1
|
Roldán Gallardo FF, Martínez Piñerez DE, Reinarz Torrado KF, Berg GA, Herzfeld JD, Da Ros VG, López Seoane M, Maldonado CA, Quintar AA. Extracellular Vesicles Contribute to Oxidized LDL-Induced Stromal Cell Proliferation in Benign Prostatic Hyperplasia. BIOLOGY 2024; 13:827. [PMID: 39452137 PMCID: PMC11504470 DOI: 10.3390/biology13100827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Clinical and experimental evidence has linked Benign Prostatic Hyperplasia (BPH) with dyslipidemic and hypercholesterolemic conditions, though the underlying cellular mechanisms remain unclear. This study investigates the impact of dyslipidemia, specifically oxidized LDL (OxLDL), on prostatic stromal cell proliferation and the release of extracellular vesicles (EVs). METHODS Mice were fed a high-fat diet, and human prostatic stromal cells (HPSCs) were treated with OxLDL. Proliferation assays and EV characterization were performed to assess the role of EVs in BPH progression. RESULTS Pro-atherogenic conditions significantly increased cell proliferation in both murine prostatic cells and HPSCs. Treatment with metformin effectively inhibited OxLDL-induced proliferation. Additionally, OxLDL stimulated the production and release of pro-proliferative EVs by HPSCs, which further promoted cellular proliferation. CONCLUSIONS The findings suggest that dyslipidemia drives prostatic stromal cell proliferation and EV secretion, contributing to BPH progression. Metformin demonstrates potential as a therapeutic agent to mitigate these effects, offering insight into novel strategies for BPH management. This study highlights the complex interaction between dyslipidemia, cell proliferation, and extracellular communication in the context of BPH pathogenesis.
Collapse
Affiliation(s)
- Franco F. Roldán Gallardo
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (F.F.R.G.)
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba 5000, Argentina
| | - Daniel E. Martínez Piñerez
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (F.F.R.G.)
| | - Kevin F. Reinarz Torrado
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (F.F.R.G.)
| | - Gabriela A. Berg
- Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires 1000, Argentina
| | - Jael D. Herzfeld
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires 1000, Argentina
| | - Vanina G. Da Ros
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires 1000, Argentina
| | | | - Cristina A. Maldonado
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (F.F.R.G.)
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba 5000, Argentina
| | - Amado A. Quintar
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (F.F.R.G.)
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba 5000, Argentina
| |
Collapse
|
2
|
Tong KL, Mahmood Zuhdi AS, Wong PF. The role of miR-134-5p in 7-ketocholesterol-induced human aortic endothelial dysfunction. EXCLI JOURNAL 2024; 23:1073-1090. [PMID: 39391056 PMCID: PMC11464864 DOI: 10.17179/excli2024-7342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/22/2024] [Indexed: 10/12/2024]
Abstract
Atherosclerotic cardiovascular diseases are the leading causes of morbidity and mortality worldwide. In our previous study, a panel of miRNA including miR-134-5p was deregulated in young acute coronary syndrome (ACS) patients. However, the roles of these ACS-associated miRNAs in endothelial dysfunction, an early event preceding atherosclerosis, remain to be investigated. In the present study, human aortic endothelial cells (HAECs) were treated with 7-ketocholesterol (7-KC) to induce endothelial dysfunction. Following treatment with 20 μg/ml 7-KC, miR-134-5p was significantly up-regulated and endothelial nitric oxide synthase (eNOS) expression was suppressed. Endothelial barrier disruption was evidenced by the deregulation of adhesion molecules including the activation of focal adhesion kinase (FAK), down-regulation of VE-cadherin, up-regulation of adhesion molecules (E-selectin and ICAM-1), increased expression of inflammatory genes (IL1B, IL6 and COX2) and AKT activation. Knockdown of miR-134-5p in 7-KC-treated HAECs attenuated the suppression of eNOS, the activation of AKT, the down-regulation of VE-cadherin and the up-regulation of E-selectin. In addition, the interaction between miR-134-5p and FOXM1 mRNA was confirmed by the enrichment of FOXM1 transcripts in the pull-down miRNA-mRNA complex. Knockdown of miR-134-5p increased FOXM1 expression whereas transfection with mimic miR-134-5p decreased FOXM1 protein expression. In summary, the involvement of an ACS-associated miRNA, miR-134-5p in endothelial dysfunction was demonstrated. Findings from this study could pave future investigations into utilizing miRNAs as a supplementary tool in ACS diagnosis or as targets for the development of therapeutics.
Collapse
Affiliation(s)
- Kind-Leng Tong
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | | | - Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Xu Z, Chen Y, Wang Y, Han W, Xu W, Liao X, Zhang T, Wang G. Matrix stiffness, endothelial dysfunction and atherosclerosis. Mol Biol Rep 2023; 50:7027-7041. [PMID: 37382775 DOI: 10.1007/s11033-023-08502-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/28/2023] [Indexed: 06/30/2023]
Abstract
Atherosclerosis (AS) is the leading cause of the human cardiovascular diseases (CVDs). Endothelial dysfunction promotes the monocytes infiltration and inflammation that participate fundamentally in atherogenesis. Endothelial cells (EC) have been recognized as mechanosensitive cells and have different responses to distinct mechanical stimuli. Emerging evidence shows matrix stiffness-mediated EC dysfunction plays a vital role in vascular disease, but the underlying mechanisms are not yet completely understood. This article aims to summarize the effect of matrix stiffness on the pro-atherosclerotic characteristics of EC including morphology, rigidity, biological behavior and function as well as the related mechanical signal. The review also discusses and compares the contribution of matrix stiffness-mediated phagocytosis of macrophages and EC to AS progression. These advances in our understanding of the relationship between matrix stiffness and EC dysfunction open the avenues to improve the prevention and treatment of now-ubiquitous atherosclerotic diseases.
Collapse
Affiliation(s)
- Zichen Xu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Yi Chen
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Yi Wang
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Wenbo Han
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Wenfeng Xu
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Xiaoling Liao
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Tao Zhang
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China.
