1
|
Xi Y, Ge Y, Hu D, Xia T, Chen J, Zhang C, Cui Y, Xiao H. Caveolin-1 scaffolding domain peptide prevents corpus cavernosum fibrosis and erectile dysfunction in bilateral cavernous nerve injury-induced rats. J Sex Med 2023; 20:1274-1284. [PMID: 37724695 DOI: 10.1093/jsxmed/qdad108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND Corpus cavernosum (CC) fibrosis significantly contributes to post-radical prostatectomy erectile dysfunction (pRP-ED). Caveolin-1 scaffolding domain (CSD)-derived peptide has gained significant concern as a potent antagonist of tissue fibrosis. However, applying CSD peptide on bilateral cavernous nerve injury (BCNI)-induced rats remains uninvestigated. AIM The aim was to explore the therapeutic outcome and underlying mechanism of CSD peptide for preventing ED in BCNI rats according to the hypothesis that CSD peptide may exert beneficial effects on erectile tissue and function following BCNI through limiting collagen synthesis in CC smooth muscle cells (CCSMCs) and CC fibrosis. METHODS After completing a random assignment of male Sprague Dawley rats (10 weeks of age), BCNI rats received either saline or CSD peptide treatment, as opposed to sham-operated rats. The evaluations of erectile function (EF) and succedent collection and histological and molecular biological examinations of penile tissue were accomplished 3 weeks postoperatively. In addition, the fibrotic model of CCSMCs was used to further explore the mechanism of CSD peptide action in vitro. OUTCOMES The assessments of EF, SMC/collagen ratio, α-smooth muscle actin, caveolin-1 (CAV1), and profibrotic indicators expressions were conducted. RESULTS BCNI rats exhibited significant decreases in EF, SMC/collagen ratio, α-SMA, and CAV1 levels, and increases in collagen content together with transforming growth factor (TGF)-β1/Smad2 activity. However, impaired EF, activated CC fibrosis, and Smad2 signaling were attenuated after 3 weeks of CSD peptide treatment in BCNI rats. In vitro, TGF-β1-induced CCSMCs underwent fibrogenetic transformation characterized by lower expression of CAV1, higher collagen composition, and phosphorylation of Smad2; then, the delivery of CSD peptide could significantly block CCSMC fibrosis by inactivating Smad2 signaling. CLINICAL IMPLICATIONS Based on available evidence of CSD peptide in the prevention of ED in BCNI rats, this study can aid in the development and clinical application of CSD peptide targeting pRP-ED. STRENGTHS AND LIMITATIONS This study provides data to suggest that CSD peptide protects against BCNI-induced deleterious alterations in EF and CC tissues. However, the available evidence still does not fully clarify the detailed mechanism of action of CSD peptide. CONCLUSION Administration of CSD peptide significantly retarded collagen synthesis in CCSMCs, limited CC fibrosis, and prevented ED via confrontation of TGF-β1/Smad signaling in BCNI rats.
Collapse
Affiliation(s)
- Yuhang Xi
- Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 020-510000, China
| | - Yunlong Ge
- Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 020-510000, China
| | - Daoyuan Hu
- Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 020-510000, China
- Department of Urology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 020-510000, China
| | - Tian Xia
- Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 020-510000, China
| | - Jialiang Chen
- Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 020-510000, China
| | - Chi Zhang
- Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 020-510000, China
| | - Yubin Cui
- Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 020-510000, China
| | - Hengjun Xiao
- Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 020-510000, China
| |
Collapse
|
2
|
Erewele EO, Castellon M, Loya O, Marshboom G, Schwartz A, Yerlioglu K, Callahan C, Chen J, Minshall RD, Oliveira SD. Hypoxia-induced pulmonary hypertension upregulates eNOS and TGF-β contributing to sex-linked differences in BMPR2 +/R899X mutant mice. Pulm Circ 2022; 12:e12163. [PMID: 36484056 PMCID: PMC9722973 DOI: 10.1002/pul2.12163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/28/2022] Open
Abstract
Dysfunctional bone morphogenetic protein receptor 2 (BMPR2) and endothelial nitric oxide synthase (eNOS) have been largely implicated in the pathogenesis of pulmonary arterial hypertension (PAH); a life-threatening cardiopulmonary disease. Although the incident of PAH is about three times higher in females, males with PAH usually have a worse prognosis, which seems to be dependent on estrogen-associated cardiac and vascular protection. Here, we evaluated whether hypoxia-induced pulmonary hypertension (PH) in humanized BMPR2+/R899X loss-of-function mutant mice contributes to sex-associated differences observed in PAH by altering eNOS expression and inducing expansion of hyperactivated TGF-β-producing pulmonary myofibroblasts. To test this hypothesis, male and female wild-type (WT) and BMPR2+/R899X mutant mice were kept under hypoxic or normoxic conditions for 4 weeks, and then right ventricular systolic pressure (RVSP) and right ventricular hypertrophy (RVH) were measured. Chronic hypoxia exposure elevated RVSP, inducing RVH in both groups, with a greater effect in BMPR2+/R899X female mice. Lung histology revealed no differences in vessel thickness/area between sexes, suggesting RVSP differences in this model are unlikely to be in response to sex-dependent vascular narrowing. On the other hand, hypoxia exposure increased vascular collagen deposition, the number of TGF-β-associated α-SMA-positive microvessels, and eNOS expression, whereas it also reduced caveolin-1 expression in the lungs of BMPR2+/R899X females compared to males. Taken together, this brief report reveals elevated myofibroblast-derived TGF-β and eNOS-derived oxidants contribute to pulmonary microvascular muscularization and sex-linked differences in incidence, severity, and outcome of PAH.
