1
|
Gong J. Oxylipins biosynthesis and the regulation of bovine postpartum inflammation. Prostaglandins Other Lipid Mediat 2024; 171:106814. [PMID: 38280540 DOI: 10.1016/j.prostaglandins.2024.106814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/08/2024] [Accepted: 01/23/2024] [Indexed: 01/29/2024]
Abstract
Uncontrolled or dysregulated inflammation has adverse effects on the reproduction, production and health of animals, and is a major pathological cause of increased incidence and severity of infectious and metabolic diseases. To achieve successful transition from a non-lactation pregnant state to a non-pregnant lactation state, drastic metabolic and endocrine alteration have taken place in dairy cows during the periparturient period. These physiological changes, coupled with decreased dry matter intake near calving and sudden change of diet composition after calving, have the potential to disrupt the delicate balance between pro- and anti-inflammation, resulting in a disordered or excessive inflammatory response. In addition to cytokines and other immunoregulatory factors, most oxylipins formed from polyunsaturated fatty acids (PUFAs) via enzymatic and nonenzymatic oxygenation pathways have pro- or anti-inflammatory properties and play a pivotal role in the onset, development and resolution of inflammation. However, little attention has been paid to the possibility that oxylipins could function as endogenous immunomodulating agents. This review will provide a detailed overview of the main oxylipins derived from different PUFAs and discuss the regulatory role that oxylipins play in the postpartum inflammatory response in dairy cows. Based on the current research, much remains to be illuminated in this emerging field. Understanding the role that oxylipins play in the control of postpartum inflammation and inflammatory-based disease may improve our ability to prevent transition disorders via Management, pharmacological, genetic selection and dietary intervention strategies.
Collapse
Affiliation(s)
- Jian Gong
- College of Life Science and Technology, Inner Mongolia Normal University, 81 Zhaowuda Road, Hohhot 010022, China.
| |
Collapse
|
2
|
Tang Y, Zhou Y, Wang X, Che N, Tian J, Man K, Rui K, Peng N, Lu L. The role of epithelial cells in the immunopathogenesis of Sjögren's syndrome. J Leukoc Biol 2024; 115:57-67. [PMID: 37134025 DOI: 10.1093/jleuko/qiad049] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/11/2023] [Accepted: 04/24/2023] [Indexed: 05/04/2023] Open
Abstract
Sjögren's syndrome is a systemic autoimmune disease characterized by dysfunction of the affected exocrine glands. Lymphocytic infiltration within the inflamed glands and aberrant B-cell hyperactivation are the two salient pathologic features in Sjögren's syndrome. Increasing evidence indicates that salivary gland epithelial cells act as a key regulator in the pathogenesis of Sjögren's syndrome, as revealed by the dysregulated innate immune signaling pathways in salivary gland epithelium and increased expression of various proinflammatory molecules as well as their interaction with immune cells. In addition, salivary gland epithelial cells can regulate adaptive immune responses as nonprofessional antigen-presenting cells and promote the activation and differentiation of infiltrated immune cells. Moreover, the local inflammatory milieu can modulate the survival of salivary gland epithelial cells, leading to enhanced apoptosis and pyroptosis with the release of intracellular autoantigens, which further contributes to SG autoimmune inflammation and tissue destruction in Sjögren's syndrome. Herein, we reviewed recent advances in elucidating the role of salivary gland epithelial cells in the pathogenesis of Sjögren's syndrome, which may provide rationales for potential therapeutic targeting of salivary gland epithelial cells to alleviate salivary gland dysfunction alongside treatments with immunosuppressive reagents in Sjögren's syndrome.
Collapse
Affiliation(s)
- Yuan Tang
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Pok Fu Lam, Hong Kong Island, Hong Kong, China
| | - Yingbo Zhou
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Pok Fu Lam, Hong Kong Island, Hong Kong, China
| | - Xiaoran Wang
- Department of Rheumatology, The Second People's Hospital of Three Gorges University, College street, Xiling District, Yichang, China
| | - Nan Che
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road, Gulou District, Nanjing, China
| | - Jie Tian
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Jiefang Road, Jingkou District, Zhenjiang, China
| | - Kwan Man
- Department of Surgery, School of Clinical Medicine, Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong Island, Hong Kong, China
| | - Ke Rui
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Jiefang Road, Jingkou District, Zhenjiang, China
| | - Na Peng
- Department of Rheumatology, The Second People's Hospital of Three Gorges University, College street, Xiling District, Yichang, China
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Pok Fu Lam, Hong Kong Island, Hong Kong, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Sha Tin, New Territories, Hong Kong, China
| |
Collapse
|
3
|
He K, Zhou X, Du H, Zhao J, Deng R, Wang J. A review on the relationship between Arachidonic acid 15-Lipoxygenase (ALOX15) and diabetes mellitus. PeerJ 2023; 11:e16239. [PMID: 37849828 PMCID: PMC10578307 DOI: 10.7717/peerj.16239] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/14/2023] [Indexed: 10/19/2023] Open
Abstract
Arachidonic acid 15-lipoxygenase (ALOX15), as one of the lipoxygenase family, is mainly responsible for catalyzing the oxidation of various fatty acids to produce a variety of lipid components, contributing to the pathophysiological processes of various immune and inflammatory diseases. Studies have shown that ALOX15 and its related products are widely distributed in human tissues and related to multiple diseases such as liver, cardiovascular, cerebrovascular diseases, diabetes mellitus and other diseases. Diabetes mellitus (DM), the disease studied in this article, is a metabolic disease characterized by a chronic increase in blood glucose levels, which is significantly related to inflammation, oxidative stress, ferroptosis and other mechanisms, and it has a high incidence in the population, accompanied by a variety of complications. Figuring out how ALOX15 is involved in DM is critical to understanding its role in diseases. Therefore, ALOX15 inhibitors or combination therapy containing inhibitors may deliver a novel research direction for the treatment of DM and its complications. This article aims to review the biological effect and the possible function of ALOX15 in the pathogenesis of DM.
