1
|
Zhang L, Wang H, Wang Z, Xu J, Wang M, Wang W, He Q, Yu Y, Yuan D, Bu G, Qiu R, Long J. Resveratrol promotes cholesterol efflux from dendritic cells and controls costimulation and T-cell activation in high-fat and lipopolysaccharide-driven atherosclerotic mice. Front Cardiovasc Med 2024; 11:1450898. [PMID: 39759494 PMCID: PMC11695297 DOI: 10.3389/fcvm.2024.1450898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/22/2024] [Indexed: 01/07/2025] Open
Abstract
Cholesterol aggregation in dendritic cells (DCs) triggers an inflammatory response and accelerates the development of atherosclerosis (AS). Resveratrol (RES), a natural compound with anti-inflammatory and cholesterol metabolism regulatory properties, has been shown to influence the maturation and inflammatory functions of DCs. However, its relationship with cholesterol metabolism remains unclear. This study aimed to explore the roles of RES in cholesterol metabolism and inflammatory behaviors of DCs in the context of AS. We analyzed the effect of RES on cholesterol efflux from ApoE-/- bone marrow-derived dendritic cells (BMDCs) using qRT-PCR, Western blot, and cholesterol efflux assays; identified the inflammatory status of RES-treated BMDCs and co-cultured T cells using flow cytometry and ELISA; confirmed the effect of RES on blood lipids, atherosclerotic lesions, cholesterol metabolism, and inflammatory response in high-fat diet and lipopolysaccharide-treated ApoE-/- mice; and explored the potential targets of RES in regulating inflammatory behavior via molecular docking. The results revealed that RES promotes cholesterol efflux, increases the expression of efflux transporter ABCA1, and decreases liver X receptor alpha (LXRα) expression in response to a decrease in intracellular cholesterol in ApoE-/- BMDCs. RES also reduced MHC-II+ cells and downregulated costimulatory molecule CD80 in BMDCs with decreased IL-6 and increased IL-2 production, and suppressed T-cell activation and modulates IL-22 and IL-10 secretion via BMDCs. Furthermore, we confirmed that RES relieves arterial lesions and regulates blood lipids in ApoE-/- mice. RES demonstrated ABCA1 upregulation and LXRα downregulation effects in the aorta and regulated costimulation molecules and Th17/Treg cytokines in the spleen. Furthermore, RES showed multiple hydrogen bonding and low binding energy with ABCA1, suggesting that ABCA1 is a potential target of RES to modulate the inflammatory properties of BMDCs. Our study demonstrated that RES regulates cholesterol efflux and inflammatory behavior in BMDCs, contributing to the control of AS progression and offering new insights for managing inflammatory diseases.
Collapse
Affiliation(s)
- Linhui Zhang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Haixia Wang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zishan Wang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jianyi Xu
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Mengyuan Wang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Wenxin Wang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Qiongshan He
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yun Yu
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Dongping Yuan
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Guirong Bu
- Department of Pharmacy, Wuxi Huishan Traditional Chinese Medicine Hospital, Wuxi, Jiangsu, China
| | - Runze Qiu
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jun Long
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Lusta KA, Summerhill VI, Khotina VA, Sukhorukov VN, Glanz VY, Orekhov AN. The Role of Bacterial Extracellular Membrane Nanovesicles in Atherosclerosis: Unraveling a Potential Trigger. Curr Atheroscler Rep 2024; 26:289-304. [PMID: 38805145 DOI: 10.1007/s11883-024-01206-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 05/29/2024]
Abstract
PURPOSE OF REVIEW In this review, we explore the intriguing and evolving connections between bacterial extracellular membrane nanovesicles (BEMNs) and atherosclerosis development, highlighting the evidence on molecular mechanisms by which BEMNs can promote the athero-inflammatory process that is central to the progression of atherosclerosis. RECENT FINDINGS Atherosclerosis is a chronic inflammatory disease primarily driven by metabolic and lifestyle factors; however, some studies have suggested that bacterial infections may contribute to the development of both atherogenesis and inflammation in atherosclerotic lesions. In particular, the participation of BEMNs in atherosclerosis pathogenesis has attracted special attention. We provide some general insights into how the immune system responds to potential threats such as BEMNs during the development of atherosclerosis. A comprehensive understanding of contribution of BEMNs to atherosclerosis pathogenesis may lead to the development of targeted interventions for the prevention and treatment of the disease.
Collapse
Affiliation(s)
- Konstantin A Lusta
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky Russian National Center of Surgery, Moscow, 119991, Russia
| | - Volha I Summerhill
- Department of Research and Development, Institute for Atherosclerosis Research, Moscow, 121609, Russia.
| | - Victoria A Khotina
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky Russian National Center of Surgery, Moscow, 119991, Russia
| | - Vasily N Sukhorukov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky Russian National Center of Surgery, Moscow, 119991, Russia
| | - Victor Y Glanz
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky Russian National Center of Surgery, Moscow, 119991, Russia
| | - Alexander N Orekhov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky Russian National Center of Surgery, Moscow, 119991, Russia.
- Department of Research and Development, Institute for Atherosclerosis Research, Moscow, 121609, Russia.
| |
Collapse
|
3
|
Kumarapperuma H, Wang R, Little PJ, Kamato D. Mechanistic insight: Linking cardiovascular complications of inflammatory bowel disease. Trends Cardiovasc Med 2024; 34:203-211. [PMID: 36702388 DOI: 10.1016/j.tcm.2023.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/25/2023]
Abstract
Cardiovascular diseases (CVD) are the leading cause of mortality worldwide despite an aggressive reduction of traditional cardiovascular risk factors. Underlying inflammatory conditions such as inflammatory bowel disease (IBD) increase the risk of developing CVD. A broad understanding of the underlying pathophysiological processes between IBD and CVD is required to treat and prevent cardiovascular events in patients with IBD. This review highlights the commonality between IBD and CVD, including dysregulated immune response, genetics, environmental risk factors, altered gut microbiome, stress, endothelial dysfunction and abnormalities, to shed light on an essential area of modern medicine.
Collapse
Affiliation(s)
- Hirushi Kumarapperuma
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland 4102, Australia; Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Ran Wang
- Mater Research Institute, The University of Queensland, Translational Research Institute, Queensland 4102, Australia
| | - Peter J Little
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland 4102, Australia; Department of Pharmacy, Xinhua College of Sun Yat-sen University, Tianhe District, Guangzhou 510520, China
| | - Danielle Kamato
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland 4102, Australia; Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia; School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia.
| |
Collapse
|
4
|
Zhang T, Pang C, Xu M, Zhao Q, Hu Z, Jiang X, Guo M. The role of immune system in atherosclerosis: Molecular mechanisms, controversies, and future possibilities. Hum Immunol 2024; 85:110765. [PMID: 38369442 DOI: 10.1016/j.humimm.2024.110765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
Numerous cardiovascular disorders have atherosclerosis as their pathological underpinning. Numerous studies have demonstrated that, with the aid of pattern recognition receptors, cytokines, and immunoglobulins, innate immunity, represented by monocytes/macrophages, and adaptive immunity, primarily T/B cells, play a critical role in controlling inflammation and abnormal lipid metabolism in atherosclerosis. Additionally, the finding of numerous complement components in atherosclerotic plaques suggests yet again how heavily the immune system controls atherosclerosis. Therefore, it is essential to have a thorough grasp of how the immune system contributes to atherosclerosis. The specific molecular mechanisms involved in the activation of immune cells and immune molecules in atherosclerosis, the controversy surrounding some immune cells in atherosclerosis, and the limitations of extrapolating from relevant animal models to humans were all carefully reviewed in this review from the three perspectives of innate immunity, adaptive immunity, and complement system. This could provide fresh possibilities for atherosclerosis research and treatment in the future.