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
- Bioengineering College of Chongqing University, NO.174, Shazheng Street, Shapingba District, Chongqing, 400030, PR China.
| |
Collapse
|
4
|
Sarkar P, Kumar GA, Shrivastava S, Chattopadhyay A. Chronic cholesterol depletion increases F-actin levels and induces cytoskeletal reorganization via a dual mechanism. J Lipid Res 2022; 63:100206. [PMID: 35390404 PMCID: PMC9096963 DOI: 10.1016/j.jlr.2022.100206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 12/24/2022] Open
Abstract
Previous work from us and others has suggested that cholesterol is an important lipid in the context of the organization of the actin cytoskeleton. However, reorganization of the actin cytoskeleton upon modulation of membrane cholesterol is rarely addressed in the literature. In this work, we explored the signaling crosstalk between cholesterol and the actin cytoskeleton by using a high-resolution confocal microscopic approach to quantitatively measure changes in F-actin content upon cholesterol depletion. Our results show that F-actin content significantly increases upon chronic cholesterol depletion, but not during acute cholesterol depletion. In addition, utilizing inhibitors targeting the cholesterol biosynthetic pathway at different steps, we show that reorganization of the actin cytoskeleton could occur due to the synergistic effect of multiple pathways, including prenylated Rho GTPases and availability of membrane phosphatidylinositol 4,5-bisphosphate. These results constitute one of the first comprehensive dissections of the mechanistic basis underlying the interplay between cellular actin levels and cholesterol biosynthesis. We envision these results will be relevant for future understating of the remodeling of the actin cytoskeleton in pathological conditions with altered cholesterol.
Collapse
Affiliation(s)
- Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - G Aditya Kumar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | | |
Collapse
|
5
|
MK2206 attenuates atherosclerosis by inhibiting lipid accumulation, cell migration, proliferation, and inflammation. Acta Pharmacol Sin 2022; 43:897-907. [PMID: 34316032 PMCID: PMC8976090 DOI: 10.1038/s41401-021-00729-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/27/2021] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease is a common comorbidity in patients with cancer, and the main leading cause of noncancer-related deaths in cancer survivors. Considering that current antitumor drugs usually induce cardiovascular injury, the quest for developing new antitumor drugs, especially those with cardiovascular protection, is crucial for improving cancer prognosis. MK2206 is a phase II clinical anticancer drug and the role of this drug in cardiovascular disease is still unclear. Here, we revealed that MK2206 significantly reduced vascular inflammation, atherosclerotic lesions, and inhibited proliferation of vascular smooth muscle cell in ApoE-/- mice in vivo. We demonstrated that MK2206 reduced lipid accumulation by promoting cholesterol efflux but did not affect lipid uptake and decreased inflammatory response by modulating inflammation-related mRNA stability in macrophages. In addition, we revealed that MK2206 suppressed migration, proliferation, and inflammation in vascular smooth muscle cells. Moreover, MK2206 inhibited proliferation and inflammation of endothelial cells. The present results suggest that MK2206, as a promising drug in clinical antitumor therapy, exhibits anti-inflammatory and antiatherosclerotic potential. This report provides a novel strategy for the prevention of cardiovascular comorbidities in cancer survivors.
Collapse
|
6
|
Emerging Anti-Atherosclerotic Therapies. Int J Mol Sci 2021; 22:ijms222212109. [PMID: 34829992 PMCID: PMC8624828 DOI: 10.3390/ijms222212109] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/24/2021] [Accepted: 11/02/2021] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease (CAD) is the main cause of morbidity and deaths in the western world. The development of atherosclerosis underlying CAD development begins early in human life. There are numerous genetic and environmental risk factors accelerating its progression which then leads to the occurrence of acute events. Despite considerable progress in determining risk factors, there is still a lot of work ahead since identified determinants are responsible only for a part of overall CAD risk. Current therapies are insufficient to successfully reduce the risk of atherosclerosis development. Therefore, there is a need for effective preventive measures of clinical manifestations of atherosclerosis since the currently available drugs cannot prevent the occurrence of even 70% of clinical events. The shift of the target from lipid metabolism has opened the door to many new therapeutic targets. Currently, the majority of known targets for anti-atherosclerotic drugs focus also on inflammation (a common mediator of many risk factors), mechanisms of innate and adaptive immunity in atherosclerosis, molecule scavengers, etc. The therapeutic potential of cyclodextrins, protein kinase inhibitors, colchicine, inhibitors of p38 mitogen-activated protein kinase (MAPK), lipid dicarbonyl scavengers, a monoclonal antibody targeting interleukin-1β, and P-selectin inhibitors is still not fully confirmed and requires confirmation in large clinical trials. The preliminary results look promising.
Collapse
|
7
|
Roldán Gallardo FF, Quintar AA. The pathological growth of the prostate gland in atherogenic contexts. Exp Gerontol 2021; 148:111304. [PMID: 33676974 DOI: 10.1016/j.exger.2021.111304] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 02/06/2023]
Abstract
The human prostate is an androgen-dependent gland where an imbalance in cell proliferation can lead to benign prostatic hyperplasia (BPH), which results in voiding lower urinary tract symptoms in the elderly. In the last decades, novel evidence has suggested that BPH might represent an element into the wide spectrum of disorders conforming the Metabolic Syndrome (MS). The dyslipidemic state and the other atherogenic factors of the MS have been shown to induce, maintain and/or aggravate the pathological growth of different organs, with data regarding the prostate being still limited. We here review the available epidemiological and experimental studies about the association of BPH with dyslipidemias. In particular, we have focused on Oxidized Low-Density Lipoproteins (OxLDL) as a potential trigger for vascular disease and cellular proliferation in atherogenic contexts, analyzing their putative molecular mechanisms, including the induction of specific extracellular vesicles (EVs)-derived miRNAs. In addition to the epidemiological evidence, OxLDL is proposed to play a fundamental role in the upregulation of prostatic cell proliferation by activating the Rho/Akt/p27Kip1 pathway in atherogenic contexts. miR-21, miR-141, miR-143, miR-145, miR-155, and miR-221 would be involved in the transcription of genes related to the proliferative process. Although much remains to be investigated regarding the impact of OxLDL, its receptors, and molecular mechanisms on the prostate, it is clear that EVs and miRNAs represent a promising target for proliferative pathologies of the prostate gland.
