, Leeds LS2 9JT, UK
| | - Klaus K Witte
- Multidisciplinary Cardiovascular Research Centre (MCRC) & Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Clarendon Way, Leeds LS2 9JT, UK
| | - John P Greenwood
- Multidisciplinary Cardiovascular Research Centre (MCRC) & Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Clarendon Way, Leeds LS2 9JT, UK
| |
Collapse
|
19
|
Schrauben EM, Cowan BR, Greiser A, Young AA. Left ventricular function and regional strain with subtly-tagged steady-state free precession feature tracking. J Magn Reson Imaging 2017; 47:787-797. [PMID: 28722247 DOI: 10.1002/jmri.25819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/06/2017] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To provide regional strain and ventricular volume from a single acquisition, using subtly tagged steady-state free precession (SubTag SSFP) feature tracking. MATERIALS AND METHODS The effects on regional strain of tag strength in gradient recalled echo (GRE) tagging, flip angle in untagged balanced SSFP, and both in SubTag SSFP were examined in the mid left ventricle of 15 healthy volunteers at 3T. Optimal parameters were determined from varying both tag strength and SSFP flip angle using full tag saturation GRE as the reference standard. SubTag SSFP was acquired in 15 additional healthy volunteers for whole-heart volume and strain assessment using the optimized parameters. Values measured by two image analysts were compared to clinical reference standards from untagged SSFP (volumes) and GRE tagging (strains). RESULTS Regional strain accuracy was maintained with decreasing total tagging flip angle (β); less than 3% differences for β ≥ 26°. For untagged SSFP flip angle (α), whole-wall strain differences became statistically significant when α < 40°. A SubTag SSFP acquisition with α = 40° and β = 46° showed the best combination of tagging strength, blood-myocardial contrast, and tag persistence at end-systole for regional strain estimation. SubTag SSFP also showed excellent agreement with untagged SSFP for volumetrics (percent difference: end-diastolic volume = 0.6%, end-systolic volume = 0.4%, stroke volume = 1.2%, ejection fraction = 0.6%, mass = 1.1%). CONCLUSION Feature tracking for regional myocardial strain assessment is dependent on image features, mainly the tag strength, persistence, and image contrast. SubTag SSFP balances these criteria to provide accurate regional strain and volumetric assessment in a single acquisition. LEVEL OF EVIDENCE 1 Technical Efficacy Stage: 2 J. Magn. Reson. Imaging 2018;47:787-797.
Collapse
Affiliation(s)
- Eric M Schrauben
- Translational Medicine, the Hospital for Sick Children, Toronto, Canada
| | - Brett R Cowan
- Department of Anatomy with Radiology, University of Auckland, Auckland, New Zealand
| | | | - Alistair A Young
- Department of Anatomy with Radiology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
20
|
Chitiboi T, Axel L. Magnetic resonance imaging of myocardial strain: A review of current approaches. J Magn Reson Imaging 2017; 46:1263-1280. [PMID: 28471530 DOI: 10.1002/jmri.25718] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 03/14/2017] [Indexed: 11/07/2022] Open
Abstract
Contraction of the heart is central to its purpose of pumping blood around the body. While simple global function measures (such as the ejection fraction) are most commonly used in the clinical assessment of cardiac function, MRI also provides a range of approaches for quantitatively characterizing regional cardiac function, including the local deformation (or strain) within the heart wall. While they have been around for some years, these methods are still undergoing further technical development, and they have had relatively little clinical evaluation. However, they can provide potentially useful new ways to assess cardiac function, which may be able to contribute to better classification and treatment of heart disease. This article provides some basic background on the physical and physiological factors that determine the motion of the heart, in health and disease and then reviews some of the ways that MRI methods are being developed to image and quantify strain within the myocardium. LEVEL OF EVIDENCE 4 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2017;46:1263-1280.
Collapse
Affiliation(s)
- Teodora Chitiboi
- NYU School of Medicine, Department of Radiology, New York, New York, USA
| | - Leon Axel
- NYU School of Medicine, Department of Radiology, New York, New York, USA
| |
Collapse
|
21
|
A Novel Method for Estimating Myocardial Strain: Assessment of Deformation Tracking Against Reference Magnetic Resonance Methods in Healthy Volunteers. Sci Rep 2016; 6:38774. [PMID: 27941903 PMCID: PMC5150576 DOI: 10.1038/srep38774] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/04/2016] [Indexed: 01/28/2023] Open
Abstract
We developed a novel method for tracking myocardial deformation using cardiac magnetic resonance (CMR) cine imaging. We hypothesised that circumferential strain using deformation-tracking has comparable diagnostic performance to a validated method (Displacement Encoding with Stimulated Echoes- DENSE) and potentially diagnostically superior to an established cine-strain method (feature-tracking). 81 healthy adults (44.6 ± 17.7 years old, 47% male), without any history of cardiovascular disease, underwent CMR at 1.5 T including cine, DENSE, and late gadolinium enhancement in subjects >45 years. Acquisitions were divided into 6 segments, and global and segmental peak circumferential strain were derived and analysed by age and sex. Peak circumferential strain differed between the 3 groups (DENSE: −19.4 ± 4.8%; deformation-tracking: −16.8 ± 2.4%; feature-tracking: −28.7 ± 4.8%) (ANOVA with Tukey post-hoc, F-value 279.93, p < 0.01). DENSE and deformation-tracking had better reproducibility than feature-tracking. Intra-class correlation co-efficient was >0.90. Larger magnitudes of strain were detected in women using deformation-tracking and DENSE, but not feature-tracking. Compared with a reference method (DENSE), deformation-tracking using cine imaging has similar diagnostic performance for circumferential strain assessment in healthy individuals. Deformation-tracking could potentially obviate the need for bespoke strain sequences, reducing scanning time and is more reproducible than feature-tracking.
