1
|
Sushadi PS, Kuwabara M, Maung EEW, Mohamad Mohtar MS, Sakamoto K, Selvaraj V, Asano A. Arresting calcium-regulated sperm metabolic dynamics enables prolonged fertility in poultry liquid semen storage. Sci Rep 2023; 13:21775. [PMID: 38066036 PMCID: PMC10709635 DOI: 10.1038/s41598-023-48550-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
The preservation of liquid semen is pivotal for both industrial livestock production and genetic management/conservation of species with sperm that are not highly cryo-tolerant. Nevertheless, with regard to poultry semen, even brief in vitro storage periods can lead to a notable decline in fertility, despite the in vivo capacity to maintain fertility for several weeks when within the hen's sperm storage tubules. For fertility in sperm, intracellular calcium ions ([Ca2+]i) play a key role in signaling towards modifying energy metabolism. While reducing [Ca2+]i has been found to enhance the preservation of sperm fertility in some mammals, the connection between semen fertility and calcium availability in avian sperm has received limited attention. In this study, we demonstrate that the use of extracellular and intracellular calcium chelators in liquid semen extenders, specifically EGTA and EGTA-AM, has distinct effects on prolonging the fertility of chicken sperm. These results were validated through in vivo fertility tests. Mechanistically, the effects observed were linked to coordination of mitochondrial metabolism and ATP catabolism. Despite both calcium chelators inducing hypoxia, they differentially regulated mitochondrial respiration and ATP accumulation. This regulation was closely linked to a bimodal control of dynein ATPase activity; a direct initial activation with reduction in [Ca2+]i, and subsequent suppression by cytoplasmic acidification caused by lactic acid. These findings not only contribute to advancing poultry liquid semen preservation techniques, but also elucidates biologically relevant mechanisms that may underlie storage within the female reproductive tract in birds.
Collapse
Affiliation(s)
- Pangda Sopha Sushadi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Maiko Kuwabara
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Ei Ei Win Maung
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Mohamad Shuib Mohamad Mohtar
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Kouyo Sakamoto
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Vimal Selvaraj
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Atsushi Asano
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
2
|
Fasham J, Huebner AK, Liebmann L, Khalaf-Nazzal R, Maroofian R, Kryeziu N, Wortmann SB, Leslie JS, Ubeyratna N, Mancini GMS, van Slegtenhorst M, Wilke M, Haack TB, Shamseldin HE, Gleeson JG, Almuhaizea M, Dweikat I, Abu-Libdeh B, Daana M, Zaki MS, Wakeling MN, McGavin L, Turnpenny PD, Alkuraya FS, Houlden H, Schlattmann P, Kaila K, Crosby AH, Baple EL, Hübner CA. SLC4A10 mutation causes a neurological disorder associated with impaired GABAergic transmission. Brain 2023; 146:4547-4561. [PMID: 37459438 PMCID: PMC10629776 DOI: 10.1093/brain/awad235] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/19/2023] [Accepted: 06/06/2023] [Indexed: 11/09/2023] Open
Abstract
SLC4A10 is a plasma-membrane bound transporter that utilizes the Na+ gradient to drive cellular HCO3- uptake, thus mediating acid extrusion. In the mammalian brain, SLC4A10 is expressed in principal neurons and interneurons, as well as in epithelial cells of the choroid plexus, the organ regulating the production of CSF. Using next generation sequencing on samples from five unrelated families encompassing nine affected individuals, we show that biallelic SLC4A10 loss-of-function variants cause a clinically recognizable neurodevelopmental disorder in humans. The cardinal clinical features of the condition include hypotonia in infancy, delayed psychomotor development across all domains and intellectual impairment. Affected individuals commonly display traits associated with autistic spectrum disorder including anxiety, hyperactivity and stereotyped movements. In two cases isolated episodes of seizures were reported in the first few years of life, and a further affected child displayed bitemporal epileptogenic discharges on EEG without overt clinical seizures. While occipitofrontal circumference was reported to be normal at birth, progressive postnatal microcephaly evolved in 7 out of 10 affected individuals. Neuroradiological features included a relative preservation of brain volume compared to occipitofrontal circumference, characteristic narrow sometimes 'slit-like' lateral ventricles and corpus callosum abnormalities. Slc4a10 -/- mice, deficient for SLC4A10, also display small lateral brain ventricles and mild behavioural abnormalities including delayed habituation and alterations in the two-object novel object recognition task. Collapsed brain ventricles in both Slc4a10-/- mice and affected individuals suggest an important role of SLC4A10 in the production of the CSF. However, it is notable that despite diverse roles of the CSF in the developing and adult brain, the cortex of Slc4a10-/- mice appears grossly intact. Co-staining with synaptic markers revealed that in neurons, SLC4A10 localizes to inhibitory, but not excitatory, presynapses. These findings are supported by our functional studies, which show the release of the inhibitory neurotransmitter GABA is compromised in Slc4a10-/- mice, while the release of the excitatory neurotransmitter glutamate is preserved. Manipulation of intracellular pH partially rescues GABA release. Together our studies define a novel neurodevelopmental disorder associated with biallelic pathogenic variants in SLC4A10 and highlight the importance of further analyses of the consequences of SLC4A10 loss-of-function for brain development, synaptic transmission and network properties.
Collapse
Affiliation(s)
- James Fasham
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon University Healthcare NHS Foundation Trust, Exeter EX2 5DW, UK
- Peninsula Clinical Genetics Service, Royal Devon University Healthcare NHS Foundation Trust, Exeter EX2 5DW, UK
| | - Antje K Huebner
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller Universität, 07747 Jena, Germany
| | - Lutz Liebmann
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller Universität, 07747 Jena, Germany
| | - Reham Khalaf-Nazzal
- Department of Biomedical Sciences, Faculty of Medicine, Arab American University of Palestine, Jenin, P227, Palestine
| | - Reza Maroofian
- Molecular and Clinical Sciences Institute, St. George’s University of London, London SW17 0RE, UK
| | - Nderim Kryeziu
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller Universität, 07747 Jena, Germany
| | - Saskia B Wortmann
- University Children’s Hospital, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), 5020 Salzburg, Austria
- Amalia Children’s Hospital, Radboudumc, 6525 GA Nijmegen, The Netherlands
- Institute of Human Genetics, Technische Universität München, 80333 Munich, Germany
| | - Joseph S Leslie
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon University Healthcare NHS Foundation Trust, Exeter EX2 5DW, UK
| | - Nishanka Ubeyratna
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon University Healthcare NHS Foundation Trust, Exeter EX2 5DW, UK
| | - Grazia M S Mancini
- Department of Clinical Genetics, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | | | - Martina Wilke
- Department of Clinical Genetics, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, 72076 Tübingen, Germany
| | - Hanan E Shamseldin
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Joseph G Gleeson
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123, USA
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mohamed Almuhaizea
- Department of Neuroscience, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Imad Dweikat
- Department of Biomedical Sciences, Faculty of Medicine, Arab American University of Palestine, Jenin, P227, Palestine
| | - Bassam Abu-Libdeh
- Department of Pediatrics and Genetics, Makassed Hospital and Al-Quds University, East Jerusalem, 95908, Palestine
| | - Muhannad Daana
- Department of Pediatrics, Arab Women’s Union Hospital, Nablus, P400, Palestine
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Matthew N Wakeling
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon University Healthcare NHS Foundation Trust, Exeter EX2 5DW, UK
| | - Lucy McGavin
- Department of Radiology, Derriford Hospital, Plymouth PL6 8DH, UK
| | - Peter D Turnpenny
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon University Healthcare NHS Foundation Trust, Exeter EX2 5DW, UK
- Peninsula Clinical Genetics Service, Royal Devon University Healthcare NHS Foundation Trust, Exeter EX2 5DW, UK
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Henry Houlden
- Molecular and Clinical Sciences Institute, St. George’s University of London, London SW17 0RE, UK
| | - Peter Schlattmann
- Institute for Medical Statistics, Computer Science and Data Science, Jena University Hospital, 07747 Jena, Germany
| | - Kai Kaila
- Molecular and Integrative Biosciences, University of Helsinki, 00014 Helsinki, Finland
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Andrew H Crosby
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon University Healthcare NHS Foundation Trust, Exeter EX2 5DW, UK
| | - Emma L Baple
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon University Healthcare NHS Foundation Trust, Exeter EX2 5DW, UK
- Peninsula Clinical Genetics Service, Royal Devon University Healthcare NHS Foundation Trust, Exeter EX2 5DW, UK
| | - Christian A Hübner
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller Universität, 07747 Jena, Germany
- Center for Rare Diseases, Jena University Hospital, Friedrich Schiller Universität, 07747 Jena, Germany
| |
Collapse
|
3
|
Hernández-Garduño S, Chavez JC, Matamoros-Volante A, Sánchez-Guevara Y, Torres P, Treviño CL, Nishigaki T. Hyperpolarization induces cytosolic alkalization of mouse sperm flagellum probably through sperm Na+/H+ exchanger. Reproduction 2022; 164:125-134. [PMID: 35900329 DOI: 10.1530/rep-22-0101] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/19/2022] [Indexed: 11/08/2022]
Abstract
The sperm-specific sodium/proton exchanger (sNHE) is an indispensable protein for male fertility in mammals. Nevertheless, it is still unknown how mammalian sNHE is regulated. Evidence obtained from sea urchin sNHE indicates that hyperpolarization of plasma membrane potential (Vm), which is a hallmark of mammalian capacitation, positively regulates the sNHE. Therefore, we explored the activity of sNHE in mouse and human sperm by fluorescence imaging of intracellular pH (pHi) with a ratiometric dye, SNARF-5F. A valinomycin-induced Vm hyperpolarization elevated sperm flagellar pHi of wild-type mouse, but not in sNHE-KO mouse. Moreover, this pHi increase was inhibited in a high K+ (40 mM) medium. These results support the idea that mouse sNHE is activated by Vm hyperpolarization. Interestingly, we observed different types of kinetics derived from valinomycin-induced alkalization, including some (30 %) without any pHi changes. Our quantitative pHi determinations revealed that unresponsive cells had a high resting pHi (> 7.5), suggesting that the activity of mouse sNHE is regulated by the resting pHi. On the other hand, valinomycin did not increase the pHi of human sperm in the head or the flagellum, regardless of their resting pHi values. Our findings suggest that the regulatory mechanisms of mammalian sNHEs are probably distinct depending on the species.
