1
|
Schrier MS, Smirnova MI, Nemeth DP, Deth RC, Quan N. Flavins and Flavoproteins in the Neuroimmune Landscape of Stress Sensitization and Major Depressive Disorder. J Inflamm Res 2025; 18:681-699. [PMID: 39839188 PMCID: PMC11748166 DOI: 10.2147/jir.s501652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/08/2025] [Indexed: 01/23/2025] Open
Abstract
Major Depressive Disorder (MDD) is a common and severe neuropsychiatric condition resulting in irregular alterations in affect, mood, and cognition. Besides the well-studied neurotransmission-related etiologies of MDD, several biological systems and phenomena, such as the hypothalamic-pituitary-adrenal (HPA) axis, reactive oxygen species (ROS) production, and cytokine signaling, have been implicated as being altered and contributing to depressive symptoms. However, the manner in which these factors interact with each other to induce their effects on MDD development has been less clear, but is beginning to be understood. Flavins are potent biomolecules that regulate many redox activities, including ROS generation and energy production. Studies have found that circulating flavin levels are modulated during stress and MDD. Flavins are also known for their importance in immune responses. This review offers a unique perspective that considers the redox-active cofactors, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), as vital substrates for linking MDD-related maladaptive processes together, by permitting stress-induced enhancement of microglial interleukin-1 beta (IL-1β) signaling.
Collapse
Affiliation(s)
- Matt Scott Schrier
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Maria Igorevna Smirnova
- The International Max Planck Research School (IMPRS) for Synapses and Circuits, Jupiter, FL, USA
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, USA
- Department of Biological Sciences, Charles E. Schmidt College of Science, Florida Atlantic University, Jupiter, FL, USA
| | - Daniel Paul Nemeth
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Richard Carlton Deth
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Ning Quan
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, USA
| |
Collapse
|
2
|
Marincean S, Al-Modhafir M, Lawson DB. π-π stacking interactions in tryptophan-lumiflavin-tyrosine: a structural model for riboflavin insertion into riboflavin-binding protein. J Mol Model 2025; 31:38. [PMID: 39775115 DOI: 10.1007/s00894-024-06233-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/22/2024] [Indexed: 01/30/2025]
Abstract
CONTEXT Riboflavin (RF), also known as B2 vitamin, is the precursor to flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), two co-enzymes involved in many electron transport processes. Interactions of the isoalloxazine ring, common to all three compounds, are of great interest due to their biological function in flavoproteins and relevance in the transport by the carrier protein leading to development of drug delivery strategies and non-invasive diagnostics techniques. Based on protein crystallographic data, a computational investigation of the interactions in the complexes between lumiflavin, a model compound, and aromatic amino acids, tyrosine and tryptophan, was pursued with the goal of characterizing noncovalent interactions. Density functional theory (DFT) served as the computation framework for all calculations, utilizing long-range corrected hybrid functionals LC-ωPBE and ωB97XD in conjunction with the 6-311+ +g** basis set. The solvation effects were incorporated through the implementation of the polarizable continuum model (PCM) simulating an aqueous solvent environment. The geometries of the five most stable complexes show exclusively p-p interactions among the aromatic moieties in a displaced parallel plane stacking arrangement with interplanar heights and displacements in the range of 3.22-3.62 Å and 0.50-0.63 Å, respectively, at ωB97XD level. The calculated total energies and binding energies indicate two stabilizing p-p interactions: lumiflavin-tyrosine and lumiflavin-tryptophan, with the later stronger for the more stable complexes by 2 kcal mol-1. The complexes are less entropically favored than the independent molecules as verified by the positive association free Gibbs energies with LC-ωPBE and nearly zero with ωB97XD. Orbital analysis indicates a smaller HOMO-LUMO gap for complexes compared to the individual compounds suggesting a charge transfer component to the interaction. Moreover, the HOMO is localized on tryptophan and HOMO-1 on tyrosine, consistent with the strength of the respective interactions with lumiflavin. METHODS The initial geometry was based on the atom coordinates of the bonding tryptophan-riboflavin-tyrosine region in the protein crystallographic data with the ribityl tail being discarded, leading to a model complex: tryptophan-lumiflavin-tyrosine. The initial conformational search using the Amber force field within the Gabedit led to 30 unique conformations. The subsequent calculations, energy optimization and orbital analysis, were performed in Guassian16 at density functional theory (DFT) level, utilizing long-range corrected hybrid functionals LC-ωPBE and ωB97XD in conjunction with the 6-311+ +g** basis set. The solvent, water, was accounted for using the polarized continuum model (PCM).
Collapse
Affiliation(s)
- Simona Marincean
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, 48128, USA.
| | - Moina Al-Modhafir
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, 48128, USA
| | - Daniel B Lawson
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, 48128, USA
| |
Collapse
|
3
|
Tarracchini C, Lugli GA, Mancabelli L, van Sinderen D, Turroni F, Ventura M, Milani C. Exploring the vitamin biosynthesis landscape of the human gut microbiota. mSystems 2024; 9:e0092924. [PMID: 39287373 PMCID: PMC11494892 DOI: 10.1128/msystems.00929-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
The human gut microbiota possesses the capacity to synthesize vitamins, especially B group vitamins, which are recognized as indispensable for various biological processes both among members of these bacterial communities and host cells. Accordingly, vitamin production by intestinal commensals has attracted significant interest. Nevertheless, our current understanding of bacterial vitamin synthesis is primarily based on individual genomic and monoculture investigations, therefore not providing an overall view of the biosynthetic potential of complex microbial communities. In the current study, we utilized over 100 bacterial genes known to be involved in the biosynthesis of B group and K vitamins to assess the corresponding vitamin biosynthetic potential of approximately 8,000 human gut microbiomes. Our analyses reveal that host-associated factors, such as age and geographical origin, appear to influence the diversity and abundance of vitamin biosynthetic pathways. Furthermore, we identify gut microbiota members that substantially contribute to these biosynthetic functions at each stage of human life. Interestingly, inference of microbial co-associations and network relationships uncovered the apparent key role played by folate and cobalamin in equilibrium establishment of the infant and adult gut microbial communities, respectively.IMPORTANCEOverall, this study expands our understanding of microbe-mediated vitamin biosynthesis in the human gut and may provide potential novel targets to improve availability of these essential micronutrients in the host.
Collapse
Affiliation(s)
- Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Leonardo Mancabelli
- Microbiome Research Hub, University of Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience Institute, National University of Ireland, Cork, Ireland
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| |
Collapse
|
4
|
Fan M, Wu H, Sferruzzi-Perri AN, Wang YL, Shao X. Endocytosis at the maternal-fetal interface: balancing nutrient transport and pathogen defense. Front Immunol 2024; 15:1415794. [PMID: 38957469 PMCID: PMC11217186 DOI: 10.3389/fimmu.2024.1415794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024] Open
Abstract
Endocytosis represents a category of regulated active transport mechanisms. These encompass clathrin-dependent and -independent mechanisms, as well as fluid phase micropinocytosis and macropinocytosis, each demonstrating varying degrees of specificity and capacity. Collectively, these mechanisms facilitate the internalization of cargo into cellular vesicles. Pregnancy is one such physiological state during which endocytosis may play critical roles. A successful pregnancy necessitates ongoing communication between maternal and fetal cells at the maternal-fetal interface to ensure immunologic tolerance for the semi-allogenic fetus whilst providing adequate protection against infection from pathogens, such as viruses and bacteria. It also requires transport of nutrients across the maternal-fetal interface, but restriction of potentially harmful chemicals and drugs to allow fetal development. In this context, trogocytosis, a specific form of endocytosis, plays a crucial role in immunological tolerance and infection prevention. Endocytosis is also thought to play a significant role in nutrient and toxin handling at the maternal-fetal interface, though its mechanisms remain less understood. A comprehensive understanding of endocytosis and its mechanisms not only enhances our knowledge of maternal-fetal interactions but is also essential for identifying the pathogenesis of pregnancy pathologies and providing new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Mingming Fan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongyu Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Amanda N. Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Yan-Ling Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Xuan Shao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Chandel N, Somvanshi PR, Thakur V. Characterisation of Indian gut microbiome for B-vitamin production and its comparison with Chinese cohort. Br J Nutr 2024; 131:686-697. [PMID: 37781761 PMCID: PMC10803823 DOI: 10.1017/s0007114523002179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/03/2023]
Abstract
The human gut microbiota can biosynthesize essential micronutrients such as B-vitamins and is also known for its metabolic cooperative behaviour. The present study characterises such B-vitamin biosynthesizers, their biosynthetic pathways, explores their prevalence and abundance, examines how lifestyle or diet affects them in multiple Indian cohorts and compares it with the Chinese cohort. To achieve this, publicly available faecal metagenome data of healthy individuals from multiple Indian (two urban and three tribal populations) and a Chinese cohort were analysed. The distribution of prevalence and abundance of B-vitamin biosynthesizers showed similar profiles to that of the entire gut community of the Indian cohort, and there were 28 B-vitamin biosynthesizers that had modest or higher prevalence and abundance. The omnivorous diet affected only the prevalence of a few B-vitamin biosynthesizers; however, lifestyle and/or location affected both prevalence and abundance. A comparison with the Chinese cohort showed that fourteen B-vitamin biosynthesizers were significantly more prevalent and abundant in Chinese as compared with Indian samples (False Discovery Rate (FDR) <= 0·05). The metabolic potential of the entire gut community for B-vitamin production showed that within India, the tribal cohort has a higher abundance of B-vitamin biosynthesis pathways as compared with two urban cohorts namely, Bhopal and Kasargod, and comparison with the Chinese cohort revealed a higher abundance in the latter group. Potential metabolic cooperative behaviour of the Indian gut microbiome for biosynthesis of the B-vitamins showed multiple pairs of species showed theoretical complementarity for complete biosynthetic pathways genes of thiamine, riboflavin, niacin and pantothenate.
Collapse
Affiliation(s)
- Nisha Chandel
- Department of Systems and Computational Biology, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Pramod R. Somvanshi
- Department of Systems and Computational Biology, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Vivek Thakur
- Department of Systems and Computational Biology, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| |
Collapse
|
6
|
Lee TY, Farah N, Chin VK, Lim CW, Chong PP, Basir R, Lim WF, Loo YS. Medicinal benefits, biological, and nanoencapsulation functions of riboflavin with its toxicity profile: A narrative review. Nutr Res 2023; 119:1-20. [PMID: 37708600 DOI: 10.1016/j.nutres.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/16/2023]
Abstract
Riboflavin is a precursor of the essential coenzymes flavin mononucleotide and flavin adenine dinucleotide. Both possess antioxidant properties and are involved in oxidation-reduction reactions, which have a significant impact on energy metabolism. Also, the coenzymes participate in metabolism of pyridoxine, niacin, folate, and iron. Humans must obtain riboflavin through their daily diet because of the lack of programmed enzymatic machineries for de novo riboflavin synthesis. Because of its physiological nature and fast elimination from the human body when in excess, riboflavin consumed is unlikely to induce any negative effects or develop toxicity in humans. The use of riboflavin in pharmaceutical and clinical contexts has been previously explored, including for preventing and treating oxidative stress and reperfusion oxidative damage, creating synergistic compounds to mitigate colorectal cancer, modulating blood pressure, improving diabetes mellitus comorbidities, as well as neuroprotective agents and potent photosensitizer in killing bloodborne pathogens. Thus, the goal of this review is to provide a comprehensive understanding of riboflavin's biological applications in medicine, key considerations of riboflavin safety and toxicity, and a brief overview on the nanoencapsulation of riboflavin for various functions including the treatment of a range of diseases, photodynamic therapy, and cellular imaging.
