1
|
Neal CL, Kronert WA, Camillo JRT, Suggs JA, Huxford T, Bernstein SI. Aging-affiliated post-translational modifications of skeletal muscle myosin affect biochemical properties, myofibril structure, muscle function, and proteostasis. Aging Cell 2024; 23:e14134. [PMID: 38506610 PMCID: PMC11296117 DOI: 10.1111/acel.14134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/18/2023] [Accepted: 02/12/2024] [Indexed: 03/21/2024] Open
Abstract
The molecular motor myosin is post-translationally modified in its globular head, its S2 hinge, and its thick filament domain during human skeletal muscle aging. To determine the importance of such modifications, we performed an integrative analysis of transgenic Drosophila melanogaster expressing myosin containing post-translational modification mimic mutations. We determined effects on muscle function, myofibril structure, and myosin biochemistry. Modifications in the homozygous state decreased jump muscle function by a third at 3 weeks of age and reduced indirect flight muscle function to negligible levels in young flies, with severe effects on flight muscle myofibril assembly and/or maintenance. Expression of mimic mutations in the heterozygous state or in a wild-type background yielded significant, but less severe, age-dependent effects upon flight muscle structure and function. Modification of the residue in the globular head disabled ATPase activity and in vitro actin filament motility, whereas the S2 hinge mutation reduced actin-activated ATPase activity by 30%. The rod modification diminished filament formation in vitro. The latter mutation also reduced proteostasis, as demonstrated by enhanced accumulation of polyubiquitinated proteins. Overall, we find that mutation of amino acids at sites that are chemically modified during human skeletal muscle aging can disrupt myosin ATPase, myosin filament formation, and/or proteostasis, providing a mechanistic basis for the observed muscle defects. We conclude that age-specific post-translational modifications present in human skeletal muscle are likely to act in a dominant fashion to affect muscle structure and function and may therefore be implicated in degeneration and dysfunction associated with sarcopenia.
Collapse
Affiliation(s)
- Clara L. Neal
- Department of Biology, Molecular Biology Institute, Heart InstituteSan Diego State UniversitySan DiegoCaliforniaUSA
| | - William A. Kronert
- Department of Biology, Molecular Biology Institute, Heart InstituteSan Diego State UniversitySan DiegoCaliforniaUSA
| | - Jared Rafael T. Camillo
- Department of Biology, Molecular Biology Institute, Heart InstituteSan Diego State UniversitySan DiegoCaliforniaUSA
| | - Jennifer A. Suggs
- Department of Biology, Molecular Biology Institute, Heart InstituteSan Diego State UniversitySan DiegoCaliforniaUSA
| | - Tom Huxford
- Department of Chemistry and BiochemistrySan Diego State UniversitySan DiegoCaliforniaUSA
| | - Sanford I. Bernstein
- Department of Biology, Molecular Biology Institute, Heart InstituteSan Diego State UniversitySan DiegoCaliforniaUSA
| |
Collapse
|
2
|
Galli RA, Borsboom TC, Gineste C, Brocca L, Rossi M, Hwee DT, Malik FI, Bottinelli R, Gondin J, Pellegrino MA, de Winter JM, Ottenheijm CA. Tirasemtiv enhances submaximal muscle tension in an Acta1:p.Asp286Gly mouse model of nemaline myopathy. J Gen Physiol 2024; 156:e202313471. [PMID: 38376469 PMCID: PMC10876480 DOI: 10.1085/jgp.202313471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/01/2023] [Accepted: 01/30/2024] [Indexed: 02/21/2024] Open
Abstract
Nemaline myopathies are the most common form of congenital myopathies. Variants in ACTA1 (NEM3) comprise 15-25% of all nemaline myopathy cases. Patients harboring variants in ACTA1 present with a heterogeneous disease course characterized by stable or progressive muscle weakness and, in severe cases, respiratory failure and death. To date, no specific treatments are available. Since NEM3 is an actin-based thin filament disease, we tested the ability of tirasemtiv, a fast skeletal muscle troponin activator, to improve skeletal muscle function in a mouse model of NEM3, harboring the patient-based p.Asp286Gly variant in Acta1. Acute and long-term tirasemtiv treatment significantly increased muscle contractile capacity at submaximal stimulation frequencies in both fast-twitch extensor digitorum longus and gastrocnemius muscle, and intermediate-twitch diaphragm muscle in vitro and in vivo. Additionally, long-term tirasemtiv treatment in NEM3 mice resulted in a decreased respiratory rate with preserved minute volume, suggesting more efficient respiration. Altogether, our data support the therapeutic potential of fast skeletal muscle troponin activators in alleviating skeletal muscle weakness in a mouse model of NEM3 caused by the Acta1:p.Asp286Gly variant.
Collapse
Affiliation(s)
- Ricardo A. Galli
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Musculoskeletal Health and Tissue Function and Regeneration, Amsterdam, The Netherlands
| | - Tamara C. Borsboom
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, Amsterdam, The Netherlands
| | | | - Lorenza Brocca
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Maira Rossi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Darren T. Hwee
- Research and Early Development, Cytokinetics Inc., South San Francisco, CA, USA
| | - Fady I. Malik
- Research and Early Development, Cytokinetics Inc., South San Francisco, CA, USA
| | - Roberto Bottinelli
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- IRCCS Mondino Foundation, Pavia, Italy
| | - Julien Gondin
- Aix-Marseille University, CNRS, CRMBM, Marseille, France
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U1315, Université Lyon, Lyon, France
| | | | - Josine M. de Winter
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Musculoskeletal Health and Tissue Function and Regeneration, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, The Netherlands
| | - Coen A.C. Ottenheijm
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Atherosclerosis, Amsterdam, The Netherlands
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
3
|
Kano R, Tabuchi A, Tanaka Y, Shirakawa H, Hoshino D, Poole DC, Kano Y. In vivo cytosolic H 2O 2 changes and Ca 2+ homeostasis in mouse skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2024; 326:R43-R52. [PMID: 37899753 DOI: 10.1152/ajpregu.00152.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/21/2023] [Accepted: 10/20/2023] [Indexed: 10/31/2023]
Abstract
Hydrogen peroxide (H2O2) and calcium ions (Ca2+) are functional regulators of skeletal muscle contraction and metabolism. Although H2O2 is one of the activators of the type-1 ryanodine receptor (RyR1) in the Ca2+ release channel, the interdependence between H2O2 and Ca2+ dynamics remains unclear. This study tested the following hypotheses using an in vivo model of mouse tibialis anterior (TA) skeletal muscle. 1) Under resting conditions, elevated cytosolic H2O2 concentration ([H2O2]cyto) leads to a concentration-dependent increase in cytosolic Ca2+ concentration ([Ca2+]cyto) through its effect on RyR1; and 2) in hypoxia (cardiac arrest) and muscle contractions (electrical stimulation), increased [H2O2]cyto induces Ca2+ accumulation. Cytosolic H2O2 (HyPer7) and Ca2+ (Fura-2) dynamics were resolved by TA bioimaging in young C57BL/6J male mice under four conditions: 1) elevated exogenous H2O2; 2) cardiac arrest; 3) twitch (1 Hz, 60 s) contractions; and 4) tetanic (30 s) contractions. Exogenous H2O2 (0.1-100 mM) induced a concentration-dependent increase in [H2O2]cyto (+55% at 0.1 mM; +280% at 100 mM) and an increase in [Ca2+]cyto (+3% at 1.0 mM; +8% at 10 mM). This increase in [Ca2+]cyto was inhibited by pharmacological inhibition of RyR1 by dantrolene. Cardiac arrest-induced hypoxia increased [H2O2]cyto (+33%) and [Ca2+]cyto (+20%) 50 min postcardiac arrest. Compared with the exogenous 1.0 mM H2O2 condition, [H2O2]cyto after tetanic muscle contractions rose less than one-tenth as much, whereas [Ca2+]cyto was 4.7-fold higher. In conclusion, substantial increases in [H2O2]cyto levels evoke only modest Ca2+ accumulation via their effect on the sarcoplasmic reticulum RyR1. On the other hand, contrary to hypoxia secondary to cardiac arrest, increases in [H2O2]cyto from muscle contractions are small, indicating that H2O2 generation is unlikely to be a primary factor driving the significant Ca2+ accumulation after, especially tetanic, muscle contractions.NEW & NOTEWORTHY We developed an in vivo mouse myocyte H2O2 imaging model during exogenous H2O2 loading, ischemic hypoxia induced by cardiac arrest, and muscle contractions. In this study, the interrelationship between cytosolic H2O2 levels and Ca2+ homeostasis during muscle contraction and hypoxic conditions was revealed. These results contribute to the elucidation of the mechanisms of muscle fatigue and exercise adaptation.
Collapse
Affiliation(s)
- Ryotaro Kano
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Japan
- Research Fellowship for Young Scientists, Japan Society for the Promotion of Science, Tokyo, Japan
| | - Ayaka Tabuchi
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Japan
| | - Yoshinori Tanaka
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Japan
| | - Hideki Shirakawa
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Japan
| | - Daisuke Hoshino
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Japan
- Center for Neuroscience and Biomedical Engineering, University of Electro-Communications, Chofu, Japan
| | - David C Poole
- Departments of Anatomy and Physiology and Kinesiology, Kansas State University, Manhattan, Kansas, United States
| | - Yutaka Kano
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Japan
- Center for Neuroscience and Biomedical Engineering, University of Electro-Communications, Chofu, Japan
| |
Collapse
|
4
|
Elkrief D, Matusovsky O, Cheng YS, Rassier DE. From amino-acid to disease: the effects of oxidation on actin-myosin interactions in muscle. J Muscle Res Cell Motil 2023; 44:225-254. [PMID: 37805961 DOI: 10.1007/s10974-023-09658-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/15/2023] [Indexed: 10/10/2023]
Abstract
Actin-myosin interactions form the basis of the force-producing contraction cycle within the sarcomere, serving as the primary mechanism for muscle contraction. Post-translational modifications, such as oxidation, have a considerable impact on the mechanics of these interactions. Considering their widespread occurrence, the explicit contributions of these modifications to muscle function remain an active field of research. In this review, we aim to provide a comprehensive overview of the basic mechanics of the actin-myosin complex and elucidate the extent to which oxidation influences the contractile cycle and various mechanical characteristics of this complex at the single-molecule, myofibrillar and whole-muscle levels. We place particular focus on amino acids shown to be vulnerable to oxidation in actin, myosin, and some of their binding partners. Additionally, we highlight the differences between in vitro environments, where oxidation is controlled and limited to actin and myosin and myofibrillar or whole muscle environments, to foster a better understanding of oxidative modification in muscle. Thus, this review seeks to encompass a broad range of studies, aiming to lay out the multi layered effects of oxidation in in vitro and in vivo environments, with brief mention of clinical muscular disorders associated with oxidative stress.
Collapse
Affiliation(s)
- Daren Elkrief
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Oleg Matusovsky
- Department of Kinesiology and Physical Education, McGill University, Montreal, QC, Canada
| | - Yu-Shu Cheng
- Department of Kinesiology and Physical Education, McGill University, Montreal, QC, Canada
| | - Dilson E Rassier
- Department of Physiology, McGill University, Montreal, QC, Canada.
- Department of Kinesiology and Physical Education, McGill University, Montreal, QC, Canada.
- Simon Fraser University, Burnaby, BC, Canada.
| |
Collapse
|
5
|
Murphy K, Zhang A, Bittel AJ, Chen YW. Molecular and Phenotypic Changes in FLExDUX4 Mice. J Pers Med 2023; 13:1040. [PMID: 37511653 PMCID: PMC10381554 DOI: 10.3390/jpm13071040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 07/30/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is caused by the aberrant expression of the double homeobox 4 (DUX4) gene. The FLExDUX4 mouse model carries an inverted human DUX4 transgene which has leaky DUX4 transgene expression at a very low level. No overt muscle pathology was reported before 16 weeks. The purpose of this study is to track and characterize the FLExDUX4 phenotypes for a longer period, up to one year old. In addition, transcriptomic changes in the muscles of 2-month-old mice were investigated using RNA-seq. The results showed that male FLExDUX4 mice developed more severe phenotypes and at a younger age in comparison to the female mice. These include lower body and muscle weight, and muscle weakness measured by grip strength measurements. Muscle pathological changes were observed at older ages, including fibrosis, decreased size of type IIa and IIx myofibers, and the development of aggregates containing TDP-43 in type IIb myofibers. Muscle transcriptomic data identified early molecular changes in biological pathways regulating circadian rhythm and adipogenesis. The study suggests a slow progressive change in molecular and muscle phenotypes in response to the low level of DUX4 expression in the FLExDUX4 mice.