Collapse
Affiliation(s)
- Sandra Hernández-Garduño
- S Hernández-Garduño, Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología UNAM, Cuernavaca, Mexico
| | - Julio C Chavez
- J Chavez, Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología UNAM, Cuernavaca, Mexico
| | - Arturo Matamoros-Volante
- A Matamoros-Volante, Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología UNAM, Cuernavaca, Mexico
| | - Yoloxochitl Sánchez-Guevara
- Y Sánchez-Guevara, Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología UNAM, Cuernavaca, Mexico
| | - Paulina Torres
- P Torres, Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología UNAM, Cuernavaca, Mexico
| | - Claudia L Treviño
- C Treviño, Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología UNAM, Cuernavaca, Mexico
| | - Takuya Nishigaki
- T Nishigaki, Genetica del Desarrollo y Fisiologia Molecular, Instituto de Biotecnologia UNAM, Cuernavaca, 62210, Mexico
| |
Collapse
|
4
|
Torrezan-Nitao E, Brown SG, Mata-Martínez E, Treviño CL, Barratt C, Publicover S. [Ca2+]i oscillations in human sperm are triggered in the flagellum by membrane potential-sensitive activity of CatSper. Hum Reprod 2021; 36:293-304. [PMID: 33305795 DOI: 10.1093/humrep/deaa302] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/22/2020] [Indexed: 12/15/2022] Open
Abstract
STUDY QUESTION How are progesterone (P4)-induced repetitive intracellular Ca2+ concentration ([Ca2+]i) signals (oscillations) in human sperm generated? SUMMARY ANSWER P4-induced [Ca2+]i oscillations are generated in the flagellum by membrane potential (Vm)-sensitive Ca2+-influx through CatSper channels. WHAT IS KNOWN ALREADY A subset of human sperm display [Ca2+]i oscillations that regulate flagellar beating and acrosome reaction. Although pharmacological manipulations indicate involvement of stored Ca2+ in these oscillations, influx of extracellular Ca2+ is also required. STUDY DESIGN, SIZE, DURATION This was a laboratory study that used >20 sperm donors and involved more than 100 separate experiments and analysis of more than 1000 individual cells over a period of 2 years. PARTICIPANTS/MATERIALS, SETTING, METHODS Semen donors and patients were recruited in accordance with local ethics approval from Birmingham University and Tayside ethics committees. [Ca2+]i responses and Vm of individual cells were examined by fluorescence imaging and whole-cell current clamp. MAIN RESULTS AND THE ROLE OF CHANCE P4-induced [Ca2+]i oscillations originated in the flagellum, spreading to the neck and head (latency of 1-2 s). K+-ionophore valinomycin (1 µM) was used to investigate the role of membrane potential (Vm). Direct assessment by whole-cell current-clamp confirmed that Vm in valinomycin-exposed cells was determined primarily by K+ equilibrium potential (EK) and was rapidly 'reset' upon manipulation of [K+]o. Pre-treatment of sperm with valinomycin ([K+]o = 5.4 mM) had no effect on the P4-induced [Ca2+] transient (P = 0.95; eight experiments), but application of valinomycin to P4-pretreated sperm suppressed activity in 82% of oscillating cells (n = 257; P = 5 × 10-55 compared to control) and significantly reduced both the amplitude and frequency of persisting oscillations (P = 0.0001). Upon valinomycin washout, oscillations re-started in most cells. When valinomycin was applied in saline with elevated [K+], the inhibitory effect of valinomycin was reduced and was dependent on EK (P = 10-25). Amplitude and frequency of [Ca2+]i oscillations that persisted in the presence of valinomycin showed similar sensitivity to EK (P < 0.01). The CatSper inhibitor RU1968 (4.8 and 11 µM) caused immediate and reversible arrest of activity in 36% and 96% of oscillating cells, respectively (P < 10-10). Quinidine (300 µM) which blocks the sperm K+ current (IKsper) completely, inhibited [Ca2+]i oscillations. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION This was an in-vitro study and caution must be taken when extrapolating these results to in-vivo regulation of sperm. WIDER IMPLICATIONS OF THE FINDINGS [Ca2+]i oscillations in human sperm are functionally important and their absence is associated with failed fertilisation at IVF. The data reported here provide new understanding of the mechanisms that underlie the regulation and generation (or failure) of these oscillations. STUDY FUNDING/COMPETING INTEREST(S) E.T.-N. was in receipt of a postgraduate scholarship from the CAPES Foundation (Ministry of Education, Brazil). E.M-M received travel funds from the Programa de Apoyo a los Estudios de Posgrado (Maestria y Doctorado en Ciencias Bioquimicas-Universidad Autonoma de Mexico). SGB and CLRB are recipients of a Chief Scientist Office (NHS Scotland) grant TCS/17/28. The authors have no conflicts of interest.
Collapse
Affiliation(s)
| | - Sean G Brown
- School of Applied Sciences, Division of Health Sciences, Abertay University, Dundee DD11HG, UK
| | - Esperanza Mata-Martínez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Claudia L Treviño
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Christopher Barratt
- Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK
| | | |
Collapse
|
5
|
Machine-learning algorithm incorporating capacitated sperm intracellular pH predicts conventional in vitro fertilization success in normospermic patients. Fertil Steril 2021; 115:930-939. [PMID: 33461755 DOI: 10.1016/j.fertnstert.2020.10.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To measure human sperm intracellular pH (pHi) and develop a machine-learning algorithm to predict successful conventional in vitro fertilization (IVF) in normospermic patients. DESIGN Spermatozoa from 76 IVF patients were capacitated in vitro. Flow cytometry was used to measure sperm pHi, and computer-assisted semen analysis was used to measure hyperactivated motility. A gradient-boosted machine-learning algorithm was trained on clinical data and sperm pHi and membrane potential from 58 patients to predict successful conventional IVF, defined as a fertilization ratio (number of fertilized oocytes [2 pronuclei]/number of mature oocytes) greater than 0.66. The algorithm was validated on an independent set of data from 18 patients. SETTING Academic medical center. PATIENT(S) Normospermic men undergoing IVF. Patients were excluded if they used frozen sperm, had known male factor infertility, or used intracytoplasmic sperm injection only. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Successful conventional IVF. RESULT(S) Sperm pHi positively correlated with hyperactivated motility and with conventional IVF ratio (n = 76) but not with intracytoplasmic sperm injection fertilization ratio (n = 38). In receiver operating curve analysis of data from the test set (n = 58), the machine-learning algorithm predicted successful conventional IVF with a mean accuracy of 0.72 (n = 18), a mean area under the curve of 0.81, a mean sensitivity of 0.65, and a mean specificity of 0.80. CONCLUSION(S) Sperm pHi correlates with conventional fertilization outcomes in normospermic patients undergoing IVF. A machine-learning algorithm can use clinical parameters and markers of capacitation to accurately predict successful fertilization in normospermic men undergoing conventional IVF.