Collapse
Affiliation(s)
- Tze Yan Lee
- Perdana University School of Liberal Arts, Science and Technology (PUScLST), Wisma Chase Perdana, Changkat Semantan, Damansara Heights, 50490 Kuala Lumpur, Malaysia.
| | - Nuratiqah Farah
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Voon Kin Chin
- Faculty of Medicine, Nursing, and Health Sciences, SEGi University, Kota Damansara, 47810 Petaling Jaya, Selangor, Malaysia
| | - Chee Woei Lim
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Pei Pei Chong
- School of Biosciences, Taylor's University, No. 1, Jalan Taylor's, 47500 Subang Jaya, Selangor, Malaysia
| | - Rusliza Basir
- Department of Human Anatomy, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Wai Feng Lim
- Sunway Medical Centre, 47500 Petaling Jaya, Selangor, Malaysia
| | - Yan Shan Loo
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
7
|
Grünert SC, Ziagaki A, Heinen A, Schumann A, Tucci S, Spiekerkoetter U, Schmidts M. Riboflavin 1 Transporter Deficiency: Novel SLC52A1 Variants and Expansion of the Phenotypic Spectrum. Genes (Basel) 2023; 14:1408. [PMID: 37510312 PMCID: PMC10378786 DOI: 10.3390/genes14071408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Riboflavin transporter 1 (RFVT1) deficiency is an ultrarare metabolic disorder due to autosomal dominant pathogenic variants in SLC52A1. The RFVT1 protein is mainly expressed in the placenta and intestine. To our knowledge, only five cases of RFVT1 deficiency from three families have been reported so far. While newborns and infants with SLC52A1 variants mainly showed a multiple acyl-CoA dehydrogenase deficiency-like presentation, individuals identified in adulthood were usually clinically asymptomatic. We report two patients with novel heterozygous SLC52A1 variants. Patient 1 presented at the age of 62 with mild hyperammonemia following gastroenteritis. An acylcarnitine analysis in dried blood spots was abnormal with a multiple acyl-CoA dehydrogenase deficiency-like pattern, and genetic analysis confirmed a heterozygous SLC52A1 variant, c.68C > A, p. Ser23Tyr. Patient 2 presented with recurrent seizures and hypsarrhythmia at the age of 7 months. Metabolic investigations yielded unremarkable results. However, whole exome sequencing revealed a heterozygous start loss variant, c.3G > A, p. Met1Ile in SLC52A1. These two cases expand the clinical spectrum of riboflavin transporter 1 deficiency and demonstrate that symptomatic presentation in adulthood is possible.
Collapse
Affiliation(s)
- Sarah C. Grünert
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.S.); (S.T.); (U.S.); (M.S.)
| | - Athanasia Ziagaki
- Medizinische Klinik für Endokrinologie und Stoffwechselmedizin, Campus Virchow, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany;
| | - André Heinen
- Department of Pediatrics, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany;
| | - Anke Schumann
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.S.); (S.T.); (U.S.); (M.S.)
| | - Sara Tucci
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.S.); (S.T.); (U.S.); (M.S.)
- Pharmacy, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Ute Spiekerkoetter
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.S.); (S.T.); (U.S.); (M.S.)
| | - Miriam Schmidts
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.S.); (S.T.); (U.S.); (M.S.)
- CIBSS—Center for Integrative Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
8
|
Gaddameedi JD, Chou T, Geller BS, Rangarajan A, Swaminathan TA, Dixon D, Long K, Golder CJ, Vuong VA, Banuelos S, Greenhouse R, Snyder MP, Lipchik AM, Gruber JJ. Acetyl-Click Screening Platform Identifies Small-Molecule Inhibitors of Histone Acetyltransferase 1 (HAT1). J Med Chem 2023; 66:5774-5801. [PMID: 37027002 PMCID: PMC10243098 DOI: 10.1021/acs.jmedchem.3c00039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
HAT1 is a central regulator of chromatin synthesis that acetylates nascent histone H4. To ascertain whether targeting HAT1 is a viable anticancer treatment strategy, we sought to identify small-molecule inhibitors of HAT1 by developing a high-throughput HAT1 acetyl-click assay. Screening of small-molecule libraries led to the discovery of multiple riboflavin analogs that inhibited HAT1 enzymatic activity. Compounds were refined by synthesis and testing of over 70 analogs, which yielded structure-activity relationships. The isoalloxazine core was required for enzymatic inhibition, whereas modifications of the ribityl side chain improved enzymatic potency and cellular growth suppression. One compound (JG-2016 [24a]) showed relative specificity toward HAT1 compared to other acetyltransferases, suppressed the growth of human cancer cell lines, impaired enzymatic activity in cellulo, and interfered with tumor growth. This is the first report of a small-molecule inhibitor of the HAT1 enzyme complex and represents a step toward targeting this pathway for cancer therapy.
Collapse
Affiliation(s)
- Jitender D. Gaddameedi
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201
| | - Tristan Chou
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94309
| | - Benjamin S. Geller
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94309
| | - Amithvikram Rangarajan
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94309
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94158
| | - Tarun A. Swaminathan
- Department of Internal Medicine, Hematology-Oncology Division, Cecil H. and Ida Green Center for Reproductive Biology Sciences, UT Southwestern Medical Center, Dallas, TX, 75235
| | - Danielle Dixon
- Department of Internal Medicine, Hematology-Oncology Division, Cecil H. and Ida Green Center for Reproductive Biology Sciences, UT Southwestern Medical Center, Dallas, TX, 75235
| | - Katherine Long
- Department of Internal Medicine, Hematology-Oncology Division, Cecil H. and Ida Green Center for Reproductive Biology Sciences, UT Southwestern Medical Center, Dallas, TX, 75235
| | - Caiden J. Golder
- Department of Internal Medicine, Hematology-Oncology Division, Cecil H. and Ida Green Center for Reproductive Biology Sciences, UT Southwestern Medical Center, Dallas, TX, 75235
| | - Van A. Vuong
- Department of Internal Medicine, Hematology-Oncology Division, Cecil H. and Ida Green Center for Reproductive Biology Sciences, UT Southwestern Medical Center, Dallas, TX, 75235
| | - Selene Banuelos
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94309
| | - Robert Greenhouse
- Department of Otolaryngology, Stanford University School of Medicine, Stanford, CA, 94309
| | - Michael P. Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94309
| | - Andrew M. Lipchik
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201
| | - Joshua J. Gruber
- Department of Internal Medicine, Hematology-Oncology Division, Cecil H. and Ida Green Center for Reproductive Biology Sciences, UT Southwestern Medical Center, Dallas, TX, 75235
| |
Collapse
|
9
|
Yerevanian A, Murphy LM, Emans S, Zhou Y, Ahsan FM, Baker D, Li S, Adedoja A, Cedillo L, Stuhr NL, Gnanatheepam E, Dao K, Jain M, Curran SP, Georgakoudi I, Soukas AA. Riboflavin depletion promotes longevity and metabolic hormesis in Caenorhabditis elegans. Aging Cell 2022; 21:e13718. [PMID: 36181246 PMCID: PMC9649603 DOI: 10.1111/acel.13718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/16/2022] [Accepted: 08/31/2022] [Indexed: 01/25/2023] Open
Abstract
Riboflavin is an essential cofactor in many enzymatic processes and in the production of flavin adenine dinucleotide (FAD). Here, we report that the partial depletion of riboflavin through knockdown of the C. elegans riboflavin transporter 1 (rft-1) promotes metabolic health by reducing intracellular flavin concentrations. Knockdown of rft-1 significantly increases lifespan in a manner dependent upon AMP-activated protein kinase (AMPK)/aak-2, the mitochondrial unfolded protein response, and FOXO/daf-16. Riboflavin depletion promotes altered energetic and redox states and increases adiposity, independent of lifespan genetic dependencies. Riboflavin-depleted animals also exhibit the activation of caloric restriction reporters without any reduction in caloric intake. Our findings indicate that riboflavin depletion activates an integrated hormetic response that promotes lifespan and healthspan in C. elegans.
Collapse
Affiliation(s)
- Armen Yerevanian
- Department of Medicine, Diabetes Unit and Center for Genomic MedicineMassachusetts General HospitalBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | - Luke M. Murphy
- Department of Medicine, Diabetes Unit and Center for Genomic MedicineMassachusetts General HospitalBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | - Sinclair Emans
- Department of Medicine, Diabetes Unit and Center for Genomic MedicineMassachusetts General HospitalBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | - Yifei Zhou
- Department of Medicine, Diabetes Unit and Center for Genomic MedicineMassachusetts General HospitalBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | - Fasih M. Ahsan
- Department of Medicine, Diabetes Unit and Center for Genomic MedicineMassachusetts General HospitalBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | - Daniel Baker
- Department of Medicine, Diabetes Unit and Center for Genomic MedicineMassachusetts General HospitalBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | - Sainan Li
- Department of Medicine, Diabetes Unit and Center for Genomic MedicineMassachusetts General HospitalBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | - Adebanjo Adedoja
- Department of Medicine, Diabetes Unit and Center for Genomic MedicineMassachusetts General HospitalBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | - Lucydalila Cedillo
- Department of Medicine, Diabetes Unit and Center for Genomic MedicineMassachusetts General HospitalBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | - Nicole L. Stuhr
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Einstein Gnanatheepam
- Department of Biomedical EngineeringTufts University School of EngineeringMedfordMassachusettsUSA
| | - Khoi Dao
- Department of Medicine and PharmacologyUniversity of California San DiegoSan DiegoCaliforniaUSA
| | - Mohit Jain
- Department of Medicine and PharmacologyUniversity of California San DiegoSan DiegoCaliforniaUSA
| | - Sean P. Curran
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Irene Georgakoudi
- Department of Biomedical EngineeringTufts University School of EngineeringMedfordMassachusettsUSA
| | - Alexander A. Soukas
- Department of Medicine, Diabetes Unit and Center for Genomic MedicineMassachusetts General HospitalBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
- Broad Institute of Harvard and MITCambridgeMassachusettsUSA
| |
Collapse
|
10
|
Identification of Copper Transporter 1 as a Receptor for Feline Endogenous Retrovirus ERV-DC14. J Virol 2022; 96:e0022922. [PMID: 35652657 DOI: 10.1128/jvi.00229-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Vertebrates harbor hundreds of endogenous retroviral (ERV) sequences in their genomes, which are considered signs of past infections that occurred during evolution. On rare occasions, ERV genes like env are maintained and coopted by hosts for physiological functions, but they also participate in recombination events with exogenous retroviruses to generate rearranged viruses with novel tropisms. In domestic cats, feline leukemia virus type D (FeLV-D) has been described as a recombinant virus between the infectious FeLV-A and likely the ERV-DC14 env gene that resulted in an extended tropism due to the usage of a new uncharacterized retroviral receptor. Here, we report the identification of SLC31A1 encoding the copper transporter 1 (CTR1) as a susceptibility gene for ERV-DC14 infection. Expression of human CTR1 into nonpermissive cells was sufficient to confer sensitivity to ERV-DC14 pseudotype infection and to increase the binding of an ERV-DC14 Env ligand. Moreover, inactivation of CTR1 by genome editing or cell surface downmodulation of CTR1 by a high dose of copper dramatically decreased ERV-DC14 infection and binding, while magnesium treatment had no effect. We also investigated the role of CTR1 in the nonpermissivity of feline and hamster cells. While feline CTR1 was fully functional for ERV-DC14, we found that binding was strongly reduced upon treatment with conditioned medium of feline cells, suggesting that the observed resistance to infection was a consequence of CTR1 saturation. In contrast, hamster CTR1 was inactive due to the presence of a N-linked glycosylation site at position 27, which is absent in the human ortholog. These results provide evidence that CTR1 is a receptor for ERV-DC14. Along with chimpanzee endogenous retrovirus type 2, ERV-DC14 is the second family of endogenous retrovirus known to have used CTR1 during past infections of vertebrates. IMPORTANCE Receptor usage is an important determinant of diseases induced by pathogenic retroviruses. In the case of feline leukemia viruses, three subgroups (A, B, and C) based on their ability to recognize different cell host receptors, respectively, the thiamine transporter THTR1, the phosphate transporter PiT1, and the heme exporter FLVCR1, are associated with distinct feline diseases. FeLV-A is horizontally transmitted and found in all naturally infected cats, while FeLV-B and FeLV-C have emerged from FeLV-A, respectively, by recombination with endogenous retroviral env sequences or by mutations in the FeLV-A env gene, both leading to a switch in receptor usage and in subsequent in vivo tropism. Here, we set up a genetic screen to identify the retroviral receptor of ERV-DC14, a feline endogenous provirus whose env gene has been captured by infectious FeLV-A to give rise to FeLV-D in a process similar to FeLV-B. Our results reveal that the copper transporter CTR1 was such a receptor and provide new insights into the acquisition of an expanded tropism by FeLV-D.
Collapse
|
11
|
Electrodiagnostic Findings in Riboflavin Transporter Deficiency Type 2. J Clin Neuromuscul Dis 2022; 23:205-209. [PMID: 35608644 DOI: 10.1097/cnd.0000000000000390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT We present the electrodiagnostic findings in a case of a 3-year-old girl presenting with sensory ataxia, gait disturbance, and visual-auditory disturbance with a genetically confirmed diagnosis of riboflavin transporter deficiency type 2 (RTD2). She carries a homozygous mutation in the SLC52A2 gene, c.1016T>C (p.Leu339Pro). Her testing demonstrates a non-length-dependent axonal sensorimotor polyneuropathy affecting predominantly the upper extremities with active denervation of the distal muscles of both arms. It is important to highlight these findings because most genetic neuropathies have a length-dependent pattern of involvement, affecting the distal legs before the arms. The electrodiagnostic findings in RTD2 have not been previously well described. These electrodiagnostic findings are in agreement with the typical clinical phenotype of RTD2, which affects the upper limbs and bulbar muscles more than the lower extremities.