Collapse
Affiliation(s)
- Ejehi O Erewele
- Department of Anesthesiology, College of Medicine University of Illinois at Chicago Chicago Illinois USA
| | - Maricela Castellon
- Department of Anesthesiology, College of Medicine University of Illinois at Chicago Chicago Illinois USA
- Cardiovascular Research Center, College of Medicine University of Illinois at Chicago Chicago Illinois USA
| | - Omar Loya
- Department of Anesthesiology, College of Medicine University of Illinois at Chicago Chicago Illinois USA
| | - Glenn Marshboom
- Department of Pharmacology and Regenerative Medicine, College of Medicine University of Illinois at Chicago Chicago Illinois USA
| | - Andrew Schwartz
- Department of Anesthesiology, College of Medicine University of Illinois at Chicago Chicago Illinois USA
| | - Kayla Yerlioglu
- Department of Anesthesiology, College of Medicine University of Illinois at Chicago Chicago Illinois USA
| | - Christopher Callahan
- Department of Anesthesiology, College of Medicine University of Illinois at Chicago Chicago Illinois USA
| | - Jiwang Chen
- Cardiovascular Research Center, College of Medicine University of Illinois at Chicago Chicago Illinois USA
- Department of Medicine, College of Medicine University of Illinois at Chicago Chicago Illinois USA
| | - Richard D Minshall
- Department of Anesthesiology, College of Medicine University of Illinois at Chicago Chicago Illinois USA
- Department of Pharmacology and Regenerative Medicine, College of Medicine University of Illinois at Chicago Chicago Illinois USA
| | - Suellen D Oliveira
- Department of Anesthesiology, College of Medicine University of Illinois at Chicago Chicago Illinois USA
- Department of Physiology & Biophysics, College of Medicine University of Illinois at Chicago Chicago Illinois USA
| |
Collapse
|
3
|
Fyn-kinase and caveolin-1 in the alveolar epithelial junctional adherence complex contribute to the early stages of pulmonary fibrosis. Eur J Pharm Sci 2022; 175:106236. [PMID: 35710078 DOI: 10.1016/j.ejps.2022.106236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/03/2022] [Accepted: 06/11/2022] [Indexed: 11/23/2022]
Abstract
Current pathophysiological findings indicate that damage to the alveolar epithelium plays a decisive role in the development of idiopathic pulmonary fibrosis (IPF). The available pharmacological interventions (i.e., oral pirfenidone and nintedanib) only slow down progression of the disease, but do not offer a cure. In order to develop new drug candidates, the pathophysiology of IPF needs to be better understood on a molecular level. It has previously been reported that a loss of caveolin-1 (Cav-1) contributes to profibrotic processes by causing reduced alveolar barrier function and fibrosis-like alterations of the lung-parenchyma. Conversely, overexpression of caveolin-1 appears to counteract the development of fibrosis by inhibiting the inflammasome NLRP3 and the associated expression of interleukin-1β. In this study, the interaction between Fyn-kinase and caveolin-1 in the alveolar epithelium of various bleomycin (BLM)/TGF-β damage models using precision-cut lung slices (PCLS), wildtype (WT) and caveolin-1 knockout (KO) mice as well as the human NCI-H441 cell line, were investigated. In WT mouse lung tissues, strong signals for Fyn-kinase were detected in alveolar epithelial type I cells, whereas in caveolin-1 KO animals, expression shifted to alveolar epithelial type II cells. Caveolin-1 and Fyn-kinase were found to be co-localized in isolated lipid rafts of NCI-H441 cell membrane fractions. These findings were corroborated by co-immunoprecipitation studies in which a co-localization of Cav-1 and Fyn-kinase was detected in the cell membrane of the alveolar epithelium. After TGF-β and BLM-induced damage to the alveolar epithelium both in PCLS and cell culture experiments, a decrease in caveolin-1 and Fyn-kinase was found. Furthermore, TEER (transepithelial electrical resistance) measurements indicated that TGF-β and BLM have a damaging effect on cell-cell contacts and thus impair the barrier function in NCI-H441 cell monolayers. This effect was attenuated after co-incubation with the Fyn-kinase inhibitor, PP-2. Our data suggest an involvement of Fyn-kinase and caveolin-1 in TGF-β/bleomycin-induced impairment of alveolar barrier function and thus a possible role in the early stages of pulmonary fibrosis. Fyn-kinase and/or its complex with caveolin-1 might, therefore, be novel therapeutic targets in IPF.
Collapse
|
4
|
Yoshida GJ. Regulation of heterogeneous cancer-associated fibroblasts: the molecular pathology of activated signaling pathways. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:112. [PMID: 32546182 PMCID: PMC7296768 DOI: 10.1186/s13046-020-01611-0] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/01/2020] [Indexed: 12/16/2022]
Abstract
Accumulating evidence indicates that intratumoral heterogeneity contributes to the development of resistance to anticancer therapeutics. Fibroblasts, which are components of the paraneoplastic stroma, play a crucial role in the wound-healing process. Activated fibroblasts accumulate in the wound and are involved in many aspects of the tissue remodeling cascade that initiates the repair process and prevents further tissue damage. The pathophysiological roles of cancer-associated fibroblasts (CAFs) in the heterogeneous tumor microenvironment have attracted increasing interest. CAFs play crucial roles in tumor progression and the response to chemotherapy. Several cytokines and chemokines are involved in the conversion of normal fibroblasts into CAFs, and some of these form a feedback loop between cancer cells and CAFs. In addition, the physical force between tumor cells and CAFs promotes cooperative invasion or co-migration of both types of cells. Pro-inflammatory cytokines, such as leukemia inhibitory factor (LIF) and interleukin-6 (IL-6), are secreted by both cancer cells and CAFs, and mediate the epigenetic modification of CAFs. This enhances the pro-tumorigenic function of CAFs mediated by promoting actomyosin contractility and extracellular matrix remodeling to form the tracks used for collective cancer cell migration. The concept of intra-tumoral CAF heterogeneity refers to the presence of inflammatory CAFs with low levels of α-smooth muscle actin (α-SMA) and high levels of IL-6 expression, which are in striking contrast to transforming growth factor-β (TGF-β)-dependent myofibroblastic CAFs with high α-SMA expression levels. CAF populations that suppress tumor growth and progression through stroma-specific Hedgehog (Hh) activation have been detected in different murine tumor models including those of the bladder, colon, and pancreas. A new therapeutic strategy targeting CAFs is the "stromal switch," in which tumor-promoting CAFs are changed into tumor-retarding CAFs with attenuated stromal stiffness. Several molecular mechanisms that can be exploited to design personalized anticancer therapies targeting CAFs remain to be elucidated. Strategies aimed at targeting the tumor stroma as well as tumor cells themselves have attracted academic attention for their application in precision medicine. This novel review discusses the role of the activation of EGFR, Wnt/β-catenin, Hippo, TGF-β, and JAK/STAT cascades in CAFs in relation to the chemoresistance and invasive/metastatic behavior of cancer cells. For instance, although activated EGFR signaling contributes to collective cell migration in cooperation with CAFs, an activated Hippo pathway is responsible for stromal stiffness resulting in the collapse of neoplastic blood vessels. Therefore, identifying the signaling pathways that are activated under specific conditions is crucial for precision medicine.