Collapse
Affiliation(s)
- Tianle Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Chenxu Pang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Mengxin Xu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Qianqian Zhao
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Zhijie Hu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| | - Maojuan Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| |
Collapse
|
5
|
Li Y, Shi G, Liang W, Shang H, Li H, Han Y, Zhao W, Bai L, Qin C. Allogeneic Adipose-Derived Mesenchymal Stem Cell Transplantation Alleviates Atherosclerotic Plaque by Inhibiting Ox-LDL Uptake, Inflammatory Reaction and Endothelial Damage in Rabbits. Cells 2023; 12:1936. [PMID: 37566014 PMCID: PMC10417209 DOI: 10.3390/cells12151936] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 08/12/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease of arteries fueled by lipids. It is a major cause of cardiovascular morbidity and mortality. Mesenchymal stem cells have been used for the treatment of atherosclerotic lesions. Adipose-derived stem cells (ADSCs) have been shown to regulate the activation state of macrophages and exhibit anti-inflammatory capabilities. However, the effect of allogeneic ADSCs in the treatment of AS have not been investigated. In this study, the early treatment effect and preliminary mechanism analysis of allogeneic rabbit ADSCs intravenous transplantation were investigated in a high-fat diet rabbit model. The polarization mechanism of rabbit ADSCs on the macrophage was further analyzed in vitro. Compared with the model group, blood lipid levels declined, the plaque area, oxidized low-density lipoprotein (ox-LDL) uptake, scavenger receptor A1 and cluster of differentiation (CD) 36 levels were all significantly reduced, and the accumulation of inflammatory M1 macrophages, apoptosis, interleukin (IL)-6 and tumor necrosis factor (TNF)-α expression were decreased. The endothelial cells (CD31), M2 macrophages, IL-10 and the transforming growth factor (TGF)-β levels increased. In vitro, ADSCs can promote the M1 macrophage phenotypic switch toward the M2 macrophage through their secreted exosomes, and the main mechanism includes increasing arginase 1 expression and IL-10 secretion, declining inducible nitric oxide synthase (iNOS) expression and TNF-α secretion, and activating the STAT6 pathway. Therefore, allogeneic rabbit ADSC transplantation can transmigrate to the aortic atherosclerotic plaques and show a good effect in lowering blood lipids and alleviating atherosclerotic plaque in the early stage of AS by inhibiting ox-LDL uptake, inflammatory response, and endothelial damage.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Chuan Qin
- NHC Key Laboratory of Human Diseases Comparative Medicine, National Human Diseases Animal Model Resource Center, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Medical Laboratory Animal Science, Chinese Academy of Medical Science (CAMS) & Comparative Medicine Centre, Peking Union Medical College (PUMC), Beijing 100021, China
| |
Collapse
|
6
|
Jing J, Zhu C, Gong R, Qi X, Zhang Y, Zhang Z. Research progress on the active ingredients of traditional Chinese medicine in the intervention of atherosclerosis: A promising natural immunotherapeutic adjuvant. Biomed Pharmacother 2023; 159:114201. [PMID: 36610225 DOI: 10.1016/j.biopha.2022.114201] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/21/2022] [Accepted: 12/30/2022] [Indexed: 01/07/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease caused by disorders of lipid metabolism. Abnormal deposition of low-density lipoproteins in the arterial wall stimulates the activation of immune cells, including the adhesion and infiltration of monocytes, the proliferation and differentiation of macrophages and lymphocytes, and the activation of their functions. The complex interplay between immune cells coordinates the balance between pro- and anti-inflammation and plays a key role in the progression of AS. Therefore, targeting immune cell activity may lead to the development of more selective drugs with fewer side effects to treat AS without compromising host defense mechanisms. At present, an increasing number of studies have found that the active ingredients of traditional Chinese medicine (TCM) can regulate the function of immune cells in multiple ways to against AS, showing great potential for the treatment of AS and promising clinical applications. In this paper, we review the mechanisms of immune cell action in AS lesions and the potential targets and/or pathways for immune cell regulation by the active ingredients of TCM to promote the understanding of the immune system interactions of AS and provide a relevant basis for the use of active ingredients of TCM as natural adjuvants for AS immunotherapy.
Collapse
Affiliation(s)
- Jinpeng Jing
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Chaojun Zhu
- Surgical Department of Traditional Chinese Medicine, Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Rui Gong
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Xue Qi
- Department of General Surgery, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250001, China.
| | - Yue Zhang
- Peripheral Vascular Disease Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Zhaohui Zhang
- Surgical Department of Traditional Chinese Medicine, Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| |
Collapse
|
7
|
Tang C, Deng L, Luo Q, He G. Identification of oxidative stress-related genes and potential mechanisms in atherosclerosis. Front Genet 2023; 13:998954. [PMID: 36685865 PMCID: PMC9845256 DOI: 10.3389/fgene.2022.998954] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
Atherosclerosis (AS) is the main cause of death in individuals with cardiovascular and cerebrovascular diseases. A growing body of evidence suggests that oxidative stress plays an essential role in Atherosclerosis pathology. The aim of this study was to determine genetic mechanisms associated with Atherosclerosis and oxidative stress, as well as to construct a diagnostic model and to investigate its immune microenvironment. Seventeen oxidative stress-related genes were identified. A four-gene diagnostic model was constructed using the least absolute shrinkage and selection operator (LASSO) algorithm based on these 17 genes. The area under the Receiver Operating Characteristic (ROC) curve (AUC) was 0.967. Based on the GO analysis, cell-substrate adherens junction and focal adhesion were the most enriched terms. KEGG analysis revealed that these overlapping genes were enriched in pathways associated with Alzheimer's disease and Parkinson's disease, as well as with prion disease pathways and ribosomes. Immune cell infiltration correlation analysis showed that the immune cells with significant differences were CD4 memory activated T cells and follicular helper T cells in the GSE43292 dataset and CD4 naïve T cells and CD4 memory resting T cells in the GSE57691 dataset. We identified 17 hub genes that were closely associated with oxidative stress in AS and constructed a four-gene (aldehyde dehydrogenase six family member A1 (ALDH6A1), eukaryotic elongation factor 2 kinase (EEF2K), glutaredoxin (GLRX) and l-lactate dehydrogenase B (LDHB)) diagnostic model with good accuracy. The four-gene diagnostic model was also found to have good discriminatory efficacy for the immune cell infiltration microenvironment of AS. Overall, these findings provide valuable information and directions for future research into Atherosclerosis diagnosis and aid in the discovery of biological mechanisms underlying AS with oxidative stress.
Collapse
Affiliation(s)
- Chao Tang
- Department of Cardiology, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China,*Correspondence: Chao Tang,
| | - Lingchen Deng
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiang Luo
- Department of Cardiology, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Guijun He
- Department of Cardiology, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
8
|
Dong R, Li J, Jiang G, Han N, Zhang Y, Shi X. Novel immune cell infiltration-related biomarkers in atherosclerosis diagnosis. PeerJ 2023; 11:e15341. [PMID: 37151293 PMCID: PMC10158768 DOI: 10.7717/peerj.15341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/12/2023] [Indexed: 05/09/2023] Open
Abstract
Background Immune cell infiltration (ICI) has a close relationship with the progression of atherosclerosis (AS). Therefore, the current study was aimed to explore the role of genes related to ICI and to investigate potential mechanisms in AS. Methods Single-sample gene set enrichment analysis (ssGSEA) was applied to explore immune infiltration in AS and controls. Genes related to immune infitration were mined by weighted gene co-expression network analysis (WGCNA). The function of those genes were analyzed by enrichment analyses of the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO). The interactions among those genes were visualized in the protein-protein interaction (PPI) network, followed by identification of hub genes through Cytoscape software. A receiver operating characteristic (ROC) plot was generated to assess the performance of hub genes in AS diagnosis. The expressions of hub genes were measured by reverse transcription quantitative real-time PCR (RT-qPCR) in human leukemia monocyticcell line (THP-1) derived foam cells and macrophages, which mimic AS and control, respectively. Results We observed that the proportions of 27 immune cells were significantly elevated in AS. Subsequent integrative analyses of differential expression and WGCNA identified 99 immune cell-related differentially expressed genes (DEGs) between AS and control. Those DEGs were associated with tryptophan metabolism and extracellular matrix (ECM)-related functions. Moreover, by constructing the PPI network, we found 11 hub immune cell-related genes in AS. The expression pattern and receiver ROC analyses in two independent datasets showed that calsequestrin 2 (CASQ2), nexilin F-Actin binding protein (NEXN), matrix metallopeptidase 12 (MMP12), C-X-C motif chemokine ligand 10 (CXCL10), phospholamban (PLN), heme oxygenase 1 (HMOX1), ryanodine receptor 2 (RYR2), chitinase 3 like 1 (CHI3L1), matrix metallopeptidase 9 (MMP9), actin alpha cardiac muscle 1 (ACTC1) had good performance in distinguishing AS from control samples. Furthermore, those biomarkers were shown to be correlated with angiogenesis and immune checkpoints. In addition, we found 239 miRNAs and 47 transcription factor s (TFs), which may target those biomarkers and regulate their expressions. Finally, we found that RT-qPCR results were consistent with sequencing results.
Collapse
Affiliation(s)
- Ruoyu Dong
- Department of Vascular Surgery, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Jikuan Li
- Department of Vascular Surgery, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Guangwei Jiang
- Department of Vascular Surgery, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Ning Han
- Department of Neurointervention, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Yaochao Zhang
- Department of Cardiothoracic Surgery, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Xiaoming Shi
- Department of Vascular Surgery, Hebei General Hospital, Shijiazhuang, Hebei, China
| |
Collapse
|
9
|
Yang M, Tian S, Lin Z, Fu Z, Li C. Costimulatory and coinhibitory molecules of B7-CD28 family in cardiovascular atherosclerosis: A review. Medicine (Baltimore) 2022; 101:e31667. [PMID: 36397436 PMCID: PMC9666218 DOI: 10.1097/md.0000000000031667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Accumulating evidence supports the active involvement of vascular inflammation in atherosclerosis pathogenesis. Vascular inflammatory events within atherosclerotic plaques are predominated by innate antigen-presenting cells (APCs), including dendritic cells, macrophages, and adaptive immune cells such as T lymphocytes. The interaction between APCs and T cells is essential for the initiation and progression of vascular inflammation during atherosclerosis formation. B7-CD28 family members that provide either costimulatory or coinhibitory signals to T cells are important mediators of the cross-talk between APCs and T cells. The balance of different functional members of the B7-CD28 family shapes T cell responses during inflammation. Recent studies from both mouse and preclinical models have shown that targeting costimulatory molecules on APCs and T cells may be effective in treating vascular inflammatory diseases, especially atherosclerosis. In this review, we summarize recent advances in understanding how APC and T cells are involved in the pathogenesis of atherosclerosis by focusing on B7-CD28 family members and provide insight into the immunotherapeutic potential of targeting B7-CD28 family members in atherosclerosis.