Collapse
|
12
|
Hrubša M, Siatka T, Nejmanová I, Vopršalová M, Kujovská Krčmová L, Matoušová K, Javorská L, Macáková K, Mercolini L, Remião F, Máťuš M, Mladěnka P. Biological Properties of Vitamins of the B-Complex, Part 1: Vitamins B 1, B 2, B 3, and B 5. Nutrients 2022; 14:484. [PMID: 35276844 PMCID: PMC8839250 DOI: 10.3390/nu14030484] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
This review summarizes the current knowledge on essential vitamins B1, B2, B3, and B5. These B-complex vitamins must be taken from diet, with the exception of vitamin B3, that can also be synthetized from amino acid tryptophan. All of these vitamins are water soluble, which determines their main properties, namely: they are partly lost when food is washed or boiled since they migrate to the water; the requirement of membrane transporters for their permeation into the cells; and their safety since any excess is rapidly eliminated via the kidney. The therapeutic use of B-complex vitamins is mostly limited to hypovitaminoses or similar conditions, but, as they are generally very safe, they have also been examined in other pathological conditions. Nicotinic acid, a form of vitamin B3, is the only exception because it is a known hypolipidemic agent in gram doses. The article also sums up: (i) the current methods for detection of the vitamins of the B-complex in biological fluids; (ii) the food and other sources of these vitamins including the effect of common processing and storage methods on their content; and (iii) their physiological function.
Collapse
Affiliation(s)
- Marcel Hrubša
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (M.H.); (M.V.); (P.M.)
| | - Tomáš Siatka
- Department of Pharmacognosy, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (T.S.); (K.M.)
| | - Iveta Nejmanová
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic;
| | - Marie Vopršalová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (M.H.); (M.V.); (P.M.)
| | - Lenka Kujovská Krčmová
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic;
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Kralove, Czech Republic; (K.M.); (L.J.)
| | - Kateřina Matoušová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Kralove, Czech Republic; (K.M.); (L.J.)
| | - Lenka Javorská
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Kralove, Czech Republic; (K.M.); (L.J.)
| | - Kateřina Macáková
- Department of Pharmacognosy, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (T.S.); (K.M.)
| | - Laura Mercolini
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy;
| | - Fernando Remião
- UCIBIO—Applied Molecular Biosciences Unit, REQUINTE, Toxicology Laboratory, Biological Sciences Department Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Marek Máťuš
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovak Republic
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (M.H.); (M.V.); (P.M.)
| | | |
Collapse
|
13
|
Schnerwitzki D, Vabulas RM. Dynamic association of flavin cofactors to regulate flavoprotein function. IUBMB Life 2022; 74:645-654. [PMID: 35015339 DOI: 10.1002/iub.2591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 11/09/2022]
Abstract
Flavoproteins are key players in numerous redox pathways in cells. Flavin cofactors FMN and FAD confer the required chemical reactivity to flavoenzymes. In most cases, the interaction between the proteins and the flavins is noncovalent, yet stronger in comparison to other redox-active cofactors, such as NADH and NADPH. The association is considered static, but this view has started to change with the recent discovery of the dynamic association of flavins and flavoenzymes. Six cases from different organisms and various metabolic pathways are discussed here. The available mechanistic details span the range from rudimentary, as in the case of the ER-resident oxidoreductase Ero1, to comprehensive, as for the bacterial respiratory complex I. The same holds true in regard to the assumed functional role of the dynamic association presented here. More work is needed to clarify the structural and functional determinants of the known examples. Identification of new cases will help to appreciate the generality of the new principle of intracellular flavoenzyme regulation.
Collapse
Affiliation(s)
- Danny Schnerwitzki
- Charité-Universitätsmedizin Berlin, Institute of Biochemistry, Berlin, Germany
| | - R Martin Vabulas
- Charité-Universitätsmedizin Berlin, Institute of Biochemistry, Berlin, Germany
| |
Collapse
|
14
|
Nagano T, Awai Y, Kuwaba S, Osumi T, Mio K, Iwasaki T, Kamada S. Riboflavin transporter SLC52A1, a target of p53, suppresses cellular senescence by activating mitochondrial complex II. Mol Biol Cell 2021; 32:br10. [PMID: 34524871 PMCID: PMC8693961 DOI: 10.1091/mbc.e21-05-0262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cellular senescence is a state of permanent proliferative arrest induced by a variety of stresses, such as DNA damage. The transcriptional activity of p53 has been known to be essential for senescence induction. It remains unknown, however, whether among the downstream genes of p53, there is a gene that has antisenescence function. Our recent studies have indicated that the expression of SLC52A1 (also known as GPR172B/RFVT1), a riboflavin transporter, is up-regulated specifically in senescent cells depending on p53, but the relationship between senescence and SLC52A1 or riboflavin has not been described. Here, we examined the role of SLC52A1 in senescence. We found that knockdown of SLC52A1 promoted senescence phenotypes induced by DNA damage in tumor and normal cells. The senescence suppressive action of SLC52A1 was dependent on its riboflavin transport activity. Furthermore, elevation of intracellular riboflavin led to activation of mitochondrial membrane potential (MMP) mediated by the mitochondrial electron transport chain complex II. Finally, the SLC52A1-dependent activation of MMP inhibited the AMPK-p53 pathway, a central mediator of mitochondria dysfunction–related senescence. These results suggest that SLC52A1 contributes to suppress senescence through the uptake of riboflavin and acts downstream of p53 as a negative feedback mechanism to limit aberrant senescence induction.
Collapse
Affiliation(s)
- Taiki Nagano
- Biosignal Research Center, Kobe University, Nada-ku, Kobe 657-8501, Japan
| | - Yuto Awai
- Department of Biology, Faculty of Science, Kobe University, Nada-ku, Kobe 657-8501, Japan
| | - Shione Kuwaba
- Department of Biology, Faculty of Science, Kobe University, Nada-ku, Kobe 657-8501, Japan
| | - Taiichi Osumi
- Department of Biology, Graduate School of Science, Kobe University, Nada-ku, Kobe 657-8501, Japan
| | - Kentaro Mio
- Department of Biology, Graduate School of Science, Kobe University, Nada-ku, Kobe 657-8501, Japan
| | - Tetsushi Iwasaki
- Biosignal Research Center, Kobe University, Nada-ku, Kobe 657-8501, Japan.,Department of Biology, Faculty of Science, Kobe University, Nada-ku, Kobe 657-8501, Japan.,Department of Biology, Graduate School of Science, Kobe University, Nada-ku, Kobe 657-8501, Japan
| | - Shinji Kamada
- Biosignal Research Center, Kobe University, Nada-ku, Kobe 657-8501, Japan.,Department of Biology, Faculty of Science, Kobe University, Nada-ku, Kobe 657-8501, Japan.,Department of Biology, Graduate School of Science, Kobe University, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
15
|
Jin C, Yonezawa A. Recent advances in riboflavin transporter RFVT and its genetic disease. Pharmacol Ther 2021; 233:108023. [PMID: 34662687 DOI: 10.1016/j.pharmthera.2021.108023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/30/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022]
Abstract
Riboflavin (vitamin B2) is essential for cellular growth and function. It is enzymatically converted to flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), which participate in the metabolic oxidation-reduction reactions of carbohydrates, amino acids, and lipids. Human riboflavin transporters RFVT1, RFVT2, and RFVT3 have been identified and characterized since 2008. They are highly specific transporters of riboflavin. RFVT3 has functional characteristics different from those of RFVT1 and RFVT2. RFVT3 contributes to absorption in the small intestine, reabsorption in the kidney, and transport to the fetus in the placenta, while RFVT2 mediates the tissue distribution of riboflavin from the blood. Several mutations in the SLC52A2 gene encoding RFVT2 and the SLC52A3 gene encoding RFVT3 were found in patients with a rare neurological disorder known as Brown-Vialetto-Van Laere syndrome. These patients commonly present with bulbar palsy, hearing loss, muscle weakness, and respiratory symptoms in infancy or later in childhood. A decrease in plasma riboflavin levels has been observed in several cases. Recent studies on knockout mice and patient-derived cells have advanced the understanding of these mechanisms. Here, we summarize novel findings on RFVT1-3 and their genetic diseases and discuss their potential as therapeutic drugs.
Collapse
Affiliation(s)
- Congyun Jin
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Graduate School of Pharmaceutical Sciences, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Atsushi Yonezawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Graduate School of Pharmaceutical Sciences, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
16
|
Console L, Tolomeo M, Cosco J, Massey K, Barile M, Indiveri C. Impact of natural mutations on the riboflavin transporter 2 and their relevance to human riboflavin transporter deficiency 2. IUBMB Life 2021; 74:618-628. [PMID: 34428344 DOI: 10.1002/iub.2541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/07/2021] [Accepted: 07/29/2021] [Indexed: 12/28/2022]
Abstract
Riboflavin transporter deficiency 2 (RTD2) is a rare neurological disorder caused by mutations in the Solute carrier family 52 member 2 (Slc52a2) gene encoding human riboflavin transporter 2 (RFVT2). This transporter is ubiquitously expressed and mediates tissue distribution of riboflavin, a water-soluble vitamin that, after conversion into FMN and FAD, plays pivotal roles in carbohydrate, protein, and lipid metabolism. The 3D structure of RFVT2 has been constructed by homology modeling using three different templates that are equilibrative nucleoside transporter 1 (ENT1), Fucose: proton symporter, and glucose transporter type 5 (GLUT5). The structure has been validated by several approaches. All known point mutations of RFVT2, associated with RTD2, have been localized in the protein 3D model. Six of these mutations have been introduced in the recombinant protein for functional characterization. The mutants W31S, S52F, S128L, L312P, C325G, and M423V have been expressed in E. coli, purified, and reconstituted into proteoliposomes for transport assay. All the mutants showed impairment of function. The Km for riboflavin of the mutants increased from about 3 to 9 times with respect to that of WT, whereas Vmax was only marginally affected. This agrees with the improved outcome of most RTD2 patients after administration of high doses of riboflavin.
Collapse
Affiliation(s)
- Lara Console
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Maria Tolomeo
- Department of Biosciences, Biotechnology, and Biopharmaceutics, University of Bari, Bari, Italy
| | - Jessica Cosco
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | | | - Maria Barile
- Department of Biosciences, Biotechnology, and Biopharmaceutics, University of Bari, Bari, Italy
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| |
Collapse
|
17
|
Alteration of Flavin Cofactor Homeostasis in Human Neuromuscular Pathologies. Methods Mol Biol 2021; 2280:275-295. [PMID: 33751442 DOI: 10.1007/978-1-0716-1286-6_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of this short review chapter is to provide a brief summary of the relevance of riboflavin (Rf or vitamin B2) and its derived cofactors flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) for human neuromuscular bioenergetics.Therefore, as a completion of this book we would like to summarize what kind of human pathologies could derive from genetic disturbances of Rf transport, flavin cofactor synthesis and delivery to nascent apoflavoproteins, as well as by alteration of vitamin recycling during protein turnover.
Collapse
|
18
|
Cooke LDF, Tumbarello DA, Harvey NC, Sethi JK, Lewis RM, Cleal JK. Endocytosis in the placenta: An undervalued mediator of placental transfer. Placenta 2021; 113:67-73. [PMID: 33994009 DOI: 10.1016/j.placenta.2021.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/21/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022]
Abstract
Endocytosis is an essential mechanism for cellular uptake in many human tissues. A range of endocytic mechanisms occur including clathrin-dependent and -independent mechanisms. However, the role of endocytosis in the placenta and the spatial localisation of individual mechanisms is not well understood. The two principal cell layers that comprise the placental barrier to maternal-fetal transfer are the syncytiotrophoblast and fetal capillary endothelium. Endocytic uptake into the syncytiotrophoblast has been demonstrated for physiological maternal molecules such as transferrin-bound iron and low density lipoprotein (LDL) and may play an important role in the uptake of several other micronutrients, serum proteins, and therapeutics at both major placental cell barriers. These mechanisms may also mediate placental uptake of some viruses and nanoparticles. This review introduces the mechanisms of cargo-specific endocytosis and what is known about their localisation in the placenta, focussing predominantly on the syncytiotrophoblast. A fuller understanding of placental endocytosis is necessary to explain both fetal nutrition and the properties of the placental barrier. Characterising placental endocytic mechanisms and their regulation may allow us to identify their role in pregnancy pathologies and provide new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Laura D F Cooke
- The Institute of Developmental Sciences, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK.
| | - David A Tumbarello
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Highfield Campus, Life Sciences Building 85, Southampton, SO17 1BJ, UK
| | - Nicholas C Harvey
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK; NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - Jaswinder K Sethi
- The Institute of Developmental Sciences, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK; NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Rohan M Lewis
- The Institute of Developmental Sciences, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Jane K Cleal
- The Institute of Developmental Sciences, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
19
|
Effect of riboflavin deficiency on development of the cerebral cortex in Slc52a3 knockout mice. Sci Rep 2020; 10:18443. [PMID: 33116204 PMCID: PMC7595085 DOI: 10.1038/s41598-020-75601-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
Riboflavin transporter 3 (RFVT3), encoded by the SLC52A3 gene, is important for riboflavin homeostasis in the small intestine, kidney, and placenta. Our previous study demonstrated that Slc52a3 knockout (Slc52a3−/−) mice exhibited neonatal lethality and metabolic disorder due to riboflavin deficiency. Here, we investigated the influence of Slc52a3 gene disruption on brain development using Slc52a3−/− embryos. Slc52a3−/− mice at postnatal day 0 showed hypoplasia of the brain and reduced thickness of cortical layers. At embryonic day 13.5, the formation of Tuj1+ neurons and Tbr2+ intermediate neural progenitors was significantly decreased; no significant difference was observed in the total number and proliferative rate of Pax6+ radial glia. Importantly, the hypoplastic phenotype was rescued upon riboflavin supplementation. Thus, it can be concluded that RFVT3 contributes to riboflavin homeostasis in embryos and that riboflavin itself is required during embryonic development of the cerebral cortex in mice.