Collapse
Affiliation(s)
- Go J Yoshida
- Department of Immunological Diagnosis, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
5
|
Igarashi J, Okamoto R, Yamashita T, Hashimoto T, Karita S, Nakai K, Kubota Y, Takata M, Yamaguchi F, Tokuda M, Sakakibara N, Tsukamoto I, Konishi R, Hirano K. A key role of PGC-1α transcriptional coactivator in production of VEGF by a novel angiogenic agent COA-Cl in cultured human fibroblasts. Physiol Rep 2016; 4:e12742. [PMID: 27033444 PMCID: PMC4814893 DOI: 10.14814/phy2.12742] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 02/23/2016] [Accepted: 02/27/2016] [Indexed: 01/16/2023] Open
Abstract
We previously demonstrated a potent angiogenic effect of a newly developed adenosine-like agent namedCOA-Cl.COA-Cl exerted tube forming activity in human umbilical vein endothelial cells in the presence of normal human dermal fibroblasts (NHDF). We therefore explored whether and howCOA-Cl modulates gene expression and protein secretion ofVEGF, a master regulator of angiogenesis, inNHDFRT-PCRandELISArevealed thatCOA-Cl upregulatedVEGF mRNAexpression and protein secretion inNHDFHIF1α(hypoxia-inducible factor 1α), a transcription factor, andPGC-1α(peroxisome proliferator-activated receptor-γcoactivator-1α), a transcriptional coactivator, are known to positively regulate theVEGFgene. Immunoblot andRT-PCRanalyses revealed thatCOA-Cl markedly upregulated the expression ofPGC-1αprotein andmRNACOA-Cl had no effect on the expression ofHIF1αprotein andmRNAin both hypoxia and normoxia. SilencingPGC-1αgene, but notHIF1αgene, by small interferingRNAattenuated the ability ofCOA-Cl to promoteVEGFsecretion. When an N-terminal fragment ofPGC-1αwas cotransfected with its partner transcription factorERRα(estrogen-related receptor-α) inCOS-7 cells,COA-Cl upregulated the expression of the endogenousVEGF mRNA However,COA-Cl had no effect on the expression ofVEGF, whenHIF1αwas transfected.COA-Cl inducesVEGFgene expression and protein secretion in fibroblasts. The transcriptional coactivatorPGC-1α, in concert withERRα, plays a key role in theCOA-Cl-inducedVEGFproduction.COA-Cl-induced activation ofPGC-1α-ERRα-VEGFpathway has a potential as a novel means for therapeutic angiogenesis.
Collapse
Affiliation(s)
- Junsuke Igarashi
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, Kita-Gun, Japan
| | - Ryuji Okamoto
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, Kita-Gun, Japan
| | - Tetsuo Yamashita
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, Kita-Gun, Japan
| | - Takeshi Hashimoto
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, Kita-Gun, Japan
| | - Sakiko Karita
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, Kita-Gun, Japan
| | - Kozo Nakai
- Department of Dermatology, Faculty of Medicine, Kagawa University, Kita-Gun, Japan
| | - Yasuo Kubota
- Department of Dermatology, Faculty of Medicine, Kagawa University, Kita-Gun, Japan
| | - Maki Takata
- Department of Pharmaco-Bio-Informatics, Faculty of Medicine, Kagawa University, Kita-Gun, Japan
| | - Fuminori Yamaguchi
- Department of Cell Physiology, Faculty of Medicine, Kagawa University, Kita-Gun, Japan
| | - Masaaki Tokuda
- Department of Cell Physiology, Faculty of Medicine, Kagawa University, Kita-Gun, Japan
| | - Norikazu Sakakibara
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Japan
| | - Ikuko Tsukamoto
- Department of Pharmaco-Bio-Informatics, Faculty of Medicine, Kagawa University, Kita-Gun, Japan
| | - Ryoji Konishi
- Department of Pharmaco-Bio-Informatics, Faculty of Medicine, Kagawa University, Kita-Gun, Japan
| | - Katsuya Hirano
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, Kita-Gun, Japan
| |
Collapse
|
6
|
Strippoli R, Loureiro J, Moreno V, Benedicto I, Pérez Lozano ML, Barreiro O, Pellinen T, Minguet S, Foronda M, Osteso MT, Calvo E, Vázquez J, López Cabrera M, del Pozo MA. Caveolin-1 deficiency induces a MEK-ERK1/2-Snail-1-dependent epithelial-mesenchymal transition and fibrosis during peritoneal dialysis. EMBO Mol Med 2015; 7:102-23. [PMID: 25550395 PMCID: PMC4309670 DOI: 10.15252/emmm.201404127] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Peritoneal dialysis (PD) is a form of renal replacement therapy whose repeated use can alter dialytic function through induction of epithelial–mesenchymal transition (EMT) and fibrosis, eventually leading to PD discontinuation. The peritoneum from Cav1−/− mice showed increased EMT, thickness, and fibrosis. Exposure of Cav1−/− mice to PD fluids further increased peritoneal membrane thickness, altered permeability, and increased the number of FSP-1/cytokeratin-positive cells invading the sub-mesothelial stroma. High-throughput quantitative proteomics revealed increased abundance of collagens, FN, and laminin, as well as proteins related to TGF-β activity in matrices derived from Cav1−/− cells. Lack of Cav1 was associated with hyperactivation of a MEK-ERK1/2-Snail-1 pathway that regulated the Smad2-3/Smad1-5-8 balance. Pharmacological blockade of MEK rescued E-cadherin and ZO-1 inter-cellular junction localization, reduced fibrosis, and restored peritoneal function in Cav1−/− mice. Moreover, treatment of human PD-patient-derived MCs with drugs increasing Cav1 levels, as well as ectopic Cav1 expression, induced re-acquisition of epithelial features. This study demonstrates a pivotal role of Cav1 in the balance of epithelial versus mesenchymal state and suggests targets for the prevention of fibrosis during PD.