Collapse
|
22
|
Lamacie MM, Thavendiranathan P, Hanneman K, Greiser A, Jolly MP, Ward R, Wintersperger BJ. Quantification of global myocardial function by cine MRI deformable registration-based analysis: Comparison with MR feature tracking and speckle-tracking echocardiography. Eur Radiol 2016; 27:1404-1415. [DOI: 10.1007/s00330-016-4514-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 07/12/2016] [Accepted: 07/19/2016] [Indexed: 12/01/2022]
|
23
|
Mechanics of the Functionally Univentricular Heart—How Little Do We Understand and Why Does It Matter? Can J Cardiol 2016; 32:1033.e11-8. [DOI: 10.1016/j.cjca.2015.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 11/03/2015] [Accepted: 11/03/2015] [Indexed: 11/18/2022] Open
|
24
|
Biederman RWW, Young AA, Doyle M, Devereux RB, Kortright E, Perry G, Bella JN, Oparil S, Calhoun D, Pohost GM, Dell’Italia LJ. Regional Heterogeneity in 3D Myocardial Shortening in Hypertensive Left Ventricular Hypertrophy: A Cardiovascular CMR Tagging Substudy to the Life Study. JOURNAL OF BIOMEDICAL SCIENCE AND ENGINEERING 2015; 8:213-225. [PMID: 27011783 PMCID: PMC4800488 DOI: 10.4236/jbise.2015.83021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Increased relative wall thickness in hypertensive left ventricular hypertrophy (LVH) has been shown by echocardiography to allow preserved shortening at the endocardium despite depressed LV midwall circumferential shortening (MWCS). Depressed MWCS is an adverse prognostic indicator, but whether this finding reflects reduced global or regional LV myocardial function, as assessed by three-dimensional (3D) myocardial strain, is unknown. METHODS AND RESULTS Cardiac Magnetic Resonance (CMR) tissue tagging permits direct evaluation of regional 3D intramyocardial strain, independent of LV geometry. We evaluated 21 hypertensive patients with electrocardiographic LVH in the LIFE study and 8 normal controls using 3D MR tagging and echocardiography. Patients had higher MR LV mass than normals (116 ± 40 versus 63 ± 6 g/m2, P = 0.002). Neither echocardiographic fractional shortening (32 ± 6 versus 33% ± 3%), LVEF (63% versus 64%) or mean end-systolic stress (175 ± 27 versus 146 ± 28 g/cm2) were significantly different, yet global MWCS was decreased by both echocardiography (13.4 ± 2.8 versus 18.2% ± 1.5%, P < 0.001) and MR (16.8 ± 3.6 versus 21.6% ± 3.0%, P < 0.005). 3D MR MWCS was lower at the base versus apex (P = 0.002) in LVH and greater in lateral and anterior regions versus septal and posterior regions (P < 0.001), contributing to the higher mean global MWCS by MR than echo. MR longitudinal strain was severely depressed in LVH patients (11.0 ± 3.3 versus 16.5% ± 2.5%, P < 0.001) and apical twist was increased (17.5 ± 4.3 versus 13.7 ± 3.7, P < 0.05). Importantly, both circumferential and longitudinal shortening correlated with LV relative wall thickness (R > 0.60, P = 0.001 for both). CONCLUSIONS In patients with hypertensive LVH, despite normal LV function via echocardiography or CMR, CMR intramyocardial tagging show depressed global MWCS while 3D MR strain revealed marked underlying regional heterogeneity of LV dysfunction.
Collapse
Affiliation(s)
- Robert W. W. Biederman
- Division of Cardiology, Department of Cardiovascular CMR, Gerald McGinnis Cardiovascular Institute, Allegheny General Hospital, Drexel University College of Medicine, Pittsburgh, USA
| | | | - Mark Doyle
- Division of Cardiology, Department of Cardiovascular CMR, Gerald McGinnis Cardiovascular Institute, Allegheny General Hospital, Drexel University College of Medicine, Pittsburgh, USA
| | | | | | - Gilbert Perry
- University of Auckland, Auckland, New Zealand
- University of Alabama at Birmingham, Birmingham, USA
| | | | | | - David Calhoun
- University of Alabama at Birmingham, Birmingham, USA
| | | | | |
Collapse
|
25
|
Armstrong AC, Ricketts EP, Cox C, Adler P, Arynchyn A, Liu K, Stengel E, Sidney S, Lewis CE, Schreiner PJ, Shikany JM, Keck K, Merlo J, Gidding SS, Lima JAC. Quality Control and Reproducibility in M-Mode, Two-Dimensional, and Speckle Tracking Echocardiography Acquisition and Analysis: The CARDIA Study, Year 25 Examination Experience. Echocardiography 2014; 32:1233-40. [PMID: 25382818 DOI: 10.1111/echo.12832] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
INTRODUCTION Few large studies describe quality control procedures and reproducibility findings in cardiovascular ultrasound, particularly in novel techniques such as speckle tracking echocardiography (STE). We evaluate the echocardiography assessment performance in the Coronary Artery Risk Development in Young Adults (CARDIA) study Year 25 (Y25) examination (2010-2011) and report findings from a quality control and reproducibility program conducted to assess Field Center image acquisition and reading center (RC) accuracy. METHODS The CARDIA Y25 examination had 3475 echocardiograms performed in 4 US Field Centers and analyzed in a RC, assessing standard echocardiography (LA dimension, aortic root, LV mass, LV end-diastolic volume [LVEDV], ejection fraction [LVEF]), and STE (two- and four-chamber longitudinal, circumferential, and radial strains). Reproducibility was assessed using intraclass correlation coefficients (ICC), coefficients of variation (CV), and Bland-Altman plots. RESULTS For standard echocardiography reproducibility, LV mass and LVEDV consistently had CV above 10% and aortic root below 6%. Intra-sonographer aortic root and LV mass had the most robust values of ICC in standard echocardiography. For STE, the number of properly tracking segments was above 80% in short-axis and four-chamber and 58% in two-chamber views. Longitudinal strain parameters were the most robust and radial strain showed the highest variation. Comparing Field Centers with echocardiography RC STE readings, mean differences ranged from 0.4% to 4.1% and ICC from 0.37 to 0.66, with robust results for longitudinal strains. CONCLUSION Echocardiography image acquisition and reading processes in the CARDIA study were highly reproducible, including robust results for STE analysis. Consistent quality control may increase the reliability of echocardiography measurements in large cohort studies.
Collapse
Affiliation(s)
- Anderson C Armstrong
- Johns Hopkins University, Baltimore, Maryland.,University of Sao Francisco Valley, Petrolina, Brazil.,Bahiana School of Medicine and Public Health, Salvador, Brazil
| | | | | | - Paul Adler
- Johns Hopkins University, Baltimore, Maryland
| | | | - Kiang Liu
- Northwestern University, Chicago, Illinois
| | | | - Stephen Sidney
- Kaiser Permanente Division of Research, Oakland, California
| | - Cora E Lewis
- University of Alabama at Birmingham, Birmingham, Alabama
| | | | | | | | - Jamie Merlo
- Johns Hopkins University, Baltimore, Maryland
| | | | | |
Collapse
|
26
|
Genet M, Lee LC, Nguyen R, Haraldsson H, Acevedo-Bolton G, Zhang Z, Ge L, Ordovas K, Kozerke S, Guccione JM. Distribution of normal human left ventricular myofiber stress at end diastole and end systole: a target for in silico design of heart failure treatments. J Appl Physiol (1985) 2014; 117:142-52. [PMID: 24876359 DOI: 10.1152/japplphysiol.00255.2014] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ventricular wall stress is believed to be responsible for many physical mechanisms taking place in the human heart, including ventricular remodeling, which is frequently associated with heart failure. Therefore, normalization of ventricular wall stress is the cornerstone of many existing and new treatments for heart failure. In this paper, we sought to construct reference maps of normal ventricular wall stress in humans that could be used as a target for in silico optimization studies of existing and potential new treatments for heart failure. To do so, we constructed personalized computational models of the left ventricles of five normal human subjects using magnetic resonance images and the finite-element method. These models were calibrated using left ventricular volume data extracted from magnetic resonance imaging (MRI) and validated through comparison with strain measurements from tagged MRI (950 ± 170 strain comparisons/subject). The calibrated passive material parameter values were C0 = 0.115 ± 0.008 kPa and B0 = 14.4 ± 3.18; the active material parameter value was Tmax = 143 ± 11.1 kPa. These values could serve as a reference for future construction of normal human left ventricular computational models. The differences between the predicted and the measured circumferential and longitudinal strains in each subject were 3.4 ± 6.3 and 0.5 ± 5.9%, respectively. The predicted end-diastolic and end-systolic myofiber stress fields for the five subjects were 2.21 ± 0.58 and 16.54 ± 4.73 kPa, respectively. Thus these stresses could serve as targets for in silico design of heart failure treatments.