Collapse
|
20
|
Pillai NR, Amin H, Gijavanekar C, Liu N, Issaq N, Broniowska KA, Bertuch AA, Sutton VR, Elsea SH, Scaglia F. Hematologic presentation and the role of untargeted metabolomics analysis in monitoring treatment for riboflavin transporter deficiency. Am J Med Genet A 2020; 182:2781-2787. [PMID: 32909658 DOI: 10.1002/ajmg.a.61851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/02/2020] [Accepted: 08/15/2020] [Indexed: 12/21/2022]
Abstract
Riboflavin transporter deficiency (RTD) (MIM #614707) is a neurogenetic disorder with its most common manifestations including sensorineural hearing loss, peripheral neuropathy, respiratory insufficiency, and bulbar palsy. Here, we present a 2-year-old boy whose initial presentation was severe macrocytic anemia necessitating multiple blood transfusions and intermittent neutropenia; he subsequently developed ataxia and dysarthria. Trio-exome sequencing detected compound heterozygous variants in SLC52A2 that were classified as pathogenic and a variant of uncertain significance. Bone marrow evaluation demonstrated megaloblastic changes. Notably, his anemia and neutropenia resolved after treatment with oral riboflavin, thus expanding the clinical phenotype of this disorder. We reiterate the importance of starting riboflavin supplementation in a young child who presents with macrocytic anemia and neurological features while awaiting biochemical and genetic work up. We detected multiple biochemical abnormalities with the help of untargeted metabolomics analysis associated with abnormal flavin adenine nucleotide function which normalized after treatment, emphasizing the reversible pathomechanisms involved in this disorder. The utility of untargeted metabolomics analysis to monitor the effects of riboflavin supplementation in RTD has not been previously reported.
Collapse
Affiliation(s)
- Nishitha R Pillai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA
| | - Hitha Amin
- Texas Children's Hospital, Houston, Texas, USA.,Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
| | | | - Ning Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Niveen Issaq
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
| | | | - Alison A Bertuch
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA.,Department of Pediatrics, Hematology/Oncology, Baylor College of Medicine, Houston, Texas, USA
| | - V Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA
| | - Sarah H Elsea
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA.,Joint BCM-CUHK Center of Medical Genetics, Prince of Wales Hospital, Shatin, Hong Kong SAR
| |
Collapse
|
21
|
Tolomeo M, Nisco A, Leone P, Barile M. Development of Novel Experimental Models to Study Flavoproteome Alterations in Human Neuromuscular Diseases: The Effect of Rf Therapy. Int J Mol Sci 2020; 21:ijms21155310. [PMID: 32722651 PMCID: PMC7432027 DOI: 10.3390/ijms21155310] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023] Open
Abstract
Inborn errors of Riboflavin (Rf) transport and metabolism have been recently related to severe human neuromuscular disorders, as resulting in profound alteration of human flavoproteome and, therefore, of cellular bioenergetics. This explains why the interest in studying the “flavin world”, a topic which has not been intensively investigated before, has increased much over the last few years. This also prompts basic questions concerning how Rf transporters and FAD (flavin adenine dinucleotide) -forming enzymes work in humans, and how they can create a coordinated network ensuring the maintenance of intracellular flavoproteome. The concept of a coordinated cellular “flavin network”, introduced long ago studying humans suffering for Multiple Acyl-CoA Dehydrogenase Deficiency (MADD), has been, later on, addressed in model organisms and more recently in cell models. In the frame of the underlying relevance of a correct supply of Rf in humans and of a better understanding of the molecular rationale of Rf therapy in patients, this review wants to deal with theories and existing experimental models in the aim to potentiate possible therapeutic interventions in Rf-related neuromuscular diseases.
Collapse
|
22
|
Wang SC, Davejan P, Hendargo KJ, Javadi-Razaz I, Chou A, Yee DC, Ghazi F, Lam KJK, Conn AM, Madrigal A, Medrano-Soto A, Saier MH. Expansion of the Major Facilitator Superfamily (MFS) to include novel transporters as well as transmembrane-acting enzymes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183277. [PMID: 32205149 DOI: 10.1016/j.bbamem.2020.183277] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/14/2020] [Accepted: 03/17/2020] [Indexed: 12/14/2022]
Abstract
The Major Facilitator Superfamily (MFS) is currently the largest characterized superfamily of transmembrane secondary transport proteins. Its diverse members are found in essentially all organisms in the biosphere and function by uniport, symport, and/or antiport mechanisms. In 1993 we first named and described the MFS which then consisted of 5 previously known families that had not been known to be related, and by 2012 we had identified a total of 74 families, classified phylogenetically within the MFS, all of which included only transport proteins. This superfamily has since expanded to 89 families, all included under TC# 2.A.1, and a few transporter families outside of TC# 2.A.1 were identified as members of the MFS. In this study, we assign nine previously unclassified protein families in the Transporter Classification Database (TCDB; http://www.tcdb.org) to the MFS based on multiple criteria and bioinformatic methodologies. In addition, we find integral membrane domains distantly related to partial or full-length MFS permeases in Lysyl tRNA Synthases (TC# 9.B.111), Lysylphosphatidyl Glycerol Synthases (TC# 4.H.1), and cytochrome b561 transmembrane electron carriers (TC# 5.B.2). Sequence alignments, overlap of hydropathy plots, compatibility of repeat units, similarity of complexity profiles of transmembrane segments, shared protein domains and 3D structural similarities between transport proteins were analyzed to assist in inferring homology. The MFS now includes 105 families.
Collapse
Affiliation(s)
- Steven C Wang
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, United States of America
| | - Pauldeen Davejan
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, United States of America
| | - Kevin J Hendargo
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, United States of America
| | - Ida Javadi-Razaz
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, United States of America
| | - Amy Chou
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, United States of America
| | - Daniel C Yee
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, United States of America
| | - Faezeh Ghazi
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, United States of America
| | - Katie Jing Kay Lam
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, United States of America
| | - Adam M Conn
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, United States of America
| | - Assael Madrigal
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, United States of America
| | - Arturo Medrano-Soto
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, United States of America
| | - Milton H Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, United States of America.
| |
Collapse
|
23
|
Glycolate is a Novel Marker of Vitamin B 2 Deficiency Involved in Gut Microbe Metabolism in Mice. Nutrients 2020; 12:nu12030736. [PMID: 32168816 PMCID: PMC7146322 DOI: 10.3390/nu12030736] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/07/2020] [Accepted: 03/08/2020] [Indexed: 12/22/2022] Open
Abstract
Microbes in the human gut play a role in the production of bioactive compounds, including some vitamins. Although several studies attempted to identify definitive markers for certain vitamin deficiencies, the role of gut microbiota in these deficiencies is unclear. To investigate the role of gut microbiota in deficiencies of four vitamins, B2, B6, folate, and B12, we conducted a comprehensive analysis of metabolites in mice treated and untreated with antibiotics. We identified glycolate (GA) as a novel marker of vitamin B2 (VB2) deficiency, and show that gut microbiota sense dietary VB2 deficiency and accumulate GA in response. The plasma GA concentration responded to reduced VB2 supply from both the gut microbiota and the diet. These results suggest that GA is a novel marker that can be used to assess whether or not the net supply of VB2 from dietary sources and gut microbiota is sufficient. We also found that gut microbiota can provide short-term compensation for host VB2 deficiency when dietary VB2 is withheld.
Collapse
|
24
|
Darguzyte M, Drude N, Lammers T, Kiessling F. Riboflavin-Targeted Drug Delivery. Cancers (Basel) 2020; 12:cancers12020295. [PMID: 32012715 PMCID: PMC7072493 DOI: 10.3390/cancers12020295] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/14/2020] [Accepted: 01/25/2020] [Indexed: 12/30/2022] Open
Abstract
Active targeting can improve the retention of drugs and drug delivery systems in tumors, thereby enhancing their therapeutic efficacy. In this context, vitamin receptors that are overexpressed in many cancers are promising targets. In the last decade, attention and research were mainly centered on vitamin B9 (folate) targeting; however, the focus is slowly shifting towards vitamin B2 (riboflavin). Interestingly, while the riboflavin carrier protein was discovered in the 1960s, the three riboflavin transporters (RFVT 1-3) were only identified recently. It has been shown that riboflavin transporters and the riboflavin carrier protein are overexpressed in many tumor types, tumor stem cells, and the tumor neovasculature. Furthermore, a clinical study has demonstrated that tumor cells exhibit increased riboflavin metabolism as compared to normal cells. Moreover, riboflavin and its derivatives have been conjugated to ultrasmall iron oxide nanoparticles, polyethylene glycol polymers, dendrimers, and liposomes. These conjugates have shown a high affinity towards tumors in preclinical studies. This review article summarizes knowledge on RFVT expression in healthy and pathological tissues, discusses riboflavin internalization pathways, and provides an overview of RF-targeted diagnostics and therapeutics.
Collapse
Affiliation(s)
- Milita Darguzyte
- Institute for Experimental Molecular Imaging, University Hospital Aachen, Forckenbeckstrasse 55, 52074 Aachen, Germany; (M.D.); (N.D.); (T.L.)
| | - Natascha Drude
- Institute for Experimental Molecular Imaging, University Hospital Aachen, Forckenbeckstrasse 55, 52074 Aachen, Germany; (M.D.); (N.D.); (T.L.)
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, University Hospital Aachen, Forckenbeckstrasse 55, 52074 Aachen, Germany; (M.D.); (N.D.); (T.L.)
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, University Hospital Aachen, Forckenbeckstrasse 55, 52074 Aachen, Germany; (M.D.); (N.D.); (T.L.)
- Fraunhofer MEVIS, Institute for Medical Image Computing, Forckenbeckstrasse 55, 52074 Aachen, Germany
- Correspondence:
| |
Collapse
|
25
|
Hino H, Yang M, Dalvi P, Chen T, Sun L, Harper PA, Ito S. In Vitro Effects of Paclitaxel and Cremophor EL on Human Riboflavin Transporter SLC52A2. Biol Pharm Bull 2020; 43:175-178. [PMID: 31902922 DOI: 10.1248/bpb.b19-00377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Paclitaxel, a mitotic inhibitor with anti-cancer effects, is dissolved in Cremophor EL (CrEL). However, peripheral neuropathy is a known side effect. As one of the mechanisms of the neuropathy, mitochondrial dysfunction has been proposed, while peroxidation products are involved in the cause of CrEL-induced neurotoxicity. Riboflavin is an essential nutrient required for ATP production in mitochondria and has an antioxidant role as a coenzyme for glutathione. Therefore, riboflavin transporters might play a key role to mitigate neuropathy. However, it is unclear whether paclitaxel and CrEL affect these transporters. In this study, human riboflavin transporter SLC52A2 was used to analyze the effects of paclitaxel and CrEL. CrEL, but not paclitaxel, inhibited uptake of riboflavin in human embryonic kidney 293 cells transfected with the SLC52A2 expression vector, suggesting that altered riboflavin disposition may be involved in the pathogenesis of paclitaxel/CrEL toxicity.