Collapse
Affiliation(s)
- Raffaele Strippoli
- Department of Vascular biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain Department of Cellular Biotechnologies and Haematology, Sapienza University of Rome, Rome, Italy
| | - Jesús Loureiro
- Molecular Biology Unit, Hospital Universitario de la Princesa Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain
| | - Vanessa Moreno
- Department of Vascular biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Ignacio Benedicto
- Molecular Biology Unit, Hospital Universitario de la Princesa Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain
| | - María Luisa Pérez Lozano
- Molecular Biology Unit, Hospital Universitario de la Princesa Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain
| | - Olga Barreiro
- Department of Vascular biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Teijo Pellinen
- Department of Vascular biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Susana Minguet
- Department of Vascular biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Miguel Foronda
- Department of Vascular biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Maria Teresa Osteso
- Department of Vascular biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Enrique Calvo
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Vázquez
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel López Cabrera
- Molecular Biology Unit, Hospital Universitario de la Princesa Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain
| | - Miguel Angel del Pozo
- Department of Vascular biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| |
Collapse
|
7
|
TGFβ-Mediated induction of SphK1 as a potential determinant in human MDA-MB-231 breast cancer cell bone metastasis. BONEKEY REPORTS 2015; 4:719. [PMID: 26157579 DOI: 10.1038/bonekey.2015.88] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 05/08/2015] [Indexed: 12/17/2022]
Abstract
Mechanistic understanding of the preferential homing of circulating tumor cells to bone and their perturbation on bone metabolism within the tumor-bone microenvironment remains poorly understood. Alteration in both transforming growth factor β (TGFβ) signaling and sphingolipid metabolism results in the promotion of tumor growth and metastasis. Previous studies using MDA-MB-231 human breast cancer-derived cell lines of variable metastatic potential were queried for changes in sphingolipid metabolism genes to explore correlations between TGFβ dependence and bone metastatic behavior. Of these genes, only sphingosine kinase-1 (SPHK1) was identified to be significantly increased following TGFβ treatment. Induction of SPHK1 expression correlated to the degree of metastatic capacity in these MDA-MB-231-derived cell lines. We demonstrate that TGFβ mediates the regulation of SPHK1 gene expression, protein kinase activity and is critical to MDA-MB-231 cell viability. Furthermore, a bioinformatic analysis of human breast cancer gene expression supports SPHK1 as a hallmark TGFβ target gene that also bears the genetic fingerprint of the basal-like/triple-negative breast cancer molecular subtype. These data suggest a potential new signaling axis between TGFβ/SphK1 that may have a role in the development, prognosis or the clinical phenotype associated with tumor-bone metastasis.
Collapse
|
8
|
Anderson JL, Smith SC, Taylor RL. The pigeon (Columba livia) model of spontaneous atherosclerosis. Poult Sci 2014; 93:2691-9. [PMID: 25214557 DOI: 10.3382/ps.2014-04280] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Multiple animal models have been employed to study human atherosclerosis, the principal cause of mortality in the United States. Each model has individual advantages related to specific pathologies. Initiation, the earliest disease phase, is best modeled by the White Carneau (WC-As) pigeon. Atherosclerosis develops spontaneously in the WC-As without either external manipulation or known risk factors. Furthermore, susceptibility is caused by a single gene defect inherited in an autosomal recessive manner. The Show Racer (SR-Ar) pigeon is resistant to atherosclerosis. Breed differences in the biochemistry and metabolism of celiac foci cells have been described. For example, WC-As have lower oxidative metabolism but higher amounts of chondroitin-6-sulfate and nonesterified fatty acids compared with SR-Ar. Gene expression in aortic smooth muscle cells was compared between breeds using representational difference analysis and microarray analysis. Energy metabolism and cellular phenotype were the chief gene expression differences. Glycolysis and synthetic cell types were related to the WC-As but oxidative metabolism and contractile cell types were related to the SR-Ar. Rosiglitazone, a PPARγ agonist, blocked RNA binding motif (RBMS1) expression in WC-As cells. The drug may act through the c-myc oncogene as RBMS1 is a c-myc target. Proteomic tests of aortic smooth muscle cells supported greater glycosylation in the WC-As and a transforming growth factor β effect in SR-Ar. Unoxidized fatty acids build up in WC-As cells because of their metabolic deficiency, ultimately preventing the contractile phenotype in these cells. The single gene responsible for the disease is likely regulatory in nature.
Collapse
Affiliation(s)
- J L Anderson
- Department of Animal and Nutritional Sciences, University of New Hampshire, Durham 03824
| | - S C Smith
- Department of Animal and Nutritional Sciences, University of New Hampshire, Durham 03824
| | - R L Taylor
- Department of Animal and Nutritional Sciences, University of New Hampshire, Durham 03824
| |
Collapse
|
9
|
Igarashi J, Hashimoto T, Kubota Y, Shoji K, Maruyama T, Sakakibara N, Takuwa Y, Ujihara Y, Katanosaka Y, Mohri S, Naruse K, Yamashita T, Okamoto R, Hirano K, Kosaka H, Takata M, Konishi R, Tsukamoto I. Involvement of S1P1 receptor pathway in angiogenic effects of a novel adenosine-like nucleic acid analog COA-Cl in cultured human vascular endothelial cells. Pharmacol Res Perspect 2014; 2:e00068. [PMID: 25505610 PMCID: PMC4186426 DOI: 10.1002/prp2.68] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 07/11/2014] [Indexed: 12/13/2022] Open
Abstract
COA-Cl (2Cl-C.OXT-A) is a recently developed adenosine-like nucleic acid analog that promotes angiogenesis via the mitogen-activated protein (MAP) kinases ERK1/2. Endothelial S1P1 receptor plays indispensable roles in developmental angiogenesis. In this study, we examined the functions of S1P1 in COA-Cl-induced angiogenic responses. Antagonists for S1P1, W146, and VPC23019, substantially but still partly inhibited the effects of COA-Cl with regard to ERK1/2 activation and tube formation in cultured human umbilical vein endothelial cells (HUVEC). Antagonists for adenosine A1 receptor and purinergic P2Y1 receptor were without effect. Genetic knockdown of S1P1 with siRNA, but not that of S1P3, attenuated COA-Cl-elicited ERK1/2 responses. The signaling properties of COA-Cl showed significant similarities to those of sphingosine 1-phosphate, an endogenous S1P1 ligand, in that both induced responses sensitive to pertussis toxin (Gα i/o inhibitor), 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis (acetoxymethyl ester) (BAPTA-AM), (calcium chelator), and PP2 (c-Src tyrosine kinase inhibitor). COA-Cl elevated intracellular Ca2+ concentration and induced tyrosine phosphorylation of p130Cas, a substrate of c-Src, in HUVEC. COA-Cl displaced [3H]S1P in a radioligand-binding competition assay in chem-1 cells overexpressing S1P1. However, COA-Cl activated ERK1/2 in CHO-K1 cells that lack functional S1P1 receptor, suggesting the presence of additional yet-to-be-defined COA-Cl target in these cells. The results thus suggest the major contribution of S1P1 in the angiogenic effects of COA-Cl. However, other mechanism such as that seen in CHO-K1 cells may also be partly involved. Collectively, these findings may lead to refinement of the design of this nucleic acid analog and ultimately to development of small molecule-based therapeutic angiogenesis.