Collapse
Affiliation(s)
- Martin Genet
- Surgery Department, University of California at San Francisco, San Francisco, California; Marie-Curie International Outgoing Fellow, Brussels, Belgium
| | - Lik Chuan Lee
- Surgery Department, University of California at San Francisco, San Francisco, California
| | - Rebecca Nguyen
- Surgery Department, University of California at San Francisco, San Francisco, California
| | - Henrik Haraldsson
- Radiology and Biomedical Imaging Department, School of Medicine, University of California at San Francisco, San Francisco, California
| | - Gabriel Acevedo-Bolton
- Radiology and Biomedical Imaging Department, School of Medicine, University of California at San Francisco, San Francisco, California
| | - Zhihong Zhang
- Veterans Affairs Medical Center, San Francisco, California; and
| | - Liang Ge
- Veterans Affairs Medical Center, San Francisco, California; and
| | - Karen Ordovas
- Radiology and Biomedical Imaging Department, School of Medicine, University of California at San Francisco, San Francisco, California
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH, Zürich, Switzerland
| | - Julius M Guccione
- Surgery Department, University of California at San Francisco, San Francisco, California;
| |
Collapse
|
27
|
Moody WE, Taylor RJ, Edwards NC, Chue CD, Umar F, Taylor TJ, Ferro CJ, Young AA, Townend JN, Leyva F, Steeds RP. Comparison of magnetic resonance feature tracking for systolic and diastolic strain and strain rate calculation with spatial modulation of magnetization imaging analysis. J Magn Reson Imaging 2014; 41:1000-12. [PMID: 24677420 DOI: 10.1002/jmri.24623] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 03/04/2014] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To compare cardiovascular magnetic resonance-feature tracking (CMR-FT) with spatial modulation of magnetization (SPAMM) tagged imaging for the calculation of short and long axis Lagrangian strain measures in systole and diastole. MATERIALS AND METHODS Healthy controls (n = 35) and patients with dilated cardiomyopathy (n = 10) were identified prospectively and underwent steady-state free precession (SSFP) cine imaging and SPAMM imaging using a gradient-echo sequence. A timed offline analysis of images acquired at identical horizontal long and short axis slice positions was performed using CMR-FT and dynamic tissue-tagging (CIMTag2D). Agreement between strain and strain rate (SR) values calculated using these two different methods was assessed using the Bland-Altman technique. RESULTS Across all participants, there was good agreement between CMR-FT and CIMTag for calculation of peak systolic global circumferential strain (-22.7 ± 6.2% vs. -22.5 ± 6.9%, bias 0.2 ± 4.0%) and SR (-1.35 ± 0.42 1/s vs. -1.22 ± 0.42 1/s, bias 0.13 ± 0.33 1/s) and early diastolic global circumferential SR (1.21 ± 0.44 1/s vs. 1.07 ± 0.30 1/s, bias -0.14 ± 0.34 1/s) at the subendocardium. There was satisfactory agreement for derivation of peak systolic global longitudinal strain (-18.1 ± 5.0% vs. -16.7 ± 4.8%, bias 1.3 ± 3.8%) and SR (-1.04 ± 0.29 1/s vs. -0.95 ± 0.32 1/s, bias 0.09 ± 0.26 1/s). The weakest agreement was for early diastolic global longitudinal SR (1.10 ± 0.40 1/s vs. 0.67 ± 0.32 1/s, bias -0.42 ± 0.40 1/s), although the correlation remained significant (r = 0.42, P < 0.01). CMR-FT generated these data over four times quicker than CIMTag. CONCLUSION There is sufficient agreement between systolic and diastolic strain measures calculated using CMR-FT and myocardial tagging for CMR-FT to be considered as a potentially feasible and rapid alternative.
Collapse
Affiliation(s)
- William E Moody
- Department of Cardiology, Nuffield House, Queen Elizabeth Hospital Birmingham, Edgbaston, Birmingham, UK; Centre for Cardiovascular Sciences, School of Clinical and Experimental Medicine, University of Birmingham, Edgbaston, Birmingham, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Nederveen AJ, Avril S, Speelman L. MRI strain imaging of the carotid artery: present limitations and future challenges. J Biomech 2014; 47:824-33. [PMID: 24468207 DOI: 10.1016/j.jbiomech.2014.01.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2014] [Indexed: 11/18/2022]
Abstract
Rupture of atherosclerotic plaques in the carotid artery is a main cause of stroke. Current diagnostics are not sufficient to identify all rupture-prone plaques, and studies have shown that biomechanical factors improve current plaque risk assessment. Strain imaging may be a valuable contribution to this risk assessment. MRI is a versatile imaging technique that offers various methods that are capable of measuring tissue strain. In this review, MR imaging techniques with displacement (DENSE), velocity (PC MRI), or strain (SENC) encoding protocols are discussed, together with post-processing techniques based on time-resolved MRI data. Although several MRI techniques are being developed to improve time-resolved MR imaging, current technical limitations related to spatial and temporal resolutions render MRI strain imaging currently unfit for carotid plaque strain evaluation. A novel approach using non-rigid image registration of MR images to determine strain in carotid arteries based on black blood cine MRI is proposed in this review. This and other post-processing techniques based on time-resolved MRI data may provide a good estimate of plaque strain, but are also dependent on the spatial and temporal resolution of the MR images. However, they seem to be the most promising approach for MRI based plaque strain analysis in the near future.