Collapse
Affiliation(s)
- Hitomi Hino
- Translational Medicine Program, Research Institute, The Hospital for Sick Children
| | - Mingdong Yang
- Translational Medicine Program, Research Institute, The Hospital for Sick Children
| | - Pooja Dalvi
- Translational Medicine Program, Research Institute, The Hospital for Sick Children
| | - Tongtong Chen
- Translational Medicine Program, Research Institute, The Hospital for Sick Children
| | - Linda Sun
- Translational Medicine Program, Research Institute, The Hospital for Sick Children
| | | | - Shinya Ito
- Translational Medicine Program, Research Institute, The Hospital for Sick Children.,Department of Pharmacology and Toxicology, University of Toronto.,Department of Paediatrics, The Hospital for Sick Children, University of Toronto
| |
Collapse
|
26
|
Riboflavin transport mediated by riboflavin transporters (RFVTs/SLC52A) at the rat outer blood-retinal barrier. Drug Metab Pharmacokinet 2019; 34:380-386. [PMID: 31601465 DOI: 10.1016/j.dmpk.2019.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/01/2019] [Accepted: 08/09/2019] [Indexed: 12/31/2022]
Abstract
The previous in vivo study revealed the carrier-mediated transport of riboflavin (vitamin B2) across the blood-retinal barrier (BRB). In the present study, the blood-to-retina supply of riboflavin across the outer BRB was assessed in RPE-J cells, a rat-derived in vitro cell model of the outer BRB that is formed by the retinal pigment epithelial cells. In the directional uptake analysis on collagen-coated Transwell® inserts, RPE-J cells showed higher basal-to-cell (B-to-C) uptake (22.8 μL/mg protein) of [3H]riboflavin than apical-to-cell (A-to-C) uptake (13.5 μL/mg protein). RPE-J cells showed concentration- and temperature-dependent uptake of [3H]riboflavin with a Km of 297 nM, suggesting the involvement of carrier-mediated process in the blood-to-retina transport of riboflavin across the outer BRB. In RPE-J cells, [3H]riboflavin uptake was affected under a K+-replacement condition while no effect was observed under a choline-replacement condition and at different pH values. Uptake of [3H]riboflavin by RPE-J cells was markedly reduced by riboflavin, flavin adenine dinucleotide (FAD), and lumichrome with no significant effect noted for other vitamins. The obtained results suggested the involvement of riboflavin transporters (SLC52A/RFVT) at the outer BRB, and this is supported by the expression and knockdown analyses of rRFVT2 (Slc52a2) and rRFVT3 (Slc52a3).
Collapse
|
27
|
Wojdas E, Łopata K, Nowak R, Kimsa‐Dudek M, Łopata P, Mazurek U. Expression profile of human porcine endogenous retrovirus A receptors (HuPAR‐1, HuPAR‐2) and transcription factor activator protein‐2γ (TFAP‐2C) genes in infected human fibroblasts—Model in vitro. Xenotransplantation 2019; 26:e12541. [DOI: 10.1111/xen.12541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/15/2019] [Accepted: 05/29/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Emilia Wojdas
- Department of Molecular Biology, Faculty of Pharmacy with the Division of Laboratory Medicine in Sosnowiec Medical University of Silesia in Katowice Sosnowiec Poland
- Department of Community Pharmacy, Faculty of Pharmacy with the Division of Laboratory Medicine in Sosnowiec Medical University of Silesia in Katowice Sosnowiec Poland
| | - Krzysztof Łopata
- Department of Molecular Biology, Faculty of Pharmacy with the Division of Laboratory Medicine in Sosnowiec Medical University of Silesia in Katowice Sosnowiec Poland
| | - Roman Nowak
- Department of Molecular Biology, Faculty of Pharmacy with the Division of Laboratory Medicine in Sosnowiec Medical University of Silesia in Katowice Sosnowiec Poland
| | - Magdalena Kimsa‐Dudek
- Department of Molecular Biology, Faculty of Pharmacy with the Division of Laboratory Medicine in Sosnowiec Medical University of Silesia in Katowice Sosnowiec Poland
| | - Paweł Łopata
- AGH University of Science and Technology in Krakow Krakow Poland
| | - Urszula Mazurek
- Department of Molecular Biology, Faculty of Pharmacy with the Division of Laboratory Medicine in Sosnowiec Medical University of Silesia in Katowice Sosnowiec Poland
| |
Collapse
|
28
|
O'Callaghan B, Bosch AM, Houlden H. An update on the genetics, clinical presentation, and pathomechanisms of human riboflavin transporter deficiency. J Inherit Metab Dis 2019; 42:598-607. [PMID: 30793323 DOI: 10.1002/jimd.12053] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/31/2018] [Indexed: 11/10/2022]
Abstract
Riboflavin transporter deficiency (RTD) is a rare neurological condition that encompasses the Brown-Vialetto-Van Laere and Fazio-Londe syndromes since the discovery of pathogenic mutations in the SLC52A2 and SLC52A3 genes that encode human riboflavin transporters RFVT2 and RFVT3. Patients present with a deteriorating progression of peripheral and cranial neuropathy that causes muscle weakness, vision loss, deafness, sensory ataxia, and respiratory compromise which when left untreated can be fatal. Considerable progress in the clinical and genetic diagnosis of RTDs has been made in recent years and has permitted the successful lifesaving treatment of many patients with high dose riboflavin supplementation. In this review, we first outline the importance of riboflavin and its efficient transmembrane transport in human physiology. Reports on 109 patients with a genetically confirmed diagnosis of RTD are then summarized in order to highlight commonly presenting clinical features and possible differences between patients with pathogenic SLC52A2 (RTD2) or SLC52A3 (RTD3) mutations. Finally, we focus attention on recent work with different models of RTD that have revealed possible pathomechanisms contributing to neurodegeneration in patients.
Collapse
Affiliation(s)
- Benjamin O'Callaghan
- MRC Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Annet M Bosch
- Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Pediatric Metabolic Diseases, Amsterdam, The Netherlands
| | - Henry Houlden
- MRC Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
29
|
Yoshii K, Hosomi K, Sawane K, Kunisawa J. Metabolism of Dietary and Microbial Vitamin B Family in the Regulation of Host Immunity. Front Nutr 2019; 6:48. [PMID: 31058161 PMCID: PMC6478888 DOI: 10.3389/fnut.2019.00048] [Citation(s) in RCA: 326] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/01/2019] [Indexed: 12/28/2022] Open
Abstract
Vitamins are micronutrients that have physiological effects on various biological responses, including host immunity. Therefore, vitamin deficiency leads to increased risk of developing infectious, allergic, and inflammatory diseases. Since B vitamins are synthesized by plants, yeasts, and bacteria, but not by mammals, mammals must acquire B vitamins from dietary or microbial sources, such as the intestinal microbiota. Similarly, some intestinal bacteria are unable to synthesize B vitamins and must acquire them from the host diet or from other intestinal bacteria for their growth and survival. This suggests that the composition and function of the intestinal microbiota may affect host B vitamin usage and, by extension, host immunity. Here, we review the immunological functions of B vitamins and their metabolism by intestinal bacteria with respect to the control of host immunity.
Collapse
Affiliation(s)
- Ken Yoshii
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Koji Hosomi
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Kento Sawane
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Innovation Center, Nippon Flour Mills Co., Ltd., Atsugi, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Graduate School of Medicine, Osaka University, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Graduate School of Dentistry, Osaka University, Osaka, Japan
- Department of Microbiology and Immunology, Graduate School of Medicine, Kobe University, Hyogo, Japan
- Division of Mucosal Vaccines, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
30
|
Sabui S, Subramanian VS, Pham Q, Said HM. Identification of transmembrane protein 237 as a novel interactor with the intestinal riboflavin transporter-3 (RFVT-3): role in functionality and cell biology. Am J Physiol Cell Physiol 2019; 316:C805-C814. [PMID: 30892938 DOI: 10.1152/ajpcell.00029.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The apically localized riboflavin (RF) transporter-3 (RFVT-3) is involved in intestinal absorption of vitamin B2. Previous studies have characterized different physiological/biological aspects of the RFVT-3, but there is a lack of knowledge regarding possible existence of interacting partner(s) and consequence of interaction(s) on its function/cell biology. To address the latter, we performed yeast two-hybrid (Y2H) screening of a human colonic cDNA library and have identified transmembrane protein 237 (TMEM237) as a putative interactor with the human (h)RFVT-3; the interaction was further confirmed via "1-by-1" Y2H assay that involved appropriate positive and negative controls. TMEM237 was found to be highly expressed in human native intestine and in human intestinal epithelial cell lines; further, confocal images showed colocalization of the protein with hRFVT-3. The interaction between TMEM237 with hRFVT-3 in human intestinal epithelial HuTu-80 cells was established by coimmunoprecipitation. Expressing TMEM237 in HuTu-80 cells led to a significant induction in RF uptake, while its knockdown (with the use of gene-specific siRNA) led to a significant reduction in uptake. Transfecting TMEM237 into HuTu-80 cells also led to a marked enhancement in hRFVT-3 protein stability (reflected by an increase in the protein half-life). Interestingly, the level of expression of TMEM237 was found to be markedly reduced following treatment with TNF-α (a proinflammatory cytokine that inhibits intestinal RF uptake), while its expression was significantly upregulated following treatment with butyrate (an inducer of intestinal RF uptake). These findings identify TMEM237 as an interactor with the intestinal hRFVT-3 and show that the interaction has physiological/biological significance.
Collapse
Affiliation(s)
- Subrata Sabui
- Department of Physiology and Biophysics, School of Medicine, University of California , Irvine, California.,Department of Medicine, School of Medicine, University of California , Irvine, California.,Veterans Affairs Medical Center, Long Beach, California
| | - Veedamali S Subramanian
- Department of Physiology and Biophysics, School of Medicine, University of California , Irvine, California.,Department of Medicine, School of Medicine, University of California , Irvine, California.,Veterans Affairs Medical Center, Long Beach, California
| | - Quang Pham
- Department of Physiology and Biophysics, School of Medicine, University of California , Irvine, California
| | - Hamid M Said
- Department of Physiology and Biophysics, School of Medicine, University of California , Irvine, California.,Department of Medicine, School of Medicine, University of California , Irvine, California.,Veterans Affairs Medical Center, Long Beach, California
| |
Collapse
|
31
|
Bartmann L, Schumacher D, von Stillfried S, Sternkopf M, Alampour-Rajabi S, van Zandvoort MAMJ, Kiessling F, Wu Z. Evaluation of Riboflavin Transporters as Targets for Drug Delivery and Theranostics. Front Pharmacol 2019; 10:79. [PMID: 30787877 PMCID: PMC6372557 DOI: 10.3389/fphar.2019.00079] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/21/2019] [Indexed: 12/30/2022] Open
Abstract
The retention and cellular internalization of drug delivery systems and theranostics for cancer therapy can be improved by targeting molecules. Since an increased uptake of riboflavin was reported for various cancers, riboflavin and its derivatives may be promising binding moieties to trigger internalization via the riboflavin transporters (RFVT) 1, 2, and 3. Riboflavin is a vitamin with pivotal role in energy metabolism and indispensable for cellular growth. In previous preclinical studies on mice, we showed the target-specific accumulation of riboflavin-functionalized nanocarriers in cancer cells. Although the uptake mechanism of riboflavin has been studied for over a decade, little is known about the riboflavin transporters and their expression on cancer cells, tumor stroma, and healthy tissues. Furthermore, evidence is lacking concerning the representativeness of the preclinical findings to the situation in humans. In this study, we investigated the expression pattern of riboflavin transporters in human squamous cell carcinoma (SCC), melanoma and luminal A breast cancer samples, as well as in healthy skin, breast, aorta, and kidney tissues. Low constitutive expression levels of RFVT1-3 were found on all healthy tissues, while RFVT2 and 3 were significantly overexpressed in melanoma, RFVT1 and 3 in luminal A breast cancer and RFVT1-3 in SCC. Correspondingly, the SCC cell line A431 was highly positive for all RFVTs, thus qualifying as suitable in vitro model. In contrast, activated endothelial cells (HUVEC) only presented with a strong expression of RFVT2, and HK2 kidney cells only with a low constitutive expression of RFVT1-3. Functional in vitro studies on A431 and HK2 cells using confocal microscopy showed that riboflavin uptake is mostly ATP dependent and primarily driven by endocytosis. Furthermore, riboflavin is partially trafficked to the mitochondria. Riboflavin uptake and trafficking was significantly higher in A431 than in healthy kidney cells. Thus, this manuscript supports the hypothesis that addressing the riboflavin internalization pathway may be highly valuable for tumor targeted drug delivery.