Collapse
Affiliation(s)
- Junsuke Igarashi
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University 1750-1 Ikenobe, Miki-Cho, Kita-Gun, Kagawa, 761-0793, Japan
| | - Takeshi Hashimoto
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University 1750-1 Ikenobe, Miki-Cho, Kita-Gun, Kagawa, 761-0793, Japan
| | - Yasuo Kubota
- Department of Dermatology, Faculty of Medicine, Kagawa University 1750-1 Ikenobe, Miki-Cho, Kita-Gun, Kagawa, 761-0793, Japan
| | - Kazuyo Shoji
- Department of Dermatology, Faculty of Medicine, Kagawa University 1750-1 Ikenobe, Miki-Cho, Kita-Gun, Kagawa, 761-0793, Japan
| | - Tokumi Maruyama
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University 1314-1 Shido, Sanuki, Kagawa, 769-2193, Japan
| | - Norikazu Sakakibara
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University 1314-1 Shido, Sanuki, Kagawa, 769-2193, Japan
| | - Yoh Takuwa
- Department of Cardiovascular Physiology, Kanazawa University School of Medicine 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Yoshihiro Ujihara
- Department of Physiology, Kawasaki Medical School 577 Matsushima, Kurashiki, 701-0192, Japan
| | - Yuki Katanosaka
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Shitada-Cho 2-5-1, Kita-Ku, Okayama, 700-0914, Japan
| | - Satoshi Mohri
- Department of Physiology, Kawasaki Medical School 577 Matsushima, Kurashiki, 701-0192, Japan
| | - Keiji Naruse
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Shitada-Cho 2-5-1, Kita-Ku, Okayama, 700-0914, Japan
| | - Tetsuo Yamashita
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University 1750-1 Ikenobe, Miki-Cho, Kita-Gun, Kagawa, 761-0793, Japan
| | - Ryuji Okamoto
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University 1750-1 Ikenobe, Miki-Cho, Kita-Gun, Kagawa, 761-0793, Japan
| | - Katsuya Hirano
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University 1750-1 Ikenobe, Miki-Cho, Kita-Gun, Kagawa, 761-0793, Japan
| | - Hiroaki Kosaka
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University 1750-1 Ikenobe, Miki-Cho, Kita-Gun, Kagawa, 761-0793, Japan
| | - Maki Takata
- Department of Pharmaco-Bio-Informatics, Faculty of Medicine, Kagawa University 1750-1 Ikenobe, Miki-Cho, Kita-Gun, Kagawa, 761-0793, Japan
| | - Ryoji Konishi
- Department of Pharmaco-Bio-Informatics, Faculty of Medicine, Kagawa University 1750-1 Ikenobe, Miki-Cho, Kita-Gun, Kagawa, 761-0793, Japan
| | - Ikuko Tsukamoto
- Department of Pharmaco-Bio-Informatics, Faculty of Medicine, Kagawa University 1750-1 Ikenobe, Miki-Cho, Kita-Gun, Kagawa, 761-0793, Japan
| |
Collapse
|
10
|
Igarashi J, Hashimoto T, Shoji K, Yoneda K, Tsukamoto I, Moriue T, Kubota Y, Kosaka H. Dexamethasone induces caveolin-1 in vascular endothelial cells: implications for attenuated responses to VEGF. Am J Physiol Cell Physiol 2013; 304:C790-800. [DOI: 10.1152/ajpcell.00268.2012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Steroids exert direct actions on cardiovascular cells, although underlying molecular mechanisms remain incompletely understood. We examined if steroids modulate abundance of caveolin-1, a regulatory protein of cell-surface receptor pathways that regulates the magnitudes of endothelial response to vascular endothelial growth factor (VEGF). Dexamethasone, a synthetic glucocorticoid, induces caveolin-1 at both levels of protein and mRNA in a time- and dose-dependent manner in pharmacologically relevant concentrations in cultured bovine aortic endothelial cells. Aldosterone, a mineralocorticoid, but not the sex steroids 17β-estradiol, testosterone, or progesterone, elicits similar caveolin-1 induction. Caveolin-1 induction by dexamethasone and that by aldosterone were abrogated by RU-486, an inhibitor of glucocorticoid receptor, and by spironolactone, a mineralocorticoid receptor inhibitor, respectively. Dexamethasone attenuates VEGF-induced responses at the levels of protein kinases Akt and ERK1/2, small-G protein Rac1, nitric oxide production, and migration. When induction of caveolin-1 by dexamethasone is attenuated either by genetically by transient transfection with small interfering RNA or pharmacologically by RU-486, kinase responses to VEGF are rescued. Dexamethasone also increases expression of caveolin-1 protein in cultured human umbilical vein endothelial cells, associated with attenuated tube formation responses of these cells when cocultured with normal fibroblasts. Immunohistochemical analyses revealed that intraperitoneal injection of dexamethasone induces endothelial caveolin-1 protein in thoracic aorta and in lung artery in healthy male rats. Thus steroids functionally attenuate endothelial responses to VEGF via caveolin-1 induction at the levels of signal transduction, migration, and tube formation, identifying a novel point of cross talk between nuclear and cell-surface receptor signaling pathways.
Collapse
Affiliation(s)
- Junsuke Igarashi
- Department of Cardiovascular Physiology, Kagawa University, Kagawa, Japan
| | - Takeshi Hashimoto
- Department of Cardiovascular Physiology, Kagawa University, Kagawa, Japan
| | - Kazuyo Shoji
- Department of Dermatology, Kagawa University, Kagawa, Japan; and
| | - Kozo Yoneda
- Department of Dermatology, Kagawa University, Kagawa, Japan; and
| | - Ikuko Tsukamoto
- Department of Pharmaco-Bio-Informatics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Tetsuya Moriue
- Department of Dermatology, Kagawa University, Kagawa, Japan; and
| | - Yasuo Kubota
- Department of Dermatology, Kagawa University, Kagawa, Japan; and
| | - Hiroaki Kosaka
- Department of Cardiovascular Physiology, Kagawa University, Kagawa, Japan
| |
Collapse
|
11
|
Bruce CR, Risis S, Babb JR, Yang C, Lee-Young RS, Henstridge DC, Febbraio MA. The sphingosine-1-phosphate analog FTY720 reduces muscle ceramide content and improves glucose tolerance in high fat-fed male mice. Endocrinology 2013. [PMID: 23183172 DOI: 10.1210/en.2012-1847] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
FTY720 is a sphingosine-1-phosphate analog that has been shown to inhibit ceramide synthesis in vitro. Because ceramide accumulation in muscle is associated with insulin resistance, we aimed to examine whether FTY720 would prevent muscle ceramide accumulation in high fat-fed mice and subsequently improve glucose homeostasis. Male C57Bl/6 mice were fed either a chow or high fat-diet (HFD) for 6 wk, after which they were treated with vehicle or FTY720 (5 mg/kg) daily for a further 6 wk. The ceramide content of muscle was examined and insulin action was assessed. Whereas the HFD increased muscle ceramide, this was prevented by FTY720 treatment. This was not associated with alterations in the expression of genes involved in sphingolipid metabolism. Interestingly, the effects of FTY720 on lipid metabolism were not limited to ceramide because FTY720 also prevented the HFD-induced increase in diacylglycerol and triacylglycerol in muscle. Furthermore, the increase in CD36 mRNA expression induced by fat feeding was prevented in muscle of FTY720-treated mice. This was associated with an attenuation of the HFD-induced increase in palmitate uptake and esterification. In addition, FTY720 improved glucose homeostasis as demonstrated by a reduction in plasma insulin, an improvement in whole-body glucose tolerance, an increase in insulin-stimulated glucose uptake, and Akt phosphorylation in muscle. In conclusion, FTY720 exerts beneficial effects on muscle lipid metabolism that prevent lipid accumulation and improve glucose tolerance in high fat-fed mice. Thus, FTY720 and other compounds that target sphingosine-1-phosphate signaling may have therapeutic potential in treating insulin resistance.
Collapse
Affiliation(s)
- Clinton R Bruce
- Department of Physiology, Monash University, Clayton 3800, Victoria, Australia.
| | | | | | | | | | | | | |
Collapse
|
12
|
Guido C, Whitaker-Menezes D, Capparelli C, Balliet R, Lin Z, Pestell RG, Howell A, Aquila S, Andò S, Martinez-Outschoorn U, Sotgia F, Lisanti MP. Metabolic reprogramming of cancer-associated fibroblasts by TGF-β drives tumor growth: connecting TGF-β signaling with "Warburg-like" cancer metabolism and L-lactate production. Cell Cycle 2012; 11:3019-35. [PMID: 22874531 DOI: 10.4161/cc.21384] [Citation(s) in RCA: 281] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We have previously shown that a loss of stromal Cav-1 is a biomarker of poor prognosis in breast cancers. Mechanistically, a loss of Cav-1 induces the metabolic reprogramming of stromal cells, with increased autophagy/mitophagy, mitochondrial dysfunction and aerobic glycolysis. As a consequence, Cav-1-low CAFs generate nutrients (such as L-lactate) and chemical building blocks that fuel mitochondrial metabolism and the anabolic growth of adjacent breast cancer cells. It is also known that a loss of Cav-1 is associated with hyperactive TGF-β signaling. However, it remains unknown whether hyperactivation of the TGF-β signaling pathway contributes to the metabolic reprogramming of Cav-1-low CAFs. To address these issues, we overexpressed TGF-β ligands and the TGF-β receptor I (TGFβ-RI) in stromal fibroblasts and breast cancer cells. Here, we show that the role of TGF-β in tumorigenesis is compartment-specific, and that TGF-β promotes tumorigenesis by shifting cancer-associated fibroblasts toward catabolic metabolism. Importantly, the tumor-promoting effects of TGF-β are independent of the cell type generating TGF-β. Thus, stromal-derived TGF-β activates signaling in stromal cells in an autocrine fashion, leading to fibroblast activation, as judged by increased expression of myofibroblast markers, and metabolic reprogramming, with a shift toward catabolic metabolism and oxidative stress. We also show that TGF-β-activated fibroblasts promote the mitochondrial activity of adjacent cancer cells, and in a xenograft model, enhancing the growth of breast cancer cells, independently of angiogenesis. Conversely, activation of the TGF-β pathway in cancer cells does not influence tumor growth, but cancer cell-derived-TGF-β ligands affect stromal cells in a paracrine fashion, leading to fibroblast activation and enhanced tumor growth. In conclusion, ligand-dependent or cell-autonomous activation of the TGF-β pathway in stromal cells induces their metabolic reprogramming, with increased oxidative stress, autophagy/mitophagy and glycolysis, and downregulation of Cav-1. These metabolic alterations can spread among neighboring fibroblasts and greatly sustain the growth of breast cancer cells. Our data provide novel insights into the role of the TGF-β pathway in breast tumorigenesis, and establish a clear causative link between the tumor-promoting effects of TGF-β signaling and the metabolic reprogramming of the tumor microenvironment.
