1
|
Viter R, Tepliakova I, Drobysh M, Zbolotnii V, Rackauskas S, Ramanavicius S, Grundsteins K, Liustrovaite V, Ramanaviciene A, Ratautaite V, Brazys E, Chen CF, Prentice U, Ramanavicius A. Photoluminescence-based biosensor for the detection of antibodies against SARS-CoV-2 virus proteins by ZnO tetrapod structure integrated within microfluidic system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173333. [PMID: 38763199 DOI: 10.1016/j.scitotenv.2024.173333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
This paper reports on development of an optical biosensor for the detection of antibodies against SARS-CoV-2 virus proteins in blood serum. ZnO nanotetrapods with high surface area and stable room temperature photoluminescence (PL) were selected as transducers. Structure and optical properties of the ZnO tetrapods have been studied by XRD, SEM and Raman spectroscopy. Crystallinity, dimensions and emission peaks of the ZnO tetrapods were determined. The ZnO tetrapods were fixed on glass chip. Silanization of ZnO tetrapods surface resulted in forming of functional surface groups suitable for the immobilization of bioselective layer. Two types of recombinant proteins (rS and rN) have been used to form bioselective layer on the surface of the ZnO tetrapods. Flow through microfluidic system, integrated with optical system, has been used for the determination of antibodies against SARS-CoV-2 virus proteins present in blood samples. The SARS-CoV-2 probes, prepared in PBS solution, have been injected into the measurement chamber with a constant pumping speed. Steady-state photoluminescence spectra and photoluminescence kinetics have been studied before and after injection of the probes. The biosensor signal has been tested to anti-SARS-CoV-2 antibodies in the range of 0.001 nM-1 nM. Control measurements have been performed with blood serum of healthy person. ZnO-SARS-CoV-2-rS and ZnO-SARS-CoV-2-rN biosensors showed high stability and sensitivity to anti-SARS-CoV-2 antibodies in the range of 0.025-0.5 nM (LOD 0.01 nM) and 0.3-1 nM (LOD 0.3 nM), respectively. Gibbs free energy of interaction between ZnO/SARS-CoV-2-rS and ZnO/SARS-CoV-2-rN bioselective layers with anti-SARS-CoV-2 antibodies showed -35.5 and -21.4 kJ/mol, respectively. Average detection time of biosensor integrated within microfluidic system was 15-20 min. The detection time and pumping speed (50 μL/min) were optimized to make detection faster. The developed system and ZnO-SARS-CoV-2-rS nanostructures have good potential for detection of anti-SARS-CoV-2 antibodies from patient's probes.
Collapse
Affiliation(s)
- Roman Viter
- Institute of Atomic Physics and Spectroscopy, University of Latvia, LV-1004 Riga, Latvia; NanoTechnas-Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, 03225 Vilnius, Lithuania.
| | - Iryna Tepliakova
- Institute of Atomic Physics and Spectroscopy, University of Latvia, LV-1004 Riga, Latvia; NanoTechnas-Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, 03225 Vilnius, Lithuania
| | - Maryia Drobysh
- State Research Institute Center for Physical and Technological Sciences, LT-10257 Vilnius, Lithuania; NanoTechnas-Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, 03225 Vilnius, Lithuania
| | - Viktor Zbolotnii
- Institute of Atomic Physics and Spectroscopy, University of Latvia, LV-1004 Riga, Latvia; NanoTechnas-Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, 03225 Vilnius, Lithuania
| | - Simas Rackauskas
- Institute of Materials Science, Kaunas University of Technology, K. Baršausko St. 59, LT-51423 Kaunas, Lithuania
| | - Simonas Ramanavicius
- Institute of Atomic Physics and Spectroscopy, University of Latvia, LV-1004 Riga, Latvia; State Research Institute Center for Physical and Technological Sciences, LT-10257 Vilnius, Lithuania
| | - Karlis Grundsteins
- Institute of Atomic Physics and Spectroscopy, University of Latvia, LV-1004 Riga, Latvia; NanoTechnas-Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, 03225 Vilnius, Lithuania
| | - Viktorija Liustrovaite
- NanoTechnas-Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, 03225 Vilnius, Lithuania
| | - Almira Ramanaviciene
- NanoTechnas-Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, 03225 Vilnius, Lithuania
| | - Vilma Ratautaite
- State Research Institute Center for Physical and Technological Sciences, LT-10257 Vilnius, Lithuania; NanoTechnas-Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, 03225 Vilnius, Lithuania
| | - Ernestas Brazys
- NanoTechnas-Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, 03225 Vilnius, Lithuania
| | - Chien-Fu Chen
- Institute of Applied Mechanics, National Taiwan University, Taipei City 106, Taiwan
| | - Urte Prentice
- State Research Institute Center for Physical and Technological Sciences, LT-10257 Vilnius, Lithuania
| | - Arunas Ramanavicius
- State Research Institute Center for Physical and Technological Sciences, LT-10257 Vilnius, Lithuania; NanoTechnas-Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, 03225 Vilnius, Lithuania.
| |
Collapse
|
2
|
Liustrovaite V, Drobysh M, Ratautaite V, Ramanaviciene A, Rimkute A, Simanavicius M, Dalgediene I, Kucinskaite-Kodze I, Plikusiene I, Chen CF, Viter R, Ramanavicius A. Electrochemical biosensor for the evaluation of monoclonal antibodies targeting the N protein of SARS-CoV-2 virus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171042. [PMID: 38369150 DOI: 10.1016/j.scitotenv.2024.171042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
The emergence of COVID-19 caused by the coronavirus SARS-CoV-2 has prompted a global pandemic that requires continuous research and monitoring. This study presents a design of an electrochemical biosensing platform suitable for the evaluation of monoclonal antibodies targeting the SARS-CoV-2 nucleocapsid (N) protein. Screen-printed carbon electrodes (SPCE) modified with gold nanostructures (AuNS) were applied to design a versatile and sensitive sensing platform. Electrochemical techniques, including electrochemical impedance spectroscopy (EIS) and square wave voltammetry (SWV), were used to investigate the interactions between immobilised recombinant N (rN) protein and several monoclonal antibodies (mAbs). The electrochemical characterisation of SPCE/AuNS/rN demonstrated a successful immobilisation of rN, enhancing the electron transfer kinetics. Affinity interactions between immobilised rN and four mAbs (mAb-4B3, mAb-4G6, mAb-12B2, and mAb-1G5) were explored. Although mAb-4B3 showed some non-linearity, the other monoclonal antibodies exhibited specific and well-defined interactions followed by the formation of an immune complex. The biosensing platform demonstrated high sensitivity in the linear range (LR) from 0.2 nM to 1 nM with limits of detection (LOD) ranging from 0.012 nM to 0.016 nM for mAb-4G6, mAb-12B2, and mAb-1G5 and limits of quantification (LOQ) values ranging from 0.035 nM to 0.139 nM, as determined by both EIS and SWV methods. These results highlight the system's potential for precise and selective detection of monoclonal antibodies specific to the rN. This electrochemical biosensing platform provides a promising route for the sensitive and accurate detection of monoclonal antibodies specific to the rN protein.
Collapse
Affiliation(s)
- Viktorija Liustrovaite
- NanoTechnas - Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko St. 24, LT-03225 Vilnius, Lithuania; Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko St. 24, LT-03225 Vilnius, Lithuania
| | - Maryia Drobysh
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko St. 24, LT-03225 Vilnius, Lithuania; Department of Nanotechnology, State Research Institute Center for Physical and Technological Sciences (FTMC), Sauletekio Ave. 3, Vilnius, Lithuania
| | - Vilma Ratautaite
- Department of Nanotechnology, State Research Institute Center for Physical and Technological Sciences (FTMC), Sauletekio Ave. 3, Vilnius, Lithuania
| | - Almira Ramanaviciene
- NanoTechnas - Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko St. 24, LT-03225 Vilnius, Lithuania
| | - Agne Rimkute
- Institute of Biotechnology, Life Sciences Center, Vilnius University (VU), Sauletekio Ave. 7, Vilnius, Lithuania
| | - Martynas Simanavicius
- Institute of Biotechnology, Life Sciences Center, Vilnius University (VU), Sauletekio Ave. 7, Vilnius, Lithuania
| | - Indre Dalgediene
- Institute of Biotechnology, Life Sciences Center, Vilnius University (VU), Sauletekio Ave. 7, Vilnius, Lithuania
| | - Indre Kucinskaite-Kodze
- Institute of Biotechnology, Life Sciences Center, Vilnius University (VU), Sauletekio Ave. 7, Vilnius, Lithuania
| | - Ieva Plikusiene
- NanoTechnas - Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko St. 24, LT-03225 Vilnius, Lithuania
| | - Chien-Fu Chen
- Institute of Applied Mechanics, National Taiwan University, Taipei City 106, Taiwan.
| | - Roman Viter
- Institute of Atomic Physics and Spectroscopy, University of Latvia, 19 Raina Blvd., Riga, LV 1586, Latvia; Center for Collective Use of Scientific Equipment, Sumy State University, 31, Sanatornaya st., 40018 Sumy, Ukraine.
| | - Arunas Ramanavicius
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko St. 24, LT-03225 Vilnius, Lithuania; Department of Nanotechnology, State Research Institute Center for Physical and Technological Sciences (FTMC), Sauletekio Ave. 3, Vilnius, Lithuania.
| |
Collapse
|
3
|
Sadique MA, Yadav S, Khan R, Srivastava AK. Engineered two-dimensional nanomaterials based diagnostics integrated with internet of medical things (IoMT) for COVID-19. Chem Soc Rev 2024; 53:3774-3828. [PMID: 38433614 DOI: 10.1039/d3cs00719g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
More than four years have passed since an inimitable coronavirus disease (COVID-19) pandemic hit the globe in 2019 after an uncontrolled transmission of the severe acute respiratory syndrome (SARS-CoV-2) infection. The occurrence of this highly contagious respiratory infectious disease led to chaos and mortality all over the world. The peak paradigm shift of the researchers was inclined towards the accurate and rapid detection of diseases. Since 2019, there has been a boost in the diagnostics of COVID-19 via numerous conventional diagnostic tools like RT-PCR, ELISA, etc., and advanced biosensing kits like LFIA, etc. For the same reason, the use of nanotechnology and two-dimensional nanomaterials (2DNMs) has aided in the fabrication of efficient diagnostic tools to combat COVID-19. This article discusses the engineering techniques utilized for fabricating chemically active E2DNMs that are exceptionally thin and irregular. The techniques encompass the introduction of heteroatoms, intercalation of ions, and the design of strain and defects. E2DNMs possess unique characteristics, including a substantial surface area and controllable electrical, optical, and bioactive properties. These characteristics enable the development of sophisticated diagnostic platforms for real-time biosensors with exceptional sensitivity in detecting SARS-CoV-2. Integrating the Internet of Medical Things (IoMT) with these E2DNMs-based advanced diagnostics has led to the development of portable, real-time, scalable, more accurate, and cost-effective SARS-CoV-2 diagnostic platforms. These diagnostic platforms have the potential to revolutionize SARS-CoV-2 diagnosis by making it faster, easier, and more accessible to people worldwide, thus making them ideal for resource-limited settings. These advanced IoMT diagnostic platforms may help with combating SARS-CoV-2 as well as tracking and predicting the spread of future pandemics, ultimately saving lives and mitigating their impact on global health systems.