Collapse
Affiliation(s)
- Kaiying He
- Lanzhou University, Lanzhou, Gansu, China
- Lanzhou University Second Hospital, Lanzhou University, LanZhou, Gansu, China
| | - Xiaochun Zhou
- Lanzhou University Second Hospital, Lanzhou University, LanZhou, Gansu, China
| | - Hongxuan Du
- Lanzhou University, Lanzhou, Gansu, China
- Lanzhou University Second Hospital, Lanzhou University, LanZhou, Gansu, China
| | - Jing Zhao
- Lanzhou University, Lanzhou, Gansu, China
- Lanzhou University Second Hospital, Lanzhou University, LanZhou, Gansu, China
| | - Rongrong Deng
- Lanzhou University, Lanzhou, Gansu, China
- Lanzhou University Second Hospital, Lanzhou University, LanZhou, Gansu, China
| | - Jianqin Wang
- Lanzhou University Second Hospital, Lanzhou University, LanZhou, Gansu, China
| |
Collapse
|
4
|
Otsuka H, Nonaka N, Nakamura M, Soeta S. Histamine deficiency inhibits lymphocyte infiltration in the submandibular gland of aged mice via increased anti-aging factor Klotho. J Oral Biosci 2023; 65:243-252. [PMID: 37343785 DOI: 10.1016/j.job.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023]
Abstract
OBJECTIVES Histidine decarboxylase (HDC), a histamine synthase, is expressed in various tissues and is induced by proinflammatory cytokines such as TNFα. As they age, C57BL/6 mice show auto-antibody deposition and lymphocyte infiltration into various tissues, including salivary glands. However, the mechanism underlying cell infiltration and the change in HDC expression in salivary glands with aging remain unclear. Thus, we aimed to elucidate the relationship between histamine and inflammaging. METHODS We investigated the change in histology and HDC expression in the major salivary glands (parotid, submandibular, and sublingual) of 6-week- and 9-month-old wild-type mice. We also determined the histological changes, cytokine expression, and anti-aging factor Klotho in the salivary glands of 9-month-old wild-type and HDC-deficient (HDC-KO) mice. RESULTS Cell infiltration was observed in the submandibular gland of 9-month-old wild-type mice. Although most cells infiltrating the submandibular glands were CD3-positive and B220-positive lymphocytes, CD11c-positive and F4/80-positive monocyte lineages were also detected. HDC, TNFα, and IL-1β mRNA expression increased in the submandibular gland of 9-month-old wild-type mice. The expression of PPARγ, an anti-inflammatory protein, declined in 9-month-old wild-type mice, and Klotho expression increased in 9-month-old HDC-KO mice. Immunohistochemistry showed that Klotho-positive cells disappeared in the submandibular gland of 9-month-old wild-type mice, while Klotho was detected in all salivary glands in HDC-KO mice of the same age. CONCLUSION Our findings demonstrate the multifunctionality of histamine and can aid in the development of novel therapeutic methods for inflammatory diseases such as Sjogren's syndrome and age-related dysfunctions.
Collapse
Affiliation(s)
- Hirotada Otsuka
- Laboratory of Veterinary Anatomy, Nippon Veterinary and Animal Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo, 180-8602, Japan.
| | - Naoko Nonaka
- Department of Oral Anatomy and Developmental Biology, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Masanori Nakamura
- Department of Oral Anatomy and Developmental Biology, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Satoshi Soeta
- Laboratory of Veterinary Anatomy, Nippon Veterinary and Animal Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo, 180-8602, Japan
| |
Collapse
|
5
|
Reinhold AK, Hartmannsberger B, Burek M, Rittner HL. Stabilizing the neural barrier - A novel approach in pain therapy. Pharmacol Ther 2023; 249:108484. [PMID: 37390969 DOI: 10.1016/j.pharmthera.2023.108484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/08/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
Chronic and neuropathic pain are a widespread burden. Incomplete understanding of underlying pathomechanisms is one crucial factor for insufficient treatment. Recently, impairment of the blood nerve barrier (BNB) has emerged as one key aspect of pain initiation and maintenance. In this narrative review, we discuss several mechanisms and putative targets for novel treatment strategies. Cells such as pericytes, local mediators like netrin-1 and specialized proresolving mediators (SPMs), will be covered as well as circulating factors including the hormones cortisol and oestrogen and microRNAs. They are crucial in either the BNB or similar barriers and associated with pain. While clinical studies are still scarce, these findings might provide valuable insight into mechanisms and nurture development of therapeutic approaches.
Collapse
Affiliation(s)
- Ann-Kristin Reinhold
- University Hospital Würzburg, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Oberdürrbacher Str. 6, 97080 Würzburg, Germany
| | - Beate Hartmannsberger
- University Hospital Würzburg, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Oberdürrbacher Str. 6, 97080 Würzburg, Germany
| | - Malgorzata Burek
- University Hospital Würzburg, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Oberdürrbacher Str. 6, 97080 Würzburg, Germany
| | - Heike L Rittner
- University Hospital Würzburg, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Oberdürrbacher Str. 6, 97080 Würzburg, Germany.
| |
Collapse
|
6
|
dos Santos HT, Nam K, Gil D, Yellepeddi V, Baker OJ. Current experimental methods to investigate the impact of specialized pro-resolving lipid mediators on Sjögren's syndrome. Front Immunol 2023; 13:1094278. [PMID: 36713415 PMCID: PMC9878840 DOI: 10.3389/fimmu.2022.1094278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/27/2022] [Indexed: 01/15/2023] Open
Abstract
Sjögren's syndrome is a chronic inflammatory autoimmune disease characterized by diminished secretory function of the exocrine glands. Although extensive investigation has been done to understand Sjögren's syndrome, the causes of the disease are as yet unknown and treatments remain largely ineffective, with established therapeutic interventions being limited to use of saliva substitutes with modest effectiveness. A primary feature of Sjögren's syndrome is uncontrolled inflammation of exocrine tissues and previous studies have demonstrated that lipid-based specialized pro-resolving mediators reduce inflammation and restores tissue integrity in salivary glands. However, these studies are limited to a single specialized pro-resolving lipid mediator's family member resolvin D1 or RvD1 and its aspirin-triggered epimer, AT-RvD1. Consequently, additional studies are needed to explore the potential benefits of other members of the specialized pro-resolving lipid mediator's family and related molecules (e.g., additional resolvin subtypes as well as lipoxins, maresins and protectins). In support of this goal, the current review aims to briefly describe the range of current experimental methods to investigate the impact of specialized pro-resolving lipid mediators on Sjögren's syndrome, including both strengths and weaknesses of each approach where this information is known. With this article, the possibilities presented by specialized pro-resolving lipid mediators will be introduced to a wider audience in immunology and practical advice is given to researchers who may wish to take up this work.
Collapse
Affiliation(s)
- Harim T. dos Santos
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States,Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Kihoon Nam
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States,Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Diana Gil
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO, United States,Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, United States,Department of Biological and Biomedical Engineering, College of Engineering, University of Missouri, Columbia, MO, United States
| | - Venkata Yellepeddi
- Division of Clinical Pharmacology, Department of Pediatrics, School of Medicine, University of Utah, Salt Lake City, UT, United States,Department of Molecular Pharmaceutics, College of Pharmacy, University of Utah, Salt Lake City, UT, United States
| | - Olga J. Baker
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States,Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States,Department of Biochemistry, University of Missouri, Columbia, MO, United States,*Correspondence: Olga J. Baker,
| |
Collapse
|
7
|
Balta MG, Schreurs O, Hansen TV, Tungen JE, Vik A, Glaab E, Küntziger TM, Schenck K, Baekkevold ES, Blix IJS. Expression and function of resolvin RvD1 n-3 DPA receptors in oral epithelial cells. Eur J Oral Sci 2022; 130:e12883. [PMID: 35808844 PMCID: PMC9544308 DOI: 10.1111/eos.12883] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/08/2022] [Indexed: 11/28/2022]
Abstract
Chronic inflammatory responses can inflict permanent damage to host tissues. Specialized pro‐resolving mediators downregulate inflammation but also can have other functions. The aim of this study was to examine whether oral epithelial cells express the receptors FPR2/ALX and DRV1/GPR32, which bind RvD1n‐3 DPA, a recently described pro‐resolving mediator derived from omega‐3 docosapentaenoic acid (DPA), and whether RvD1n‐3 DPA exposure induced significant responses in these cells. Gingival biopsies were stained using antibodies to FPR2/ALX and DRV1/GPR32. Expression of FPR2/ALX and DRV1/GPR32 was examined in primary oral epithelial cells by qRT‐PCR, flow cytometry, and immunofluorescence. The effect of RvD1n‐3 DPA on intracellular calcium mobilization and transcription of beta‐defensins 1 and 2, and cathelicidin was evaluated by qRT‐PCR. FPR2/ALX and DRV1/GPR32 were expressed by gingival keratinocytes in situ. In cultured oral epithelial cells, FPR2/ALX was detected on the cell surface, whereas FPR2/ALX and DRV1/GPR32 were detected intracellularly. Exposure to RvD1n‐3 DPA induced intracellular calcium mobilization, FPR2/ALX internalization, DRV1/GPR32 translocation to the nucleus, and significantly increased expression of genes coding for beta‐defensin 1, beta‐defensin 2, and cathelicidin. This shows that the signal constituted by RvD1n‐3 DPA is recognized by oral keratinocytes and that this can strengthen the antimicrobial and regulatory potential of the oral epithelium.