Collapse
Affiliation(s)
- Franco F Roldán Gallardo
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Ciencias de la Salud (INICSA), Córdoba, Argentina
| | - Amado A Quintar
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Ciencias de la Salud (INICSA), Córdoba, Argentina.
| |
Collapse
|
8
|
Zhou Y, Wang X, Guo L, Chen L, Zhang M, Chen X, Li J, Zhang L. TRPV1 activation inhibits phenotypic switching and oxidative stress in vascular smooth muscle cells by upregulating PPARα. Biochem Biophys Res Commun 2021; 545:157-163. [PMID: 33550097 DOI: 10.1016/j.bbrc.2021.01.072] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 01/20/2021] [Indexed: 10/22/2022]
Abstract
The proliferation and migration of vascular smooth muscle cells (VSMCs) is one of main reasons of vascular remodeling and is the pathogenesis of atherosclerosis and other vascular diseases. Transient receptor potential vanilloid 1 (TRPV1) is the specific receptor of capsaicin. TRPV1 has been previously reported to inhibit proliferation, migration and phenotypic switching, but the regulatory mechanisms and relevant signalling pathways are not clear. The aim of this study was to investigate the effects of capsaicin-activated TRPV1 on VSMC phenotypic switching. In this study, oxidized low density lipoprotein (ox-LDL) was used to induce the proliferation and migration of VSMCs. Our data showed that the VSMC proliferation induced by ox-LDL was dependent on the concentration of ox-LDL. Nevertheless, the data showed that capsaicin activated TRPV1 significantly decreased ox-LDL-induced superoxide anion generation. Phenotypic switching of VSMCs was inhibited by the activation of TRPV1. Furthermore, capsaicin decreased ox-LDL-induced superoxide anion generation by activating peroxisome proliferator activated receptor α (PPARα). TRPV1 inhibited VSMC phenotypic switching via upregulated expression of PPARα. It may be considered a useful target for the treatment of vascular remodeling.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Neurology, 980 Hospital of PLA Joint Logistics Support Forces, 398 ZhongShan Xi Road, QiaoXi District, ShiJiaZhuang, Hebei Province, China
| | - Xueli Wang
- Department of Neurology, 980 Hospital of PLA Joint Logistics Support Forces, 398 ZhongShan Xi Road, QiaoXi District, ShiJiaZhuang, Hebei Province, China
| | - Lu Guo
- Department of Neurology, Army Medical University Daping Hospital, 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, PR China
| | - Lizhao Chen
- Department of Neurosurgery, Army Medical University Daping Hospital, 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, PR China
| | - Mingjie Zhang
- Department of Neurology, The General Hospital of Western Theater Command, 270 Tianhuan Road, Rongdu Avenue, Chengdu, Sichuan Province, China
| | - Xue Chen
- Department of Neurology, Ya 'an People's Hospital, 358 Chenghou Road, Ya 'an City, Sichuan Province, China
| | - Jingcheng Li
- Department of Neurology, Army Medical University Daping Hospital, 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, PR China.
| | - Lili Zhang
- Department of Neurology, Army Medical University Daping Hospital, 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, PR China.
| |
Collapse
|
9
|
Poznyak AV, Nikiforov NG, Markin AM, Kashirskikh DA, Myasoedova VA, Gerasimova EV, Orekhov AN. Overview of OxLDL and Its Impact on Cardiovascular Health: Focus on Atherosclerosis. Front Pharmacol 2021; 11:613780. [PMID: 33510639 PMCID: PMC7836017 DOI: 10.3389/fphar.2020.613780] [Citation(s) in RCA: 144] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/02/2020] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular pathologies maintain the leading position in mortality worldwide. Atherosclerosis is a chronic disease that can result in a variety of serious complications, such as myocardial infarction, stroke, and cardiovascular disease. Inflammation and lipid metabolism alterations play a crucial role in atherogenesis, but the details of relationships and causality of these fundamental processes remain not clear. The oxidation of LDL was considered the main atherogenic modification of LDL within the vascular wall for decades. However, recent investigations provided a growing body of evidence in support of the multiple LDL modification theory. It suggests that LDL particles undergo numerous modifications that change their size, density, and chemical properties within the blood flow and vascular wall. Oxidation is the last stage in this cascade resulting in the atherogenic properties. Moreover, recent investigations have discovered that oxLDL may have both anti-inflammatory and pro-inflammatory properties. Oxidized LDL can trigger inflammation through the activation of macrophages and other cells. After all, oxidized LDL is still a promising object for further investigations that have the potential to clarify the unknown parts of the atherogenic process. In this review, we discuss the role of oxLDL in atherosclerosis development on different levels.
Collapse
Affiliation(s)
- Anastasia V Poznyak
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia
| | - Nikita G Nikiforov
- Centre of Collective Usage, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.,National Medical Research Center of Cardiology, Institute of Experimental Cardiology, Moscow, Russia.,Laboratory of Cellular and Molecular Pathology of the Cardiovascular System, Institute of Human Morphology, Moscow, Russia.,Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Alexander M Markin
- Laboratory of Cellular and Molecular Pathology of the Cardiovascular System, Institute of Human Morphology, Moscow, Russia
| | - Dmitry A Kashirskikh
- Laboratory of Cellular and Molecular Pathology of the Cardiovascular System, Institute of Human Morphology, Moscow, Russia
| | - Veronika A Myasoedova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia.,Centro Cardiologico Monzino, Istituti di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Elena V Gerasimova
- Department of Systemic Rheumatic Diseases, V.A. Nasonova Research Institute of Rheumatology, Moscow, Russia
| | - Alexander N Orekhov
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia.,Laboratory of Cellular and Molecular Pathology of the Cardiovascular System, Institute of Human Morphology, Moscow, Russia.,Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| |
Collapse
|
10
|
Enhanced asthma-related fibroblast to myofibroblast transition is the result of profibrotic TGF-β/Smad2/3 pathway intensification and antifibrotic TGF-β/Smad1/5/(8)9 pathway impairment. Sci Rep 2020; 10:16492. [PMID: 33020537 PMCID: PMC7536388 DOI: 10.1038/s41598-020-73473-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 07/09/2020] [Indexed: 12/17/2022] Open
Abstract
Airway remodelling with subepithelial fibrosis, which abolishes the physiological functions of the bronchial wall, is a major issue in bronchial asthma. Human bronchial fibroblasts (HBFs) derived from patients diagnosed with asthma display in vitro predestination towards TGF-β1-induced fibroblast-to-myofibroblast transition (FMT), a key event in subepithelial fibrosis. As commonly used anti-asthmatic drugs do not reverse the structural changes of the airways, and the molecular mechanism of enhanced asthma-related TGF-β1-induced FMT is poorly understood, we investigated the balance between the profibrotic TGF-β/Smad2/3 and the antifibrotic TGF-β/Smad1/5/9 signalling pathways and its role in the myofibroblast formation of HBF populations derived from asthmatic and non-asthmatic donors. Our findings showed for the first time that TGF-β-induced activation of the profibrotic Smad2/3 signalling pathway was enhanced, but the activation of the antifibrotic Smad1/5/(8)9 pathway by TGF-β1 was significantly diminished in fibroblasts from asthmatic donors compared to those from their healthy counterparts. The impairment of the antifibrotic TGF-β/Smad1/5/(8)9 pathway in HBFs derived from asthmatic donors was correlated with enhanced FMT. Furthermore, we showed that Smad1 silencing in HBFs from non-asthmatic donors increased the FMT potential in these cells. Additionally, we demonstrated that activation of antifibrotic Smad signalling via BMP7 or isoliquiritigenin [a small-molecule activator of the TGF-β/Smad1/5/(8)9 pathway] administration prevents FMT in HBFs from asthmatic donors through downregulation of profibrotic genes, e.g., α-SMA and fibronectin. Our data suggest that influencing the balance between the antifibrotic and profibrotic TGF-β/Smad signalling pathways using BMP7-mimetic compounds presents an unprecedented opportunity to inhibit subepithelial fibrosis during airway remodelling in asthma.