Collapse
Affiliation(s)
- Mohd Abubakar Sadique
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shalu Yadav
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Raju Khan
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Avanish K Srivastava
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
4
|
Kazancı F, Kılıç MS, Uru ŞK, Aydın RST. A novel nanoliposome model platform mimicking SARS-CoV-2 as a bioreceptor to dissect the amperometric response in biosensor applications. Int J Biol Macromol 2024; 264:130530. [PMID: 38437936 DOI: 10.1016/j.ijbiomac.2024.130530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/06/2024]
Abstract
In this study, we proposed to investigate the response of an electrochemical-based immunosensor via nanoliposomes carrying the SARS-CoV-2 Spike-S1 protein. In this regard, we prepared RNA encapsulated nanoliposome functionalized with a specific SARS-CoV-2 Spike-S1 protein as a SARS-CoV-2 model. Then, this new nanoliposome mimicking SARS-CoV-2 was used as the bio-recognizing agent of an immunosensor developed to detect the SARS-CoV-2 within the scope of the study. The working electrode of the immunosensor was coated with chitosan polymer, decorated with SARS-CoV-2 Spike antibody, to achieve antibody-antigen matching on the electrode surface. SARS-CoV-2 mimicking nanoliposomes at various concentrations was used to achieve an amperometric response and the analytical parameters of the sensor were calculated from the relationship between the immunosensor's current values depending on the number of these matches with regard to varying antigen concentrations. Linear measurement range, LOD and measurement sensitivity were calculated as 53 pM-8 nM, 3.79 pM and 55.47 μA nM-1 cm-2, respectively. The standard deviation of the same measurements in the developed immunosensor was 0.33 %.
Collapse
Affiliation(s)
- Füsun Kazancı
- Department of Nanotechnology Engineering, Zonguldak Bülent Ecevit University, Incivez, Zonguldak 67100, Turkey
| | - M Samet Kılıç
- Department of Biomedical Engineering, Zonguldak Bülent Ecevit University, Incivez, Zonguldak 67100, Turkey
| | - Şeyda Korkut Uru
- Department of Environmental Engineering, Zonguldak Bülent Ecevit University, Incivez, Zonguldak 67100, Turkey
| | - R Seda Tığlı Aydın
- Department of Nanotechnology Engineering, Zonguldak Bülent Ecevit University, Incivez, Zonguldak 67100, Turkey; Department of Biomedical Engineering, Zonguldak Bülent Ecevit University, Incivez, Zonguldak 67100, Turkey.
| |
Collapse
|
5
|
Brasiunas B, Popov A, Kraujelyte G, Ramanaviciene A. The effect of gold nanostructure morphology on label-free electrochemical immunosensor design. Bioelectrochemistry 2024; 156:108638. [PMID: 38176325 DOI: 10.1016/j.bioelechem.2023.108638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/13/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
In this research, various electrodeposition techniques were used to form gold nanostructures (AuNSs) on the surface of graphite rod electrode (GE). Three distinct AuNS morphologies on GE have been achieved based on the composition of electrodeposition solution. The use of H2SO4 as a supporting electrolyte resulted in the formation of smaller but more numerous AuNSI with a modified electrode's electroactive surface area (EASA) of 0.213 cm2. Exchanging the supporting electrolyte to KNO3 and increasing HAuCl4 concentration facilitated the formation of bigger AuNSII particles with electrode EASA of 0.116 cm2. Finally, a partial coverage of GE by branched gold nanostructures (AuNSIII) was achieved with an estimated EASA of 0.110 cm2, when the HAuCl4 and KNO3 concentrations were increased further. Estimated values of heterogeneous electron transfer rate constant did not depend on AuNS morphology. Electrode modified with AuNSI exhibited the highest bovine serum albumin (BSA) immobilization efficiency and the highest relative response for the detection of specific polyclonal antibodies against BSA (p-anti-BSA) compared to other modified electrodes. The limit of p-anti-BSA detection in PBS buffer was calculated as 0.63 nM, while in blood serum it was 0.71 nM. Linear ranges were from 1 to 7 nM and from 1 to 5 nM, respectively.
Collapse
Affiliation(s)
- Benediktas Brasiunas
- NanoTechnas - Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, LT-03225 Vilnius, Lithuania
| | - Anton Popov
- NanoTechnas - Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, LT-03225 Vilnius, Lithuania
| | - Gabija Kraujelyte
- NanoTechnas - Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, LT-03225 Vilnius, Lithuania
| | - Almira Ramanaviciene
- NanoTechnas - Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, LT-03225 Vilnius, Lithuania.
| |
Collapse
|
6
|
Syafira RS, Devi MJ, Gaffar S, Irkham, Kurnia I, Arnafia W, Einaga Y, Syakir N, Noviyanti AR, Hartati YW. Hydroxyapatite-Gold Modified Screen-Printed Carbon Electrode for Selective SARS-CoV-2 Antibody Immunosensor. ACS APPLIED BIO MATERIALS 2024; 7:950-960. [PMID: 38303668 DOI: 10.1021/acsabm.3c00953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), or coronavirus disease 2019 (COVID-19), is still spreading worldwide; therefore, the need for rapid and accurate detection methods remains relevant to maintain the spread of this infectious disease. Electrochemical immunosensors are an alternative method for the rapid detection of the SARS-CoV-2 virus. Herein, we report the development of a screen-printed carbon electrode immunosensor using a hydroxyapatite-gold nanocomposite (SPCE/HA-Au) directly spray-coated with the immobilization receptor binding domain (RBD) Spike to increase the conductivity and surface electrode area. The HA-Au composite synthesis was optimized using the Box-Behnken method, and the resulting composite was characterized by UV-vis spectrophotometry, TEM-EDX, and XRD analysis. The specific interaction of RBD Spike with immunoglobulin G (IgG) antibodies was evaluated by differential pulse voltammetry and electrochemical impedance spectroscopy methods in a [Fe(CN)6]4-/3- solution redox system. The IgG was detected with a detection limit of 0.0561 pg mL-1, and the immunosensor had selectivity and stability of 103-122% and was stable until week 7 with the influence of storage conditions. Also, the immunosensor was tested using real samples from human serum, where the results were confirmed using the chemiluminescent microparticle immunoassay (CMIA) method and showed satisfactory results. Therefore, the developed electrochemical immunosensor can rapidly and accurately detect SARS-CoV-2 antibodies.
Collapse
Affiliation(s)
- Ratu Shifa Syafira
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, Sumedang, West Java 45363, Indonesia
| | - Melania Janisha Devi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, Sumedang, West Java 45363, Indonesia
| | - Shabarni Gaffar
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, Sumedang, West Java 45363, Indonesia
| | - Irkham
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, Sumedang, West Java 45363, Indonesia
| | - Irwan Kurnia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, Sumedang, West Java 45363, Indonesia
| | - Wyanda Arnafia
- Department of Animal Infectious Diseases and Veterinary Public Health, IPB University, Jl. Raya Dramaga, Bogor, West Java 16680, Indonesia
| | - Yasuaki Einaga
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama, 223-8522, Japan
| | - Norman Syakir
- Department of Physics, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, Sumedang, West Java 45363, Indonesia
| | - Atiek Rostika Noviyanti
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, Sumedang, West Java 45363, Indonesia
| | - Yeni Wahyuni Hartati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, Sumedang, West Java 45363, Indonesia
| |
Collapse
|
7
|
Medrano-Lopez JA, Villalpando I, Salazar MI, Torres-Torres C. Hierarchical Nanobiosensors at the End of the SARS-CoV-2 Pandemic. BIOSENSORS 2024; 14:108. [PMID: 38392027 PMCID: PMC10887370 DOI: 10.3390/bios14020108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/09/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
Nanostructures have played a key role in the development of different techniques to attack severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Some applications include masks, vaccines, and biosensors. The latter are of great interest for detecting diseases since some of their features allowed us to find specific markers in secretion samples such as saliva, blood, and even tears. Herein, we highlight how hierarchical nanoparticles integrated into two or more low-dimensional materials present outstanding advantages that are attractive for photonic biosensing using their nanoscale functions. The potential of nanohybrids with their superlative mechanical characteristics together with their optical and optoelectronic properties is discussed. The progress in the scientific research focused on using nanoparticles for biosensing a variety of viruses has become a medical milestone in recent years, and has laid the groundwork for future disease treatments. This perspective analyzes the crucial information about the use of hierarchical nanostructures in biosensing for the prevention, treatment, and mitigation of SARS-CoV-2 effects.