Collapse
Affiliation(s)
- Kelly Murphy
- Institute for Biomedical Sciences, The George Washington University, Washington, DC 20037, USA
| | - Aiping Zhang
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC 20010, USA
| | - Adam J Bittel
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC 20010, USA
| | - Yi-Wen Chen
- Institute for Biomedical Sciences, The George Washington University, Washington, DC 20037, USA
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC 20010, USA
- Department of Genomics and Precision Medicine, School of Medicine and Health Science, The George Washington University, Washington, DC 20037, USA
| |
Collapse
|
6
|
Supruniuk E, Górski J, Chabowski A. Endogenous and Exogenous Antioxidants in Skeletal Muscle Fatigue Development during Exercise. Antioxidants (Basel) 2023; 12:antiox12020501. [PMID: 36830059 PMCID: PMC9952836 DOI: 10.3390/antiox12020501] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
Muscle fatigue is defined as a decrease in maximal force or power generated in response to contractile activity, and it is a risk factor for the development of musculoskeletal injuries. One of the many stressors imposed on skeletal muscle through exercise is the increased production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), which intensifies as a function of exercise intensity and duration. Exposure to ROS/RNS can affect Na+/K+-ATPase activity, intramyofibrillar calcium turnover and sensitivity, and actin-myosin kinetics to reduce muscle force production. On the other hand, low ROS/RNS concentrations can likely upregulate an array of cellular adaptative responses related to mitochondrial biogenesis, glucose transport and muscle hypertrophy. Consequently, growing evidence suggests that exogenous antioxidant supplementation might hamper exercise-engendering upregulation in the signaling pathways of mitogen-activated protein kinases (MAPKs), peroxisome-proliferator activated co-activator 1α (PGC-1α), or mammalian target of rapamycin (mTOR). Ultimately, both high (exercise-induced) and low (antioxidant intervention) ROS concentrations can trigger beneficial responses as long as they do not override the threshold range for redox balance. The mechanisms underlying the two faces of ROS/RNS in exercise, as well as the role of antioxidants in muscle fatigue, are presented in detail in this review.
Collapse
Affiliation(s)
- Elżbieta Supruniuk
- Department of Physiology, Medical University of Białystok, 15-222 Białystok, Poland
- Correspondence: ; Tel.: +48-(85)-748-55-85
| | - Jan Górski
- Department of Medical Sciences, Academy of Applied Sciences, 18-400 Łomża, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Białystok, 15-222 Białystok, Poland
| |
Collapse
|
7
|
Redox Balance Differentially Affects Biomechanics in Permeabilized Single Muscle Fibres-Active and Passive Force Assessments with the Myorobot. Cells 2022; 11:cells11233715. [PMID: 36496975 PMCID: PMC9740451 DOI: 10.3390/cells11233715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
An oxidizing redox state imposes unique effects on the contractile properties of muscle. Permeabilized fibres show reduced active force generation in the presence of H2O2. However, our knowledge about the muscle fibre's elasticity or flexibility is limited due to shortcomings in assessing the passive stress-strain properties, mostly due to technically limited experimental setups. The MyoRobot is an automated biomechatronics platform that is well-capable of not only investigating calcium responsiveness of active contraction but also features precise stretch actuation to examine the passive stress-strain behaviour. Both were carried out in a consecutive recording sequence on the same fibre for 10 single fibres in total. We denote a significantly diminished maximum calcium-saturated force for fibres exposed to ≥500 µM H2O2, with no marked alteration of the pCa50 value. In contrast to active contraction (e.g., maximum isometric force activation), passive restoration stress (force per area) significantly increases for fibres exposed to an oxidizing environment, as they showed a non-linear stress-strain relationship. Our data support the idea that a highly oxidizing environment promotes non-linear fibre stiffening and confirms that our MyoRobot platform is a suitable tool for investigating redox-related changes in muscle biomechanics.
Collapse
|
8
|
Kötter S, Krüger M. Protein Quality Control at the Sarcomere: Titin Protection and Turnover and Implications for Disease Development. Front Physiol 2022; 13:914296. [PMID: 35846001 PMCID: PMC9281568 DOI: 10.3389/fphys.2022.914296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/10/2022] [Indexed: 11/26/2022] Open
Abstract
Sarcomeres are mainly composed of filament and signaling proteins and are the smallest molecular units of muscle contraction and relaxation. The sarcomere protein titin serves as a molecular spring whose stiffness mediates myofilament extensibility in skeletal and cardiac muscle. Due to the enormous size of titin and its tight integration into the sarcomere, the incorporation and degradation of the titin filament is a highly complex task. The details of the molecular processes involved in titin turnover are not fully understood, but the involvement of different intracellular degradation mechanisms has recently been described. This review summarizes the current state of research with particular emphasis on the relationship between titin and protein quality control. We highlight the involvement of the proteasome, autophagy, heat shock proteins, and proteases in the protection and degradation of titin in heart and skeletal muscle. Because the fine-tuned balance of degradation and protein expression can be disrupted under pathological conditions, the review also provides an overview of previously known perturbations in protein quality control and discusses how these affect sarcomeric proteins, and titin in particular, in various disease states.
Collapse
|
9
|
Li M, Coppo L, Jena BP, Larsson L. The optimized quantum dot mediated thermometry reveals isoform specific differences in efficiency of myosin extracted from muscle mini bundles. Arch Biochem Biophys 2022; 722:109212. [DOI: 10.1016/j.abb.2022.109212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/13/2022] [Accepted: 04/01/2022] [Indexed: 11/26/2022]
|
10
|
Stewart TJ, Murthy V, Dugan SP, Baker JE. Velocity of myosin-based actin sliding depends on attachment and detachment kinetics and reaches a maximum when myosin-binding sites on actin saturate. J Biol Chem 2021; 297:101178. [PMID: 34508779 PMCID: PMC8560993 DOI: 10.1016/j.jbc.2021.101178] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 11/22/2022] Open
Abstract
Molecular motors such as kinesin and myosin often work in groups to generate the directed movements and forces critical for many biological processes. Although much is known about how individual motors generate force and movement, surprisingly, little is known about the mechanisms underlying the macroscopic mechanics generated by multiple motors. For example, the observation that a saturating number, N, of myosin heads move an actin filament at a rate that is influenced by actin–myosin attachment and detachment kinetics is accounted for neither experimentally nor theoretically. To better understand the emergent mechanics of actin–myosin mechanochemistry, we use an in vitro motility assay to measure and correlate the N-dependence of actin sliding velocities, actin-activated ATPase activity, force generation against a mechanical load, and the calcium sensitivity of thin filament velocities. Our results show that both velocity and ATPase activity are strain dependent and that velocity becomes maximized with the saturation of myosin-binding sites on actin at a value that is 40% dependent on attachment kinetics and 60% dependent on detachment kinetics. These results support a chemical thermodynamic model for ensemble motor mechanochemistry and imply molecularly explicit mechanisms within this framework, challenging the assumption of independent force generation.
Collapse
Affiliation(s)
- Travis J Stewart
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Vidya Murthy
- Department of Biomedical Engineering, University of Nevada, Reno, Nevada, USA
| | - Sam P Dugan
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Josh E Baker
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA.
| |
Collapse
|
11
|
Jang YC, Rodriguez K, Lustgarten MS, Muller FL, Bhattacharya A, Pierce A, Choi JJ, Lee NH, Chaudhuri A, Richardson AG, Van Remmen H. Superoxide-mediated oxidative stress accelerates skeletal muscle atrophy by synchronous activation of proteolytic systems. GeroScience 2020; 42:1579-1591. [PMID: 32451848 PMCID: PMC7732940 DOI: 10.1007/s11357-020-00200-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/06/2020] [Indexed: 12/25/2022] Open
Abstract
The maintenance of skeletal muscle mass depends on the overall balance between the rates of protein synthesis and degradation. Thus, age-related muscle atrophy and function, commonly known as sarcopenia, may result from decreased protein synthesis, increased proteolysis, or simultaneous changes in both processes governed by complex multifactorial mechanisms. Growing evidence implicates oxidative stress and reactive oxygen species (ROS) as an essential regulator of proteolysis. Our previous studies have shown that genetic deletion of CuZn superoxide dismutase (CuZnSOD, Sod1) in mice leads to elevated oxidative stress, muscle atrophy and weakness, and an acceleration in age-related phenotypes associated with sarcopenia. The goal of this study is to determine whether oxidative stress directly influences the acceleration of proteolysis in skeletal muscle of Sod1-/- mice as a function of age. Compared to control, Sod1-/- muscle showed a significant elevation in protein carbonyls and 3-nitrotyrosine levels, suggesting high oxidative and nitrosative protein modifications were present. In addition, age-dependent muscle atrophy in Sod1-/- muscle was accompanied by an upregulation of the cysteine proteases, calpain, and caspase-3, which are known to play a key role in the initial breakdown of sarcomeres during atrophic conditions. Furthermore, an increase in oxidative stress-induced muscle atrophy was also strongly coupled with simultaneous activation of two major proteolytic systems, the ubiquitin-proteasome and lysosomal autophagy pathways. Collectively, our data suggest that chronic oxidative stress in Sod1-/- mice accelerates age-dependent muscle atrophy by enhancing coordinated activation of the proteolytic systems, thereby resulting in overall protein degradation.
Collapse
Affiliation(s)
- Young C Jang
- School of Biological Sciences and Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Karl Rodriguez
- Sam & Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Michael S Lustgarten
- Jean Mayer Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Florian L Muller
- MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Arunabh Bhattacharya
- School of Osteopathic Medicine, University of the Incarnate Word, San Antonio, TX, USA
| | | | - Jeongmoon J Choi
- School of Biological Sciences and Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Nan Hee Lee
- School of Biological Sciences and Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Arlan G Richardson
- Reynolds Oklahoma Center on Aging, Oklahoma Health Science Center, Oklahoma City, OK, USA
| | | |
Collapse
|
12
|
Steil AW, Kailing JW, Armstrong CJ, Walgenbach DG, Klein JC. The calmodulin redox sensor controls myogenesis. PLoS One 2020; 15:e0239047. [PMID: 32941492 PMCID: PMC7498019 DOI: 10.1371/journal.pone.0239047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 08/28/2020] [Indexed: 12/23/2022] Open
Abstract
Muscle aging is accompanied by blunted muscle regeneration in response to injury and disuse. Oxidative stress likely underlies this diminished response, but muscle redox sensors that act in regeneration have not yet been characterized. Calmodulin contains multiple redox sensitive methionines whose oxidation alters the regulation of numerous cellular targets. We have used the CRISPR-Cas9 system to introduce a single amino acid substitution M109Q that mimics oxidation of methionine to methionine sulfoxide in one or both alleles of the CALM1 gene, one of three genes encoding the muscle regulatory protein calmodulin, in C2C12 mouse myoblasts. When signaled to undergo myogenesis, mutated myoblasts failed to differentiate into myotubes. Although early myogenic regulatory factors were present, cells with the CALM1 M109Q mutation in one or both alleles were unable to withdraw from the cell cycle and failed to express late myogenic factors. We have shown that a single oxidative modification to a redox-sensitive muscle regulatory protein can halt myogenesis, suggesting a molecular target for mitigating the impact of oxidative stress in age-related muscle degeneration.
Collapse
Affiliation(s)
- Alex W. Steil
- Department of Biology, University of Wisconsin-La Crosse, La Crosse, WI, United States of America
| | - Jacob W. Kailing
- Department of Biology, University of Wisconsin-La Crosse, La Crosse, WI, United States of America
| | - Cade J. Armstrong
- Department of Biology, University of Wisconsin-La Crosse, La Crosse, WI, United States of America
| | - Daniel G. Walgenbach
- Department of Biology, University of Wisconsin-La Crosse, La Crosse, WI, United States of America
| | - Jennifer C. Klein
- Department of Biology, University of Wisconsin-La Crosse, La Crosse, WI, United States of America
| |
Collapse
|
13
|
Guhathakurta P, Phung LA, Prochniewicz E, Lichtenberger S, Wilson A, Thomas DD. Actin-binding compounds, previously discovered by FRET-based high-throughput screening, differentially affect skeletal and cardiac muscle. J Biol Chem 2020; 295:14100-14110. [PMID: 32788211 DOI: 10.1074/jbc.ra120.014445] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/06/2020] [Indexed: 01/21/2023] Open
Abstract
Actin's interactions with myosin and other actin-binding proteins are essential for cellular viability in numerous cell types, including muscle. In a previous high-throughput time-resolved FRET (TR-FRET) screen, we identified a class of compounds that bind to actin and affect actomyosin structure and function. For clinical utility, it is highly desirable to identify compounds that affect skeletal and cardiac muscle differently. Because actin is more highly conserved than myosin and most other muscle proteins, most such efforts have not targeted actin. Nevertheless, in the current study, we tested the specificity of the previously discovered actin-binding compounds for effects on skeletal and cardiac α-actins as well as on skeletal and cardiac myofibrils. We found that a majority of these compounds affected the transition of monomeric G-actin to filamentous F-actin, and that several of these effects were different for skeletal and cardiac actin isoforms. We also found that several of these compounds affected ATPase activity differently in skeletal and cardiac myofibrils. We conclude that these structural and biochemical assays can be used to identify actin-binding compounds that differentially affect skeletal and cardiac muscles. The results of this study set the stage for screening of large chemical libraries for discovery of novel compounds that act therapeutically and specifically on cardiac or skeletal muscle.