Collapse
|
11
|
Le Master E, Ahn SJ, Levitan I. Mechanisms of endothelial stiffening in dyslipidemia and aging: Oxidized lipids and shear stress. CURRENT TOPICS IN MEMBRANES 2020; 86:185-215. [PMID: 33837693 PMCID: PMC8168803 DOI: 10.1016/bs.ctm.2020.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Vascular stiffening of the arterial walls is well-known as a key factor in aging and the development of cardiovascular disease; however, the role of endothelial stiffness in vascular dysfunction is still an emerging topic. In this review, the authors discuss the impact of dyslipidemia, oxidized lipids, substrate stiffness, age and pro-atherogenic disturbed flow have on endothelial stiffness. Furthermore, we investigate several mechanistic pathways that are key contributors in endothelial stiffness and discuss their physiological effects in the onset of atherogenesis in the disturbed flow regions of the aortic vasculature. The findings in this chapter describe a novel paradigm of synergistic interaction of plasma dyslipidemia/oxidized lipids and pro-atherogenic disturbed shear stress, as well as aging has on endothelial stiffness and vascular dysfunction.
Collapse
Affiliation(s)
- Elizabeth Le Master
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Sang Joon Ahn
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Irena Levitan
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
12
|
Rosemary Leaf Extract Inhibits Glycation, Breast Cancer Proliferation, and Diabetes Risks. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10072249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Advanced glycation end products (AGEs) generated from glycation can cause inflammation-related diseases such as diabetes and cancer. The bioactive compounds of rosemary extract (RE) were extracted and incubated with sugar-protein rich food and breast cancer cell MCF-7 to investigate its inhibitory effect on glycation and cancer cell proliferation, respectively. The diabetic rat was dosed with RE to investigate its effect on blood glucose, serum malondialdehyde (MDA), cholesterol (CHO), triglycerides (TG), low-density lipoproteins (LDLs), anti-oxidation capacity (T-AOC), superoxide dismutase (SOD) activity, anti-oxidation capacity alkaline phosphatase (ALP), glutamate pyruvate transaminase (GPT), and glutamate oxaloacetate transaminase (GOT). The results show that RE contained seven major phenolics ranging from 17.82 mg/g for rosemarinic acid to 0.01 mg/g for ferulic acid on dry weight basis. It significantly lowered AGEs, carboxymethyl lysine (CML), and protein glycation in a sugar-protein rich intermediate-moisture-food (IMF) model. Furthermore, the survival rates of MCF-7 cells decreased to 6.02 and 2.16% after 96 h of incubation with 1.0 and 2.0 mg/mL of RE, respectively. The blood glucose, MDA, CHO, TG, and LDLs in diabetic rats of RE treatment were decreased. The RE treatment also enhanced the T-AOC and SOD activity. Furthermore, the RE treatment improved liver function through improving ALP, GPT, and GOT activities in diabetic rats. The results provide important information for the nutriaceutical and pharmaceutical application of rosemary extract.
Collapse
|
13
|
Hang L, Peng Y, Xiang R, Li X, Li Z. Ox-LDL Causes Endothelial Cell Injury Through ASK1/NLRP3-Mediated Inflammasome Activation via Endoplasmic Reticulum Stress. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:731-744. [PMID: 32158192 PMCID: PMC7047838 DOI: 10.2147/dddt.s231916] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/29/2020] [Indexed: 12/12/2022]
Abstract
Objective This study was to investigate the mechanism of inflammatory pathology modification induced by ox-LDL in endothelial cells. Methodology In this study, we firstly investigated the efflux of cholesterol of endothelial cells under the treatment of ox-LDL, and cell proliferation, ROS production, cell apoptosis was measured. Further, proteins of ASK1, NLRP3 inflammasomes and endoplasmic reticulum stress response were detected. Afterwards, ASK1 inhibitor (GS-4997) or endoplasmic reticulum stress (ERS) inhibitor (4-PBA) was used to measure the performance of endothelial cells. Results In this study, endothelial cells were treated with ox-LDLs alone or in combination with a GS-4997 or 4-PBA. Results showed that ox-LDLs attenuated the efflux of cholesterol from endothelial cells in a dose-dependent manner. Ox-LDLs inhibited the proliferation of endothelial cells, and induced their apoptosis and production of reactive oxygen species (ROS). Additionally, ox-LDLs upregulated the levels of phosphorylated ASK1, ERS-related proteins (chop, p-PERK, GRP78, and p-IRE-1), and inflammation-associated proteins (NLRP3, IL-1β, and caspase 1) in endothelial cells. Moreover, we proved that GS-4997 could partly reverse ox-LDL-mediated cell proliferation, apoptosis, ROS production, and inflammation in endothelial cells, and increase cholesterol efflux. We also found that 4-PBA could attenuate the effects of ox-LDLs on endothelial cell cholesterol efflux, proliferation, apoptosis, ROS production, and inflammation. Conclusion Our results suggest that cholesterol efflux from endothelial cells is reduced by ox-LDLs, and these reductions in cholesterol efflux are accompanied by increased NLRP3 inflammasome signaling, ASK1 and higher levels of endoplasmic reticulum stress. Our results suggest this axis as potential targets for treating atherosclerosis.