Collapse
Affiliation(s)
- Jael Abigail Medrano-Lopez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería y Eléctrica, Unidad Zacatenco, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| | - Isaela Villalpando
- Centro de Investigación para los Recursos Naturales, Salaices 33941, Mexico
| | - Ma Isabel Salazar
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Carlos Torres-Torres
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería y Eléctrica, Unidad Zacatenco, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| |
Collapse
|
8
|
Baradoke A, Jarusaitis A, Reinikovaite V, Jafarov A, Elsakova A, Franckevicius M, Skapas M, Slibinskas R, Drobysh M, Liustrovaite V, Ramanavicius A. Detection of antibodies against SARS-CoV-2 Spike protein by screen-printed carbon electrodes modified by colloidal gold nanoparticles. Talanta 2024; 268:125279. [PMID: 37857108 DOI: 10.1016/j.talanta.2023.125279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/30/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023]
Abstract
In this work, electrochemical bioanalytical systems for the determination of antibodies against the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Spike protein (anti-rS) is reported. Environmentally friendly chemicals were applied in the synthesis of gold nanoparticles (AuNPs). The AuNPs were integrated onto the screen-printed carbon electrodes (SPE), and the biological recognition part was based on recombinant SARS-CoV-2 Spike protein (rS), which during the immobilization was cross-linked by glutaraldehyde. Immobilized rS protein based biological recognition part enabled selective recognition of anti-rS antibodies. The current flux of AuNPs reduction (at +200 mV) in a pure phosphate buffer (PB) was employed as the transduction signal. It has been reported that the formation of anti-rS layers on the surface of AuNPs delays the electrode response time (ts), tracked at the current flux density values of 80 μA cm-2. Using the AuNP-modified SPE, we demonstrated a rapid anti-rS detection within a detection limit of 2 ng mL-1 (0.125 binding antibody units mL-1, 17 pM). This system can be applied to track the response of immune system towards SARS-CoV-2 infection and monitoring of Coronavirus Disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Ausra Baradoke
- State Research Institute Center for Physical Sciences and Technology, Sauletekio ave. 3, 10007, Vilnius, Lithuania
| | - Ainis Jarusaitis
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, 03225, Vilnius, Lithuania
| | - Viktorija Reinikovaite
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, 03225, Vilnius, Lithuania
| | - Ali Jafarov
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, 03225, Vilnius, Lithuania; Institute of Technology, Nooruse 1, 50411, Tartu, Estonia
| | - Alexandra Elsakova
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, 03225, Vilnius, Lithuania; Institute of Biomedicine and Translational Medicine, Ravila 19, 50412, Tartu, Estonia
| | - Marius Franckevicius
- State Research Institute Center for Physical Sciences and Technology, Sauletekio ave. 3, 10007, Vilnius, Lithuania
| | - Martynas Skapas
- State Research Institute Center for Physical Sciences and Technology, Sauletekio ave. 3, 10007, Vilnius, Lithuania
| | - Rimantas Slibinskas
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, 03225, Vilnius, Lithuania; Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio ave. 7, LT-10257, Vilnius, Lithuania
| | - Maryia Drobysh
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, 03225, Vilnius, Lithuania
| | - Viktorija Liustrovaite
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, 03225, Vilnius, Lithuania
| | - Arunas Ramanavicius
- State Research Institute Center for Physical Sciences and Technology, Sauletekio ave. 3, 10007, Vilnius, Lithuania; Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, 03225, Vilnius, Lithuania.
| |
Collapse
|
9
|
Drobysh M, Liustrovaite V, Kanetski Y, Brasiunas B, Zvirbliene A, Rimkute A, Gudas D, Kucinskaite-Kodze I, Simanavicius M, Ramanavicius S, Slibinskas R, Ciplys E, Plikusiene I, Ramanavicius A. Electrochemical biosensing based comparative study of monoclonal antibodies against SARS-CoV-2 nucleocapsid protein. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168154. [PMID: 37923263 DOI: 10.1016/j.scitotenv.2023.168154] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
In this study, we are reporting an electrochemical biosensor for the determination of three different clones of monoclonal antibodies (mAbs) against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) recombinant nucleocapsid protein (rN). The nucleocapsid protein was chosen as a system component identifying and discriminating antibodies that occur after virus infection instead of S protein used in serological tests to measure antibodies raised after vaccination and infection. The sensing platform was based on a screen-printed carbon electrode (SPCE) covered with gold nanoparticles (AuNP) and subsequently modified with a self-assembled monolayer (SAM) to ensure the covalent immobilization of the rN. The interaction between the protein and three clones of mAbs against SARS-CoV-2 rN with clone numbers 4G6, 7F10, and 1A6, were electrochemically registered in the range of concentrations. Three techniques, cyclic voltammetry (CV), differential pulse voltammetry (DPV), and pulse amperometric detection (PAD) were used for the detection. A gradual change in the responses with an increase in mAbs concentration for all techniques was observed. To assess the performance of the developed electrochemical biosensor, 'complexation constant' (KC), limit of detection (LOD), and limit of quantification (LOQ) were calculated for all assessed clones of mAbs and all used techniques. Our results indicated that DPV possessing higher fitting accuracy illustrated more significant differences in KC constants and LOD/LOQ values. According to the DPV results, 7F10 clone was characterized with the highest KC value of 1.47 ± 0.07 μg/mL while the lowest LOD and LOQ values belonged to the 4G6 clone and equaled 0.08 ± 0.01 and 0.25 ± 0.01 μg/mL, respectively. Overall, these results demonstrate the potential of electrochemical techniques for the detection and distinguishing of different clones of mAbs against SARS-CoV-2 nucleocapsid protein.
Collapse
Affiliation(s)
- Maryia Drobysh
- State Research Institute Center for Physical and Technological Sciences, Sauletekio ave. 3, Vilnius, Lithuania; Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, 03225 Vilnius, Lithuania
| | - Viktorija Liustrovaite
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, 03225 Vilnius, Lithuania
| | - Yahor Kanetski
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, 03225 Vilnius, Lithuania
| | - Benediktas Brasiunas
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, 03225 Vilnius, Lithuania
| | - Aurelija Zvirbliene
- Life Sciences Center, Vilnius University, Sauletekio ave. 7, Vilnius, Lithuania
| | - Agne Rimkute
- Life Sciences Center, Vilnius University, Sauletekio ave. 7, Vilnius, Lithuania
| | - Dainius Gudas
- Life Sciences Center, Vilnius University, Sauletekio ave. 7, Vilnius, Lithuania
| | | | | | - Simonas Ramanavicius
- State Research Institute Center for Physical and Technological Sciences, Sauletekio ave. 3, Vilnius, Lithuania; Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, 03225 Vilnius, Lithuania
| | - Rimantas Slibinskas
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, 03225 Vilnius, Lithuania; Life Sciences Center, Vilnius University, Sauletekio ave. 7, Vilnius, Lithuania
| | - Evaldas Ciplys
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, 03225 Vilnius, Lithuania; Life Sciences Center, Vilnius University, Sauletekio ave. 7, Vilnius, Lithuania
| | - Ieva Plikusiene
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, 03225 Vilnius, Lithuania
| | - Arunas Ramanavicius
- State Research Institute Center for Physical and Technological Sciences, Sauletekio ave. 3, Vilnius, Lithuania; Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, 03225 Vilnius, Lithuania.
| |
Collapse
|
10
|
Shoute LCT, Charlton CL, Kanji JN, Babiuk S, Babiuk L, Chen J. Faradaic Impedimetric Immunosensor for Label-Free Point-of-Care Detection of COVID-19 Antibodies Using Gold-Interdigitated Electrode Array. BIOSENSORS 2023; 14:6. [PMID: 38248383 PMCID: PMC10812953 DOI: 10.3390/bios14010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024]
Abstract
Label-free electrochemical biosensors have many desirable characteristics in terms of miniaturization, scalability, digitization, and other attributes associated with point-of-care (POC) applications. In the era of COVID-19 and pandemic preparedness, further development of such biosensors will be immensely beneficial for rapid testing and disease management. Label-free electrochemical biosensors often employ [Fe(CN)6]-3/4 redox probes to detect low-concentration target analytes as they dramatically enhance sensitivity. However, such Faradaic-based sensors are reported to experience baseline signal drift, which compromises the performance of these devices. Here, we describe the use of a mecaptohexanoic (MHA) self-assembled monolayer (SAM) modified Au-interdigitated electrode arrays (IDA) to investigate the origin of the baseline signal drift, developed a protocol to resolve the issue, and presented insights into the underlying mechanism on the working of label-free electrochemical biosensors. Using this protocol, we demonstrate the application of MHA SAM-modified Au-IDA for POC analysis of human serum samples. We describe the use of a label-free electrochemical biosensor based on covalently conjugated SARS-CoV-2 spike protein for POC detection of COVID-19 antibodies. The test requires a short incubation time (10 min), and has a sensitivity of 35.4/decade (35.4%/10 ng mL-1) and LOD of 21 ng/mL. Negligible cross reactivity to seasonal human coronavirus or other endogenous antibodies was observed. Our studies also show that Faradaic biosensors are ~17 times more sensitive than non-Faradaic biosensors. We believe the work presented here contributes to the fundamental understanding of the underlying mechanisms of baseline signal drift and will be applicable to future development of electrochemical biosensors for POC applications.
Collapse
Affiliation(s)
- Lian C. T. Shoute
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada;
| | - Carmen L. Charlton
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 1C9, Canada; (C.L.C.); (J.N.K.)
- Public Health Laboratory, Alberta Precision Laboratories, Calgary, AB T2N 1M7, Canada
- Li Ka Shing Institute for Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Jamil N. Kanji
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 1C9, Canada; (C.L.C.); (J.N.K.)
- Public Health Laboratory, Alberta Precision Laboratories, Calgary, AB T2N 1M7, Canada
- Division of Infectious Diseases, Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Pathology & Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Shawn Babiuk
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada;
- Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Lorne Babiuk
- Vaccine and Infectious Disease Organization, University of Alberta, Edmonton, AB T6G 2G3, Canada;
| | - Jie Chen
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada;
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| |
Collapse
|
11
|
Reinikovaite V, Matulevicius M, Elsakova A, Drobysh M, Liustrovaite V, Luksa A, Jafarov A, Slibinskas R, Ramanavicius A, Baradoke A. Electrochemical capacitance spectroscopy based determination of antibodies against SARS-CoV-2 virus spike protein. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166447. [PMID: 37604377 DOI: 10.1016/j.scitotenv.2023.166447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
In this study, we are reporting a novel electrochemical capacitance spectroscopy (ECS) platform designed for the sensitive and label-free detection of antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus spike protein (anti-rS) in diluted blood serum. The determination of anti-rS is crucial for identification individuals who have been infected by SARS-CoV-2 virus and may have acquired immunity. The rS protein was immobilized on a screen-printed carbon electrode, which was incubated in diluted blood serum containing anti-rS antibodies. Label-free ECS was applied for the determination of interaction between immobilized rS and free-standing anti-rS. Here reported bioanalytical platform demonstrated high sensitivity and specificity in detecting anti-rS, achieving a limit of detection of 4.38 nM. This versatile platform could be further enhanced by applying various electrode materials and adapting this platform to detect antibodies against some other proteins. Our findings have significant implications for the development of affordable, scalable biosensing platforms capable to provide rapid and accurate public health screening and monitoring, particularly in the context of the coronavirus disease 2019 (COVID-19) pandemic.