Collapse
Affiliation(s)
- Maria G Balta
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Olav Schreurs
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Trond V Hansen
- Department of Pharmacy, Section for Pharmaceutical Chemistry, University of Oslo, Norway
| | - Jørn E Tungen
- Department of Pharmacy, Section for Pharmaceutical Chemistry, University of Oslo, Norway
| | - Anders Vik
- Department of Pharmacy, Section for Pharmaceutical Chemistry, University of Oslo, Norway
| | - Enrico Glaab
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Luxembourg
| | - Thomas M Küntziger
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Karl Schenck
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Espen S Baekkevold
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway.,Department of Pathology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Inger Johanne S Blix
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway.,Department of Periodontology, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
8
|
Zhang L, Tai Q, Xu G, Gao W. Lipoxin A4 attenuates the lung ischaemia reperfusion injury in rats after lung transplantation. Ann Med 2021; 53:1142-1151. [PMID: 34259112 PMCID: PMC8281088 DOI: 10.1080/07853890.2021.1949488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Lung ischaemia reperfusion injury (LIRI) is the major cause of primary lung dysfunction after lung transplantation. Lipoxin A4 inhibits the oxidative stress and inflammation. This study aimed to evaluate the potential protective effect of lipoxin A4 on LIRI in rats. METHODS SD (Sprague-Dawley) rats were randomised into the sham, LIRI and LA4 groups. Rats in the sham group received anaesthesia, thoracotomy and intravenous injection of saline, while those in the LIRI or LA4 group received left lung transplantation and intravenous injection of saline or lipoxin A4, respectively. After 24 h of reperfusion, the PaO2/FiO2 (Partial pressure of O2 to fraction inspiratory O2), wet/dry weight ratios and protein levels in lungs were measured to assess the alveolar capillary permeability. The oxidative stress response and inflammation were examined. The histological and apoptosis analyses of lung tissues were performed via HE staining (Haematoxylin-eosin staining) and TUNEL assay, respectively. The effects of lipoxin A4 on the endothelial viability and tube formation of hypoxaemia and reoxygenation-challenged rat pulmonary microvascular endothelium cells were determined. RESULTS Lipoxin A4 significantly ameliorated the alveolar capillary permeability, reduced the oxidative stress and inflammation in transplanted lungs. The histological injury and apoptosis of lung tissues were also alleviated by lipoxin A4. In vitro lipoxin A4 treatment promoted the endothelial tube formation and improved the endothelial viability. CONCLUSION Lipoxin A4 protects LIRI after lung transplantation in rats, and its therapeutic effect is associated with the properties of anti-inflammation, anti-oxidation, and endothelium protection.Key messages:Lung transplantation is a treatment approach for the patients with lung disease.LIRI is the major cause of postoperative primary lung dysfunction.Lipoxins A4 exhibits strong anti-inflammatory properties.
Collapse
Affiliation(s)
- Lijuan Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qihang Tai
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guangxiao Xu
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Gao
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
9
|
Chen T, Xiong M, Zong X, Ge Y, Zhang H, Wang M, Won Han G, Yi C, Ma L, Ye RD, Xu Y, Zhao Q, Wu B. Structural basis of ligand binding modes at the human formyl peptide receptor 2. Nat Commun 2020; 11:1208. [PMID: 32139677 PMCID: PMC7058083 DOI: 10.1038/s41467-020-15009-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/15/2020] [Indexed: 11/09/2022] Open
Abstract
The human formyl peptide receptor 2 (FPR2) plays a crucial role in host defense and inflammation, and has been considered as a drug target for chronic inflammatory diseases. A variety of peptides with different structures and origins have been characterized as FPR2 ligands. However, the ligand-binding modes of FPR2 remain elusive, thereby limiting the development of potential drugs. Here we report the crystal structure of FPR2 bound to the potent peptide agonist WKYMVm at 2.8 Å resolution. The structure adopts an active conformation and exhibits a deep ligand-binding pocket. Combined with mutagenesis, ligand binding and signaling studies, key interactions between the agonist and FPR2 that govern ligand recognition and receptor activation are identified. Furthermore, molecular docking and functional assays reveal key factors that may define binding affinity and agonist potency of formyl peptides. These findings deepen our understanding about ligand recognition and selectivity mechanisms of the formyl peptide receptor family. Formyl peptide receptors (FPRs) are GPCRs that play important roles in transducing chemotactic signals in phagocytes and mediating host-defense and inflammatory responses. Here the authors present the 2.8 Å crystal structure of human FPR2 in complex with the peptide agonist WKYMVm and in combination with molecular docking, ligand-binding and signalling assays provide further insights into the binding modes of FPR2 to both non-formyl and formyl peptides.
Collapse
Affiliation(s)
- Tong Chen
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, 201203, Pudong, Shanghai, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, 201203, Pudong, Shanghai, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, 100049, Beijing, China
| | - Muya Xiong
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, 201203, Pudong, Shanghai, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, 100049, Beijing, China
| | - Xin Zong
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, 201203, Pudong, Shanghai, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, 201203, Pudong, Shanghai, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, 100049, Beijing, China
| | - Yunjun Ge
- Institute of Chinese Medical Sciences, University of Macau, 999078, Macau Special Administrative Region, China
| | - Hui Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, 201203, Pudong, Shanghai, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, 201203, Pudong, Shanghai, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, 100049, Beijing, China
| | - Mu Wang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, 201203, Pudong, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, 393 Hua Xia Zhong Road, 201210, Shanghai, China
| | - Gye Won Han
- Department of Chemistry, Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, 1002 West Childs Way, Los Angeles, CA, 90089, USA
| | - Cuiying Yi
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, 201203, Pudong, Shanghai, China
| | - Limin Ma
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, 201203, Pudong, Shanghai, China
| | - Richard D Ye
- School of Life and Health Sciences, The Chinese University of Hong Kong, 518172, Shenzhen, China
| | - Yechun Xu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, 201203, Pudong, Shanghai, China. .,University of Chinese Academy of Sciences, No.19A Yuquan Road, 100049, Beijing, China.