Collapse
Affiliation(s)
- Liwei Hang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, People's Republic of China.,Laboratory of Heart Center and Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, People's Republic of China.,Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangdong, Guangdong 510280, People's Republic of China.,Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, Guangdong 510280, People's Republic of China.,Department of Cardiology, Dongsheng People's Hospital, Erdos City, Inner Mongolia 017000, People's Republic of China
| | - Yan Peng
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Rui Xiang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xiangdong Li
- Fuwai Hospital, National Center of Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, People's Republic of China
| | - Zhiliang Li
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, People's Republic of China.,Laboratory of Heart Center and Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, People's Republic of China.,Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangdong, Guangdong 510280, People's Republic of China.,Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, Guangdong 510280, People's Republic of China
| |
Collapse
|
14
|
Bogachkov YY, Chen L, Le Master E, Fancher IS, Zhao Y, Aguilar V, Oh MJ, Wary KK, DiPietro LA, Levitan I. LDL induces cholesterol loading and inhibits endothelial proliferation and angiogenesis in Matrigels: correlation with impaired angiogenesis during wound healing. Am J Physiol Cell Physiol 2020; 318:C762-C776. [PMID: 31995410 DOI: 10.1152/ajpcell.00495.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Hypercholesterolemia is a major risk factor for adverse cardiovascular outcomes, but its effect on angiogenesis and wound healing is not well understood. In this study, using a combination of mass spectrometry and laurdan two-photon imaging, we show that elevated levels of low-density lipoprotein (LDL), like those seen in hypercholesterolemic patients, lead to an increase in both free cholesterol and cholesterol esters, as well as increase in lipid order of endothelial cell membranes. Notably, these effects are distinct and opposite to the lack of cholesterol loading and the disruption of lipid order observed in our earlier studies in response to oxidized LDL (oxLDL). The same pathological level of LDL leads to a significant inhibition of endothelial proliferation and cell cycle arrest in G2/M phase, whereas oxLDL enhances endothelial proliferation in S phase of the cycle. LDL but not oxLDL suppresses the expression of vascular endothelial growth factor receptor-2 while enhancing the expression of vascular endothelial growth factor (VEGF). Furthermore, we show that aged (8-10 mo) hypercholesterolemic apolipoprotein E-deficient (ApoE-/-) mice display delayed wound closure compared with age-matched C57/BL6 wild-type controls following a skin punch biopsy. The delay in wound healing is associated with a decreased expression of cluster of differentiation 31 platelet endothelial cell adhesion molecule endothelial marker and decreased angiogenesis within the wound bed. Furthermore, decreased endothelial responsiveness to the growth factors VEGF and basic fibroblast growth factor is observed in ApoE-/- mice in Matrigel plugs and in Matrigels with high levels of LDL in wild-type mice. We propose that plasma hypercholesterolemia is antiangiogenic due to elevated levels of LDL.
Collapse
Affiliation(s)
- Yedida Y Bogachkov
- Division of Pulmonary and Critical Care, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois.,Department of Cellular and Molecular Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - Lin Chen
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois
| | - Elizabeth Le Master
- Division of Pulmonary and Critical Care, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Ibra S Fancher
- Division of Pulmonary and Critical Care, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Yan Zhao
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois
| | - Victor Aguilar
- Division of Pulmonary and Critical Care, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Myung-Jin Oh
- Division of Pulmonary and Critical Care, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Kishore K Wary
- Department of Cellular and Molecular Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - Luisa A DiPietro
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois
| | - Irena Levitan
- Division of Pulmonary and Critical Care, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois.,Department of Cellular and Molecular Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
15
|
Couto NF, Rezende L, Fernandes-Braga W, Alves AP, Agero U, Alvarez-Leite J, Damasceno NRT, Castro-Gomes T, Andrade LO. OxLDL alterations in endothelial cell membrane dynamics leads to changes in vesicle trafficking and increases cell susceptibility to injury. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183139. [PMID: 31812625 DOI: 10.1016/j.bbamem.2019.183139] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/14/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023]
Abstract
Plasma membrane repair (PMR) is an important process for cell homeostasis, especially for cells under constant physical stress. Repair involves a sequence of Ca2+-dependent events, including lysosomal exocytosis and subsequent compensatory endocytosis. Cholesterol sequestration from plasma membrane causes actin cytoskeleton reorganization and polymerization, increasing cell stiffness, which leads to exocytosis and reduction of a peripheral pool of lysosomes involved in PMR. These changes in mechanical properties are similar to those observed in cells exposed to oxidized Low Density Lipoprotein (oxLDL), a key molecule during atherosclerosis development. Using a human umbilical vein endothelial cell line (EAhY926) we evaluated the influence of mechanical modulation induced by oxLDL in PMR and its effect in endothelial fragility. Similar to MβCD (a drug capable of sequestering cholesterol) treatment, oxLDL exposure led to actin reorganization and de novo polymerization, as well as an increase in cell rigidity and lysosomal exocytosis. Additionally, for both MβCD and oxLDL treated cells, there was an initial increase in endocytic events, likely triggered by the peak of exocytosis induced by both treatments. However, no further endocytic events were observed, suggesting that constitutive endocytosis is blocked upon treatment and that the reorganized cytoskeleton function as a mechanical barrier to membrane traffic. Finally, the increase in cell rigidity renders cells more prone to mechanical injury. Together, these data show that mechanical modulation induced by oxLDL exposure not only alters membrane traffic in cells, but also makes them more susceptible to mechanical injury, which may likely contribute to the initial steps of atherosclerosis development.