Collapse
Affiliation(s)
- Lisa Bartmann
- Institute for Experimental Molecular Imaging, University Clinic, RWTH Aachen University, Aachen, Germany.,Institute for Molecular Cardiovascular Research, University Clinic, RWTH Aachen University, Aachen, Germany
| | - David Schumacher
- Institute for Molecular Cardiovascular Research, University Clinic, RWTH Aachen University, Aachen, Germany
| | | | - Marieke Sternkopf
- Institute for Molecular Cardiovascular Research, University Clinic, RWTH Aachen University, Aachen, Germany
| | - Setareh Alampour-Rajabi
- Institute for Molecular Cardiovascular Research, University Clinic, RWTH Aachen University, Aachen, Germany
| | - Marc A M J van Zandvoort
- Institute for Molecular Cardiovascular Research, University Clinic, RWTH Aachen University, Aachen, Germany.,Department of Genetics and Molecular Cell Biology, School for Cardiovascular Diseases (CARIM), School for Oncology and Developmental Biology (GROW), Maastricht University, Maastricht, Netherlands
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, University Clinic, RWTH Aachen University, Aachen, Germany
| | - Zhuojun Wu
- Institute for Experimental Molecular Imaging, University Clinic, RWTH Aachen University, Aachen, Germany.,Institute for Molecular Cardiovascular Research, University Clinic, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
32
|
Sodium Butyrate Enhances Intestinal Riboflavin Uptake via Induction of Expression of Riboflavin Transporter-3 (RFVT3). Dig Dis Sci 2019; 64:84-92. [PMID: 30276569 PMCID: PMC6320279 DOI: 10.1007/s10620-018-5305-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/24/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Uptake of riboflavin (RF) by intestinal epithelial cells occurs via a specific carrier-mediated process that involves the apically localized RF transporter-3 (RFVT3). Previous studies have shown that sodium butyrate (NaB) affects intestinal uptake of other substrates and expression of their membrane transporters, but its effect on intestinal uptake of RF and expression of RFVT3 has not been examined. AIMS To investigate the effect of NaB on intestinal RF uptake process and expression of the RFVT3. METHODS Two experimental models were used in this study: Human-derived intestinal epithelial Caco-2 cells and ex vivo mouse colonoids. 3H-RF uptake assay, Western blot, RT-qPCR, and chromatin immunoprecipitation assay were performed. RESULTS Treating Caco-2 cells with NaB led to a significant increase in carrier-mediated RF uptake. This increase was associated with a significant induction in the level of expression of the hRFVT3 protein, mRNA, and heterogenous nuclear RNA (hnRNA). Similarly, treating mouse colonoids with NaB led to a marked increase in the level of expression of the mRFVT3 protein, mRNA, and hnRNA. NaB did not affect hRFVT3 mRNA stability, rather it caused significant epigenetic changes (histone modifications) in the SLC52A3 gene where an increase in H3Ac and a reduction in H3K27me3 levels were observed in the NaB-treated Caco-2 cells compared to untreated controls. CONCLUSION These findings demonstrate that NaB up-regulates intestinal RF uptake and that the effect appears to be mediated, at least in part, at the level of transcription of the SLC52A3 gene and may involve epigenetic mechanism(s).
Collapse
|
33
|
Anandam KY, Alwan OA, Subramanian VS, Srinivasan P, Kapadia R, Said HM. Effect of the proinflammatory cytokine TNF-α on intestinal riboflavin uptake: inhibition mediated via transcriptional mechanism(s). Am J Physiol Cell Physiol 2018; 315:C653-C663. [PMID: 30156861 DOI: 10.1152/ajpcell.00295.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Riboflavin (RF), is essential for normal cellular metabolism/function. Intestinal RF absorption occurs via a specific carrier-mediated process that involves the apical transporter RFVT-3 ( SLC52A3) and the basolateral RFVT-1 (SLC52A1). Previously, we characterized different cellular/molecular aspects of the intestinal RF uptake process, but nothing is known about the effect of proinflammatory cytokines on the uptake event. We addressed this issue using in vitro, ex vivo, and in vivo models. First, we determined the level of mRNA expression of the human (h)RFVT-3 and hRFVT-1 in intestinal tissue of patients with inflammatory bowel disease (IBD) and observed a markedly lower level compared with controls. In the in vitro model, exposing Caco-2 cells to tumor necrosis factor-α (TNF-α) led to a significant inhibition in RF uptake, an effect that was abrogated upon knocking down TNF receptor 1 (TNFR1). The inhibition in RF uptake was associated with a significant reduction in the expression of hRFVT-3 and -1 protein and mRNA levels, as well as in the activity of the SLC52A3 and SLC52A1 promoters. The latter effects appear to involve Sp1 and NF-κB sites in these promoters. Similarly, exposure of mouse small intestinal enteroids and wild-type mice to TNF-α led to a significant inhibition in physiological and molecular parameters of intestinal RF uptake. Collectively, these findings demonstrate that exposure of intestinal epithelial cells to TNF-α leads to inhibition in RF uptake and that this effect is mediated, at least in part, via transcriptional mechanism(s). These findings may explain the significantly low RF levels observed in patients with IBD.
Collapse
Affiliation(s)
- Kasin Yadunandam Anandam
- Department of Medicine, University of California , Irvine, California.,Department of Physiology/Biophysics, University of California , Irvine, California.,Department of Medical Research, Veterans Affairs Medical Center , Long Beach, California
| | - Omar A Alwan
- Department of Medicine, University of California , Irvine, California.,Department of Physiology/Biophysics, University of California , Irvine, California.,Department of Medical Research, Veterans Affairs Medical Center , Long Beach, California
| | - Veedamali S Subramanian
- Department of Medicine, University of California , Irvine, California.,Department of Physiology/Biophysics, University of California , Irvine, California.,Department of Medical Research, Veterans Affairs Medical Center , Long Beach, California
| | - Padmanabhan Srinivasan
- Department of Medicine, University of California , Irvine, California.,Department of Physiology/Biophysics, University of California , Irvine, California.,Department of Medical Research, Veterans Affairs Medical Center , Long Beach, California
| | - Rubina Kapadia
- Department of Medicine, University of California , Irvine, California.,Department of Physiology/Biophysics, University of California , Irvine, California.,Department of Medical Research, Veterans Affairs Medical Center , Long Beach, California
| | - Hamid M Said
- Department of Medicine, University of California , Irvine, California.,Department of Physiology/Biophysics, University of California , Irvine, California.,Department of Medical Research, Veterans Affairs Medical Center , Long Beach, California
| |
Collapse
|
34
|
Jin C, Yao Y, Yonezawa A, Imai S, Yoshimatsu H, Otani Y, Omura T, Nakagawa S, Nakagawa T, Matsubara K. Riboflavin Transporters RFVT/SLC52A Mediate Translocation of Riboflavin, Rather than FMN or FAD, across Plasma Membrane. Biol Pharm Bull 2018; 40:1990-1995. [PMID: 29093349 DOI: 10.1248/bpb.b17-00292] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Riboflavin (vitamin B2) plays a role in various biochemical oxidation-reduction reactions. Flavin mononucleotide (FMN) and FAD, the biologically active forms, are made from riboflavin. Riboflavin transporters (RFVTs), RFVT1-3/Slc52a1-3, have been identified. However, the roles of human (h)RFVTs in FMN and FAD homeostasis have not yet been fully clarified. In this study, we assessed the contribution of each hRFVT to riboflavin, FMN and FAD uptake and efflux using in vitro studies. The transfection of hRFVTs increased cellular riboflavin concentrations. The uptake of riboflavin by human embryonic kidney cells transfected with hRFVTs was significantly increased, and the efflux was accelerated in a time-dependent manner. However, the uptake and efflux of FMN and FAD hardly changed. These results strongly suggest that riboflavin, rather than FMN or FAD, passes through plasma membranes via hRFVTs. Our findings could suggest that hRFVTs are involved in riboflavin homeostasis in the cells, and that FMN and FAD concentrations are regulated by riboflavin kinase and FAD synthase.
Collapse
Affiliation(s)
- Congyun Jin
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital
| | - Yoshiaki Yao
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital
| | - Atsushi Yonezawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital
| | - Satoshi Imai
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital
| | - Hiroki Yoshimatsu
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital
| | - Yuki Otani
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital
| | - Tomohiro Omura
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital
| | - Shunsaku Nakagawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital
| | - Takayuki Nakagawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital
| | - Kazuo Matsubara
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital
| |
Collapse
|
35
|
Long L, He JZ, Chen Y, Xu XE, Liao LD, Xie YM, Li EM, Xu LY. Riboflavin Depletion Promotes Tumorigenesis in HEK293T and NIH3T3 Cells by Sustaining Cell Proliferation and Regulating Cell Cycle-Related Gene Transcription. J Nutr 2018; 148:834-843. [PMID: 29741716 DOI: 10.1093/jn/nxy047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 02/20/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Riboflavin is an essential component of the human diet and its derivative cofactors play an established role in oxidative metabolism. Riboflavin deficiency has been linked with various human diseases. OBJECTIVE The objective of this study was to identify whether riboflavin depletion promotes tumorigenesis. METHODS HEK293T and NIH3T3 cells were cultured in riboflavin-deficient or riboflavin-sufficient medium and passaged every 48 h. Cells were collected every 5 generations and plate colony formation assays were performed to observe cell proliferation. Subcutaneous tumorigenicity assays in NU/NU mice were used to observe tumorigenicity of riboflavin-depleted HEK293T cells. Mechanistically, gene expression profiling and gene ontology analysis were used to identify abnormally expressed genes induced by riboflavin depletion. Western blot analyses, cell cycle analyses, and chromatin immunoprecipitation were used to validate the expression of cell cycle-related genes. RESULTS Plate colony formation of NIH3T3 and HEK293T cell lines was enhanced >2-fold when cultured in riboflavin-deficient medium for 10-20 generations. Moreover, we observed enhanced subcutaneous tumorigenicity in NU/NU mice following injection of riboflavin-depleted compared with normal HEK293T cells (55.6% compared with 0.0% tumor formation, respectively). Gene expression profiling and gene ontology analysis revealed that riboflavin depletion induced the expression of cell cycle-related genes. Validation experiments also found that riboflavin depletion decreased p21 and p27 protein levels by ∼20%, and increased cell cycle-related and expression-elevated protein in tumor (CREPT) protein expression >2-fold, resulting in cyclin D1 and CDK4 levels being increased ∼1.5-fold, and cell cycle acceleration. We also observed that riboflavin depletion decreased intracellular riboflavin levels by 20% and upregulated expression of riboflavin transporter genes, particularly SLC52A3, and that the changes in CREPT and SLC52A3 correlated with specific epigenetic changes in their promoters in riboflavin-depleted HEK293T cells. CONCLUSION Riboflavin depletion contributes to HEK293T and NIH3T3 cell tumorigenesis and may be a risk factor for tumor development.
Collapse
Affiliation(s)
- Lin Long
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area
- Institute of Oncologic Pathology
- Departments of Biochemistry and Molecular Biology
| | - Jian-Zhong He
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area
- Institute of Oncologic Pathology
| | - Ye Chen
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area
- Institute of Oncologic Pathology
| | - Xiu-E Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area
- Institute of Oncologic Pathology
| | - Lian-Di Liao
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area
- Institute of Oncologic Pathology
| | - Yang-Min Xie
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area
- Experimental Animal Center, Shantou University Medical College, Shantou, China
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area
- Departments of Biochemistry and Molecular Biology
| | - Li-Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area
- Institute of Oncologic Pathology
| |
Collapse
|
36
|
Kubo Y, Akanuma SI, Hosoya KI. Recent advances in drug and nutrient transport across the blood-retinal barrier. Expert Opin Drug Metab Toxicol 2018; 14:513-531. [PMID: 29719158 DOI: 10.1080/17425255.2018.1472764] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION The blood-retinal barrier (BRB) is the barrier separating the blood and neural retina, and transport systems for low-weight molecules at the BRB are expected to be useful for developing drugs for the treatment of ocular neural disorders and maintaining a healthy retina. Areas covered: This review discusses blood-to-retina and retina-to-blood transport of drugs and nutrients at the BRB. In particular, P-gp (ABCB1/MDR1) has low impact on the transport of cationic drugs at the BRB, suggesting a significant role of novel organic cation transporters in influx and efflux transport of lipophilic cationic drugs between blood and the retina. The transport of pravastatin at the BRB involves transporters including organic anion transporting polypeptide 1a4 (Oatp1a4). Recent studies have shown the involvement of solute carrier transporters in the blood-to-retina transport of nutrients including riboflavin, L-ornithine, β-alanine, and L-histidine, implying that dipeptide transport at the BRB is minimal. Expert opinion: Novel organic cation transport systems and the elimination-dominant transport of pravastatin at the BRB are expected to be useful in systemic drug delivery to the neural retina without CNS side effects. The mechanism of nutrient transport at the BRB is expected to provide a new strategy for delivery of nutrient-mimetic drugs.