Collapse
Affiliation(s)
- Piyali Guhathakurta
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Lien A Phung
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ewa Prochniewicz
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sarah Lichtenberger
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Anna Wilson
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - David D Thomas
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA .,Photonic Pharma LLC, Minneapolis, Minnesota, USA
| |
Collapse
|
14
|
Bittel AJ, Sreetama SC, Bittel DC, Horn A, Novak JS, Yokota T, Zhang A, Maruyama R, Rowel Q. Lim K, Jaiswal JK, Chen YW. Membrane Repair Deficit in Facioscapulohumeral Muscular Dystrophy. Int J Mol Sci 2020; 21:E5575. [PMID: 32759720 PMCID: PMC7432481 DOI: 10.3390/ijms21155575] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022] Open
Abstract
Deficits in plasma membrane repair have been identified in dysferlinopathy and Duchenne Muscular Dystrophy, and contribute to progressive myopathy. Although Facioscapulohumeral Muscular Dystrophy (FSHD) shares clinicopathological features with these muscular dystrophies, it is unknown if FSHD is characterized by plasma membrane repair deficits. Therefore, we exposed immortalized human FSHD myoblasts, immortalized myoblasts from unaffected siblings, and myofibers from a murine model of FSHD (FLExDUX4) to focal, pulsed laser ablation of the sarcolemma. Repair kinetics and success were determined from the accumulation of intracellular FM1-43 dye post-injury. We subsequently treated FSHD myoblasts with a DUX4-targeting antisense oligonucleotide (AON) to reduce DUX4 expression, and with the antioxidant Trolox to determine the role of DUX4 expression and oxidative stress in membrane repair. Compared to unaffected myoblasts, FSHD myoblasts demonstrate poor repair and a greater percentage of cells that failed to repair, which was mitigated by AON and Trolox treatments. Similar repair deficits were identified in FLExDUX4 myofibers. This is the first study to identify plasma membrane repair deficits in myoblasts from individuals with FSHD, and in myofibers from a murine model of FSHD. Our results suggest that DUX4 expression and oxidative stress may be important targets for future membrane-repair therapies.
Collapse
Affiliation(s)
- Adam J. Bittel
- Research Center for Genetic Medicine, Children’s National Hospital, 111 Michigan Ave NW, Washington, DC 20010, USA; (A.J.B.); (S.C.S.); (D.C.B.); (A.H.); (J.S.N.); (A.Z.)
| | - Sen Chandra Sreetama
- Research Center for Genetic Medicine, Children’s National Hospital, 111 Michigan Ave NW, Washington, DC 20010, USA; (A.J.B.); (S.C.S.); (D.C.B.); (A.H.); (J.S.N.); (A.Z.)
| | - Daniel C. Bittel
- Research Center for Genetic Medicine, Children’s National Hospital, 111 Michigan Ave NW, Washington, DC 20010, USA; (A.J.B.); (S.C.S.); (D.C.B.); (A.H.); (J.S.N.); (A.Z.)
| | - Adam Horn
- Research Center for Genetic Medicine, Children’s National Hospital, 111 Michigan Ave NW, Washington, DC 20010, USA; (A.J.B.); (S.C.S.); (D.C.B.); (A.H.); (J.S.N.); (A.Z.)
| | - James S. Novak
- Research Center for Genetic Medicine, Children’s National Hospital, 111 Michigan Ave NW, Washington, DC 20010, USA; (A.J.B.); (S.C.S.); (D.C.B.); (A.H.); (J.S.N.); (A.Z.)
- Department of Genomics and Precision Medicine, The George Washington University School of Medicine and Health Science, 111 Michigan Ave NW, Washington, DC 20010, USA
| | - Toshifumi Yokota
- Department of Medical Genetics, University of Alberta, 116 St. & 85 Ave., Edmonton, AB T6G 2R3, Canada; (T.Y.); (R.M.); (K.R.Q.L.)
| | - Aiping Zhang
- Research Center for Genetic Medicine, Children’s National Hospital, 111 Michigan Ave NW, Washington, DC 20010, USA; (A.J.B.); (S.C.S.); (D.C.B.); (A.H.); (J.S.N.); (A.Z.)
| | - Rika Maruyama
- Department of Medical Genetics, University of Alberta, 116 St. & 85 Ave., Edmonton, AB T6G 2R3, Canada; (T.Y.); (R.M.); (K.R.Q.L.)
| | - Kenji Rowel Q. Lim
- Department of Medical Genetics, University of Alberta, 116 St. & 85 Ave., Edmonton, AB T6G 2R3, Canada; (T.Y.); (R.M.); (K.R.Q.L.)
| | - Jyoti K. Jaiswal
- Research Center for Genetic Medicine, Children’s National Hospital, 111 Michigan Ave NW, Washington, DC 20010, USA; (A.J.B.); (S.C.S.); (D.C.B.); (A.H.); (J.S.N.); (A.Z.)
- Department of Integrative Systems Biology, Institute for Biomedical Sciences, The George Washington University, 2121 I St. NW, Washington, DC 20052, USA
| | - Yi-Wen Chen
- Research Center for Genetic Medicine, Children’s National Hospital, 111 Michigan Ave NW, Washington, DC 20010, USA; (A.J.B.); (S.C.S.); (D.C.B.); (A.H.); (J.S.N.); (A.Z.)
- Department of Integrative Systems Biology, Institute for Biomedical Sciences, The George Washington University, 2121 I St. NW, Washington, DC 20052, USA
| |
Collapse
|
15
|
Lamboley CR, Rouffet DM, Dutka TL, McKenna MJ, Lamb GD. Effects of high-intensity intermittent exercise on the contractile properties of human type I and type II skeletal muscle fibers. J Appl Physiol (1985) 2020; 128:1207-1216. [PMID: 32213115 DOI: 10.1152/japplphysiol.00014.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In vitro studies have shown that alterations in redox state can cause a range of opposing effects on the properties of the contractile apparatus in skeletal muscle fibers. To test whether and how redox changes occurring in vivo affect the contractile properties, vastus lateralis muscle fibers from seven healthy young adults were examined at rest (PRE) and following (POST) high-intensity intermittent cycling exercise. Individual mechanically skinned muscle fibers were exposed to heavily buffered solutions at progressively higher free [Ca2+] to determine their force-Ca2+ relationship. Following acute exercise, Ca2+ sensitivity was significantly decreased in type I fibers (by 0.06 pCa unit) but not in type II fibers (0.01 pCa unit). Specific force decreased after the exercise in type II fibers (-18%) but was unchanged in type I fibers. Treatment with the reducing agent dithiothreitol (DTT) caused a small decrease in Ca2+-sensitivity in type II fibers at PRE (by ∼0.014 pCa units) and a significantly larger decrease at POST (∼0.035 pCa units), indicating that the exercise had increased S-glutathionylation of fast troponin I. DTT treatment also increased specific force (by ∼4%), but only at POST. In contrast, DTT treatment had no effect on either parameter in type I fibers at either PRE or POST. In type I fibers, the decreased Ca2+ sensitivity was not due to reversible oxidative changes and may have contributed to a decrease in power production during vigorous exercises. In type II fibers, exercise-induced redox changes help counter the decline in Ca2+-sensitivity while causing a small decline in maximum force.NEW & NOTEWORTHY This study identified important cellular changes occurring in human skeletal muscle fibers following high-intensity intermittent exercise: 1) a decrease in contractile apparatus Ca2+ sensitivity in type I but not type II fibers, 2) a decrease in specific force only in type II muscle fibers, and 3) a redox-dependent increase in Ca2+ sensitivity occurring only in type II fibers, which would help maintain muscle performance by countering the normal metabolite-induced decline in Ca2+ sensitivity.
Collapse
Affiliation(s)
- Cedric R Lamboley
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia.,School of Life Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - David M Rouffet
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia.,Department of Health and Sport Sciences, Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky
| | - Travis L Dutka
- School of Life Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - Michael J McKenna
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Graham D Lamb
- School of Life Sciences, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
16
|
Diaphragm weakness and proteomics (global and redox) modifications in heart failure with reduced ejection fraction in rats. J Mol Cell Cardiol 2020; 139:238-249. [PMID: 32035137 DOI: 10.1016/j.yjmcc.2020.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/02/2020] [Accepted: 02/03/2020] [Indexed: 12/16/2022]
Abstract
Inspiratory dysfunction occurs in patients with heart failure with reduced ejection fraction (HFrEF) in a manner that depends on disease severity and by mechanisms that are not fully understood. In the current study, we tested whether HFrEF effects on diaphragm (inspiratory muscle) depend on disease severity and examined putative mechanisms for diaphragm abnormalities via global and redox proteomics. We allocated male rats into Sham, moderate (mHFrEF), or severe HFrEF (sHFrEF) induced by myocardial infarction and examined the diaphragm muscle. Both mHFrEF and sHFrEF caused atrophy in type IIa and IIb/x fibers. Maximal and twitch specific forces (N/cm2) were decreased by 19 ± 10% and 28 ± 13%, respectively, in sHFrEF (p < .05), but not in mHFrEF. Global proteomics revealed upregulation of sarcomeric proteins and downregulation of ribosomal and glucose metabolism proteins in sHFrEF. Redox proteomics showed that sHFrEF increased reversibly oxidized cysteine in cytoskeletal and thin filament proteins and methionine in skeletal muscle α-actin (range 0.5 to 3.3-fold; p < .05). In conclusion, fiber atrophy plus contractile dysfunction caused diaphragm weakness in HFrEF. Decreased ribosomal proteins and heighted reversible oxidation of protein thiols are candidate mechanisms for atrophy or anabolic resistance as well as loss of specific force in sHFrEF.
Collapse
|
17
|
Savich Y, Binder BP, Thompson AR, Thomas DD. Myosin lever arm orientation in muscle determined with high angular resolution using bifunctional spin labels. J Gen Physiol 2019; 151:1007-1016. [PMID: 31227551 PMCID: PMC6683674 DOI: 10.1085/jgp.201812210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 02/15/2019] [Accepted: 05/29/2019] [Indexed: 02/03/2023] Open
Abstract
High-resolution structural information is invaluable for understanding muscle function. Savich et al. use bifunctional spin labeling to determine the orientation of the myosin lever arm in muscle fibers at high resolution under ambient conditions, augmenting previous insights obtained from fluorescence and EM. Despite advances in x-ray crystallography, cryo-electron microscopy (cryo-EM), and fluorescence polarization, none of these techniques provide high-resolution structural information about the myosin light chain domain (LCD; lever arm) under ambient conditions in vertebrate muscle. Here, we measure the orientation of LCD elements in demembranated muscle fibers by electron paramagnetic resonance (EPR) using a bifunctional spin label (BSL) with an angular resolution of 4°. To achieve stereoselective site-directed labeling with BSL, we engineered a pair of cysteines in the myosin regulatory light chain (RLC), either on helix E or helix B, which are roughly parallel or perpendicular to the myosin lever arm, respectively. By exchanging BSL-labeled RLC onto oriented muscle fibers, we obtain EPR spectra from which the angular distributions of BSL, and thus the lever arm, can be determined with high resolution relative to the muscle fiber axis. In the absence of ATP (rigor), each of the two labeled helices exhibits both ordered (σ ∼9–11°) and disordered (σ > 38°) populations. Using these angles to determine the orientation of the lever arm (LCD combined with converter subdomain), we observe that the oriented population corresponds to a lever arm that is perpendicular to the muscle fiber axis and that the addition of ATP in the absence of Ca2+ (inducing relaxation) shifts the orientation to a much more disordered orientational distribution. Although the detected orientation of the myosin light chain lever arm is ∼33° different than predicted from a standard “lever arm down” model based on cryo-EM of actin decorated with isolated myosin heads, it is compatible with, and thus augments and clarifies, fluorescence polarization, x-ray interference, and EM data obtained from muscle fibers. These results establish feasibility for high-resolution detection of myosin LCD rotation during muscle contraction.
Collapse
Affiliation(s)
- Yahor Savich
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN.,School of Physics and Astronomy, University of Minnesota, Minneapolis, MN
| | - Benjamin P Binder
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN.,Department of Chemistry, Augsburg University, Minneapolis, MN
| | - Andrew R Thompson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN
| | - David D Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN
| |
Collapse
|
18
|
Jia G, Sha K, Feng X, Liu H. Post-thawing metabolite profile and amino acid oxidation of thawed pork tenderloin by HVEF-A short communication. Food Chem 2019; 291:16-21. [PMID: 31006455 DOI: 10.1016/j.foodchem.2019.03.154] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 03/29/2019] [Accepted: 03/31/2019] [Indexed: 10/27/2022]
Abstract
The post-thawing quality, metabolite profile and amino acid oxidation of frozen pork tenderloin following the use of a high-voltage electrostatic field (HVEF) were investigated in this study. There were not significant differences of pH for pork thawed by air and HVEF, which were consistent with the lactic acid level and glycogen content. No changes in the tenderness of thawed pork were found. There were only 6 volatiles with different contents in the pork tenderloin (P < 0.05). Moreover, there were no oxidized cysteine and methionine residues in myosin of thawed pork by HVEF. A total of 23 discriminating metabolites between the air-thawed and HVEF-thawed pork after orthogonal partial least squares-discriminate analysis (OPLS-DA). There were 10 pathways containing >5 discriminating metabolites, among them, there were 10 discriminating metabolites in the glycerophospholipid metabolism (ssc00564) and retrograde endocannabinoid signaling (ssc04723). The glycerophospholipid metabolism could be related to the pork spoilage processes.
Collapse
Affiliation(s)
- Guoliang Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100083, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Kun Sha
- Yantai Research Institute, China Agricultural University, Yantai 264670, China
| | - Xudong Feng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100083, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Haijie Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100083, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
19
|
Galazzo L, Nogara L, LoVerso F, Polimeno A, Blaauw B, Sandri M, Reggiani C, Carbonera D. Changes in the fraction of strongly attached cross bridges in mouse atrophic and hypertrophic muscles as revealed by continuous wave electron paramagnetic resonance. Am J Physiol Cell Physiol 2019; 316:C722-C730. [PMID: 30865515 DOI: 10.1152/ajpcell.00438.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Electron paramagnetic resonance (EPR), coupled with site-directed spin labeling, has been proven to be a particularly suitable technique to extract information on the fraction of myosin heads strongly bound to actin upon muscle contraction. The approach can be used to investigate possible structural changes occurring in myosin of fiber s altered by diseases and aging. In this work, we labeled myosin at position Cys707, located in the SH1-SH2 helix in the myosin head cleft, with iodoacetamide spin label, a spin label that is sensitive to the reorientational motion of this protein during the ATPase cycle and characterized the biochemical states of the labeled myosin head by means of continuous wave EPR. After checking the sensitivity and the power of the technique on different muscles and species, we investigated whether changes in the fraction of strongly bound myosin heads might explain the contractile alterations observed in atrophic and hypertrophic murine muscles. In both conditions, the difference in contractile force could not be justified simply by the difference in muscle mass. Our results showed that in atrophic muscles the decrease in force generation was attributable to a lower fraction of strongly bound cross bridges during maximal activation. In contrast in hypertrophic muscles, the increase in force generation was likely due to several factors, as pointed out by the comparison of the EPR experiments with the tension measurements on single skinned fibers.
Collapse
Affiliation(s)
- Laura Galazzo
- Department of Chemical Sciences, University of Padova , Padua , Italy
| | | | | | - Antonino Polimeno
- Department of Chemical Sciences, University of Padova , Padua , Italy
| | - Bert Blaauw
- Venetian Institute of Molecular Medicine , Padua , Italy
| | - Marco Sandri
- Venetian Institute of Molecular Medicine , Padua , Italy.,Department of Biomedical Sciences, University of Padova , Padua , Italy
| | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padova , Padua , Italy
| | | |
Collapse
|
20
|
Hydrogen Peroxide Treatment of Muscle Fibres Inhibits the Formation of Myosin Cross-Bridges. Bull Exp Biol Med 2018; 166:183-187. [DOI: 10.1007/s10517-018-4310-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Indexed: 10/27/2022]
|
21
|
Kopylova GV, Shchepkin DV, Bershitsky SY. The Effect of Experimental Hyperthyroidism on Characteristics of Actin–Myosin Interaction in Fast and Slow Skeletal Muscles. BIOCHEMISTRY (MOSCOW) 2018; 83:527-533. [DOI: 10.1134/s000629791805005x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Smith NT, Soriano-Arroquia A, Goljanek-Whysall K, Jackson MJ, McDonagh B. Redox responses are preserved across muscle fibres with differential susceptibility to aging. J Proteomics 2018; 177:112-123. [PMID: 29438851 PMCID: PMC5884322 DOI: 10.1016/j.jprot.2018.02.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/21/2017] [Accepted: 02/08/2018] [Indexed: 12/19/2022]
Abstract
Age-related loss of muscle mass and function is associated with increased frailty and loss of independence. The mechanisms underlying the susceptibility of different muscle types to age-related atrophy are not fully understood. Reactive oxygen species (ROS) are recognised as important signalling molecules in healthy muscle and redox sensitive proteins can respond to intracellular changes in ROS concentrations modifying reactive thiol groups on Cysteine (Cys) residues. Conserved Cys residues tend to occur in functionally important locations and can have a direct impact on protein function through modifications at the active site or determining protein conformation. The aim of this work was to determine age-related changes in the redox proteome of two metabolically distinct murine skeletal muscles, the quadriceps a predominantly glycolytic muscle and the soleus which contains a higher proportion of mitochondria. To examine the effects of aging on the global proteome and the oxidation state of individual redox sensitive Cys residues, we employed a label free proteomics approach including a differential labelling of reduced and reversibly oxidised Cys residues. Our results indicate the proteomic response to aging is dependent on muscle type but redox changes that occur primarily in metabolic and cytoskeletal proteins are generally preserved between metabolically distinct tissues. BIOLOGICAL SIGNIFICANCE Skeletal muscle containing fast twitch glycolytic fibres are more susceptible to age related atrophy compared to muscles with higher proportions of oxidative slow twitch fibres. Contracting skeletal muscle generates reactive oxygen species that are required for correct signalling and adaptation to exercise and it is also known that the intracellular redox environment changes with age. To identify potential mechanisms for the distinct response to age, this article combines a global proteomic approach and a differential labelling of reduced and reversibly oxidised Cysteine residues in two metabolically distinct skeletal muscles, quadriceps and soleus, from adult and old mice. Our results indicate that the global proteomic changes with age in skeletal muscles are dependent on fibre type. However, redox specific changes are preserved across muscle types and accompanied with a reduction in the number of redox sensitive Cysteine residues.
Collapse
Affiliation(s)
- Neil T Smith
- MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| | - Ana Soriano-Arroquia
- MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| | - Katarzyna Goljanek-Whysall
- MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| | - Malcolm J Jackson
- MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| | - Brian McDonagh
- Discipline of Physiology, School of Medicine, National University of Ireland Galway, Ireland.
| |
Collapse
|
23
|
Diaphragm abnormalities in heart failure and aging: mechanisms and integration of cardiovascular and respiratory pathophysiology. Heart Fail Rev 2018; 22:191-207. [PMID: 27000754 DOI: 10.1007/s10741-016-9549-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inspiratory function is essential for alveolar ventilation and expulsive behaviors that promote airway clearance (e.g., coughing and sneezing). Current evidence demonstrates that inspiratory dysfunction occurs during healthy aging and is accentuated by chronic heart failure (CHF). This inspiratory dysfunction contributes to key aspects of CHF and aging cardiovascular and pulmonary pathophysiology including: (1) impaired airway clearance and predisposition to pneumonia; (2) inability to sustain ventilation during physical activity; (3) shallow breathing pattern that limits alveolar ventilation and gas exchange; and (4) sympathetic activation that causes cardiac arrhythmias and tissue vasoconstriction. The diaphragm is the primary inspiratory muscle; hence, its neuromuscular integrity is a main determinant of the adequacy of inspiratory function. Mechanistic work within animal and cellular models has revealed specific factors that may be responsible for diaphragm neuromuscular abnormalities in CHF and aging. These include phrenic nerve and neuromuscular junction alterations as well as intrinsic myocyte abnormalities, such as changes in the quantity and quality of contractile proteins, accelerated fiber atrophy, and shifts in fiber type distribution. CHF, aging, or CHF in the presence of aging disturbs the dynamics of circulating factors (e.g., cytokines and angiotensin II) and cell signaling involving sphingolipids, reactive oxygen species, and proteolytic pathways, thus leading to the previously listed abnormalities. Exercise-based rehabilitation combined with pharmacological therapies targeting the pathways reviewed herein hold promise to treat diaphragm abnormalities and inspiratory muscle dysfunction in CHF and aging.
Collapse
|
24
|
Proteomic profiling of oxidized cysteine and methionine residues by hydroxyl radicals in myosin of pork. Food Chem 2018; 243:277-284. [DOI: 10.1016/j.foodchem.2017.09.076] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/11/2017] [Accepted: 09/14/2017] [Indexed: 11/22/2022]
|
25
|
Kopylova G, Nabiev S, Shchepkin D, Bershitsky S. Carbonylation of atrial myosin prolongs its interaction with actin. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2018; 47:11-18. [PMID: 28409219 DOI: 10.1007/s00249-017-1209-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 03/22/2017] [Accepted: 04/07/2017] [Indexed: 11/26/2022]
Abstract
Carbonylation induced by hyperthyroidism suppresses force generation of skeletal myosin and sliding velocity of actin filaments in an in vitro motility assay. However, its effects on cardiac myosin at the molecular level have not been studied. Hyperthyroidism induces a change in expression of myosin heavy chains in ventricles, which may mask the effect of oxidation. In contrast to ventricular myosin, expression of myosin heavy chains in the atrium does not change upon hyperthyroidism and enables investigation of the effect of oxidation on cardiac myosin. We studied the influence of carbonylation, a type of protein oxidation, on the motor function of atrial myosin and Ca2+ regulation of actin-myosin interaction at the level of isolated proteins and single molecules using an in vitro motility assay and an optical trap. Carbonylation of atrial myosin prolonged its attached state on actin and decreased maximal sliding velocity of thin filaments over this myosin but did not affect the calcium sensitivity of the velocity. The results indicate that carbonylation of atrial myosin induced by hyperthyroidism can be a rate-limiting factor of atrium contractility and so participates in the genesis of heart failure in hyperthyroidism.
Collapse
Affiliation(s)
- G Kopylova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomayskaya ul. 106, Yekaterinburg, 620049, Russia.
| | - S Nabiev
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomayskaya ul. 106, Yekaterinburg, 620049, Russia
| | - D Shchepkin
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomayskaya ul. 106, Yekaterinburg, 620049, Russia
| | - S Bershitsky
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomayskaya ul. 106, Yekaterinburg, 620049, Russia
| |
Collapse
|
26
|
Brizendine RK, Sheehy GG, Alcala DB, Novenschi SI, Baker JE, Cremo CR. A mixed-kinetic model describes unloaded velocities of smooth, skeletal, and cardiac muscle myosin filaments in vitro. SCIENCE ADVANCES 2017; 3:eaao2267. [PMID: 29255801 PMCID: PMC5733112 DOI: 10.1126/sciadv.aao2267] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/17/2017] [Indexed: 06/07/2023]
Abstract
In vitro motility assays, where purified myosin and actin move relative to one another, are used to better understand the mechanochemistry of the actomyosin adenosine triphosphatase (ATPase) cycle. We examined the relationship between the relative velocity (V) of actin and myosin and the number of available myosin heads (N) or [ATP] for smooth (SMM), skeletal (SKM), and cardiac (CMM) muscle myosin filaments moving over actin as well as V from actin filaments moving over a bed of monomeric SKM. These data do not fit well to a widely accepted model that predicts that V is limited by myosin detachment from actin (d/ton), where d equals step size and ton equals time a myosin head remains attached to actin. To account for these data, we have developed a mixed-kinetic model where V is influenced by both attachment and detachment kinetics. The relative contributions at a given V vary with the probability that a head will remain attached to actin long enough to reach the end of its flexible S2 tether. Detachment kinetics are affected by L/ton, where L is related to the tether length. We show that L is relatively long for SMM, SKM, and CMM filaments (59 ± 3 nm, 22 ± 9 nm, and 22 ± 2 nm, respectively). In contrast, L is shorter (8 ± 3 nm) when myosin monomers are attached to a surface. This suggests that the behavior of the S2 domain may be an important mechanical feature of myosin filaments that influences unloaded shortening velocities of muscle.
Collapse
|
27
|
Iwase T, Sasaki Y, Hatori K. Alignment of actin filament streams driven by myosin motors in crowded environments. Biochim Biophys Acta Gen Subj 2017; 1861:2717-2725. [DOI: 10.1016/j.bbagen.2017.07.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/21/2017] [Accepted: 07/24/2017] [Indexed: 01/01/2023]
|
28
|
Mitrou GI, Poulianiti KP, Koutedakis Y, Jamurtas AZ, Maridaki MD, Stefanidis I, Sakkas GK, Karatzaferi C. Functional responses of uremic single skeletal muscle fibers to redox imbalances. Hippokratia 2017; 21:3. [PMID: 29904249 PMCID: PMC5997027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
BACKGROUND The exact causes of skeletal muscle weakness in chronic kidney disease (CKD) remain unknown with uremic toxicity and redox imbalances being implicated. To understand whether uremic muscle has acquired any sensitivity to acute redox changes we examined the effects of redox disturbances on force generation capacity. METHODS Permeabilized single psoas fibers (N =37) from surgically induced CKD (UREM) and sham-operated (CON) rabbits were exposed to an oxidizing (10 mM Hydrogen Peroxide, H2O2) and/or a reducing [10 mM Dithiothreitol (DTT)] agent, in a blind design, in two sets of experiments examining: A) the acute effect of the addition of H2O2 on maximal (pCa 4.4) isometric force of actively contracting fibers and the effect of incubation in DTT on subsequent re-activation and force recovery (N =9 CON; N =9 UREM fibers); B) the effect of incubation in H2O2 on both submaximal (pCa 6.2) and maximal (pCa 4.4) calcium activated isometric force generation (N =9 CON; N =10 UREM fibers). RESULTS Based on cross-sectional area (CSA) calculations, a 14 % atrophy in UREM fibers was revealed; thus forces were evaluated in absolute values and corrected for CSA (specific force) values. A) Addition of H2O2 during activation did not significantly affect force generation in any group or the pool of fibers. Incubation in DTT did not affect the CON fibers but caused a 12 % maximal isometric force decrease in UREM fibers (both in absolute force p =0.024, and specific force, p =0.027). B) Incubation in H2O2 during relaxation lowered subsequent maximal (but not submaximal) isometric forces in the Pool of fibers by 3.5 % (for absolute force p =0.033, for specific force p =0.019) but not in the fiber groups separately. CONCLUSIONS Force generation capacity of CON and UREM fibers is affected by oxidation similarly. However, DTT significantly lowered force in UREM muscle fibers. This may indicate that at baseline UREM muscle could have already been at a more reduced redox state than physiological. This observation warrants further investigation as it could be linked to disease-induced effects. HIPPOKRATIA 2017, 21(1): 3-7.
Collapse
Affiliation(s)
- G I Mitrou
- School of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
- Biomechanical Solutions, Karditsa, Greece
| | - K P Poulianiti
- School of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | - Y Koutedakis
- School of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
- Institute for Research and Technology of Thessaly, Trikala, Greece
- School of Sport, Performing Arts and Leisure, Wolverhampton University, Wolverhampton, United Kingdom
| | - A Z Jamurtas
- School of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
- Institute for Research and Technology of Thessaly, Trikala, Greece
| | - M D Maridaki
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - I Stefanidis
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - G K Sakkas
- School of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
- Institute for Research and Technology of Thessaly, Trikala, Greece
- Faculty of Sport and Health Sciences, University of St Mark and St John (Plymouth Marjon), Plymouth, United Kingdom
| | - C Karatzaferi
- School of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
- Institute for Research and Technology of Thessaly, Trikala, Greece
- Faculty of Sport and Health Sciences, University of St Mark and St John (Plymouth Marjon), Plymouth, United Kingdom
| |
Collapse
|
29
|
Watanabe D, Wada M. Predominant cause of prolonged low-frequency force depression changes during recovery after in situ fatiguing stimulation of rat fast-twitch muscle. Am J Physiol Regul Integr Comp Physiol 2016; 311:R919-R929. [DOI: 10.1152/ajpregu.00046.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 09/20/2016] [Indexed: 12/16/2022]
Abstract
To investigate time-dependent changes in sarcoplasmic reticulum (SR) Ca2+ release and myofibrillar (my-) Ca2+ sensitivity during recovery from prolonged low-frequency force depression (PLFFD), rat gastrocnemius muscles were electrically stimulated in situ. After 0 h (R0), 0.5 h (R0.5), 2 h (R2), 6 h (R6), or 12 h of recovery, the superficial gastrocnemius muscles were excised and used for biochemical and skinned fiber analyses. At R0, R0.5, R2, and R6, the ratio of force at 1 Hz to that at 50 Hz was decreased in the skinned fibers. The ratio of depolarization-induced force to the maximum Ca2+-activated force (depol/Ca2+ force ratio) was utilized as an indicator of SR Ca2+ release. At R0, both the depol/Ca2+ force ratio and my-Ca2+ sensitivity were decreased. At R0.5 and R2, my-Ca2+ sensitivity was recovered, while the depol/Ca2+ force ratio remained depressed. At R6, my-Ca2+ sensitivity was decreased again, whereas the depol/Ca2+ force ratio was nearly restored. Western blot analyses demonstrated that decreased my-Ca2+ sensitivity at R6 and reduced depol/Ca2+ force ratio at R0, R0.5, and R2 were accompanied by depressions in S-glutathionylated troponin I and increases in dephosphorylated ryanodine receptor 1, respectively. These results indicate that, in the early stage of recovery, reduced SR Ca2+ release plays a primary role in the etiology of PLFFD, whereas decreased my-Ca2+ sensitivity is involved in the late stage, and suggest that S-glutathionylation of troponin I and dephosphorylation of ryanodine receptor 1 contribute, at least partly, to fatiguing contraction-induced alterations in my-Ca2+ sensitivity and SR Ca2+ release, respectively.
Collapse
Affiliation(s)
- Daiki Watanabe
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan; and
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Masanobu Wada
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan; and
| |
Collapse
|
30
|
Hatori K, Iwase T, Wada R. Switching of actin-myosin motors by voltage-induced pH bias in vitro. Arch Biochem Biophys 2016; 603:64-71. [PMID: 27210738 DOI: 10.1016/j.abb.2016.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/06/2016] [Accepted: 05/17/2016] [Indexed: 11/29/2022]
Abstract
ATP-driven motor proteins, which function in cell motility and organelle transport, have potential applications as bio-inspired micro-devices; however, their control remains unsatisfactory. Here, we show rapid-velocity control of actin filaments interacting with myosin motors using voltage applied to Pt electrodes in an in vitro motility system, by which immediate increases and decreases in velocity were induced beside the cathode and anode, respectively. Indicator dye revealed pH changes after voltage application, and alternate voltage switching allowed actin filaments to cyclically alter their velocity in response to these changes. This principle provides a basis for on-demand control of not only motor proteins but also pH-sensitive events at a microscopic level.
Collapse
Affiliation(s)
- Kuniyuki Hatori
- Department of Bio-Systems Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa 992-8510, Japan.
| | - Takahiro Iwase
- Department of Bio-Systems Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa 992-8510, Japan
| | - Reito Wada
- Department of Biomedical Information Engineering, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan
| |
Collapse
|
31
|
A Abdel-Rahman E, Mahmoud AM, Khalifa AM, Ali SS. Physiological and pathophysiological reactive oxygen species as probed by EPR spectroscopy: the underutilized research window on muscle ageing. J Physiol 2016; 594:4591-613. [PMID: 26801204 DOI: 10.1113/jp271471] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 12/04/2015] [Indexed: 12/18/2022] Open
Abstract
Reactive oxygen and nitrogen species (ROS and RNS) play crucial roles in triggering, mediating and regulating physiological and pathophysiological signal transduction pathways within the cell. Within the cell, ROS efflux is firmly controlled both spatially and temporally, making the study of ROS dynamics a challenging task. Different approaches have been developed for ROS assessment; however, many of these assays are not capable of direct identification or determination of subcellular localization of different ROS. Here we highlight electron paramagnetic resonance (EPR) spectroscopy as a powerful technique that is uniquely capable of addressing questions on ROS dynamics in different biological specimens and cellular compartments. Due to their critical importance in muscle functions and dysfunction, we discuss in some detail spin trapping of various ROS and focus on EPR detection of nitric oxide before highlighting how EPR can be utilized to probe biophysical characteristics of the environment surrounding a given stable radical. Despite the demonstrated ability of EPR spectroscopy to provide unique information on the identity, quantity, dynamics and environment of radical species, its applications in the field of muscle physiology, fatiguing and ageing are disproportionately infrequent. While reviewing the limited examples of successful EPR applications in muscle biology we conclude that the field would greatly benefit from more studies exploring ROS sources and kinetics by spin trapping, protein dynamics by site-directed spin labelling, and membrane dynamics and global redox changes by spin probing EPR approaches.
Collapse
Affiliation(s)
- Engy A Abdel-Rahman
- Center for Aging and Associated Diseases, Helmy Institute of Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Ali M Mahmoud
- Center for Aging and Associated Diseases, Helmy Institute of Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Abdulrahman M Khalifa
- Center for Aging and Associated Diseases, Helmy Institute of Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Sameh S Ali
- Center for Aging and Associated Diseases, Helmy Institute of Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| |
Collapse
|
32
|
Effects of Sunphenon and Polyphenon 60 on proteolytic pathways, inflammatory cytokines and myogenic markers in H2O2-treated C2C12 cells. J Biosci 2015; 40:53-9. [PMID: 25740141 DOI: 10.1007/s12038-015-9503-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The effect of Sunphenon and Polyphenon 60 in oxidative stress response, myogenic regulatory factors, inflammatory cytokines, apoptotic and proteolytic pathways on H2O2-induced myotube atrophy was addressed. Cellular responses of H2O2-induced C2C12 cells were examined, including mRNA expression of myogenic regulatory factors, such as MyoD and myogenin, inflammatory pathways, such as TNF-α and NF-kB, as well as proteolytic enzymes, such as μ-calpain and m-calpain. The pre-treatment of Sunphenon (50 μg/mL)/Polyphenon 60 (50 μg/mL) on H2O2-treated C2C12 cells significantly down-regulated the mRNA expression of myogenin and MyoD when compared to those treated with H2O2-induced alone. Additionally, the mRNA expression of μ-calpain and m-calpain were significantly(p<0.05) increased in H2O2-treated C2C12 cells, whereas pre-treatment with Sunphenon/Polyphenon significantly down-regulated the above genes, namely μ-calpain and m-calpain. Furthermore, the mRNA expression of TNF-α and NF-kB were significantly increased in H2O2-treated C2C12 cells, while pre-treatment with Sunphenon (50 μg/mL)/Polyphenon 60 (50 μg/mL) significantly (p<0.05) down-regulated it when compared to the untreated control group.Subsequent analysis of DNA degeneration and caspase activation revealed that Sunphenon (50 μg/mL)/Polyphenon 60 (50 μg/mL) inhibited activation of caspase-3 and showed an inhibitory effect on DNA degradation. From this result, we know that, in stress conditions, μ-calpain may be involved in the muscle atrophy through the suppression of myogenin and MyoD. Moreover, Sunphenon may regulate the skeletal muscle genes/promote skeletal muscle recovery by the up-regulation of myogenin and MyoD and suppression of μ-calpain and inflammatory pathways and may regulate the apoptosis pathways. Our findings suggest that dietary supplementation of Sunphenon might reduce inflammatory events in muscle-associated diseases, such as myotube atrophy.
Collapse
|
33
|
High-resolution helix orientation in actin-bound myosin determined with a bifunctional spin label. Proc Natl Acad Sci U S A 2015; 112:7972-7. [PMID: 26056276 DOI: 10.1073/pnas.1500625112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Using electron paramagnetic resonance (EPR) of a bifunctional spin label (BSL) bound stereospecifically to Dictyostelium myosin II, we determined with high resolution the orientation of individual structural elements in the catalytic domain while myosin is in complex with actin. BSL was attached to a pair of engineered cysteine side chains four residues apart on known α-helical segments, within a construct of the myosin catalytic domain that lacks other reactive cysteines. EPR spectra of BSL-myosin bound to actin in oriented muscle fibers showed sharp three-line spectra, indicating a well-defined orientation relative to the actin filament axis. Spectral analysis indicated that orientation of the spin label can be determined within <2.1° accuracy, and comparison with existing structural data in the absence of nucleotide indicates that helix orientation can also be determined with <4.2° accuracy. We used this approach to examine the crucial ADP release step in myosin's catalytic cycle and detected reversible rotations of two helices in actin-bound myosin in response to ADP binding and dissociation. One of these rotations has not been observed in myosin-only crystal structures.