Collapse
Affiliation(s)
- Natália Fernanda Couto
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luisa Rezende
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Weslley Fernandes-Braga
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Paula Alves
- Department of Physics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ubirajara Agero
- Department of Physics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Jacqueline Alvarez-Leite
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Thiago Castro-Gomes
- Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luciana O Andrade
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
16
|
Schnitzler JG, Dallinga-Thie GM, Kroon J. The Role of (Modified) Lipoproteins in Vascular Function: A Duet Between Monocytes and the Endothelium. Curr Med Chem 2019; 26:1594-1609. [PMID: 29546830 DOI: 10.2174/0929867325666180316121015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 12/24/2022]
Abstract
Over the last century, many studies have demonstrated that low-density lipoprotein (LDL) is a key risk factor of cardiovascular diseases (CVD) related to atherosclerosis. Thus, for these CVD patients, LDL lowering agents are commonly used in the clinic to reduce the risk for CVD. LDL, upon modification, will develop distinct inflammatory and proatherogenic potential, leading to impaired endothelial integrity, influx of immune cells and subsequent increased foam cell formation. LDL can also directly affect peripheral monocyte composition, rendering them in a more favorable position to migrate and accumulate in the subendothelial space. It has become apparent that other lipoprotein particles, such as triglyceride- rich lipoproteins or remnants (TRL) and lipoprotein(a) [Lp(a)] may also impact on atherogenic pathways. Evidence is accumulating that Lp(a) can promote peripheral monocyte activation, eventually leading to increased transmigration through the endothelium. Similarly, remnant cholesterol has been identified to play a key role in endothelial dysfunction and monocyte behavior. In this review, we will discuss recent developments in understanding the role of different lipoproteins in the context of inflammation at both the level of the monocyte and the endothelium.
Collapse
Affiliation(s)
- Johan G Schnitzler
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Geesje M Dallinga-Thie
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Department of Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeffrey Kroon
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Department of Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Abstract
Chronic, noncommunicable, and inflammation-associated diseases remain the largest cause of morbidity and mortality globally and within the United States. This is mainly due to our limited understanding of the molecular mechanisms that underlie these complex pathologies. The available evidence indicates that studies of epigenetics (traditionally defined as the heritable changes to gene expression that are independent of changes to DNA) are significantly advancing our knowledge of these inflammatory conditions. This review will focus on epigenetic studies of three diseases, that are among the most burdensome globally: cardiovascular disease, the number one cause of deaths worldwide, type 2 diabetes and, Alzheimer’s disease. The current status of epigenetic research, including the ability to predict disease risk, and key pathophysiological defects are discussed. The significance of defining the contribution of epigenetic defects to nonresolving inflammation and aging, each associated with these diseases, is highlighted, as these are likely to provide new insights into inflammatory disease pathogenesis.
Collapse
Affiliation(s)
- Eleni Stylianou
- Consultant Biomedical Scientist and Bioinformaticist, North Royalton, OH, USA,
| |
Collapse
|
18
|
Liu J, Wada Y, Katsura M, Tozawa H, Erwin N, Kapron CM, Bao G, Liu J. Rho-Associated Coiled-Coil Kinase (ROCK) in Molecular Regulation of Angiogenesis. Am J Cancer Res 2018; 8:6053-6069. [PMID: 30613282 PMCID: PMC6299434 DOI: 10.7150/thno.30305] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 10/16/2018] [Indexed: 02/06/2023] Open
Abstract
Identified as a major downstream effector of the small GTPase RhoA, Rho-associated coiled-coil kinase (ROCK) is a versatile regulator of multiple cellular processes. Angiogenesis, the process of generating new capillaries from the pre-existing ones, is required for the development of various diseases such as cancer, diabetes and rheumatoid arthritis. Recently, ROCK has attracted attention for its crucial role in angiogenesis, making it a promising target for new therapeutic approaches. In this review, we summarize recent advances in understanding the role of ROCK signaling in regulating the permeability, migration, proliferation and tubulogenesis of endothelial cells (ECs), as well as its functions in non-ECs which constitute the pro-angiogenic microenvironment. The therapeutic potential of ROCK inhibitors in angiogenesis-related diseases is also discussed.
Collapse
|
19
|
Rho kinase, a potential target in the treatment of metabolic syndrome. Biomed Pharmacother 2018; 106:1024-1030. [DOI: 10.1016/j.biopha.2018.07.060] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 12/11/2022] Open
|
20
|
Le Master E, Huang RT, Zhang C, Bogachkov Y, Coles C, Shentu TP, Sheng Y, Fancher IS, Ng C, Christoforidis T, Subbaiah PV, Berdyshev E, Qain Z, Eddington DT, Lee J, Cho M, Fang Y, Minshall RD, Levitan I. Proatherogenic Flow Increases Endothelial Stiffness via Enhanced CD36-Mediated Uptake of Oxidized Low-Density Lipoproteins. Arterioscler Thromb Vasc Biol 2018; 38:64-75. [PMID: 29025707 PMCID: PMC5746473 DOI: 10.1161/atvbaha.117.309907] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 09/26/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Disturbed flow (DF) is well-known to induce endothelial dysfunction and synergistically with plasma dyslipidemia facilitate plaque formation. Little is known, however, about the synergistic impact of DF and dyslipidemia on endothelial biomechanics. Our goal was to determine the impact of DF on endothelial stiffness and evaluate the role of dyslipidemia/oxLDL (oxidized low-density lipoprotein) in this process. APPROACH AND RESULTS Endothelial elastic modulus of intact mouse aortas ex vivo and of human aortic endothelial cells exposed to laminar flow or DF was measured using atomic force microscopy. Endothelial monolayer of the aortic arch is found to be significantly stiffer than the descending aorta (4.2+1.1 versus 2.5+0.2 kPa for aortic arch versus descending aorta) in mice maintained on low-fat diet. This effect is significantly exacerbated by short-term high-fat diet (8.7+2.5 versus 4.5+1.2 kPa for aortic arch versus descending aorta). Exposure of human aortic endothelial cells to DF in vitro resulted in 50% increase in oxLDL uptake and significant endothelial stiffening in the presence but not in the absence of oxLDL. DF also increased the expression of oxLDL receptor CD36 (cluster of differentiation 36), whereas downregulation of CD36 abrogated DF-induced endothelial oxLDL uptake and stiffening. Furthermore, genetic deficiency of CD36 abrogated endothelial stiffening in the aortic arch in vivo in mice fed either low-fat diet or high-fat diet. We also show that the loss of endothelial stiffening in CD36 knockout aortas is not mediated by the loss of CD36 in circulating cells. CONCLUSIONS DF facilitates endothelial CD36-dependent uptake of oxidized lipids resulting in local increase of endothelial stiffness in proatherogenic areas of the aorta.