Collapse
Affiliation(s)
- Aart J Nederveen
- Department of Radiology, Academic Medical Center Amsterdam, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | - Stéphane Avril
- Center for Biomedical and Healthcare Engineering, Ecole Nationale Supérieure des Mines de Saint-Étienne, France
| | - Lambert Speelman
- Department of Biomedical Engineering, Erasmus MC Rotterdam, The Netherlands
| |
Collapse
|
29
|
Zhang L, Gao J, Xie M, Yin P, Liu W, Li Y, Klas B, Sun J, Balluz R, Ge S. Left ventricular three-dimensional global systolic strain by real-time three-dimensional speckle-tracking in children: feasibility, reproducibility, maturational changes, and normal ranges. J Am Soc Echocardiogr 2013; 26:853-9. [PMID: 23791113 DOI: 10.1016/j.echo.2013.05.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Three-dimensional (3D) strain analysis may help overcome the limitations of Doppler and two-dimensional strain analysis for the left ventricle and become the method of choice for left ventricular (LV) systolic function. The aims of this study were to evaluate the feasibility and reproducibility of LV global 3D systolic strain by real-time 3D speckle-tracking echocardiography (STE) in children and to establish their maturational growth patterns and normal values. METHODS A prospective study was conducted in 256 consecutive healthy subjects using real-time 3D echocardiography. Full-volume 3D data were acquired using a 3D matrix-array transducer. Three-dimensional LV peak systolic global strain (GS), global longitudinal strain (GLS), global radial strain (GRS), and global circumferential strain (GCS) values were determined using real-time 3D STE. RESULTS A total of 228 patients (89%) met the criteria for analysis; 28 (11%) were excluded. The correlations between age and strain variables by real-time 3D STE were poor (R(2) = 0.01-0.05, P < .05). The differences in GLS and GCS among the five age groups were statistically significant but clinically irrelevant. There were no statistical differences in GRS and GS values among the age groups, nor were there statistical differences between the genders for all 3D strain parameters. Intraobserver and interobserver variability ranged from 5.0 ± 4.3% to 10.1 ± 8.5% versus 6.9 ± 6.1% to 17.0 ± 16.2% for coefficients of variation, respectively. Interclass correlation coefficients ranged from 0.78 to 0.87 and from 0.75 to 0.79 for intraobserver and interobserver measurements for GS, GLS, GCS, and GRS, respectively. CONCLUSIONS LV global 3D systolic strain analysis using the new 3D STE is feasible and reproducible in the pediatric population. There are small maturational changes in GLS and GCS, but not in GRS and GS, that are statistically significant but probably clinically irrelevant. Further investigation is warranted for potential clinical application of this new technology in a pediatric population.
Collapse
Affiliation(s)
- Li Zhang
- Department of Ultrasound, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Balluz R, Liu L, Zhou X, Ge S. Real Time Three-Dimensional Echocardiography for Quantification of Ventricular Volumes, Mass, and Function in Children with Congenital and Acquired Heart Diseases. Echocardiography 2013; 30:472-82. [PMID: 23551607 DOI: 10.1111/echo.12132] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Rula Balluz
- Heart Center; St. Christopher's Hospital for Children and Drexel University College of Medicine; Philadelphia; Pennsylvania
| | - Liwen Liu
- Department of Ultrasound; Xijing Hospital and Fourth Military Medical University; Xi'an; Shannxi,; China
| | - Xiaodong Zhou
- Department of Ultrasound; Xijing Hospital and Fourth Military Medical University; Xi'an; Shannxi,; China
| | - Shuping Ge
- Heart Center; St. Christopher's Hospital for Children and Drexel University College of Medicine; Philadelphia; Pennsylvania
| |
Collapse
|
31
|
Simpson RM, Keegan J, Firmin DN. MR assessment of regional myocardial mechanics. J Magn Reson Imaging 2012; 37:576-99. [PMID: 22826177 DOI: 10.1002/jmri.23756] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 06/15/2012] [Indexed: 12/30/2022] Open
Abstract
Regional myocardial function can be measured by several MR techniques including tissue tagging, phase velocity mapping, and more recently, displacement encoding with stimulated echoes (DENSE) and strain encoding (SENC). Each of these techniques was developed separately and has undergone significant change since its original implementation. As a result, in the current literature, the common features and the differences between the techniques and what they measure are often unclear and confusing. This review article delivers an extensively referenced introductory text which clarifies the current methodology from the starting point of the Bloch equations. By doing this in a consistent way for each method, the similarities and differences between them are highlighted. In addition, their capabilities and limitations are discussed, together with their relative advantages and disadvantages. While the focus is on sequence design and development, the principal parameters measured by each technique are also summarized, together with brief results, with the reader being directed to the extensive literature on data processing and clinical applications for more detail.
Collapse
Affiliation(s)
- Robin M Simpson
- Cardiovascular Magnetic Resonance Unit, Royal Brompton and Harefield NHS Hospital Trust, London, United Kingdom.
| | | | | |
Collapse
|
32
|
Kailin JA, Miyamoto SD, Younoszai AK, Landeck BF. Longitudinal myocardial deformation is selectively decreased after pediatric cardiac transplantation: a comparison of children 1 year after transplantation with normal subjects using velocity vector imaging. Pediatr Cardiol 2012; 33:749-56. [PMID: 22367550 DOI: 10.1007/s00246-012-0205-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 12/19/2011] [Indexed: 11/30/2022]
Abstract
The transplanted heart experiences numerous hemodynamic changes during and after cardiac transplantation. This study sought to evaluate the left ventricular myocardial mechanics in the pediatric heart transplant population using Velocity Vector Imaging (VVI). This study retrospectively evaluated 28 heart transplant recipients by echocardiography 12 months after transplantation. Echocardiograms from 28 age- and gender-matched subjects were used as a control group. Peak global longitudinal and circumferential left ventricular strain, systolic strain rate, and diastolic strain rate were obtained. Student's t tests were used to assess differences between the two groups (defined as p ≤ 0.05). The peak global left ventricular longitudinal strain was lower in the transplant group (17.21%) than in the control group (22.14%). The transplant and control groups did not differ significantly in terms of their peak global circumferential strain (20.28% vs. 20.79%, respectively). Similar results were observed for longitudinal and circumferential systolic and diastolic strain rates. The transplant patients showed statistically significant reductions in all peak global longitudinal measures compared with those of the control subjects. Circumferential myocardial deformation appears to be preserved in transplant recipients. This could suggest evidence of ischemia given the known myocardial fiber arrangement of longitudinal fibers toward the endocardial surface, which is also more distal in the coronary arterioles.
Collapse
Affiliation(s)
- Joshua A Kailin
- The University of Colorado Denver School of Medicine, The Children's Hospital, 13123 East 16th Avenue, B-100, Aurora, CO 80045, USA.
| | | | | | | |
Collapse
|
33
|
Bayly PV, Clayton EH, Genin GM. Quantitative imaging methods for the development and validation of brain biomechanics models. Annu Rev Biomed Eng 2012; 14:369-96. [PMID: 22655600 PMCID: PMC3711121 DOI: 10.1146/annurev-bioeng-071811-150032] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Rapid deformation of brain tissue in response to head impact or acceleration can lead to numerous pathological changes, both immediate and delayed. Modeling and simulation hold promise for illuminating the mechanisms of traumatic brain injury (TBI) and for developing preventive devices and strategies. However, mathematical models have predictive value only if they satisfy two conditions. First, they must capture the biomechanics of the brain as both a material and a structure, including the mechanics of brain tissue and its interactions with the skull. Second, they must be validated by direct comparison with experimental data. Emerging imaging technologies and recent imaging studies provide important data for these purposes. This review describes these techniques and data, with an emphasis on magnetic resonance imaging approaches. In combination, these imaging tools promise to extend our understanding of brain biomechanics and improve our ability to study TBI in silico.
Collapse
Affiliation(s)
- Philip V. Bayly
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, Missouri 63130
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Erik H. Clayton
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Guy M. Genin
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, Missouri 63130
| |
Collapse
|
34
|
Chan DD, Toribio D, Neu CP. Displacement smoothing for the precise MRI-based measurement of strain in soft biological tissues. Comput Methods Biomech Biomed Engin 2012; 16:852-60. [PMID: 22292493 DOI: 10.1080/10255842.2011.641178] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Displacement and strain are fundamental quantities that describe the normal and pathological mechanical function of soft biological materials. Non-invasive imaging techniques, including displacement-encoded magnetic resonance imaging (MRI), enable the direct calculation of biomaterial displacements during the application of extrinsic mechanical forces. However, because strain is derived from measured MRI-based displacements, data processing must be accomplished to minimise the propagation and amplification of errors. Here, we evaluate smoothing methods (including averaging filters, splines, finite impulse response filters and wavelets) that enable the calculation of strain in biomaterials from MRI-based displacements for minimal error, defined in terms of bias and precision. Displacement and strain precisions were improved using all smoothing methods studied. Precision generally increased with the number of smoothing iterations (i.e. repeated applications) of a chosen smoothing method. The bias depended on the smoothing method and tended to increase with the number of smoothing iterations. A Gaussian filter characterised complex and heterogeneous strain fields with maximum precision and minimum bias. The results suggest that the optimal choice of smoothing method to compute strain for a given biomaterial or tissue application depends on a careful consideration of trade-offs between the improved precision (with increased data smoothing) and the trending increase in bias.
Collapse
Affiliation(s)
- Deva D Chan
- a Weldon School of Biomedical Engineering, Purdue University , West Lafayette , IN 47907 , USA
| | | | | |
Collapse
|
35
|
Young AA, Li B, Kirton RS, Cowan BR. Generalized spatiotemporal myocardial strain analysis for DENSE and SPAMM imaging. Magn Reson Med 2011; 67:1590-9. [PMID: 22135133 DOI: 10.1002/mrm.23142] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 06/01/2011] [Accepted: 07/18/2011] [Indexed: 11/08/2022]
Affiliation(s)
- Alistair A Young
- Auckland MRI Research Group, University of Auckland, Auckland, New Zealand.
| | | | | | | |
Collapse
|
36
|
Ibrahim ESH. Myocardial tagging by cardiovascular magnetic resonance: evolution of techniques--pulse sequences, analysis algorithms, and applications. J Cardiovasc Magn Reson 2011; 13:36. [PMID: 21798021 PMCID: PMC3166900 DOI: 10.1186/1532-429x-13-36] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 07/28/2011] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular magnetic resonance (CMR) tagging has been established as an essential technique for measuring regional myocardial function. It allows quantification of local intramyocardial motion measures, e.g. strain and strain rate. The invention of CMR tagging came in the late eighties, where the technique allowed for the first time for visualizing transmural myocardial movement without having to implant physical markers. This new idea opened the door for a series of developments and improvements that continue up to the present time. Different tagging techniques are currently available that are more extensive, improved, and sophisticated than they were twenty years ago. Each of these techniques has different versions for improved resolution, signal-to-noise ratio (SNR), scan time, anatomical coverage, three-dimensional capability, and image quality. The tagging techniques covered in this article can be broadly divided into two main categories: 1) Basic techniques, which include magnetization saturation, spatial modulation of magnetization (SPAMM), delay alternating with nutations for tailored excitation (DANTE), and complementary SPAMM (CSPAMM); and 2) Advanced techniques, which include harmonic phase (HARP), displacement encoding with stimulated echoes (DENSE), and strain encoding (SENC). Although most of these techniques were developed by separate groups and evolved from different backgrounds, they are in fact closely related to each other, and they can be interpreted from more than one perspective. Some of these techniques even followed parallel paths of developments, as illustrated in the article. As each technique has its own advantages, some efforts have been made to combine different techniques together for improved image quality or composite information acquisition. In this review, different developments in pulse sequences and related image processing techniques are described along with the necessities that led to their invention, which makes this article easy to read and the covered techniques easy to follow. Major studies that applied CMR tagging for studying myocardial mechanics are also summarized. Finally, the current article includes a plethora of ideas and techniques with over 300 references that motivate the reader to think about the future of CMR tagging.
Collapse
|
37
|
Moerman KM, Sprengers AMJ, Simms CK, Lamerichs RM, Stoker J, Nederveen AJ. Validation of SPAMM tagged MRI based measurement of 3D soft tissue deformation. Med Phys 2011; 38:1248-60. [PMID: 21520837 DOI: 10.1118/1.3533942] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE This study presents and validates a novel (non-ECG-triggered) MRI sequence based on spatial modulation of the magnetization (SPAMM) to noninvasively measure 3D (quasistatic) soft tissue deformations using only six acquisitions (three static and three indentations). In the current SPAMM tagged MRI approaches, data are typically constructed from many repeated motion cycles. This has so far restricted its application to the measurement of highly repeatable and periodic movements (e.g., cardiac deformation). In biomechanical applications where soft tissue deformation is artificially induced, often by indentation, significant repeatability constraints exist, and for clinical applications, discomfort and health issues generally preclude a large number of repetitions. METHODS A novel (non-ECG-triggered) SPAMM tagged MRI sequence is presented, whereby a single 1-1 (first order) SPAMM set is acquired following a 3D transient field echo acquisition. Full 3D deformation measurement is achieved through the combination of only six acquisitions (three static and three motion cycles). The 3D deformation measurements were validated using quasistatic indentation tests and marker tracking in a silicone gel soft tissue phantom. In addition, the technique's ability to measure 3D soft tissue deformation in vivo was evaluated using indentation of the biceps region of the upper arm in a volunteer. RESULTS Following comparison to marker tracking in the silicone gel phantom, the SPAMM tagged MRI based displacement measurement demonstrated subvoxel accuracy with a mean displacement difference of 72 microm and a standard deviation of 289 microm. In addition, precision of displacement magnitude was evaluated for both the phantom and the volunteer data. The standard deviations of the displacement magnitude with respect to the average displacement magnitude were 75 and 169 microm for the phantom and volunteer data, respectively. CONCLUSIONS The subvoxel accuracy and precision demonstrated in the phantom in combination with the precision comparison between the phantom and the volunteer data provide confidence in the methods presented for measurement of soft tissue deformation in vivo. To the author's knowledge, since only six acquisitions are required, the presented methodology is the fastest SPAMM tagged MRI method currently available for the noninvasive measurement of quasistatic 3D soft tissue deformation.