Collapse
Affiliation(s)
- Viktorija Reinikovaite
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, 03225 Vilnius, Lithuania
| | - Matas Matulevicius
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, 03225 Vilnius, Lithuania
| | - Alexandra Elsakova
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, 03225 Vilnius, Lithuania; Institute of Technology, Nooruse 1, 50411 Tartu, Estonia
| | - Maryia Drobysh
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, 03225 Vilnius, Lithuania; State Research Institute Center for Physical Sciences and Technology, Sauletekio ave. 3, 10007 Vilnius, Lithuania
| | - Viktorija Liustrovaite
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, 03225 Vilnius, Lithuania
| | - Algirdas Luksa
- State Research Institute Center for Physical Sciences and Technology, Sauletekio ave. 3, 10007 Vilnius, Lithuania
| | - Ali Jafarov
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, 03225 Vilnius, Lithuania; Institute of Biomedicine and Translational Medicine, Ravila 19, 50412 Tartu, Estonia
| | - Rimantas Slibinskas
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, 03225 Vilnius, Lithuania; Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio ave. 7, LT-10257 Vilnius, Lithuania
| | - Arunas Ramanavicius
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, 03225 Vilnius, Lithuania; State Research Institute Center for Physical Sciences and Technology, Sauletekio ave. 3, 10007 Vilnius, Lithuania.
| | - Ausra Baradoke
- State Research Institute Center for Physical Sciences and Technology, Sauletekio ave. 3, 10007 Vilnius, Lithuania
| |
Collapse
|
12
|
Mazzaracchio V, Rios Maciel M, Porto Santos T, Toda-Peters K, Shen AQ. Duplex Electrochemical Microfluidic Sensor for COVID-19 Antibody Detection: Natural versus Vaccine-Induced Humoral Response. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207731. [PMID: 36916701 DOI: 10.1002/smll.202207731] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/03/2023] [Indexed: 06/18/2023]
Abstract
The rapid transmission and resilience of coronavirus disease 2019 (COVID-19) have led to urgent demands in monitoring humoral response for effective vaccine development, thus a multiplex co-detection platform to discriminate infection-induced from vaccine-induced antibodies is needed. Here a duplex electrochemical immunosensor for co-detection of anti-nucleocapsid IgG (N-IgG) and anti-spike IgG (S-IgG) is developed by using a two-working electrode system, via an indirect immunoassay, with antibody quantification obtained by differential pulse voltammetry. The screen-printed electrodes (SPEs) are modified by carbon black and electrodeposited gold nanoflowers for maximized surface areas, enabling the construction of an immunological chain for S-IgG and N-IgG electrochemical detection with enhanced performance. Using an optimized immunoassay protocol, a wide linear range between 30-750 and 20-1000 ng mL-1 , and a limit of detection of 28 and 15 ng mL-1 are achieved to detect N-IgG and S-IgG simultaneously in serum samples. This duplex immunosensor is then integrated in a microfluidic device to obtain significantly reduced detection time (≤ 7 min) while maintaining its analytical performance. The duplex microfluidic immunosensor can be easily expanded into multiplex format to achieve high throughput screening for the sero-surveillance of COVID-19 and other infectious diseases.
Collapse
Affiliation(s)
- Vincenzo Mazzaracchio
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, 904-0495, Japan
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata,", Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Mauricio Rios Maciel
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, 904-0495, Japan
| | - Tatiana Porto Santos
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, 904-0495, Japan
| | - Kazumi Toda-Peters
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, 904-0495, Japan
| | - Amy Q Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, 904-0495, Japan
| |
Collapse
|
13
|
Martins G, Galeski HR, Andrade GA, Valenga MGP, Ramos MK, Zarbin AJG, Janegitz BC, Müller-Santos M, de Souza EM, Marcolino-Junior LH, Bergamini MF. One-step selective layer assemble: A versatile approach for the development of a SARS-CoV-2 electrochemical immunosensor. Anal Chim Acta 2023; 1278:341726. [PMID: 37709467 DOI: 10.1016/j.aca.2023.341726] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/21/2023] [Accepted: 08/15/2023] [Indexed: 09/16/2023]
Abstract
The appearance of new viruses and diseases has made the development of rapid and reliable diagnostic tests crucial. In light of it, we proposed a new method for assembling an electrochemical immunosensor, based on a one-step approach for selective layer formation. For this purpose, a mixture containing the immobilizing agent (polyxydroxybutyrate, PHB) and the recognition element (antibodies against SARS-CoV-2 nucleocapsid protein) was prepared and used to modify a screen-printed carbon electrode with electrodeposited graphene oxide, for the detection of SARS-CoV-2 nucleocapsid protein (N-protein). Under optimum conditions, N-protein was successfully detected in three different matrixes - saliva, serum, and nasal swab, with the lowest detectable values of 50 pg mL-1, 1.0 ng mL-1, and 50 pg mL-1, respectively. Selectivity was assessed against SARS-CoV-2 receptor-binding domain protein (RBD) and antibodies against yellow fever (YF), and no significant response was observed in presence of interferents, reinforcing the suitability of the proposed one-step approach for selective layer formation. The proposed biosensor was stable for up to 14 days, and the mixture was suitable for immunosensor preparation even after 60 days of preparation. The proposed assembly strategy reduces the cost, analysis time, and waste generation. This reduction is achieved through miniaturization, which results in the decreased use of reagents and sample volumes. Additionally, this approach enables healthcare diagnostics to be conducted in developing regions with limited resources. Therefore, the proposed one-step approach for selective layer formation is a suitable, simpler, and a reliable alternative for electrochemical immunosensing.
Collapse
Affiliation(s)
- Gustavo Martins
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal do Paraná (UFPR), CEP 81531-980, Curitiba, PR, Brazil
| | - Helena R Galeski
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal do Paraná (UFPR), CEP 81531-980, Curitiba, PR, Brazil
| | - Gabrielle A Andrade
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal do Paraná (UFPR), CEP 81531-980, Curitiba, PR, Brazil
| | - Marcia G P Valenga
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal do Paraná (UFPR), CEP 81531-980, Curitiba, PR, Brazil
| | - Maria K Ramos
- Grupo de Química de Materiais (GQM), Departamento de Química, Universidade Federal do Paraná (UFPR), CEP 81531-980, Curitiba, PR, Brazil
| | - Aldo J G Zarbin
- Grupo de Química de Materiais (GQM), Departamento de Química, Universidade Federal do Paraná (UFPR), CEP 81531-980, Curitiba, PR, Brazil
| | - Bruno C Janegitz
- Department of Nature Sciences, Mathematics and Education, Federal University of São Carlos, 13600-970, Araras, São Paulo, Brazil
| | - Marcelo Müller-Santos
- Núcleo de Fixação de Nitrogênio (NFIX), Departamento de Bioquímica e Biologia Molecular, Universidade Federal Do Paraná (UFPR), CP: 19046, CEP: 81531-980, Curitiba, PR, Brazil
| | - Emanuel M de Souza
- Núcleo de Fixação de Nitrogênio (NFIX), Departamento de Bioquímica e Biologia Molecular, Universidade Federal Do Paraná (UFPR), CP: 19046, CEP: 81531-980, Curitiba, PR, Brazil
| | - Luiz Humberto Marcolino-Junior
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal do Paraná (UFPR), CEP 81531-980, Curitiba, PR, Brazil.
| | - Márcio F Bergamini
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal do Paraná (UFPR), CEP 81531-980, Curitiba, PR, Brazil.
| |
Collapse
|
14
|
Pilvenyte G, Ratautaite V, Boguzaite R, Ramanavicius S, Chen CF, Viter R, Ramanavicius A. Molecularly Imprinted Polymer-Based Electrochemical Sensors for the Diagnosis of Infectious Diseases. BIOSENSORS 2023; 13:620. [PMID: 37366985 DOI: 10.3390/bios13060620] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
The appearance of biological molecules, so-called biomarkers in body fluids at abnormal concentrations, is considered a good tool for detecting disease. Biomarkers are usually looked for in the most common body fluids, such as blood, nasopharyngeal fluids, urine, tears, sweat, etc. Even with significant advances in diagnostic technology, many patients with suspected infections receive empiric antimicrobial therapy rather than appropriate treatment, which is driven by rapid identification of the infectious agent, leading to increased antimicrobial resistance. To positively impact healthcare, new tests are needed that are pathogen-specific, easy to use, and produce results quickly. Molecularly imprinted polymer (MIP)-based biosensors can achieve these general goals and have enormous potential for disease detection. This article aimed to overview recent articles dedicated to electrochemical sensors modified with MIP to detect protein-based biomarkers of certain infectious diseases in human beings, particularly the biomarkers of infectious diseases, such as HIV-1, COVID-19, Dengue virus, and others. Some biomarkers, such as C-reactive protein (CRP) found in blood tests, are not specific for a particular disease but are used to identify any inflammation process in the body and are also under consideration in this review. Other biomarkers are specific to a particular disease, e.g., SARS-CoV-2-S spike glycoprotein. This article analyzes the development of electrochemical sensors using molecular imprinting technology and the used materials' influence. The research methods, the application of different electrodes, the influence of the polymers, and the established detection limits are reviewed and compared.
Collapse
Affiliation(s)
- Greta Pilvenyte
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Vilma Ratautaite
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Raimonda Boguzaite
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Simonas Ramanavicius
- Department of Electrochemical Material Science, State Research Institute Center for Physical Sciences and Technology (FTMC), Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
| | - Chien-Fu Chen
- Institute of Applied Mechanics, National Taiwan University, Taipei City 106, Taiwan
| | - Roman Viter
- Institute of Atomic Physics and Spectroscopy, University of Latvia, 19 Raina Blvd., LV-1586 Riga, Latvia
- Center for Collective Use of Scientific Equipment, Sumy State University, 31, Sanatornaya st., 40018 Sumy, Ukraine
| | - Arunas Ramanavicius
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| |
Collapse
|
15
|
Yin ZZ, Liu Z, Zhou M, Yang X, Zheng G, Zhang H, Kong Y. A surface molecularly imprinted electrochemical biosensor for the detection of SARS-CoV-2 spike protein by using Cu 7S 4-Au as built-in probe. Bioelectrochemistry 2023; 152:108462. [PMID: 37182264 PMCID: PMC10170874 DOI: 10.1016/j.bioelechem.2023.108462] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/04/2023] [Accepted: 05/07/2023] [Indexed: 05/16/2023]
Abstract
Sensitive detection of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) spike protein (S protein) is of significant clinical importance in the diagnosis of COVID-19 pandemic. In this work, a surface molecularly imprinted (SMI) electrochemical biosensor is fabricated for the detection of SARS-CoV-2 S protein. Cu7S4-Au is used as the built-in probe and modified on the surface of a screen-printed carbon electrode (SPCE). 4-Mercaptophenylboric acid (4-MPBA) is anchored to the surface of the Cu7S4-Au through Au-SH bonds, which can be used for the immobilization of the SARS-CoV-2 S protein template through boronate ester bonds. After that, 3-aminophenylboronic acid (3-APBA) is electropolymerized on the electrode surface and used as the molecularly imprinted polymers (MIPs). The SMI electrochemical biosensor is obtained after the elution of the SARS-CoV-2 S protein template with an acidic solution by the dissociation of the boronate ester bonds, which can be utilized for sensitive detection of the SARS-CoV-2 S protein. The developed SMI electrochemical biosensor displays high specificity, reproducibility and stability, which might be a potential and promising candidate for the clinical diagnosis of COVID-19.