Collapse
|
6
|
Zalazar L, Stival C, Nicolli AR, De Blas GA, Krapf D, Cesari A. Male Decapacitation Factor SPINK3 Blocks Membrane Hyperpolarization and Calcium Entry in Mouse Sperm. Front Cell Dev Biol 2020; 8:575126. [PMID: 33102481 PMCID: PMC7554638 DOI: 10.3389/fcell.2020.575126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/10/2020] [Indexed: 01/10/2023] Open
Abstract
Mammalian sperm acquire ability to fertilize through a process called capacitation, occurring after ejaculation and regulated by both female molecules and male decapacitation factors. Bicarbonate and calcium present in the female reproductive tract trigger capacitation in sperm, leading to acrosomal responsiveness and hyperactivated motility. Male decapacitating factors present in the semen avert premature capacitation, until detached from the sperm surface. However, their mechanism of action remains elusive. Here we describe for the first time the molecular basis for the decapacitating action of the seminal protein SPINK3 in mouse sperm. When present in the capacitating medium, SPINK3 inhibited Src kinase, a modulator of the potassium channel responsible for plasma membrane hyperpolarization. Lack of hyperpolarization affected calcium channels activity, impairing the acquisition of acrosomal responsiveness and blocking hyperactivation. Interestingly, SPINK3 acted only on non-capacitated sperm, as it did not bind to capacitated cells. Binding selectivity allows its decapacitating action only in non-capacitated sperm, without affecting capacitated cells.
Collapse
Affiliation(s)
- Lucia Zalazar
- Instituto de Investigaciones Biológicas (IIB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Cintia Stival
- Laboratory of Cell Signal Transduction Networks, Instituto de Biologia Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| | - Anabella R Nicolli
- Instituto de Investigaciones Biológicas (IIB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Gerardo A De Blas
- Instituto de Histología y Embriología de Mendoza (IHEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, National Scientific and Technical Research Council, Mendoza, Argentina
| | - Dario Krapf
- Laboratory of Cell Signal Transduction Networks, Instituto de Biologia Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| | - Andreina Cesari
- Instituto de Investigaciones Biológicas (IIB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina.,Escuela Superior de Medicina, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| |
Collapse
|
7
|
Chávez JC, Darszon A, Treviño CL, Nishigaki T. Quantitative Intracellular pH Determinations in Single Live Mammalian Spermatozoa Using the Ratiometric Dye SNARF-5F. Front Cell Dev Biol 2020; 7:366. [PMID: 32010689 PMCID: PMC6978660 DOI: 10.3389/fcell.2019.00366] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/13/2019] [Indexed: 11/13/2022] Open
Abstract
Intracellular pH (pH i ) plays a crucial role in mammalian sperm physiology. However, it is a challenging task to acquire quantitative single sperm pH i images due to their small size and beating flagella. In this study, we established a robust pH i imaging system using the dual-emission ratiometric pH indicator, SNARF-5F. Simultaneous good signal/noise ratio fluorescence signals were obtained exciting with a green high-power LED (532 nm) and acquiring with an EM-CCD camera through an image splitter with two band-pass filters (550-600 nm, channel 1; 630-650 nm, channel 2). After in vivo calibration, we established an imaging system that allows determination of absolute pH i values in spermatozoa, minimizing cell movement artifacts. Using this system, we determined that bicarbonate increases non-capacitated human pH i with slower kinetics than in mouse spermatozoa. This difference suggests that distinct ionic transporters might be involved in the bicarbonate influx into human and mouse spermatozoa. Alternatively, pH i regulation downstream bicarbonate influx into spermatozoa could be different between the two species.
Collapse
Affiliation(s)
| | | | | | - Takuya Nishigaki
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
8
|
Ghanbari H, Keshtgar S, Zare HR, Gharesi-Fard B. Inhibition of CatSper and Hv1 Channels and NOX5 Enzyme Affect Progesterone-Induced Increase of Intracellular Calcium Concentration and ROS Generation in Human Sperm. IRANIAN JOURNAL OF MEDICAL SCIENCES 2019; 44:127-134. [PMID: 30936599 PMCID: PMC6423429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Normal sperm function depends on appropriate intracellular calcium (Cai 2+) and reactive oxygen species (ROS) levels. Calcium activates NADPH oxidase-5 (NOX5) that leads to ROS generation. The calcium channel of sperm (CatSper) is activated by progesterone and intracellular alkalization. Herein, the interactive role of CatSper, Hv1 channels, and NOX5 enzyme on Cai 2+ and ROS generation in human sperm is investigated. METHODS The present laboratory in vitro study was carried out in the School of Medicine, Shiraz University of Medical Sciences (Shiraz, Iran) during 2016. Normal semen samples (n=15) were washed and diluted to 20×106 sperm/mL. The diluted samples were divided into 16 groups containing Ham's F-10 (the control group), 2 µM NNC (CatSper inhibitor), 1 mM ZnCl2 (Hv1 inhibitor), 1 µM DPI (NOX5 inhibitor), NNC+Zn, NNC+DPI, and NNC+Zn+DPI. The other 8 groups were the same as the above except that they contained 1 µM progesterone. Cell viability and Cai 2+ were analyzed by flou-3 AM probe and PI staining, respectively, using flow cytometric method. ROS generation was assessed by chemiluminescence method. Statistical analysis was performed using the one-way ANOVA followed by Tukey's test. P values <0.05 were considered statistically significant. RESULTS Progesterone increased Cai 2+ and ROS generation. The addition of NNC, Zn, or NNC+Zn significantly decreased Cai 2+ in the control and progesterone containing groups. Progesterone-induced ROS generation was decreased significantly in all groups containing NNC, Zn, or DPI and reached to the control level when DPI was added to NNC or Zn. CONCLUSION There is a functional relationship between CatSper and Hv1 channels in increasing Cai 2++. The activity of CatSper and Hv1 channels are required for progesterone-induced ROS generation by NOX5 enzyme.
Collapse
Affiliation(s)
- Hamideh Ghanbari
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran;
| | - Sara Keshtgar
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran;
| | - Hamid Reza Zare
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran;
| | - Behrouz Gharesi-Fard
- Department of Immunology, Infertility Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
9
|
Achikanu C, Pendekanti V, Teague R, Publicover S. Effects of pH manipulation, CatSper stimulation and Ca2+-store mobilization on [Ca2+]i and behaviour of human sperm. Hum Reprod 2018; 33:1802-1811. [DOI: 10.1093/humrep/dey280] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/22/2018] [Indexed: 12/27/2022] Open
Affiliation(s)
- Cosmas Achikanu
- School of Biosciences, the University of Birmingham, Birmingham, UK
| | | | - Rebecca Teague
- School of Biosciences, the University of Birmingham, Birmingham, UK
| | | |
Collapse
|
10
|
Zhang C, Zhou Y, Xie S, Yin Q, Tang C, Ni Z, Fei J, Zhang Y. CRISPR/Cas9-mediated genome editing reveals the synergistic effects of β-defensin family members on sperm maturation in rat epididymis. FASEB J 2018; 32:1354-1363. [PMID: 29141997 DOI: 10.1096/fj.201700936r] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The epididymis is a male reproductive organ involved in posttesticular sperm maturation and storage, but the mechanism underlying sperm maturation remains unclear. β-Defensins (Defbs) belong to a family of small, cysteine-rich, cationic peptides that are antimicrobial and modulate the immune response. A large number of Defb genes are expressed abundantly in the male reproductive tract, especially in the epididymis. We and other groups have shown the involvement of several Defb genes in regulation of sperm function. In this study, we found that Defb23, Defb26, and Defb42 were highly expressed in specific regions of the epididymis. Rats with CRISPR/Cas9-mediated single-gene disruption of Defb23, Defb26, or Defb42 had no obvious fertility phenotypes. Those with the deletion of Defb23/ 26 or Defb23/ 26/ 42 became subfertile, and sperm isolated from the epididymal cauda of multiple-mutant rats were demonstrated decreased motility. Meanwhile, the sperm showed precocious capacitation and increased spontaneous acrosome reaction. Consistent with premature capacitation and acrosome reaction, sperm from multiple-gene-knockout rats had significantly increased intracellular calcium. These results suggest that Defb family members affect sperm maturation by a synergistic pattern in the epididymis.-Zhang, C., Zhou, Y., Xie, S., Yin, Q., Tang, C., Ni, Z., Fei, J., Zhang, Y. CRISPR/Cas9-mediated genome editing reveals the synergistic effects of β-defensin family members on sperm maturation in rat epididymis.
Collapse
Affiliation(s)
- Chaobao Zhang
- School of Life Science and Technology, Tong Ji University, Shanghai, China.,State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology (SIBCB), Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yuchuan Zhou
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology (SIBCB), Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Shengsong Xie
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology (SIBCB), Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Qianqian Yin
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology (SIBCB), Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Chunhua Tang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology (SIBCB), Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zimei Ni
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology (SIBCB), Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jian Fei
- School of Life Science and Technology, Tong Ji University, Shanghai, China
| | - Yonglian Zhang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology (SIBCB), Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
11
|
Geng Y, Ferreira JJ, Dzikunu V, Butler A, Lybaert P, Yuan P, Magleby KL, Salkoff L, Santi CM. A genetic variant of the sperm-specific SLO3 K + channel has altered pH and Ca 2+ sensitivities. J Biol Chem 2017; 292:8978-8987. [PMID: 28377504 DOI: 10.1074/jbc.m117.776013] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/21/2017] [Indexed: 11/06/2022] Open
Abstract
To fertilize an oocyte, sperm must first undergo capacitation in which the sperm plasma membrane becomes hyperpolarized via activation of potassium (K+) channels and resultant K+ efflux. Sperm-specific SLO3 K+ channels are responsible for these membrane potential changes critical for fertilization in mouse sperm, and they are only sensitive to pH i However, in human sperm, the major K+ conductance is both Ca2+- and pH i -sensitive. It has been debated whether Ca2+-sensitive SLO1 channels substitute for human SLO3 (hSLO3) in human sperm or whether human SLO3 channels have acquired Ca2+ sensitivity. Here we show that hSLO3 is rapidly evolving and reveal a natural structural variant with enhanced apparent Ca2+ and pH sensitivities. This variant allele (C382R) alters an amino acid side chain at a principal interface between the intramembrane-gated pore and the cytoplasmic gating ring of the channel. Because the gating ring contains sensors to intracellular factors such as pH and Ca2+, the effectiveness of transduction between the gating ring and the pore domain appears to be enhanced. Our results suggest that sperm-specific genes can evolve rapidly and that natural genetic variation may have led to a SLO3 variant that differs from wild type in both pH and intracellular Ca2+ sensitivities. Whether this physiological variation confers differences in fertility among males remains to be established.
Collapse
Affiliation(s)
- Yanyan Geng
- the Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, Florida 33136
| | | | | | | | | | - Peng Yuan
- Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110 and
| | - Karl L Magleby
- the Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, Florida 33136
| | | | | |
Collapse
|
12
|
Zhou Y, Ru Y, Shi H, Wang Y, Wu B, Upur H, Zhang Y. Cholecystokinin receptors regulate sperm protein tyrosine phosphorylation via uptake of HCO3-. Reproduction 2015; 150:257-68. [PMID: 26175429 DOI: 10.1530/rep-15-0138] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 07/14/2015] [Indexed: 11/08/2022]
Abstract
Cholecystokinin (CCK), a peptide hormone and a neurotransmitter, was detected in mature sperm two decades ago. However, the exact role of CCK and the types of CCK receptors (now termed CCK1 and CCK2) in sperm have not been identified. Here, we find that CCK1 and CCK2 receptors are immunolocalized to the acrosomal region of mature sperm. The antagonist of CCK1 or CCK2 receptor strongly activated the soluble adenylyl cyclase/cAMP/protein kinase A signaling pathway that drives sperm capacitation-associated protein tyrosine phosphorylation in dose- and time-dependent manners. But these actions of stimulation were abolished when sperm were incubated in the medium in the absence of HCO3-. Further investigation demonstrated that the inhibitor of CCK1 or CCK2 receptor could accelerate the uptake of HCO3- and significantly elevate the intracellular pH of sperm. Interestingly, the synthetic octapeptide of CCK (CCK8) showed the same action and mechanism as antagonists of CCK receptors. Moreover, CCK8 and the antagonist of CCK1 or CCK2 receptor were also able to accelerate human sperm capacitation-associated protein tyrosine phosphorylation by stimulating the influx of HCO3-. Thus, the present results suggest that CCK and its receptors may regulate sperm capacitation-associated protein tyrosine phosphorylation by modulating the uptake of HCO3-.
Collapse
Affiliation(s)
- Yuchuan Zhou
- State Key Laboratory of Molecular BiologyShanghai Key Laboratory for Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, People's Republic of ChinaShanghai institute of Planned Parenthood ResearchShanghai, ChinaCollege of Basic MedicalXinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, Shanghai, China
| | - Yanfei Ru
- State Key Laboratory of Molecular BiologyShanghai Key Laboratory for Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, People's Republic of ChinaShanghai institute of Planned Parenthood ResearchShanghai, ChinaCollege of Basic MedicalXinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, Shanghai, China
| | - Huijuan Shi
- State Key Laboratory of Molecular BiologyShanghai Key Laboratory for Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, People's Republic of ChinaShanghai institute of Planned Parenthood ResearchShanghai, ChinaCollege of Basic MedicalXinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, Shanghai, China
| | - Yanjiao Wang
- State Key Laboratory of Molecular BiologyShanghai Key Laboratory for Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, People's Republic of ChinaShanghai institute of Planned Parenthood ResearchShanghai, ChinaCollege of Basic MedicalXinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, Shanghai, China State Key Laboratory of Molecular BiologyShanghai Key Laboratory for Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, People's Republic of ChinaShanghai institute of Planned Parenthood ResearchShanghai, ChinaCollege of Basic MedicalXinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, Shanghai, China
| | - Bin Wu
- State Key Laboratory of Molecular BiologyShanghai Key Laboratory for Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, People's Republic of ChinaShanghai institute of Planned Parenthood ResearchShanghai, ChinaCollege of Basic MedicalXinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, Shanghai, China
| | - Halmurat Upur
- State Key Laboratory of Molecular BiologyShanghai Key Laboratory for Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, People's Republic of ChinaShanghai institute of Planned Parenthood ResearchShanghai, ChinaCollege of Basic MedicalXinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, Shanghai, China
| | - Yonglian Zhang
- State Key Laboratory of Molecular BiologyShanghai Key Laboratory for Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, People's Republic of ChinaShanghai institute of Planned Parenthood ResearchShanghai, ChinaCollege of Basic MedicalXinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, Shanghai, China
| |
Collapse
|
13
|
Abstract
This Opinion piece is offered as a cursory overview of sperm development, function, and transport through the eyes of an equine veterinarian. My professional background is predominantly clinical in nature, but my fascination with sperm function and preservation has led to a fairly sizeable review of the scientific literature over the years in hopes of extracting laboratory findings that have application to my daily activities in the clinical arena. Spermatozoa are quite unique among cellular types with regard to both form and function, and represent the only endogenously derived cell type that exerts its action in a separate being. This paper takes the reader on a voyage with a mammalian spermatozoon, from its formative stages through its transport in the male and female reproductive tracts, and culminating with its interaction with an ovulated oocyte at the time of fertilization. Specific emphasis is placed on equine spermatozoa when notable research findings have been unveiled.
Collapse
Affiliation(s)
- Dickson D Varner
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A and M University, College Station, TX 77843-4475, USA
| |
Collapse
|
14
|
Leemans B, Gadella BM, Sostaric E, Nelis H, Stout TA, Hoogewijs M, Van Soom A. Oviduct Binding and Elevated Environmental pH Induce Protein Tyrosine Phosphorylation in Stallion Spermatozoa1. Biol Reprod 2014; 91:13. [DOI: 10.1095/biolreprod.113.116418] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
15
|
Siva AB, Panneerdoss S, Sailasree P, Singh DK, Kameshwari DB, Shivaji S. Inhibiting sperm pyruvate dehydrogenase complex and its E3 subunit, dihydrolipoamide dehydrogenase affects fertilization in Syrian hamsters. PLoS One 2014; 9:e97916. [PMID: 24852961 PMCID: PMC4031208 DOI: 10.1371/journal.pone.0097916] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 04/26/2014] [Indexed: 12/20/2022] Open
Abstract
Background/Aims The importance of sperm capacitation for mammalian fertilization has been confirmed in the present study via sperm metabolism. Involvement of the metabolic enzymes pyruvate dehydrogenase complex (PDHc) and its E3 subunit, dihydrolipoamide dehydrogenase (DLD) in hamster in vitro fertilization (IVF) via in vitro sperm capacitation is being proposed through regulation of sperm intracellular lactate, pH and calcium. Methodology and Principal Findings Capacitated hamster spermatozoa were allowed to fertilize hamster oocytes in vitro which were then assessed for fertilization, microscopically. PDHc/DLD was inhibited by the use of the specific DLD-inhibitor, MICA (5-methoxyindole-2-carboxylic acid). Oocytes fertilized with MICA-treated (MT) [and thus PDHc/DLD-inhibited] spermatozoa showed defective fertilization where 2nd polar body release and pronuclei formation were not observed. Defective fertilization was attributable to capacitation failure owing to high lactate and low intracellular pH and calcium in MT-spermatozoa during capacitation. Moreover, this defect could be overcome by alkalinizing spermatozoa, before fertilization. Increasing intracellular calcium in spermatozoa pre-IVF and in defectively-fertilized oocytes, post-fertilization rescued the arrest seen, suggesting the role of intracellular calcium from either of the gametes in fertilization. Parallel experiments carried out with control spermatozoa capacitated in medium with low extracellular pH or high lactate substantiated the necessity of optimal sperm intracellular lactate levels, intracellular pH and calcium during sperm capacitation, for proper fertilization. Conclusions This study confirms the importance of pyruvate/lactate metabolism in capacitating spermatozoa for successful fertilization, besides revealing for the first time the importance of sperm PDHc/ DLD in fertilization, via the modulation of sperm intracellular lactate, pH and calcium during capacitation. In addition, the observations made in the IVF studies in hamsters suggest that capacitation failures could be a plausible cause of unsuccessful fertilization encountered during human assisted reproductive technologies, like IVF and ICSI. Our studies indicate a role of sperm capacitation in the post-penetration events during fertilization.
Collapse
Affiliation(s)
- Archana B Siva
- Centre for Cellular and Molecular Biology (Council of Scientific and Industrial Research), Hyderabad, India
| | - Subbarayalu Panneerdoss
- Centre for Cellular and Molecular Biology (Council of Scientific and Industrial Research), Hyderabad, India
| | - Purnima Sailasree
- Centre for Cellular and Molecular Biology (Council of Scientific and Industrial Research), Hyderabad, India
| | - Durgesh K Singh
- Centre for Cellular and Molecular Biology (Council of Scientific and Industrial Research), Hyderabad, India
| | - Duvurri B Kameshwari
- Centre for Cellular and Molecular Biology (Council of Scientific and Industrial Research), Hyderabad, India
| | - Sisinthy Shivaji
- Centre for Cellular and Molecular Biology (Council of Scientific and Industrial Research), Hyderabad, India
| |
Collapse
|
16
|
Affiliation(s)
- Jorge Parodi
- Laboratorio de Fisiología de la Reproducción, Escuela de Medicina Veterinaria, Núcleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Universidad Católica de Temuco
TemucoChile
| |
Collapse
|
17
|
Balderas E, Sánchez-Cárdenas C, Chávez J, de la Vega Beltrán J, Gómez-Lagunas F, Treviño C, Darszon A. The anti-inflammatory drug celecoxib inhibits t-type Ca2+
currents in spermatogenic cells yet it elicits the acrosome reaction in mature sperm. FEBS Lett 2013; 587:2412-9. [DOI: 10.1016/j.febslet.2013.05.068] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/28/2013] [Accepted: 05/30/2013] [Indexed: 11/27/2022]
|
18
|
Alasmari W, Costello S, Correia J, Oxenham SK, Morris J, Fernandes L, Ramalho-Santos J, Kirkman-Brown J, Michelangeli F, Publicover S, Barratt CLR. Ca2+ signals generated by CatSper and Ca2+ stores regulate different behaviors in human sperm. J Biol Chem 2013; 288:6248-58. [PMID: 23344959 PMCID: PMC3585060 DOI: 10.1074/jbc.m112.439356] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
[Ca2+]i signaling regulates sperm motility, enabling switching between functionally different behaviors that the sperm must employ as it ascends the female tract and fertilizes the oocyte. We report that different behaviors in human sperm are recruited according to the Ca2+ signaling pathway used. Activation of CatSper (by raising pHi or stimulating with progesterone) caused sustained [Ca2+]i elevation but did not induce hyperactivation, the whiplash-like behavior required for progression along the oviduct and penetration of the zona pellucida. In contrast, penetration into methylcellulose (mimicking penetration into cervical mucus or cumulus matrix) was enhanced by activation of CatSper. NNC55-0396, which abolishes CatSper currents in human sperm, inhibited this effect. Treatment with 5 μm thimerosal to mobilize stored Ca2+ caused sustained [Ca2+]i elevation and induced strong, sustained hyperactivation that was completely insensitive to NNC55-0396. Thimerosal had no effect on penetration into methylcellulose. 4-Aminopyridine, a powerful modulator of sperm motility, both raised pHi and mobilized Ca2+ stored in sperm (and from microsomal membrane preparations). 4-Aminopyridine-induced hyperactivation even in cells suspended in Ca2+-depleted medium and also potentiated penetration into methylcellulose. The latter effect was sensitive to NNC55-039, but induction of hyperactivation was not. We conclude that these two components of the [Ca2+]i signaling apparatus have strikingly different effects on sperm motility. Furthermore, since stored Ca2+ at the sperm neck can be mobilized by Ca2+-induced Ca2+ release, we propose that CatSper activation can elicit functionally different behaviors according to the sensitivity of the Ca2+ store, which may be regulated by capacitation and NO from the cumulus.
Collapse
Affiliation(s)
- Wardah Alasmari
- From the Reproductive and Developmental Biology, Medical School, University of Dundee, Ninewells Hospital, Dundee DD1 9SY, Scotland, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Ca2+i signalling is pivotal to sperm function. Progesterone, the best-characterized agonist of human sperm Ca2+i signalling, stimulates a biphasic [Ca2+]i rise, comprising a transient and subsequent sustained phase. In accordance with recent reports that progesterone directly activates CatSper, the [Ca2+]i transient was detectable in the anterior flagellum (where CatSper is expressed) 1–2 s before responses in the head and neck. Pre-treatment with 5 μM 2-APB (2-aminoethoxydiphenyl borate), which enhances activity of store-operated channel proteins (Orai) by facilitating interaction with their activator [STIM (stromal interaction molecule)] ‘amplified’ progesterone-induced [Ca2+]i transients at the sperm neck/midpiece without modifying kinetics. The flagellar [Ca2+]i response was unchanged. 2-APB (5 μM) also enhanced the sustained response in the midpiece, possibly reflecting mitochondrial Ca2+ accumulation downstream of the potentiated [Ca2+]i transient. Pre-treatment with 50–100 μM 2-APB failed to potentiate the transient and suppressed sustained [Ca2+]i elevation. When applied during the [Ca2+]i plateau, 50–100 μM 2-APB caused a transient fall in [Ca2+]i, which then recovered despite the continued presence of 2-APB. Loperamide (a chemically different store-operated channel agonist) enhanced the progesterone-induced [Ca2+]i signal and potentiated progesterone-induced hyperactivated motility. Neither 2-APB nor loperamide raised pHi (which would activate CatSper) and both compounds inhibited CatSper currents. STIM and Orai were detected and localized primarily to the neck/midpiece and acrosome where Ca2+ stores are present and the effects of 2-APB are focussed, but store-operated currents could not be detected in human sperm. We propose that 2-APB-sensitive channels amplify [Ca2+]i elevation induced by progesterone (and other CatSper agonists), amplifying, propagating and providing spatio-temporal complexity in [Ca2+]i signals of human sperm.
Collapse
|
20
|
Irez T, Ocal P, Guralp O, Kaleli S, Ocer F, Sahmay S. Sperm selection based on motility in polyvinylpyrrolidone is associated with successful pregnancy and embryo development. Andrologia 2012; 45:240-7. [DOI: 10.1111/j.1439-0272.2012.01337.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2012] [Indexed: 12/30/2022] Open
Affiliation(s)
| | | | - O. Guralp
- Division of Reproductive Endocrinology; Department of Obstetrics and Gynecology; Istanbul University Cerrahpasa School of Medicine; Istanbul; Turkey
| | | | | | | |
Collapse
|
21
|
Bottini-Luzardo M, Centurión-Castro F, Alfaro-Gamboa M, Aké-López R, Herrera-Camacho J. Effect of addition of coconut water (Cocos nucifera) to the freezing media on post-thaw viability of boar sperm. Trop Anim Health Prod 2012; 45:101-6. [DOI: 10.1007/s11250-012-0179-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2012] [Indexed: 11/30/2022]
|
22
|
Chávez JC, Hernández-González EO, Wertheimer E, Visconti PE, Darszon A, Treviño CL. Participation of the Cl-/HCO(3)- exchangers SLC26A3 and SLC26A6, the Cl- channel CFTR, and the regulatory factor SLC9A3R1 in mouse sperm capacitation. Biol Reprod 2012; 86:1-14. [PMID: 21976599 DOI: 10.1095/biolreprod.111.094037] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Sperm capacitation is required for fertilization and involves several ion permeability changes. Although Cl(-) and HCO(3)(-) are essential for capacitation, the molecular entities responsible for their transport are not fully known. During mouse sperm capacitation, the intracellular concentration of Cl(-) ([Cl(-)](i)) increases and membrane potential (Em) hyperpolarizes. As in noncapacitated sperm, the Cl(-) equilibrium potential appears to be close to the cell resting Em, opening of Cl(-) channels could not support the [Cl(-)](i) increase observed during capacitation. Alternatively, the [Cl(-)](i) increase might be mediated by anion exchangers. Among them, SLC26A3 and SLC26A6 are good candidates, since, in several cell types, they increase [Cl(-)](i) and interact with cystic fibrosis transmembrane conductance regulator (CFTR), a Cl(-) channel present in mouse and human sperm. This interaction is known to be mediated and probably regulated by the Na(+)/H(+) regulatory factor-1 (official symbol, SLC9A3R1). Our RT-PCR, immunocytochemistry, Western blot, and immunoprecipitation data indicate that SLC26A3, SLC26A6, and SLC9A3R1 are expressed in mouse sperm, localize to the midpiece, and interact between each other and with CFTR. Moreover, we present evidence indicating that CFTR and SLC26A3 are involved in the [Cl(-)](i) increase induced by db-cAMP in noncapacitated sperm. Furthermore, we found that inhibitors of SLC26A3 (Tenidap and 5099) interfere with the Em changes that accompany capacitation. Together, these findings indicate that a CFTR/SLC26A3 functional interaction is important for mouse sperm capacitation.
Collapse
Affiliation(s)
- Julio C Chávez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología-Universidad Nacional Autónoma de México, Cuernavaca, México
| | | | | | | | | | | |
Collapse
|
23
|
Gómez PN, Alvarez JG, Parodi J, Romero F, Sánchez R. Effect of aracnotoxin from Latrodectus mactans on bovine sperm function: modulatory action of bovine oviduct cells and their secretions. Andrologia 2012; 44 Suppl 1:764-71. [PMID: 22211875 DOI: 10.1111/j.1439-0272.2011.01263.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2011] [Indexed: 11/29/2022] Open
Abstract
Latrodectus mactans' aracnotoxin (Atx) induces changes in sperm function that could be used as a co-adjuvant in male contraceptive barrier methods. This effect includes the suppression of intracellular reactive oxygen species (ROS), an event necessary for capacitation, chemotaxis and acrosome reaction (AR). The sperm that are not trapped by the barrier method can reach the oviduct before fertilisation and be exposed to the secretions of the oviducts. This study evaluated the effect of bovine tubal explants (TU) and conditioned media (CM) from the ampullar and isthmal regions on spermatozoa exposed to Atx. Thawed bovine sperm were incubated with Atx, TU and CM from the ampullar and isthmal regions for 4 h and then DNA integrity, intracellular ROS and lysophosphatidylcholine-induced AR were determined. Spermatozoa exposed to Atx and co-incubated with TU and CM for 4 h produced an increase in sperm DNA damage, a decrease in ROS production and a decrease in %AR, compared with the control. A similar result was obtained from the co-incubation of spermatozoa with Atx. In conclusion, the effect of Atx is not modified by tubal cells or their secretions and this opens the door to future studies to evaluate the application of synthetic peptides obtained from Atx as a co-adjuvant of contraceptive barrier methods.
Collapse
Affiliation(s)
- P N Gómez
- Center of Neurosciences and Peptides Biology, CEBIOR, BIOREN, Universidad de La Frontera, Temuco, Chile
| | | | | | | | | |
Collapse
|
24
|
Hentemann M, Mousavi K, Bertheussen K. Differential pH in embryo culture. Fertil Steril 2010; 95:1291-4. [PMID: 21067724 DOI: 10.1016/j.fertnstert.2010.10.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 08/30/2010] [Accepted: 10/13/2010] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To determine the optimum pH in sequential media for embryo culture around the fertilization-zygote stage and cleavage stage, with use of a mouse embryo assay. DESIGN Experimental laboratory study. SETTING University Hospital and University Research Unit. ANIMAL(S) F1 hybrids between CD1 female and BDF male mice. INTERVENTION(S) Fertilized, one-cell mouse embryos were cultured 5 days in test media where pH was changed at defined time intervals. MAIN OUTCOME MEASURE(S) Percentage of good-quality embryos, defined by strict morphology. RESULT(S) A significantly improved development was observed when pH was as high as 7.30 before the pronuclear stage and lowered to pH 7.15 during the cleavage period. CONCLUSION(S) Good embryo development is consistent with two different pH values in sequential culture media. This could have important implications for embryo culture in human IVF.
Collapse
Affiliation(s)
- Martha Hentemann
- Department of Obstetrics and Gynecology, IVF Unit, University Hospital of Northern Norway, Tromsø, Norway
| | | | | |
Collapse
|
25
|
Navarrete P, Martínez-Torres A, Gutiérrez RS, Mejía FR, Parodi J. Venom of the ChileanLatrodectus mactansAlters Bovine Spermatozoa Calcium and Function by Blocking the TEA-sensitive K+Current. Syst Biol Reprod Med 2010; 56:303-10. [DOI: 10.3109/19396368.2010.492447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
26
|
Parodi J, Navarrete P, Marconi M, Gutiérrez RS, Martínez‐Torres A, Mejías FR. Tetraethylammonium-Sensitive K+Current in the Bovine Spermatozoa and its Blocking by the Venom of the ChileanLatrodectus mactans. Syst Biol Reprod Med 2010; 56:37-43. [DOI: 10.3109/19396360903497217] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
27
|
Xia J, Ren D. The BSA-induced Ca2+ influx during sperm capacitation is CATSPER channel-dependent. Reprod Biol Endocrinol 2009; 7:119. [PMID: 19860887 PMCID: PMC2775032 DOI: 10.1186/1477-7827-7-119] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 10/27/2009] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Serum albumin is a key component in mammalian sperm capacitation, a functional maturation process by which sperm become competent to fertilize oocytes. Capacitation is accompanied by several cellular and molecular changes including an increased tyrosine phosphorylation of sperm proteins and a development of hyperactivated sperm motility. Both of these processes require extracellular calcium, but how calcium enters sperm during capacitation is not well understood. METHODS BSA-induced changes in intracellular calcium concentration were studied using Fluo-4 and Fura-2 calcium imaging with wild-type and Catsper1 knockout mouse sperm. RESULTS We found that the fast phase of the BSA-induced rises in intracellular calcium concentration was absent in the Catsper1 knockout sperm and could be restored by an EGFP-CATSPER1 fusion protein. The calcium concentration increases were independent of G-proteins and phospholipase C but could be partially inhibited when intracellular pH was clamped. The changes started in the principal piece and propagated toward the sperm head. CONCLUSION We conclude that the initial phase of the increases in intracellular calcium concentration induced by BSA requires the CATSPER channel, but not the voltage-gated calcium channel. Our findings identify the molecular conduit responsible for the calcium entry required for the sperm motility changes that occur during capacitation.
Collapse
Affiliation(s)
- Jingsheng Xia
- Department of Biology, University of Pennsylvania, 415 S University Ave, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
28
|
Chen WY, Xu WM, Chen ZH, Ni Y, Yuan YY, Zhou SC, Zhou WW, Tsang LL, Chung YW, Höglund P, Chan HC, Shi QX. Cl- is required for HCO3- entry necessary for sperm capacitation in guinea pig: involvement of a Cl-/HCO3- exchanger (SLC26A3) and CFTR. Biol Reprod 2008; 80:115-23. [PMID: 18784352 DOI: 10.1095/biolreprod.108.068528] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Our previous study demonstrated the involvement of cystic fibrosis transmembrane conductance regulator (CFTR) in transporting bicarbonate that is necessary for sperm capacitation; however, whether its involvement is direct or indirect remains unclear. The present study investigated the possibility of a Cl-/HCO3- exchanger (solute carrier family 26, number 3 [SLC26A3]) operating with CFTR during guinea pig sperm capacitation. Incubating sperm in media with various concentrations of Cl- resulted in varied percentages of capacitated sperm in a concentration-dependent manner. Depletion of Cl-, even in the presence of HCO3-, abolished sperm capacitation and vice versa, indicating the involvement of both anions in the process. Capacitation-associated HCO3--dependent events, including increased intracellular pH, cAMP production, and protein tyrosine phosphorylation, also depend on Cl- concentrations. Similar Cl- dependence and inhibitor sensitivity were observed for sperm-hyperactivated motility and for sperm-egg fusion. The expression and localization of CFTR and SLC26A3 were demonstrated using immunostaining and Western blot analysis. Taken together, our results indicate that Cl- is required for the entry of HCO3- that is necessary for sperm capacitation, implicating the involvement of SLC26A3 in transporting HCO3-, with CFTR providing the recycling pathway for Cl-.
Collapse
Affiliation(s)
- Wen Ying Chen
- Unit of Reproductive Physiology, Institute of Reproductive Health, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Vadnais ML, Galantino-Homer HL, Althouse GC. Current concepts of molecular events during bovine and porcine spermatozoa capacitation. ACTA ACUST UNITED AC 2007; 53:109-23. [PMID: 17612869 DOI: 10.1080/01485010701329386] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Spermatozoa are required to undergo the processes of capacitation before they obtain fertilizing ability. The molecular changes of capacitation are still not fully understood. However, it is accepted that capacitation is a sequential process involving numerous physiological changes including destabilization of the plasma membrane, alterations of intracellular ion concentrations and membrane potential, and protein phosphorylation. There are no known morphological changes that occur to the spermatozoon during capacitation. The purpose of this review is to summarize current evidence on the molecular aspects of capacitation both in vivo and in vitro in bovine and porcine spermatozoa. For the purpose of this review, the process of sperm capacitation will encompass maturational events that occur following ejaculation up to binding to the zona pellucida, that triggers acrosomal exocytosis and initiates fertilization.
Collapse
Affiliation(s)
- Melissa L Vadnais
- Department of Urologic Surgery, University of Minnesota, Minneapolis, MN, USA
| | | | | |
Collapse
|
30
|
Abstract
Human sperm incubated in vitro gradually become responsive to inducers of the acrosome reaction. The roles of constituents of the incubation medium are not well understood. These experiments tested the effect of the extracellular pH on sperm acrosomal responsiveness. Sperm were incubated 24 h in media with pH varying between 6.7 and 7.6 and then exposed to progesterone to determine the number of sperm that had become acrosomally responsive. The number of responsive sperm was very low following incubation at pH 6.7-7.0, and increased with the pH over the range 7.0-7.6. Sperm incubated at low pH were not damaged as assessed by motility or viability, and if they were transferred to medium of high pH for 8 h, the inhibition of acrosomal responsiveness was reversed. Inhibition of acrosomal responsiveness at low pH was not due to impaired loss of sperm cholesterol, but was correlated with a reduced intracellular pH. The inhibition of acrosomal responsiveness by media of low pH may result from preventing the normal capacitation-related rise in intracellular pH.
Collapse
Affiliation(s)
- N L Cross
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
31
|
Abstract
Sperm hyperactivated motility is characterized by high flagellar bend amplitude and asymmetrical beating, which are detected by computer-assisted sperm motility analysis as increased curvilinear velocity and lateral head movement. It is required for sperm penetration of the oocyte zona pellucida during fertilization and is induced by an increase in flagellar Ca(2+). Our objective was to determine whether pH plays a role in promoting Ca signaling of hyperactivated motility. The cell-permeant weak base NH(4)Cl increased curvilinear velocity and amplitude of lateral head movement of bovine sperm, indicative of hyperactivation. Fluorometric recordings of sperm loaded with BCECF-AM or fluo3-AM, revealed that NH(4)Cl evoked elevations of intracellular pH and Ca(2+), respectively, with the rise in pH occurring more rapidly than that of Ca(2+). Single-cell image analysis showed increased Ca(2+) levels in the flagellum in response to NH(4)Cl. When extracellular Ca(2+) was lowered with BAPTA (1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid) prior to treatment with NH(4)Cl, intracellular pH was increased, but elevation of Ca(2+) and hyperactivation were diminished. This suggests that the rise in intracellular pH precedes an influx of Ca(2+). The Ca(2+) channel blocker Ni(2+) also diminished NH(4)Cl stimulation of hyperactivation, demonstrating that Ca(2+) entry is required for maximal expression of hyperactivation. Ca(2+) ionophore produced an increase in Ca(2+) that was 3-fold greater than that produced by NH(4)Cl; however, it produced a weaker hyperactivation response. These results indicate that a rise in pH increases intracellular Ca(2+)and promotes hyperactivation primarily by stimulating Ca(2+) influx, but also by other mechanisms.
Collapse
Affiliation(s)
- Becky Marquez
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
32
|
Chien EJ, Liao CF, Chang CP, Pu HF, Lu LM, Shie MC, Hsieh DJY, Hsu MT. The non-genomic effects on Na+/H+-exchange 1 by progesterone and 20α-hydroxyprogesterone in human T cells. J Cell Physiol 2007; 211:544-50. [PMID: 17323380 DOI: 10.1002/jcp.20962] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Progesterone is an endogenous immunomodulator and can suppress T-cell activation during pregnancy. We have previously shown that the non-genomic effects of progesterone, especially acidification, are exerted via plasma membrane sites and suppress cellular genomic responses to mitogens. This study aimed to show that acidification is due to a non-genomic inhibition of Na(+)/H(+)-exchange 1 (NHE1) by progesterone and correlate this with immunosuppressive phytohemagglutinin (PHA)-induced T-cell proliferation. The presence of amiloride-sensitive NHE 1 was identified in T cells. The activity of NHE1 was inhibited by progesterone but not by 20alpha-hydroxyprogesterone (20alpha-OHP). Furthermore, 20alpha-OHP was able to compete with progesterone and release the inhibitory effect on the NHE1. The inhibition of NHE1 activity by progesterone-BSA demonstrated non-genomic action via plasma membrane sites. Finally, co-stimulation with PHA and progesterone or amiloride, (5-(N, N-dimethyl)-amiloride, DMA), inhibited PHA-induced T-cell proliferation, but this inhibition did not occur with 20alpha-OHP and PHA co-stimulation. However, when DMA was applied 72 h after PHA stimulation, it was able to suppress PHA-induced T-cell proliferation. This is the first study to show that progesterone causes a rapid non-genomic inhibition of plasma membrane NHE1 activity in T cells within minutes which is released by 20alpha-OHP. The inhibition of NHE1 leads to immunosuppressive T-cell proliferation and suggests that progesterone might exert a major rapid non-genomic suppressive effect on NHE1 activity at the maternal-fetal interface in vivo and that 20alpha-OHP may possibly be able to quickly release the suppression when T cells circulated away from the interface.