Collapse
Affiliation(s)
- Carmela Guido
- The Jefferson Stem Cell Biology and Regenerative Medicine Center, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Pyne NJ, Dubois G, Pyne S. Role of sphingosine 1-phosphate and lysophosphatidic acid in fibrosis. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:228-38. [PMID: 22801038 DOI: 10.1016/j.bbalip.2012.07.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 07/01/2012] [Accepted: 07/02/2012] [Indexed: 12/19/2022]
Abstract
This review highlights an emerging role for sphingosine 1-phosphate (S1P) and lysophosphatidic acid (LPA) in many different types of fibrosis. Indeed, both LPA and S1P are involved in the multi-process pathogenesis of fibrosis, being implicated in promoting the well-established process of differentiation of fibroblasts to myofibroblasts and the more controversial epithelial-mesenchymal transition and homing of fibrocytes to fibrotic lesions. Therefore, targeting the production of these bioactive lysolipids or blocking their sites/mechanisms of action has therapeutic potential. Indeed, LPA receptor 1 (LPA(1)) selective antagonists are currently being developed for the treatment of fibrosis of the lung as well as a neutralising anti-S1P antibody that is currently in Phase 1 clinical trials for treatment of age related macular degeneration. Thus, LPA- and S1P-directed therapeutics may not be too far from the clinic. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.
Collapse
|
14
|
WANG XH, ZHENG YM, CUI YQ, LIU S, SUN HC, LI F. The Inhibition Effect of Caveolin-1 on PANC1 Human Pancreatic Tumor Growth <I>In vitro</I> and <I>In vivo</I>*. PROG BIOCHEM BIOPHYS 2012. [DOI: 10.3724/sp.j.1206.2011.00168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Schuchardt M, Tölle M, Prüfer J, van der Giet M. Pharmacological relevance and potential of sphingosine 1-phosphate in the vascular system. Br J Pharmacol 2011; 163:1140-62. [PMID: 21309759 DOI: 10.1111/j.1476-5381.2011.01260.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) was identified as a crucial molecule for regulating immune responses, inflammatory processes as well as influencing the cardiovascular system. S1P mediates differentiation, proliferation and migration during vascular development and homoeostasis. S1P is a naturally occurring lipid metabolite and is present in human blood in nanomolar concentrations. S1P is not only involved in physiological but also in pathophysiological processes. Therefore, this complex signalling system is potentially interesting for pharmacological intervention. Modulation of the system might influence inflammatory, angiogenic or vasoregulatory processes. S1P activates G-protein coupled receptors, namely S1P(1-5) , whereas only S1P(1-3) is present in vascular cells. S1P can also act as an intracellular signalling molecule. This review highlights the pharmacological potential of S1P signalling in the vascular system by giving an overview of S1P-mediated processes in endothelial cells (ECs) and vascular smooth muscle cells (VSMCs). After a short summary of S1P metabolism and signalling pathways, the role of S1P in EC and VSMC proliferation and migration, the cause of relaxation and constriction of arterial blood vessels, the protective functions on endothelial apoptosis, as well as the regulatory function in leukocyte adhesion and inflammatory responses are summarized. This is followed by a detailed description of currently known pharmacological agonists and antagonists as new tools for mediating S1P signalling in the vasculature. The variety of effects influenced by S1P provides plenty of therapeutic targets currently under investigation for potential pharmacological intervention.
Collapse
Affiliation(s)
- Mirjam Schuchardt
- Charité- Universitätsmedizin Berlin, CharitéCentrum 10, Department of Nephrology, Campus Benjamin Franklin, Hindenburgdamm 30, Berlin, Germany
| | | | | | | |
Collapse
|
16
|
Xie L, Vo-Ransdell C, Abel B, Willoughby C, Jang S, Sowa G. Caveolin-2 is a negative regulator of anti-proliferative function and signaling of transforming growth factor-β in endothelial cells. Am J Physiol Cell Physiol 2011; 301:C1161-74. [PMID: 21832243 DOI: 10.1152/ajpcell.00486.2010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Using a combination of wild-type (WT) and caveolin-2 (Cav-2) knockout along with retroviral reexpression approaches, we provide the evidence for the negative role of Cav-2 in regulating anti-proliferative function and signaling of transforming growth factor β (TGF-β) in endothelial cells (ECs). Although, TGF-β had a modest inhibitory effect on WT ECs, it profoundly inhibited proliferation of Cav-2 knockout ECs. To confirm the specificity of the observed difference in response to TGF-β, we have stably reexpressed Cav-2 in Cav-2 knockout ECs using a retroviral approach. Similar to WT ECs, the anti-proliferative effect of TGF-β was dramatically reduced in the Cav-2 reexpressing ECs. The reduced anti-proliferative effect of TGF-β in Cav-2-positive cells was evidenced by three independent proliferation assays: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), cell count, and bromodeoxyuridine incorporation and correlated with a loss of TGF-β-mediated upregulation of cell cycle inhibitor p27 and subsequent reduction of the levels of hyperphosphorylated (inactive) form of the retinoblastoma protein in Cav-2 reexpressing ECs. Mechanistically, Cav-2 inhibits anti-proliferative action of TGF-β by suppressing Alk5-Smad2/3 pathway manifested by reduced magnitude and length of TGF-β-induced Smad2/3 phosphorylation as well as activation of activin receptor-like kinase-5 (Alk5)-Smad2/3 target genes plasminogen activator inhibitor-1 and collagen type I in Cav-2-positive ECs. Expression of Cav-2 does not appear to significantly change targeting of TGF-β receptors I and Smad2/3 to caveolar and lipid raft microdomains as determined by sucrose fractionation gradient. Overall, the negative regulation of TGF-β signaling and function by Cav-2 is independent of Cav-1 expression levels and is not because of changing targeting of Cav-1 protein to plasma membrane lipid raft/caveolar domains.