| | - Qiang Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, 201203, Pudong, Shanghai, China. .,University of Chinese Academy of Sciences, No.19A Yuquan Road, 100049, Beijing, China.
| | - Beili Wu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, 201203, Pudong, Shanghai, China. .,University of Chinese Academy of Sciences, No.19A Yuquan Road, 100049, Beijing, China. .,School of Life Science and Technology, ShanghaiTech University, 393 Hua Xia Zhong Road, 201210, Shanghai, China.
| |
Collapse
|
10
|
Kooij G, Troletti CD, Leuti A, Norris PC, Riley I, Albanese M, Ruggieri S, Libreros S, van der Pol SMA, van Het Hof B, Schell Y, Guerrera G, Buttari F, Mercuri NB, Centonze D, Gasperini C, Battistini L, de Vries HE, Serhan CN, Chiurchiù V. Specialized pro-resolving lipid mediators are differentially altered in peripheral blood of patients with multiple sclerosis and attenuate monocyte and blood-brain barrier dysfunction. Haematologica 2019; 105:2056-2070. [PMID: 31780628 PMCID: PMC7395264 DOI: 10.3324/haematol.2019.219519] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022] Open
Abstract
Chronic inflammation is a key pathological hallmark of multiple sclerosis (MS) and suggests that resolution of inflammation, orchestrated by specialized pro-resolving lipid mediators (LM), is impaired. Here, through targeted-metabololipidomics in peripheral blood of patients with MS, we revealed that each disease form was associated with distinct LM profiles that significantly correlated with disease severity. In particular, relapsing and progressive MS patients were associated with high eicosanoids levels, whereas the majority of pro-resolving LM were significantly reduced or below limits of detection and correlated with disease progression. Furthermore, we found impaired expression of several pro-resolving LM biosynthetic enzymes and receptors in blood-derived leukocytes of MS patients. Mechanistically, differentially expressed mediators like LXA4, LXB4, RvD1 and PD1 reduced MS-derived monocyte activation and cytokine production, and inhibited inflammation-induced blood-brain barrier dysfunction and monocyte transendothelial migration. Altogether, these findings reveal peripheral defects in the resolution pathway in MS, suggesting pro-resolving LM as novel diagnostic biomarkers and potentially safe therapeutics.
Collapse
Affiliation(s)
- Gijs Kooij
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands.,Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Claudio Derada Troletti
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Alessandro Leuti
- Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy.,European Center for Brain Research, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Paul C Norris
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ian Riley
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Maria Albanese
- Neurology Unit, Department of Neurosciences, University of Rome Tor Vergata, Rome, Italy
| | | | - Stephania Libreros
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Susanne M A van der Pol
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Bert van Het Hof
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Yoëlle Schell
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Gisella Guerrera
- European Center for Brain Research, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Fabio Buttari
- Unit of Neurology and Unit of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, IS, Italy
| | - Nicola Biagio Mercuri
- European Center for Brain Research, IRCCS Santa Lucia Foundation, Rome, Italy.,Neurology Unit, Department of Neurosciences, University of Rome Tor Vergata, Rome, Italy
| | - Diego Centonze
- Neurology Unit, Department of Neurosciences, University of Rome Tor Vergata, Rome, Italy.,Unit of Neurology and Unit of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, IS, Italy
| | | | - Luca Battistini
- European Center for Brain Research, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Helga E de Vries
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Valerio Chiurchiù
- Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy .,European Center for Brain Research, IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
11
|
Subramanian BC, Majumdar R, Parent CA. The role of the LTB 4-BLT1 axis in chemotactic gradient sensing and directed leukocyte migration. Semin Immunol 2018; 33:16-29. [PMID: 29042024 DOI: 10.1016/j.smim.2017.07.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 06/07/2017] [Accepted: 07/13/2017] [Indexed: 12/11/2022]
Abstract
Directed leukocyte migration is a hallmark of inflammatory immune responses. Leukotrienes are derived from arachidonic acid and represent a class of potent lipid mediators of leukocyte migration. In this review, we summarize the essential steps leading to the production of LTB4 in leukocytes. We discuss the recent findings on the exosomal packaging and transport of LTB4 in the context of chemotactic gradients formation and regulation of leukocyte recruitment. We also discuss the dynamic roles of the LTB4 receptors, BLT1 and BLT2, in mediating chemotactic signaling in leukocytes and contrast them to other structurally related leukotrienes that bind to distinct GPCRs. Finally, we highlight the specific roles of the LTB4-BLT1 axis in mediating signal-relay between chemotaxing neutrophils and its potential contribution to a wide variety of inflammatory conditions including tumor progression and metastasis, where LTB4 is emerging as a key signaling component.
Collapse
Affiliation(s)
- Bhagawat C Subramanian
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, United States.
| | - Ritankar Majumdar
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, United States; Department of Pharmacology, University of Michigan School of Medicine, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, United States.
| | - Carole A Parent
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, United States; Department of Pharmacology, University of Michigan School of Medicine, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
12
|
Silliman CC, Kelher MR, Khan SY, West FB, McLaughlin NJD, Elzi DJ, England K, Bjornsen J, Kuldanek SA, Banerjee A. Supernatants and lipids from stored red blood cells activate pulmonary microvascular endothelium through the BLT2 receptor and protein kinase C activation. Transfusion 2017; 57:2690-2700. [PMID: 28880373 DOI: 10.1111/trf.14271] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/21/2017] [Accepted: 06/22/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND Although transfusion is a lifesaving intervention, it may be associated with significant morbidity in injured patients. We hypothesize that stored red blood cells (RBCs) induce proinflammatory activation of human pulmonary microvascular endothelial cells (HMVECs) resulting in neutrophil (PMN) adhesion and predisposition to acute lung injury (ALI). STUDY DESIGN AND METHODS Ten units of RBCs were collected; 50% (by weight) were leukoreduced (LR-RBCs) and the remainder was unmodified and stored in additive solution-5 (AS-5). An additional 10 units of RBCs were collected, leukoreduced, and stored in AS-3. HMVECs were incubated with [10%-40%]FINAL of the supernatants on Day (D)1 to D42 of storage, lipid extracts, and purified lipids. Endothelial surface expression of intercellular adhesion molecule-1 (ICAM-1), interleukin (IL)-8 release, and PMN adhesion to HMVECs were measured. HMVEC signaling via the BLT2 receptor was evaluated. Supernatants and lipids were also employed as the first event in a two-event model of ALI. RESULTS The supernatants [10%-40%]FINAL from D21 LR-RBCs and D42 RBCs and LR-RBCs and the lipids from D42 stored in AS-5 induced increased ICAM-1 surface expression on endothelium, IL-8 release, and PMN adhesion. In addition, the supernatants [20%-40%]FINAL from D21 and D42 RBCs in AS-5 also increased endothelial surface expression of ICAM-1. D42 supernatants and lipids also caused coprecipitation of β-arrestin-1 with BLT2, protein kinase C (PKC)βI , and PKCδ and served as the first event in a two-event rodent model of ALI. CONCLUSION Lipids that accumulate during RBC storage activate endothelium and predispose to ALI, which may explain some of the adverse events associated with the transfusion of critically injured patients.