Collapse
Affiliation(s)
- Eileen Jea Chien
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Darszon A, Acevedo JJ, Galindo BE, Hernández-González EO, Nishigaki T, Treviño CL, Wood C, Beltrán C. Sperm channel diversity and functional multiplicity. Reproduction 2006; 131:977-88. [PMID: 16735537 DOI: 10.1530/rep.1.00612] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ion channels are extraordinarily efficient machines that move ions in diversely controlled manners, allowing cells to rapidly exchange information with the outside world and with other cells. Communication is the currency of fertilization, as it is of most fundamental cell signaling events. Ion channels are deeply involved in the dialogue between sperm, its surroundings, and the egg. How sperm swim, find the egg and fertilize it depend on ion permeability changes modulated by environmental cues and components of the egg outer layer. Different ion channels distinctly localized in these tiny, amazing cells perform specific decoding functions that shape the sophisticated behavior of sperm. It is not surprising that certain sperm ion channels are turning out to be unique. New strategies to characterize sperm ion transport have opened exciting possibilities to dissect sperm-egg signaling and unveil novel contraception targets.
Collapse
Affiliation(s)
- Alberto Darszon
- Department of Genetics of Development and Molecular Physiology, Institute of Biotechnology, UNAM, Cuernavaca, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Neri-Vidaurri PDC, Torres-Flores V, González-Martínez MT. A remarkable increase in the pHi sensitivity of voltage-dependent calcium channels occurs in human sperm incubated in capacitating conditions. Biochem Biophys Res Commun 2006; 343:105-9. [PMID: 16529718 DOI: 10.1016/j.bbrc.2006.02.095] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Accepted: 02/16/2006] [Indexed: 11/24/2022]
Abstract
Human sperm are endowed with voltage-dependent calcium channels (VDCC) that produce increases in [Ca2+]i in response to depolarization with KCl. These channels are stimulated during "capacitation", a complex biochemical process, accompanied by a slight pHi alkalization, that sperm must accomplish to acquire the ability to fertilize the egg. The stimulation can be explained in part by the fact that in non-capacitated sperm, calcium influx through VDCC is stimulated by pHi alkalization in the range of pHi observed during capacitation. In this work, we explored the effect of pHi on VDCC in capacitated sperm loaded with fura ff. Strikingly, the pHi sensitivity of VDCC increased approximately 7-fold when sperm was capacitated, as compared with non-capacitated sperm. This finding suggests that the pHi sensitivity of VDCC can be modulated during capacitation so that a combined effect of pHi alkalization and biochemical regulation enhances calcium influx through these channels.
Collapse
Affiliation(s)
- Paloma del Carmen Neri-Vidaurri
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, CP 04510, Apartado Postal 70-297 México, DF, México
| | | | | |
Collapse
|
35
|
Kirichok Y, Navarro B, Clapham DE. Whole-cell patch-clamp measurements of spermatozoa reveal an alkaline-activated Ca2+ channel. Nature 2006; 439:737-40. [PMID: 16467839 DOI: 10.1038/nature04417] [Citation(s) in RCA: 333] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Accepted: 11/11/2005] [Indexed: 02/03/2023]
Abstract
In mammals, sperm cells become motile during ejaculation and swim up the female reproductive tract. Before fertilization and to overcome various barriers, their motility must be hyperactivated, a motion that is characterized by vigorous asymmetric tail beating. Hyperactivation requires an increase in calcium in the flagella, a process that probably involves plasmalemmal ion channels. Numerous attempts in the past two decades to understand sperm cell channels have been frustrated by the difficulty of measuring spermatozoan transmembrane ion currents. Here, by using a simple approach to patch-clamp spermatozoa and to characterize whole-spermatozoan currents, we describe a constitutively active flagellar calcium channel that is strongly potentiated by intracellular alkalinization. This current is not present in spermatozoa lacking the sperm-specific putative ion channel protein, CatSper1. This plasma membrane protein of the six transmembrane-spanning ion channel superfamily is specifically localized to the principal piece of the sperm tail and is required for sperm cell hyperactivation and male fertility. Our results identify CatSper1 as a component of the key flagellar calcium channel, and suggest that intracellular alkalinization potentiates CatSper current to increase intraflagellar calcium and induce sperm hyperactivation.
Collapse
Affiliation(s)
- Yuriy Kirichok
- Howard Hughes Medical Institute, Department of Cardiology, Children's Hospital and Harvard Medical School Enders 1309, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
36
|
Jimenez-Gonzalez C, Michelangeli F, Harper CV, Barratt CLR, Publicover SJ. Calcium signalling in human spermatozoa: a specialized 'toolkit' of channels, transporters and stores. Hum Reprod Update 2005; 12:253-67. [PMID: 16338990 DOI: 10.1093/humupd/dmi050] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Ca(2+) is a ubiquitous intracellular messenger which encodes information by temporal and spatial patterns of concentration. In spermatozoa, several key functions, including acrosome reaction and motility, are regulated by cytoplasmic Ca(2+) concentration. Despite the very small size and apparent structural simplicity of spermatozoa, evidence is accumulating that they possess sophisticated mechanisms for regulation of cytoplasmic Ca(2+) concentration and generation of complex Ca(2+) signals. In this review, we consider the various components of the Ca(2+)-signalling 'toolkit' that have been characterized in somatic cells and summarize the evidence for their presence and activity in spermatozoa. In particular, data accumulated over the last few years show that spermatozoa possess one (and probably two) Ca(2+) stores as well as a range of plasma membrane pumps and channels. Selective regulation of the various components of the 'toolkit' by agonists probably allows spermatozoa to generate localized Ca(2+) signals despite their very small cytoplasmic volume, permitting the discrete and selective activation of cell functions.
Collapse
|
37
|
Harper CV, Publicover SJ. Reassessing the role of progesterone in fertilization—compartmentalized calcium signalling in human spermatozoa? Hum Reprod 2005; 20:2675-80. [PMID: 15980011 DOI: 10.1093/humrep/dei158] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Progesterone is present at micromolar concentrations in the vicinity of the oocyte. Human spermatozoa generate a biphasic rise in intracellular calcium concentration ([Ca(2+)](i)) and undergo the acrosome reaction upon progesterone stimulation, suggesting that the hormone acts as a secondary inducer or 'primer' of the acrosome reaction in association with the zona pellucida. However, the sensitivity of human spermatozoa to progesterone is such that many cells may undergo the acrosome reaction prematurely, compromising their ability to fertilize. We have shown that exposing human spermatozoa to a progesterone gradient, simulating the stimulus encountered as sperm approach the oocyte, results in a novel response. A slow rise in [Ca(2+)](i) occurs, upon which, in many cells, [Ca(2+)](i) oscillations are superimposed. Cells showing this pattern of response do not undergo the acrosome reaction, but instead show an alternating pattern of flagellar activity associated with peaks and troughs of [Ca(2+)](i). A Ca(2+) store in the rear of the sperm head apparently generates this complex signal, functioning as an '[Ca(2+)](i) oscillator'. We propose that: (i) the acrosome reaction and flagellar beat are regulated by separate Ca(2+) stores; (ii) these stores are mobilized through different mechanisms by different agonists; and (iii) progesterone in vivo acts as a switch for the oscillator which regulates the flagellar beat mode.
Collapse
|