Collapse
Affiliation(s)
- Kevin M Moerman
- Trinity Centre for Bioengineering, School of Engineering, Parsons Building, Trinity College, Dublin 2, Ireland.
| | | | | | | | | | | |
Collapse
|
38
|
Englund EK, Elder CP, Xu Q, Ding Z, Damon BM. Combined diffusion and strain tensor MRI reveals a heterogeneous, planar pattern of strain development during isometric muscle contraction. Am J Physiol Regul Integr Comp Physiol 2011; 300:R1079-90. [PMID: 21270344 DOI: 10.1152/ajpregu.00474.2010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The purposes of this study were to create a three-dimensional representation of strain during isometric contraction in vivo and to interpret it with respect to the muscle fiber direction. Diffusion tensor MRI was used to measure the muscle fiber direction of the tibialis anterior (TA) muscle of seven healthy volunteers. Spatial-tagging MRI was used to measure linear strains in six directions during separate 50% maximal isometric contractions of the TA. The strain tensor (E) was computed in the TA's deep and superficial compartments and compared with the respective diffusion tensors. Diagonalization of E revealed a planar strain pattern, with one nonzero negative strain (ε(N)) and one nonzero positive strain (ε(P)); both strains were larger in magnitude (P < 0.05) in the deep compartment [ε(N) = -40.4 ± 4.3%, ε(P) = 35.1 ± 3.5% (means ± SE)] than in the superficial compartment (ε(N) = -24.3 ± 3.9%, ε(P) = 6.3 ± 4.9%). The principal shortening direction deviated from the fiber direction by 24.0 ± 1.3° and 39.8 ± 6.1° in the deep and superficial compartments, respectively (P < 0.05, deep vs. superficial). The deviation of the shortening direction from the fiber direction was due primarily to the lower angle of elevation of the shortening direction over the axial plane than that of the fiber direction. It is concluded that three-dimensional analyses of strain interpreted with respect to the fiber architecture are necessary to characterize skeletal muscle contraction in vivo. The deviation of the principal shortening direction from the fiber direction may relate to intramuscle variations in fiber length and pennation angle.
Collapse
Affiliation(s)
- Erin K Englund
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | | | |
Collapse
|
39
|
Singh GK, Cupps B, Pasque M, Woodard PK, Holland MR, Ludomirsky A. Accuracy and reproducibility of strain by speckle tracking in pediatric subjects with normal heart and single ventricular physiology: a two-dimensional speckle-tracking echocardiography and magnetic resonance imaging correlative study. J Am Soc Echocardiogr 2010; 23:1143-52. [PMID: 20850945 DOI: 10.1016/j.echo.2010.08.010] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Indexed: 12/15/2022]
Abstract
BACKGROUND Myocardial strain is a sensitive measure of ventricular systolic function. Two-dimensional speckle-tracking echocardiography (2DSE) is an angle-independent method for strain measurement but has not been validated in pediatric subjects. The aim of this study was to evaluate the accuracy and reproducibility of 2DSE-measured strain against reference tagged magnetic resonance imaging-measured strain in pediatric subjects with normal hearts and those with single ventricles (SVs) of left ventricular morphology after the Fontan procedure. METHODS Peak systolic circumferential strain and longitudinal strain (LS) in segments (n = 16) of left ventricles in age-matched and body surface area-matched 20 healthy and 12 pediatric subjects with tricuspid atresia after the Fontan procedure were measured by 2DSE and tagged magnetic resonance imaging. Average (global) and regional segmental strains measured by the two methods were compared using Spearman's and Bland-Altman analyses. RESULTS Global strains measured by 2DSE and tagged magnetic resonance imaging demonstrated close agreements, which were better for LS than circumferential strain and in normal left ventricles than in SVs (95% limits of agreement, +0.0% to +3.12%, -2.48% to +1.08%, -4.6% to +1.8%, and -3.6% to +1.8%, respectively). There was variability in agreement between regional strains, with wider limits in apical than in basal regions in normal left ventricles and heterogeneity in SVs. Strain values were significantly (P < .05) higher in normal left ventricles than in SVs except for basal LS, which were similar in both cohorts. The regional strains in normal left ventricles demonstrated an apicobasal magnitude gradient, whereas SVs showed heterogeneity. Reproducibility was the most robust for images obtained with frame rates between 60 and 90 frames/sec, global LS in both cohorts, and basal strains in normal left ventricles. CONCLUSIONS Strains measured by 2DSE agree with strain measured by magnetic resonance imaging globally but vary regionally, particularly in SVs. Global strain may be a more robust tool for cardiac functional evaluation than regional strain in SV physiology. The reliability of 2DSE-measured strain is affected by the frame rate, the nature of strain, and ventricular geometry.
Collapse
Affiliation(s)
- Gautam K Singh
- Division of Cardiology, Department of Pediatrics, Washington University, St. Louis, Missouri, USA.
| | | | | | | | | | | |
Collapse
|
40
|
A new methodology for multiscale myocardial deformation and strain analysis based on tagging MRI. Int J Biomed Imaging 2010; 2010:341242. [PMID: 20204157 PMCID: PMC2829745 DOI: 10.1155/2010/341242] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 11/20/2009] [Indexed: 11/17/2022] Open
Abstract
Myocardial deformation and strain can be investigated using suitably encoded
cine MRI that admits disambiguation of material motion. Practical limitations
currently restrict the analysis to in-plane motion in cross-sections of the heart
(2D + time), but the proposed method readily generalizes to 3D + time. We propose
a new, promising methodology, which departs from a multiscale algorithm that
exploits local scale selection so as to obtain a robust estimate for the velocity
gradient tensor field. Time evolution of the deformation tensor is governed by a
first-order ordinary differential equation, which is completely determined by this
velocity gradient tensor field. We solve this matrix-ODE analytically and present
results obtained from healthy volunteers as well as from patient data. The proposed
method requires only off-the-shelf algorithms and is readily applicable to planar or
volumetric tagging MRI sampled on arbitrary coordinate grids.
Collapse
|
41
|
Feng L, Donnino R, Babb J, Axel L, Kim D. Numerical and in vivo validation of fast cine displacement-encoded with stimulated echoes (DENSE) MRI for quantification of regional cardiac function. Magn Reson Med 2009; 62:682-90. [PMID: 19585609 DOI: 10.1002/mrm.22045] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Quantitative assessment of regional cardiac function can improve the accuracy of detecting wall motion abnormalities due to heart disease. While recently developed fast cine displacement-encoded with stimulated echoes (DENSE) MRI is a promising modality for the quantification of regional myocardial function, it has not been validated for clinical applications. The purpose of this study, therefore, was to validate the accuracy of fast cine DENSE MRI with numerical simulation and in vivo experiments. A numerical phantom was generated to model physiologically relevant deformation of the heart, and the accuracy of fast cine DENSE was evaluated against the numerical reference. For in vivo validation, 12 controls and 13 heart-disease patients were imaged using both fast cine DENSE and myocardial tagged MRI. Numerical simulation demonstrated that the echo-combination DENSE reconstruction method is relatively insensitive to clinically relevant resonance frequency offsets. The strain measurements by fast cine DENSE and the numerical reference were strongly correlated and in excellent agreement (mean difference = 0.00; 95% limits of agreement were 0.01 and -0.02). The strain measurements by fast cine DENSE and myocardial tagged MRI were strongly correlated (correlation coefficient = 0.92) and in good agreement (mean difference = 0.01; 95% limits of agreement were 0.07 and -0.04).