Collapse
Affiliation(s)
- Leike Xie
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65212, USA
| | | | | | | | | | | |
Collapse
|
17
|
Talaei F, Hylkema MN, Bouma HR, Boerema AS, Strijkstra AM, Henning RH, Schmidt M. Reversible remodeling of lung tissue during hibernation in the Syrian hamster. ACTA ACUST UNITED AC 2011; 214:1276-82. [PMID: 21430204 DOI: 10.1242/jeb.052704] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
During hibernation, small rodents such as hamsters cycle through phases of strongly suppressed metabolism with low body temperature (torpor) and full restoration of metabolism and body temperature (arousal). Remarkably, the repetitive stress of cooling-rewarming and hypoxia does not cause irreversible organ damage. To identify adaptive mechanisms protecting the lungs, we assessed histological changes as well as the expression and localization of proteins involved in tissue remodeling in lungs from Syrian hamsters at different phases of hibernation using immunohistochemical staining and western blot analysis. In torpor (early and late) phase, a reversible increased expression of smooth muscle actin, collagen, angiotensin converting enzyme and transforming growth factor-β was found, whereas expression of the epidermal growth factor receptor and caveolin-1 was low. Importantly, all these alterations were restored during arousal. This study demonstrates substantial alterations in protein expression mainly in epithelial cells of lungs from hibernating Syrian hamsters. These structural changes of the bronchial airway structure are termed airway remodeling and often occur in obstructive lung diseases such as asthma, chronic obstructive pulmonary disease (COPD) and lung fibrosis. Unraveling the molecular mechanism leading to reversal of airway remodeling by the end of torpor may identify possible therapeutic targets to reduce progression of this process in patients suffering from asthma, chronic obstructive pulmonary disease and lung fibrosis.
Collapse
Affiliation(s)
- Fatemeh Talaei
- Department of Clinical Pharmacology, University Medical Center Groningen, University of Groningen, PO Box 196, 9700 RB Groningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
18
|
Kunzmann S, Collins JJP, Yang Y, Uhlig S, Kallapur SG, Speer CP, Jobe AH, Kramer BW. Antenatal inflammation reduces expression of caveolin-1 and influences multiple signaling pathways in preterm fetal lungs. Am J Respir Cell Mol Biol 2011; 45:969-76. [PMID: 21562314 DOI: 10.1165/rcmb.2010-0519oc] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD), associated with chorioamnionitis, results from the simultaneous effects of disrupted lung development, lung injury, and repair superimposed on the developing lung. Caveolins (Cavs) are implicated as major modulators of lung injury and remodeling by multiple signaling pathways, although Cavs have been minimally studied in the injured developing lung. We hypothesized that chorioamnionitis-associated antenatal lung inflammation would decrease the expression of Cav-1 in preterm fetal lungs. We tested whether changes occurred in the transcription factors Smad2/3, Smad1/5, Stat3, and Stat1, and we also studied the activation of acid-sphingomyelinase (a-SMase) with the generation of ceramide, along with changes in the expression of heme oxygenase-1 (HO-1) as indicators of possible Cav-1-mediated effects. Fetal sheep were exposed to 10 mg of intra-amniotic endotoxin or saline for 2, 7, or 2 + 7 days before preterm delivery at 124 days of gestation. The expression of Cav-1 and HO-1 and the phosphorylation of Smad and Stat were evaluated by real-time PCR, Western blotting, and/or immunohistochemistry. The activity of a-SMase and the concentrations of ceramide were measured. Intra-amniotic endotoxin decreased Cav-1 mRNA and protein expression in the lungs, with a maximum reduction of Cav-1 mRNA to 50% ± 7% of the control value (P < 0.05), and of Cav-1 protein expression to 20% ± 5% of the control value (P < 0.05). Decreased concentrations of Cav-1 were associated with the elevated phosphorylation of Smad2/3, Stat3, and Stat1, but not of Smad1/5. The expression of HO-1, a-SMase activity, and ceramide increased. Antenatal inflammation decreased the expression of Cav-1 in the preterm fetal lung. The decreased expression of Cav-1 was associated with the activation of the Smad2/3, Stat, and a-SMase/ceramide pathways, and with the increased expression of HO-1. The decreased concentrations of Cav-1 and changes in other signaling pathways may contribute to BPD.
Collapse
Affiliation(s)
- Steffen Kunzmann
- University Children's Hospital, University of Würzburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Osawa Y, Seki E, Kodama Y, Suetsugu A, Miura K, Adachi M, Ito H, Shiratori Y, Banno Y, Olefsky JM, Nagaki M, Moriwaki H, Brenner DA, Seishima M. Acid sphingomyelinase regulates glucose and lipid metabolism in hepatocytes through AKT activation and AMP-activated protein kinase suppression. FASEB J 2010; 25:1133-44. [PMID: 21163859 PMCID: PMC3058702 DOI: 10.1096/fj.10-168351] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Acid sphingomyelinase (ASM) regulates the homeostasis of sphingolipids, including ceramides and sphingosine-1-phosphate (S1P). Because sphingolipids regulate AKT activation, we investigated the role of ASM in hepatic glucose and lipid metabolism. Initially, we overexpressed ASM in the livers of wild-type and diabetic db/db mice by adenovirus vector (Ad5ASM). In these mice, glucose tolerance was improved, and glycogen and lipid accumulation in the liver were increased. Using primary cultured hepatocytes, we confirmed that ASM increased glucose uptake, glycogen deposition, and lipid accumulation through activation of AKT and glycogen synthase kinase-3β. In addition, ASM induced up-regulation of glucose transporter 2 accompanied by suppression of AMP-activated protein kinase (AMPK) phosphorylation. Loss of sphingosine kinase-1 (SphK1) diminished ASM-mediated AKT phosphorylation, but exogenous S1P induced AKT activation in hepatocytes. In contrast, SphK1 deficiency did not affect AMPK activation. These results suggest that the SphK/S1P pathway is required for ASM-mediated AKT activation but not for AMPK inactivation. Finally, we found that treatment with high-dose glucose increased glycogen deposition and lipid accumulation in wild-type hepatocytes but not in ASM(-/-) cells. This result is consistent with glucose intolerance in ASM(-/-) mice. In conclusion, ASM modulates AKT activation and AMPK inactivation, thus regulating glucose and lipid metabolism in the liver.
Collapse
Affiliation(s)
- Yosuke Osawa
- Department of Informative Clinical Medicine, Gifu University Graduate School of Medicine, Gifu, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Tsukamoto I, Sakakibara N, Maruyama T, Igarashi J, Kosaka H, Kubota Y, Tokuda M, Ashino H, Hattori K, Tanaka S, Kawata M, Konishi R. A novel nucleic acid analogue shows strong angiogenic activity. Biochem Biophys Res Commun 2010; 399:699-704. [DOI: 10.1016/j.bbrc.2010.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 08/02/2010] [Indexed: 11/25/2022]
|