Collapse
Affiliation(s)
- Christopher C Silliman
- Research Laboratory, Bonfils Blood Center, Denver, Colorado.,Department of Surgery, School of Medicine, University of Colorado at Denver, Aurora, Colorado.,Department of Pediatrics, School of Medicine, University of Colorado at Denver, Aurora, Colorado
| | - Marguerite R Kelher
- Research Laboratory, Bonfils Blood Center, Denver, Colorado.,Department of Surgery, School of Medicine, University of Colorado at Denver, Aurora, Colorado
| | - Samina Y Khan
- Research Laboratory, Bonfils Blood Center, Denver, Colorado.,Department of Pediatrics, School of Medicine, University of Colorado at Denver, Aurora, Colorado
| | | | - Nathan J D McLaughlin
- Research Laboratory, Bonfils Blood Center, Denver, Colorado.,Department of Pediatrics, School of Medicine, University of Colorado at Denver, Aurora, Colorado
| | - David J Elzi
- Research Laboratory, Bonfils Blood Center, Denver, Colorado.,Department of Surgery, School of Medicine, University of Colorado at Denver, Aurora, Colorado
| | - Kelly England
- Research Laboratory, Bonfils Blood Center, Denver, Colorado.,Department of Surgery, School of Medicine, University of Colorado at Denver, Aurora, Colorado
| | - Jason Bjornsen
- Research Laboratory, Bonfils Blood Center, Denver, Colorado
| | - Susan A Kuldanek
- Research Laboratory, Bonfils Blood Center, Denver, Colorado.,Department of Pediatrics, School of Medicine, University of Colorado at Denver, Aurora, Colorado
| | - Anirban Banerjee
- Department of Surgery, School of Medicine, University of Colorado at Denver, Aurora, Colorado
| |
Collapse
|
13
|
Effect of anti-muscarinic autoantibodies on leukocyte function in Sjögren's syndrome. Mol Immunol 2017; 90:136-142. [PMID: 28750255 DOI: 10.1016/j.molimm.2017.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 07/04/2017] [Accepted: 07/10/2017] [Indexed: 02/06/2023]
Abstract
Patients with primary Sjögren's syndrome, a systemic autoimmune disease, have been shown to have serum autoantibodies that react with the muscarinic acetylcholine type 3 receptor (M3R).Primary Sjögren's syndrome is a systemic autoimmune disease. Patients with primary Sjögren's syndrome have been shown to have serum autoantibodies that react with the muscarinic acetylcholine type 3 receptor (M3R). Leukopenia has been reported to be significantly more common in primary Sjögren's syndrome patients who have anti-M3R-autoantibodies in their sera. In this study, we investigated whether these anti-M3R autoantibodies have effects on M3R and MHCI expression in Jurkat T cells. Purified IgG antibodies were isolated from the serum of healthy individuals and primary Sjögren's syndrome patients. Jurkat cell line was used to represent T lymphocytes. In situ immunofluorescence confocal microscopy was used to confirm the binding reactivity of primary Sjögren's syndrome IgG antibodies to M3R. Co-immunoprecipitation and immunofluorescence results suggested a direct interaction between M3R and MHC I. Co-internalization of M3R and MHC I was observed when Jurkat cells were exposed to the primary Sjögren's syndrome IgG, but this primary Sjögren's syndrome IgG-induced co-internalization of M3R and MHC I was prevented by the presence of exogenous IFN-γ. Primary Sjögren's syndrome IgG itself did not affect the viability of Jurkat cells, but Jurkat cells exposed to primary Sjögren's syndrome IgG were observed to undergo significant cell death when co-cultured with primary Natural Killer cells. Our results suggest that anti-M3R autoantibodies in primary Sjögren's syndrome induce downregulation of plasma membrane-resident M3R and MHC class I molecules in leukocytes followed by NK cell-mediated cell death. This mechanism may explain the frequency of leukopenia occurrence in patients with primary Sjögren's syndrome.
Collapse
|
14
|
Wu RF, Huang ZX, Ran J, Dai SJ, Lin DC, Ng TW, Chen QX, Chen QH. Lipoxin A 4 Suppresses Estrogen-Induced Epithelial-Mesenchymal Transition via ALXR-Dependent Manner in Endometriosis. Reprod Sci 2017; 25:566-578. [PMID: 28691579 DOI: 10.1177/1933719117718271] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Epithelial-mesenchymal transition (EMT) is essential for embryogenesis, fibrosis, and tumor metastasis. Aberrant EMT phenomenon has been reported in endometriotic tissues of patients with endometriosis (EM). In this study, we further investigated the molecular mechanism of which lipoxin A4 (LXA4) suppresses estrogen (E2)-induced EMT in EM. STUDY DESIGN The EMT markers were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot in eutopic endometrial epithelial cells (EECs) or investigated by immunohistochemistry and qRT-PCR in endometriotic lesion of EM mice. The invasion and migration under different treatments were assessed by transwell assays with or without Matrigel. The messenger RNA (mRNA) and activities of matrix metalloproteinase 2 (MMP-2) and MMP-9 were determined by qRT-PCR and gelatin zymography, respectively. Luciferase reporter assay was used to measure the activity of zinc finger E-box binding homeobox 1(ZEB1) promoter. The level of E2 in endometriotic tissues was assessed by enzyme-linked immunosorbent assay. RESULTS In eutopic EECs, stimulatory effects of E2 on EMT progress, migration, and invasion were all diminished by LXA4. Lipoxin A4 reduced E2-induced ZEB1 promoter activity. Lipoxin A4 also attenuated the phosphorylation of extracellular signal-regulated kinase and p38 mitogen-activated protein kinase induced by E2. Co-incubation with Boc-2 rather than DMF antagonized the influence of LXA4. Animal experiments showed that LXA4 inhibited the EMT progress, MMP expression, and proteinase activities of endometriotic lesion in an LXA4 receptor (ALXR) manner, which suppressed the progression of EM. ZEB1 mRNA expression was upregulated and well correlated with E2 level in human endometrium. CONCLUSION Lipoxin A4 suppresses E2-induced EMT via ALXR-dependent manner in eutopic EECs, which reveals a novel biological effect of LXA4 in EM.