Collapse
Affiliation(s)
- Zheng-Zhi Yin
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Zixuan Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Min Zhou
- Department of Clinical Laboratory, Changzhou No.3 People's Hospital, Changzhou 213001, China
| | - Xu Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Guojun Zheng
- Department of Clinical Laboratory, Changzhou No.3 People's Hospital, Changzhou 213001, China
| | - Hongyu Zhang
- Department of Clinical Laboratory, Changzhou No.3 People's Hospital, Changzhou 213001, China
| | - Yong Kong
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
16
|
Karuppaiah G, Vashist A, Nair M, Veerapandian M, Manickam P. Emerging trends in point-of-care biosensing strategies for molecular architectures and antibodies of SARS-CoV-2. BIOSENSORS & BIOELECTRONICS: X 2023; 13:100324. [PMID: 36844889 PMCID: PMC9941073 DOI: 10.1016/j.biosx.2023.100324] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/01/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023]
Abstract
COVID-19, a highly contagious viral infection caused by the occurrence of severe acute respiratory syndrome coronavirus (SARS-CoV-2), has turned out to be a viral pandemic then ravaged many countries worldwide. In the recent years, point-of-care (POC) biosensors combined with state-of-the-art bioreceptors, and transducing systems enabled the development of novel diagnostic tools for rapid and reliable detection of biomarkers associated with SARS-CoV-2. The present review thoroughly summarises and discusses various biosensing strategies developed for probing SARS-CoV-2 molecular architectures (viral genome, S Protein, M protein, E protein, N protein and non-structural proteins) and antibodies as a potential diagnostic tool for COVID-19. This review discusses the various structural components of SARS-CoV-2, their binding regions and the bioreceptors used for recognizing the structural components. The various types of clinical specimens investigated for rapid and POC detection of SARS-CoV-2 is also highlighted. The importance of nanotechnology and artificial intelligence (AI) approaches in improving the biosensor performance for real-time and reagent-free monitoring the biomarkers of SARS-CoV-2 is also summarized. This review also encompasses existing practical challenges and prospects for developing new POC biosensors for clinical monitoring of COVID-19.
Collapse
Affiliation(s)
- Gopi Karuppaiah
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, 630 003, Tamil Nadu, India
| | - Arti Vashist
- Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Madhavan Nair
- Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Murugan Veerapandian
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, 630 003, Tamil Nadu, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201 002, Uttar Pradesh, India
| | - Pandiaraj Manickam
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, 630 003, Tamil Nadu, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201 002, Uttar Pradesh, India
| |
Collapse
|
17
|
Zhao L, Li C, Kang X, Li Y. A visual detection strategy for SARS-CoV-2 based on dual targets-triggering DNA walker. SENSORS AND ACTUATORS. B, CHEMICAL 2023; 379:133252. [PMID: 36590306 PMCID: PMC9792190 DOI: 10.1016/j.snb.2022.133252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/19/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
SARS-CoV-2, a highly transmissible and mutagenic virus, made huge threats to global public health. The detection strategies, which are free from testing site requirements, and the reagents and instruments are portable, are vital for early screening and play a significant role in curbing the spread. This work proposed a silver-coated glass slide (SCGS)/DNA walker based on a dual targets-triggering mechanism, enzyme-catalyzed amplification, and smartphone data analysis, which build a portable visual detection strategy for the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) gene. By this method, the detection was reflected by the ultraviolet absorbance changes and visible color changes to the naked eye which was analyzed by Red-Green-Blue (RGB) data analysis via smartphone within 30 min, simplifying the detection process and shortening the detection time. Meanwhile, the dual targets-triggering mechanism and dual signal amplification strategy ensured detection specificity and sensitivity. Further, the practicability was verified by the detection of the real sample which provided this method an application potential in SARS-CoV-2 rapid detection.
Collapse
Affiliation(s)
- Liting Zhao
- Faculty of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ciling Li
- Faculty of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xinhuang Kang
- Faculty of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yubin Li
- Faculty of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
- Research Center for Coastal Environmental Protection and Ecological Resilience, Guangdong Ocean University, Zhanjiang 524088, China
- Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| |
Collapse
|
18
|
Drobysh M, Ramanavicius A, Baradoke A. Polyaniline-based electrochemical immunosensor for the determination of antibodies against SARS-CoV-2 spike protein. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160700. [PMID: 36493838 PMCID: PMC9726207 DOI: 10.1016/j.scitotenv.2022.160700] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 05/31/2023]
Abstract
In this work, we report an impedimetric system for the detection of antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike protein. The sensing platform is based on recombinant Spike protein (SCoV2-rS) immobilized on the phytic acid doped polyaniline films (PANI-PA). The affinity interaction between immobilized SCoV2-rS protein and antibodies in the physiological range of concentrations was registered by electrochemical impedance spectroscopy. Analytical parameters of the sensing platform were tuned by the variation of electropolymerization times during the synthesis of PANI-PA films. The lowest limit of detection and quantification were obtained for electropolymerization time of 20 min and equalled 8.00 ± 0.20 nM and 23.93 ± 0.60 nM with an equilibrium dissociation constant of 3 nM. The presented sensing system is label-free and suitable for the direct detection of antibodies against SARS-CoV-2 in real patient serum samples after coronavirus disease 2019 and/or vaccination.
Collapse
Affiliation(s)
- Maryia Drobysh
- State Research Institute Center for Physical and Technological Sciences, Sauletekio ave. 3, Vilnius, Lithuania; NanoTechnas-Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, 03225 Vilnius, Lithuania
| | - Arunas Ramanavicius
- State Research Institute Center for Physical and Technological Sciences, Sauletekio ave. 3, Vilnius, Lithuania; NanoTechnas-Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, 03225 Vilnius, Lithuania.
| | - Ausra Baradoke
- State Research Institute Center for Physical and Technological Sciences, Sauletekio ave. 3, Vilnius, Lithuania
| |
Collapse
|
19
|
Plikusiene I, Ramanaviciene A. Investigation of Biomolecule Interactions: Optical-, Electrochemical-, and Acoustic-Based Biosensors. BIOSENSORS 2023; 13:bios13020292. [PMID: 36832058 PMCID: PMC9954023 DOI: 10.3390/bios13020292] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 02/16/2023] [Indexed: 05/24/2023]
Abstract
Today, optical, electrochemical, and acoustic affinity biosensors; immunosensors; and immunoanalytical systems play an important role in the detection and characterization of a number of biological substances, including viral antigens, specific antibodies, and clinically important biomarkers [...].
Collapse
Affiliation(s)
- Ieva Plikusiene
- NanoTechnas—Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, LT-03225 Vilnius, Lithuania
- State Research Institute Center for Physical Sciences and Technology, LT-10257 Vilnius, Lithuania
| | - Almira Ramanaviciene
- NanoTechnas—Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, LT-03225 Vilnius, Lithuania
| |
Collapse
|
20
|
Electrochemical Biosensor for the Determination of Specific Antibodies against SARS-CoV-2 Spike Protein. Int J Mol Sci 2022; 24:ijms24010718. [PMID: 36614164 PMCID: PMC9821011 DOI: 10.3390/ijms24010718] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 01/03/2023] Open
Abstract
In this article, we report the development of an electrochemical biosensor for the determination of the SARS-CoV-2 spike protein (rS). A gold disc electrode was electrochemically modified to form the nanocrystalline gold structure on the surface. Then, it was further altered by a self-assembling monolayer based on a mixture of two alkane thiols: 11-mercaptoundecanoic acid (11-MUA) and 6-mercapto-1-hexanol (6-MCOH) (SAMmix). After activating carboxyl groups using a N-(3-dimethylaminopropyl)-N'-ethyl-carbodiimide hydrochloride and N-hydroxysuccinimide mixture, the rS protein was covalently immobilized on the top of the SAMmix. This electrode was used to design an electrochemical sensor suitable for determining antibodies against the SARS-CoV-2 rS protein (anti-rS). We assessed the association between the immobilized rS protein and the anti-rS antibody present in the blood serum of a SARS-CoV-2 infected person using three electrochemical methods: cyclic voltammetry, differential pulse voltammetry, and potential pulsed amperometry. The results demonstrated that differential pulse voltammetry and potential pulsed amperometry measurements displayed similar sensitivity. In contrast, the measurements performed by cyclic voltammetry suggest that this method is the most sensitive out of the three methods applied in this research.
Collapse
|
21
|
Wang B, He B, Xie L, Cao X, Liang Z, Wei M, Jin H, Ren W, Suo Z, Xu Y. A novel detection strategy for nitrofuran metabolite residues: Dual-mode competitive-type electrochemical immunosensor based on polyethyleneimine reduced graphene oxide/gold nanorods nanocomposite and silica-based multifunctional immunoprobe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158676. [PMID: 36096228 DOI: 10.1016/j.scitotenv.2022.158676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Excessive residues of semicarbazide (SEM) can accumulate in animals after the original drug has been abused, posing a risk to human health. Herein, based on multifunctional silica-initiated dual mode signal response, a novel competitive-type immunosensor was constructed for ultrasensitive detection of SEM. As a preliminary signal amplification platform for immunosensors, polyethyleneimine reduced graphene oxide composite gold nanorods (PEI-rGO/AuNRs) modified gold electrodes (AuE) provide a high specific surface area and high electrical conductivity. The thionine-aminated silica nanospheres-AuPt (thi-SiO2@AuPt) were synthesized by a racile coprecipitation method for enzyme immobilization and redox species loading. The multifunctional silica nanosphere conjugated with labeling antibodies (Ab2) was employed as an immunoprobe. The per unit concentration target of SEM can be determined by differential pulse voltammetry (DPV) to detect the thi loaded on the immunoprobe, which can also be determined by square wave voltammetry (SWV) to detect the current generated by the reaction system of H2O2 and hydroquinone (HQ) catalyzed by the immunoprobe with peroxidase. Under optimal conditions, the proposed immunosensor displayed a wide linear range from 1 μg-0.01 ng/mL and low detection limits (S/N = 3) of 0.488 pg/mL and 0.0157 ng/mL, respectively. Ultimately, the developed method exhibits excellent performance in practical applications, providing promising probabilities for SEM detection.
Collapse
Affiliation(s)
- Botao Wang
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Baoshan He
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China.
| | - Lingling Xie
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Xiaoyu Cao
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China.
| | - Zhengyong Liang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Min Wei
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Huali Jin
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Wenjie Ren
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Zhiguang Suo
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Yiwei Xu
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| |
Collapse
|
22
|
Testing of Diamond Electrodes as Biosensor for Antibody-Based Detection of Immunoglobulin Protein with Electrochemical Impedance Spectroscopy. Mol Vis 2022. [DOI: 10.3390/c8040074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
To control the increasing virus pandemics, virus detection methods are essential. Today’s standard virus detections methods are fast (immune assays) or precise (PCR). A method that is both fast and precise would enable more efficient mitigation measures and better life comfort. According to recent papers, electrochemical impedance spectroscopy (EIS) has proven to detect viruses fast and precise. Boron-doped diamond (BDD) was used as a high-performance electrode material in these works. The aim of this work was to perform an initial test of BDD-based EIS for biosensing. As an easily available standard biomaterial, human immunoglobulin G (IgG) was used as analyte. Niobium plates were coated via hot-filament activated chemical vapor deposition with polycrystalline diamond, and doped with boron for electrical conductivity. An anti-human IgG antibody was immobilised on the BDD electrodes as a biosensing component. Four different analyte concentrations up to 1.1 µg per litre were tested. During EIS measurements, both impedance over frequency curves and Nyquist plot demonstrated no clear sign of a change of the charge transfer resistance. Thus, no positive statement about a successful biosensing could be made so far. It is assumed that these issues need to be investigated and improved, including the relation of BDD electrode size to electrolyte volume, termination of the BDD electrodes (H, O) for a successful functionalisation and EIS frequency range. The work will be continued concerning these improvement issues in order to finally use virus materials as analyte.
Collapse
|
23
|
Perera GS, Rahman MA, Blazevski A, Wood A, Walia S, Bhaskaran M, Sriram S. Rapid Conductometric Detection of SARS-CoV-2 Proteins and Its Variants Using Molecularly Imprinted Polymer Nanoparticles. ADVANCED MATERIALS TECHNOLOGIES 2022; 8:2200965. [PMID: 36718387 PMCID: PMC9877662 DOI: 10.1002/admt.202200965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/20/2022] [Indexed: 06/18/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) biosensors have captured more attention than the conventional methodologies for SARS-CoV-2 detection due to having cost-effective platforms and fast detection. However, these reported SARS-CoV-2 biosensors suffer from drawbacks including issues in detection sensitivity, degradation of biomaterials on the sensor's surface, and incapability to reuse the biosensors. To overcome these shortcomings, molecularly imprinted polymer nanoparticles (nanoMIPs) incorporated conductometric biosensor for highly accurate, rapid, and selective detection of two model SARS-CoV-2 proteins: (i) receptor binding domain (RBD) of the spike (S) glycoprotein and (ii) full length trimeric spike protein are introduced. In addition, these biosensors successfully responded to several other SARS-CoV-2 RBD spike protein variants including Alpha, Beta, Gamma, and Delta. Our conductometric biosensor selectively detects the two model proteins and SARS-CoV-2 RBD spike protein variant samples in real-time with sensitivity to a detection limit of 7 pg mL-1 within 10 min of sample incubation. A battery-free, wireless near-field communication (NFC) interface is incorporated with the biosensor for fast and contactless detection of SARS-CoV-2 variants. The smartphone enabled real-time detection and on-screen rapid result for SARS-CoV-2 variants can curve the outbreak due to its ability to alert the user to infection in real time.
Collapse
Affiliation(s)
- Ganganath S. Perera
- Functional Materials and Microsystems Research Group and the Micro Nano Research FacilityRMIT UniversityMelbourneVIC3001Australia
| | - Md. Ataur Rahman
- Functional Materials and Microsystems Research Group and the Micro Nano Research FacilityRMIT UniversityMelbourneVIC3001Australia
| | - April Blazevski
- Functional Materials and Microsystems Research Group and the Micro Nano Research FacilityRMIT UniversityMelbourneVIC3001Australia
| | | | - Sumeet Walia
- Functional Materials and Microsystems Research Group and the Micro Nano Research FacilityRMIT UniversityMelbourneVIC3001Australia
| | - Madhu Bhaskaran
- Functional Materials and Microsystems Research Group and the Micro Nano Research FacilityRMIT UniversityMelbourneVIC3001Australia
| | - Sharath Sriram
- Functional Materials and Microsystems Research Group and the Micro Nano Research FacilityRMIT UniversityMelbourneVIC3001Australia
| |
Collapse
|
24
|
Agarkar T, Tripathy S, Chawla V, Sengupta M, Ghosh S, Kumar A. A batch processed titanium-vanadium oxide nanocomposite based solid-state electrochemical sensor for zeptomolar nucleic acid detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4495-4513. [PMID: 36326012 DOI: 10.1039/d2ay01141g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Approaching a nucleic acid amplification test (NAAT) based diagnosis of a pathogen from an electrochemistry pathway is a relatively economical, decentralized, and yet highly sensitive route. This work aimed to construct an electrochemical biosensor with a 2-electrode geometry using a transition metal oxide (TMO) based sensing layer. A series of batch-processed TiO2-V2O5 (TVO) nanocomposite-based electrodes were fabricated to probe their electrochemical performance and attain a highly sensitive dual-electrode electrochemical sensor (DEES) compared to pristine V2O5. The XRD analysis of the electrodes confirmed the formation of a nanocomposite, while the XPS analysis correlated the formation of oxygen vacancies with improved electrical conduction measured via EIS and I-V characterization. Furthermore, the work demonstrated the application of the optimized electrode in electrochemical detection of end-point loop-mediated isothermal amplification (LAMP) readout for 101-104 copies (0.1 zeptomoles to 0.1 attomoles) of SARS-CoV-2 RNA dependent RNA polymerase (RdRp) plasmid DNA and in vitro transcribed RNA in an aqueous solution. The device achieved a limit of detection as low as 2.5 and 0.25 copies per μL for plasmid DNA and in vitro transcribed RNA, respectively. The DEES was able to successfully detect in situ LAMP performed on magneto-extracted SARS-CoV-2 plasmid and RNA from (a) an aqueous solution, (b) a sample spiked with excess human genomic DNA, and (c) a serum-spiked sample. The DEES results were then compared with those of real-time fluorescence and commercially available screen-printed electrodes (SPEs).
Collapse
Affiliation(s)
- Tanvi Agarkar
- Department of Physics, Bennett University, India
- Center of Excellence for Nanosensors and Nanomedicine, Bennett University, India
- Pristine Diamonds Pvt. Ltd., India
| | - Sayantan Tripathy
- Department of Chemistry, Bennett University, India
- Department of Biotechnology, Bennett University, India
- Center of Excellence for Nanosensors and Nanomedicine, Bennett University, India
| | - Vipin Chawla
- Institute Instrumentation Centre, Indian Institute of Technology Roorkee, India
| | - Mrittika Sengupta
- Department of Biotechnology, Bennett University, India
- Center of Excellence for Nanosensors and Nanomedicine, Bennett University, India
| | - Souradyuti Ghosh
- Department of Chemistry, Bennett University, India
- Department of Biotechnology, Bennett University, India
- Center of Excellence for Nanosensors and Nanomedicine, Bennett University, India
- Division of Radiation and Stress Biology, UGC-DAE CSR, Kolkata Center, India
| | - Ashvani Kumar
- Department of Physics, Bennett University, India
- Pristine Diamonds Pvt. Ltd., India
| |
Collapse
|
25
|
Payandehpeyman J, Parvini N, Moradi K, Hashemian N. Design and finite element modeling of two-dimensional nanomechanical biosensors for SARS-CoV-2 detection. DIAMOND AND RELATED MATERIALS 2022; 128:109263. [PMID: 35891677 PMCID: PMC9303063 DOI: 10.1016/j.diamond.2022.109263] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/09/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
SARS-CoV-2 is the causative agent of COVID-19 disease. The development of different variants has increased the prevalence, pathogenicity, and mortality of the SARS-CoV-2. Prompt diagnosis and timely initiation of therapy can undoubtedly minimize the damage caused by this virus. In this study, a wide range of emerging single layer two-dimensional materials (SL2DMs), including graphene, grapheme oxide (GO), reduced graphene oxide (rGO), hexagonal boron nitride (h-BN), Ti3C2Tx MXene, and MoS2that can be used to fabricate highly sensitive biosensors, are analyzed using the finite element method based on antigen-antibody interaction. Important design parameters including sensor size, sensor aspect ratio, number of viruses, and applying in-plane strain on sensor performance are analyzed using frequency shift technique. In the following, an analytical relationship that can predict the limit of detection (LOD) according to the above parameters is proposed. The results show that all the above materials have a good performance in detecting viruses in the sample range of 10-100 viruses. This range can be reduced significantly by applying strains of less than 0.1. Also, applying strain increases shift frequency index by 2 to 3 times, which is a significant result. The maximum and minimum sensor performance are obtained for GO and Ti3C2Tx, respectively. The results of this paper can be used to build a new generation of two-dimensional biosensors for rapid detection of COVID-19 and other viruses.
Collapse
Affiliation(s)
- J Payandehpeyman
- Department of Mechanical Engineering, Hamedan University of Technology, Hamedan, Iran
| | - N Parvini
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - K Moradi
- Department of Mechanical Engineering, Hamedan University of Technology, Hamedan, Iran
| | - N Hashemian
- Faculty of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
26
|
Varga Z, Madai M, Kemenesi G, Beke-Somfai T, Jakab F. Single-particle detection of native SARS-CoV-2 virions by microfluidic resistive pulse sensing. Colloids Surf B Biointerfaces 2022; 218:112716. [PMID: 35907357 PMCID: PMC9306222 DOI: 10.1016/j.colsurfb.2022.112716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/08/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022]
Abstract
Microfluidic resistive pulse sensing (MRPS) was used to determine the size -distribution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) based on detecting nearly 30,000 single virions. However, the ultrastructure of SARS-CoV-2 is thoroughly described, but ensemble properties of SARS-CoV-2, e.g., its particle size distribution, are sparsely reported. According to the MRPS results, the size distribution of SARS-CoV-2 follows a log-normal function with a mean value of 85.1 nm, which corresponds to an approximate diameter of the viral envelope. This result also confirms the low number (< 50) of spike proteins on the surface of the virions.
Collapse
Affiliation(s)
- Zoltán Varga
- Biological Nanochemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary.
| | - Mónika Madai
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Ifjúság Útja 20, H-7624 Pécs, Hungary
| | - Gábor Kemenesi
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Ifjúság Útja 20, H-7624 Pécs, Hungary
| | - Tamás Beke-Somfai
- Biological Nanochemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
| | - Ferenc Jakab
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Ifjúság Útja 20, H-7624 Pécs, Hungary
| |
Collapse
|
27
|
Erdem A, Senturk H, Yildiz E, Maral M. Impedimetric Detection Based on Label-Free Immunoassay Developed for Targeting Spike S1 Protein of SARS-CoV-2. Diagnostics (Basel) 2022; 12:1992. [PMID: 36010342 PMCID: PMC9407092 DOI: 10.3390/diagnostics12081992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/01/2022] [Accepted: 08/12/2022] [Indexed: 11/24/2022] Open
Abstract
After the COVID-19 pandemic started all over the world, great importance was placed on the development of sensitive and selective bioanalytical assays for the rapid detection of the highly pathogenic SARS-CoV-2 virus causing COVID-19 disease. In this present work, an impedimetric immunosensor was developed and applied for rapid, reliable, sensitive and selective detection of the SARS-CoV-2 S1 protein. To detect the SARS-CoV-2 virus, targeting of the spike S1 protein was achieved herein by using S1 protein-specific capture antibody (Cab-S1) immobilized screen-printed electrode (SPE) in combination with the electrochemical impedance spectroscopy (EIS) technique. With the impedimetric immunosensor, the detection limit for S1 protein in buffer medium was found to be 0.23 ng/mL (equal to 23.92 amol in 8 µL sample) in the linear concentration range of S1 protein from 0.5 to 10 ng/mL. In the artificial saliva medium, it was found to be 0.09 ng/mL (equals to 9.36 amol in 8 µL sample) in the linear concentration range of S1 protein between 0.1 and 1 ng/mL. The selectivity of the impedimetric immunosensor toward S1 protein was tested against influenza hemagglutinin antigen (HA) in the buffer medium as well as in artificial saliva.
Collapse
Affiliation(s)
- Arzum Erdem
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, Bornova, Izmir 35100, Turkey
| | | | | | | |
Collapse
|
28
|
Mao S, Fu L, Yin C, Liu X, Karimi-Maleh H. The role of electrochemical biosensors in SARS-CoV-2 detection: a bibliometrics-based analysis and review. RSC Adv 2022; 12:22592-22607. [PMID: 36105989 PMCID: PMC9372877 DOI: 10.1039/d2ra04162f] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/03/2022] [Indexed: 12/16/2022] Open
Abstract
The global pandemic of COVID-19, which began in late 2019, has resulted in extremely high morbidity and severe mortality worldwide, with important implications for human health, international trade, and national politics. Severe acute respiratory syndrome coronavirus (SARS-CoV-2) is the primary pathogen causing COVID-19. Analytical chemistry played an important role in this global epidemic event, and detection of SARS-CoV-2 even became a part of daily life. Analytical chemists have devoted much effort and enthusiasm to this event, and different analytical techniques have shown very rapid development. Electrochemical biosensors are highly efficient, sensitive, and cost-effective and have been used to detect many highly pathogenic viruses long before this event. However, another fact is that electrochemical biosensors are not the technology of choice for most detection applications. This review describes for the first time the role played by electrochemical biosensors in SARS-CoV-2 detection from a bibliometric perspective. This paper analyzed 254 relevant research papers up to June 2022. The contributions of different countries and institutions to this topic were analyzed. Keyword analysis was used to explore different methodological attempts of electrochemical detection techniques. More importantly, we are trying to find an answer to the question: do electrochemical biosensors have the potential to become a genuinely employable detection technology in an outbreak of infectious disease?
Collapse
Affiliation(s)
- Shudan Mao
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University Hangzhou 310021 PR China
| | - Li Fu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University Hangzhou 310018 China
| | - Chengliang Yin
- National Engineering Laboratory for Medical Big Data Application Technology, Chinese PLA General Hospital Beijing China
- Medical Big Data Research Center, Medical Innovation Research Division of PLA General Hospital Beijing China
| | - Xiaozhu Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University Chongqing 400010 China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China Xiyuan Ave 611731 Chengdu China
- Department of Chemical Engineering, Quchan University of Technology Quchan 9477177870 Iran
- Department of Chemical Sciences, University of Johannesburg Doornfontein Campus, 2028 Johannesburg 17011 South Africa
| |
Collapse
|
29
|
Drobysh M, Liustrovaite V, Baradoke A, Viter R, Chen CF, Ramanavicius A, Ramanaviciene A. Determination of rSpike Protein by Specific Antibodies with Screen-Printed Carbon Electrode Modified by Electrodeposited Gold Nanostructures. BIOSENSORS 2022; 12:593. [PMID: 36004989 PMCID: PMC9405582 DOI: 10.3390/bios12080593] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 05/31/2023]
Abstract
In this research, we assessed the applicability of electrochemical sensing techniques for detecting specific antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike proteins in the blood serum of patient samples following coronavirus disease 2019 (COVID-19). Herein, screen-printed carbon electrodes (SPCE) with electrodeposited gold nanostructures (AuNS) were modified with L-Cysteine for further covalent immobilization of recombinant SARS-CoV-2 spike proteins (rSpike). The affinity interactions of the rSpike protein with specific antibodies against this protein (anti-rSpike) were assessed using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods. It was revealed that the SPCE electroactive surface area increased from 1.49 ± 0.02 cm2 to 1.82 ± 0.01 cm2 when AuNS were electrodeposited, and the value of the heterogeneous electron transfer rate constant (k0) changed from 6.30 × 10-5 to 14.56 × 10-5. The performance of the developed electrochemical immunosensor was evaluated by calculating the limit of detection and limit of quantification, giving values of 0.27 nM and 0.81 nM for CV and 0.14 nM and 0.42 nM for DPV. Furthermore, a specificity test was performed with a solution of antibodies against bovine serum albumin as the control aliquot, which was used to assess nonspecific binding, and this evaluation revealed that the developed rSpike-based sensor exhibits low nonspecific binding towards anti-rSpike antibodies.
Collapse
Affiliation(s)
- Maryia Drobysh
- State Research Institute Center for Physical and Technological Sciences, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania; (M.D.); (A.B.)
- NanoTechnas—Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania; (V.L.); (A.R.)
| | - Viktorija Liustrovaite
- NanoTechnas—Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania; (V.L.); (A.R.)
| | - Ausra Baradoke
- State Research Institute Center for Physical and Technological Sciences, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania; (M.D.); (A.B.)
| | - Roman Viter
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas Street 3, LV-1004 Riga, Latvia;
- Center for Collective Use of Research Equipment, Sumy State University, 31 Sanatorna Street, 40000 Sumy, Ukraine
| | - Chien-Fu Chen
- Institute of Applied Mechanics, National Taiwan University, 1 Sec. 4, Roosevelt Rd., Da’an Dist., Taipei City 106, Taiwan;
| | - Arunas Ramanavicius
- State Research Institute Center for Physical and Technological Sciences, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania; (M.D.); (A.B.)
- NanoTechnas—Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania; (V.L.); (A.R.)
| | - Almira Ramanaviciene
- NanoTechnas—Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania; (V.L.); (A.R.)
| |
Collapse
|
30
|
Abstract
Rapid and early diagnosis of lethal coronavirus disease-19 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an important issue considering global human health, economy, education, and other activities. The advancement of understanding of the chemistry/biochemistry and the structure of the SARS-CoV-2 virus has led to the development of low-cost, efficient, and reliable methods for COVID-19 diagnosis over “gold standard” real-time reverse transcription-polymerase chain reaction (RT-PCR) due to its several limitations. This led to the development of electrochemical sensors/biosensors for rapid, fast, and low-cost detection of the SARS-CoV-2 virus from the patient’s biological fluids by detecting the components of the virus, including structural proteins (antigens), nucleic acid, and antibodies created after COVID-19 infection. This review comprehensively summarizes the state-of-the-art research progress of electrochemical biosensors for COVID-19 diagnosis. They include the detection of spike protein, nucleocapsid protein, whole virus, nucleic acid, and antibodies. The review also outlines the structure of the SARS-CoV-2 virus, different detection methods, and design strategies of electrochemical SARS-CoV-2 biosensors by highlighting the current challenges and future perspectives.
Collapse
|
31
|
Drobysh M, Liustrovaite V, Baradoke A, Rucinskiene A, Ramanaviciene A, Ratautaite V, Viter R, Chen CF, Plikusiene I, Samukaite-Bubniene U, Slibinskas R, Ciplys E, Simanavicius M, Zvirbliene A, Kucinskaite-Kodze I, Ramanavicius A. Electrochemical Determination of Interaction between SARS-CoV-2 Spike Protein and Specific Antibodies. Int J Mol Sci 2022; 23:ijms23126768. [PMID: 35743208 PMCID: PMC9223850 DOI: 10.3390/ijms23126768] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/04/2022] [Accepted: 06/09/2022] [Indexed: 12/27/2022] Open
Abstract
The serologic diagnosis of coronavirus disease 2019 (COVID-19) and the evaluation of vaccination effectiveness are identified by the presence of antibodies specific to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this paper, we present the electrochemical-based biosensing technique for the detection of antibodies specific to the SARS-CoV-2 proteins. Recombinant SARS-CoV-2 spike proteins (rSpike) were immobilised on the surface of a gold electrode modified by a self-assembled monolayer (SAM). This modified electrode was used as a sensitive element for the detection of polyclonal mouse antibodies against the rSpike (anti-rSpike). Electrochemical impedance spectroscopy (EIS) was used to observe the formation of immunocomplexes while cyclic voltammetry (CV) was used for additional analysis of the surface modifications. It was revealed that the impedimetric method and the elaborate experimental conditions are appropriate for the further development of electrochemical biosensors for the serological diagnosis of COVID-19 and/or the confirmation of successful vaccination against SARS-CoV-2.