Collapse
Affiliation(s)
- Mao Yang
- Department of Cardiology, Electrophysiological Center of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Simeng Tian
- Basic Medicine College, Harbin Medical University, Harbin, China
| | - Zhoujun Lin
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Zhenkun Fu
- Basic Medicine College, Harbin Medical University, Harbin, China
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
- Department of Immunology, Wu Lien-Teh Institute, Heilongjiang Provincial Key Laboratory for Infection and Immunity, Harbin Medical University, Heilongjiang Academy of Medical Science, Harbin, China
- * Correspondence: Zhenkun Fu, Basic Medicine College, Harbin Medical University, Harbin, China (e-mail. ); Chenggang Li, State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China (e-mail. )
| | - Chenggang Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
- * Correspondence: Zhenkun Fu, Basic Medicine College, Harbin Medical University, Harbin, China (e-mail. ); Chenggang Li, State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China (e-mail. )
| |
Collapse
|
10
|
Gkaliagkousi E, Lazaridis A, Dogan S, Fraenkel E, Tuna BG, Mozos I, Vukicevic M, Yalcin O, Gopcevic K. Theories and Molecular Basis of Vascular Aging: A Review of the Literature from VascAgeNet Group on Pathophysiological Mechanisms of Vascular Aging. Int J Mol Sci 2022; 23:ijms23158672. [PMID: 35955804 PMCID: PMC9368987 DOI: 10.3390/ijms23158672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 11/29/2022] Open
Abstract
Vascular aging, characterized by structural and functional alterations of the vascular wall, is a hallmark of aging and is tightly related to the development of cardiovascular mortality and age-associated vascular pathologies. Over the last years, extensive and ongoing research has highlighted several sophisticated molecular mechanisms that are involved in the pathophysiology of vascular aging. A more thorough understanding of these mechanisms could help to provide a new insight into the complex biology of this non-reversible vascular process and direct future interventions to improve longevity. In this review, we discuss the role of the most important molecular pathways involved in vascular ageing including oxidative stress, vascular inflammation, extracellular matrix metalloproteinases activity, epigenetic regulation, telomere shortening, senescence and autophagy.
Collapse
Affiliation(s)
- Eugenia Gkaliagkousi
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Faculty of Medicine, Aristotle University of Thessaloniki, 56429 Thessaloniki, Greece
- Correspondence: (E.G.); (K.G.)
| | - Antonios Lazaridis
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Faculty of Medicine, Aristotle University of Thessaloniki, 56429 Thessaloniki, Greece
| | - Soner Dogan
- Department of Medical Biology, School of Medicine, Yeditepe University, 34755 Istanbul, Turkey
| | - Emil Fraenkel
- 1st Department of Internal Medicine, University Hospital, Pavol Jozef Šafárik University of Košice, Trieda SNP 1, 04066 Košice, Slovakia
| | - Bilge Guvenc Tuna
- Department of Biophysics, School of Medicine, Yeditepe University, 34755 Istanbul, Turkey
| | - Ioana Mozos
- Department of Functional Sciences-Pathophysiology, Center for Translational Research and Systems Medicine, “Victor Babes” University of Medicine and Pharmacy, 300173 Timisoara, Romania
| | - Milica Vukicevic
- Cardiac Surgery Clinic, Clinical Center of Serbia, 11000 Belgrade, Serbia
| | - Ozlem Yalcin
- Department of Physiology, School of Medicine, Koc University, 34450 Istanbul, Turkey
| | - Kristina Gopcevic
- Laboratory for Analytics of Biomolecules, Department of Chemistry in Medicine, Faculty of Medicine, 11000 Belgrade, Serbia
- Correspondence: (E.G.); (K.G.)
| |
Collapse
|
11
|
Li F, Ye P, Hao Y, Du J, Zhang H, Wang Z, Wang X, Zeng H, Ma Y, Lin J. A PCSK9 inhibitor induces a transient decrease in the neutrophil-lymphocyte ratio and monocyte-lymphocyte ratio in homozygous familial hypercholesterolemia patients. ATHEROSCLEROSIS PLUS 2022; 49:12-19. [PMID: 36644203 PMCID: PMC9833253 DOI: 10.1016/j.athplu.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/24/2022] [Accepted: 05/09/2022] [Indexed: 01/18/2023]
Abstract
Background and aims Extremely elevated levels of low-density lipoprotein-cholesterol (LDL-C) contribute to long-term chronic systemic inflammation in homozygous familial hypercholesterolemia (HoFH) patients. The aims of this study is to describe the inflammatory profile of HoFH patients and explore the effect of a PCSK9 inhibitor (PCSK9i) on a series of inflammatory biomarkers, including the neutrophil-lymphocyte ratio (NLR), platelet-lymphocyte ratio (PLR), monocyte-HDL ratio (MHR), monocyte-lymphocyte ratio (MLR) and mean platelet volume-lymphocyte ratio (MPVLR). Methods In this prospective cohort study, 25 definitive HoFH patients on high-intensity statins plus ezetimibe were administered subcutaneous injections of 420 mg PCSK9i every 4 weeks (Q4W). The biochemical parameters and inflammatory profile were analyzed on the day before PCSK9i therapy and 3 months and 6 months after PCSK9i therapy. Results HoFH on the maximum tolerated statin dose plus ezetimibe displayed elevated lipid and disturbed blood biomarker profiles. After 3 months of add-on PCSK9i therapy, a significant reduction in LDL-C was observed. Moreover, the percentage and count of neutrophils, monocyte counts, MPV, and two inflammatory biomarkers, the NLR and MLR, were reduced. However, at 6 months of PCSK9i treatment, the NLR and MLR returned to pre-PCSK9i treatment levels. Conclusions PCSK9i induces a transient decrease in the NLR and MLR in HoFH patients in a lipid-lowering independent manner.
Collapse
Affiliation(s)
- Fangyuan Li
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Peking University Ditan Teaching Hospital, Beijing, China
| | - Pucong Ye
- Department of Critical Care Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yu Hao
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Juan Du
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Hang Zhang
- Department of Atherosclerosis, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Zengtao Wang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xumin Wang
- College of Life Sciences, Yantai University, Yantai, China
| | - Hui Zeng
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Peking University Ditan Teaching Hospital, Beijing, China,Corresponding author.. Beijing Ditan Hospital, Jingshundongjie 8, Beijing, 100015, China.
| | - Yaluan Ma
- The Institute of Basic Medical Theory of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China,Corresponding author.
| | - Jie Lin
- Department of Atherosclerosis, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China,Corresponding author.. Department of Atherosclerosis, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China.
| |
Collapse
|
12
|
Abstract
Coronary atherosclerosis is a chronic inflammatory disease that can lead to varying degrees of blood flow obstruction and a common pathophysiological basis of cardiovascular disease. Inflammatory factors run through the whole process of atherosclerotic lesions. Macrophages, T cells, and neutrophils play important roles in the process of atherosclerotic inflammation. Considering the evolutionary characteristics, atherosclerosis can be divided into different stages as early atherosclerotic plaque, plaque formation stage, and plaque rupture stage. In this paper, the changes in inflammatory cells at different stages of lesions and their related mechanisms are discussed, which can provide new insights from a clinical to bench perspective for atherosclerosis me chanism.
Collapse
|
13
|
Sun L, Zhang W, Zhao L, Zhao Y, Wang F, Lew AM, Xu Y. Self-Tolerance of Vascular Tissues Is Broken Down by Vascular Dendritic Cells in Response to Systemic Inflammation to Initiate Regional Autoinflammation. Front Immunol 2022; 13:823853. [PMID: 35154143 PMCID: PMC8825784 DOI: 10.3389/fimmu.2022.823853] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/03/2022] [Indexed: 12/19/2022] Open
Abstract
The correlation of infections with vascular autoinflammatory diseases such as vasculitis and atherosclerosis has been long recognized, and progressive inflammation with the formation of tertiary lymphoid organs in arterial adventitia intensively studied, the immunological basis of the nondiseased vasculatures that predispose to subsequent vascular autoimmunity during inflammation, however, is not well characterized. Here, we investigated the vascular immunity in situ of steady-state C57BL/6 mice and found that healthy vascular tissues contained a comprehensive set of immune cells with relatively higher proportion of innate components than lymphoid organs. Notably, a complete set of dendritic cell (DC) subsets was observed with monocyte-derived DCs (moDCs) constituting a major proportion; this is in contrast to moDCs being considered rare in the steady state. Interestingly, these vascular DCs constitutively expressed more suppressive factors with cDC1 for PD-L1 and moDCs for IL-10; this is concordant with the inhibitive phenotype of T cells in normal vascular tissues. The immunotolerant state of the vascular tissues, however, was readily eroded by systemic inflammation, demonstrated by the upregulation of proinflammatory cytokines and enhanced antigen presentation by vascular DCs to activate both cellular and humoral immunity in situ, which ultimately led to vascular destruction. Different vascular DC subsets elicited selective effects: moDCs were potent cytokine producers and B-cell activators, whereas cDCs, particularly, cDC1, were efficient at presenting antigens to stimulate T cells. Together, we unveil regional immunological features of vascular tissues to explain their dual facets under physiological versus pathological conditions for the better understanding and treatment of cardiovascular autoinflammation.