Collapse
Affiliation(s)
- Rong-Feng Wu
- 1 Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, People's Republic of China.,2 State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.,3 Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, China
| | - Zhi-Xiong Huang
- 2 State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.,3 Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jing Ran
- 1 Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Song-Juan Dai
- 1 Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Dian-Chao Lin
- 1 Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Tai-Wei Ng
- 1 Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Qing-Xi Chen
- 2 State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.,3 Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, China
| | - Qiong-Hua Chen
- 1 Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, People's Republic of China
| |
Collapse
|
15
|
Sommakia S, Baker OJ. Regulation of inflammation by lipid mediators in oral diseases. Oral Dis 2017; 23:576-597. [PMID: 27426637 PMCID: PMC5243936 DOI: 10.1111/odi.12544] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/08/2016] [Accepted: 07/13/2016] [Indexed: 02/06/2023]
Abstract
Lipid mediators (LM) of inflammation are a class of compounds derived from ω-3 and ω-6 fatty acids that play a wide role in modulating inflammatory responses. Some LM possess pro-inflammatory properties, while others possess proresolving characteristics, and the class switch from pro-inflammatory to proresolving is crucial for tissue homeostasis. In this article, we review the major classes of LM, focusing on their biosynthesis and signaling pathways, and their role in systemic and, especially, oral health and disease. We discuss the detection of these LM in various body fluids, focusing on diagnostic and therapeutic applications. We also present data showing gender-related differences in salivary LM levels in healthy controls, leading to a hypothesis on the etiology of inflammatory diseases, particularly Sjögren's syndrome. We conclude by enumerating open areas of research where further investigation of LM is likely to result in therapeutic and diagnostic advances.
Collapse
Affiliation(s)
- Salah Sommakia
- School of Dentistry, The University of Utah, Salt Lake City, UT, USA
| | - Olga J. Baker
- School of Dentistry, The University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
16
|
Kuhn MJ, Mavangira V, Gandy JC, Zhang C, Jones AD, Sordillo LM. Differences in the Oxylipid Profiles of Bovine Milk and Plasma at Different Stages of Lactation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:4980-4988. [PMID: 28570057 DOI: 10.1021/acs.jafc.7b01602] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Mastitis is caused by a bacterial infection of the mammary gland, which reduces both milk quality and quantity produced for human consumption. The incidence and severity of bovine mastitis are greatest during the periparturient period that results from dysfunctional inflammatory responses and causes damage to milk synthesizing tissues. Oxylipids are potent fatty acid-derived mediators that control the onset and resolution of the inflammatory response. The purpose of this study was to investigate how oxylipid profiles change in bovine milk at different stages of the lactation cycle. Results showed significantly lower concentrations of both milk polyunsaturated fatty acid content and total oxylipid biosynthesis during early lactation when compared to mid- or late-lactation. The only oxylipid that was higher during early lactation was 20-hydroxyeicosatetraenoic acid (HETE), which is often associated with inflammatory-based diseases. Milk oxylipid profiles during the different stages of lactation differed from plasma profiles. As such, plasma fatty acid and oxylipid concentrations are not a proxy for local changes in the mammary gland during the lactation cycle.
Collapse
Affiliation(s)
- Matthew J Kuhn
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University , East Lansing 48824, United States
| | - Vengai Mavangira
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University , East Lansing 48824, United States
| | - Jeffery C Gandy
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University , East Lansing 48824, United States
| | | | | | - Lorraine M Sordillo
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University , East Lansing 48824, United States
| |
Collapse
|
17
|
Gagliardo R, Gras D, La Grutta S, Chanez P, Di Sano C, Albano GD, Vachier I, Montalbano AM, Anzalone G, Bonanno A, Riccobono L, Gjomarkaj M, Profita M. Airway lipoxin A4/formyl peptide receptor 2-lipoxin receptor levels in pediatric patients with severe asthma. J Allergy Clin Immunol 2016; 137:1796-1806. [PMID: 26971688 DOI: 10.1016/j.jaci.2015.11.045] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 11/10/2015] [Accepted: 11/20/2015] [Indexed: 12/31/2022]
Abstract
BACKGROUND Lipoxins are biologically active eicosanoids with anti-inflammatory properties. Lipoxin A4 (LXA4) signaling blocks asthmatic responses in human and experimental model systems. There is evidence that patients with respiratory diseases, including severe asthma (SA), display defective generation of lipoxin signals despite glucocorticoid therapy. OBJECTIVE We investigated airway levels of formyl peptide receptor 2-lipoxin receptor (FPR2/ALXR), LXA4, and its counterregulatory compound, leukotriene B4 (LTB4), in patients with childhood asthma. We addressed the potential interplay of the LXA4-FPR2/ALXR axis and glucocorticoids in the resolution of inflammation. METHODS We examined LXA4 and LTB4 concentrations in induced sputum supernatants from children with intermittent asthma (IA), children with SA, and healthy control (HC) children. In addition, we investigated FPR2/ALXR expression in induced sputum cells obtained from the study groups. Finally, we evaluated in vitro the molecular interaction between LXA4 and glucocorticoid receptor-based mechanisms. RESULTS We found that children with SA have decreased LXA4 concentrations in induced sputum supernatants in comparison with children with IA. In contrast to decreases in LXA4 concentrations, LTB4 concentrations were increased in children with asthma independent of severity. LXA4 concentrations negatively correlated with LTB4 concentrations and with exacerbation numbers in children with SA. FPR2/ALXR expression was reduced in induced sputum cells of children with SA compared with that seen in HC subjects and children with IA. Finally, we describe in vitro the existence of crosstalk between LXA4 and glucocorticoid receptor at the cytosolic level mediated by G protein-coupled FPR2/ALXR in peripheral blood granulocytes isolated from HC subjects, children with IA, and children with SA. CONCLUSION Our findings provide evidence for defective LXA4 generation and FPR2/ALXR expression that, associated with increased LTB4, might be involved in a reduction in the ability of inhaled corticosteroids to impair control of airway inflammation in children with SA.
Collapse
Affiliation(s)
- Rosalia Gagliardo
- Institute of Biomedicine and Molecular Immunology, Unit of Immunopathology and Pharmacology of the Respiratory System, Italian National Research Council, Palermo, Italy.