Collapse
Affiliation(s)
- Maryia Drobysh
- NanoTechnas—Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, 03225 Vilnius, Lithuania; (M.D.); (V.L.); (A.R.); (A.R.); (V.R.); (I.P.); (U.S.-B.)
- State Research Institute Center for Physical and Technological Sciences, LT-10257 Vilnius, Lithuania;
| | - Viktorija Liustrovaite
- NanoTechnas—Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, 03225 Vilnius, Lithuania; (M.D.); (V.L.); (A.R.); (A.R.); (V.R.); (I.P.); (U.S.-B.)
| | - Ausra Baradoke
- State Research Institute Center for Physical and Technological Sciences, LT-10257 Vilnius, Lithuania;
| | - Alma Rucinskiene
- NanoTechnas—Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, 03225 Vilnius, Lithuania; (M.D.); (V.L.); (A.R.); (A.R.); (V.R.); (I.P.); (U.S.-B.)
- State Research Institute Center for Physical and Technological Sciences, LT-10257 Vilnius, Lithuania;
| | - Almira Ramanaviciene
- NanoTechnas—Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, 03225 Vilnius, Lithuania; (M.D.); (V.L.); (A.R.); (A.R.); (V.R.); (I.P.); (U.S.-B.)
- State Research Institute Center of Innovative Medicine, LT-08406 Vilnius, Lithuania
| | - Vilma Ratautaite
- NanoTechnas—Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, 03225 Vilnius, Lithuania; (M.D.); (V.L.); (A.R.); (A.R.); (V.R.); (I.P.); (U.S.-B.)
- State Research Institute Center for Physical and Technological Sciences, LT-10257 Vilnius, Lithuania;
| | - Roman Viter
- Institute of Atomic Physics and Spectroscopy, University of Latvia, LV-1004 Riga, Latvia;
- Center for Collective Use of Research Equipment, Sumy State University, 40000 Sumy, Ukraine
| | - Chien-Fu Chen
- Institute of Applied Mechanics, National Taiwan University, Taipei City 106, Taiwan;
| | - Ieva Plikusiene
- NanoTechnas—Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, 03225 Vilnius, Lithuania; (M.D.); (V.L.); (A.R.); (A.R.); (V.R.); (I.P.); (U.S.-B.)
| | - Urte Samukaite-Bubniene
- NanoTechnas—Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, 03225 Vilnius, Lithuania; (M.D.); (V.L.); (A.R.); (A.R.); (V.R.); (I.P.); (U.S.-B.)
| | - Rimantas Slibinskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania; (R.S.); (E.C.); (M.S.); (A.Z.); (I.K.-K.)
| | - Evaldas Ciplys
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania; (R.S.); (E.C.); (M.S.); (A.Z.); (I.K.-K.)
| | - Martynas Simanavicius
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania; (R.S.); (E.C.); (M.S.); (A.Z.); (I.K.-K.)
| | - Aurelija Zvirbliene
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania; (R.S.); (E.C.); (M.S.); (A.Z.); (I.K.-K.)
| | - Indre Kucinskaite-Kodze
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania; (R.S.); (E.C.); (M.S.); (A.Z.); (I.K.-K.)
| | - Arunas Ramanavicius
- NanoTechnas—Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, 03225 Vilnius, Lithuania; (M.D.); (V.L.); (A.R.); (A.R.); (V.R.); (I.P.); (U.S.-B.)
- State Research Institute Center for Physical and Technological Sciences, LT-10257 Vilnius, Lithuania;
- Correspondence: ; Tel.: +37-060-032-332
| |
Collapse
|
32
|
Drobysh M, Liustrovaite V, Baradoke A, Rucinskiene A, Ramanaviciene A, Ratautaite V, Viter R, Chen CF, Plikusiene I, Samukaite-Bubniene U, Slibinskas R, Ciplys E, Simanavicius M, Zvirbliene A, Kucinskaite-Kodze I, Ramanavicius A. Electrochemical Determination of Interaction between SARS-CoV-2 Spike Protein and Specific Antibodies. Int J Mol Sci 2022. [PMID: 35743208 DOI: 10.1149/1945-7111/ac5d91] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
The serologic diagnosis of coronavirus disease 2019 (COVID-19) and the evaluation of vaccination effectiveness are identified by the presence of antibodies specific to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this paper, we present the electrochemical-based biosensing technique for the detection of antibodies specific to the SARS-CoV-2 proteins. Recombinant SARS-CoV-2 spike proteins (rSpike) were immobilised on the surface of a gold electrode modified by a self-assembled monolayer (SAM). This modified electrode was used as a sensitive element for the detection of polyclonal mouse antibodies against the rSpike (anti-rSpike). Electrochemical impedance spectroscopy (EIS) was used to observe the formation of immunocomplexes while cyclic voltammetry (CV) was used for additional analysis of the surface modifications. It was revealed that the impedimetric method and the elaborate experimental conditions are appropriate for the further development of electrochemical biosensors for the serological diagnosis of COVID-19 and/or the confirmation of successful vaccination against SARS-CoV-2.
Collapse
Affiliation(s)
- Maryia Drobysh
- NanoTechnas-Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, 03225 Vilnius, Lithuania
- State Research Institute Center for Physical and Technological Sciences, LT-10257 Vilnius, Lithuania
| | - Viktorija Liustrovaite
- NanoTechnas-Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, 03225 Vilnius, Lithuania
| | - Ausra Baradoke
- State Research Institute Center for Physical and Technological Sciences, LT-10257 Vilnius, Lithuania
| | - Alma Rucinskiene
- NanoTechnas-Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, 03225 Vilnius, Lithuania
- State Research Institute Center for Physical and Technological Sciences, LT-10257 Vilnius, Lithuania
| | - Almira Ramanaviciene
- NanoTechnas-Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, 03225 Vilnius, Lithuania
- State Research Institute Center of Innovative Medicine, LT-08406 Vilnius, Lithuania
| | - Vilma Ratautaite
- NanoTechnas-Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, 03225 Vilnius, Lithuania
- State Research Institute Center for Physical and Technological Sciences, LT-10257 Vilnius, Lithuania
| | - Roman Viter
- Institute of Atomic Physics and Spectroscopy, University of Latvia, LV-1004 Riga, Latvia
- Center for Collective Use of Research Equipment, Sumy State University, 40000 Sumy, Ukraine
| | - Chien-Fu Chen
- Institute of Applied Mechanics, National Taiwan University, Taipei City 106, Taiwan
| | - Ieva Plikusiene
- NanoTechnas-Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, 03225 Vilnius, Lithuania
| | - Urte Samukaite-Bubniene
- NanoTechnas-Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, 03225 Vilnius, Lithuania
| | - Rimantas Slibinskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Evaldas Ciplys
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Martynas Simanavicius
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Aurelija Zvirbliene
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Indre Kucinskaite-Kodze
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Arunas Ramanavicius
- NanoTechnas-Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, 03225 Vilnius, Lithuania
- State Research Institute Center for Physical and Technological Sciences, LT-10257 Vilnius, Lithuania
| |
Collapse
|
33
|
Abstract
A fast and highly specific detection of COVID-19 infections is essential in managing the virus dissemination networks. The most relevant technologies developed for SARS-CoV-2 detection, along with their advantages and limitations, will be presented and fully explored. Additionally, some of the newest and emerging COVID-19 diagnosis tools, such as biosensing platforms, will also be introduced. Considering the extreme relevance that all these technologies assume in pandemic control, it is of the utmost relevance to have an intrinsic knowledge of the parameters that need to be taken into consideration before choosing the most adequate test for a particular situation. Moreover, the new variants of the virus and their potential impact on the detection method’s effectiveness will be discussed. In order to better manage the pandemic, it is essential to maintain continuous research into the SARS-CoV-2 genome and updated genomic surveillance at the global level. This will allow for timely detection of new mutations and viral variants, which may affect the performance of COVID-19 detection tests.
Collapse
|
34
|
Sadique M, Yadav S, Ranjan P, Khan R, Khan F, Kumar A, Biswas D. Highly Sensitive Electrochemical Immunosensor Platforms for Dual Detection of SARS-CoV-2 Antigen and Antibody based on Gold Nanoparticle Functionalized Graphene Oxide Nanocomposites. ACS APPLIED BIO MATERIALS 2022; 5:2421-2430. [PMID: 35522141 PMCID: PMC9113004 DOI: 10.1021/acsabm.2c00301] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 04/21/2022] [Indexed: 12/12/2022]
Abstract
In this work, we report a facile synthesis of graphene oxide-gold (GO-Au) nanocomposites by electrodeposition. The fabricated electrochemical immunosensors are utilized for the dual detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigen and SARS-CoV-2 antibody. The GO-Au nanocomposites has been characterized by UV-vis spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS) for its biosensing properties. The linear detection range of the SARS-CoV-2 antigen immunosensor is 10.0 ag mL-1 to 50.0 ng mL-1, whereas that for the antibody immunosensor ranges from 1.0 fg mL-1 to 1.0 ng mL-1. The calculated limit of detection (LOD) of the SARS-CoV-2 antigen immunosensor is 3.99 ag mL-1, and that for SARS-CoV-2 antibody immunosensor is 1.0 fg mL-1 with high sensitivity. The validation of the immunosensor has also been carried out on patient serum and patient swab samples from COVID-19 patients. The results suggest successful utilization of the immunosensors with a very low detection limit enabling its use in clinical samples. Further work is needed for the standardization of the results and translation in screen-printed electrodes for use in portable commercial applications.
Collapse
Affiliation(s)
- Mohd.
Abubakar Sadique
- Industrial
Waste Utilization, Nano and Biomaterials, CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shalu Yadav
- Industrial
Waste Utilization, Nano and Biomaterials, CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pushpesh Ranjan
- Industrial
Waste Utilization, Nano and Biomaterials, CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Raju Khan
- Industrial
Waste Utilization, Nano and Biomaterials, CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Firoz Khan
- Department
of Biochemistry, All India Institute of
Medical Sciences (AIIMS), Bhopal 462020, India
| | - Ashok Kumar
- Department
of Biochemistry, All India Institute of
Medical Sciences (AIIMS), Bhopal 462020, India
| | - Debasis Biswas
- Department
of Microbiology, All India Institute of
Medical Sciences (AIIMS), Bhopal 462020, India
| |
Collapse
|