1
|
Du C, Xu H, Cao C, Cao J, Zhang Y, Zhang C, Qiao R, Ming W, Li Y, Ren H, Cui X, Luan Z, Guan Y, Zhang X. Neutral amino acid transporter SLC38A2 protects renal medulla from hyperosmolarity-induced ferroptosis. eLife 2023; 12:80647. [PMID: 36722887 PMCID: PMC9949798 DOI: 10.7554/elife.80647] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 01/31/2023] [Indexed: 02/02/2023] Open
Abstract
Hyperosmolarity of the renal medulla is essential for urine concentration and water homeostasis. However, how renal medullary collecting duct (MCD) cells survive and function under harsh hyperosmotic stress remains unclear. Using RNA-Seq, we identified SLC38A2 as a novel osmoresponsive neutral amino acid transporter in MCD cells. Hyperosmotic stress-induced cell death in MCD cells occurred mainly via ferroptosis, and it was significantly attenuated by SLC38A2 overexpression but worsened by Slc38a2-gene deletion or silencing. Mechanistic studies revealed that the osmoprotective effect of SLC38A2 is dependent on the activation of mTORC1. Moreover, an in vivo study demonstrated that Slc38a2-knockout mice exhibited significantly increased medullary ferroptosis following water restriction. Collectively, these findings reveal that Slc38a2 is an important osmoresponsive gene in the renal medulla and provide novel insights into the critical role of SLC38A2 in protecting MCD cells from hyperosmolarity-induced ferroptosis via the mTORC1 signalling pathway.
Collapse
Affiliation(s)
- Chunxiu Du
- Advanced Institute for Medical Sciences, Dalian Medical UniversityDalianChina
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Dalian Medical UniversityDalianChina
- Dalian Key Laboratory for Nuclear Receptors in Major Metabolic DiseasesDalianChina
- Health Science Center, East China Normal UniversityShanghaiChina
| | - Hu Xu
- Advanced Institute for Medical Sciences, Dalian Medical UniversityDalianChina
| | - Cong Cao
- Advanced Institute for Medical Sciences, Dalian Medical UniversityDalianChina
| | - Jiahui Cao
- Advanced Institute for Medical Sciences, Dalian Medical UniversityDalianChina
| | - Yufei Zhang
- Advanced Institute for Medical Sciences, Dalian Medical UniversityDalianChina
| | - Cong Zhang
- Advanced Institute for Medical Sciences, Dalian Medical UniversityDalianChina
| | - Rongfang Qiao
- Advanced Institute for Medical Sciences, Dalian Medical UniversityDalianChina
| | - Wenhua Ming
- Advanced Institute for Medical Sciences, Dalian Medical UniversityDalianChina
| | - Yaqing Li
- Advanced Institute for Medical Sciences, Dalian Medical UniversityDalianChina
| | - Huiwen Ren
- Advanced Institute for Medical Sciences, Dalian Medical UniversityDalianChina
| | - Xiaohui Cui
- Advanced Institute for Medical Sciences, Dalian Medical UniversityDalianChina
| | - Zhilin Luan
- Advanced Institute for Medical Sciences, Dalian Medical UniversityDalianChina
| | - