1
|
Scriba TJ, Maseeme M, Young C, Taylor L, Leslie AJ. Immunopathology in human tuberculosis. Sci Immunol 2024; 9:eado5951. [PMID: 39671470 DOI: 10.1126/sciimmunol.ado5951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 11/15/2024] [Indexed: 12/15/2024]
Abstract
Mycobacterium tuberculosis (M.tb) is a bacterial pathogen that has evolved in humans, and its interactions with the host are complex and best studied in humans. Myriad immune pathways are involved in infection control, granuloma formation, and progression to tuberculosis (TB) disease. Inflammatory cells, such as macrophages, neutrophils, conventional and unconventional T cells, B cells, NK cells, and innate lymphoid cells, interact via cytokines, cell-cell communication, and eicosanoid signaling to contain or eliminate infection but can alternatively mediate pathological changes required for pathogen transmission. Clinical manifestations include pulmonary and extrapulmonary TB, as well as post-TB lung disease. Risk factors for TB progression, in turn, largely relate to immune status and, apart from traditional chemotherapy, interventions primarily target immune mechanisms, highlighting the critical role of immunopathology in TB. Maintaining a balance between effector mechanisms to achieve protective immunity and avoid detrimental inflammation is central to the immunopathogenesis of TB. Many research gaps remain and deserve prioritization to improve our understanding of human TB immunopathogenesis.
Collapse
Affiliation(s)
- Thomas J Scriba
- South African Tuberculosis Vaccine Initiative, Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Mahlatse Maseeme
- Africa Health Research Institute, Durban, South Africa
- College of Heath Sciences, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Carly Young
- South African Tuberculosis Vaccine Initiative, Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Laura Taylor
- Forensic Pathology Services, Western Cape Government/University of Cape Town, Cape Town, South Africa
| | - Alasdair J Leslie
- Africa Health Research Institute, Durban, South Africa
- University College London, London, UK
| |
Collapse
|
2
|
Zhou J, Xiong KL, Wang HX, Sun WW, Ke H, Zhang SJ, Dong ZW, Fan L. BATF2/SINHCAF regulates the quantity and function of macrophages infected with Mycobacterium Tuberculosis via regulation of TTC23 through Wnt/β-catenin pathway. Int J Biol Macromol 2024; 288:138639. [PMID: 39672395 DOI: 10.1016/j.ijbiomac.2024.138639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/29/2024] [Accepted: 12/09/2024] [Indexed: 12/15/2024]
Abstract
Elucidating the pathogenic mechanism of Tuberculosis (TB) can contribute to control TB. Basic leucine zipper transcription factor ATF-like 2 (BATF2) belonging to a large family of leucine zipper transcription factors (TFs) termed bZip proteins, had been verified to have important value in the diagnosis of TB. However, its role and mechanism in TB had not been elucidated. The study aimed to explore its function and molecular mechanism in macrophages infected with Mycobacterium tuberculosis (Mtb). The results indicated that BATF2 inhibited cell proliferation, promoted inflammatory response and impaired the antibacterial and antigen-presenting capacity in macrophages for T cells through regulating its downstream gene TTC23 by interacting with SINHCAF. Above roles and regulations were dependent on β-catenin functions in macrophages infected with Mtb. Clinical samples verified that the expressions of BATF2 and TTC23 were significantly higher in the blood of patients with pulmonary TB compared with health controls. Altogether, BATF2 interacted with SINHCAF to regulate the quantity and function of macrophages during Mtb infection by targeting TTC23 through Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Tuberculosis, Shanghai Clinical Research Center for Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai Key Lab of Tuberculosis, Shanghai, China
| | - Kun-Long Xiong
- Department of Tuberculosis, Shanghai Clinical Research Center for Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai Key Lab of Tuberculosis, Shanghai, China
| | - Hong-Xiu Wang
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wen-Wen Sun
- Department of Tuberculosis, Shanghai Clinical Research Center for Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai Key Lab of Tuberculosis, Shanghai, China
| | - Hui Ke
- Department of Tuberculosis, Shanghai Clinical Research Center for Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai Key Lab of Tuberculosis, Shanghai, China
| | - Shao-Jun Zhang
- Department of Tuberculosis, Shanghai Clinical Research Center for Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai Key Lab of Tuberculosis, Shanghai, China
| | - Zheng-Wei Dong
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lin Fan
- Department of Tuberculosis, Shanghai Clinical Research Center for Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai Key Lab of Tuberculosis, Shanghai, China.
| |
Collapse
|
3
|
Jiang Y, Zou Y, Wang H. Review of research progress on different modalities of Macrophage death in Mycobacterium leprae infection. Int Immunopharmacol 2024; 142:113240. [PMID: 39332094 DOI: 10.1016/j.intimp.2024.113240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/26/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024]
Abstract
Leprosy, caused by Mycobacterium leprae (M. leprae), is a chronic infectious disease primarily affecting the skin and peripheral nerves. The interaction between M. leprae and macrophages, its primary host cell, plays a critical role in disease progression. This review explores the various forms of macrophage cell death induced by M. leprae infection, including apoptosis, autophagy, necroptosis, pyroptosis, ferroptosis and necrosis. The regulation and implications of these cell death pathways on the host immune response are discussed. Apoptosis and autophagy are highlighted as mechanisms that may limit M. leprae proliferation, while necroptosis and pyroptosis contribute to inflammation and immune response. Notably, recent studies have identified CYBB-mediated ferroptosis as essential for macrophages infected with M. leprae to polarize towards the M2 phenotype, facilitating immune evasion by the pathogen. This review underscores the complexity of macrophage cell death in leprosy, and summarize their corresponding molecular mechanisms and potential impact on the host immunity.
Collapse
Affiliation(s)
- Yumeng Jiang
- Department of Mycobacterium, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology & Hospital for Skin Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, China
| | - Yidie Zou
- Department of Mycobacterium, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology & Hospital for Skin Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, China
| | - Hongsheng Wang
- Department of Mycobacterium, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology & Hospital for Skin Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
4
|
Qi X, Yang Q, Cai J, Wu J, Gao Y, Ruan Q, Shao L, Liu J, Zhou X, Zhang W, Jiang N, Wang S. Transcriptional profiling of human peripheral blood mononuclear cells in household contacts of pulmonary tuberculosis patients provides insights into mechanisms of Mycobacterium tuberculosis control and elimination. Emerg Microbes Infect 2024; 13:2295387. [PMID: 38088554 PMCID: PMC10763880 DOI: 10.1080/22221751.2023.2295387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 12/12/2023] [Indexed: 12/31/2023]
Abstract
Household contacts (HHCs) of patients with active tuberculosis (ATB) are at higher risk of Mycobacterium tuberculosis (M. tuberculosis) infection. However, the immune factors responsible for different defense responses in HHCs are unknown. Hence, we aimed to evaluate transcriptome signatures in human peripheral blood mononuclear cells (PBMCs) of HHCs to aid risk stratification. We recruited 112 HHCs of ATB patients and followed them for 6 years. Among the HHCs, only 2 developed ATB, while the remaining HHCs were classified into three groups: (1) HHC-1 group (n = 23): HHCs with consistently positive T-SPOT.TB test, negative chest radiograph, and no clinical symptoms or evidence of ATB during the 6-year follow-up period; (2) HHC-2 group (n = 15): HHCs with an initial positive T-SPOT result that later became negative without evidence of ATB; (3) HHC-3 group (n = 14): HHCs with a consistently negative T-SPOT.TB test and no clinical or radiological evidence of ATB. HHC-2 and HHC-3 were combined as HHC-23 group for analysis. RNA sequencing (RNA-seq) in PBMCs, with and without purified protein derivative (PPD) stimulation, identified significant differences in gene signatures between HHC-1 and HHC-23. Gene ontology analysis revealed functions related to bacterial pathogens, leukocyte chemotaxis, and inflammatory and cytokine responses. Modules associated with clinical features in the HHC-23 group were linked to the IL-17 signaling pathway, ferroptosis, complement and coagulation cascades, and the TNF signaling pathway. Validation using real-time PCR confirmed key genes like ATG-7, CXCL-3, and TNFRSF1B associated with infection outcomes in HHCs. Our research enhances understanding of disease mechanisms in HHCs. HHCs with persistent latent tuberculosis infection (HHC-1) showed significantly different gene expression compared to HHCs with no M. tuberculosis infection (HHC-23). These findings can help identify HHCs at risk of developing ATB and guide targeted public health interventions.
Collapse
Affiliation(s)
- Xiao Qi
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Qingluan Yang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Jianpeng Cai
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
- Department of Infectious Diseases, Jing'an District Central Hospital, Shanghai, People’s Republic of China
| | - Jing Wu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Yan Gao
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Qiaoling Ruan
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Lingyun Shao
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Jun Liu
- Department of Laboratory medicine, Department of Infectious Diseases, Wuxi Fifth People’s Hospital Affiliated to Nanjing Medical University, Wuxi, People’s Republic of China
| | - Xueshi Zhou
- Department of Laboratory medicine, Department of Infectious Diseases, Wuxi Fifth People’s Hospital Affiliated to Nanjing Medical University, Wuxi, People’s Republic of China
| | - Wenhong Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
- Shanghai Sci-Tech InnoCenter for Infection and Immunity, Shanghai, People’s Republic of China
| | - Ning Jiang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Sen Wang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
- Department of Laboratory medicine, Department of Infectious Diseases, Wuxi Fifth People’s Hospital Affiliated to Nanjing Medical University, Wuxi, People’s Republic of China
- Shanghai Sci-Tech InnoCenter for Infection and Immunity, Shanghai, People’s Republic of China
| |
Collapse
|
5
|
Li DN, Liu XY, Xu JB, Shi K, Li JM, Diao NC, Zong Y, Zeng FL, Du R. Mycobacterium tuberculosis Rv1048c affects the biological characteristics of recombinant Mycobacterium smegmatis. Sci Rep 2024; 14:29749. [PMID: 39613837 DOI: 10.1038/s41598-024-81405-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024] Open
Abstract
Tuberculosis is a serious, infectious, zoonotic disease caused by Mycobacterium tuberculosis. Infections are transmitted in humans and livestock via aerosols. Rv1048c is a hypothetical unknown protein in the standard strain of Mycobacterium tuberculosis H37Rv. Rv1048c exists only in pathogenic Mycobacterium tuberculosis and is highly conserved; however its function is still unclear. The recombinant Mycobacterium smegmatis strain Ms_Rv1048c, with heterologous expression of the Rv1048c gene, was constructed by using the pMV261 expression plasmid. The biological characteristics of the recombinant bacteria were studied, such as their growth pattern, drug resistance, and virulence. Expression of Rv1048c significantly reduced the growth rate of the strain, enhanced its ability to form a biofilm, and reduced its tolerance to sodium dodecyl sulfate, H2O2, and various anti-tuberculosis drugs, and reduced the viability of infected RAW264.7 macrophages. Rv1048c also significantly reduced the level of early pro-inflammatory factors in infected RAW264.7 cells. Rv1048c protein is considered to be a virulence protein that might regulate the growth of M. tuberculosis strains. The results of the present study indicate that Rv1048c plays an important role in Mycobacterial infection.
Collapse
Affiliation(s)
- Dan-Ni Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xin-Yue Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jin-Biao Xu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Kun Shi
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- College of Food and Medicine, Liaoning Agricultural Technical College, Yingkou, China
| | - Jian-Ming Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- College of Food and Medicine, Liaoning Agricultural Technical College, Yingkou, China
| | - Nai-Chao Diao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- College of Food and Medicine, Liaoning Agricultural Technical College, Yingkou, China
| | - Ying Zong
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- College of Food and Medicine, Liaoning Agricultural Technical College, Yingkou, China
| | - Fan-Li Zeng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.
- College of Food and Medicine, Liaoning Agricultural Technical College, Yingkou, China.
- Jilin Province Sika Deer Efficient Breeding and Product Development Technology Engineering Research Center, Changchun, China.
| | - Rui Du
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.
- College of Food and Medicine, Liaoning Agricultural Technical College, Yingkou, China.
- Jilin Province Sika Deer Efficient Breeding and Product Development Technology Engineering Research Center, Changchun, China.
| |
Collapse
|
6
|
Rahman F. Characterizing the immune response to Mycobacterium tuberculosis: a comprehensive narrative review and implications in disease relapse. Front Immunol 2024; 15:1437901. [PMID: 39650648 PMCID: PMC11620876 DOI: 10.3389/fimmu.2024.1437901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/07/2024] [Indexed: 12/11/2024] Open
Abstract
Introduction Tuberculosis remains the leading cause of death from infectious diseases among adults worldwide. To date, an overarching review of the immune response to Mtb in humans has not been fully elucidated, with innate immunity remaining poorly understood due to historic focus on adaptive immunity. Specifically, there is a major gap concerning the contribution of the immune system to overall bacterial clearance, particularly residual bacteria. This review aims to describe the time course of interactions between the host immune system and Mtb, from the start of the infection to the development of the adaptive response. Concordantly, we aim to crystallize the pathogenic effects and immunoevasive mechanisms of Mtb. The translational value of animal data is also discussed. Methods The literature search was conducted in the PubMed, ScienceDirect, and Google Scholar databases, which included reported research from 1990 until 2024. A total of 190 publications were selected and screened, of which 108 were used for abstraction and 86 were used for data extraction. Graphical summaries were created using the narrative information (i.e., recruitment, recognition, and response) to generate clear visual representations of the immune response at the cellular and molecular levels. Results The key cellular players included airway epithelial cells, alveolar epithelial cells, neutrophils, natural killer cells, macrophages, dendritic cells, T cells, and granulomatous lesions; the prominent molecular players included IFN-γ, TNF-α, and IL-10. The paper also sheds light on the immune response to residual bacteria and applications of the data. Discussion We provide a comprehensive characterization of the key immune players that are implicated in pulmonary tuberculosis, in line with the organs or compartments in which mycobacteria reside, offering a broad vignette of the immune response to Mtb and how it responds to residual bacteria. Ultimately, the data presented could provide immunological insights to help establish optimized criteria for identifying efficacious treatment regimens and durations for relapse prevention in the modeling and simulation space and wider fields.
Collapse
Affiliation(s)
- Fatima Rahman
- Department of Pharmacology, University College London, London, United Kingdom
- Istituto per le Applicazioni del Calcolo, Consiglio Nazionale delle Ricerche, Rome, Italy
| |
Collapse
|
7
|
Auld SC, Barczak AK, Bishai W, Coussens AK, Dewi IMW, Mitini-Nkhoma SC, Muefong C, Naidoo T, Pooran A, Stek C, Steyn AJC, Tezera L, Walker NF. Pathogenesis of Post-Tuberculosis Lung Disease: Defining Knowledge Gaps and Research Priorities at the Second International Post-Tuberculosis Symposium. Am J Respir Crit Care Med 2024; 210:979-993. [PMID: 39141569 PMCID: PMC11531093 DOI: 10.1164/rccm.202402-0374so] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 08/13/2024] [Indexed: 08/16/2024] Open
Abstract
Post-tuberculosis (post-TB) lung disease is increasingly recognized as a major contributor to the global burden of chronic lung disease, with recent estimates indicating that over half of TB survivors have impaired lung function after successful completion of TB treatment. However, the pathologic mechanisms that contribute to post-TB lung disease are not well understood, thus limiting the development of therapeutic interventions to improve long-term outcomes after TB. This report summarizes the work of the Pathogenesis and Risk Factors Committee for the Second International Post-Tuberculosis Symposium, which took place in Stellenbosch, South Africa, in April 2023. The committee first identified six areas with high translational potential: 1) tissue matrix destruction, including the role of matrix metalloproteinase dysregulation and neutrophil activity; 2) fibroblasts and profibrotic activity; 3) granuloma fate and cell death pathways; 4) mycobacterial factors, including pathogen burden; 5) animal models; and 6) the impact of key clinical risk factors, including HIV, diabetes, smoking, malnutrition, and alcohol. We share the key findings from a literature review of those areas, highlighting knowledge gaps and areas where further research is needed.
Collapse
Affiliation(s)
- Sara C. Auld
- Departments of Medicine, Epidemiology, and Global Health, Emory University School of Medicine and Rollins School of Public Health, Atlanta, Georgia
| | - Amy K. Barczak
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - William Bishai
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Anna K. Coussens
- Infectious Diseases and Immune Defence Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Intan M. W. Dewi
- Microbiology Division, Department of Biomedical Sciences, Faculty of Medicine, and
- Research Center for Care and Control of Infectious Diseases, Universitas Padjadjaran, Bandung, Indonesia
| | | | - Caleb Muefong
- Department of Microbiology, University of Chicago, Chicago, Illinois
| | - Threnesan Naidoo
- Department of Forensic & Legal Medicine and
- Department of Laboratory Medicine & Pathology, Faculty of Medicine & Health Sciences, Walter Sisulu University, Eastern Cape, South Africa
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Anil Pooran
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine, and
- University of Cape Town Lung Institute and Medical Research Council/University of Cape Town Centre for the Study of Antimicrobial Resistance, Cape Town, South Africa
| | - Cari Stek
- Wellcome Center for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Adrie J. C. Steyn
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Department of Microbiology and
- Centers for AIDS Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Liku Tezera
- National Institute for Health and Care Research Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Naomi F. Walker
- Department of Clinical Sciences and Centre for Tuberculosis Research, Liverpool School of Tropical Medicine, Liverpool, United Kingdom; and
- Tropical and Infectious Diseases Unit, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| |
Collapse
|
8
|
Fan S, Zhao D, Wang J, Ma Y, Chen D, Huang Y, Zhang T, Liu Y, Xia J, Huang X, Lu Y, Ruan Y, Xu JF, Shen L, Yang F, Pi J. Photothermal and host immune activated therapy of cutaneous tuberculosis using macrophage targeted mesoporous polydopamine nanoparticles. Mater Today Bio 2024; 28:101232. [PMID: 39315396 PMCID: PMC11418140 DOI: 10.1016/j.mtbio.2024.101232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/25/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024] Open
Abstract
Tuberculosis (TB) remains the leading cause of deaths among infectious diseases worldwide. Cutaneous Tuberculosis (CTB), caused by Mycobacterium tuberculosis (Mtb) infection in the skin, is still a harmful public health issue that requires more effective treatment strategy. Herein, we introduced mannose-modified mesoporous polydopamine nanosystems (Man-mPDA NPs) as the macrophage-targeted vectors to deliver anti-TB drug rifampicin and as photothermal agent to facilitate photothermal therapy (PTT) against Mtb infected macrophages for synergistic treatment of CTB. Based on the selective macrophage targeting effects, the proposed Rif@Man-mPDA NPs also showed excellent photothermal properties to develop Rif@Man-mPDA NPs-mediated PTT for intracellular Mtb killings in macrophages. Importantly, Rif@Man-mPDA NPs could inhibit the immune escape of Mtb by effectively chelating intracellular Fe2+ and inhibiting lipid peroxidation, and up-regulating GPX4 expression to inhibit ferroptosis of Mtb infected macrophages through activating Nrf2/HO-1 signaling. Moreover, Rif@Man-mPDA NPs-mediated PTT could effectively activate host cell immune responses by promoting autophagy of Mtb infected macrophages, which thus synergizes targeted drug delivery and ferroptosis inhibition for more effective intracellular Mtb clearance. This Rif@Man-mPDA NPs-mediated PTT strategy could also effectively inhibit the Mtb burdens and alleviate the pathological lesions induced by Mtb infection without significant systemic side effects in mouse CTB model. These results indicate that Rif@Man-mPDA NPs-mediated PTT can be served as a novel anti-TB strategy against CTB by synergizing macrophage targeted photothermal therapy and host immune defenses, thus holding promise for more effective treatment strategy development against CTB.
Collapse
Affiliation(s)
- Shuhao Fan
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Daina Zhao
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Jiajun Wang
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Yuhe Ma
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Dongsheng Chen
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Yuhe Huang
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Tangxin Zhang
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Yilin Liu
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Jiaojiao Xia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Xueqin Huang
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Yujia Lu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Yongdui Ruan
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, China
| | - Jun-Fa Xu
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Ling Shen
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
| | - Fen Yang
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Jiang Pi
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| |
Collapse
|
9
|
Wang J, Cao H, Xie Y, Xu Z, Li Y, Luo H. Mycobacterium tuberculosis infection induces a novel type of cell death: Ferroptosis. Biomed Pharmacother 2024; 177:117030. [PMID: 38917759 DOI: 10.1016/j.biopha.2024.117030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024] Open
Abstract
Ferroptosis is a lipid peroxidation-driven and iron-dependent form of programmed cell death, which is involved in a variety of physical processes and multiple diseases. Numerous reports have demonstrated that ferroptosis is closely related to the pathophysiological processes of Mycobacterium tuberculosis (M. tuberculosis) infection and is characterized by the accumulation of excess lipid peroxides on the cell membrane. In this study, the various functions of ferroptosis, and the therapeutic strategies and diagnostic biomarkers of tuberculosis, were summarized. Notably, this review provides insights into the molecular mechanisms and functions of M. tuberculosis-induced ferroptosis, suggesting potential future therapeutic and diagnostic markers for tuberculosis.
Collapse
Affiliation(s)
- Jianjun Wang
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou 215300, PR China
| | - Hui Cao
- Department of Food and Nutrition Safety, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu 210009, PR China
| | - Yiping Xie
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou 215300, PR China
| | - Zi Xu
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou 215300, PR China
| | - Yujie Li
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou 215300, PR China
| | - Hao Luo
- Department of Clinical Laboratory, The Second People's Hospital of Kunshan, Suzhou, China.
| |
Collapse
|
10
|
Yang B, Zhai F, Li Z, Wang X, Deng X, Cao Z, Liu Y, Wang R, Jiang J, Cheng X. Identification of ferroptosis-related gene signature for tuberculosis diagnosis and therapy efficacy. iScience 2024; 27:110182. [PMID: 38989455 PMCID: PMC11233969 DOI: 10.1016/j.isci.2024.110182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/04/2024] [Accepted: 06/01/2024] [Indexed: 07/12/2024] Open
Abstract
Diagnosis of tuberculosis remains a challenge when microbiological tests are negative. Immune cell atlas of patients with tuberculosis and healthy controls were established by single-cell transcriptome. Through integrated analysis of scRNA-seq with microarray and bulk RNA sequencing data, a ferroptosis-related gene signature containing ACSL4, CTSB, and TLR4 genes that were associated with tuberculosis disease was identified. Four gene expression datasets from blood samples of patients with tuberculosis, latent tuberculosis infection, and healthy controls were used to assess the diagnostic value of the gene signature. The areas under the ROC curve for the combined gene signature were 1.000, 0.866, 0.912, and 0.786, respectively, in differentiating active tuberculosis from latent infection. During anti-tuberculosis treatment, the expression of the gene signature decreased significantly in cured patients with tuberculosis. In conclusion, the ferroptosis-related gene signature was associated with tuberculosis treatment efficacy and was a promising biomarker for differentiating active tuberculosis from latent infection.
Collapse
Affiliation(s)
- Bingfen Yang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Fei Zhai
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Zhimin Li
- 4th Division of Tuberculosis, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Xinjing Wang
- Outpatient Department, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Xianping Deng
- Department of Laboratory Medicine, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Zhihong Cao
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Yanhua Liu
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Ruo Wang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Jing Jiang
- Institute of Research, Beijing Key Laboratory of Organ Transplantation and Immune Regulation, Senior Department of Respiratory and Critical Care Medicine, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Xiaoxing Cheng
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
11
|
Hosseinian K, Gerami A, Bral M, Venketaraman V. Mycobacterium tuberculosis-Human Immunodeficiency Virus Infection and the Role of T Cells in Protection. Vaccines (Basel) 2024; 12:730. [PMID: 39066368 PMCID: PMC11281535 DOI: 10.3390/vaccines12070730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Tuberculosis (TB), primarily caused by Mycobacterium tuberculosis (M. tb), remains a widespread fatal health issue that becomes significantly detrimental when coupled with HIV. This study explores the host's innate and adaptive immune system response to TB in HIV immunocompromised patients, highlighting the significant role of CD8+ T cells. While the crucial role of macrophages and cytokines, like TNF-α and IFN-γ, in managing the host's immune response to M. tb is examined, the emphasis is on the changes that occur as a result of HIV coinfection. With the progression of HIV infection, the primary source of IFN-γ changes from CD4+ to CD8+ T cells, especially when latent TB advances to an active state. This study sheds light on the necessity of developing new preventative measures such as vaccines and new treatment approaches to TB, especially for immunocompromised patients, who are at a higher risk of life-threatening complications due to TB-HIV coinfection.
Collapse
Affiliation(s)
| | | | | | - Vishwanath Venketaraman
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
12
|
Arya R, Shakya H, Chaurasia R, Kumar S, Vinetz JM, Kim JJ. Computational reassessment of RNA-seq data reveals key genes in active tuberculosis. PLoS One 2024; 19:e0305582. [PMID: 38935691 PMCID: PMC11210783 DOI: 10.1371/journal.pone.0305582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/31/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Tuberculosis is a serious life-threatening disease among the top global health challenges and rapid and effective diagnostic biomarkers are vital for early diagnosis especially given the increasing prevalence of multidrug resistance. METHODS Two human whole blood microarray datasets, GSE42826 and GSE42830 were retrieved from publicly available gene expression omnibus (GEO) database. Deregulated genes (DEGs) were identified using GEO2R online tool and Gene Ontology (GO), protein-protein interaction (PPI) network analysis was performed using Metascape and STRING databases. Significant genes (n = 8) were identified using T-test/ANOVA and Molecular Complex Detection (MCODE) score ≥10, which was validated in GSE34608 dataset. The diagnostic potential of three biomarkers was assessed using Area Under Curve (AUC) of Receiver Operating Characteristic (ROC) plot. The transcriptional levels of these genes were also examined in a separate dataset GSE31348, to monitor the patterns of variation during tuberculosis treatment. RESULTS A total of 62 common DEGs (57 upregulated, 7 downregulated genes) were identified in two discovery datasets. GO functions and pathway enrichment analysis shed light on the functional roles of these DEGs in immune response and type-II interferon signaling. The genes in Module-1 (n = 18) were linked to innate immune response, interferon-gamma signaling. The common genes (n = 8) were validated in GSE34608 dataset, that corroborates the results obtained from discovery sets. The gene expression levels demonstrated responsiveness to Mtb infection during anti-TB therapy in GSE31348 dataset. In GSE34608 dataset, the expression levels of three specific genes, GBP5, IFITM3, and EPSTI1, emerged as potential diagnostic makers. In combination, these genes scored remarkable diagnostic performance with 100% sensitivity and 89% specificity, resulting in an impressive Area Under Curve (AUC) of 0.958. However, GBP5 alone showed the highest AUC of 0.986 with 100% sensitivity and 89% specificity. CONCLUSIONS The study presents valuable insights into the critical gene network perturbed during tuberculosis. These genes are determinants for assessing the effectiveness of an anti-TB response and distinguishing between active TB and healthy individuals. GBP5, IFITM3 and EPSTI1 emerged as candidate core genes in TB and holds potential as novel molecular targets for the development of interventions in the treatment of TB.
Collapse
Affiliation(s)
- Rakesh Arya
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, South Korea
| | - Hemlata Shakya
- Department of Biomedical Engineering, Shri G. S. Institute of Technology and Science, Indore, Madhya Pradesh, India
| | - Reetika Chaurasia
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, United States of America
| | - Surendra Kumar
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Joseph M. Vinetz
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, United States of America
| | - Jong Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, South Korea
| |
Collapse
|
13
|
Yu Y, Hua J, Chen L. Autophagy-related molecular clusters identified as indicators for distinguishing active and latent TB infection in pediatric patients. BMC Pediatr 2024; 24:398. [PMID: 38890657 PMCID: PMC11186109 DOI: 10.1186/s12887-024-04881-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Autophagy is crucial for controlling the manifestation of tuberculosis. This study intends to discover autophagy-related molecular clusters as biomarkers for discriminating between latent tuberculosis (LTBI) and active tuberculosis (ATB) in children through gene expression profile analysis. METHODS The expression of autophagy modulators was examined in pediatric patients with LTBI and ATB utilizing public datasets from the Gene Expression Omnibus (GEO) collection (GSE39939 and GSE39940). RESULTS In a training dataset (GSE39939), patients with LTBI and ATB exhibited the expression of autophagy-related genes connected with their active immune responses. Two molecular clusters associated with autophagy were identified. Compared to Cluster 1, Cluster 2 was distinguished through decreased adaptive cellular immune response and enhanced inflammatory activation, according to single-sample gene set enrichment analysis (ssGSEA). Per the study of gene set variation, Cluster 2's differentially expressed genes (DEGs) played a role in synthesizing transfer RNA, DNA repair and recombination, and primary immunodeficiency. The peak variation efficiency, root mean square error, and area under the curve (AUC) (AUC = 0.950) were all lowered in random forest models. Finally, a seven-gene-dependent random forest profile was created utilizing the CD247, MAN1C1, FAM84B, HSZFP36, SLC16A10, DTX3, and SIRT4 genes, which performed well against the validation dataset GSE139940 (AUC = 0.888). The nomogram calibration and decision curves performed well in identifying ATB from LTBI. CONCLUSIONS In summary, according to the present investigation, autophagy and the immunopathology of TB might be correlated. Furthermore, this investigation established a compelling prediction expression profile for measuring autophagy subtype development risks, which might be employed as possible biomarkers in children to differentiate ATB from LTBI.
Collapse
Affiliation(s)
- Yang Yu
- Department of Pediatric, Nanjing Lishui People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Jie Hua
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liang Chen
- Department of Infectious Diseases, Taikang Xianlin Drum Tower Hospital, Affiliated Hospital of Medical College of Nanjing University, Qixia District, NO 188, Lingshan North Road, Qixia District, Nanjing, 210046, China.
| |
Collapse
|
14
|
Peng Y, Tang T, Li Q, Zhou S, Sun Q, Zhou X, Zhu Y, Wang C, Bermudez LE, Liu H, Chen H, Guo A, Chen Y. Mycobacterium tuberculosis FadD18 Promotes Proinflammatory Cytokine Secretion to Inhibit the Intracellular Survival of Bacillus Calmette-Guérin. Cells 2024; 13:1019. [PMID: 38920649 PMCID: PMC11201411 DOI: 10.3390/cells13121019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
Mycobacterium tuberculosis causes 6.4 million cases of tuberculosis and claims 1.6 million lives annually. Mycobacterial adhesion, invasion of host cells, and subsequent intracellular survival are crucial for the infection and dissemination process, yet the cellular mechanisms underlying these phenomena remain poorly understood. This study created a Bacillus Calmette-Guérin (BCG) transposon library using a MycomarT7 phage carrying a Himar1 Mariner transposon to identify genes related to mycobacteria adhesion and invasion. Using adhesion and invasion model screening, we found that the mutant strain B2909 lacked adhesion and invasion abilities because of an inactive fadD18 gene, which encodes a fatty-acyl CoA ligase, although the specific function of this gene remains unclear. To investigate the role of FadD18, we constructed a complementary strain and observed that fadD18 expression enhanced the colony size and promoted the formation of a stronger cord-like structure; FadD18 expression also inhibited BCG growth and reduced BCG intracellular survival in macrophages. Furthermore, FadD18 expression elevated levels of the proinflammatory cytokines IL-6, IL-1β, and TNF-α in infected macrophages by stimulating the NF-κB and MAPK signaling pathways. Overall, the FadD18 plays a key role in the adhesion and invasion abilities of mycobacteria while modulating the intracellular survival of BCG by influencing the production of proinflammatory cytokines.
Collapse
Affiliation(s)
- Yongchong Peng
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.P.); (T.T.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tian Tang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.P.); (T.T.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qianqian Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.P.); (T.T.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shiying Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.P.); (T.T.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qin Sun
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.P.); (T.T.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinjun Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.P.); (T.T.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yifan Zhu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.P.); (T.T.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chao Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.P.); (T.T.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Luiz E. Bermudez
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Han Liu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.P.); (T.T.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.P.); (T.T.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Aizhen Guo
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.P.); (T.T.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingyu Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.P.); (T.T.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
15
|
Vu A, Glassman I, Campbell G, Yeganyan S, Nguyen J, Shin A, Venketaraman V. Host Cell Death and Modulation of Immune Response against Mycobacterium tuberculosis Infection. Int J Mol Sci 2024; 25:6255. [PMID: 38892443 PMCID: PMC11172987 DOI: 10.3390/ijms25116255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis (TB), a prevalent infectious disease affecting populations worldwide. A classic trait of TB pathology is the formation of granulomas, which wall off the pathogen, via the innate and adaptive immune systems. Some key players involved include tumor necrosis factor-alpha (TNF-α), foamy macrophages, type I interferons (IFNs), and reactive oxygen species, which may also show overlap with cell death pathways. Additionally, host cell death is a primary method for combating and controlling Mtb within the body, a process which is influenced by both host and bacterial factors. These cell death modalities have distinct molecular mechanisms and pathways. Programmed cell death (PCD), encompassing apoptosis and autophagy, typically confers a protective response against Mtb by containing the bacteria within dead macrophages, facilitating their phagocytosis by uninfected or neighboring cells, whereas necrotic cell death benefits the pathogen, leading to the release of bacteria extracellularly. Apoptosis is triggered via intrinsic and extrinsic caspase-dependent pathways as well as caspase-independent pathways. Necrosis is induced via various pathways, including necroptosis, pyroptosis, and ferroptosis. Given the pivotal role of host cell death pathways in host defense against Mtb, therapeutic agents targeting cell death signaling have been investigated for TB treatment. This review provides an overview of the diverse mechanisms underlying Mtb-induced host cell death, examining their implications for host immunity. Furthermore, it discusses the potential of targeting host cell death pathways as therapeutic and preventive strategies against Mtb infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (G.C.); (A.S.)
| |
Collapse
|
16
|
Li Z, Gao Y, Zhang B, Dong W, Xi Y, Li Y, Cui J. circRNA_SLC8A1 promotes the survival of mycobacterium tuberculosis in macrophages by upregulating expression of autophagy-related protein SQSTM1/p62 to activate the NF-κB pathway. Sci Rep 2024; 14:5233. [PMID: 38433218 PMCID: PMC10909944 DOI: 10.1038/s41598-024-55493-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/23/2024] [Indexed: 03/05/2024] Open
Abstract
Macrophages act as the first immune defense line of the host against Mycobacterium tuberculosis (Mtb). A previous study showed that circRNA_SLC8A1 was significantly upregulated in Mtb-infected macrophages, but its regulatory mechanism in anti-tuberculosis infection is unclear. Therefore, this study aimed to investigate the role of circRNA_SLC8A1 in the anti-tuberculosis activity of macrophages. We showed that circRNA_SLC8A1 was upregulated in tuberculosis patients. Moreover, the binding sites of miR-20b-5p on circRNA_SLC8A1 and Sequestosome 1 (SQSTM1/p62) mRNA were predicted by StarBase and verified by the double luciferase reporter gene assay. Next, we found that miR-20b-5p expression was decreased, while SQSTM1 protein expression was increased in a time- and dose-dependent manner in the human macrophage U937 in response to Mtb infection. Furthermore, circRNA_SLC8A1 overexpression vector (circRNA_SLC8A1) or shRNA (sh-circRNA_SLC8A1) and/or miR-20b-5p mimic or inhibitor and/or SQSTM1 overexpression vector (SQSTM1) or small interfering RNA (si-SQSTM1) or its corresponding control were transfected into Mtb-infected macrophages. Results showed that overexpression of circRNA_SLC8A1 or miR-20b-5p inhibitor promoted the secretion of pro-inflammatory factors IL-1β, IL-6, and TNF-α, increased Nitric Oxide (NO) content and inducible nitric oxide synthase (iNOS) expression, inhibited Reactive oxygen species (ROS) production. Cleaved-caspase-3 protein expression, and cell apoptosis, and promoted Mtb survival. Silencing SQSTM1 inhibited secretion of pro-inflammatory factors and activation of the NF-κB pathway. Overexpression of miR-20b-5p blocked the promoting of circ-SLC8A1 on SQSTM1 protein expression. In summary, circRNA_SLC8A1 sponged miR-20b-5p to upregulate SQSTM1/p62 expression and promoted Mtb survival in macrophages through the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Zhenyun Li
- Department of Tuberculosis, The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, Henan, China
| | - Yuan Gao
- Department of Tuberculosis, The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, Henan, China
| | - Bianfang Zhang
- Department of Tuberculosis, The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, Henan, China
| | - Wei Dong
- Department of Tuberculosis, The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, Henan, China
| | - Yuling Xi
- Clinical Pharmacy Office, The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, Henan, China
| | - Yan Li
- Gastrointestinal Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, Henan, China
| | - Junwei Cui
- Department of Tuberculosis, The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, Henan, China.
| |
Collapse
|
17
|
Yuk JM, Kim JK, Kim IS, Jo EK. TNF in Human Tuberculosis: A Double-Edged Sword. Immune Netw 2024; 24:e4. [PMID: 38455468 PMCID: PMC10917576 DOI: 10.4110/in.2024.24.e4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/01/2024] [Accepted: 01/10/2024] [Indexed: 03/09/2024] Open
Abstract
TNF, a pleiotropic proinflammatory cytokine, is important for protective immunity and immunopathology during Mycobacterium tuberculosis (Mtb) infection, which causes tuberculosis (TB) in humans. TNF is produced primarily by phagocytes in the lungs during the early stages of Mtb infection and performs diverse physiological and pathological functions by binding to its receptors in a context-dependent manner. TNF is essential for granuloma formation, chronic infection prevention, and macrophage recruitment to and activation at the site of infection. In animal models, TNF, in cooperation with chemokines, contributes to the initiation, maintenance, and clearance of mycobacteria in granulomas. Although anti-TNF therapy is effective against immune diseases such as rheumatoid arthritis, it carries the risk of reactivating TB. Furthermore, TNF-associated inflammation contributes to cachexia in patients with TB. This review focuses on the multifaceted role of TNF in the pathogenesis and prevention of TB and underscores the importance of investigating the functions of TNF and its receptors in the establishment of protective immunity against and in the pathology of TB. Such investigations will facilitate the development of therapeutic strategies that target TNF signaling, which makes beneficial and detrimental contributions to the pathogenesis of TB.
Collapse
Affiliation(s)
- Jae-Min Yuk
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon 35015, Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea
- Department of Infection Biology, Chungnam National University College of Medicine, Daejeon 35015, Korea
| | - Jin Kyung Kim
- Department of Microbiology, Keimyung University School of Medicine, Daegu 42601, Korea
| | - In Soo Kim
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea
- Department of Pharmacology, Chungnam National University College of Medicine, Daejeon 35015, Korea
| | - Eun-Kyeong Jo
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon 35015, Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon 35015, Korea
| |
Collapse
|
18
|
Kolloli A, Kumar R, Venketaraman V, Subbian S. Immunopathology of Pulmonary Mycobacterium tuberculosis Infection in a Humanized Mouse Model. Int J Mol Sci 2024; 25:1656. [PMID: 38338937 PMCID: PMC10855034 DOI: 10.3390/ijms25031656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Despite the availability of antibiotic therapy, tuberculosis (TB) is prevailing as a leading killer among human infectious diseases, which highlights the need for better intervention strategies to control TB. Several animal model systems, including mice, guinea pigs, rabbits, and non-human primates have been developed and explored to understand TB pathogenesis. Although each of these models contributes to our current understanding of host-Mycobacterium tuberculosis (Mtb) interactions, none of these models fully recapitulate the pathological spectrum of clinical TB seen in human patients. Recently, humanized mouse models are being developed to improvise the limitations associated with the standard mouse model of TB, including lack of necrotic caseation of granulomas, a pathological hallmark of TB in humans. However, the spatial immunopathology of pulmonary TB in humanized mice is not fully understood. In this study, using a novel humanized mouse model, we evaluated the spatial immunopathology of pulmonary Mtb infection with a low-dose inoculum. Humanized NOD/LtSscidIL2Rγ null mice containing human fetal liver, thymus, and hematopoietic CD34+ cells and treated with human cytokines were aerosol challenged to implant <50 pathogenic Mtb (low dose) in the lungs. At 2 and 4 weeks post infection, the tissue bacterial load, disease pathology, and spatial immunohistology were determined in the lungs, liver, spleen, and adipose tissue using bacteriological, histopathological, and immunohistochemical techniques. The results indicate that implantation of <50 bacteria can establish a progressive disease in the lungs that transmits to other tissues over time. The disease pathology in organs correspondingly increased with the bacterial load. A distinct spatial distribution of T cells, macrophages, and natural killer cells were noted in the lung granulomas. The kinetics of spatial immune cell distribution were consistent with the disease pathology in the lungs. Thus, the novel humanized model recapitulates several key features of human pulmonary TB granulomatous response and can be a useful preclinical tool to evaluate potential anti-TB drugs and vaccines.
Collapse
Affiliation(s)
- Afsal Kolloli
- Public Health Research Institute, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA
| | - Ranjeet Kumar
- Public Health Research Institute, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Selvakumar Subbian
- Public Health Research Institute, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
19
|
Dai X, Zhou L, He X, Hua J, Chen L, Lu Y. Identification of apoptosis-related gene signatures as potential biomarkers for differentiating active from latent tuberculosis via bioinformatics analysis. Front Cell Infect Microbiol 2024; 14:1285493. [PMID: 38312744 PMCID: PMC10834671 DOI: 10.3389/fcimb.2024.1285493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/02/2024] [Indexed: 02/06/2024] Open
Abstract
Background Apoptosis is associated with the pathogenesis of Mycobacterium tuberculosis infection. This study aims to identify apoptosis-related genes as biomarkers for differentiating active tuberculosis (ATB) from latent tuberculosis infection (LTBI). Methods The tuberculosis (TB) datasets (GSE19491, GSE62525, and GSE28623) were downloaded from the Gene Expression Omnibus (GEO) database. The diagnostic biomarkers differentiating ATB from LTBI were identified by combining the data of protein-protein interaction network, differentially expressed gene, Weighted Gene Co-Expression Network Analysis (WGCNA), and receiver operating characteristic (ROC) analyses. Machine learning algorithms were employed to validate the diagnostic ability of the biomarkers. Enrichment analysis for biomarkers was established, and potential drugs were predicted. The association between biomarkers and N6-methyladenosine (m6A) or 5-methylated cytosine (m5C) regulators was evaluated. Results Six biomarkers including CASP1, TNFSF10, CASP4, CASP5, IFI16, and ATF3 were obtained for differentiating ATB from LTBI. They showed strong diagnostic performances, with area under ROC (AUC) values > 0.7. Enrichment analysis demonstrated that the biomarkers were involved in immune and inflammation responses. Furthermore, 24 drugs, including progesterone and emricasan, were predicted. The correlation analysis revealed that biomarkers were positively correlated with most m6A or m5C regulators. Conclusion The six ARGs can serve as effective biomarkers differentiating ATB from LTBI and provide insight into the pathogenesis of Mycobacterium tuberculosis infection.
Collapse
Affiliation(s)
- Xiaoting Dai
- Department of Infectious Diseases, Nanjing Lishui People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Litian Zhou
- Department of Neurosugery, Nanjing Lishui People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Xiaopu He
- Department of Geriatric Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Hua
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liang Chen
- Department of Infectious Diseases, Nanjing Lishui People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Yingying Lu
- Department of Clinical Laboratory, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Clinical Laboratory, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| |
Collapse
|
20
|
Kordi N, Saydi A, Azimi M, Mazdarani FH, Gadruni K, Jung F, Karami S. Cuproptosis and physical training. Clin Hemorheol Microcirc 2024; 88:337-350. [PMID: 39031346 DOI: 10.3233/ch-242329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
Copper is an essential element in the human body, involved in many physiological and metabolic functions, including coagulation, oxidative metabolism, and hormone production. The maintenance of copper homeostasis within cells is a complex procedure that is intrinsically controlled by a multitude of intricate mechanisms. Disorders of copper homeostasis encompass a wide range of pathological conditions, including degenerative neurological diseases, metabolic disorders, cardio-cerebrovascular diseases, and tumors. Cuproptosis, a recently identified non-apoptotic mode of cell death mode, is characterized by copper dependence and the regulation of mitochondrial respiration. Cuproptosis represents a novel form of cell death distinct from the previously described modes, including apoptosis, necrosis, pyroptosis, and ferroptosis. Excess copper has been shown to induce cuproptosis by stimulating protein toxic stress responses via copper-dependent abnormal oligomerization of lipoylation proteins within the tricarboxylic acid cycle and the subsequent reduction of iron-sulfur cluster protein levels. Ferredoxin1 facilitates the lipoacylation of dihydrolipoyl transacetylase, which in turn degrades iron-sulfur cluster proteins by reducing Cu2+ to Cu+, thereby inducing cell death. Furthermore, copper homeostasis is regulated by the copper transporter, and disturbances in this homeostasis result in cuproptosis. Current evidence suggests that cuproptosis plays an important role in the onset and development of several cardiovascular diseases. Copper-chelating agents, including ammonium tetrathiomolybdate (VI) and DL-penicillamine, have been shown to facilitate the alleviation of cardiovascular disease by inhibiting cuproptosis. It is hypothesized that oxidative phosphorylation inhibitors such as physical training may inhibit cuproptosis by inhibiting the protein stress response. In conclusion, the implementation of physical training may be a viable strategy to reducte the incidence of cuproptosis.
Collapse
Affiliation(s)
- Negin Kordi
- Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| | - Ali Saydi
- Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| | - Maliheh Azimi
- Faculty of Physical Education, Shahrood University of Technology, Shahrood, Iran
| | | | - Keivan Gadruni
- Faculty of Physical Education, University of Tabriz, Tabriz, Iran
- Kurdistan Education Office, Ministry of Education, Kurdistan, Iran
- Uro-Oncology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Friedrich Jung
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Sajad Karami
- Faculty of Physical Education and Sport Science, Shahid Rajaee Teacher Training University, Tehran, Iran
| |
Collapse
|
21
|
Lorente L, Martín MM, Ortiz-López R, González-Rivero AF, Gómez-Bernal F, Jiménez A, Pérez-Cejas A. Parthanatos type programmed cell death and septic patient mortality. Med Intensiva 2023; 47:691-696. [PMID: 37268496 DOI: 10.1016/j.medine.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/29/2023] [Indexed: 06/04/2023]
Abstract
OBJECTIVE Parthanatos is a form of programmed cell death mediated by apoptosis-inducing factor (AIF). However, there are not data on parthanatos in septic patients. The objective of the current study was to explore whether parthanatos is associated with mortality of septic patients. DESIGN Observational and prospective study. SETTING Three Spanish Intensive Care Units during 2017. PATIENTS Patients with sepsis according to Sepsis-3 Consensus criteria. INTERVENTIONS Serum AIF concentrations were determined at moment of sepsis diagnosis. MAIN VARIABLE OF INTEREST Mortality at 30 days. RESULTS There were included 195 septic patients, and non-surviving (n=72) had serum AIF levels (p<0.001), lactic acid (p<0.001) and APACHE-II (p<0.001) that surviving (n=123). Multiple logistic regression analysis showed that patients with serum AIF levels>55.6ng/mL had higher mortality risk (OR=3.290; 95% CI=1.551-6.979; p=0.002) controlling for age, SOFA and lactic acid. CONCLUSIONS Parthanatos is associated with mortality of septic patients.
Collapse
Affiliation(s)
- Leonardo Lorente
- Intensive Care Unit, Hospital Universitario de Canarias, Tenerife, Spain.
| | - María M Martín
- Intensive Care Unit, Hospital Universitario Nuestra Señora Candelaria, Santa Cruz Tenerife, Spain
| | - Raquel Ortiz-López
- Intensive Care Unit, Hospital Universitario de La Palma, Breña Alta, La Palma, Spain
| | | | - Fuensanta Gómez-Bernal
- Laboratory Department, Hospital Universitario de Canarias, Santa Cruz de Tenerife, Spain
| | | | - Antonia Pérez-Cejas
- Laboratory Department, Hospital Universitario de Canarias, Santa Cruz de Tenerife, Spain
| |
Collapse
|
22
|
Mayer-Barber KD. Granulocytes subsets and their divergent functions in host resistance to Mycobacterium tuberculosis - a 'tipping-point' model of disease exacerbation. Curr Opin Immunol 2023; 84:102365. [PMID: 37437471 PMCID: PMC10543468 DOI: 10.1016/j.coi.2023.102365] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/29/2023] [Accepted: 06/14/2023] [Indexed: 07/14/2023]
Abstract
Granulocytes are innate immune effector cells with essential functions in host resistance to bacterial infections. I will discuss emerging evidence that during Mycobacterium tuberculosis infection, counter-intuitively, eosinophils are host-protective while neutrophils are host detrimental. Additionally, I will propose a 'tipping-point' model in which neutrophils are an integral part of a feedforward loop driving tuberculosis disease exacerbation.
Collapse
Affiliation(s)
- Katrin D Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, 20892, USA.
| |
Collapse
|
23
|
Ramon-Luing LA, Palacios Y, Ruiz A, Téllez-Navarrete NA, Chavez-Galan L. Virulence Factors of Mycobacterium tuberculosis as Modulators of Cell Death Mechanisms. Pathogens 2023; 12:839. [PMID: 37375529 PMCID: PMC10304248 DOI: 10.3390/pathogens12060839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/29/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) modulates diverse cell death pathways to escape the host immune responses and favor its dissemination, a complex process of interest in pathogenesis-related studies. The main virulence factors of Mtb that alter cell death pathways are classified according to their origin as either non-protein (for instance, lipomannan) or protein (such as the PE family and ESX secretion system). The 38 kDa lipoprotein, ESAT-6 (early antigen-secreted protein 6 kDa), and another secreted protein, tuberculosis necrotizing toxin (TNT), induces necroptosis, thereby allowing mycobacteria to survive inside the cell. The inhibition of pyroptosis by blocking inflammasome activation by Zmp1 and PknF is another pathway that aids the intracellular replication of Mtb. Autophagy inhibition is another mechanism that allows Mtb to escape the immune response. The enhanced intracellular survival (Eis) protein, other proteins, such as ESX-1, SecA2, SapM, PE6, and certain microRNAs, also facilitate Mtb host immune escape process. In summary, Mtb affects the microenvironment of cell death to avoid an effective immune response and facilitate its spread. A thorough study of these pathways would help identify therapeutic targets to prevent the survival of mycobacteria in the host.
Collapse
Affiliation(s)
- Lucero A. Ramon-Luing
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City 14080, Mexico; (L.A.R.-L.); (A.R.)
| | - Yadira Palacios
- Escuela Militar de Graduados de Sanidad, Secretaría de la Defensa Nacional, Mexico City 11200, Mexico;
- Department of Biological Systems, Universidad Autónoma Metropolitana, Campus Xochimilco, Mexico City 04960, Mexico
| | - Andy Ruiz
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City 14080, Mexico; (L.A.R.-L.); (A.R.)
| | - Norma A. Téllez-Navarrete
- Department of Healthcare Coordination, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City 14080, Mexico;
| | - Leslie Chavez-Galan
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City 14080, Mexico; (L.A.R.-L.); (A.R.)
| |
Collapse
|
24
|
Chiok KR, Dhar N, Banerjee A. Mycobacterium tuberculosis and SARS-CoV-2 co-infections: The knowns and unknowns. iScience 2023; 26:106629. [PMID: 37091987 PMCID: PMC10082467 DOI: 10.1016/j.isci.2023.106629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Health impacts of Mycobacterium tuberculosis (Mtb) and SARS-CoV-2 co-infections are not fully understood. Both pathogens modulate host responses and induce immunopathology with extensive lung damage. With a quarter of the world's population harboring latent TB, exploring the relationship between SARS-CoV-2 infection and its effect on the transition of Mtb from latent to active form is paramount to control this pathogen. The effects of active Mtb infection on establishment and severity of COVID-19 are also unknown, despite the ability of TB to orchestrate profound long-lasting immunopathologies in the lungs. Absence of mechanistic studies and co-infection models hinder the development of effective interventions to reduce the health impacts of SARS-CoV-2 and Mtb co-infection. Here, we highlight dysregulated immune responses induced by SARS-CoV-2 and Mtb, their potential interplay, and implications for co-infection in the lungs. As both pathogens master immunomodulation, we discuss relevant converging and diverging immune-related pathways underlying SARS-CoV-2 and Mtb co-infections.
Collapse
Affiliation(s)
- Kim R Chiok
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Neeraj Dhar
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Respiratory Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Arinjay Banerjee
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
- Respiratory Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
25
|
Wen Q, Zhang J, Zhang Z, Chen L, Liu H, Han Z, Chen Y, Wang K, Liu J, Sai N, Zhou X, Zhou C, Hu S, Ma L. Cisatracurium besylate rescues Mycobacterium Tuberculosis-infected macrophages from necroptosis and enhances the bactericidal effect of isoniazid. Int Immunopharmacol 2023; 120:110291. [PMID: 37182451 DOI: 10.1016/j.intimp.2023.110291] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
OBJECTIVE Tuberculosis is the leading killer among the chronic single-source infectious diseases. Mycobacterium tuberculosis can induce necrotic-dominant multiple modes of cell death in macrophages, which accelerates bacterium dissemination and expands tissue injury in host lungs. Mining drugs to counteract Mycobacterium tuberculosis-induced cell death would be beneficial to tuberculosis patients. METHODS In this study, the protective drug was screened out from the FDA-approved drug library in Mycobacterium tuberculosis-infected macrophages with CCK-8 assay. The death mode regulated by the drug was identified using transcriptomic sequencing, cytomorphological observation, and in the experimental mouse Mycobacterium tuberculosis-infection model. The functional mechanism was explored using western blot, co-immunoprecipitation, and DARTS assay. The intracellular bacterial survival was detected using colony forming unit assays. RESULTS Cisatracurium besylate was identified to be highly protective for the viability of macrophages during Mycobacterium tuberculosis infection via inhibiting necroptosis. Cisatracurium besylate prevented RIPK3 to be associated with the executive molecule MLKL for forming the necroptotic complex, resulting in the inhibition of MLKL phosphorylation and pore formation on cell membrane. However, Cisatracurium besylate did not interfere with the association between RIPK3 with its upstream kinase RIPK1 or ZBP1 but regulated RIPK3 autophosphorylation. Moreover, Cisatracurium besylate significantly inhibited the expansion of intracellular Mycobacterium tuberculosis both in vitro and in vivo, which also displayed a strong auxiliary bacteriostatic effect to support the therapeutic efficacy of isoniazid and rifampicin, the first-line anti-tubercular drugs. CONCLUSION Cisatracurium besylate performs anti-Mycobacterium tuberculosis and anti-necroptotic roles, which potentiates its application to be an adjuvant drug for antituberculosis therapy to assist the battle against drug-resistant tuberculosis.
Collapse
Affiliation(s)
- Qian Wen
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Jing Zhang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhanqing Zhang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Liru Chen
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Honglin Liu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhenyu Han
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Yaoxin Chen
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Ke Wang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Jieyu Liu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Na Sai
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xinying Zhou
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Chaoying Zhou
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Shengfeng Hu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Li Ma
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
26
|
Wang D, Tian Z, Zhang P, Zhen L, Meng Q, Sun B, Xu X, Jia T, Li S. The molecular mechanisms of cuproptosis and its relevance to cardiovascular disease. Biomed Pharmacother 2023; 163:114830. [PMID: 37150036 DOI: 10.1016/j.biopha.2023.114830] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 04/11/2023] [Accepted: 04/30/2023] [Indexed: 05/09/2023] Open
Abstract
Recently, cuproptosis has been demonstrated to be a new non-apototic cell death mode that is characterized by copper dependence and the regulation of mitochondrial respiration. Cuproptosis is distinct from known cell death modes such as apoptosis, necrosis, pyroptosis, or ferroptosis. Excessive copper induces cuproptosis by promoting protein toxic stress reactions via copper-dependent anomalous oligomerization of lipoylation proteins in the tricarboxylic acid (TCA) cycle and reducing iron-sulfur cluster protein levels. Ferredoxin1 (FDX1) promotes dihydrolipoyl transacetylase (DLAT) lipoacylation and abates iron-sulfur cluster proteins by reducing Cu2+ to Cu+, inducing cell death. Copper homeostasis depends on the copper transporter, and disturbances to this homeostasis cause cuproptosis. Recent evidence has shown that cuproptosis plays a significant role in the occurrence and development of many cardiovascular diseases, such as myocardial ischemia/reperfusion (I/R) injury, heart failure, atherosclerosis, and arrhythmias. Copper chelators, such as ammonium tetrathiomolybdate(VI) and DL-Penicillamine, may ease the above cardiovascular diseases by inhibiting the cuproptosis pathway. Oxidative phosphorylation inhibitors may inhibit cuproptosis by inhibiting protein stress response. In conclusion, cuproptosis plays an essential role in cardiovascular disease pathogenesis. Inhibition of cardiovascular cuproptosis is expected to become a potential treatment. Here, we will thoroughly review the molecular mechanisms involved in cuproptosis and its significance in cardiovascular disease.
Collapse
Affiliation(s)
- Di Wang
- Department of Anesthesiology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhenyu Tian
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health. Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational. Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Peng Zhang
- Department of Urology, Zibo Hospital of Integrated Traditional Chinese and Western Medicine, Zibo, China
| | - Lv Zhen
- Department of Cardiology, Zibo First Hospital, Zibo, China
| | - Qingju Meng
- Department of Internal Medicine, Zoucheng Xiangcheng Town Health Center, Jining, China
| | - Benteng Sun
- Department of Primary and Secondary education, Qufu Mingde School, Jining, China
| | - Xingli Xu
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Tong Jia
- Department of Geratology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, China
| | - Shengqiang Li
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, China.
| |
Collapse
|
27
|
Meng Q, Ding B, Ma P, Lin J. Interrelation between Programmed Cell Death and Immunogenic Cell Death: Take Antitumor Nanodrug as an Example. SMALL METHODS 2023; 7:e2201406. [PMID: 36707416 DOI: 10.1002/smtd.202201406] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/20/2022] [Indexed: 05/17/2023]
Abstract
Programmed cell death (PCD, mainly including apoptosis, necrosis, ferroptosis, pyroptosis, and autophagy) and immunogenic cell death (ICD), as important cell death mechanisms, are widely reported in cancer therapy, and understanding the relationship between the two is significant for clinical tumor treatments. Considering that vast nanodrugs are developed to induce tumor PCD and ICD simultaneously, in this review, the interrelationship between PCD and ICD is described using nanomedicines as examples. First, an overview of PCD patterns and focus on the morphological differences and interconnections among them are provided. Then the interrelationship between apoptosis and ICD in terms of endoplasmic reticulum stress is described by introducing various cancer treatments and the recent developments of nanomedicines with inducible immunogenicity. Next, the crosstalk between non-apoptotic (including necrosis, ferroptosis, pyroptosis, and autophagy) signaling pathways and ICD is introduced and their relationship through various nanomedicines as examples is further illustrated. Finally, the relationship between PCD and ICD and its application prospects in the development of new ICD nanomaterials are summarized. This review is believed to deepen the understanding of the relationship between PCD and ICD, extend the biomedical applications of various nanodrugs, and promote the progress of clinical tumor therapy.
Collapse
Affiliation(s)
- Qi Meng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Binbin Ding
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
28
|
Shi C, Cao P, Wang Y, Zhang Q, Zhang D, Wang Y, Wang L, Gong Z. PANoptosis: A Cell Death Characterized by Pyroptosis, Apoptosis, and Necroptosis. J Inflamm Res 2023; 16:1523-1532. [PMID: 37077221 PMCID: PMC10106823 DOI: 10.2147/jir.s403819] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/05/2023] [Indexed: 04/21/2023] Open
Abstract
PANoptosis is a new cell death proposed by Malireddi et al in 2019, which is characterized by pyroptosis, apoptosis and necroptosis, but cannot be explained by any of them alone. The interaction between pyroptosis, apoptosis and necroptosis is involved in PANoptosis. In this review, from the perspective of PANoptosis, we focus on the relationship between pyroptosis, apoptosis and necroptosis, the key molecules in the process of PANoptosis and the formation of PANoptosome, as well as the role of PANoptosis in diseases. We aim to understand the mechanism of PANoptosis and provide a basis for targeted intervention of PANoptosis-related molecules to treat human diseases.
Collapse
Affiliation(s)
- Chunxia Shi
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Pan Cao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Yukun Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Qingqi Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Danmei Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Yao Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Luwen Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Zuojiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
- Correspondence: Zuojiong Gong, Department of Infectious Diseases, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, People’s Republic of China, Email
| |
Collapse
|
29
|
Wang C, Hua J, He X, Chen L, Lv S. A diagnostic model for distinguishing between active tuberculosis and latent tuberculosis infection based on the blood expression profiles of autophagy-related genes. Ther Adv Respir Dis 2023; 17:17534666231217798. [PMID: 38131281 DOI: 10.1177/17534666231217798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Autophagy is closely involved in the control of mycobacterial infection. OBJECTIVES Here, a diagnostic model was developed using the levels of autophagy-related genes (ARGs) in the blood to differentiate active tuberculosis (ATB) and latent tuberculosis infection (LTBI). DESIGN Secondary data analysis of three prospective cohorts. METHODS The expression of ARGs in patients with ATB and LTBI were analyzed using the GSE37250, GSE19491, and GSE28623 datasets from the GEO database. RESULTS Twenty-two differentially expressed ARGs were identified in the training dataset GSE37250. Using least absolute shrinkage and selection operator and multivariate logistic regression, three ARGs (FOXO1, CCL2, and ITGA3) were found that were positively associated with adaptive immune-related lymphocytes and negatively associated with myeloid and inflammatory cells. A nomogram was constructed using the three ARGs. The accuracy, consistency, and clinical relevance of the nomogram were evaluated using receiver operating characteristic curves, the C-index, calibration curves, and validation in the datasets GSE19491 and GSE28623. The nomogram showed good predictive performance. CONCLUSION The nomogram was able to accurately differentiate between ATB and LTBI patients. These findings provide evidence for future study on the pathology of autophagy in tuberculosis infection.
Collapse
Affiliation(s)
- Chengbin Wang
- Department of Regulation Section, The First Affiliated Hospital of Guizhou University of Chinese Medicine, Guiyang, China
| | - Jie Hua
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaopu He
- Department of Geriatric Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liang Chen
- Department of Infectious Diseases, Nanjing Lishui People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, No. 86 Chongwen Road, Lishui District, Nanjing 211002, China
| | - Shuhan Lv
- Department of Obstetrics, The First Affiliated Hospital of Guizhou University of Chinese Medicine, No. 71 Baoshan North Road, Yunyan District, Guiyang, Guizhou 550007, China
| |
Collapse
|