Collapse
Affiliation(s)
- Yoshiyuki Kubo
- a Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences , University of Toyama , Toyama , Japan
| | - Shin-Ichi Akanuma
- a Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences , University of Toyama , Toyama , Japan
| | - Ken-Ichi Hosoya
- a Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences , University of Toyama , Toyama , Japan
| |
Collapse
|
37
|
Łopata K, Wojdas E, Nowak R, Łopata P, Mazurek U. Porcine Endogenous Retrovirus (PERV) - Molecular Structure and Replication Strategy in the Context of Retroviral Infection Risk of Human Cells. Front Microbiol 2018; 9:730. [PMID: 29755422 PMCID: PMC5932395 DOI: 10.3389/fmicb.2018.00730] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 03/28/2018] [Indexed: 12/28/2022] Open
Abstract
The xenotransplantation of porcine tissues may help overcome the shortage of human organs for transplantation. However, there are some concerns about recipient safety because the risk of porcine endogenous retrovirus (PERV) transmission to human cells remains unknown. Although, to date, no PERV infections have been noted in vivo, the possibility of such infections has been confirmed in vitro. Better understanding of the structure and replication cycle of PERVs is a prerequisite for determining the risk of infection and planning PERV-detection strategies. This review presents the current state of knowledge about the structure and replication cycle of PERVs in the context of retroviral infection risk.
Collapse
Affiliation(s)
- Krzysztof Łopata
- Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Emilia Wojdas
- Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland.,Department of Instrumental Analysis, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Roman Nowak
- Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Paweł Łopata
- Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Urszula Mazurek
- Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
38
|
Greenwood AD, Ishida Y, O'Brien SP, Roca AL, Eiden MV. Transmission, Evolution, and Endogenization: Lessons Learned from Recent Retroviral Invasions. Microbiol Mol Biol Rev 2018; 82:e00044-17. [PMID: 29237726 PMCID: PMC5813887 DOI: 10.1128/mmbr.00044-17] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Viruses of the subfamily Orthoretrovirinae are defined by the ability to reverse transcribe an RNA genome into DNA that integrates into the host cell genome during the intracellular virus life cycle. Exogenous retroviruses (XRVs) are horizontally transmitted between host individuals, with disease outcome depending on interactions between the retrovirus and the host organism. When retroviruses infect germ line cells of the host, they may become endogenous retroviruses (ERVs), which are permanent elements in the host germ line that are subject to vertical transmission. These ERVs sometimes remain infectious and can themselves give rise to XRVs. This review integrates recent developments in the phylogenetic classification of retroviruses and the identification of retroviral receptors to elucidate the origins and evolution of XRVs and ERVs. We consider whether ERVs may recurrently pressure XRVs to shift receptor usage to sidestep ERV interference. We discuss how related retroviruses undergo alternative fates in different host lineages after endogenization, with koala retrovirus (KoRV) receiving notable interest as a recent invader of its host germ line. KoRV is heritable but also infectious, which provides insights into the early stages of germ line invasions as well as XRV generation from ERVs. The relationship of KoRV to primate and other retroviruses is placed in the context of host biogeography and the potential role of bats and rodents as vectors for interspecies viral transmission. Combining studies of extant XRVs and "fossil" endogenous retroviruses in koalas and other Australasian species has broadened our understanding of the evolution of retroviruses and host-retrovirus interactions.
Collapse
Affiliation(s)
- Alex D Greenwood
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research (IZW) in the Forschungsverbund Berlin e.V., Berlin, Germany
| | - Yasuko Ishida
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Sean P O'Brien
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Alfred L Roca
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Maribeth V Eiden
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research (IZW) in the Forschungsverbund Berlin e.V., Berlin, Germany
| |
Collapse
|
39
|
Intestinal Absorption of Water-Soluble Vitamins: Cellular and Molecular Mechanisms. PHYSIOLOGY OF THE GASTROINTESTINAL TRACT 2018. [DOI: 10.1016/b978-0-12-809954-4.00054-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
40
|
Mosegaard S, Bruun GH, Flyvbjerg KF, Bliksrud YT, Gregersen N, Dembic M, Annexstad E, Tangeraas T, Olsen RKJ, Andresen BS. An intronic variation in SLC52A1 causes exon skipping and transient riboflavin-responsive multiple acyl-CoA dehydrogenation deficiency. Mol Genet Metab 2017; 122:182-188. [PMID: 29122468 DOI: 10.1016/j.ymgme.2017.10.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/31/2017] [Accepted: 10/31/2017] [Indexed: 11/23/2022]
Abstract
Vitamin B2, riboflavin is essential for cellular function, as it participates in a diversity of redox reactions central to human metabolism, through its role as precursor for the cofactors flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), which are electron carriers. The electron transfer flavoprotein (ETF) and its dehydrogenase (ETFDH), uses FAD as cofactor. The ETF and ETFDH are forming the electron transport pathway for many mitochondrial flavoprotein dehydrogenases involved in fatty acid, amino acid and choline metabolism. A variation in either ETF or ETFDH causes multiple acyl-CoA dehydrogenation deficiency (MADD), but genetic variations in the riboflavin metabolism or transportation of riboflavin can also cause MADD. The most common variations are located in the riboflavin transporter 2 (RFVT2) and 3 (RFVT3), that are highly expressed in brain and intestinal tissues, respectively. Deficiency of riboflavin transporter 1 (RFVT1), encoded by the SLC52A1 gene, highly expressed in the placenta, has only been reported once. We here report a case of transient MADD, caused by a heterozygous intronic variation, c.1134+11G>A, in the SLC52A1 gene encoding RFVT1. This variation creates a binding site for the splice inhibitory hnRNP A1 protein and causes exon 4 skipping. Riboflavin deficiency and maternal malnutrition during pregnancy might have been the determining factor in the outcome of this case.
Collapse
Affiliation(s)
- Signe Mosegaard
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and University Hospital, 8200 Aarhus N, Denmark
| | - Gitte Hoffmann Bruun
- Department of Biochemistry and Molecular Biology, The Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Karen Freund Flyvbjerg
- Department of Biochemistry and Molecular Biology, The Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | | | - Niels Gregersen
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and University Hospital, 8200 Aarhus N, Denmark
| | - Maja Dembic
- Department of Biochemistry and Molecular Biology, The Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Ellen Annexstad
- Ostfold Hospital Trust, Women's and Children's Department, Norway
| | - Trine Tangeraas
- Department of Pediatrics, Oslo University Hospital, Oslo, Norway
| | - Rikke Katrine Jentoft Olsen
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and University Hospital, 8200 Aarhus N, Denmark
| | - Brage S Andresen
- Department of Biochemistry and Molecular Biology, The Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
41
|
Udhayabanu T, Karthi S, Mahesh A, Varalakshmi P, Manole A, Houlden H, Ashokkumar B. Adaptive regulation of riboflavin transport in heart: effect of dietary riboflavin deficiency in cardiovascular pathogenesis. Mol Cell Biochem 2017; 440:147-156. [PMID: 28836047 DOI: 10.1007/s11010-017-3163-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/16/2017] [Indexed: 01/09/2023]
Abstract
Deficiency or defective transport of riboflavin (RF) is known to cause neurological disorders, cataract, cardiovascular anomalies, and various cancers by altering the biochemical pathways. Mechanisms and regulation of RF uptake process is well characterized in the cells of intestine, liver, kidney, and brain origin, while very little is known in the heart. Hence, we aimed to understand the expression and regulation of RF transporters (rRFVT-1 and rRFVT-2) in cardiomyocytes during RF deficiency and also investigated the role of RF in ischemic cardiomyopathy and mitochondrial dysfunction in vivo. Riboflavin uptake assay revealed that RF transport in H9C2 is (1) significantly higher at pH 7.5, (2) independent of Na+ and (3) saturable with a Km of 3.746 µM. For in vivo studies, male Wistar rats (110-130 g) were provided riboflavin deficient food containing 0.3 ± 0.05 mg/kg riboflavin for 7 weeks, which resulted in over expression of both RFVTs in mRNA and protein level. RF deprivation resulted in the accumulation of cardiac biomarkers, histopathological abnormalities, and reduced mitochondrial membrane potential which evidenced the key role of RF in the development of cardiovascular pathogenesis. Besides, adaptive regulation of RF transporters upon RF deficiency signifies that RFVTs can be considered as an effective delivery system for drugs against cardiac diseases.
Collapse
Affiliation(s)
- Tamilarasan Udhayabanu
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021, India
| | - Sellamuthu Karthi
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021, India
| | - Ayyavu Mahesh
- Centre for Excellence in Genomics Science, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625021, India
| | - Perumal Varalakshmi
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021, India
| | - Andreea Manole
- Department of Molecular Neuroscience and Neurogenetics Laboratory, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Henry Houlden
- Department of Molecular Neuroscience and Neurogenetics Laboratory, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Balasubramaniem Ashokkumar
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021, India.
| |
Collapse
|
42
|
Thulasi V, Veerapandiyan A, Pletcher BA, Tong CM, Ming X. A Case of Brown-Vialetto-Van Laere Syndrome Due To a Novel Mutation in SLC52A3 Gene: Clinical Course and Response to Riboflavin. Child Neurol Open 2017; 4:2329048X17725610. [PMID: 28856173 PMCID: PMC5570109 DOI: 10.1177/2329048x17725610] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 05/30/2017] [Accepted: 06/23/2017] [Indexed: 11/15/2022] Open
Abstract
Brown-Vialetto-Van Laere syndrome is a rare disorder characterized by motor, sensory, and cranial neuronopathies, associated with mutations in SLC52A2 and SLC52A3 genes that code for human riboflavin transporters RFVT2 and RFVT3, respectively. The authors describe the clinical course of a 6-year-old girl with Brown-Vialetto-Van Laere syndrome and a novel homozygous mutation c.1156T>C in the SLC52A3 gene, who presented at the age of 2.5 years with progressive brain stem dysfunction including ptosis, facial weakness, hearing loss, dysphagia, anarthria with bilateral vocal cord paralysis, and ataxic gait. She subsequently developed respiratory failure requiring tracheostomy and worsening dysphagia necessitating a gastrostomy. Following riboflavin supplementation, resolution of facial diplegia and ataxia, improvements in ptosis, and bulbar function including vocalization and respiration were noted. However, her sensorineural hearing loss remained unchanged. Similar to other cases of Brown-Vialetto-Van Laere syndrome, our patient responded favorably to early riboflavin supplementation with significant but not complete neurologic recovery.
Collapse
Affiliation(s)
- Venkatraman Thulasi
- Division of Pediatric Neurology, Department of Neurology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Aravindhan Veerapandiyan
- Division of Pediatric Neurology, Department of Neurology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Beth A Pletcher
- Division of Clinical Genetics, Department of Pediatrics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Chun M Tong
- Division of Pediatric Neurology, Department of Neurology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Xue Ming
- Division of Pediatric Neurology, Department of Neurology, Rutgers New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
43
|
Subramanian VS, Sabui S, Teafatiller T, Bohl JA, Said HM. Structure/functional aspects of the human riboflavin transporter-3 ( SLC52A3): role of the predicted glycosylation and substrate-interacting sites. Am J Physiol Cell Physiol 2017; 313:C228-C238. [PMID: 28637675 PMCID: PMC5582875 DOI: 10.1152/ajpcell.00101.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/05/2017] [Accepted: 06/16/2017] [Indexed: 11/22/2022]
Abstract
The human riboflavin (RF) transporter-3 (hRFVT-3; product of the SLC52A3 gene) plays an essential role in the intestinal RF absorption process and is expressed exclusively at the apical membrane domain of polarized enterocytes. Previous studies have characterized different physiological/biological aspects of this transporter, but nothing is known about the glycosylation status of the hRFVT-3 protein and role of this modification in its physiology/biology. Additionally, little is known about the residues in the hRFVT-3 protein that interact with the ligand, RF. We addressed these issues using appropriate biochemical/molecular approaches, a protein-docking model, and established intestinal/renal epithelial cells. Our results showed that the hRFVT-3 protein is glycosylated and that glycosylation is important for its function. Mutating the predicted N-glycosylation sites at Asn94 and Asn168 led to a significant decrease in RF uptake; it also led to a marked intracellular (in the endoplasmic reticulum, ER) retention of the mutated proteins as shown by live-cell confocal imaging studies. The protein-docking model used in this study has identified a number of putative substrate-interacting sites: Ser16, Ile20, Trp24, Phe142, Thr314, and Asn315 Mutating these potential interacting sites was indeed found to lead to a significant inhibition in RF uptake and to intracellular (ER) retention of the mutated proteins (except for the Phe142 mutant). These results demonstrate that the hRFVT-3 protein is glycosylated and this glycosylation is important for its function and cell surface expression. This study also identified a number of residues in the hRFVT-3 polypeptide that are important for its function/cell surface expression.