Collapse
Affiliation(s)
- Elizabeth Le Master
- From the Division of Pulmonary and Critical Care (E.L.M., C.Z., T.-P.S., I.S.F., I.L.), Division of Endocrinology (P.V.S.), Division of Hematology and Oncology, Department of Medicine (Y.S., Z.Q.), and Departments of Bioengineering (E.L.M., T.-P.S., C.N., T.C., D.T.E., J.L., M.C., I.L.), Pharmacology (Y.B., C.C., R.D.M., I.L.), and Anesthesiology (R.D.M.), University of Illinois at Chicago; Department of Medicine, University of Chicago, IL (R.-T.H., Y.F.); and Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO (E.B.)
| | - Ru-Ting Huang
- From the Division of Pulmonary and Critical Care (E.L.M., C.Z., T.-P.S., I.S.F., I.L.), Division of Endocrinology (P.V.S.), Division of Hematology and Oncology, Department of Medicine (Y.S., Z.Q.), and Departments of Bioengineering (E.L.M., T.-P.S., C.N., T.C., D.T.E., J.L., M.C., I.L.), Pharmacology (Y.B., C.C., R.D.M., I.L.), and Anesthesiology (R.D.M.), University of Illinois at Chicago; Department of Medicine, University of Chicago, IL (R.-T.H., Y.F.); and Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO (E.B.)
| | - Chongxu Zhang
- From the Division of Pulmonary and Critical Care (E.L.M., C.Z., T.-P.S., I.S.F., I.L.), Division of Endocrinology (P.V.S.), Division of Hematology and Oncology, Department of Medicine (Y.S., Z.Q.), and Departments of Bioengineering (E.L.M., T.-P.S., C.N., T.C., D.T.E., J.L., M.C., I.L.), Pharmacology (Y.B., C.C., R.D.M., I.L.), and Anesthesiology (R.D.M.), University of Illinois at Chicago; Department of Medicine, University of Chicago, IL (R.-T.H., Y.F.); and Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO (E.B.)
| | - Yedida Bogachkov
- From the Division of Pulmonary and Critical Care (E.L.M., C.Z., T.-P.S., I.S.F., I.L.), Division of Endocrinology (P.V.S.), Division of Hematology and Oncology, Department of Medicine (Y.S., Z.Q.), and Departments of Bioengineering (E.L.M., T.-P.S., C.N., T.C., D.T.E., J.L., M.C., I.L.), Pharmacology (Y.B., C.C., R.D.M., I.L.), and Anesthesiology (R.D.M.), University of Illinois at Chicago; Department of Medicine, University of Chicago, IL (R.-T.H., Y.F.); and Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO (E.B.)
| | - Cassandre Coles
- From the Division of Pulmonary and Critical Care (E.L.M., C.Z., T.-P.S., I.S.F., I.L.), Division of Endocrinology (P.V.S.), Division of Hematology and Oncology, Department of Medicine (Y.S., Z.Q.), and Departments of Bioengineering (E.L.M., T.-P.S., C.N., T.C., D.T.E., J.L., M.C., I.L.), Pharmacology (Y.B., C.C., R.D.M., I.L.), and Anesthesiology (R.D.M.), University of Illinois at Chicago; Department of Medicine, University of Chicago, IL (R.-T.H., Y.F.); and Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO (E.B.)
| | - Tzu-Pin Shentu
- From the Division of Pulmonary and Critical Care (E.L.M., C.Z., T.-P.S., I.S.F., I.L.), Division of Endocrinology (P.V.S.), Division of Hematology and Oncology, Department of Medicine (Y.S., Z.Q.), and Departments of Bioengineering (E.L.M., T.-P.S., C.N., T.C., D.T.E., J.L., M.C., I.L.), Pharmacology (Y.B., C.C., R.D.M., I.L.), and Anesthesiology (R.D.M.), University of Illinois at Chicago; Department of Medicine, University of Chicago, IL (R.-T.H., Y.F.); and Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO (E.B.)
| | - Yue Sheng
- From the Division of Pulmonary and Critical Care (E.L.M., C.Z., T.-P.S., I.S.F., I.L.), Division of Endocrinology (P.V.S.), Division of Hematology and Oncology, Department of Medicine (Y.S., Z.Q.), and Departments of Bioengineering (E.L.M., T.-P.S., C.N., T.C., D.T.E., J.L., M.C., I.L.), Pharmacology (Y.B., C.C., R.D.M., I.L.), and Anesthesiology (R.D.M.), University of Illinois at Chicago; Department of Medicine, University of Chicago, IL (R.-T.H., Y.F.); and Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO (E.B.)
| | - Ibra S Fancher
- From the Division of Pulmonary and Critical Care (E.L.M., C.Z., T.-P.S., I.S.F., I.L.), Division of Endocrinology (P.V.S.), Division of Hematology and Oncology, Department of Medicine (Y.S., Z.Q.), and Departments of Bioengineering (E.L.M., T.-P.S., C.N., T.C., D.T.E., J.L., M.C., I.L.), Pharmacology (Y.B., C.C., R.D.M., I.L.), and Anesthesiology (R.D.M.), University of Illinois at Chicago; Department of Medicine, University of Chicago, IL (R.-T.H., Y.F.); and Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO (E.B.)
| | - Carlos Ng
- From the Division of Pulmonary and Critical Care (E.L.M., C.Z., T.-P.S., I.S.F., I.L.), Division of Endocrinology (P.V.S.), Division of Hematology and Oncology, Department of Medicine (Y.S., Z.Q.), and Departments of Bioengineering (E.L.M., T.-P.S., C.N., T.C., D.T.E., J.L., M.C., I.L.), Pharmacology (Y.B., C.C., R.D.M., I.L.), and Anesthesiology (R.D.M.), University of Illinois at Chicago; Department of Medicine, University of Chicago, IL (R.-T.H., Y.F.); and Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO (E.B.)
| | - Theodore Christoforidis
- From the Division of Pulmonary and Critical Care (E.L.M., C.Z., T.-P.S., I.S.F., I.L.), Division of Endocrinology (P.V.S.), Division of Hematology and Oncology, Department of Medicine (Y.S., Z.Q.), and Departments of Bioengineering (E.L.M., T.-P.S., C.N., T.C., D.T.E., J.L., M.C., I.L.), Pharmacology (Y.B., C.C., R.D.M., I.L.), and Anesthesiology (R.D.M.), University of Illinois at Chicago; Department of Medicine, University of Chicago, IL (R.-T.H., Y.F.); and Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO (E.B.)