Collapse
Affiliation(s)
- Li Feng
- Department of Biomedical Engineering, Polytechnic Institute of New York University, Brooklyn, New York 10016, USA
| | | | | | | | | |
Collapse
|
42
|
Li W, Liu W, Zhong J, Yu X. Early manifestation of alteration in cardiac function in dystrophin deficient mdx mouse using 3D CMR tagging. J Cardiovasc Magn Reson 2009; 11:40. [PMID: 19849858 PMCID: PMC2774673 DOI: 10.1186/1532-429x-11-40] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 10/22/2009] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is caused by the absence of the cytoskeletal protein, dystrophin. In DMD patients, dilated cardiomyopathy leading to heart failure may occur during adolescence. However, early cardiac dysfunction is frequently undetected due to physical inactivity and generalized debilitation. The objective of this study is to determine the time course of cardiac functional alterations in mdx mouse, a mouse model of DMD, by evaluating regional ventricular function with CMR tagging. METHODS In vivo myocardial function was evaluated by 3D CMR tagging in mdx mice at early (2 months), middle (7 months) and late (10 months) stages of disease development. Global cardiac function, regional myocardial wall strains, and ventricular torsion were quantified. Myocardial lesions were assessed with Masson's trichrome staining. RESULTS Global contractile indexes were similar between mdx and C57BL/6 mice in each age group. Histology analysis showed that young mdx mice were free of myocardial lesions. Interstitial fibrosis was present in 7 month mdx mice, with further development into patches or transmural lesions at 10 months of age. As a result, 10 month mdx mice showed significantly reduced regional strain and torsion. However, young mdx mice showed an unexpected increase in regional strain and torsion, while 7 month mdx mice displayed similar regional ventricular function as the controls. CONCLUSION Despite normal global ventricular function, CMR tagging detected a biphasic change in myocardial wall strain and torsion, with an initial increase at young age followed by progressive decrease at older ages. These results suggest that CMR tagging can provide more sensitive measures of functional alterations than global functional indexes in dystrophin-related cardiomyopathies.
Collapse
MESH Headings
- Age Factors
- Aging
- Animals
- Cardiac Output
- Cardiomyopathy, Dilated/etiology
- Cardiomyopathy, Dilated/pathology
- Cardiomyopathy, Dilated/physiopathology
- Disease Models, Animal
- Disease Progression
- Fibrosis
- Image Interpretation, Computer-Assisted
- Imaging, Three-Dimensional
- Magnetic Resonance Imaging, Cine
- Mice
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Muscular Dystrophy, Duchenne/complications
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/physiopathology
- Myocardial Contraction
- Myocardium/pathology
- Stroke Volume
- Time Factors
- Torsion, Mechanical
- Ventricular Function, Left
Collapse
Affiliation(s)
- Wei Li
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Case Center for Imaging Research, Case Western Reserve University, Cleveland, Ohio, USA
| | - Wei Liu
- Department of Biomedical Engineering, Washington University, St Louis, Missouri, USA
| | - Jia Zhong
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Case Center for Imaging Research, Case Western Reserve University, Cleveland, Ohio, USA
| | - Xin Yu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, USA
- Case Center for Imaging Research, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
43
|
Rathi VK, Biederman RWW. Expanding role of cardiovascular magnetic resonance in left and right ventricular diastolic function. Heart Fail Clin 2009; 5:421-35, vii. [PMID: 19564017 DOI: 10.1016/j.hfc.2009.02.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This article focuses on the role of cardiovascular magnetic resonance (CMR) in understanding the physiology of diastolic function and on the future applications of CMR as they relate to diastolic function evaluation. CMR has a demonstrated potential to define diastolic function and quantify its properties, in terms of active and passive stages, and its relaxation and compliance characteristics. CMR is also useful for assessing inflow and myocardial velocities, and untwisting properties of the chamber and myocardium, thus providing insights not fully available in other invasive and noninvasive strategies. CMR, which offers the necessary capabilities to evaluate the complex structure of the right ventricle, can serve in the future as the standard for evaluating diastolic function as it currently does for systolic function.
Collapse
Affiliation(s)
- Vikas K Rathi
- Division of Cardiology, Allegheny General Hospital, Pittsburgh, PA 15237, USA.
| | | |
Collapse
|
44
|
Chan DD, Neu CP, Hull ML. Articular cartilage deformation determined in an intact tibiofemoral joint by displacement-encoded imaging. Magn Reson Med 2009; 61:989-93. [PMID: 19189290 DOI: 10.1002/mrm.21927] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This study demonstrates the in vitro displacement and strain of articular cartilage in a cyclically-compressed and intact joint using displacement-encoded imaging with stimulated echoes (DENSE) and fast spin echo (FSE). Deformation and strain fields exhibited complex and heterogeneous patterns. The displacements in the loading direction ranged from -1688 to -1481 microm in the tibial cartilage and from -1601 to -764 microm in the femoral cartilage. Corresponding strains ranged from -9.8% to 0.7% and from -4.3% to 0.0%. The displacement and strain precision were determined to be 65 microm and less than 0.2%, respectively. Displacement-encoded magnetic resonance imaging is capable of determining the nonuniform displacements and strains in the articular cartilage of an intact joint to a high precision. Knowledge of these nonuniform strains is critical for the in situ characterization of normal and diseased tissue, as well as the comprehensive evaluation of repair constructs designed using regenerative medicine.