| | - Delphine Gras
- Département des Maladies Respiratoires, AP-HM, Aix Marseille Université, Marseille, France
| | - Stefania La Grutta
- Institute of Biomedicine and Molecular Immunology, Unit of Immunopathology and Pharmacology of the Respiratory System, Italian National Research Council, Palermo, Italy
| | - Pascal Chanez
- Département des Maladies Respiratoires, AP-HM, Aix Marseille Université, Marseille, France
| | - Caterina Di Sano
- Institute of Biomedicine and Molecular Immunology, Unit of Immunopathology and Pharmacology of the Respiratory System, Italian National Research Council, Palermo, Italy
| | - Giusy D Albano
- Institute of Biomedicine and Molecular Immunology, Unit of Immunopathology and Pharmacology of the Respiratory System, Italian National Research Council, Palermo, Italy
| | | | - Angela M Montalbano
- Institute of Biomedicine and Molecular Immunology, Unit of Immunopathology and Pharmacology of the Respiratory System, Italian National Research Council, Palermo, Italy
| | - Giulia Anzalone
- Institute of Biomedicine and Molecular Immunology, Unit of Immunopathology and Pharmacology of the Respiratory System, Italian National Research Council, Palermo, Italy
| | - Anna Bonanno
- Institute of Biomedicine and Molecular Immunology, Unit of Immunopathology and Pharmacology of the Respiratory System, Italian National Research Council, Palermo, Italy
| | - Loredana Riccobono
- Institute of Biomedicine and Molecular Immunology, Unit of Immunopathology and Pharmacology of the Respiratory System, Italian National Research Council, Palermo, Italy
| | - Mark Gjomarkaj
- Institute of Biomedicine and Molecular Immunology, Unit of Immunopathology and Pharmacology of the Respiratory System, Italian National Research Council, Palermo, Italy
| | - Mirella Profita
- Institute of Biomedicine and Molecular Immunology, Unit of Immunopathology and Pharmacology of the Respiratory System, Italian National Research Council, Palermo, Italy
| |
Collapse
|
18
|
Campos-Estrada C, Liempi A, González-Herrera F, Lapier M, Kemmerling U, Pesce B, Ferreira J, López-Muñoz R, Maya JD. Simvastatin and Benznidazole-Mediated Prevention of Trypanosoma cruzi-Induced Endothelial Activation: Role of 15-epi-lipoxin A4 in the Action of Simvastatin. PLoS Negl Trop Dis 2015; 9:e0003770. [PMID: 25978361 PMCID: PMC4433340 DOI: 10.1371/journal.pntd.0003770] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/20/2015] [Indexed: 12/15/2022] Open
Abstract
Trypanosoma cruzi is the causal agent of Chagas Disease that is endemic in Latin American, afflicting more than ten million people approximately. This disease has two phases, acute and chronic. The acute phase is often asymptomatic, but with time it progresses to the chronic phase, affecting the heart and gastrointestinal tract and can be lethal. Chronic Chagas cardiomyopathy involves an inflammatory vasculopathy. Endothelial activation during Chagas disease entails the expression of cell adhesion molecules such as E-selectin, vascular cell adhesion molecule-1 (VCAM-1) and intercellular cell adhesion molecule-1 (ICAM-1) through a mechanism involving NF-κB activation. Currently, specific trypanocidal therapy remains on benznidazole, although new triazole derivatives are promising. A novel strategy is proposed that aims at some pathophysiological processes to facilitate current antiparasitic therapy, decreasing treatment length or doses and slowing disease progress. Simvastatin has anti-inflammatory actions, including improvement of endothelial function, by inducing a novel pro-resolving lipid, the 5-lypoxygenase derivative 15-epi-lipoxin A4 (15-epi-LXA4), which belongs to aspirin-triggered lipoxins. Herein, we propose modifying endothelial activation with simvastatin or benznidazole and evaluate the pathways involved, including induction of 15-epi-LXA4. The effect of 5 μM simvastatin or 20 μM benznidazole upon endothelial activation was assessed in EA.hy926 or HUVEC cells, by E-selectin, ICAM-1 and VCAM-1 expression. 15-epi-LXA4 production and the relationship of both drugs with the NFκB pathway, as measured by IKK-IKB phosphorylation and nuclear migration of p65 protein was also assayed. Both drugs were administered to cell cultures 16 hours before the infection with T. cruzi parasites. Indeed, 5 μM simvastatin as well as 20 μM benznidazole prevented the increase in E-selectin, ICAM-1 and VCAM-1 expression in T. cruzi-infected endothelial cells by decreasing the NF-κB pathway. In conclusion, Simvastatin and benznidazole prevent endothelial activation induced by T. cruzi infection, and the effect of simvastatin is mediated by the inhibition of the NFκB pathway by inducing 15-epi-LXA4 production.
Collapse
Affiliation(s)
- Carolina Campos-Estrada
- Molecular and Clinical Pharmacology Program, Biomedical Sciences Institute (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Ana Liempi
- Anatomy and Developmental Biology Program, Biomedical Sciences Institute (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Fabiola González-Herrera
- Molecular and Clinical Pharmacology Program, Biomedical Sciences Institute (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Michel Lapier
- Molecular and Clinical Pharmacology Program, Biomedical Sciences Institute (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Ulrike Kemmerling
- Anatomy and Developmental Biology Program, Biomedical Sciences Institute (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Barbara Pesce
- Molecular and Clinical Pharmacology Program, Biomedical Sciences Institute (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Jorge Ferreira
- Molecular and Clinical Pharmacology Program, Biomedical Sciences Institute (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Rodrigo López-Muñoz
- Molecular and Clinical Pharmacology Program, Biomedical Sciences Institute (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Juan D. Maya
- Molecular and Clinical Pharmacology Program, Biomedical Sciences Institute (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
19
|
Abstract
Inflammation is a protective response essential for maintaining human health and for fighting disease. As an active innate immune reaction to challenge, inflammation gives rise to clinical cardinal signs: rubor, calor, dolor, tumor and functio laesa. Termination of acute inflammation was previously recognized as a passive process; a natural decay of pro-inflammatory signals. We now understand that the natural resolution of inflammation involves well-integrated, active, biochemical programs that return tissues to homeostasis. This review focuses on recent advances in the understanding of the role of endogenous lipid mediators that modulate cellular fate and inflammation. Biosynthesis of eicosanoids and other lipids in exudates coincides with changes in the types of inflammatory cells. Resolution of inflammation is initiated by an active class switch in lipid mediators, such as classic prostaglandins and leukotrienes, to the production of proresolution mediators. Endogenous pro-resolving lipid mediators, including arachidonic acid-derived lipoxins, aspirin-triggered lipoxins, ω3-eicosapentaenoic acid-derived resolvins of the E-series, docosahexaenoic acid-derived resolvins of the D-series, protectins and maresins, are biosynthesized during the resolution phase of acute inflammation. Depending on the type of injury and the type of tissue, the initial cells that respond are polymorphonuclear leukocytes, monocytes/macrophages, epithelial cells or endothelial cells. The selective interaction of specific lipid mediators with G protein-coupled receptors expressed on innate immune cells (e.g. G protein-coupled receptor 32, lipoxin A4 receptor/formyl peptide receptor2, chemokine-like receptor 1, leukotriene B4 receptor type 1 and cabannoid receptor 2) induces cessation of leukocyte infiltration; vascular permeability/edema returns to normal with polymorphonuclear neutrophil death (mostly via apoptosis), the nonphlogistic infiltration of monocyte/macrophages and the removal (by macrophages) of apoptotic polymorphonuclear neutrophils, foreign agents (bacteria) and necrotic debris from the site. While an acute inflammatory response that is resolved in a timely manner prevents tissue injury, inadequate resolution and failure to return tissue to homeostasis results in neutrophil-mediated destruction and chronic inflammation. A better understanding of the complex mechanisms of lipid agonist mediators, cell targets and actions allows us to exploit and develop novel therapeutic strategies to treat human inflammatory diseases, including periodontal diseases.
Collapse
|
20
|
Souza MC, Pádua TA, Torres ND, Souza Costa MF, Candéa AP, Maramaldo T, Seito LN, Penido C, Estato V, Antunes B, Silva L, Pinheiro AA, Caruso-Neves C, Tibiriçá E, Carvalho L, Henriques MG. Lipoxin A4 attenuates endothelial dysfunction during experimental cerebral malaria. Int Immunopharmacol 2015; 24:400-407. [PMID: 25576659 DOI: 10.1016/j.intimp.2014.12.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/23/2014] [Accepted: 12/24/2014] [Indexed: 01/23/2023]
Abstract
A breakdown of the brain-blood barrier (BBB) due to endothelial dysfunction is a primary feature of cerebral malaria (CM). Lipoxins (LX) are specialized pro-resolving mediators that attenuate endothelial dysfunction in different vascular beds. It has already been shown that LXA4 prolonged Plasmodium berghei-infected mice survival by a mechanism that depends on inhibiting IL-12 production and CD8(+)IFN-γ(+) T cells in brain tissue; however, the effects of this treatment on endothelial dysfunction induced during experimental cerebral malaria (ECM) remains to be elucidated. Herein, we investigate the role of LXA4 on endothelial dysfunction during ECM. The treatment of P. berghei-infected mice with LXA4 prevented BBB breakdown and ameliorated behavioral symptoms but did not modulate TNF-α production. In addition, microcirculation analysis showed that treatment with LXA4 significantly increased functional capillary density in brains of P. berghei-infected C57BL/6 mice. Furthermore, histological analyses of brain sections demonstrated that exogenous LXA4 reduced capillary congestion that was accompanied by reduced ICAM-1 expression in the brain tissue. In agreement, LXA4 treatment of endothelial cells stimulated by Plasmodium berghei (Pb)- or Plasmodium falciparum (Pf)-parasitized red blood cells (RBCs) inhibited ICAM-1 expression. Additionally, LXA4 treatment restored the expression of HO-1 that is reduced during ECM. As well, LXA4 treatment inhibits PbRBC and PfRBC adhesion to endothelial cells that was reversed by the use of an HO-1 inhibitor (ZnPPIX). Our results demonstrate for the first time that LXA4 ameliorates endothelial dysfunction during ECM by modulating ICAM-1 and HO-1 expression in brain tissue.
Collapse
Affiliation(s)
- Mariana C Souza
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil; National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Tatiana A Pádua
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil; National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Natália D Torres
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil; National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Maria Fernanda Souza Costa
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil; National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - André P Candéa
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil; National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Thadeu Maramaldo
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil; National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Leonardo Noboru Seito
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Carmen Penido
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil; National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Vanessa Estato
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Barbara Antunes
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Leandro Silva
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ana Acácia Pinheiro
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Celso Caruso-Neves
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Eduardo Tibiriçá
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Leonardo Carvalho
- Laboratory of Malaria Research, Instituto Oswaldo Cruz, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Maria G Henriques
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil; National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
21
|
Zhou HY, Hao JL, Bi MM, Wang S, Zhang H, Zhang WS. Molecular mechanism of the inhibition effect of Lipoxin A4 on corneal dissolving pathology process. Int J Ophthalmol 2013; 6:39-43. [PMID: 23550231 DOI: 10.3980/j.issn.2222-3959.2013.01.08] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 01/10/2013] [Indexed: 01/12/2023] Open
Abstract
AIM Excessive dissolve of corneal tissue induced by MMPs which were activated by cytokins and chemokines will lead to corneal ulcer. The molecular mechanism of Lipoxin A4 (LXA4) on corneal collagen degradation in three dimensions was investigated. METHODS Rabbit corneal fibroblasts were harvested and suspended in serum-free MEM. Type I collagen, DMEM, collagen reconstitution buffer and corneal fibroblast suspension were mixed on ice. The resultant mixture solidified in an incubator, after which test reagents and plasminogen was overlaid and the cultures were returned to the incubator. The supernatants from collagen gel incubations were collected and the amount of hydroxyproline in the hydrolysate was measured. Immunoblot analysis of MMP-1, -3 and TMMP-1,-2 was performed. MMP-2,-9 was detected by the method of Gelatin zymography. Cytotoxicity assay was measured. RESULTS LXA4 inhibited corneal collagen degradation in a dose and time manner. LXA4 inhibited the IL-1β induced increases in the pro-MMP-1, -2, -3, -9 and active MMP-1, -2, -3, -9 in a concentration dependent manner. LXA4 could also inhibit the IL-1β induced increases in TIMP-1, -2. CONCLUSION As a potent anti-inflammation reagent, LXA4 can inhibit corneal collagen degradation induced by IL-1β in corneal fibroblasts thus inhibiting corneal dissolving pathology process.
Collapse
Affiliation(s)
- Hong-Yan Zhou
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | | | | | | | | | | |
Collapse
|
22
|
Emerging avenues linking inflammation, angiogenesis and Sjögren's syndrome. Cytokine 2013; 61:693-703. [PMID: 23340181 DOI: 10.1016/j.cyto.2012.12.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 12/10/2012] [Accepted: 12/19/2012] [Indexed: 12/28/2022]
Abstract
Sjögren's syndrome (SS) is an autoimmune disease characterized by an inflammatory mononuclear infiltration and the destruction of epithelial cells of the lachrymal and salivary glands. The aetiology is unknown. The expression "autoimmune epithelitis" has been proposed as an alternative to SS, in view of the emerging central role of the epithelial cells in the disease pathogenesis. At the biomolecular level, the epithelial cells play an important role in triggering the autoimmune condition via antigen presentation, apoptosis, and chemokine and cytokines release. Inflammation and angiogenesis are frequently coupled in the pathological conditions associated to autoimmune diseases, and an angiogenic imbalance contributes to the pathogenesis of a number of inflammatory disorders. This work reviews the current knowledge of the molecular and cellular mechanisms underlying the pathogenesis of the inflammatory reactions that characterize SS. The literature and our data on the role of angiogenesis in the pathophysiology of the disease are discussed.
Collapse
|
23
|
Contreras G, Mattmiller S, Raphael W, Gandy J, Sordillo L. Enhanced n-3 phospholipid content reduces inflammatory responses in bovine endothelial cells. J Dairy Sci 2012; 95:7137-50. [DOI: 10.3168/jds.2012-5729] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 08/20/2012] [Indexed: 11/19/2022]
|
24
|
Nelson J, Manzella K, Baker OJ. Current cell models for bioengineering a salivary gland: a mini-review of emerging technologies. Oral Dis 2012; 19:236-44. [PMID: 22805753 PMCID: PMC3477256 DOI: 10.1111/j.1601-0825.2012.01958.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Saliva plays a major role in maintaining oral health. Patients afflicted with a decrease in saliva secretion (symptomatically, xerostomia) exhibit difficulty in chewing and swallowing foods, tooth decay, periodontal disease, and microbial infections. Despite recent improvements in treating xerostomia (e.g., saliva stimulants, saliva substitutes, and gene therapy), there is a need of more scientific advancements that can be clinically applied toward restoration of compromised salivary gland function. Here we provide a summary of the current salivary cell models that have been used to advance restorative treatments via development of an artificial salivary gland. These models represent initial steps toward clinical and translational research, to facilitate creation of clinically safe salivary glands. Further studies in salivary cell lines and primary cells are necessary to improve survival rates, cell differentiation, and secretory function. Additionally, the characterization of salivary progenitor and stem cell markers are necessary. Although these models are not fully characterized, their improvement may lead to the construction of an artificial salivary gland that is in high demand for improving the quality of life of many patients suffering from salivary secretory dysfunction.
Collapse
Affiliation(s)
- J Nelson
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | | | | |
Collapse
|