| | - Pappasani V Subbaiah
- From the Division of Pulmonary and Critical Care (E.L.M., C.Z., T.-P.S., I.S.F., I.L.), Division of Endocrinology (P.V.S.), Division of Hematology and Oncology, Department of Medicine (Y.S., Z.Q.), and Departments of Bioengineering (E.L.M., T.-P.S., C.N., T.C., D.T.E., J.L., M.C., I.L.), Pharmacology (Y.B., C.C., R.D.M., I.L.), and Anesthesiology (R.D.M.), University of Illinois at Chicago; Department of Medicine, University of Chicago, IL (R.-T.H., Y.F.); and Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO (E.B.)
| | - Evgeny Berdyshev
- From the Division of Pulmonary and Critical Care (E.L.M., C.Z., T.-P.S., I.S.F., I.L.), Division of Endocrinology (P.V.S.), Division of Hematology and Oncology, Department of Medicine (Y.S., Z.Q.), and Departments of Bioengineering (E.L.M., T.-P.S., C.N., T.C., D.T.E., J.L., M.C., I.L.), Pharmacology (Y.B., C.C., R.D.M., I.L.), and Anesthesiology (R.D.M.), University of Illinois at Chicago; Department of Medicine, University of Chicago, IL (R.-T.H., Y.F.); and Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO (E.B.)
| | - Zhijian Qain
- From the Division of Pulmonary and Critical Care (E.L.M., C.Z., T.-P.S., I.S.F., I.L.), Division of Endocrinology (P.V.S.), Division of Hematology and Oncology, Department of Medicine (Y.S., Z.Q.), and Departments of Bioengineering (E.L.M., T.-P.S., C.N., T.C., D.T.E., J.L., M.C., I.L.), Pharmacology (Y.B., C.C., R.D.M., I.L.), and Anesthesiology (R.D.M.), University of Illinois at Chicago; Department of Medicine, University of Chicago, IL (R.-T.H., Y.F.); and Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO (E.B.)
| | - David T Eddington
- From the Division of Pulmonary and Critical Care (E.L.M., C.Z., T.-P.S., I.S.F., I.L.), Division of Endocrinology (P.V.S.), Division of Hematology and Oncology, Department of Medicine (Y.S., Z.Q.), and Departments of Bioengineering (E.L.M., T.-P.S., C.N., T.C., D.T.E., J.L., M.C., I.L.), Pharmacology (Y.B., C.C., R.D.M., I.L.), and Anesthesiology (R.D.M.), University of Illinois at Chicago; Department of Medicine, University of Chicago, IL (R.-T.H., Y.F.); and Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO (E.B.)
| | - James Lee
- From the Division of Pulmonary and Critical Care (E.L.M., C.Z., T.-P.S., I.S.F., I.L.), Division of Endocrinology (P.V.S.), Division of Hematology and Oncology, Department of Medicine (Y.S., Z.Q.), and Departments of Bioengineering (E.L.M., T.-P.S., C.N., T.C., D.T.E., J.L., M.C., I.L.), Pharmacology (Y.B., C.C., R.D.M., I.L.), and Anesthesiology (R.D.M.), University of Illinois at Chicago; Department of Medicine, University of Chicago, IL (R.-T.H., Y.F.); and Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO (E.B.)
| | - Michael Cho
- From the Division of Pulmonary and Critical Care (E.L.M., C.Z., T.-P.S., I.S.F., I.L.), Division of Endocrinology (P.V.S.), Division of Hematology and Oncology, Department of Medicine (Y.S., Z.Q.), and Departments of Bioengineering (E.L.M., T.-P.S., C.N., T.C., D.T.E., J.L., M.C., I.L.), Pharmacology (Y.B., C.C., R.D.M., I.L.), and Anesthesiology (R.D.M.), University of Illinois at Chicago; Department of Medicine, University of Chicago, IL (R.-T.H., Y.F.); and Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO (E.B.)
| | - Yun Fang
- From the Division of Pulmonary and Critical Care (E.L.M., C.Z., T.-P.S., I.S.F., I.L.), Division of Endocrinology (P.V.S.), Division of Hematology and Oncology, Department of Medicine (Y.S., Z.Q.), and Departments of Bioengineering (E.L.M., T.-P.S., C.N., T.C., D.T.E., J.L., M.C., I.L.), Pharmacology (Y.B., C.C., R.D.M., I.L.), and Anesthesiology (R.D.M.), University of Illinois at Chicago; Department of Medicine, University of Chicago, IL (R.-T.H., Y.F.); and Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO (E.B.)
| | - Richard D Minshall
- From the Division of Pulmonary and Critical Care (E.L.M., C.Z., T.-P.S., I.S.F., I.L.), Division of Endocrinology (P.V.S.), Division of Hematology and Oncology, Department of Medicine (Y.S., Z.Q.), and Departments of Bioengineering (E.L.M., T.-P.S., C.N., T.C., D.T.E., J.L., M.C., I.L.), Pharmacology (Y.B., C.C., R.D.M., I.L.), and Anesthesiology (R.D.M.), University of Illinois at Chicago; Department of Medicine, University of Chicago, IL (R.-T.H., Y.F.); and Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO (E.B.)
| | - Irena Levitan
- From the Division of Pulmonary and Critical Care (E.L.M., C.Z., T.-P.S., I.S.F., I.L.), Division of Endocrinology (P.V.S.), Division of Hematology and Oncology, Department of Medicine (Y.S., Z.Q.), and Departments of Bioengineering (E.L.M., T.-P.S., C.N., T.C., D.T.E., J.L., M.C., I.L.), Pharmacology (Y.B., C.C., R.D.M., I.L.), and Anesthesiology (R.D.M.), University of Illinois at Chicago; Department of Medicine, University of Chicago, IL (R.-T.H., Y.F.); and Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO (E.B.).
| |
Collapse
|
21
|
Yan FX, Li HM, Li SX, He SH, Dai WP, Li Y, Wang TT, Shi MM, Yuan HX, Xu Z, Zhou JG, Ning DS, Mo ZW, Ou ZJ, Ou JS. The oxidized phospholipid POVPC impairs endothelial function and vasodilation via uncoupling endothelial nitric oxide synthase. J Mol Cell Cardiol 2017; 112:40-48. [DOI: 10.1016/j.yjmcc.2017.08.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/29/2017] [Accepted: 08/31/2017] [Indexed: 12/14/2022]
|