Collapse
Affiliation(s)
- Veedamali S Subramanian
- Departments of Medicine, Physiology/Biophysics, University of California, Irvine, California; and Department of Veterans Affairs Medical Center, Long Beach, California
| | - Subrata Sabui
- Departments of Medicine, Physiology/Biophysics, University of California, Irvine, California; and Department of Veterans Affairs Medical Center, Long Beach, California
| | - Trevor Teafatiller
- Departments of Medicine, Physiology/Biophysics, University of California, Irvine, California; and Department of Veterans Affairs Medical Center, Long Beach, California
| | - Jennifer A Bohl
- Departments of Medicine, Physiology/Biophysics, University of California, Irvine, California; and Department of Veterans Affairs Medical Center, Long Beach, California
| | - Hamid M Said
- Departments of Medicine, Physiology/Biophysics, University of California, Irvine, California; and Department of Veterans Affairs Medical Center, Long Beach, California
| |
Collapse
|
44
|
Three cysteine residues of SLC52A1, a receptor for the porcine endogenous retrovirus-A (PERV-A), play a critical role in cell surface expression and infectivity. Virology 2017; 507:140-150. [PMID: 28437635 DOI: 10.1016/j.virol.2017.04.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 11/22/2022]
Abstract
Porcine endogenous retrovirus-A (PERV-A), a gammaretrovirus, infects human cells in vitro, thus raising the potential risk of cross-species transmission in xenotransplantation. Two members of the solute carrier family 52 (SLC52A1 and SLC52A2) are PERV-A receptors. Site-directed mutagenesis of the cDNA encoding SLC52A1 identified that only one of two putative glycosylation signals is occupied by glycans. In addition, we showed that glycosylation of SLC52A1 is not necessary for PERV-A receptor function. We also identified that at a minimum, three cysteine residues are sufficient for SLC52A1 cell surface expression. Mutation of cysteine at position 365 and either of the two cysteine residues in the C-terminal tail at positions 442 or 446 reduced SLC52A1 surface expression and PERV-A infection suggesting that these residues may contribute to overall structural stability and receptor function. Understanding interactions between PERV-A and its cellular receptor may provide novel strategies to prevent zoonotic infection in the setting of xenotransplantation.
Collapse
|
45
|
Genome-wide RNA-seq of iPSC-derived motor neurons indicates selective cytoskeletal perturbation in Brown-Vialetto disease that is partially rescued by riboflavin. Sci Rep 2017; 7:46271. [PMID: 28382968 PMCID: PMC5382781 DOI: 10.1038/srep46271] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/14/2017] [Indexed: 12/14/2022] Open
Abstract
Riboflavin is essential in numerous cellular oxidation/reduction reactions but is not synthesized by mammalian cells. Riboflavin absorption occurs through the human riboflavin transporters RFVT1 and RFVT3 in the intestine and RFVT2 in the brain. Mutations in these genes are causative for the Brown–Vialetto–Van Laere (BVVL), childhood-onset syndrome characterized by a variety of cranial nerve palsies as well as by spinal cord motor neuron (MN) degeneration. Why mutations in RFVTs result in a neural cell–selective disorder is unclear. As a novel tool to gain insights into the pathomechanisms underlying the disease, we generated MNs from induced pluripotent stem cells (iPSCs) derived from BVVL patients as an in vitro disease model. BVVL-MNs explained a reduction in axon elongation, partially improved by riboflavin supplementation. RNA sequencing profiles and protein studies of the cytoskeletal structures showed a perturbation in the neurofilament composition in BVVL-MNs. Furthermore, exploring the autophagy–lysosome pathway, we observed a reduced autophagic/mitophagic flux in patient MNs. These features represent emerging pathogenetic mechanisms in BVVL-associated neurodegeneration, partially rescued by riboflavin supplementation. Our data showed that this therapeutic strategy could have some limits in rescuing all of the disease features, suggesting the need to develop complementary novel therapeutic strategies.
Collapse
|
46
|
Blood-to-retina transport of riboflavin via RFVTs at the inner blood-retinal barrier. Drug Metab Pharmacokinet 2017; 32:92-99. [DOI: 10.1016/j.dmpk.2016.09.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 09/26/2016] [Accepted: 09/27/2016] [Indexed: 11/24/2022]
|
47
|
Li SS, Xu YW, Wu JY, Tan HZ, Wu ZY, Xue YJ, Zhang JJ, Li EM, Xu LY. Plasma Riboflavin Level is Associated with Risk, Relapse, and Survival of Esophageal Squamous Cell Carcinoma. Nutr Cancer 2017; 69:21-28. [PMID: 27898225 DOI: 10.1080/01635581.2017.1247890] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Riboflavin is an essential micronutrient for normal cellular activity, and deficiency may result in disease, such as cancer. We performed a case-control study to explore the association of riboflavin levels with risk and prognosis of esophageal squamous cell carcinoma (ESCC). Plasma riboflavin levels, as measured by enzyme-linked immunosorbent assay (ELISA), in ESCC patients were significantly lower than in those of healthy controls (7.04 ± 6.34 ng/ml vs. 9.32 ± 12.40 ng/ml; P < 0.05). Moreover, there was an inverse relationship between riboflavin level and risk of ESCC (odds ratio (OR) = 0.97, 95% confidence interval (CI) = 0.95-0.99, P = 0.02). The 5-year relapse-free and overall survival rates were significantly lower when riboflavin levels were ≤0.8 ng/ml than >0.8 ng/ml (relapse-free survival rate: 29.4% vs. 54.8%; overall survival rate: 28.6% vs. 55.6%). Plasma riboflavin level was an independent protective factor for both relapse-free (hazard ratio (HR) = 0.325, 95% CI = 0.161-0.657, P = 0.002) and overall survival of ESCC patients (HR = 0.382, 95% CI = 0.190-0.768, P = 0.007). In conclusion, plasma riboflavin levels are significantly related to risk and prognosis of ESCC patients, suggesting that moderate supplementation of riboflavin will decrease risk and prevent recurrence of ESCC and also improve prognosis of ESCC patients.
Collapse
Affiliation(s)
- Shan-Shan Li
- a Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College , Shantou , China
- b Department of Public Health , Shantou University Medical College , Shantou , China
- c Department of Biochemistry and Molecular Biology , Shantou University Medical College , Shantou , China
| | - Yi-Wei Xu
- a Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College , Shantou , China
- c Department of Biochemistry and Molecular Biology , Shantou University Medical College , Shantou , China
- d Department of Clinical Laboratory , the Cancer Hospital of Shantou University Medical College , Shantou , China
| | - Jian-Yi Wu
- a Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College , Shantou , China
- c Department of Biochemistry and Molecular Biology , Shantou University Medical College , Shantou , China
| | - Hua-Zhen Tan
- a Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College , Shantou , China
- b Department of Public Health , Shantou University Medical College , Shantou , China
- c Department of Biochemistry and Molecular Biology , Shantou University Medical College , Shantou , China
| | - Zhi-Yong Wu
- e Department of Oncologic Surgery , Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-Sen University , Shantou , China
| | - Yu-Jie Xue
- a Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College , Shantou , China
- f Department of Pathology , Shantou University Medical College , Shantou , China
| | - Jian-Jun Zhang
- a Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College , Shantou , China
- b Department of Public Health , Shantou University Medical College , Shantou , China
| | - En-Min Li
- a Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College , Shantou , China
- c Department of Biochemistry and Molecular Biology , Shantou University Medical College , Shantou , China
| | - Li-Yan Xu
- a Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College , Shantou , China
- f Department of Pathology , Shantou University Medical College , Shantou , China
| |
Collapse
|
48
|
Beztsinna N, Tsvetkova Y, Bartneck M, Lammers T, Kiessling F, Bestel I. Amphiphilic Phospholipid-Based Riboflavin Derivatives for Tumor Targeting Nanomedicines. Bioconjug Chem 2016; 27:2048-61. [DOI: 10.1021/acs.bioconjchem.6b00317] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Nataliia Beztsinna
- Institute of Chemistry & Biology of Membranes & Nano-objects, CBMN UMR 5248, Bordeaux University, 33600 Pessac, France
| | - Yoanna Tsvetkova
- Experimental
Molecular Imaging, RWTH Aachen University Clinic, 52056 Aachen, Germany
| | - Matthias Bartneck
- Gastroenterology
and Metabolic Disorders, RWTH Aachen University Clinic, 52056 Aachen, Germany
| | - Twan Lammers
- Experimental
Molecular Imaging, RWTH Aachen University Clinic, 52056 Aachen, Germany
| | - Fabian Kiessling
- Experimental
Molecular Imaging, RWTH Aachen University Clinic, 52056 Aachen, Germany
| | - Isabelle Bestel
- Institute of Chemistry & Biology of Membranes & Nano-objects, CBMN UMR 5248, Bordeaux University, 33600 Pessac, France
| |
Collapse
|
49
|
Nagano T, Nakano M, Nakashima A, Onishi K, Yamao S, Enari M, Kikkawa U, Kamada S. Identification of cellular senescence-specific genes by comparative transcriptomics. Sci Rep 2016; 6:31758. [PMID: 27545311 PMCID: PMC4992837 DOI: 10.1038/srep31758] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/27/2016] [Indexed: 12/12/2022] Open
Abstract
Cellular senescence is defined as permanent cell cycle arrest induced by various stresses. Although the p53 transcriptional activity is essential for senescence induction, the downstream genes that are crucial for senescence remain unsolved. Here, by using a developed experimental system in which cellular senescence or apoptosis is induced preferentially by altering concentration of etoposide, a DNA-damaging drug, we compared gene expression profiles of senescent and apoptotic cells by microarray analysis. Subtraction of the expression profile of apoptotic cells identified 20 genes upregulated specifically in senescent cells. Furthermore, 6 out of 20 genes showed p53-dependent upregulation by comparing gene expression between p53-proficient and -deficient cells. These 6 genes were also upregulated during replicative senescence of normal human diploid fibroblasts, suggesting that upregulation of these genes is a general phenomenon in senescence. Among these genes, 2 genes (PRODH and DAO) were found to be directly regulated by p53, and ectopic expression of 4 genes (PRODH, DAO, EPN3, and GPR172B) affected senescence phenotypes induced by etoposide treatment. Collectively, our results identified several proteins as novel downstream effectors of p53-mediated senescence and provided new clues for further research on the complex signalling networks underlying the induction and maintenance of senescence.
Collapse
Affiliation(s)
- Taiki Nagano
- Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.,Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Masayuki Nakano
- Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.,Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Akio Nakashima
- Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.,Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Kengo Onishi
- Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.,Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Shunsuke Yamao
- Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.,Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Masato Enari
- Division of Refractory and Advanced Cancer, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Ushio Kikkawa
- Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.,Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Shinji Kamada
- Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.,Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
50
|
Jaeger B, Bosch AM. Clinical presentation and outcome of riboflavin transporter deficiency: mini review after five years of experience. J Inherit Metab Dis 2016; 39:559-64. [PMID: 26973221 PMCID: PMC4920840 DOI: 10.1007/s10545-016-9924-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 02/18/2016] [Accepted: 02/19/2016] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Riboflavin (vitamin B2) is absorbed in the small intestine by the human riboflavin transporters RFVT1 and RFVT3. A third riboflavin transporter (RFVT2) is expressed in the brain. In 2010 it was demonstrated that mutations in the riboflavin transporter genes SLC52A2 (coding for RFVT2) and SLC52A3 (coding for RFVT3) cause a neurodegenerative disorder formerly known as Brown-Vialetto-Van Laere (BVVL) syndrome, now renamed to riboflavin transporter deficiency. Five years after the diagnosis of the first patient we performed a review of the literature to study the presentation, treatment and outcome of patients with a molecularly confirmed diagnosis of a riboflavin transporter deficiency. METHOD A search was performed in Medline, Pubmed using the search terms 'Brown-Vialetto-Van Laere syndrome' and 'riboflavin transporter' and articles were screened for case reports of patients with a molecular diagnosis of a riboflavin transporter deficiency. RESULTS Reports on a total of 70 patients with a molecular diagnosis of a RFVT2 or RTVT3 deficiency were retrieved. The riboflavin transporter deficiencies present with weakness, cranial nerve deficits including hearing loss, sensory symptoms including sensory ataxia, feeding difficulties and respiratory difficulties which are caused by a sensorimotor axonal neuropathy and cranial neuropathy. Biochemical abnormalities may be absent and the diagnosis can only be made or rejected by molecular analysis of all genes. Treatment with oral supplementation of riboflavin is lifesaving. Therefore, if a riboflavin transporter deficiency is suspected, treatment must be started immediately without first awaiting the results of molecular diagnostics.
Collapse
Affiliation(s)
- Bregje Jaeger
- />Department of Pediatric Neurology, Emma Children’s Hospital, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Annet M. Bosch
- />Department of Pediatrics, Emma Children’s Hospital, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|