Collapse
|
34
|
Lamboley CR, Wyckelsma VL, Dutka TL, McKenna MJ, Murphy RM, Lamb GD. Contractile properties and sarcoplasmic reticulum calcium content in type I and type II skeletal muscle fibres in active aged humans. J Physiol 2015; 593:2499-514. [PMID: 25809942 DOI: 10.1113/jp270179] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/23/2015] [Indexed: 01/25/2023] Open
Abstract
KEY POINTS Muscle weakness in old age is due in large part to an overall loss of skeletal muscle tissue, but it remains uncertain how much also stems from alterations in the properties of the individual muscle fibres. This study examined the contractile properties and amount of stored intracellular calcium in single muscle fibres of Old (70 ± 4 years) and Young (22 ± 3 years) adults. The maximum level of force production (per unit cross-sectional area) in fast twitch fibres in Old subjects was lower than in Young subjects, and the fibres were also less sensitive to activation by calcium. The amount of calcium stored inside muscle fibres and available to trigger contraction was also lower in both fast- and slow-twitch muscle fibres in the Old subjects. These findings indicate that muscle weakness in old age stems in part from an impaired capacity for force production in the individual muscle fibres. ABSTRACT This study examined the contractile properties and sarcoplasmic reticulum (SR) Ca(2+) content in mechanically skinned vastus lateralis muscle fibres of Old (70 ± 4 years) and Young (22 ± 3 years) humans to investigate whether changes in muscle fibre properties contribute to muscle weakness in old age. In type II fibres of Old subjects, specific force was reduced by ∼17% and Ca(2+) sensitivity was also reduced (pCa50 decreased ∼0.05 pCa units) relative to that in Young. S-Glutathionylation of fast troponin I (TnIf ) markedly increased Ca(2+) sensitivity in type II fibres, but the increase was significantly smaller in Old versus Young (+0.136 and +0.164 pCa unit increases, respectively). Endogenous and maximal SR Ca(2+) content were significantly smaller in both type I and type II fibres in Old subjects. In fibres of Young, the SR could be nearly fully depleted of Ca(2+) by a combined caffeine and low Mg(2+) stimulus, whereas in fibres of Old the amount of non-releasable Ca(2+) was significantly increased (by > 12% of endogenous Ca(2+) content). Western blotting showed an increased proportion of type I fibres in Old subjects, and increased amounts of calsequestrin-2 and calsequestrin-like protein. The findings suggest that muscle weakness in old age is probably attributable in part to (i) an increased proportion of type I fibres, (ii) a reduction in both maximum specific force and Ca(2+) sensitivity in type II fibres, and also a decreased ability of S-glutathionylation of TnIf to counter the fatiguing effects of metabolites on Ca(2+) sensitivity, and (iii) a reduction in the amount of releasable SR Ca(2+) in both fibre types.
Collapse
Affiliation(s)
- C R Lamboley
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, PO Box 14428, Melbourne, Victoria, 8001, Australia
| | - V L Wyckelsma
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, PO Box 14428, Melbourne, Victoria, 8001, Australia.,La Trobe Rural Health School, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - T L Dutka
- School of Life Sciences, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - M J McKenna
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, PO Box 14428, Melbourne, Victoria, 8001, Australia
| | - R M Murphy
- School of Molecular Sciences, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - G D Lamb
- School of Life Sciences, La Trobe University, Melbourne, Victoria, 3086, Australia
| |
Collapse
|
35
|
Kaltsatou A, Sakkas GK, Poulianiti KP, Koutedakis Y, Tepetes K, Christodoulidis G, Stefanidis I, Karatzaferi C. Uremic myopathy: is oxidative stress implicated in muscle dysfunction in uremia? Front Physiol 2015; 6:102. [PMID: 25870564 PMCID: PMC4378187 DOI: 10.3389/fphys.2015.00102] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/13/2015] [Indexed: 12/14/2022] Open
Abstract
Renal failure is accompanied by progressive muscle weakness and premature fatigue, in part linked to hypokinesis and in part to uremic toxicity. These changes are associated with various detrimental biochemical and morphological alterations. All of these pathological parameters are collectively termed uremic myopathy. Various interventions while helpful can't fully remedy the pathological phenotype. Complex mechanisms that stimulate muscle dysfunction in uremia have been proposed, and oxidative stress could be implicated. Skeletal muscles continuously produce reactive oxygen species (ROS) and reactive nitrogen species (RNS) at rest and more so during contraction. The aim of this mini review is to provide an update on recent advances in our understanding of how ROS and RNS generation might contribute to muscle dysfunction in uremia. Thus, a systematic review was conducted searching PubMed and Scopus by using the Cochrane and PRISMA guidelines. While few studies met our criteria their findings are discussed making reference to other available literature data. Oxidative stress can direct muscle cells into a catabolic state and chronic exposure to it leads to wasting. Moreover, redox disturbances can significantly affect force production per se. We conclude that oxidative stress can be in part responsible for some aspects of uremic myopathy. Further research is needed to discern clear mechanisms and to help efforts to counteract muscle weakness and exercise intolerance in uremic patients.
Collapse
Affiliation(s)
- Antonia Kaltsatou
- Department of Physical Education and Sport Sciences (DPESS), School of Physical Education (PE), University of Thessaly Trikala, Greece
| | - Giorgos K Sakkas
- Department of Physical Education and Sport Sciences (DPESS), School of Physical Education (PE), University of Thessaly Trikala, Greece ; Institute for Research and Technology-Centre for Research and Technology Hellas Trikala, Greece
| | - Konstantina P Poulianiti
- Department of Physical Education and Sport Sciences (DPESS), School of Physical Education (PE), University of Thessaly Trikala, Greece
| | - Yiannis Koutedakis
- Department of Physical Education and Sport Sciences (DPESS), School of Physical Education (PE), University of Thessaly Trikala, Greece
| | - Konstantinos Tepetes
- Department of Surgery, Faculty of Medicine, University of Thessaly Larissa, Greece
| | | | - Ioannis Stefanidis
- Department of Nephrology, Faculty of Medicine, University of Thessaly Larissa, Greece
| | - Christina Karatzaferi
- Department of Physical Education and Sport Sciences (DPESS), School of Physical Education (PE), University of Thessaly Trikala, Greece
| |
Collapse
|
36
|
Colson BA, Petersen KJ, Collins BC, Lowe DA, Thomas DD. The myosin super-relaxed state is disrupted by estradiol deficiency. Biochem Biophys Res Commun 2015; 456:151-5. [PMID: 25446114 PMCID: PMC4276479 DOI: 10.1016/j.bbrc.2014.11.050] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 11/14/2014] [Indexed: 12/23/2022]
Abstract
We have used quantitative epifluorescence microscopy of fluorescent ATP to measure single-nucleotide turnover in skinned skeletal muscle fibers from mouse models of female aging and hormone treatment. Aging causes declines in muscle strength, often leading to frailty, disability, and loss of independence for the elderly. Female muscle is additionally affected by age due to reduction of ovarian hormone production with menopause. Estradiol (E2) is the key hormonal signal to skeletal muscle in females, and strength loss is attenuated by E2 treatment. To investigate E2 mechanisms on skeletal muscle, single fibers were isolated from sham-operated or ovariectomized (OVX) mice, with or without E2 treatment, and were incubated with 2'-(or-3')-O-(N-methylanthraniloyl) adenosine 5'-triphosphate (mantATP). We measured decay of mantATP fluorescence in an ATP-chase experiment, as pioneered by Cooke and coworkers, who unveiled a novel regulated state of muscle myosin characterized by slow nucleotide turnover on the order of minutes, termed the super-relaxed state (SRX). We detected a slow phase of nucleotide turnover in a portion of the myosin heads from sham fibers, consistent with SRX. Turnover was substantially faster in OVX fibers, with a turnover time constant for the slow phase of 65 ± 8s as compared to 102 ± 7s for sham fibers. 60-days E2 treatment in OVX mice substantially reversed this effect on SRX, while acute exposure of isolated muscles from OVX mice to E2 had no effect. We conclude that E2-mediated signaling reversibly regulates slow ATP turnover by myosin. Age- and hormone-related muscle functional losses may be targetable at the level of myosin structure/function for strategies to offset weakness and metabolic changes that occur with age.
Collapse
Affiliation(s)
- Brett A Colson
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States
| | - Karl J Petersen
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States
| | - Brittany C Collins
- Programs in Rehabilitation Science and Physical Therapy, University of Minnesota Medical School, Minneapolis, MN 55455, United States
| | - Dawn A Lowe
- Programs in Rehabilitation Science and Physical Therapy, University of Minnesota Medical School, Minneapolis, MN 55455, United States
| | - David D Thomas
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
37
|
McLean JB, Moylan JS, Andrade FH. Mitochondria dysfunction in lung cancer-induced muscle wasting in C2C12 myotubes. Front Physiol 2014; 5:503. [PMID: 25566096 PMCID: PMC4270181 DOI: 10.3389/fphys.2014.00503] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 12/03/2014] [Indexed: 01/06/2023] Open
Abstract
AIMS Cancer cachexia is a syndrome which results in severe loss of muscle mass and marked fatigue. Conditioned media from cachexia-inducing cancer cells triggers metabolic dysfunction in skeletal muscle, including decreased mitochondrial respiration, which may contribute to fatigue. We hypothesized that Lewis lung carcinoma conditioned medium (LCM) would impair the mitochondrial electron transport chain (ETC) and increase production of reactive oxygen species, ultimately leading to decreased mitochondrial respiration. We incubated C2C12 myotubes with LCM for 30 min, 2, 4, 24 or 48 h. We measured protein content by western blot; oxidant production by 2',7'-dichlorofluorescin diacetate (DCF), 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate (DAF), and MitoSox; cytochrome c oxidase activity by oxidation of cytochrome c substrate; and oxygen consumption rate (OCR) of intact myotubes by Seahorse XF Analyzer. RESULTS LCM treatment for 2 or 24 h decreased basal OCR and ATP-related OCR, but did not alter the content of mitochondrial complexes I, III, IV and V. LCM treatment caused a transient rise in reactive oxygen species (ROS). In particular, mitochondrial superoxide (MitoSOX) was elevated at 2 h. 4-Hydroxynonenal, a marker of oxidative stress, was elevated in both cytosolic and mitochondrial fractions of cell lysates after LCM treatment. CONCLUSION These data show that lung cancer-conditioned media alters electron flow in the ETC and increases mitochondrial ROS production, both of which may ultimately impair aerobic metabolism and decrease muscle endurance.
Collapse
Affiliation(s)
- Julie B McLean
- Department of Physiology, University of Kentucky Lexington, KY, USA ; Center for Muscle Biology, University of Kentucky Lexington, KY, USA
| | - Jennifer S Moylan
- Department of Physiology, University of Kentucky Lexington, KY, USA ; Center for Muscle Biology, University of Kentucky Lexington, KY, USA
| | - Francisco H Andrade
- Department of Physiology, University of Kentucky Lexington, KY, USA ; Center for Muscle Biology, University of Kentucky Lexington, KY, USA
| |
Collapse
|
38
|
Pereyra-Venegas J, Segura-Alegría B, Guadarrama-Olmos JC, Mariscal-Tovar S, Quiróz-González S, Jiménez-Estrada I. Effects provoked by chronic undernourishment on the fibre type composition and contractility of fast muscles in male and female developing rats. J Anim Physiol Anim Nutr (Berl) 2014; 99:974-86. [DOI: 10.1111/jpn.12274] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 10/27/2014] [Indexed: 11/26/2022]
Affiliation(s)
- J. Pereyra-Venegas
- Departamento de Biología; Facultad de Estudios Superiores Iztacala; Universidad Nacional Autónoma de México; Tlalnepantla de Baz Estado de México México
- Instituto de Fisiología Celular; Universidad Nacional Autónoma de México; México City México
| | - B. Segura-Alegría
- Departamento de Biología; Facultad de Estudios Superiores Iztacala; Universidad Nacional Autónoma de México; Tlalnepantla de Baz Estado de México México
| | - J. C. Guadarrama-Olmos
- Departamento de Fisiología, Biofísica y Neurociencias; Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional; San Pedro Zacatenco; Del. Gustavo A. Madero. México City México
| | - S. Mariscal-Tovar
- Departamento de Fisiología, Biofísica y Neurociencias; Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional; San Pedro Zacatenco; Del. Gustavo A. Madero. México City México
| | - S. Quiróz-González
- Departamento de Acupuntura y Rehabilitación; Universidad Estatal del Valle de Ecatepec; Valle de Anáhuac Ecatepec Estado de México México
| | - I. Jiménez-Estrada
- Departamento de Fisiología, Biofísica y Neurociencias; Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional; San Pedro Zacatenco; Del. Gustavo A. Madero. México City México
| |
Collapse
|
39
|
McCarthy MR, Thompson AR, Nitu F, Moen RJ, Olenek MJ, Klein JC, Thomas DD. Impact of methionine oxidation on calmodulin structural dynamics. Biochem Biophys Res Commun 2014; 456:567-72. [PMID: 25478640 DOI: 10.1016/j.bbrc.2014.11.091] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 11/21/2014] [Indexed: 12/22/2022]
Abstract
We have used electron paramagnetic resonance (EPR) to examine the structural impact of oxidizing specific methionine (M) side chains in calmodulin (CaM). It has been shown that oxidation of either M109 or M124 in CaM diminishes CaM regulation of the muscle calcium release channel, the ryanodine receptor (RyR), and that mutation of M to Q (glutamine) in either case produces functional effects identical to those of oxidation. Here we have used site-directed spin labeling and double electron-electron resonance (DEER), a pulsed EPR technique that measures distances between spin labels, to characterize the structural changes resulting from these mutations. Spin labels were attached to a pair of introduced cysteine residues, one in the C-lobe (T117C) and one in the N-lobe (T34C) of CaM, and DEER was used to determine the distribution of interspin distances. Ca binding induced a large increase in the mean distance, in concert with previous X-ray crystallography and NMR data, showing a closed structure in the absence of Ca and an open structure in the presence of Ca. DEER revealed additional information about CaM's structural heterogeneity in solution: in both the presence and absence of Ca, CaM populates both structural states, one with probes separated by ∼4nm (closed) and another at ∼6nm (open). Ca shifts the structural equilibrium constant toward the open state by a factor of 13. DEER reveals the distribution of interprobe distances, showing that each of these states is itself partially disordered, with the width of each population ranging from 1 to 3nm. Both mutations (M109Q and M124Q) decrease the effect of Ca on the structure of CaM, primarily by decreasing the closed-to-open equilibrium constant in the presence of Ca. We propose that Met oxidation alters CaM's functional interaction with its target proteins by perturbing this Ca-dependent structural shift.
Collapse
Affiliation(s)
- Megan R McCarthy
- Biochemistry, Molecular Biology and Biophysics Department, University of Minnesota, Minneapolis, MN 55455, USA
| | - Andrew R Thompson
- Biochemistry, Molecular Biology and Biophysics Department, University of Minnesota, Minneapolis, MN 55455, USA
| | - Florentin Nitu
- Biochemistry, Molecular Biology and Biophysics Department, University of Minnesota, Minneapolis, MN 55455, USA
| | - Rebecca J Moen
- Chemistry and Geology Department, Minnesota State University, Mankato, MN 56001, USA
| | - Michael J Olenek
- Biology Department, University of Wisconsin, La Crosse, WI 54601, USA
| | - Jennifer C Klein
- Biology Department, University of Wisconsin, La Crosse, WI 54601, USA.
| | - David D Thomas
- Biochemistry, Molecular Biology and Biophysics Department, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
40
|
Moen RJ, Cornea S, Oseid DE, Binder BP, Klein JC, Thomas DD. Redox-sensitive residue in the actin-binding interface of myosin. Biochem Biophys Res Commun 2014; 453:345-9. [PMID: 25264102 PMCID: PMC4272649 DOI: 10.1016/j.bbrc.2014.09.072] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 09/18/2014] [Indexed: 12/22/2022]
Abstract
We have examined the chemical and functional reversibility of oxidative modification in myosin. Redox regulation has emerged as a crucial modulator of protein function, with particular relevance to aging. We previously identified a single methionine residue in Dictyostelium discoideum (Dicty) myosin II (M394, near the myosin cardiomyopathy loop in the actin-binding interface) that is functionally sensitive to oxidation. We now show that oxidation of M394 is reversible by methionine sulfoxide reductase (Msr), restoring actin-activated ATPase activity. Sequence alignment reveals that M394 of Dicty myosin II is a cysteine residue in all human isoforms of skeletal and cardiac myosin. Using Dicty myosin II as a model for site-specific redox sensitivity of this Cys residue, the M394C mutant can be glutathionylated in vitro, resulting in reversible inhibition of actin-activated ATPase activity, with effects similar to those of methionine oxidation at this site. This work illustrates the potential for myosin to function as a redox sensor in both non-muscle and muscle cells, modulating motility/contractility in response to oxidative stress.
Collapse
Affiliation(s)
- Rebecca J Moen
- Department of Chemistry and Geology, Minnesota State University, Mankato, MN 56001, United States
| | - Sinziana Cornea
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States
| | - Daniel E Oseid
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States
| | - Benjamin P Binder
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States
| | - Jennifer C Klein
- Department of Biology, University of Wisconsin, Lacrosse, Lacrosse, MN 54601, United States
| | - David D Thomas
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
41
|
Moen RJ, Klein JC, Thomas DD. Electron paramagnetic resonance resolves effects of oxidative stress on muscle proteins. Exerc Sport Sci Rev 2014; 42:30-6. [PMID: 24188980 DOI: 10.1249/jes.0000000000000004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have used site-directed spin labeling and electron paramagnetic resonance (EPR) to explore the effects of oxidation on muscle function, with particular focus on the actin-myosin interaction. EPR measurements show that aging or oxidative modification causes a decrease in the fraction of myosins in the strong-binding state, which can be traced to the actin-binding cleft of the myosin catalytic domain.
Collapse
Affiliation(s)
- Rebecca J Moen
- 1Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN; 2Department of Chemistry and Geology, Minnesota State University, Mankato, Mankato, MN; and 3Department of Biology, University of Wisconsin, Lacrosse, Lacrosse, WI
| | | | | |
Collapse
|
42
|
Jackson DR, Webb M, Stewart TJ, Phillips T, Carter M, Cremo CR, Baker JE. Sucrose increases the activation energy barrier for actin-myosin strong binding. Arch Biochem Biophys 2014; 552-553:74-82. [PMID: 24370736 PMCID: PMC4043939 DOI: 10.1016/j.abb.2013.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 12/02/2013] [Accepted: 12/17/2013] [Indexed: 11/21/2022]
Abstract
To determine the mechanism by which sucrose slows in vitro actin sliding velocities, V, we used stopped flow kinetics and a single molecule binding assay, SiMBA. We observed that in the absence of ATP, sucrose (880mM) slowed the rate of actin-myosin (A-M) strong binding by 71±8% with a smaller inhibitory effect observed on spontaneous rigor dissociation (21±3%). Similarly, in the presence of ATP, sucrose slowed strong binding associated with Pi release by 85±9% with a smaller inhibitory effect on ATP-induced A-M dissociation, kT (39±2%). Sucrose had no noticeable effect on any other step in the ATPase reaction. In SiMBA, sucrose had a relatively small effect on the diffusion coefficient for actin fragments (25±2%), and with stopped flow we showed that sucrose increased the activation energy barrier for A-M strong binding by 37±3%, indicating that sucrose inhibits the rate of A-M strong binding by slowing bond formation more than diffusional searching. The inhibitory effects of sucrose on the rate of A-M rigor binding (71%) are comparable in magnitude to sucrose's effects on both V (79±33% decrease) and maximal actin-activated ATPase, kcat, (81±16% decrease), indicating that the rate of A-M strong bond formation significantly influences both kcat and V.
Collapse
Affiliation(s)
- Del R Jackson
- Department of Biomedical Engineering, University of Nevada, Reno, NV, United States
| | - Milad Webb
- Department of Biomedical Engineering, University of Nevada, Reno, NV, United States
| | - Travis J Stewart
- Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, Reno, NV, United States
| | - Travis Phillips
- Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, Reno, NV, United States
| | - Michael Carter
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV, United States
| | - Christine R Cremo
- Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, Reno, NV, United States
| | - Josh E Baker
- Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, Reno, NV, United States.
| |
Collapse
|
43
|
Patel BG, Wilder T, Solaro RJ. Novel control of cardiac myofilament response to calcium by S-glutathionylation at specific sites of myosin binding protein C. Front Physiol 2013; 4:336. [PMID: 24312057 PMCID: PMC3834529 DOI: 10.3389/fphys.2013.00336] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 11/01/2013] [Indexed: 12/31/2022] Open
Abstract
Our previous studies demonstrated a relation between glutathionylation of cardiac myosin binding protein C (cMyBP-C) and diastolic dysfunction in a hypertensive mouse model stressed by treatment with salt, deoxycorticosterone acetate, and unilateral nephrectomy. Although these results strongly indicated an important role for S-glutathionylation of myosin binding protein C as a modifier of myofilament function, indirect effects of other post-translational modifications may have occurred. Moreover, we did not determine the sites of thiol modification by glutathionylation. To address these issues, we developed an in vitro method to mimic the in situ S-glutathionylation of myofilament proteins and determined direct functional effects and sites of oxidative modification employing Western blotting and mass spectrometry. We induced glutathionylation in vitro by treatment of isolated myofibrils and detergent extracted fiber bundles (skinned fibers) with oxidized glutathione (GSSG). Immuno-blotting results revealed increased glutathionylation with GSSG treatment of a protein band around 140 kDa. Using tandem mass spectrometry, we identified the 140 kDa band as cMyBP-C and determined the sites of glutathionylation to be at cysteines 655, 479, and 627. Determination of the relation between Ca2+-activation of myofibrillar acto-myosin ATPase rate demonstrated an increased Ca2+-sensitivity induced by the S-glutathionylation. Force generating skinned fiber bundles also showed an increase in Ca-sensitivity when treated with oxidized glutathione, which was reversed with the reducing agent, dithiothreitol (DTT). Our data demonstrate that a specific and direct effect of S-glutathionylation of myosin binding protein C is a significant increase in myofilament Ca2+-sensitivity. Our data also provide new insights into the functional significance of oxidative modification of myosin binding protein C and the potential role of domains not previously considered to be functionally significant as controllers of myofilament Ca2+-responsiveness and dynamics.
Collapse
Affiliation(s)
- Bindiya G Patel
- Department of Physiology and Biophysics and Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago Chicago, IL USA
| | | | | |
Collapse
|
44
|
Choi E, Carruthers K, Zhang L, Thomas N, Battaglino RA, Morse LR, Widrick JJ. Concurrent muscle and bone deterioration in a murine model of cancer cachexia. Physiol Rep 2013; 1:e00144. [PMID: 24400146 PMCID: PMC3871459 DOI: 10.1002/phy2.144] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 09/30/2013] [Accepted: 10/08/2013] [Indexed: 12/12/2022] Open
Abstract
Cachexia is defined as an excessive, involuntary loss of fat and lean tissue. We tested the validity of the Lewis lung carcinoma (LLC) as a model of cancer cachexia and examined its effect on the two major lean tissue components, skeletal muscle and bone. LLC cells (0.75 × 106) were injected into the left thigh of C57BL/6 mice. Control mice received an equal volume injection of growth media. Tumors were observed in all LLC-injected animals 21 and 25 days post inoculation. LLC-injected animals showed significant reductions in fat and lean mass despite having the same average daily caloric intake as media-treated mice. Global bone mineral density (BMD) had fallen by 5% and 6% in the LLC animals at 21 and 25 days, respectively, compared to a BMD increase of 5% in the 25-day media-treated animals. Extensor digitorum longus (EDL) muscles (isolated from the noninjected hindlimb) showed earlier and quantitatively greater losses in mass, physiological cross-sectional area (pCSA), and tetanic force compared to soleus muscles from the same hindlimb. By the 25th day post-LLC inoculation, EDL force/pCSA was reduced by 19% versus media treatment. This loss in specific force was not trivial as it accounted for about one-third of the reduction in EDL absolute force at this time point. Muscle strips dissected from the diaphragm of LLC mice also exhibited significant reductions in force/pCSA at day 25. We conclude that LLC is a valid model of cachexia that induces rapid losses in global BMD and in limb and respiratory muscle function.
Collapse
Affiliation(s)
- Eunhi Choi
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Harvard Medical School Boston, Massachusetts ; Deparment of Physical Medicine and Rehabilitation, Hallym University College of Medicine Gangwon-do, South Korea
| | - Kadir Carruthers
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Harvard Medical School Boston, Massachusetts
| | - Li Zhang
- Forsyth Institute Cambridge, Massachusetts
| | - Nathan Thomas
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Harvard Medical School Boston, Massachusetts
| | | | - Leslie R Morse
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Harvard Medical School Boston, Massachusetts ; Forsyth Institute Cambridge, Massachusetts
| | - Jeffrey J Widrick
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Harvard Medical School Boston, Massachusetts
| |
Collapse
|
45
|
Webb M, Jackson DR, Stewart TJ, Dugan SP, Carter MS, Cremo CR, Baker JE. The myosin duty ratio tunes the calcium sensitivity and cooperative activation of the thin filament. Biochemistry 2013; 52:6437-44. [PMID: 23947752 DOI: 10.1021/bi400262h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In striated muscle, calcium binding to the thin filament (TF) regulatory complex activates actin-myosin ATPase activity, and actin-myosin kinetics in turn regulates TF activation. However, a quantitative description of the effects of actin-myosin kinetics on the calcium sensitivity (pCa50) and cooperativity (nH) of TF activation is lacking. With the assumption that TF structural transitions and TF-myosin binding transitions are inextricably coupled, we advanced the principles established by Kad et al. [Kad, N., et al. (2005) Proc. Natl. Acad. Sci. U.S.A. 102, 16990-16995] and Sich et al. [Sich, N. M., et al. (2011) J. Biol. Chem. 285, 39150-39159] to develop a simple model of TF regulation, which predicts that pCa50 varies linearly with duty ratio and that nH is maximal near physiological duty ratios. Using in vitro motility to determine the calcium sensitivity of TF sliding velocities, we measured pCa50 and nH at different myosin densities and in the presence of ATPase inhibitors. The observed effects of myosin density and actin-myosin duty ratio on pCa50 and nH are consistent with our model predictions. In striated muscle, pCa50 must match cytosolic calcium concentrations and a maximal nH optimizes calcium responsiveness. Our results indicate that pCa50 and nH can be predictably tuned through TF-myosin ATPase kinetics and that drugs and disease states that alter ATPase kinetics can, through their effects on calcium sensitivity, alter the efficiency of muscle contraction.
Collapse
Affiliation(s)
- Milad Webb
- Department of Electrical and Biomedical Engineering, University of Nevada, Reno , Reno, Nevada 89557, United States
| | | | | | | | | | | | | |
Collapse
|
46
|
Larkin LM, Hanes MC, Kayupov E, Claflin DR, Faulkner JA, Brooks SV. Weakness of whole muscles in mice deficient in Cu, Zn superoxide dismutase is not explained by defects at the level of the contractile apparatus. AGE (DORDRECHT, NETHERLANDS) 2013; 35:1173-1181. [PMID: 22696118 PMCID: PMC3705120 DOI: 10.1007/s11357-012-9441-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 05/21/2012] [Indexed: 06/01/2023]
Abstract
Mice deficient in Cu,Zn superoxide dismutase (Sod1 (-/-) mice) demonstrate elevated oxidative stress associated with rapid age-related declines in muscle mass and force. The decline in mass for muscles of Sod1 (-/-) mice is explained by a loss of muscle fibers, but the mechanism underlying the weakness is not clear. We hypothesized that the reduced maximum isometric force (F o) normalized by cross-sectional area (specific F o) for whole muscles of Sod1 (-/-) compared with wild-type (WT) mice is due to decreased specific F o of individual fibers. Force generation was measured for permeabilized fibers from muscles of Sod1 (-/-) and WT mice at 8 and 20 months of age. WT mice were also studied at 28 months to determine whether any deficits observed for fibers from Sod1 (-/-) mice were similar to those observed in old WT mice. No effects of genotype were observed for F o or specific F o at either 8 or 20 months, and no age-associated decrease in specific F o was observed for fibers from Sod1 (-/-) mice, whereas specific F o for fibers of WT mice decreased by 20 % by 28 months. Oxidative stress has also been associated with decreased maximum velocity of shortening (V max), and we found a 10 % lower V max for fibers from Sod1 (-/-) compared with WT mice at 20 months. We conclude that the low specific F o of muscles of Sod1 (-/-) mice is not explained by damage to contractile proteins. Moreover, the properties of fibers of Sod1 (-/-) mice do not recapitulate those observed with aging in WT animals.
Collapse
Affiliation(s)
- Lisa M. Larkin
- />Departments of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109-2200 USA
- />Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 USA
| | - Michael C. Hanes
- />Departments of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109-2200 USA
| | - Erdan Kayupov
- />Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 USA
| | - Dennis R. Claflin
- />Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 USA
- />Surgery, Section of Plastic Surgery, University of Michigan, Ann Arbor, MI 48109 USA
| | - John A. Faulkner
- />Departments of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109-2200 USA
- />Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 USA
| | - Susan V. Brooks
- />Departments of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109-2200 USA
- />Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
47
|
Gross SM, Lehman SL. Accessibility of myofilament cysteines and effects on ATPase depend on the activation state during exposure to oxidants. PLoS One 2013; 8:e69110. [PMID: 23894416 PMCID: PMC3716824 DOI: 10.1371/journal.pone.0069110] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 06/05/2013] [Indexed: 11/28/2022] Open
Abstract
Signaling by reactive oxygen species has emerged as a major physiological process. Due to its high metabolic rate, striated muscle is especially subject to oxidative stress, and there are multiple examples in cardiac and skeletal muscle where oxidative stress modulates contractile function. Here we assessed the potential of cysteine oxidation as a mechanism for modulating contractile function in skeletal and cardiac muscle. Analyzing the cysteine content of the myofilament proteins in striated muscle, we found that cysteine residues are relatively rare, but are very similar between different muscle types and different vertebrate species. To refine this list of cysteines to those that may modulate function, we estimated the accessibility of oxidants to cysteine residues using protein crystal structures, and then sharpened these estimates using fluorescent labeling of cysteines in cardiac and skeletal myofibrils. We demonstrate that cysteine accessibility to oxidants and ATPase rates depend on the contractile state in which preparations are exposed. Oxidant exposure of skeletal and cardiac myofibrils in relaxing solution exposes myosin cysteines not accessible in rigor solution, and these modifications correspond to a decrease in maximum ATPase. Oxidant exposure under rigor conditions produces modifications that increase basal ATPase and calcium sensitivity in ventricular myofibrils, but these effects were muted in fast twitch muscle. These experiments reveal how structural and sequence variations can lead to divergent effects from oxidants in different muscle types.
Collapse
Affiliation(s)
- Sean M. Gross
- Department of Integrative Biology, University of California, Berkeley, California, United States of America
| | - Steven L. Lehman
- Department of Integrative Biology, University of California, Berkeley, California, United States of America
| |
Collapse
|
48
|
Tiidus PM, Lowe DA, Brown M. Estrogen replacement and skeletal muscle: mechanisms and population health. J Appl Physiol (1985) 2013; 115:569-78. [PMID: 23869062 DOI: 10.1152/japplphysiol.00629.2013] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
There is a growing body of information supporting the beneficial effects of estrogen and estrogen-based hormone therapy (HT) on maintenance and enhancement of muscle mass, strength, and connective tissue. These effects are also evident in enhanced recovery from muscle atrophy or damage and have significant implications particularly for the muscular health of postmenopausal women. Evidence suggests that HT will also help maintain or increase muscle mass, improve postatrophy muscle recovery, and enhance muscle strength in aged females. This is important because this population, in particular, is at risk for a rapid onset of frailty. The potential benefits of estrogen and HT relative to skeletal muscle function and composition combined with other health-related enhancements associated with reduced risk of cardiovascular events, overall mortality, and metabolic dysfunction, as well as enhanced cognition and bone health cumulate in a strong argument for more widespread and prolonged consideration of HT if started proximal to menopausal onset in most women. Earlier reports of increased health risks with HT use in postmenopausal women has led to a decline in HT use. However, recent reevaluation regarding the health effects of HT indicates a general lack of risks and a number of significant health benefits of HT use when initiated at the onset of menopause. Although further research is still needed to fully delineate its mechanisms of action, the general use of HT by postmenopausal women, to enhance muscle mass and strength, as well as overall health, with initiation soon after the onset of menopause should be considered.
Collapse
Affiliation(s)
- Peter M Tiidus
- Department of Kinesology and Physical Education, Wilfrid Laurier University, Waterloo Ontario, Canada
| | | | | |
Collapse
|
49
|
Hvid LG, Gejl K, Bech RD, Nygaard T, Jensen K, Frandsen U, Ørtenblad N. Transient impairments in single muscle fibre contractile function after prolonged cycling in elite endurance athletes. Acta Physiol (Oxf) 2013; 208:265-73. [PMID: 23480612 DOI: 10.1111/apha.12095] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 02/28/2013] [Accepted: 03/05/2013] [Indexed: 11/27/2022]
Abstract
AIM Prolonged muscle activity impairs whole-muscle performance and function. However, little is known about the effects of prolonged muscle activity on the contractile function of human single muscle fibres. The purpose of this study was to investigate the effects of prolonged exercise and subsequent recovery on the contractile function of single muscle fibres obtained from elite athletes. METHODS Nine male triathletes (26 ± 1 years, 68 ± 1 mL O2 min(-1) kg(-1) , training volume 16 ± 1 h week(-1) ) performed 4 h of cycling exercise (at 73% of HRmax ) followed by 24 h of recovery. Biopsies from vastus lateralis were obtained before and following 4 h exercise and following 24 h recovery. Measurements comprised maximal Ca(2+) -activated specific force and Ca(2+) sensitivity of slow type I and fast type II single muscle fibres, as well as cycling peak power output. RESULTS Following cycling exercise, specific force was reduced to a similar extent in slow and fast fibres (-15 and -18%, respectively), while Ca(2+) sensitivity decreased in fast fibres only. Single fibre-specific force was fully restored in both fibre types after 24 h recovery. Cycling peak power output was reduced by 4-9% following cycling exercise and fully restored following recovery. CONCLUSION This is the first study to demonstrate that prolonged cycling exercise transiently impairs specific force in type I and II fibres and decreases Ca(2+) sensitivity in type II fibres only, specifically in elite endurance athletes. Further, the changes in single fibre-specific force induced by exercise and recovery coincided temporally with changes in cycling peak power output.
Collapse
Affiliation(s)
- L. G. Hvid
- Institute of Sports Science and Clinical Biomechanics, SDU Muscle Research Cluster (SMRC); Institute of Sports Science and Clinical Biomechanics; University of Southern Denmark; Odense; Denmark
| | - K. Gejl
- Institute of Sports Science and Clinical Biomechanics, SDU Muscle Research Cluster (SMRC); Institute of Sports Science and Clinical Biomechanics; University of Southern Denmark; Odense; Denmark
| | - R. D. Bech
- Department of Orthopaedic Surgery; Odense University Hospital; Odense; Denmark
| | - T. Nygaard
- Department of Orthopaedic Surgery; Rigshospitalet; University of Copenhagen; Copenhagen; Denmark
| | - K. Jensen
- Institute of Sports Science and Clinical Biomechanics, SDU Muscle Research Cluster (SMRC); Institute of Sports Science and Clinical Biomechanics; University of Southern Denmark; Odense; Denmark
| | - U. Frandsen
- Institute of Sports Science and Clinical Biomechanics, SDU Muscle Research Cluster (SMRC); Institute of Sports Science and Clinical Biomechanics; University of Southern Denmark; Odense; Denmark
| | | |
Collapse
|
50
|
Prochniewicz E, Guhathakurta P, Thomas DD. The structural dynamics of actin during active interaction with myosin depends on the isoform of the essential light chain. Biochemistry 2013; 52:1622-30. [PMID: 23339370 DOI: 10.1021/bi3014467] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We have used time-resolved phosphorescence anisotropy to investigate the effects of essential light chain (ELC) isoforms (A1 and A2) on the interaction of skeletal muscle myosin with actin, to relate structural dynamics to previously reported functional effects. Actin was labeled with a phosphorescent probe at C374, and the myosin head (S1) was separated into isoenzymes S1A1 and S1A2 by ion-exchange chromatography. As previously reported, S1A1 exhibited substantially lower ATPase activity at saturating actin concentrations but substantially higher apparent actin affinity, resulting in a higher catalytic efficiency. In the absence of ATP, each isoenzyme increased actin's final anisotropy cooperatively and to a similar extent, indicating a similar restriction of the amplitude of intrafilament rotational motions in the strong-binding (S) state of actomyosin. In contrast, in the presence of a saturating level of ATP, S1A1 increased actin anisotropy much more than S1A2 and with greater cooperativity, indicating that S1A1 was more effective in restricting actin dynamics during the active interaction of actin and myosin. We conclude that during the active interaction of actin and ATP with myosin, S1A1 is more effective at stabilizing the S state (probably the force-generating state) of actomyosin, while S1A2 tends to stabilize the weak-binding (non-force-generating) W state. When a mixture of isoenzymes is present, S1A1 is dominant in its effects on actin dynamics. We conclude that ELC of skeletal muscle myosin modulates strong-to-weak structural transitions during the actomyosin ATPase cycle in an isoform-dependent manner, with significant implications for the contractile function of actomyosin.
Collapse
Affiliation(s)
- Ewa Prochniewicz
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|