Collapse
Affiliation(s)
- Li Sun
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| | - Wenjie Zhang
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| | - Lin Zhao
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| | - Yanfang Zhao
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| | - Fengge Wang
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| | - Andrew M Lew
- The Walter & Eliza Hall Institute of Medical Research and Dept of Microbiology & Immunology, University of Melbourne, Parkville, VIC, Australia
| | - Yuekang Xu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| |
Collapse
|
14
|
Considerations for analysis of endothelial shear stress and strain in FSI models of atherosclerosis. J Biomech 2021; 128:110720. [PMID: 34482227 DOI: 10.1016/j.jbiomech.2021.110720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 07/15/2021] [Accepted: 08/23/2021] [Indexed: 11/23/2022]
Abstract
Atherosclerosis is a lipid driven chronic inflammatory disease that is characterized by the formation of plaques at predilection sites. These predilection sites (side branches, curved segments, and bifurcations) have often been associated with disturbed shear stress profiles. However, in addition to shear stress, endothelial cells also experience artery wall strain that could contribute to atherosclerosis progression. Herein, we describe a method to accurately obtain these shear stress and strain profiles. We developed a fluid-structure interaction (FSI) framework for modelling arteries within a commercially available package (Abaqus, version 6.14) that included known prestresses (circumferential, axial and pressure associated). In addition, we co-registered 3D histology to a micro-CT-derived 3D reconstruction of an atherosclerotic carotid artery from a cholesterol-fed ApoE-/- mouse to include the spatial distribution of lipids within a subject-specific model. The FSI model also incorporated a nonlinear hyperelastic material model with regionally-varying properties that distinguished between healthy vessel wall and plaque. FSI predicted a lower shear stress than CFD (~-12%), but further decreases in plaque regions with softer properties (~-24%) were dependent on the approach used to implement the prestresses in the artery wall. When implemented with our new hybrid approach (zero prestresses in regions of lipid deposition), there was significant heterogeneity in endothelial shear stress in the atherosclerotic artery due to variations in stiffness and, in turn, wall strain. In conclusion, when obtaining endothelial shear stress and strain in diseased arteries, a careful consideration of prestresses is necessary. This paper offers a way to implement them.
Collapse
|
15
|
Tan L, Xu Q, Shi R, Zhang G. Bioinformatics analysis reveals the landscape of immune cell infiltration and immune-related pathways participating in the progression of carotid atherosclerotic plaques. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2021; 49:96-107. [PMID: 33480285 DOI: 10.1080/21691401.2021.1873798] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Atherosclerosis is a systemic disease associated with inflammatory cell infiltration and activation of immune-related pathways. In our study, we aimed to uncover immune-related changes and explore novel immunological features in the development of carotid atherosclerotic plaques. First, we applied integrated bioinformatics methods, including CIBERSORT and gene set enrichment analysis (GSEA). The gene expression matrices GSE28829, GSE41571, and GSE43292 were obtained from the Gene Expression Omnibus (GEO) dataset. After a series of data pre-processing steps, the resulting combined expression matrices were analysed using the CIBERSORT, GSEA, and Cluster Profiler packages. After the comparison and analysis between the carotid atherosclerotic plaques in the early and advanced stages, we discovered that there is a higher percentage of activated memory CD4 T cells and a lower percentage of resting memory CD4 cells in advanced-stage plaques. Moreover, activation of memory CD4 T cells can promote the development of carotid atherosclerotic plaques. Additionally, FOXP3+ Treg cell maturation can also participate in the progression of carotid plaques.
Collapse
Affiliation(s)
- Liao Tan
- Department of Cardiology, The Third Xiangya Hospital, Central South University Changsha, Hunan, China.,Institute of Hypertension, Central South University, Changsha, China
| | - Qian Xu
- Institute of Hypertension, Central South University, Changsha, China.,Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Ruizheng Shi
- Department of Cardiology, The Third Xiangya Hospital, Central South University Changsha, Hunan, China.,Institute of Hypertension, Central South University, Changsha, China
| | - Guogang Zhang
- Department of Cardiology, The Third Xiangya Hospital, Central South University Changsha, Hunan, China.,Institute of Hypertension, Central South University, Changsha, China.,Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
16
|
Zhao Y, Zhang J, Zhang W, Xu Y. A myriad of roles of dendritic cells in atherosclerosis. Clin Exp Immunol 2021; 206:12-27. [PMID: 34109619 DOI: 10.1111/cei.13634] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/17/2021] [Accepted: 05/28/2021] [Indexed: 11/29/2022] Open
Abstract
Atherosclerosis is an inflammatory disease with break-down of homeostatic immune regulation of vascular tissues. As a critical initiator of host immunity, dendritic cells (DCs) have also been identified in the aorta of healthy individuals and atherosclerotic patients, whose roles in regulating arterial inflammation aroused great interest. Accumulating evidence has now pointed to the fundamental roles for DCs in every developmental stage of atherosclerosis due to their myriad of functions in immunity and tolerance induction, ranging from lipid uptake, efferocytosis and antigen presentation to pro- and anti-inflammatory cytokine or chemokine secretion. In this study we provide a timely summary of the published works in this field, and comprehensively discuss both the direct and indirect roles of DCs in atherogenesis. Understanding the pathogenic roles of DCs during the development of atherosclerosis in vascular tissues would certainly help to open therapeutic avenue to the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Yanfang Zhao
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, School of Life Science, Anhui Normal University, Wuhu, China
| | - Jing Zhang
- Department of Thoracic Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wenjie Zhang
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, School of Life Science, Anhui Normal University, Wuhu, China
| | - Yuekang Xu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, School of Life Science, Anhui Normal University, Wuhu, China
| |
Collapse
|
17
|
Huang D, Gao W, Lu H, Qian JY, Ge JB. Oxidized low-density lipoprotein stimulates dendritic cells maturation via LOX-1-mediated MAPK/NF-κB pathway. ACTA ACUST UNITED AC 2021; 54:e11062. [PMID: 34076144 PMCID: PMC8186376 DOI: 10.1590/1414-431x2021e11062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/20/2021] [Indexed: 11/22/2022]
Abstract
Dendritic cells (DCs) play a crucial role as central orchestrators of immune system response in atherosclerosis initiation and progression. Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is involved in the immune maturation of DCs, but the underlying mechanisms remain unclear. We isolated mouse bone marrow progenitors and stimulated them with granulocyte-macrophage colony-stimulating factor and interleukin (IL)-4 to induce immature DCs. We then treated DCs with oxidized low-density lipoprotein (oxLDL) to induce maturation. LOX-1 siRNA was used to investigate the modulation of LOX-1 on the development of DCs and the underlying signal pathways. CD11c-positive DCs were successfully derived from mouse bone marrow progenitors. OxLDL promoted the expressions of DCs maturation markers and pro-inflammatory cytokines. OxLDL also upregulated LOX-1 expression and activated MAPK/NF-κB pathways. LOX-1 siRNA could attenuate the expression of MAPK/NF-κB pathways and inflammatory cytokines. In conclusion, oxLDL induced the maturation of DCs via LOX-1-mediated MAPK/NF-κB pathway, which contributed to the initiation and progression of atherosclerosis.
Collapse
Affiliation(s)
- D Huang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - W Gao
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - H Lu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - J Y Qian
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - J B Ge
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| |
Collapse
|
18
|
Ji C, Yi H, Huang J, Zhang W, Zheng M. Propofol alleviates inflammation and apoptosis in HCY‑induced HUVECs by inhibiting endoplasmic reticulum stress. Mol Med Rep 2021; 23:333. [PMID: 33760174 PMCID: PMC7974316 DOI: 10.3892/mmr.2021.11972] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/02/2021] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis is a chronic vascular inflammatory disease, and is associated with oxidative stress and endothelial dysfunction. Homocysteine (HCY) can cause damage to endothelial cells via the enhancement of the endoplasmic reticulum stress (ERS) pathway. Propofol has a protective effect on endothelial injury and can suppress inflammation and oxidation. The purpose of the present study was to investigate the protective effect of propofol on HCY-induced inflammation and apoptosis of human umbilical vein endothelial cells (HUVECs). HCY was used to establish the endothelial injury model. Cell Counting Kit-8 assays and flow cytometry were used to detect cell viability and apoptosis, respectively. Then, ELISA was performed to examine the expression levels of inflammatory cytokines, and the expression levels of proteins related to inflammation, apoptosis and ERS were determined via western blotting. Results showed that propofol increased cell viability, suppressed NF-κB signaling pathway activation and decreased the expression levels of inflammatory factors in HUVECs induced by HCY. Moreover, propofol could inhibit the expression of proteins involved in ERS, including ER chaperone BiP (Bip), C/EBP-homologous protein, protein kinase R-like ER kinase and inositol-requiring 1α, and reduce cell apoptosis of HCY-induced HUVECs. However, the overexpression of Bip could reactivate ERS and the NF-κB signaling pathway, as well as promote inflammation and cell apoptosis, when compared with HCY-treated groups. In conclusion, propofol can ameliorate inflammation and cell apoptosis of HUVECs induced by HCY via inhibiting ERS, which may provide a novel insight into the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Cunliang Ji
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Hu Yi
- Department of Anesthesiology, The Affiliated Zhuzhou Hospital of Xiangya School of Medicine CSU, Zhuzhou Central Hospital, Zhuzhou, Hunan 412000, P.R. China
| | - Jing Huang
- Department of Anesthesiology, The Affiliated Zhuzhou Hospital of Xiangya School of Medicine CSU, Zhuzhou Central Hospital, Zhuzhou, Hunan 412000, P.R. China
| | - Wenzhong Zhang
- School of Safety Engineering, North China Institute of Science and Technology, Langfang, Hebei 065201, P.R. China
| | - Mingzhi Zheng
- Department of Anesthesiology, The Affiliated Zhuzhou Hospital of Xiangya School of Medicine CSU, Zhuzhou Central Hospital, Zhuzhou, Hunan 412000, P.R. China
| |
Collapse
|
19
|
Wang F, Liang S, Hu J, Xu Y. Aryl hydrocarbon receptor connects dysregulated immune cells to atherosclerosis. Immunol Lett 2020; 228:55-63. [PMID: 33053378 DOI: 10.1016/j.imlet.2020.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/29/2020] [Accepted: 10/08/2020] [Indexed: 11/20/2022]
Abstract
As a chronic inflammatory disease with autoimmune components, atherosclerosis is the major cause of cardiovascular morbidity and mortality. Recent studies have revealed that the development of atherosclerosis is strongly linked to the functional activities of aryl hydrocarbon receptor (AHR), a chemical sensor that is also important for the development, maintenance, and function of a variety of immune cells. In this review, we focus on the impact of AHR signaling on the different cell types that are closely related to the atherogenesis, including T cells, B cells, dendritic cells, macrophages, foam cells, and hematopoietic stem cells in the arterial walls, and summarize the latest development on the interplay between this environmental sensor and immune cells in the context of atherosclerosis. Hopefully, elucidation of the role of AHR in atherosclerosis will facilitate the understanding of case variation in disease prevalence and may aid in the development of novel therapies.
Collapse
Affiliation(s)
- Fengge Wang
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, School of Life Science, Anhui Normal University, Wuhu, 241000, China
| | - Shuangchao Liang
- Department of Vascular Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, 241000, China
| | - Jiqiong Hu
- Department of Vascular Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, 241000, China
| | - Yuekang Xu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, School of Life Science, Anhui Normal University, Wuhu, 241000, China.
| |
Collapse
|
20
|
Aminuddin A, Lazim MRMLM, Hamid AA, Hui CK, Mohd Yunus MH, Kumar J, Ugusman A. The Association between Inflammation and Pulse Wave Velocity in Dyslipidemia: An Evidence-Based Review. Mediators Inflamm 2020; 2020:4732987. [PMID: 32908450 PMCID: PMC7450307 DOI: 10.1155/2020/4732987] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/25/2020] [Indexed: 12/12/2022] Open
Abstract
Dyslipidemia is associated with increased arterial stiffness (AS) which may lead to hypertension. Among the methods to assess AS are carotid-femoral and brachial-ankle pulse wave velocity. Dyslipidemia is also known to trigger inflammation. C-reactive protein (CRP) is one of the commonest inflammatory markers measured in the clinical setting. However, the association between inflammation and pulse wave velocity (PWV) in people with dyslipidemia is less studied. Therefore, this review investigated the association between inflammation (as measured by CRP) and PWV in dyslipidemia patients. The search of the literature was conducted via PubMed and Scopus database. The keywords used were "aortic stiffness" OR "arterial stiffness" OR "pulse wave velocity" OR "vascular stiffness" OR "carotid femoral pulse wave velocity" OR "pulse wave analysis" AND "inflammation" OR "c reactive protein" OR "c-reactive protein" OR "high sensitivity c reactive protein" AND "dyslipidemia" OR "hyperlipidemia" OR "hypercholesterolemia" OR "hyperlipoproteinemia" OR "hypertriglyceridemia". The following criteria were used: (1) only full-length original articles published in English language, (2) articles that reported the association between arterial stiffness measured as carotid-femoral PWV (cfPWV) or brachial-ankle PWV (baPWV) and CRP or high-sensitivity CRP, and (3) study involving human subjects. The search identified 957 articles published between 1980 and February 2020. Only eight articles fulfilled the inclusion criteria and were used for data extraction. Five of the studies were cross-sectional studies while another three studies were interventional studies. Seven out of eight papers found a significant positive association between AS and CRP, and the correlation ranged from mild to moderate association (Pearson r = 0.33 to r = 0.624). In conclusion, inflammation is associated with increased PWV in patients with dyslipidemia. This supports the involvement of inflammation in the development of AS in dyslipidemia.
Collapse
Affiliation(s)
- Amilia Aminuddin
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Md Rizman M. L. M. Lazim
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Malaysia
- Department of Physiology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Adila A. Hamid
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Chua K. Hui
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Mohd H. Mohd Yunus
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
21
|
Zhong X, Gao W, Wu R, Liu H, Ge J. Dendritic cell exosome‑shuttled miRNA146a regulates exosome‑induced endothelial cell inflammation by inhibiting IRAK‑1: A feedback control mechanism. Mol Med Rep 2019; 20:5315-5323. [PMID: 31638185 DOI: 10.3892/mmr.2019.10749] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/04/2019] [Indexed: 11/06/2022] Open
Abstract
Activation of endothelial cells is the first step of atherosclerosis. The current authors have previously reported that exosomes from mature dendritic cells (mDC‑exo) participate in endothelial inflammation and atherosclerosis through membrane tumor necrosis factor‑α mediated the nuclear factor (NF)‑κB signaling pathway. However, whether mDC‑exo shuttled microRNAs (miRNAs/miRs) play a role in endothelial inflammation remains unknown. In this study, mDC‑exo were co‑cultured with human umbilical vein endothelial cells (HUVECs) and the expression of adhesion molecules, such as vascular cell adhesion molecule‑1, intercellular adhesion molecule‑1 and E‑Selectin was investigated. Then the expression of miRNAs in DC‑exo was explored and the role of miR‑146a in endothelial inflammation was investigated. mDC‑exos were first demonstrated to increase endothelial expression of adhesion molecules through a quick activation of the NF‑κB signaling pathway. Then it was demonstrated that HUVECs resistant to a second stimulation after the first stimulation by mDC‑exo. A set of miRNAs were targeted and their expression in HUVECs stimulated with mDC‑exo was measured. Finally, it was confirmed that mDC‑exo shuttles miR‑146a into HUVECs and the shuttled miR‑146a contributes to protect HUVECs from a second stimulation through inhibiting interleukin‑1 receptor‑associated kinase. These data suggest a negative feedback loop of inflammation regulation by DC‑exo.
Collapse
Affiliation(s)
- Xin Zhong
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, P.R. China
| | - Wei Gao
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, P.R. China
| | - Runda Wu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, P.R. China
| | - Haibo Liu
- Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, P.R. China
| |
Collapse
|
22
|
Inflammation‐regulatory microRNAs: Valuable targets for intracranial atherosclerosis. J Neurosci Res 2019; 97:1242-1252. [DOI: 10.1002/jnr.24487] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/24/2019] [Accepted: 06/10/2019] [Indexed: 12/16/2022]
|
23
|
Hao MM, Bergner AJ, Newgreen DF, Enomoto H, Young HM. Technologies for Live Imaging of Enteric Neural Crest-Derived Cells. Methods Mol Biol 2019; 1976:97-105. [PMID: 30977068 DOI: 10.1007/978-1-4939-9412-0_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Time-lapse imaging of gut explants from embryonic mice in which neural crest-derived cells express fluorescent proteins allows the behavior of enteric neural crest cells to be observed and analyzed. Explants of embryonic gut are dissected, mounted on filter paper supports so the gut retains its tubular three-dimensional structure, and then placed in coverglass bottom culture dishes in tissue culture medium. A stainless steel ring is placed on top of the filter support to prevent movement. Imaging is performed using a confocal microscope in an environmental chamber. A z series of images through the network of fluorescent cells is collected every 3, 5, or 10 min. At the end of imaging, the z series are projected.
Collapse
Affiliation(s)
- Marlene M Hao
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC, Australia
- Laboratory for Enteric Neuroscience, TARGID, University of Leuven, Leuven, Belgium
| | - Annette J Bergner
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC, Australia
| | - Donald F Newgreen
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| | - Hideki Enomoto
- Division of Neural Differentiation and Regeneration, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan
| | - Heather M Young
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
24
|
Du J, Li J. The role of Wnt signaling pathway in atherosclerosis and its relationship with angiogenesis. Exp Ther Med 2018; 16:1975-1981. [PMID: 30186427 PMCID: PMC6122298 DOI: 10.3892/etm.2018.6397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 06/21/2018] [Indexed: 12/20/2022] Open
Abstract
Expression and function of Wnt signaling pathway in rats with atherosclerosis (AS) were investegated. The AS model of rats was established after 8-week continuous feeding of a high-fat diet, with normal rats as the control. Blood was taken from the carotid artery to detect the level of blood lipid. Aortic slices were made to observe the pathological changes of the aorta after the rats were sacrificed. Enzyme-linked immunosorbent assay kits were used to detect the contents of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). Western blot analysis and semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) were performed to detect the expression levels of related proteins and mRNA in rat Wnt signaling pathway. Correlation analysis between the protein expression level of vascular endothelial growth factor (VEGF) and that of Wnt1 was conducted. Aortic slices showed that the ratio of intima thickness to media thickness of the rats in the model group was higher than that of in the control group (P<0.01). Blood lipid and the contents of IL-6 and TNF-α of the rats in the model group were higher than those of the rats in the control group (P<0.01). Semi-quantitative RT-PCR indicated that mRNA expression levels of Wnt1, β-catenin and dickkopf1 in the aorta of rats in the model group were increased compared with those of control group (P<0.01). The results of western blot analysis revealed that the protein expression levels of Wnt1, β-catenin, DKK1 and VEGF of the rats in the model group were remarkably higher than those of the control group (P<0.01). The level of VEGF protein was positively correlated with that of Wnt1 (P<0.05, r=0.7810). The activation of Wnt signaling pathway in the aorta of the rats with AS can induce the expression of relevant inflammatory cytokines. It has the effects of promoting the progression of AS and accelerating angiogenesis.
Collapse
Affiliation(s)
- Jingru Du
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Junfeng Li
- Department of Orthopedics, The 180th Hospital of PLA (Affiliated Haixia Hospital of Huaqiao University), Quanzhou, Fujian 362008, P.R. China
| |
Collapse
|
25
|
Sessile Innate Immune Cells. DAMAGE-ASSOCIATED MOLECULAR PATTERNS IN HUMAN DISEASES 2018. [PMCID: PMC7123606 DOI: 10.1007/978-3-319-78655-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this chapter, sessile cells of the innate immune system are briefly introduced. Defined as cells equipped with diverse pattern recognition molecules capable of detecting MAMPs and DAMPs, they encompass cells such as epithelial cells, fibroblasts, vascular cells, chondrocytes, osteoblasts, and adipocytes. Located at the body surfaces, epithelial cells represent the first line of innate immune defense against invading microbial pathogens. They are significant contributors to innate mucosal immunity and generate various antimicrobial defense mechanisms. Also, epithelial cells critically contribute to tissue repair via the phenomenon of re-epithelialization. Fibroblasts operate as classical sentinel cells of the innate immune system dedicated to responding to MAMPs and DAMPs emitted upon any tissue injury. Typically, fibroblasts synthesize most of the extracellular matrix of connective tissues, thereby playing a crucial role in tissue repair processes. Vascular cells of the innate immune system represent an evolutionarily developed first-line defense against any inciting insult hitting the vessel walls from the luminal side including bacteria, viruses, microbial toxins, and chemical noxa such as nicotine. Upon such insults and following recognition of MAMPs and DAMPs, vascular cells react with an innate immune response to create an acute inflammatory milieu in the vessel wall aimed at curing the vascular injury concerned. Chondrocytes, osteoblasts, and osteoclasts represent other vital cells of the skeletal system acting as cells of the innate immune system in its wider sense. These cells mediate injury-promoted DAMP-induced inflammatory and regenerative processes specific for the skeletal systems. Finally, adipocytes are regarded as highly active cells of the innate immune system. As white, brown, and beige adipocytes, they operate as a dynamic metabolic organ that can secrete certain bioactive molecules which have endocrine, paracrine, and autocrine actions.
Collapse
|
26
|
Wu MY, Li CJ, Hou MF, Chu PY. New Insights into the Role of Inflammation in the Pathogenesis of Atherosclerosis. Int J Mol Sci 2017; 18:ijms18102034. [PMID: 28937652 PMCID: PMC5666716 DOI: 10.3390/ijms18102034] [Citation(s) in RCA: 268] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of lipids, smooth muscle cell proliferation, cell apoptosis, necrosis, fibrosis, and local inflammation. Immune and inflammatory responses have significant effects on every phase of atherosclerosis, and increasing evidence shows that immunity plays a more important role in atherosclerosis by tightly regulating its progression. Therefore, understanding the relationship between immune responses and the atherosclerotic microenvironment is extremely important. This article reviews existing knowledge regarding the pathogenesis of immune responses in the atherosclerotic microenvironment, and the immune mechanisms involved in atherosclerosis formation and activation.
Collapse
Affiliation(s)
- Meng-Yu Wu
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan.
- Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien 970, Taiwan.
| | - Chia-Jung Li
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan.
| | - Ming-Feng Hou
- Department of Surgery, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Surgery, Kaohsiung Municipal Hsiao Kang Hospital, Kaohsiung 807, Taiwan.
- Division of Breast Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
| | - Pei-Yi Chu
- Department of Pathology, Show Chwan Memorial Hospital, Changhua 500, Taiwan.
- School of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei 242, Taiwan.
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan.
| |
Collapse
|
27
|
Alberts-Grill N, Engelbertsen D, Bu D, Foks A, Grabie N, Herter JM, Kuperwaser F, Chen T, Destefano G, Jarolim P, Lichtman AH. Dendritic Cell KLF2 Expression Regulates T Cell Activation and Proatherogenic Immune Responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 197:4651-4662. [PMID: 27837103 PMCID: PMC5136303 DOI: 10.4049/jimmunol.1600206] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 10/17/2016] [Indexed: 01/10/2023]
Abstract
Dendritic cells (DCs) have been implicated as important regulators of innate and adaptive inflammation in many diseases, including atherosclerosis. However, the molecular mechanisms by which DCs mitigate or promote inflammatory pathogenesis are only partially understood. Previous studies have shown an important anti-inflammatory role for the transcription factor Krüppel-like factor 2 (KLF2) in regulating activation of various cell types that participate in atherosclerotic lesion development, including endothelial cells, macrophages, and T cells. We used a pan-DC, CD11c-specific cre-lox gene knockout mouse model to assess the role of KLF2 in DC activation, function, and control of inflammation in the context of hypercholesterolemia and atherosclerosis. We found that KLF2 deficiency enhanced surface expression of costimulatory molecules CD40 and CD86 in DCs and promoted increased T cell proliferation and apoptosis. Transplant of bone marrow from mice with KLF2-deficient DCs into Ldlr-/- mice aggravated atherosclerosis compared with control mice, most likely due to heightened vascular inflammation evidenced by increased DC presence within lesions, enhanced T cell activation and cytokine production, and increased cell death in atherosclerotic lesions. Taken together, these data indicate that KLF2 governs the degree of DC activation and hence the intensity of proatherogenic T cell responses.
Collapse
Affiliation(s)
- Noah Alberts-Grill
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02460
| | - Daniel Engelbertsen
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02460
| | - Dexiu Bu
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02460
| | - Amanda Foks
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02460
| | - Nir Grabie
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02460
| | - Jan M Herter
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02460
| | - Felicia Kuperwaser
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02460
| | - Tao Chen
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02460
| | - Gina Destefano
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02460
| | - Petr Jarolim
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02460
| | - Andrew H Lichtman
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02460
| |
Collapse
|
28
|
Gao W, Liu H, Yuan J, Wu C, Huang D, Ma Y, Zhu J, Ma L, Guo J, Shi H, Zou Y, Ge J. Exosomes derived from mature dendritic cells increase endothelial inflammation and atherosclerosis via membrane TNF-α mediated NF-κB pathway. J Cell Mol Med 2016; 20:2318-2327. [PMID: 27515767 PMCID: PMC5134386 DOI: 10.1111/jcmm.12923] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 06/09/2016] [Indexed: 01/01/2023] Open
Abstract
Whether dendritic cell (DC) derived exosomes play a role in the progression of endothelial inflammation and atherosclerosis remains unclear. Using a transwell system and exosome release inhibitor GW4869, we demonstrated that mature DCs contributed to endothelial inflammation and exosomes were involved in the process. To further confirm this finding, we isolated exosomes from bone marrow dendritic cell (BMDC) culture medium (named DC‐exos) and stimulated human umbilical vein endothelial cell (HUVEC) with these DC‐exos. We observed that mature DC‐exos increased HUVEC inflammation through NF‐κB pathway in a manner similar to that of lipopolysaccharide. After a protein array analysis of exosomes, we identified and confirmed tumour necrosis factor (TNF)‐α on exosome membrane being the trigger of NF‐κB pathway in HUVECs. We then performed an in vivo study and found that the aorta endothelial of mice could uptake intravenously injected exosomes and was activated by these exosomes. After a period of 12 weeks of mature DC‐exos injection into ApoE−/− mice, the atherosclerotic lesions significantly increased. Our study demonstrates that mature DCs derived exosomes increase endothelial inflammation and atherosclerosis via membrane TNF‐α mediated NF‐κB pathway. This finding extends our knowledge on how DCs affect inflammation and provides a potential method to prevent endothelial inflammation and atherosclerosis.
Collapse
Affiliation(s)
- Wei Gao
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Haibo Liu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie Yuan
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,Institute of Biomedical Science, Fudan University, Shanghai, China
| | - Chaoneng Wu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dong Huang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuanji Ma
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianbing Zhu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Leilei Ma
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Junjie Guo
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hongtao Shi
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,Institute of Biomedical Science, Fudan University, Shanghai, China
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,Institute of Biomedical Science, Fudan University, Shanghai, China
| |
Collapse
|
29
|
Cacciapaglia F, Anelli MG, Rinaldi A, Serafino L, Covelli M, Scioscia C, Iannone F, Lapadula G. Lipid profile of rheumatoid arthritis patients treated with anti-tumor necrosis factor-alpha drugs changes according to disease activity and predicts clinical response. Drug Dev Res 2015; 75 Suppl 1:S77-80. [PMID: 25381986 DOI: 10.1002/ddr.21203] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Patients with active rheumatoid arthritis (RA) frequently show an atherogenic lipid profile, which has been linked with the inflammatory reaction. Inflammatory cytokines, and particularly tumor necrosis factor-alpha (TNF-α), are implicated in the pathogenesis of both atherosclerosis and RA, and also involved in the development of the impaired lipid profile detected in active RA. Although anti-TNF-α agents have been proven effective in controlling joint damage and systemic inflammation, controversy remains about the effect of these drugs on the lipid profile; therefore, the aim of our study was to investigate the effect of anti-TNF-α treatment, in combination with disease-modifying anti-rheumatic drugs (DMARDs) and corticosteroid therapy, on the lipid profile of patients with active RA. Our data suggest that the combination anti-TNF-α/DMARDs/steroids do not significantly interfere with the lipid profile of RA patients. However, analysis of clinical response data showed that patients achieving low disease activity or remission seem to have a protective lipid profile, suggesting that better control of inflammation and disease activity can affect lipid metabolism. The available evidence indicates that high inflammation interferes with lipid metabolism, whereas good control of the chronic inflammatory state may positively influence the lipid profile and cardiovascular risk. Low cholesterol levels at baseline could predict a favorable outcome with anti-TNF-α treatment, but these data need to be confirmed by large prospective studies with long-term follow-up.
Collapse
Affiliation(s)
- Fabio Cacciapaglia
- Internal Medicine Unit and Outpatient Clinic of Rheumatology, "N. Melli" Hospital of San Pietro V. co, Brindisi, 72027, Italy
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Batal I, De Serres SA, Safa K, Bijol V, Ueno T, Onozato ML, Iafrate AJ, Herter JM, Lichtman AH, Mayadas TN, Guleria I, Rennke HG, Najafian N, Chandraker A. Dendritic Cells in Kidney Transplant Biopsy Samples Are Associated with T Cell Infiltration and Poor Allograft Survival. J Am Soc Nephrol 2015; 26:3102-13. [PMID: 25855773 DOI: 10.1681/asn.2014080804] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 02/03/2015] [Indexed: 12/16/2022] Open
Abstract
Progress in long-term renal allograft survival continues to lag behind the progress in short-term transplant outcomes. Dendritic cells are the most efficient antigen-presenting cells, but surprisingly little attention has been paid to their presence in transplanted kidneys. We used dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin as a marker of dendritic cells in 105 allograft biopsy samples from 105 kidney transplant recipients. High dendritic cell density was associated with poor allograft survival independent of clinical variables. Moreover, high dendritic cell density correlated with greater T cell proliferation and poor outcomes in patients with high total inflammation scores, including inflammation in areas of tubular atrophy. We then explored the association between dendritic cells and histologic variables associated with poor prognosis. Multivariate analysis revealed an independent association between the densities of dendritic cells and T cells. In biopsy samples with high dendritic cell density, electron microscopy showed direct physical contact between infiltrating lymphocytes and cells that have the ultrastructural morphologic characteristics of dendritic cells. The origin of graft dendritic cells was sought in nine sex-mismatched recipients using XY fluorescence in situ hybridization. Whereas donor dendritic cells predominated initially, the majority of dendritic cells in late allograft biopsy samples were of recipient origin. Our data highlight the prognostic value of dendritic cell density in allograft biopsy samples, suggest a new role for these cells in shaping graft inflammation, and provide a rationale for targeting dendritic cell recruitment to promote long-term allograft survival.
Collapse
Affiliation(s)
- Ibrahim Batal
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts;
| | - Sacha A De Serres
- Renal Division, Schuster Family Transplantation Research Center, Brigham and Women's Hospital, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts; and
| | - Kassem Safa
- Renal Division, Schuster Family Transplantation Research Center, Brigham and Women's Hospital, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts; and
| | - Vanesa Bijol
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Takuya Ueno
- Renal Division, Schuster Family Transplantation Research Center, Brigham and Women's Hospital, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts; and
| | - Maristela L Onozato
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - A John Iafrate
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jan M Herter
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Andrew H Lichtman
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Tanya N Mayadas
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Indira Guleria
- Renal Division, Schuster Family Transplantation Research Center, Brigham and Women's Hospital, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts; and
| | - Helmut G Rennke
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Nader Najafian
- Renal Division, Schuster Family Transplantation Research Center, Brigham and Women's Hospital, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts; and
| | - Anil Chandraker
- Renal Division, Schuster Family Transplantation Research Center, Brigham and Women's Hospital, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts; and
| |
Collapse
|
31
|
Hueso M, Torras J, Carrera M, Vidal A, Navarro E, Grinyó J. Chronic Kidney Disease is associated with an increase of Intimal Dendritic cells in a comparative autopsy study. JOURNAL OF INFLAMMATION-LONDON 2015; 12:26. [PMID: 25861247 PMCID: PMC4389298 DOI: 10.1186/s12950-015-0073-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/20/2015] [Indexed: 01/11/2023]
Abstract
BACKGROUND Chronic Kidney Disease (CKD) and inflammation are risk factors for atherosclerotic vascular disease (ASVD). In inflammatory conditions, Nuclear Factor-κB (NF-κB) is frequently activated and it has been detected in human ASVD. In this work, we investigated if the degree of inflammation and of NF-κB activation were increased in the aorta of patients with CKD. METHODS This is a case-control pilot study performed on 30 abdominal aorta samples from 10 human autopsies. Cases were patients with CKD and controls patients with normal glomerular filtration rate (eGFR). Infiltrating mononuclear cells (S100(+), CD3(+), CD40(+), CD40L(+)) and activation of NF-κB were identified by immunohistochemistry. FINDINGS The number of cells in the intima which showed activated nuclear NF-κB correlated with severity of ASVD lesions (r = 0.56, p = 0.003), with numbers of CD3(+) lymphocytes in adventitia (r = 0.50, p = 0.008), with numbers of CD40(+) cells in the intima (r = 0.59, p = 0.002) or in the adventitia (r = 0.45, p = 0.02), and with numbers of CD40L(+) cells in the intima (r = 0.51, p = 0.011). Increased numbers of S100+ Intimal Dendritic cells (IDCs) were associated with ASVD (p = 0.03) and CKD (p = 0.01). CONCLUSIONS Number of CD3(+) cells, of CD40(+) cells, of CD40L(+) cells and the degree of NF-κB activation were increased in ASVD lesions suggesting a role for the adaptive T cell in the development of ASVD lesions. IDCs were associated both with ASVD and CKD suggesting a role of these cells in the pathogenesis of ASVD in CKD.
Collapse
Affiliation(s)
- Miguel Hueso
- Department of Nephrology, Hospital Universitari Bellvitge, and Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, C/ Feixa llarga, s/n; L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Joan Torras
- Department of Nephrology, Hospital Universitari Bellvitge, and Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, C/ Feixa llarga, s/n; L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Marta Carrera
- Department of Pathology, Hospital Universitari Bellvitge, Barcelona, Spain
| | - August Vidal
- Department of Pathology, Hospital Universitari Bellvitge, Barcelona, Spain
| | - Estanis Navarro
- Laboratori d'Oncologia Molecular, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - Josep Grinyó
- Department of Nephrology, Hospital Universitari Bellvitge, and Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, C/ Feixa llarga, s/n; L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| |
Collapse
|
32
|
Hu LH, Yu Y, Jin SX, Nie P, Cai ZH, Cui ML, Sun SQ, Xiao H, Shao Q, Shen LH, He B. Orphan nuclear receptor Nur77 Inhibits Oxidized LDL-induced differentiation of RAW264.7 murine macrophage cell line into dendritic like cells. BMC Immunol 2014; 15:54. [PMID: 25471687 PMCID: PMC4274730 DOI: 10.1186/s12865-014-0054-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 11/03/2014] [Indexed: 11/16/2022] Open
Abstract
Background Nur77 is an orphan nuclear receptor expressed in human atheroma. In vascular cells in vitro, Nur77 expression is induced by pro-inflammatory factors, such as oxidized LDL (oxLDL). Methods We analyze the role of Nur77 in the oxLDL-induced differentiation of macrophages into dendritic cells (DC). The murine RAW264.7 macrophage cell line was stably transfected with expression plasmids encoding either GFP or GFP fusions with either full-length Nur77 (GFP-Nur77), Nur77 lacking the DNA binding domain (GFP-Nur77-ΔDBD) or Nur77 lacking the transactivation domain (GFP-Nur77-ΔTAD). Results GFP-Nur77 overexpression significantly suppressed the effect of oxLDL treatment on DC morphologic changes, expression of DC maturation markers, endocytic activity, allogeneic activation of T cell proliferation, and the activity and secretion of pro-inflammatory cytokines. Analysis of GFP-Nur77-ΔTAD and GFP-Nur77-ΔDBD indicated that the Nur77 DNA binding and transactivation domains were both required for this effect. GFP-Nur77-ΔDBD consistently had the opposite effect to GFP-Nur77, increasing DC-type differentiation in all assays. Interestingly, GFP-Nur77-ΔDBD protein was cytosolic, whereas GFP-Nur77 and GFP-Nur77-ΔTAD were both nuclear. Conclusions These data show that GFP-Nur77 inhibited differentiation of oxLDL-treated macrophages into DC. The effects of Nur77 on the macrophage phenotype may involve changes in its subcellular distribution. Electronic supplementary material The online version of this article (doi:10.1186/s12865-014-0054-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Liu-Hua Hu
- Department of Cardiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, People's Republic of China.
| | - Ying Yu
- Department of Cardiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, People's Republic of China.
| | - Shu-Xuan Jin
- Department of Cardiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, People's Republic of China.
| | - Peng Nie
- Department of Cardiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, People's Republic of China.
| | - Zhao-Hua Cai
- Department of Cardiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, People's Republic of China.
| | - Ming-Li Cui
- Department of Cardiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, People's Republic of China.
| | - Shi-Qun Sun
- Department of Cardiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, People's Republic of China.
| | - Hua Xiao
- Department of Cardiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, People's Republic of China.
| | - Qin Shao
- Department of Cardiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, People's Republic of China.
| | - Ling-Hong Shen
- Department of Cardiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, People's Republic of China.
| | - Ben He
- Department of Cardiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, People's Republic of China.
| |
Collapse
|
33
|
Reverri EJ, Morrissey BM, Cross CE, Steinberg FM. Inflammation, oxidative stress, and cardiovascular disease risk factors in adults with cystic fibrosis. Free Radic Biol Med 2014; 76:261-77. [PMID: 25172163 DOI: 10.1016/j.freeradbiomed.2014.08.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 07/31/2014] [Accepted: 08/05/2014] [Indexed: 12/21/2022]
Abstract
Cystic fibrosis (CF) represents one of a number of localized lung and non-lung diseases with an intense chronic inflammatory component associated with evidence of systemic oxidative stress. Many of these chronic inflammatory diseases are accompanied by an array of atherosclerotic processes and cardiovascular disease (CVD), another condition strongly related to inflammation and oxidative stress. As a consequence of a dramatic increase in long-lived patients with CF in recent decades, the specter of CVD must be considered in these patients who are now reaching middle age and beyond. Buttressed by recent data documenting that CF patients exhibit evidence of endothelial dysfunction, a recognized precursor of atherosclerosis and CVD, the spectrum of risk factors for CVD in CF is reviewed here. Epidemiological data further characterizing the presence and extent of atherogenic processes in CF patients would seem important to obtain. Such studies should further inform and offer mechanistic insights into how other chronic inflammatory diseases potentiate the processes leading to CVDs.
Collapse
Affiliation(s)
- Elizabeth J Reverri
- Department of Nutrition, University of California Davis, One Shields Avenue, 3135 Meyer Hall, Davis, CA 95616, USA
| | - Brian M Morrissey
- Adult Cystic Fibrosis Clinic and Division of Pulmonary-Critical Care Medicine, University of California Davis Medical Center, 4150 V Street, Sacramento, CA 95817, USA
| | - Carroll E Cross
- Adult Cystic Fibrosis Clinic and Division of Pulmonary-Critical Care Medicine, University of California Davis Medical Center, 4150 V Street, Sacramento, CA 95817, USA.
| | - Francene M Steinberg
- Department of Nutrition, University of California Davis, One Shields Avenue, 3135 Meyer Hall, Davis, CA 95616, USA
| |
Collapse
|
34
|
Chistiakov DA, Orekhov AN, Sobenin IA, Bobryshev YV. Plasmacytoid dendritic cells: development, functions, and role in atherosclerotic inflammation. Front Physiol 2014; 5:279. [PMID: 25120492 PMCID: PMC4110479 DOI: 10.3389/fphys.2014.00279] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 07/08/2014] [Indexed: 12/21/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are a specialized subset of DCs that links innate and adaptive immunity. They sense viral and bacterial pathogens and release high levels of Type I interferons (IFN-I) in response to infection. pDCs were shown to contribute to inflammatory responses in the steady state and in pathology. In atherosclerosis, pDCs are involved in priming vascular inflammation and atherogenesis through production of IFN-I and chemokines that attract inflammatory cells to inflamed sites. pDCs also contribute to the proinflammatory activation of effector T cells, cytotoxic T cells, and conventional DCs. However, tolerogenic populations of pDCs are found that suppress atherosclerosis-associated inflammation through down-regulation of function and proliferation of proinflammatory T cell subsets and induction of regulatory T cells with potent immunomodulatory properties. Notably, atheroprotective tolerogenic DCs could be induced by certain self-antigens or bacterial antigens that suggests for great therapeutic potential of these DCs for development of DC-based anti-atherogenic vaccines.
Collapse
Affiliation(s)
- Dimitry A. Chistiakov
- Department of Medical Nanobiotechnology, Pirogov Russian State Medical UniversityMoscow, Russia
| | - Alexander N. Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical SciencesMoscow, Russia
- Institute for Atherosclerosis Research, Skolkovo Innovative CenterMoscow, Russia
| | - Igor A. Sobenin
- Institute for Atherosclerosis Research, Skolkovo Innovative CenterMoscow, Russia
- Laboratory of Medical Genetics, Russian Cardiology Research and Production ComplexMoscow, Russia
| | - Yuri V. Bobryshev
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical SciencesMoscow, Russia
- Faculty of Medicine, University of New South WalesSydney, NSW, Australia
- School of Medicine, University of Western SydneyCampbelltown, NSW, Australia
| |
Collapse
|
35
|
Chistiakov DA, Sobenin IA, Orekhov AN, Bobryshev YV. Dendritic cells in atherosclerotic inflammation: the complexity of functions and the peculiarities of pathophysiological effects. Front Physiol 2014; 5:196. [PMID: 24904430 PMCID: PMC4034414 DOI: 10.3389/fphys.2014.00196] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 05/09/2014] [Indexed: 12/31/2022] Open
Abstract
Atherosclerosis is considered as a chronic disease of arterial wall, with a strong contribution of inflammation. Dendritic cells (DCs) play a crucial role in the initiation of proatherogenic inflammatory response. Mature DCs present self-antigens thereby supporting differentiation of naïve T cells to effector cells that further propagate atherosclerotic inflammation. Regulatory T cells (Tregs) can suppress proinflammatory function of mature DCs. In contrast, immature DCs are able to induce Tregs and prevent differentiation of naïve T cells to proinflammatory effector T cells by initiating apoptosis and anergy in naïve T cells. Indeed, immature DCs showed tolerogenic and anti-inflammatory properties. Thus, DCs play a double role in atherosclerosis: mature DCs are proatherogenic while immature DCs appear to be anti-atherogenic. Tolerogenic and anti-inflammatory capacity of immature DCs can be therefore utilized for the development of new immunotherapeutic strategies against atherosclerosis.
Collapse
Affiliation(s)
- Dimitry A Chistiakov
- Department of Medical Nanobiotechnology, Pirogov Russian State Medical University Moscow, Russia
| | - Igor A Sobenin
- Skolkovo Innovative Center, Institute for Atherosclerosis Research Moscow, Russia ; Institute of General Pathology and Pathophysiology, Russian Academy of Sciences Moscow, Russia ; Laboratory of Medical Genetics, Russian Cardiology Research and Production Complex Moscow, Russia
| | - Alexander N Orekhov
- Skolkovo Innovative Center, Institute for Atherosclerosis Research Moscow, Russia ; Institute of General Pathology and Pathophysiology, Russian Academy of Sciences Moscow, Russia
| | - Yuri V Bobryshev
- Skolkovo Innovative Center, Institute for Atherosclerosis Research Moscow, Russia ; Faculty of Medicine, School of Medical Sciences, University of New South Wales, Kensington, Sydney NSW, Australia
| |
Collapse
|
36
|
Krychtiuk KA, Kastl SP, Speidl WS, Wojta J. Inflammation and coagulation in atherosclerosis. Hamostaseologie 2013; 33:269-82. [PMID: 24043155 DOI: 10.5482/hamo-13-07-0039] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 09/09/2013] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular diseases remain to be the leading cause of death in Western societies. Despite major findings in vascular biology that lead to a better understanding of the pathomechanisms involved in atherosclerosis, treatment of the disease has only changed slightly within the last years. A big body of evidence suggests that atherosclerosis is a chronic inflammatory disease of the vessel wall. Accumulation and peroxidation of LDL-particles within the vessel wall trigger a strong inflammatory response, causing macrophage and T-cell accumulation within the vessel wall. Additionally, B-cells and specific antibodies against LDL-particles, as well as the complement system are implicated in atherogenesis. Besides data from clinical trials and autopsy studies it was the implementation of mouse models of atherosclerosis and the emerging field of direct gen-modification that lead to a thorough description of the pathophysiological mechanisms involved in the disease and created overwhelming evidence for a participation of the immune system. Recently, the cross-talk between coagulation and inflammation in atherogenesis has gained attention. Serious limitations and disparities in the pathophysiology of atherosclerosis in mice and men complicated the translation of experimental data into clinical practice. Despite these limitations, new anti-inflammatory medical therapies in cardiovascular disease are currently being tested in clinical trials.
Collapse
Affiliation(s)
- K A Krychtiuk
- Walter S. Speidl, MD Universitätsklinik für Innere Medizin II - klinische Abteilung für Kardiologie, Medizinische Universität Wien Währingergürtel 18-20, 1090 Wien, Austria, Tel. +43/1/404 00 46 14; Fax +43/1/404 00 42 16, E-mail:
| | | | | | | |
Collapse
|