1
|
Zhao T, Zhang R, Li Z, Qin D, Wang X. A comprehensive review of Sjögren's syndrome: Classification criteria, risk factors, and signaling pathways. Heliyon 2024; 10:e36220. [PMID: 39286095 PMCID: PMC11403439 DOI: 10.1016/j.heliyon.2024.e36220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Sjögren's syndrome (SS) is a chronic autoimmune disease that affects the exocrine glands and may lead to a range of systemic symptoms that impact various organs. Both innate and adaptive immune pathways might trigger the disease. Studying the signaling pathways underlying SS is crucial for enhancing diagnostic and therapeutic effectiveness. SS poses an ongoing challenge for medical professionals owing to the limited therapeutic options available. This review offers a comprehensive understanding of the intricate nature of SS, encompassing disease classification criteria, risk factors, and signaling pathways in immunity and inflammation. The advancements summarized herein have the potential to spark new avenues of research into SS.
Collapse
Affiliation(s)
- Ting Zhao
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, 650500, China
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, China
| | - Runrun Zhang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, China
| | - Zhaofu Li
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Dongdong Qin
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, 650500, China
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, China
| | - Xinchang Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, China
| |
Collapse
|
2
|
Yu T, Chen D, Qi H, Lin L, Tang Y. Resolvins protect against diabetes-induced colonic oxidative stress, barrier dysfunction, and associated diarrhea via the HO-1 pathway. Biofactors 2024; 50:967-979. [PMID: 38485285 DOI: 10.1002/biof.2049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/26/2023] [Indexed: 10/04/2024]
Abstract
Diabetes is associated with increased oxidative stress, leading to altered tight junction formation and increased apoptosis in colonic epithelial cells. These changes may lead to intestinal barrier dysfunction and corresponding gastrointestinal symptoms in patients with diabetes, including diarrhea. The aim of this study was to characterize the effect and mechanism of Resolvin D1 (RvD1) on diabetes-induced oxidative stress and barrier disruption in the colon. Mice with streptozotocin-induced diabetes were treated with RvD1 for 2 weeks, then evaluated for stool frequency, stool water content, gut permeability, and colonic transepithelial electrical resistance as well as production of reactive oxygen species (ROS), apoptosis, and expression of tight junction proteins Zonula Occludens 1 (ZO-1) and occludin. The same parameters were assessed in human colonoid cultures subjected to elevated glucose. We found that RvD1 treatment did not affect blood glucose, but normalized stool water content and prevented intestinal barrier dysfunction, epithelial oxidative stress, and apoptosis. RvD1 also restored ZO-1 and occludin expression in diabetic mice. RvD1 treatment increased phosphorylation of Akt and was accompanied by a 3.5-fold increase in heme oxygenase-1 (HO-1) expression in the epithelial cells. The protective effects of RvD1 were blocked by ZnPP, a competitive inhibitor of HO-1. Similar findings were observed in RvD1-treated human colonoid cultures subjected to elevated glucose. In conclusion, Oxidative stress in diabetes results in mucosal barrier dysfunction, contributing to the development of diabetic diarrhea. Resolvins prevent ROS-mediated mucosal injury and protect gut barrier function by intracellular PI3K/Akt activation and subsequent HO-1 upregulation in intestinal epithelial cells. These actions result in normalizing stool frequency and stool water content in diabetic mice, suggesting that resolvins may be useful in the treatment of diabetic diarrhea.
Collapse
Affiliation(s)
- Ting Yu
- Department of Gastroenterology, The First Affiliated Hospital with Nanjing Medical University, Jiangsu Province, China
| | - Die Chen
- Department of Gastroenterology, The First Affiliated Hospital with Nanjing Medical University, Jiangsu Province, China
| | - Hongyan Qi
- Department of Gastroenterology, The First Affiliated Hospital with Nanjing Medical University, Jiangsu Province, China
| | - Lin Lin
- Department of Gastroenterology, The First Affiliated Hospital with Nanjing Medical University, Jiangsu Province, China
| | - Yurong Tang
- Department of Gastroenterology, The First Affiliated Hospital with Nanjing Medical University, Jiangsu Province, China
| |
Collapse
|
3
|
dos Santos HT, Nam K, Gil D, Yellepeddi V, Baker OJ. Current experimental methods to investigate the impact of specialized pro-resolving lipid mediators on Sjögren's syndrome. Front Immunol 2023; 13:1094278. [PMID: 36713415 PMCID: PMC9878840 DOI: 10.3389/fimmu.2022.1094278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/27/2022] [Indexed: 01/15/2023] Open
Abstract
Sjögren's syndrome is a chronic inflammatory autoimmune disease characterized by diminished secretory function of the exocrine glands. Although extensive investigation has been done to understand Sjögren's syndrome, the causes of the disease are as yet unknown and treatments remain largely ineffective, with established therapeutic interventions being limited to use of saliva substitutes with modest effectiveness. A primary feature of Sjögren's syndrome is uncontrolled inflammation of exocrine tissues and previous studies have demonstrated that lipid-based specialized pro-resolving mediators reduce inflammation and restores tissue integrity in salivary glands. However, these studies are limited to a single specialized pro-resolving lipid mediator's family member resolvin D1 or RvD1 and its aspirin-triggered epimer, AT-RvD1. Consequently, additional studies are needed to explore the potential benefits of other members of the specialized pro-resolving lipid mediator's family and related molecules (e.g., additional resolvin subtypes as well as lipoxins, maresins and protectins). In support of this goal, the current review aims to briefly describe the range of current experimental methods to investigate the impact of specialized pro-resolving lipid mediators on Sjögren's syndrome, including both strengths and weaknesses of each approach where this information is known. With this article, the possibilities presented by specialized pro-resolving lipid mediators will be introduced to a wider audience in immunology and practical advice is given to researchers who may wish to take up this work.
Collapse
Affiliation(s)
- Harim T. dos Santos
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States,Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Kihoon Nam
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States,Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Diana Gil
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO, United States,Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, United States,Department of Biological and Biomedical Engineering, College of Engineering, University of Missouri, Columbia, MO, United States
| | - Venkata Yellepeddi
- Division of Clinical Pharmacology, Department of Pediatrics, School of Medicine, University of Utah, Salt Lake City, UT, United States,Department of Molecular Pharmaceutics, College of Pharmacy, University of Utah, Salt Lake City, UT, United States
| | - Olga J. Baker
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States,Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States,Department of Biochemistry, University of Missouri, Columbia, MO, United States,*Correspondence: Olga J. Baker,
| |
Collapse
|
4
|
RvD1 n-3 DPA Downregulates the Transcription of Pro-Inflammatory Genes in Oral Epithelial Cells and Reverses Nuclear Translocation of Transcription Factor p65 after TNF-α Stimulation. Int J Mol Sci 2022; 23:ijms232314878. [PMID: 36499208 PMCID: PMC9737907 DOI: 10.3390/ijms232314878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/13/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Specialized pro-resolving mediators (SPMs) are multifunctional lipid mediators that participate in the resolution of inflammation. We have recently described that oral epithelial cells (OECs) express receptors of the SPM resolvin RvD1n-3 DPA and that cultured OECs respond to RvD1n-3 DPA addition by intracellular calcium release, nuclear receptor translocation and transcription of genes coding for antimicrobial peptides. The aim of the present study was to assess the functional outcome of RvD1n-3 DPA-signaling in OECs under inflammatory conditions. To this end, we performed transcriptomic analyses of TNF-α-stimulated cells that were subsequently treated with RvD1n-3 DPA and found significant downregulation of pro-inflammatory nuclear factor kappa B (NF-κB) target genes. Further bioinformatics analyses showed that RvD1n-3 DPA inhibited the expression of several genes involved in the NF-κB activation pathway. Confocal microscopy revealed that addition of RvD1n-3 DPA to OECs reversed TNF-α-induced nuclear translocation of NF-κB p65. Co-treatment of the cells with the exportin 1 inhibitor leptomycin B indicated that RvD1n-3 DPA increases nuclear export of p65. Taken together, our observations suggest that SPMs also have the potential to be used as a therapeutic aid when inflammation is established.
Collapse
|
5
|
Dos Santos HT, Maslow F, Nam K, Trump B, Weisman GA, Baker OJ. A combination treatment of low-dose dexamethasone and aspirin-triggered resolvin D1 reduces Sjögren syndrome-like features in a mouse model. JADA FOUNDATIONAL SCIENCE 2022; 2:100016. [PMID: 37622089 PMCID: PMC10448398 DOI: 10.1016/j.jfscie.2022.100016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Background Sjögren syndrome (SS) is an autoimmune disease characterized by lymphocytic infiltration and diminished secretory function of the salivary glands. Dexamethasone (DEX) resolves dry mouth and lymphocytic infiltration; however, this treatment is difficult to maintain because of multiple adverse effects (eg, osteoporosis and skin thinning); likewise, aspirin-triggered resolvin D1 (AT-RvD1) increases saliva secretion but cannot eliminate lymphocytic infiltration. Previous studies showed that a combination of low-dose DEX with AT-RvD1 before disease onset prevents SS-like features in a mouse model; however, this is not clinically practical because there are no reliable indicators of SS before disease onset. Therefore, the authors applied the combined treatment at disease onset to show its efficacy and comparative lack of adverse effects, so that it may reasonably be maintained over a patient's lifetime. Methods NOD/ShiLtJ mice were treated with ethanol (vehicle control), high-dose DEX alone, AT-RvD1 alone, or a combination of low-dose DEX with AT-RvD1 at disease onset for 8 weeks. Then saliva flow rates were measured, and submandibular glands were harvested for histologic analyses. Results A combined treatment of low-dose DEX with AT-RvD1 significantly decreased mast cell degranulation and lymphocytic infiltration, increased saliva secretion, and restored apical aquaporin-5 expression in submandibular glands of NOD/ShiLtJ mice. Conclusions Low-dose DEX combined with AT-RvD1 reduces the severity of SS-like manifestation and prevents the development of advanced and potentially irreversible damage, all in a form that can reasonably be administered indefinitely without the need to cease treatment because of secondary effects.
Collapse
Affiliation(s)
- Harim Tavares Dos Santos
- Department of Otolaryngology, Head and Neck Surgery, University of Missouri, Columbia, MO
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO
| | - Frank Maslow
- Department of Otolaryngology, Head and Neck Surgery, University of Missouri, Columbia, MO
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO
| | - Kihoon Nam
- Department of Otolaryngology, Head and Neck Surgery, University of Missouri, Columbia, MO
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO
| | - Bryan Trump
- School of Dentistry and Department of Dermatology, University of Utah, Salt Lake City, UT
| | - Gary A Weisman
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO
- Department of Biochemistry, University of Missouri, Columbia, MO
| | - Olga J Baker
- Department of Otolaryngology, Head and Neck Surgery, University of Missouri, Columbia, MO
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO
- Department of Biochemistry, University of Missouri, Columbia, MO
| |
Collapse
|
6
|
Zhou J, Onodera S, Hu Y, Yu Q. Interleukin-22 Exerts Detrimental Effects on Salivary Gland Integrity and Function. Int J Mol Sci 2022; 23:ijms232112997. [PMID: 36361787 PMCID: PMC9655190 DOI: 10.3390/ijms232112997] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 12/02/2022] Open
Abstract
Interleukin-22 (IL-22) affects epithelial tissue function and integrity in a context-dependent manner. IL-22 levels are elevated in salivary glands of Sjögren’s syndrome (SS) patients, but its role in the pathogenesis of this disease remains unclear. The objective of this study is to elucidate the impact of IL-22 on salivary gland tissue integrity and function in murine models. We showed that IL-22 levels in sera and salivary glands increased progressively in female non-obese diabetic (NOD) mice, accompanying the development of SS. Administration of IL-22 to the submandibular glands of NOD mice prior to the disease onset reduced salivary secretion and induced caspase-3 activation in salivary gland tissues, which were accompanied by alterations in multiple genes controlling tissue integrity and inflammation. Similarly, IL-22 administration to submandibular glands of C57BL/6 mice also induced hyposalivation and caspase-3 activation, whereas blockade of endogenous IL-22 in C57BL/6 mice treated with anti-CD3 antibody mitigated hyposalivation and caspase-3 activation. Finally, IL-22 treatment reduced the number of viable C57BL/6 mouse submandibular gland epithelial cells cultured in vitro, indicating a direct impact of this cytokine on these cells. We conclude that IL-22 exerts a detrimental impact on salivary gland tissues.
Collapse
Affiliation(s)
- Jing Zhou
- The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
| | - Shoko Onodera
- The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
- Department of Biochemistry, Tokyo Dental College, 2-9-18 Kanda Misaki-chou, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Yang Hu
- The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
| | - Qing Yu
- The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA
- Correspondence: ; Tel.: +1-617-892-8310
| |
Collapse
|
7
|
Deyama S, Kaneda K, Minami M. Resolution of depression: antidepressant actions of resolvins. Neurosci Res 2022:S0168-0102(22)00266-8. [PMID: 36272561 DOI: 10.1016/j.neures.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2022]
Abstract
Major depressive disorder, one of the most widespread mental illnesses, brings about enormous individual and socioeconomic consequences. Conventional monoaminergic antidepressants require weeks to months to produce a therapeutic response, and approximately one-third of the patients fail to respond to these drugs and are considered treatment-resistant. Although recent studies have demonstrated that ketamine, an N-methyl-D-aspartate receptor antagonist, produces rapid antidepressant effects in treatment-resistant patients, it also has undesirable side effects. Hence, rapid-acting antidepressants that have fewer adverse effects than ketamine are urgently required. D-series (RvD1-RvD6) and E-series (RvE1-RvE4) resolvins are endogenous lipid mediators derived from docosahexaenoic and eicosapentaenoic acids, respectively. These mediators reportedly play a pivotal role in the resolution of acute inflammation. In this review, we reveal that intracranial infusions of RvD1, RvD2, RvE1, RvE2, and RvE3 produce antidepressant-like effects in various rodent models of depression. Moreover, the behavioral effects of RvD1, RvD2, and RvE1 are mediated by the activation of the mechanistic target of rapamycin complex 1, which is essential for the antidepressant-like actions of ketamine. Finally, we briefly provide our perspective on the possible role of endogenous resolvins in stress resilience.
Collapse
Affiliation(s)
- Satoshi Deyama
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan.
| | - Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Masabumi Minami
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
8
|
Tan Z, Wang L, Li X. Composition and regulation of the immune microenvironment of salivary gland in Sjögren’s syndrome. Front Immunol 2022; 13:967304. [PMID: 36177010 PMCID: PMC9513852 DOI: 10.3389/fimmu.2022.967304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Primary Sjögren’s syndrome (pSS) is a systemic autoimmune disease characterized by exocrine gland dysfunction and inflammation. Patients often have dry mouth and dry eye symptoms, which seriously affect their lives. Improving dry mouth and eye symptoms has become a common demand from patients. For this reason, researchers have conducted many studies on external secretory glands. In this paper, we summarize recent studies on the salivary glands of pSS patients from the perspective of the immune microenvironment. These studies showed that hypoxia, senescence, and chronic inflammation are the essential characteristics of the salivary gland immune microenvironment. In the SG of pSS, genes related to lymphocyte chemotaxis, antigen presentation, and lymphocyte activation are upregulated. Interferon (IFN)-related genes, DNA methylation, sRNA downregulation, and mitochondrial-related differentially expressed genes are also involved in forming the immune microenvironment of pSS, while multiple signaling pathways are involved in regulation. We further elucidated the regulation of the salivary gland immune microenvironment in pSS and relevant, targeted treatments.
Collapse
|
9
|
Cai J, Liu J, Yan J, Lu X, Wang X, Li S, Mustafa K, Wang H, Xue Y, Mustafa M, Kantarci A, Xing Z. Impact of Resolvin D1 on the inflammatory phenotype of periodontal ligament cell response to hypoxia. J Periodontal Res 2022; 57:1034-1042. [PMID: 35944267 DOI: 10.1111/jre.13044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 06/22/2022] [Accepted: 07/26/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Periodontal ligament cells (PDLCs) are critical for wound healing and regenerative capacity of periodontal diseases. Within an inflammatory periodontal pocket, a hypoxic environment can aggravate periodontal inflammation, where PDLCs response to the inflammation would change. Resolvin D1 (RvD1) is an endogenous lipid mediator, which can impact intracellular inflammatory pathways of periodontal/oral cells and periodontal regeneration. It is not clear how hypoxia and RvD1 impact the inflammatory responses of pro-inflammatory PDLCs phenotype. Therefore, this study aimed to test hypoxia could induce changes in pro-inflammatory phenotype of PDLCs and RvD1 could reverse it. METHODS Human PDLCs were cultured from periodontal tissues from eight healthy individuals and were characterized by immunofluorescence staining of vimentin and cytokeratin. Cell viability was examined by Methyl-thiazolyl-tetrazolium (MTT) assay. To examine the effects of hypoxia and RvD1 on the inflammatory responses of pro-inflammatory PDLCs phenotype, protein levels and gene expressions of inflammatory cytokines and signal transduction molecules were measured by enzyme-linked immunosorbent assay (ELISA), western blotting (WB), and real-time quantitative reverse transcription PCR (real-time qRT-PCR). Alizarin red S staining and real-time qRT-PCR were employed to study the effects of hypoxia and RvD1 on the osteogenic differentiation of pro-inflammatory PDLCs phenotype. RESULTS It was found that hypoxia increases the expression of inflammatory factors at the gene level (p < .05). RvD1 reduced the expression of IL-1β (p < .05) in PDLCs under hypoxia both at the protein and RNA levels. There were increases in the expression of p38 mitogen-activated protein kinase (p38 MAPK, p < .01) and protein kinase B (Akt, p < .05) in response to RvD1. Also, a significantly higher density of calcified nodules was observed after treatment with RvD1 for 21 days under hypoxia. CONCLUSION Our results indicate that hypoxia up-regulated the inflammatory level of PDLCs. RvD1 can reduce under-hypoxia-induced pro-inflammatory cytokines in the inflammatory phenotype of PDLCs. Moreover, RvD1 promotes the calcium nodules in PDLCs, possibly by affecting the p38 MAPK signaling pathway through Akt and HIF-1α.
Collapse
Affiliation(s)
- Jiazheng Cai
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, P.R.China
| | - Jing Liu
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, P.R.China
| | - Jing Yan
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, P.R.China
| | - Xuexia Lu
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, P.R.China
| | - Xiaoli Wang
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, P.R.China
| | - Si Li
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, P.R.China
| | - Kamal Mustafa
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Huihui Wang
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, P.R.China
| | - Ying Xue
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Manal Mustafa
- Oral Health Centre of Expertise in Western Norway, Bergen, Norway
| | - Alpdogan Kantarci
- The Forsyth Institute, Cambridge, Massachusetts, USA.,Harvard University, School of Dental Medicine, Boston, Massachusetts, USA
| | - Zhe Xing
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, P.R.China.,Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Lanzhou University, Lanzhou, P.R. China.,RNA and Molecular Pathology Research Group, Institute of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
10
|
Dos Santos HT, Nam K, Maslow F, Trump B, Baker OJ. Specialized pro-resolving receptors are expressed in salivary glands with Sjögren's syndrome. Ann Diagn Pathol 2021; 56:151865. [PMID: 34847389 DOI: 10.1016/j.anndiagpath.2021.151865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/27/2021] [Accepted: 11/11/2021] [Indexed: 12/31/2022]
Abstract
Our previous studies demonstrated that resolvin D1 (RvD1) and its aspirin-trigged (AT) form AT-RvD1, are effective in decreasing inflammation while restoring saliva flow rates in a Sjögren's syndrome (SS)-like mouse model before and after disease onset. Resolvins are specialized pro-resolving mediators (SPM) that actively regulate inflammation. However, we only have extensive data within the salivary glands for RvD1 and AT-RvD1, both of which bind to the receptor ALX/FPR2. As such, the presence of other SPM receptors is unknown within salivary glands. Therefore, the goal of this study was to determine the expression of SPM receptors in non-SS and SS patients. For this purpose, six human minor salivary glands from female subjects were analyzed by H&E using the Chisholm and Mason classification to determine the degree of lymphocytic infiltration. Next, confocal immunofluorescence analysis was performed to determine the presence and distribution of different SPM receptors in mucous acini and striated ducts. We observed diffuse presence of lymphocytic infiltration and clinical data were consistent with SS diagnosis in three patients. Moreover, confocal immunofluorescence analysis indicated the presence of the receptors ALX/FPR2, BLT1 and CMKLR1 in the mucous acini and striated ducts of both non-SS and SS patients. GPR32 was absent in SS and non-SS minor salivary glands. In summary, our results showed that various SPM receptors are expressed in non-SS and SS minor salivary glands, all of which may pose as potential targets for promoting pro-epithelial and anti-inflammatory/pro-resolution signaling on SS patients.
Collapse
Affiliation(s)
- Harim Tavares Dos Santos
- Department of Otolaryngology-Head and Neck Surgery, University of Missouri, Columbia, MO, USA; Department of Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Kihoon Nam
- Department of Otolaryngology-Head and Neck Surgery, University of Missouri, Columbia, MO, USA; Department of Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Frank Maslow
- Department of Otolaryngology-Head and Neck Surgery, University of Missouri, Columbia, MO, USA; Department of Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Bryan Trump
- School of Dentistry and Department of Dermatology, University of Utah, Salt Lake City, UT, USA
| | - Olga J Baker
- Department of Otolaryngology-Head and Neck Surgery, University of Missouri, Columbia, MO, USA; Department of Biochemistry, University of Missouri, Columbia, MO, USA; Department of Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
11
|
Targeted Therapy for Primary Sjögren's Syndrome: Where are We Now? BioDrugs 2021; 35:593-610. [PMID: 34731460 DOI: 10.1007/s40259-021-00505-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2021] [Indexed: 10/19/2022]
Abstract
Primary Sjögren's syndrome (pSS) is an autoimmune exocrinopathy characterized by dryness symptoms. This review briefly describes recent advances in the targeted therapies for pSS. Biologics evaluated for pSS treatment mainly include B cell-depleting agents, inhibitors of B cell activation, and agents that target co-signaling molecules or proinflammatory cytokines. Small molecule inhibitors that target signaling pathways have also been evaluated. However, current evidence for the efficacy of targeted therapies in pSS is still sparse. Although ianalumab (an anti-B cell-activating factor [BAFF]-receptor antibody) and iscalimab (an anti-CD40 antibody) are promising biologics for pSS, their efficacy still needs to be evaluated in larger clinical trials. For other biologics, clinical trials have found no differences versus placebo in the change from baseline in European League Against Rheumatism Sjögren's Syndrome Disease Activity Index (ESSDAI) score and fatigue score. Possible causes of the disappointing outcomes mainly include the inefficacy of those evaluated biologics in treating pSS, the high heterogeneous nature of pSS, irreversible exocrine glandular failure at advanced disease stages, inappropriate recruitment strategy in clinical trials, and outcome measures. Early diagnosis and glandular function-centered outcome measures may help to improve the current situation in the systemic therapy of pSS.
Collapse
|
12
|
Jiang X, Hu Y, Zhou Y, Chen J, Sun C, Chen Z, Jing C, Xu L, Liu F, Ni W, Yu X, Chen L. Irisin protects female mice with LPS-induced endometritis through the AMPK/NF-κB pathway. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1247-1253. [PMID: 35083012 PMCID: PMC8751749 DOI: 10.22038/ijbms.2021.56781.12678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 07/20/2021] [Indexed: 11/23/2022]
Abstract
OBJECTIVES This research was designed to determine the role of irisin in lipopolysaccharide (LPS)-induced endometritis in female mice. MATERIALS AND METHODS Animals were randomly assigned into sham, sham + irisin, LPS, LPS + irisin (0.1, 1, 10 μg/kg), and LPS + irisin + compound C groups. Histological features and expression of AMPK, NF-κB, inflammatory mediators, and oxidative stress markers were compared among different groups. RESULTS The results showed that LPS resulted in obvious uterus damage, meanwhile, the inflammatory mediators (COX-2, iNOS, IL-1β, IL-6, and TNF-α), as well as NF-κB in the uterine tissue, were significantly increased and the level of adenosine monophosphate-activated protein kinase (AMPK) was reduced. Nevertheless, pretreatment with irisin reversed the phenomena caused by LPS. Interestingly, compound C (AMPK inhibitor) abolished irisin's effects on the uterus, which suggested that irisin's beneficial function was achieved through regulating the AMPK-NF-κB pathway. Moreover, LPS-induced alterations of oxidative factors (MnSOD, GSH, and MDA) were reversed significantly by pretreatment with irisin. This data indicated irisin's beneficial function was also related to antioxidation besides anti-inflammation. CONCLUSION Our study implies that irisin is a potential therapeutic agent for endometritis.
Collapse
Affiliation(s)
- Xi Jiang
- Zhejiang University Mingzhou Hospital, Ningbo, 315000, China ,Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, 315000, China,Corresponding author: Xi Jiang. Department of Pharmacy Zhejiang University Mingzhou Hospital, No.168 Tai’an Road, Ningbo, 315000, China, Tel: 86-574-65571658,
| | - Ying Hu
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, 315000, China
| | - Yingjie Zhou
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, 315000, China
| | - Jin Chen
- Zhejiang University Mingzhou Hospital, Ningbo, 315000, China
| | - Chonglu Sun
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, 315000, China
| | - Ziwei Chen
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, 315000, China
| | - Changfeng Jing
- Zhejiang University Mingzhou Hospital, Ningbo, 315000, China
| | - Lexing Xu
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, 315000, China
| | - Fuhe Liu
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, 315000, China
| | - Wenjuan Ni
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, 315000, China
| | - Xuefeng Yu
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, 315000, China
| | - Lei Chen
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, 315000, China
| |
Collapse
|
13
|
Luo SD, Chiu TJ, Chen WC, Wang CS. Sex Differences in Otolaryngology: Focus on the Emerging Role of Estrogens in Inflammatory and Pro-Resolving Responses. Int J Mol Sci 2021; 22:ijms22168768. [PMID: 34445474 PMCID: PMC8395901 DOI: 10.3390/ijms22168768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 12/02/2022] Open
Abstract
Otolaryngology (also known as ear, nose, and throat (ENT)) diseases can be significantly affected by the level of sex hormones, which indicates that sex differences affect the manifestation, pathophysiology, and outcomes of these diseases. Recently, increasing evidence has suggested that proinflammatory responses in ENT diseases are linked to the level of sex hormones. The sex hormone receptors are present on a wide variety of immune cells; therefore, it is evident that they play crucial roles in regulating the immune system and hence affect the disease progression of ENT diseases. In this review, we focus on how sex hormones, particularly estrogens, regulate ENT diseases, such as chronic rhinosinusitis, vocal fold polyps, thyroid cancer, Sjögren’s syndrome, and head and neck cancers, from the perspectives of inflammatory responses and specialized proresolving mediator-driven resolution. This paper aims to clarify why considering sex differences in the field of basic and medical research on otolaryngology is a key component to successful therapy for both males and females in the future.
Collapse
Affiliation(s)
- Sheng-Dean Luo
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (S.-D.L.); (W.-C.C.)
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Tai-Jan Chiu
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Department of Hematology-Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Wei-Chih Chen
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (S.-D.L.); (W.-C.C.)
| | - Ching-Shuen Wang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: ; Tel.: +886-227-361-661 (ext. 5166)
| |
Collapse
|
14
|
Dos Santos HT, Nam K, Hunt JP, Buchmann LO, Monroe MM, Baker OJ. SPM Receptor Expression and Localization in Irradiated Salivary Glands. J Histochem Cytochem 2021; 69:523-534. [PMID: 34339312 DOI: 10.1369/00221554211031678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Radiation therapy-mediated salivary gland destruction is characterized by increased inflammatory cell infiltration and fibrosis, both of which ultimately lead to salivary gland hypofunction. However, current treatments (e.g., artificial saliva and sialagogues) only promote temporary relief of symptoms. As such, developing alternative measures against radiation damage is critical for restoring salivary gland structure and function. One promising option for managing radiation therapy-mediated damage in salivary glands is by activation of specialized proresolving lipid mediator receptors due to their demonstrated role in resolution of inflammation and fibrosis in many tissues. Nonetheless, little is known about the presence and function of these receptors in healthy and/or irradiated salivary glands. Therefore, the goal of this study was to detect whether these specialized proresolving lipid mediator receptors are expressed in healthy salivary glands and, if so, if they are maintained after radiation therapy-mediated damage. Our results indicate that specialized proresolving lipid mediator receptors are heterogeneously expressed in inflammatory as well as in acinar and ductal cells within human submandibular glands and that their expression persists after radiation therapy. These findings suggest that epithelial cells as well as resident immune cells represent potential targets for modulation of resolution of inflammation and fibrosis in irradiated salivary glands.
Collapse
Affiliation(s)
| | - Kihoon Nam
- Department of Otolaryngology-Head and Neck Surgery, University of Missouri, Columbia, Missouri
| | - Jason P Hunt
- Department of Otolaryngology, Department of Surgery, The University of Utah, Salt Lake City, Utah
| | - Luke O Buchmann
- Department of Otolaryngology, Department of Surgery, The University of Utah, Salt Lake City, Utah
| | - Marcus M Monroe
- Department of Otolaryngology, Department of Surgery, The University of Utah, Salt Lake City, Utah
| | - Olga J Baker
- Department of Otolaryngology-Head and Neck Surgery, University of Missouri, Columbia, Missouri.,Department of Biochemistry, University of Missouri, Columbia, Missouri
| |
Collapse
|
15
|
Deyama S, Minami M, Kaneda K. Resolvins as potential candidates for the treatment of major depressive disorder. J Pharmacol Sci 2021; 147:33-39. [PMID: 34294370 DOI: 10.1016/j.jphs.2021.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
In contrast with the delayed onset of therapeutic responses and relatively low efficacy of currently available monoamine-based antidepressants, a single subanesthetic dose of ketamine, an N-methyl-D-aspartate receptor antagonist, produces rapid and sustained antidepressant actions even in patients with treatment-resistant depression. However, since the clinical use of ketamine as an antidepressant is limited owing to its adverse effects, such as psychotomimetic/dissociative effects and abuse potential, there is an unmet need for novel rapid-acting antidepressants with fewer side effects. Preclinical studies have revealed that the antidepressant actions of ketamine are mediated via the release of brain-derived neurotrophic factor and vascular endothelial growth factor, with the subsequent activation of mechanistic target of rapamycin complex 1 (mTORC1) in the medial prefrontal cortex. Recently, we demonstrated that resolvins (RvD1, RvD2, RvE1, RvE2 and RvE3), endogenous lipid mediators generated from n-3 polyunsaturated fatty acids (docosahexaenoic and eicosapentaenoic acids), exert antidepressant effects in a rodent model of depression, and that the antidepressant effects of RvD1, RvD2, and RvE1 necessitate mTORC1 activation. In this review, we first provide an overview of the mechanisms underlying the antidepressant effects of ketamine and other rapid-acting agents. We then discuss the possibility of using resolvins as novel therapeutic candidates for depression.
Collapse
Affiliation(s)
- Satoshi Deyama
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan.
| | - Masabumi Minami
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| |
Collapse
|
16
|
Chen W, Wang Q, Zhou B, Zhang L, Zhu H. Lipid Metabolism Profiles in Rheumatic Diseases. Front Pharmacol 2021; 12:643520. [PMID: 33897433 PMCID: PMC8064727 DOI: 10.3389/fphar.2021.643520] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/18/2021] [Indexed: 12/25/2022] Open
Abstract
Rheumatic diseases are a group of chronic autoimmune disorders that involve multiple organs or systems and have high mortality. The mechanisms of these diseases are still ill-defined, and targeted therapeutic strategies are still challenging for physicians. Recent research indicates that cell metabolism plays important roles in the pathogenesis of rheumatic diseases. In this review, we mainly focus on lipid metabolism profiles (dyslipidaemia, fatty acid metabolism) and mechanisms in rheumatic diseases and discuss potential clinical applications based on lipid metabolism profiles.
Collapse
Affiliation(s)
- Weilin Chen
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.,Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, China
| | - Qi Wang
- Department of Radiology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Bin Zhou
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lihua Zhang
- Department of Rheumatology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Honglin Zhu
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.,Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, China
| |
Collapse
|
17
|
Song J, Sun R, Zhang Y, Fu Y, Zhao D. Role of the Specialized Pro-resolving Mediator Resolvin D1 in Hashimoto's Thyroiditis. Exp Clin Endocrinol Diabetes 2021; 129:791-797. [PMID: 33465800 DOI: 10.1055/a-1345-0173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Resolvins are produced by the catabolism of polyunsaturated fatty acids (PUFAs) and play vital roles in inflammation resolution. Resolvins have been associated with autoimmune disorders. This study aimed to measure the level of Resolvin D1 (RVD1) in the serum of Hashimoto's thyroiditis (HT) patients and healthy controls (HCs) and to further analyse its correlation with thyroid autoantibodies and inflammatory factors. METHODS Sixty-three participants were recruited, namely, 30 untreated HT patients and 33 sex- and age-matched HCs. Serum RVD1 and inflammatory chemokine (MCP-1 and IP-10) levels were measured by ELISA according to the manufacturer's protocol. Serum total T3 (TT3), TT4, free T3 (FT3), FT4, thyroglobulin antibody (TgAb), thyroid peroxidase antibody (TPOAb) and thyroid-stimulating hormone (TSH) levels were measured using an electrochemiluminescence immunoassay. Thyroid homeostasis parameters, including the thyroid secretory capacity (SPINA-GT), the total deiodinase activity (SPINA-GD), Jostel's TSH index (TSHI) and the thyrotroph thyroid hormone sensitivity index (TTSI), were calculated. RESULTS Serum RVD1 levels in HT patients (134.76, 85.35-201.36 pg/mL) were significantly lower than those in HCs (187.64, 131.01-326.85 pg/mL) (P=0.004). As the TPOAb level increased, the RVD1 level showed a decreasing trend (P for trend=0.002). Both multinomial and ordinal logistics analyses revealed that serum RVD1 levels were negatively correlated with TPOAb levels in the adjusted models. Moreover, RVD1 showed a negative correlation with the inflammatory chemokine IP-1 0 (r=-0.276, P=0.034), TSHI (r=-0.269, P=0.036) and TTSI (r=-0.277, P=0.031). CONCLUSIONS Thyroid autoimmunity may be associated with low levels of RVD1. Decreased RVD1 levels indicate impaired resolution of inflammation in HT patients.
Collapse
Affiliation(s)
- Jing Song
- Beijing Key Laboratory of Diabetes Research and Care, Center for Endocrine Metabolism and Immune Diseases, Lu He Hospital Capital Medical University, Beijing, China
| | - Rongxin Sun
- Beijing Key Laboratory of Diabetes Research and Care, Center for Endocrine Metabolism and Immune Diseases, Lu He Hospital Capital Medical University, Beijing, China
| | - Yuanyuan Zhang
- Beijing Key Laboratory of Diabetes Research and Care, Center for Endocrine Metabolism and Immune Diseases, Lu He Hospital Capital Medical University, Beijing, China
| | - Ying Fu
- Beijing Key Laboratory of Diabetes Research and Care, Center for Endocrine Metabolism and Immune Diseases, Lu He Hospital Capital Medical University, Beijing, China
| | - Dong Zhao
- Beijing Key Laboratory of Diabetes Research and Care, Center for Endocrine Metabolism and Immune Diseases, Lu He Hospital Capital Medical University, Beijing, China
| |
Collapse
|
18
|
Yellepeddi VK, Parashar K, Dean SM, Watt KM, Constance JE, Baker OJ. Predicting Resolvin D1 Pharmacokinetics in Humans with Physiologically-Based Pharmacokinetic Modeling. Clin Transl Sci 2020; 14:683-691. [PMID: 33202089 PMCID: PMC7993257 DOI: 10.1111/cts.12930] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
Sjögren’s syndrome (SS) is an autoimmune disease with no effective treatment options. Resolvin D1 (RvD1) belongs to a class of lipid‐based specialized pro‐resolving mediators that showed efficacy in preclinical models of SS. We developed a physiologically‐based pharmacokinetic (PBPK) model of RvD1 in mice and optimized the model using plasma and salivary gland pharmacokinetic (PK) studies performed in NOD/ShiLtJ mice with SS‐like features. The predictive performance of the PBPK model was also evaluated with two external datasets from the literature reporting RvD1 PKs. The PBPK model adequately captured the observed concentrations of RvD1 administered at different doses and in different species. The PKs of RvD1 in virtual humans were predicted using the verified PBPK model at various doses (0.01–10 mg/kg). The first‐in‐human predictions of RvD1 will be useful for the clinical trial design and translation of RvD1 as an effective treatment strategy for SS.
Collapse
Affiliation(s)
- Venkata K Yellepeddi
- Division of Clinical Pharmacology, Department of Pediatrics, School of Medicine, University of Utah, Salt Lake City, Utah, USA.,Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | | | - Spencer M Dean
- School of Dentistry, University of Utah, Salt Lake City, Utah, USA
| | - Kevin M Watt
- Division of Clinical Pharmacology, Department of Pediatrics, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Jonathan E Constance
- Division of Clinical Pharmacology, Department of Pediatrics, School of Medicine, University of Utah, Salt Lake City, Utah, USA.,Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | - Olga J Baker
- Department of Otolaryngology-Head and Neck Surgery, Department of Biochemistry, Christopher S. Bond Life Sciences Center, School of Medicine, University of Missouri-Columbia, Columbia, Missouri, USA
| |
Collapse
|
19
|
Jeong YS, Bae YS. Formyl peptide receptors in the mucosal immune system. Exp Mol Med 2020; 52:1694-1704. [PMID: 33082511 PMCID: PMC7572937 DOI: 10.1038/s12276-020-00518-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022] Open
Abstract
Formyl peptide receptors (FPRs) belong to the G protein-coupled receptor (GPCR) family and are well known as chemotactic receptors and pattern recognition receptors (PRRs) that recognize bacterial and mitochondria-derived formylated peptides. FPRs are also known to detect a wide range of ligands, including host-derived peptides and lipids. FPRs are highly expressed not only in phagocytes such as neutrophils, monocytes, and macrophages but also in nonhematopoietic cells such as epithelial cells and endothelial cells. Mucosal surfaces, including the gastrointestinal tract, the respiratory tract, the oral cavity, the eye, and the reproductive tract, separate the external environment from the host system. In mucosal surfaces, the interaction between the microbiota and host cells needs to be strictly regulated to maintain homeostasis. By sharing the same FPRs, immune cells and epithelial cells may coordinate pathophysiological responses to various stimuli, including microbial molecules derived from the normal flora. Accumulating evidence shows that FPRs play important roles in maintaining mucosal homeostasis. In this review, we summarize the roles of FPRs at mucosal surfaces.
Collapse
Affiliation(s)
- Yu Sun Jeong
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yoe-Sik Bae
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
20
|
Briottet M, Shum M, Urbach V. The Role of Specialized Pro-Resolving Mediators in Cystic Fibrosis Airways Disease. Front Pharmacol 2020; 11:1290. [PMID: 32982730 PMCID: PMC7493015 DOI: 10.3389/fphar.2020.01290] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/04/2020] [Indexed: 12/26/2022] Open
Abstract
Cystic Fibrosis (CF) is a recessive genetic disease due to mutations of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene encoding the CFTR chloride channel. The ion transport abnormalities related to CFTR mutation generate a dehydrated airway surface liquid (ASL) layer, which is responsible for an altered mucociliary clearance, favors infections and persistent inflammation that lead to progressive lung destruction and respiratory failure. The inflammatory response is normally followed by an active resolution phase to return to tissue homeostasis, which involves specialized pro-resolving mediators (SPMs). SPMs promote resolution of inflammation, clearance of microbes, tissue regeneration and reduce pain, but do not evoke unwanted immunosuppression. The airways of CF patients showed a decreased production of SPMs even in the absence of pathogens. SPMs levels in the airway correlated with CF patients' lung function. The prognosis for CF has greatly improved but there remains a critical need for more effective treatments that prevent excessive inflammation, lung damage, and declining pulmonary function for all CF patients. This review aims to highlight the recent understanding of CF airway inflammation and the possible impact of SPMs on functions that are altered in CF airways.
Collapse
Affiliation(s)
| | | | - Valerie Urbach
- Institut national de la santé et de la recherche médicale (Inserm) U955, Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
| |
Collapse
|
21
|
Shan K, Feng N, Cui J, Wang S, Qu H, Fu G, Li J, Chen H, Wang X, Wang R, Qi Y, Gu Z, Chen YQ. Resolvin D1 and D2 inhibit tumour growth and inflammation via modulating macrophage polarization. J Cell Mol Med 2020; 24:8045-8056. [PMID: 32469149 PMCID: PMC7348143 DOI: 10.1111/jcmm.15436] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/20/2020] [Accepted: 05/12/2020] [Indexed: 12/31/2022] Open
Abstract
Plastic polarization of macrophage is involved in tumorigenesis. M1-polarized macrophage mediates rapid inflammation, entity clearance and may also cause inflammation-induced mutagenesis. M2-polarized macrophage inhibits rapid inflammation but can promote tumour aggravation. ω-3 long-chain polyunsaturated fatty acid (PUFA)-derived metabolites show a strong anti-inflammatory effect because they can skew macrophage polarization from M1 to M2. However, their role in tumour promotive M2 macrophage is still unknown. Resolvin D1 and D2 (RvD1 and RvD2) are docosahexaenoic acid (DHA)-derived docosanoids converted by 15-lipoxygenase then 5-lipoxygenase successively. We found that although dietary DHA can inhibit prostate cancer in vivo, neither DHA (10 μmol/L) nor RvD (100 nmol/L) can directly inhibit the proliferation of prostate cancer cells in vitro. Unexpectedly, in a cancer cell-macrophage co-culture system, both DHA and RvD significantly inhibited cancer cell proliferation. RvD1 and RvD2 inhibited tumour-associated macrophage (TAM or M2d) polarization. Meanwhile, RvD1 and RvD2 also exhibited anti-inflammatory effects by inhibiting LPS-interferon (IFN)-γ-induced M1 polarization as well as promoting interleukin-4 (IL-4)-mediated M2a polarization. These differential polarization processes were mediated, at least in part, by protein kinase A. These results suggest that regulation of macrophage polarization using RvDs may be a potential therapeutic approach in the management of prostate cancer.
Collapse
Affiliation(s)
- Kai Shan
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ninghan Feng
- Department of Urology, Wuxi No. 2 People's Hospital, Wuxi, China
| | - Jing Cui
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shunhe Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hongyan Qu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Guoling Fu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jiaqi Li
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Heyan Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiaoying Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Rong Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yumin Qi
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhennan Gu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yong Q Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
22
|
Parashar K, Schulte F, Hardt M, Baker OJ. Sex-mediated elevation of the specialized pro-resolving lipid mediator levels in a Sjögren's syndrome mouse model. FASEB J 2020; 34:7733-7744. [PMID: 32277856 DOI: 10.1096/fj.201902196r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/18/2022]
Abstract
Our previous results showed that the specialized pro-resolving mediator (SPM) Resolvin D1 (RvD1) promotes resolution of inflammation in salivary glands in non-obese diabetic (NOD)/ShiLtJ, a mouse model for Sjögren's syndrome (SS). Additionally, mice lacking the RvD1 receptor ALX/FPR2 show defective innate and adaptive immune responses in salivary glands. Particularly, ALX/FPR2 KO mice exhibit exacerbated inflammation in their salivary glands in response to systemic LPS treatment. Moreover, female ALX/FPR2 KO mice show increased autoantibody production and loss of salivary gland function with age. Together, these studies suggest that an underlying SPM dysregulation could be contributing to SS progression. Therefore, we investigated whether SPM production is altered in NOD/ShiLtJ using metabololipidomics and enzyme-linked immunosorbent assay (ELISA). Our results demonstrate that SPM levels were broadly elevated in plasma collected from NOD/ShiLtJ female mice after disease onset, whereas these drastic changes did not occur in male mice. Moreover, gene expression of enzymes involved in SPM biosynthesis were altered in submandibular glands (SMG) from NOD/ShiLtJ female mice after disease onset, with 5-LOX and 12/15-LOX being downregulated and upregulated, respectively. Despite this dysregulation, the abundances of the SPM products of these enzymes (ie, RvD1 and RvD2) were unaltered in freshly isolated SMG cells suggesting that other cell populations (eg, lymphocytes) may be responsible for the overabundance of SPMs that we observed. The elevation of SPMs noted here appeared to be sex mediated, meaning that it was observed only in one sex (females). Given that SS primarily affects females (roughly 90% of diagnosed cases), these results may provide some insights into the mechanisms underlying the observed sexual dimorphism.
Collapse
Affiliation(s)
- Kaustubh Parashar
- School of Dentistry, The University of Utah, Salt Lake City, UT, USA
| | - Fabian Schulte
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA, USA
| | - Markus Hardt
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA, USA.,Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Olga J Baker
- School of Dentistry, The University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
23
|
Dean S, Wang CS, Nam K, Maruyama CL, Trump BG, Baker OJ. Aspirin Triggered Resolvin D1 reduces inflammation and restores saliva secretion in a Sjögren's syndrome mouse model. Rheumatology (Oxford) 2020; 58:1285-1292. [PMID: 30877775 DOI: 10.1093/rheumatology/kez072] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 02/07/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES SS is characterized by chronic inflammation of the salivary glands leading to loss of secretory function, thereby suggesting specialized pro-resolving mediators targeting inflammation to be a viable option for treating SS. Previous studies demonstrated that aspirin-triggered resolvin D1 (AT-RvD1) prevents chronic inflammation and enhances saliva secretion in a SS-like mouse model when applied before disease onset. However, this therapy cannot be used in SS patients given that diagnosis occurs post-disease onset and no reliable screening methods exist. Therefore, we examined whether treatment with AT-RvD1 reduces SS-like features in a mouse model post-disease onset. METHODS Tail vein injections were performed in a SS-like mouse model both with and without AT-RvD1 post-disease onset for 8 weeks, with salivary gland function and inflammatory status subsequently determined. RESULTS Treatment of a SS-like mouse model with AT-RvD1 post-disease onset restores saliva secretion in both females and males. Moreover, although AT-RvD1 treatment does not reduce the overall submandibular gland lymphocytic infiltration, it does reduce the number of T helper 17 cells within the infiltrates in both sexes. Finally, AT-RvD1 reduces SS-associated pro-inflammatory cytokine gene and protein expression levels in submandibular glands from female but not male mice. CONCLUSION AT-RvD1 treatment administered post-disease onset reduces T helper 17 cells and successfully restores salivary gland function in a SS mouse model with variable effects noted by sex, thus warranting further examination of both the causes for the sex differences and the mechanisms responsible for the observed treatment effect.
Collapse
Affiliation(s)
- Spencer Dean
- School of Dentistry, University of Utah, Salt Lake City, UT, USA
| | - Ching-Shuen Wang
- School of Dentistry, University of Utah, Salt Lake City, UT, USA
| | - Kihoon Nam
- School of Dentistry, University of Utah, Salt Lake City, UT, USA
| | | | - Bryan G Trump
- School of Dentistry, University of Utah, Salt Lake City, UT, USA
| | - Olga J Baker
- School of Dentistry, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
24
|
Kiripolsky J, Romano RA, Kasperek EM, Yu G, Kramer JM. Activation of Myd88-Dependent TLRs Mediates Local and Systemic Inflammation in a Mouse Model of Primary Sjögren's Syndrome. Front Immunol 2020; 10:2963. [PMID: 31993047 PMCID: PMC6964703 DOI: 10.3389/fimmu.2019.02963] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 12/03/2019] [Indexed: 12/29/2022] Open
Abstract
Toll-like receptors (TLRs) are important mediators of chronic inflammation in numerous autoimmune diseases, although the role of these receptors in primary Sjögren's syndrome (pSS) remains incompletely understood. Previous studies in our laboratory established Myd88 as a crucial mediator of pSS, although the disease-relevant ligands and the upstream signaling events that culminate in Myd88 activation have yet to be established. The objective of this study was to identify specific Myd88-dependent TLR-related pathways that are dysregulated both locally and systemically in a mouse model of pSS [NOD.B10Sn-H2b/J (NOD.B10)]. We performed RNA-sequencing on spleens derived from NOD.B10 mice. We then harvested salivary tissue and spleens from Myd88-sufficient and deficient C57BL/10 (BL/10) and NOD.B10 mice and performed flow cytometry to determine expression of Myd88-dependent TLRs. We cultured splenocytes with TLR2 and TLR4 agonists and measured production of inflammatory mediators by ELISA. Next, we evaluated spontaneous and TLR4-mediated inflammatory cytokine secretion in NOD.B10 salivary tissue. Finally, we assessed spontaneous Myd88-dependent cytokine secretion by NOD.B10 salivary cells. We identified dysregulation of numerous TLR-related networks in pSS splenocytes, particularly those employed by TLR2 and TLR4. We found upregulation of TLRs in both the splenic and salivary tissue from pSS mice. In NOD.B10 splenic tissue, robust expression of B cell TLR1 and TLR2 required Myd88. Splenocytes from NOD.B10 mice were hyper-responsive to TLR2 ligation and the endogenous molecule decorin modulated inflammation via TLR4. Finally, we observed spontaneous secretion of numerous inflammatory cytokines and this was enhanced following TLR4 ligation in female NOD.B10 salivary tissue as compared to males. The spontaneous production of salivary IL-6, MCP-1 and TNFα required Myd88 in pSS salivary tissue. Thus, our data demonstrate that Myd88-dependent TLR pathways contribute to the inflammatory landscape in pSS, and inhibition of such will likely have therapeutic utility.
Collapse
Affiliation(s)
- Jeremy Kiripolsky
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, United States
| | - Rose-Anne Romano
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, United States
| | - Eileen M Kasperek
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, United States
| | - Guan Yu
- Department of Biostatistics, School of Public Health and Health Professions, State University of New York at Buffalo, Buffalo, NY, United States
| | - Jill M Kramer
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, United States.,Department of Oral Diagnostic Sciences, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, United States
| |
Collapse
|
25
|
Chiang N, Barnaeva E, Hu X, Marugan J, Southall N, Ferrer M, Serhan CN. Identification of Chemotype Agonists for Human Resolvin D1 Receptor DRV1 with Pro-Resolving Functions. Cell Chem Biol 2018; 26:244-254.e4. [PMID: 30554914 DOI: 10.1016/j.chembiol.2018.10.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/20/2018] [Accepted: 10/26/2018] [Indexed: 12/14/2022]
Abstract
Resolution of acute inflammation is governed, in part, by specialized pro-resolving mediators, including lipoxins, resolvins, protectins, and maresins. Among them, resolvin D1 (RvD1) exhibits potent pro-resolving functions via activating human resolvin D1 receptor (DRV1/GPR32). RvD1 is a complex molecule that requires challenging organic synthesis, diminishing its potential as a therapeutic. Therefore, we implemented a high-throughput screening of small-molecule libraries and identified several chemotypes that activated recombinant DRV1, represented by NCGC00120943 (C1A), NCGC00135472 (C2A), pMPPF, and pMPPI. These chemotypes also elicited rapid impedance changes in cells overexpressing recombinant DRV1. With human macrophages, they each stimulated phagocytosis of serum-treated zymosan at concentrations comparable with that of RvD1, the endogenous DRV1 ligand. In addition, macrophage phagocytosis of live E. coli was significantly increased by these chemotypes in DRV1-transfected macrophages, compared with mock-transfected cells. Taken together, these chemotypes identified by unbiased screens act as RvD1 mimetics, exhibiting pro-resolving functions via interacting with human DRV1.
Collapse
Affiliation(s)
- Nan Chiang
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road BTM 3-016, Boston, MA 02115, USA
| | - Elena Barnaeva
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Xin Hu
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Juan Marugan
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Noel Southall
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Marc Ferrer
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA.
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road BTM 3-016, Boston, MA 02115, USA.
| |
Collapse
|
26
|
Saikosaponin A Inhibits LPS-Induced Endometritis in Mice Through Activating Nrf2 Signaling Pathway. Inflammation 2018; 41:1508-1514. [PMID: 29748729 DOI: 10.1007/s10753-018-0796-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Saikosaponin A (SSA) is the major triterpenoid glycoside isolated from Bupleurum falcatum. In this study, we reported the protective effects and mechanism of SSA on lipopolysaccharide (LPS)-induced endometritis in mice. The pathological changes and myeloperoxidase (MPO) activity of uterus tissues were evaluated by hematoxylin and eosin (H&E) staining and MPO detection kit. Inflammatory cytokines TNF-α, IL-1ß, and IL-6 production were detected by ELISA. The expression of protein was measured by western blot analysis. The results showed that SSA administration inhibited inflammatory cell infiltration as confirmed by the decreased MPO activity. LPS-induced uterus histological changes were also suppressed by SSA. Meanwhile, LPS-induced TNF-α, IL-1ß, and IL-6 production were reduced by SSA administration. The phosphorylation levels of nuclear factor kappa B (NF-κB) and inhibitor of kappa B (IκBα) induced by LPS were inhibited by SSA. In addition, the expression of nuclear factor E2-related factor 2 (Nrf2) and heme oxygenase (HO-1) were upregulated by SSA in a concentration-dependent manner. These results provide evidence that SSA protects against LPS-induced endometritis through inhibiting inflammatory response. SSA may be used as a potential therapeutic agent for the treatment of endometritis.
Collapse
|
27
|
Free fatty acids may be involved in the pathogenesis of oral-related and cardiovascular diseases. J Oral Biosci 2018. [DOI: 10.1016/j.job.2018.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
28
|
The G-Protein-Coupled Receptor ALX/Fpr2 Regulates Adaptive Immune Responses in Mouse Submandibular Glands. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1555-1562. [PMID: 29684359 DOI: 10.1016/j.ajpath.2018.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/07/2018] [Accepted: 04/02/2018] [Indexed: 01/25/2023]
Abstract
Lipoxin receptor (ALX)/N-formyl peptide receptor (FPR)-2 is a G-protein-coupled receptor that has multiple binding partners, including the endogenous lipid mediators resolvin D1, lipoxin A4, and the Ca2+-dependent phospholipid-binding protein annexin A1. Previous studies have demonstrated that resolvin D1 activates ALX/Fpr2 to resolve salivary gland inflammation in the NOD/ShiLtJ mouse model of Sjögren syndrome. Moreover, mice lacking the ALX/Fpr2 display an exacerbated salivary gland inflammation in response to lipopolysaccharide. Additionally, activation of ALX/Fpr2 has been shown to be important for regulating antibody production in B cells. These previous studies indicate that ALX/Fpr2 promotes resolution of salivary gland inflammation while modulating adaptive immunity, suggesting the need for investigation of the role of ALX/Fpr2 in regulating antibody production and secretory function in mouse salivary glands. Our results indicate that aging female knockout mice lacking ALX/Fpr2 display a significant reduction in saliva flow rates and weight loss, an increased expression of autoimmune-associated genes, an up-regulation of autoantibody production, and increased CD20-positive B-cell population. Although not all effects were noted among the male knockout mice, the results nonetheless indicate that ALX/Fpr2 is clearly involved in the adaptive immunity and secretory function in salivary glands, with further investigation warranted to determine the cause(s) of these between-sex differences.
Collapse
|
29
|
Zhang Z, Hu X, Qi X, Di G, Zhang Y, Wang Q, Zhou Q. Resolvin D1 promotes corneal epithelial wound healing and restoration of mechanical sensation in diabetic mice. Mol Vis 2018; 24:274-285. [PMID: 29643724 PMCID: PMC5881880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/30/2018] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To investigate the effect and mechanism of proresolving lipid mediator resolvin D1 (RvD1) on the corneal epithelium and the restoration of mechanical sensation in diabetic mice. METHODS Type 1 diabetes was induced in mice with intraperitoneal streptozocin injections. The healthy and diabetic mice underwent removal of the central corneal epithelium, and then 100 ng/ml RvD1 or its formyl peptide receptor 2 (FPR2) antagonist WRW4 was used to treat the diabetic mice. Regeneration of the corneal epithelium and nerves was observed with sodium fluorescein staining and whole-mount anti-β3-tubulin fluorescence staining. The inflammatory response level was measured with hematoxylin and eosin staining (inflammatory cell infiltration), enzyme-linked immunosorbent assay (tumor necrosis factor alpha and interleukin-1 beta content), myeloperoxidase activity, and fluorescence staining (macrophage content). The reactive oxygen species (ROS) and glutathione (GSH) levels were examined with incubation with fluorescent probes, and oxidative stress-related protein expression levels were evaluated with fluorescence staining and western blotting. RESULTS Topical application of RvD1 promoted regeneration of the corneal epithelium in diabetic mice, accompanied by the reactivation of signaling and inflammation resolution related to regeneration of the epithelium. Furthermore, RvD1 directly attenuated the accumulation of ROS and nicotinamide adenine dinucleotide phosphate oxidase 2/4 expression, while RvD1 enhanced GSH synthesis and reactivated the Nrf2-ARE signaling pathway that was impaired in the corneal epithelium in the diabetic mice. More interestingly, topical application of RvD1 promoted regeneration of corneal nerves and completely restored impaired mechanical sensitivity of the cornea in diabetic mice. In addition, the promotion of corneal epithelial wound healing by RvD1 in diabetic mice was abolished by its FPR2 antagonist WRW4. CONCLUSIONS Topical application of RvD1 promotes corneal epithelial wound healing and the restoration of mechanical sensation in diabetic mice, which may be related to the lipid mediator's regulation of inflammation resolution, the reactivation of regenerative signaling in the epithelium, and the attenuation of oxidative stress.
Collapse
Affiliation(s)
- Zhenzhen Zhang
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Xiaoli Hu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Xia Qi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Guohu Di
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Yangyang Zhang
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Qian Wang
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| |
Collapse
|
30
|
Bhattarai KR, Junjappa R, Handigund M, Kim HR, Chae HJ. The imprint of salivary secretion in autoimmune disorders and related pathological conditions. Autoimmun Rev 2018; 17:376-390. [DOI: 10.1016/j.autrev.2017.11.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 11/16/2017] [Indexed: 12/11/2022]
|
31
|
Easley JT, Maruyama CLM, Wang CS, Baker OJ. AT-RvD1 combined with DEX is highly effective in treating TNF-α-mediated disruption of the salivary gland epithelium. Physiol Rep 2017; 4:4/19/e12990. [PMID: 27694530 PMCID: PMC5064142 DOI: 10.14814/phy2.12990] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 09/09/2016] [Indexed: 12/20/2022] Open
Abstract
Sjögren's syndrome (SS) is an autoimmune disorder characterized by chronic inflammation and destruction of salivary and lacrimal glands leading to dry mouth and dry eyes, respectively. Currently, the etiology of SS is unknown and the current therapies have no permanent benefit; therefore, new approaches are necessary to effectively treat this condition. Resolvins are highly potent endogenous lipid mediators that are synthesized during the resolution of inflammation to restore tissue homeostasis. Previous studies indicate that the resolvin family member, RvD1, binds to the ALX/FPR2 receptor to block inflammatory signals caused by tumor necrosis factor-alpha (TNF-α) in the salivary epithelium. More recently, the corticosteroid, dexamethasone (DEX), was shown to be effective in reducing salivary gland inflammation. However, DEX, as with other corticosteroids, elicits adverse secondary effects that could be ameliorated when used in smaller doses. Therefore, we investigated whether the more stable aspirin-triggered (AT) epimer, AT-RvD1, combined with reduced doses of DEX is effective in treating TNF-α-mediated disruption of polarized rat parotid gland (Par-C10) epithelial cell clusters. Our results indicate that AT-RvD1 and DEX individually reduced TNF-α-mediated alteration in the salivary epithelium (i.e, maintained cell cluster formation, increased lumen size, reduced apoptosis, and preserved cell survival signaling responses) as compared to untreated cells. Furthermore, AT-RvD1 combined with a reduced dose of DEX produced stronger responses (i.e., robust salivary cell cluster formation, larger lumen sizes, further reduced apoptosis, and sustained survival signaling responses) as compared to those observed with individual treatments. These studies demonstrate that AT-RvD1 combined with DEX is highly effective in treating TNF-α-mediated disruption of salivary gland epithelium.
Collapse
Affiliation(s)
- Justin T Easley
- School of Dentistry, University of Utah, Salt Lake City, Utah
| | | | | | - Olga J Baker
- School of Dentistry, University of Utah, Salt Lake City, Utah
| |
Collapse
|
32
|
Sommakia S, Baker OJ. Regulation of inflammation by lipid mediators in oral diseases. Oral Dis 2017; 23:576-597. [PMID: 27426637 PMCID: PMC5243936 DOI: 10.1111/odi.12544] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/08/2016] [Accepted: 07/13/2016] [Indexed: 02/06/2023]
Abstract
Lipid mediators (LM) of inflammation are a class of compounds derived from ω-3 and ω-6 fatty acids that play a wide role in modulating inflammatory responses. Some LM possess pro-inflammatory properties, while others possess proresolving characteristics, and the class switch from pro-inflammatory to proresolving is crucial for tissue homeostasis. In this article, we review the major classes of LM, focusing on their biosynthesis and signaling pathways, and their role in systemic and, especially, oral health and disease. We discuss the detection of these LM in various body fluids, focusing on diagnostic and therapeutic applications. We also present data showing gender-related differences in salivary LM levels in healthy controls, leading to a hypothesis on the etiology of inflammatory diseases, particularly Sjögren's syndrome. We conclude by enumerating open areas of research where further investigation of LM is likely to result in therapeutic and diagnostic advances.
Collapse
Affiliation(s)
- Salah Sommakia
- School of Dentistry, The University of Utah, Salt Lake City, UT, USA
| | - Olga J. Baker
- School of Dentistry, The University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
33
|
Shikama Y, Kudo Y, Ishimaru N, Funaki M. Potential Role of Free Fatty Acids in the Pathogenesis of Periodontitis and Primary Sjögren's Syndrome. Int J Mol Sci 2017; 18:ijms18040836. [PMID: 28420093 PMCID: PMC5412420 DOI: 10.3390/ijms18040836] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/07/2017] [Accepted: 04/11/2017] [Indexed: 12/15/2022] Open
Abstract
Clinical studies have shown that metabolic disorders such as type 2 diabetes and dyslipidemia are associated with increased risk of oral-related diseases, such as periodontitis and Sjögren’s syndrome. Although changes in the immune system are critical in both of these metabolic disorders and oral-related diseases, the mechanism underlying the interaction between these diseases remains largely unknown. Obesity and type 2 diabetes are known to be associated with higher concentrations of free fatty acids in blood. Among free fatty acids, saturated fatty acids such as palmitic acid have been demonstrated to induce inflammatory responses mainly via the innate immune systems, and to be involved in the pathogenesis of type 2 diabetes in tissues such as adipose tissue, liver, pancreas, and skeletal muscle. Here, we highlight recent advances in evidence for the potential involvement of palmitic acid in the pathogenesis of periodontitis and Sjögren’s syndrome, and discuss the possibility that improvement of the lipid profile could be a new strategy for the treatment of these diseases.
Collapse
Affiliation(s)
- Yosuke Shikama
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu 474-8511, Japan.
| | - Yasusei Kudo
- Department of Oral Molecular Pathology, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8504, Japan.
| | - Naozumi Ishimaru
- Department of Oral Molecular Pathology, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8504, Japan.
| | - Makoto Funaki
- Clinical Research Center for Diabetes, Tokushima University Hospital, 2-50-1 Kuramoto-cho, Tokushima 770-8503, Japan.
| |
Collapse
|
34
|
Deyama S, Ishikawa Y, Yoshikawa K, Shimoda K, Ide S, Satoh M, Minami M. Resolvin D1 and D2 Reverse Lipopolysaccharide-Induced Depression-Like Behaviors Through the mTORC1 Signaling Pathway. Int J Neuropsychopharmacol 2017; 20:575-584. [PMID: 28419244 PMCID: PMC5492780 DOI: 10.1093/ijnp/pyx023] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/11/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Resolvin D1 and D2 are bioactive lipid mediators that are generated from docosahexaenoic acid. Although recent preclinical studies suggest that these compounds have antidepressant effects, their mechanisms of action remain unclear. METHODS We investigated mechanisms underlying the antidepressant effects of resolvin D1 and resolvin D2 in lipopolysaccharide (0.8 mg/kg, i.p.)-induced depression model mice using a tail suspension test. RESULTS I.c.v. infusion of resolvin D1 (10 ng) and resolvin D2 (10 ng) produced antidepressant effects; these effects were significantly blocked by a resolvin D1 receptor antagonist WRW4 (10 µg, i.c.v.) and a resolvin D2 receptor antagonist O-1918 (10 µg, i.c.v.), respectively. The mammalian target of rapamycin complex 1 inhibitor rapamycin (10 mg/kg, i.p.) and a mitogen-activated protein kinase kinase inhibitor U0126 (5 µg, i.c.v.) significantly blocked the antidepressant effects of resolvin D1 and resolvin D2. An AMPA receptor antagonist NBQX (10 mg/kg, i.p.) and a phosphoinositide 3-kinase inhibitor LY294002 (3 µg, i.c.v.) blocked the antidepressant effects of resolvin D1 significantly, but not of resolvin D2. Bilateral infusions of resolvin D1 (0.3 ng/side) or resolvin D2 (0.3 ng/side) into the medial prefrontal cortex or dentate gyrus of the hippocampus produced antidepressant effects. CONCLUSIONS These findings demonstrate that resolvin D1 and resolvin D2 produce antidepressant effects via the mammalian target of rapamycin complex 1 signaling pathway, and that the medial prefrontal cortex and dentate gyrus are important brain regions for these antidepressant effects. These compounds and their receptors may be promising targets for the development of novel rapid-acting antidepressants, like ketamine and scopolamine.
Collapse
Affiliation(s)
- Satoshi Deyama
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan (Drs Deyama, Ide, and Minami, Ms Ishikawa, Ms Yoshikawa, and Mr Shimoda); Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (Dr Deyama); Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan (Dr Ide); Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan (Dr Satoh)
| | - Yuka Ishikawa
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan (Drs Deyama, Ide, and Minami, Ms Ishikawa, Ms Yoshikawa, and Mr Shimoda); Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (Dr Deyama); Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan (Dr Ide); Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan (Dr Satoh)
| | - Kotomi Yoshikawa
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan (Drs Deyama, Ide, and Minami, Ms Ishikawa, Ms Yoshikawa, and Mr Shimoda); Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (Dr Deyama); Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan (Dr Ide); Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan (Dr Satoh)
| | - Kento Shimoda
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan (Drs Deyama, Ide, and Minami, Ms Ishikawa, Ms Yoshikawa, and Mr Shimoda); Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (Dr Deyama); Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan (Dr Ide); Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan (Dr Satoh)
| | - Soichiro Ide
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan (Drs Deyama, Ide, and Minami, Ms Ishikawa, Ms Yoshikawa, and Mr Shimoda); Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (Dr Deyama); Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan (Dr Ide); Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan (Dr Satoh)
| | - Masamichi Satoh
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan (Drs Deyama, Ide, and Minami, Ms Ishikawa, Ms Yoshikawa, and Mr Shimoda); Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (Dr Deyama); Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan (Dr Ide); Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan (Dr Satoh)
| | - Masabumi Minami
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan (Drs Deyama, Ide, and Minami, Ms Ishikawa, Ms Yoshikawa, and Mr Shimoda); Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (Dr Deyama); Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan (Dr Ide); Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan (Dr Satoh)
| |
Collapse
|
35
|
AT-RvD1 Promotes Resolution of Inflammation in NOD/ShiLtJ mice. Sci Rep 2017; 7:45525. [PMID: 28361884 PMCID: PMC5374540 DOI: 10.1038/srep45525] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/28/2017] [Indexed: 02/08/2023] Open
Abstract
Sjögren’s syndrome (SS) is a chronic inflammatory autoimmune disease characterized by diminished secretory function of the exocrine glands. Treatments for hyposalivation are limited to the use of saliva substitutes and medications that provide only temporary relief. In light of the high degree of need and the limitations of current therapies, development of alternative treatments to restore functioning is essential. Resolvins (Rv), which are highly potent lipid mediators, offer a viable alternative for better treating inflammatory diseases such as SS. The goal of this study was to determine whether systemic preventive treatment with Aspirin-triggered RvD1 (AT-RvD1) reduces inflammation and preserves secretory functioning in NOD/ShiLtJ SS-like mice. Our results indicate that systemic treatment with AT-RvD1 diminishes the progression of the disease in salivary epithelium from female mice as follows: (a) improves secretory function, (b) reduces pro-inflammatory molecule gene expression, (c) increases anti-inflammatory molecule gene expression and (d) induces M2 macrophage polarization. Finally, AT-RvD1 decreases lymphocytic infiltration into the salivary glands when used with small doses of the steroid, dexamethasone, and promotes the tissue healing process.
Collapse
|
36
|
Javed F, Kellesarian SV, Sundar IK, Romanos GE, Rahman I. Recent updates on electronic cigarette aerosol and inhaled nicotine effects on periodontal and pulmonary tissues. Oral Dis 2017; 23:1052-1057. [PMID: 28168771 DOI: 10.1111/odi.12652] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/30/2017] [Accepted: 02/01/2017] [Indexed: 01/06/2023]
Abstract
E-cigarette-derived inhaled nicotine may contribute to the pathogenesis of periodontal and pulmonary diseases in particular via lung inflammation, injurious, and dysregulated repair responses. Nicotine is shown to have antiproliferative properties and affects fibroblasts in vitro, which may interfere in tissue myofibroblast differentiation in e-cig users. This will affect the ability to heal wounds by decreasing wound contraction. In periodontics, direct exposure to e-vapor has been shown to produce harmful effects in periodontal ligament and gingival fibroblasts in culture. This is due to the generation of reactive oxygen species/aldehydes/carbonyls from e-cig aerosol, leading to protein carbonylation of extracellular matrix and DNA adducts/damage. A limited number of studies regarding the effects of e-cig in oral and lung health are available. However, no reports are available to directly link the deleterious effects on e-cigs, inhaled nicotine, and flavorings aerosol on periodontal and pulmonary health in particular to identify the risk of oral diseases by e-cigarettes and nicotine aerosols. This mini-review summarizes the recent perspectives on e-cigarettes including inhaled nicotine effects on several pathophysiological events, such as oxidative stress, DNA damage, innate host response, inflammation, cellular senescence, profibrogenic and dysregulated repair, leading to lung remodeling, oral submucous fibrosis, and periodontal diseases.
Collapse
Affiliation(s)
- F Javed
- Department of General Dentistry, Eastman Institute for Oral Health, University of Rochester, Rochester, NY, USA
| | - S V Kellesarian
- Department of General Dentistry, Eastman Institute for Oral Health, University of Rochester, Rochester, NY, USA
| | - I K Sundar
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - G E Romanos
- Department of Periodontology, School of Dental Medicine, Stony Brook University, Stony Brook, NY, USA.,Department of Oral Surgery and Implant Dentistry, Johann Wolfgang Goethe University, Dental School, Frankfurt, Germany
| | - I Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
37
|
Murakami K. Potential of specialized pro-resolving lipid mediators against rheumatic diseases. ACTA ACUST UNITED AC 2017; 39:155-63. [PMID: 27320930 DOI: 10.2177/jsci.39.155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
While arachidonic acid (AA), which is classified into n-6 polyunsaturated fatty acid (PUFA), has been mainly recognized as a substrate of pro-inflammatory mediators, eicosapentaenoic acid or docosahexaenoic acid, which are classified into n-3 PUFA, is currently identified as substrates of mediators inducing resolution of inflammation, namely pro-resolving mediators (SPM). As with any other pathological conditions, it is gradually elucidated that SPMs contributes a certain effect on joint inflammation. In osteoarthritis (OA), Lipid fractions extracted from adipocytes, especially in infrapatellar fat pad rather than subcutaneous tissue induce T cell skewing for producing IFN-γ or decrease the production of IL-12p40 from macrophages. In synovial tissues form OA, there are some of known receptors for SPM. In the synovial fluid from rheumatoid arthritis (RA), it could be identified and quantified a certain kind of SPMs such as maresin 1, lipoxin A4 and resolvin D5. In murine models of arthritis, some of SPMs are found to have some functions to reduce tissue damage. Correctively, SPMs might have some potential to a novel therapeutic target for arthritis or any other rheumatic diseases.
Collapse
Affiliation(s)
- Kosaku Murakami
- Department of Rheumatology and Clinical Immunology, Kyoto University Hospital
| |
Collapse
|
38
|
He HQ, Ye RD. The Formyl Peptide Receptors: Diversity of Ligands and Mechanism for Recognition. Molecules 2017; 22:E455. [PMID: 28335409 PMCID: PMC6155412 DOI: 10.3390/molecules22030455] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 03/09/2017] [Indexed: 12/21/2022] Open
Abstract
The formyl peptide receptors (FPRs) are G protein-coupled receptors that transduce chemotactic signals in phagocytes and mediate host-defense as well as inflammatory responses including cell adhesion, directed migration, granule release and superoxide production. In recent years, the cellular distribution and biological functions of FPRs have expanded to include additional roles in homeostasis of organ functions and modulation of inflammation. In a prototype, FPRs recognize peptides containing N-formylated methionine such as those produced in bacteria and mitochondria, thereby serving as pattern recognition receptors. The repertoire of FPR ligands, however, has expanded rapidly to include not only N-formyl peptides from microbes but also non-formyl peptides of microbial and host origins, synthetic small molecules and an eicosanoid. How these chemically diverse ligands are recognized by the three human FPRs (FPR1, FPR2 and FPR3) and their murine equivalents is largely unclear. In the absence of crystal structures for the FPRs, site-directed mutagenesis, computer-aided ligand docking and structural simulation have led to the identification of amino acids within FPR1 and FPR2 that interact with several formyl peptides. This review article summarizes the progress made in the understanding of FPR ligand diversity as well as ligand recognition mechanisms used by these receptors.
Collapse
Affiliation(s)
- Hui-Qiong He
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
- Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China.
| | - Richard D Ye
- Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China.
| |
Collapse
|
39
|
Hesselink JMK, Chiosi F, Costagliola C. Resolvins and aliamides: lipid autacoids in ophthalmology - what promise do they hold? DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:3133-3141. [PMID: 27729772 PMCID: PMC5045908 DOI: 10.2147/dddt.s112389] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Resolvins are a novel class of lipid-derived endogenous molecules (autacoids) with potent immunomodulating properties, which regulate the resolution phase of an active immune response. These modulating factors are locally produced, influencing the function of cells and/or tissues, which are produced on demand and subsequently metabolized in the same cells and/or tissues. This review is focused on certain lipid autacoids with putative relevance for ophthalmology in general and for dry eye more specifically. We also briefly investigate the concept of aliamides and the role of palmitoylethanolamide in ophthalmology, and analyze in more detail the putative role and the preclinical and clinical development of resolvins as emerging treatments for dry eye and related disorders, with a focus on one of the lead resolvin derivatives – RX-10045.
Collapse
Affiliation(s)
| | - Flavia Chiosi
- Eye Clinic, Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - Ciro Costagliola
- Eye Clinic, Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| |
Collapse
|
40
|
Kang JW, Lee SM. Resolvin D1 protects the liver from ischemia/reperfusion injury by enhancing M2 macrophage polarization and efferocytosis. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1025-1035. [PMID: 27317426 DOI: 10.1016/j.bbalip.2016.06.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 05/18/2016] [Accepted: 06/10/2016] [Indexed: 02/08/2023]
Abstract
Resolution of inflammation is an active process involving a novel category of lipid factors known as specialized pro-resolving lipid mediators, which includes Resolvin D1 (RvD1). While accumulating evidence suggests that RvD1 counteracts proinflammatory signaling and promotes resolution, the specific cellular targets and mechanisms of action of RvD1 remain largely unknown. In the present study, we investigated the role and molecular mechanisms of RvD1 in ischemia/reperfusion (IR)-induced sterile liver inflammation. Male C57BL/6 mice underwent 70% hepatic ischemia for 60min, followed by reperfusion. RvD1 (5, 10, and 15μg/kg, i.p.) was administered to the mice 1h before ischemia and then immediately prior to reperfusion. RvD1 attenuated IR-induced hepatocellular damage and the proinflammatory response. In purified Kupffer cells (KCs) from mice exposed to IR, the levels of M1 marker genes (Nos2a and Cd40) increased, while those of M2 marker genes (Arg1, Cd206, and Mst1r) decreased, demonstrating a proinflammatory shift. RvD1 markedly attenuated these changes. Depletion of KCs by liposome clodronate abrogated the effects of RvD1 on proinflammatory mediators and macrophage polarization. In addition, RvD1 attenuated increases in myeloperoxidase activity and Cxcl1 and Cxcl2 mRNA expression. RvD1 markedly augmented the efferocytic activity of KCs, as indicated by increases in F4/80(+)Gr-1(+) cells in the liver. However, antagonist pretreatment or gene silencing of the RvD1 receptor, ALX/FPR2, abrogated the anti-inflammatory and pro-resolving actions of RvD1. These data indicate that RvD1 ameliorates IR-induced liver injury, and this protection is associated with enhancement of M2 polarization and efferocytosis via ALX/FPR2 activation.
Collapse
Affiliation(s)
- Jung-Woo Kang
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, Republic of Korea
| | - Sun-Mee Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, Republic of Korea.
| |
Collapse
|
41
|
Nam K, Jones JP, Lei P, Andreadis ST, Baker OJ. Laminin-111 Peptides Conjugated to Fibrin Hydrogels Promote Formation of Lumen Containing Parotid Gland Cell Clusters. Biomacromolecules 2016; 17:2293-301. [PMID: 27151393 PMCID: PMC5029268 DOI: 10.1021/acs.biomac.6b00588] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Previous studies showed that mouse submandibular gland cells form three-dimensional structures when grown on Laminin-111 gels. The use of Laminin-111 for tissue bioengineering is complicated due to its lack of purity. By contrast, the use of synthetic peptides derived from Laminin-111 is beneficial due to their high purity and easy manipulation. Two Laminin-111 peptides have been identified for salivary cells: the A99 peptide corresponding to the α1 chain from Laminin-111 and the YIGSR peptide corresponding to the β1 chain from Laminin-111, which are important for cell adhesion and migration. We created three-dimensional salivary cell clusters using a modified fibrin hydrogel matrix containing immobilized Laminin-111 peptides. Results indicate that the YIGSR peptide improved morphology and lumen formation in rat parotid Par-C10 cells as compared to cells grown on unmodified fibrin hydrogel. Moreover, a combination of both peptides not only allowed the formation of functional three-dimensional salivary cell clusters but also increased attachment and number of cell clusters. In summary, we demonstrated that fibrin hydrogel decorated with Laminin-111 peptides supports attachment and differentiation of salivary gland cell clusters with mature lumens.
Collapse
Affiliation(s)
- Kihoon Nam
- School of Dentistry, The University of Utah, Salt Lake City, Utah 84108, United States
| | - Joshua P. Jones
- Department of Bioengineering, The University of Utah, Salt Lake City, Utah 84108, United States
| | - Pedro Lei
- Department of Chemical and Biological Engineering, School of Engineering and Applied Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Stelios T. Andreadis
- Department of Chemical and Biological Engineering, School of Engineering and Applied Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
- Center of Bioinformatics and Life Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Olga J. Baker
- School of Dentistry, The University of Utah, Salt Lake City, Utah 84108, United States
| |
Collapse
|
42
|
Abstract
This study was designed to determine if Resolvin D1 (RvD1), a pro-resolution metabolite of the omega-3 polyunsaturated fatty acid docosahexaenoic acid, could decrease myocardial infarct size with delivered at the onset of ischemia. Male Sprague Dawley rats underwent 40 minutes of myocardial ischemia followed by reperfusion. These animals received 1 intraventricular injection of RvD1 (0.01, 0.1, or 0.3 μg RvD1) or vehicle (saline) before coronary occlusion. Infarct size and neutrophil accumulation were evaluated 24 hours after the onset of reperfusion. Caspase-3, caspase-8, protein kinase B (Akt) activities were evaluated 30 minutes after the reperfusion. Rats receiving 0.1 or 0.3 μg RvD1 showed a significant decrease of infarct size and caspase-3 and caspase-8 activities compared with the vehicle controls. Neutrophil accumulations were reduced in rats administered RvD1 compared with vehicle, independently of dose level. Akt activation was increased only in animals receiving 0.1 or 0.3 μg, whereas no change was observed in the 0.01 μg group. When they were treated with LY-294002, a phosphoinositide 3-kinase (PI3K)/Akt inhibitor, cardioprotection by RvD1 was abrogated. RvD1 treatment at the onset of ischemia decreases infarct size by a mechanism involving the PI3K/Akt pathway.
Collapse
|
43
|
Wang CS, Wee Y, Yang CH, Melvin JE, Baker OJ. ALX/FPR2 Modulates Anti-Inflammatory Responses in Mouse Submandibular Gland. Sci Rep 2016; 6:24244. [PMID: 27064029 PMCID: PMC4827125 DOI: 10.1038/srep24244] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/23/2016] [Indexed: 12/14/2022] Open
Abstract
Activation of the G-protein coupled formyl peptide receptor 2 (ALX/FPR2) by the lipid mediators lipoxin A4 and resolvin D1 (RvD1) promotes resolution of inflammation. Our previous in vitro studies indicate that RvD1 activation of ALX/FPR2 resolves cytokine-mediated inflammatory responses in mammalian cells. However, the impact of ALX/FPR2 activation on salivary gland function in vivo is unknown. The objective of this study was to determine whether submandibular glands (SMG) from ALX/FPR2(-/-) mice display enhanced inflammatory responses to lipopolysaccharides (LPS) stimulation. For these studies, C57BL/6 and ALX/FPR2(-/-) mice at age 8-12-week-old were treated with LPS by i.p for 24 h. Salivary gland structure and function were analyzed by histopathological assessment, saliva flow rate, quantitative PCR, Western blot analyses and immunofluorescence. Our results showed the following events in the ALX/FPR2(-/-) mice treated with LPS: a) upregulated inflammatory cytokines and decreased M3R (Muscarinic Acetylcholine receptor M3) and AQP5 (Aquaporin 5) protein expression, b) decreased saliva secretion, c) increased apoptosis, d) alteration of tight junction and neuronal damage. Overall, our data suggest that the loss of ALX/FPR2 results in unresolved acute inflammation and SMG dysfunction (xerostomia) in response to LPS that is similar to human salivary gland dysfunction induced by bacterial infection.
Collapse
Affiliation(s)
- Ching-Shuen Wang
- School of Dentistry, University of Utah, Salt Lake City, UT 84108, USA
| | - Yinshen Wee
- The Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, 84102, USA
| | - Chieh-Hsiang Yang
- Department of Bioengineering, University of Utah, Salt Lake City, Utah, 84112, USA
| | - James E. Melvin
- National Institute of Dental & Craniofacial Research, NIH, Bethesda, MD 20892, USA
| | - Olga J. Baker
- School of Dentistry, University of Utah, Salt Lake City, UT 84108, USA
| |
Collapse
|
44
|
Easley JT, Nelson JW, Mellas RE, Sommakia S, Wu C, Trump B, Baker OJ. Aspirin-Triggered Resolvin D1 Versus Dexamethasone in the Treatment of Sjögren's Syndrome-Like NOD/ShiLtJ Mice - A Pilot Study. ACTA ACUST UNITED AC 2015; 1. [PMID: 27110599 DOI: 10.23937/2469-5726/1510027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Resolvin D1 (RvD1) and its aspirin-triggered epimeric form (AT-RvD1) are endogenous lipid mediators (derived from docosahexaenoic acid, DHA) that control the duration and magnitude of inflammation in models of complex diseases. Our previous studies demonstrated that RvD1-mediated signaling pathways are expressed and active in salivary glands from rodents and humans. Furthermore, treatment of salivary cells with RvD1 blocked TNF-α-mediated inflammatory signals and improved epithelial integrity. The purpose of this pilot study was to determine the feasibility of treatment with AT-RvD1 versus dexamethasone (DEX) on inflammation (i.e., lymphocytic infiltration, cytokine expression and apoptosis) observed in submandibular glands (SMG) from the NOD/ShiLtJ Sjögren's syndrome (SS) mouse model before experimenting with a larger population. NOD/ShiLtJ mice were treated intravenously with NaCl (0.9%, negative control), AT-RvD1 (0.01-0.1 mg/kg) or DEX (4.125-8.25 mg/kg) twice a week for 14 weeks beginning at 4 weeks of age. At 18 weeks of age, SMG were collected for pathological analysis and detection of SS-associated inflammatory genes. The AT-RvD1 treatment alone did not affect lymphocytic infiltration seen in NOD/ShiLtJ mice while DEX partially prevented lymphocytic infiltration. Interestingly, both AT-RvD1 and DEX caused downregulation of SS-associated inflammatory genes and reduction of apoptosis. Results from this pilot study suggest that a systemic treatment with AT-RvD1 and DEX alone attenuated inflammatory responses observed in the NOD/ShiLtJ mice; therefore, they may be considered as potential therapeutic tools in treating SS patients when used alone or in combination.
Collapse
Affiliation(s)
- Justin T Easley
- School of Dentistry, University of Utah, Salt Lake City, UT 84108-1201, USA
| | - Joel W Nelson
- School of Dentistry, University of Utah, Salt Lake City, UT 84108-1201, USA
| | - Rachel E Mellas
- School of Dentistry, University of Utah, Salt Lake City, UT 84108-1201, USA
| | - Salah Sommakia
- School of Dentistry, University of Utah, Salt Lake City, UT 84108-1201, USA
| | - Chunhua Wu
- School of Dentistry, University of Utah, Salt Lake City, UT 84108-1201, USA
| | - Bryan Trump
- School of Dentistry, University of Utah, Salt Lake City, UT 84108-1201, USA
| | - Olga J Baker
- School of Dentistry, University of Utah, Salt Lake City, UT 84108-1201, USA
| |
Collapse
|
45
|
Zhou J, Jin JO, Patel ES, Yu Q. Interleukin-6 inhibits apoptosis of exocrine gland tissues under inflammatory conditions. Cytokine 2015; 76:244-252. [PMID: 26255211 PMCID: PMC4605873 DOI: 10.1016/j.cyto.2015.07.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 07/27/2015] [Accepted: 07/29/2015] [Indexed: 01/12/2023]
Abstract
Interleukin (IL)-6 is a multi-functional cytokine that can either promote or suppress tissue inflammation depending on the specific disease context. IL-6 is elevated in the exocrine glands and serum of patients with Sjögren's syndrome (SS), but the specific role of IL-6 in the pathogenesis of this disease has not been defined. In this study, we showed that IL-6 expression levels were increased with age in C56BL/6.NOD-Aec1Aec2 mice, a primary SS model, and higher than the control C57BL/6 mice. To assess the role of IL-6 during the immunological phase of SS development, a neutralizing anti-IL-6 antibody was administered into 16 week-old female C56BL/6.NOD-Aec1Aec2 mice, 3 times weekly for a consecutive 8 weeks. Neutralization of endogenous IL-6 throughout the immunological phase of SS development led to increased apoptosis, caspase-3 activation, leukocytic infiltration, and IFN-γ- and TNF-α production in the salivary gland. To further determine the effect of IL-6 on the apoptosis of exocrine gland cells, recombinant human IL-6 or the neutralizing anti-IL-6 antibody was injected into female C57BL/6 mice that received concurrent injection of anti-CD3 antibody to induce the apoptosis of exocrine gland tissues. Neutralization of IL-6 enhanced, whereas administration of IL-6 inhibited apoptosis and caspase-3 activation in salivary and lacrimal glands in this model. The apoptosis-suppressing effect of IL-6 was associated with up-regulation of Bcl-xL and Mcl-1 in both glands. Moreover, IL-6 treatment induced activation of STAT3 and up-regulated Bcl-xL and Mcl-1 gene expression in a human salivary gland epithelial cell line. In conclusion, IL-6 inhibits the apoptosis of exocrine gland tissues and exerts a tissue-protective effect under inflammatory conditions including SS. These findings suggest the possibility of using this property of IL-6 to preserve exocrine gland tissue integrity and function under autoimmune and inflammatory conditions.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA; Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA.
| | - Jun-O Jin
- Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA.
| | - Ekta S Patel
- Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA; Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA.
| | - Qing Yu
- Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA; Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
46
|
Lipid-Based Therapy for Ocular Surface Inflammation and Disease. Trends Mol Med 2015; 21:736-748. [PMID: 26596867 DOI: 10.1016/j.molmed.2015.10.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/06/2015] [Accepted: 10/07/2015] [Indexed: 12/27/2022]
Abstract
Ocular surface diseases such as dry eye, allergic keratoconjunctivitis, and infection are very prevalent conditions and involve ocular surface stress and inflammation. Recently, various lipid-based therapies have been advocated for the modulation of ocular surface inflammation. Here we review the latest developments and challenges of these strategies. These include administration of essential fatty acids, cyclooxygenase (COX) inhibitors and resolvin analogs. Lipids form part of the tear film and are crucial for tear film stability; loss of tear film stability can aggravate ocular surface inflammation. Strategies to replenish tear film lipids - namely, eyelid warming and eye drops containing natural or synthetic lipids - are evaluated. Recent advances in the use of lipids as ocular drug delivery vehicles, antioxidants, and diagnostic markers are discussed.
Collapse
|
47
|
Neuroinflammatory processes in cognitive disorders: Is there a role for flavonoids and n-3 polyunsaturated fatty acids in counteracting their detrimental effects? Neurochem Int 2015; 89:63-74. [DOI: 10.1016/j.neuint.2015.08.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 08/04/2015] [Accepted: 08/05/2015] [Indexed: 12/25/2022]
|
48
|
Maekawa T, Hosur K, Abe T, Kantarci A, Ziogas A, Wang B, Van Dyke TE, Chavakis T, Hajishengallis G. Antagonistic effects of IL-17 and D-resolvins on endothelial Del-1 expression through a GSK-3β-C/EBPβ pathway. Nat Commun 2015; 6:8272. [PMID: 26374165 PMCID: PMC4573473 DOI: 10.1038/ncomms9272] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 08/04/2015] [Indexed: 01/17/2023] Open
Abstract
Del-1 is an endothelial cell-secreted anti-inflammatory protein. In humans and mice, Del-1 expression is inversely related to that of IL-17, which inhibits Del-1 through hitherto unidentified mechanism(s). Here we show that IL-17 downregulates human endothelial cell expression of Del-1 by targeting a critical transcription factor, C/EBPβ. Specifically, IL-17 causes GSK-3β-dependent phosphorylation of C/EBPβ, which is associated with diminished C/EBPβ binding to the Del-1 promoter and suppressed Del-1 expression. This inhibitory action of IL-17 can be reversed at the GSK-3β level by PI3K/Akt signalling induced by D-resolvins. The biological relevance of this regulatory network is confirmed in a mouse model of inflammatory periodontitis. Intriguingly, resolvin-D1 (RvD1) confers protection against IL-17-driven periodontal bone loss in a Del-1-dependent manner, indicating an RvD1-Del-1 axis against IL-17-induced pathological inflammation. The dissection of signalling pathways regulating Del-1 expression provides potential targets to treat inflammatory diseases associated with diminished Del-1 expression, such as periodontitis and multiple sclerosis.
Collapse
Affiliation(s)
- Tomoki Maekawa
- Department of Microbiology, Penn Dental Medicine, University of Pennsylvania, 240 S. 40th Street, Philadelphia, Pennsylvania 19104, USA.,Niigata University, Graduate School of Medical and Dental Sciences, Research Center for Advanced Oral Science, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Kavita Hosur
- Department of Microbiology, Penn Dental Medicine, University of Pennsylvania, 240 S. 40th Street, Philadelphia, Pennsylvania 19104, USA
| | - Toshiharu Abe
- Department of Microbiology, Penn Dental Medicine, University of Pennsylvania, 240 S. 40th Street, Philadelphia, Pennsylvania 19104, USA
| | - Alpdogan Kantarci
- Department of Applied Oral Sciences, Center for Periodontology, The Forsyth Institute, 245 First Street, Cambridge, Massachusetts 02142, USA
| | - Athanasios Ziogas
- Department of Clinical Pathobiochemistry and Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Fetscherstraße 74, Dresden 01307, Germany
| | - Baomei Wang
- Department of Microbiology, Penn Dental Medicine, University of Pennsylvania, 240 S. 40th Street, Philadelphia, Pennsylvania 19104, USA
| | - Thomas E Van Dyke
- Department of Applied Oral Sciences, Center for Periodontology, The Forsyth Institute, 245 First Street, Cambridge, Massachusetts 02142, USA
| | - Triantafyllos Chavakis
- Department of Clinical Pathobiochemistry and Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Fetscherstraße 74, Dresden 01307, Germany
| | - George Hajishengallis
- Department of Microbiology, Penn Dental Medicine, University of Pennsylvania, 240 S. 40th Street, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
49
|
Zhang T, Shu HH, Chang L, Ye F, Xu KQ, Huang WQ. Resolvin D1 protects against hepatic ischemia/reperfusion injury in rats. Int Immunopharmacol 2015; 28:322-7. [DOI: 10.1016/j.intimp.2015.06.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 06/14/2015] [Accepted: 06/15/2015] [Indexed: 12/19/2022]
|
50
|
Biological Roles of Resolvins and Related Substances in the Resolution of Pain. BIOMED RESEARCH INTERNATIONAL 2015; 2015:830930. [PMID: 26339646 PMCID: PMC4538417 DOI: 10.1155/2015/830930] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 12/01/2014] [Indexed: 12/14/2022]
Abstract
Endogenous pain-inhibitory substances have rarely been found. A group of powerful pain suppressor molecules that are endogenously generated are now emerging: resolvins and related compounds including neuroprotectins and maresins. These molecules began to be unveiled in a series of inflammation studies more than a decade ago, rapidly shifting the paradigm that explains the mechanism for the inflammatory phase switch. The resolution phase was considered a passive process as proinflammatory mediators disappeared; it is now understood to be actively drawn by the actions of resolvins. Surprisingly, these substances potently affect the pain state. Although this research area is not fully matured, consistently beneficial outcomes have been observed in a various in vivo and in vitro pain models. Furthermore, multiple hypotheses on the neuronal and molecular mechanisms for alleviating pain are being tested, deriving inspiration from existing inflammation and pain studies. This paper serves as a brief summary of the proresolving roles of resolvins and related lipid mediators in inflammation and also as a review for accumulated information of their painkilling actions. This also includes potential receptor-mediated mechanisms and discusses future scientific perspectives. Further diverse approaches will help to construct a hidden axis of natural protection principles and establish proofs of concept for pain relief.
Collapse
|