Collapse
Affiliation(s)
- Deva D Chan
- Biomedical Engineering Graduate Group, University of California at Davis, Davis, California, USA
| | | | | |
Collapse
|
45
|
Feng L, Donnino RM, Axel L, Kim D. Quantitative assessment of intramyocardial function using Cine DENSE MRI: a validation study. J Cardiovasc Magn Reson 2009. [DOI: 10.1186/1532-429x-11-s1-p177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
46
|
Maturational and Growth-Related Changes in Left Ventricular Longitudinal Strain and Strain Rate Measured by Two-Dimensional Speckle Tracking Echocardiography in Healthy Pediatric Population. J Am Soc Echocardiogr 2008; 21:1207-15. [DOI: 10.1016/j.echo.2008.08.011] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2008] [Indexed: 11/21/2022]
|
47
|
Zhong J, Liu W, Yu X. Characterization of three-dimensional myocardial deformation in the mouse heart: an MR tagging study. J Magn Reson Imaging 2008; 27:1263-70. [PMID: 18504746 DOI: 10.1002/jmri.21367] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
PURPOSE To develop a 3D MR tagging method that combines harmonic phase (HARP) and homogeneous strain analysis methods for quantification of regional myocardial wall motion in mice. MATERIALS AND METHODS 3D tagged images were acquired from seven C57BL/6 mice. Intersecting tag points were reconstructed and 3D strains were quantified at apical, midventricular, and basal levels. Circumferential and radial strains quantified with 2D MR tagging were compared with those calculated from 3D tagged images. RESULTS Our data showed significant heterogeneity in radial, circumferential, and shear strains. Longitudinal strain was more homogeneous. The circumferential-longitudinal shear strain, a unitless measure of ventricular torsion, was positive throughout the left ventricle. There were strong correlations between 2D and 3D studies at the basal and midventricular levels. CONCLUSION This work demonstrates the feasibility of 3D characterization of cardiac function in mouse via the combination of HARP and homogeneous strain analysis.
Collapse
Affiliation(s)
- Jia Zhong
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | |
Collapse
|
48
|
Kinugasa R, Shin D, Yamauchi J, Mishra C, Hodgson JA, Edgerton VR, Sinha S. Phase-contrast MRI reveals mechanical behavior of superficial and deep aponeuroses in human medial gastrocnemius during isometric contraction. J Appl Physiol (1985) 2008; 105:1312-20. [PMID: 18703759 DOI: 10.1152/japplphysiol.90440.2008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The behavior of the entire medial gastrocnemius (MG) superficial and deep aponeurosis structure was investigated with velocity-encoded phase-contrast, spin-tag, and three-dimensional morphometric magnetic resonance imaging. The displacements and strain of both these aponeuroses, muscle length, and the cross-sectional segment length of the deep aponeurosis were measured during isometric plantarflexion at 20% and 40% of maximal voluntary contraction (MVC). The length of the entire MG shortened during 20% and 40% MVC. All regions of interest in both aponeuroses moved proximally. Positive strain (lengthening) occurred in both ends of the deep aponeurosis and in the proximal region of the superficial aponeurosis. In contrast, negative strain (shortening) was observed in the middle region of the deep aponeurosis and in the distal region of the superficial aponeurosis. Consistent with this shortening of the deep aponeurosis length along the proximal-distal axis was expansion of the aponeuroses in the medial-lateral and anterior-posterior directions in the cross-sectional plane. It is concluded that at low to moderate force levels of isometric contraction, regional differences in strain occur along the proximal-distal axis of both aponeuroses, and some regions of both aponeuroses shorten.
Collapse
Affiliation(s)
- Ryuta Kinugasa
- School of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama, Japan.
| | | | | | | | | | | | | |
Collapse
|
49
|
Biederman RWW, Doyle M, Young AA, Devereux RB, Kortright E, Perry G, Bella JN, Oparil S, Calhoun D, Pohost GM, Dell'Italia LJ. Marked regional left ventricular heterogeneity in hypertensive left ventricular hypertrophy patients: a losartan intervention for endpoint reduction in hypertension (LIFE) cardiovascular magnetic resonance and echocardiographic substudy. Hypertension 2008; 52:279-86. [PMID: 18606908 DOI: 10.1161/hypertensionaha.108.109819] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Concentric hypertensive left ventricular (LV) hypertrophy is presumed to be a symmetrical process. Using MRI-derived intramyocardial strain, we sought to determine whether segmental deformation was also symmetrical, as suggested by echocardiography. High echocardiographic LV relative wall thickness in hypertensive LV hypertrophy allows preserved endocardial excursion despite depressed LV midwall shortening (MWS). Depressed MWS is an adverse prognostic indicator, but whether this is related to global or regional myocardial depression is unknown. We prospectively compared MWS derived from linear echocardiographic dimensions with MR strain(in) in septal and posterior locations in 27 subjects with ECG LV hypertrophy in the Losartan Intervention for Endpoint Reduction in Hypertension Study. Although MRI-derived mass was higher in patients than in normal control subjects (124.0+/-38.6 versus 60.5+/-13.2g/m(2); P<0.001), fractional shortening (30+/-5% versus 33+/-3%) and end-systolic stress (175+/-22 versus 146+/-28 g/cm(2)) did not differ between groups. However, mean MR(in) was decreased in patients versus normal control subjects (13.9+/-6.8% versus 22.4+/-3.5%), as was echo MWS (13.4+/-2.8% versus 18.2+/-1.4%; both P<0.001). For patients versus normal control subjects, posterior wall(in) was not different (17.8+/-7.1% versus 21.6+/-4.0%), whereas septal(in) was markedly depressed (10.1+/-6.6% versus 23.2+/-3.4%; P<0.001). Although global MWS by echocardiography or MRI is depressed in hypertensive LV hypertrophy, MRI tissue tagging demonstrates substantial regional intramyocardial strain(in) heterogeneity, with most severely depressed strain patterns in the septum. Although posterior wall 2D principal strain was inversely related to radius of curvature, septal strain was not, suggesting that factors other than afterload are responsible for pronounced myocardial strain heterogeneity in concentric hypertrophy.
Collapse
Affiliation(s)
- Robert W W Biederman
- Division of Cardiology, Department of Cardiovascular MRI, Gerald McGuiness Center, Allegheny General Hospital, 320 E North Ave, Pittsburgh, PA 15212, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Neu CP, Walton JH. Displacement encoding for the measurement of cartilage deformation. Magn Reson Med 2008; 59:149-55. [PMID: 18050342 DOI: 10.1002/mrm.21464] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Articular cartilage is a load bearing and lubricating tissue in animal joints. Heterogeneous deformations arise in the structured and zonal tissue under the application of mechanical load. The character of these deformations is altered by degenerative joint disease. Here, we document an MRI-based technique for determining deformations throughout the volume of the tissue based on displacement encoding with stimulated echoes (DENSE) and a fast spin echo (FSE) readout. A DENSE-FSE technique was designed to image cartilage at 9.4 Tesla in a deformed state during the application of cyclic mechanical loading. Artifact elimination arising from stimulated echoes and FSE was accomplished by radio frequency pulse phase cycling. The error of the technique was random and was quantified in terms of precision as better than 0.17% strain. Heterogeneous deformation field patterns in axial, transverse, and shear directions were quantified in a single tissue explant loaded in simple uniaxial compression. The technique is appropriate for documenting tissue deformations during applied physiologically relevant stress levels and loading rates. It may also be applied to characterize the micromechanical strain environment in normal, diseased, or regenerated cartilage in response to applied mechanical loading.
Collapse
Affiliation(s)
- Corey P Neu
- Center for Tissue Regeneration and Repair, University of California at Davis Medical Center, Sacramento, California, USA.
| | | |
Collapse
|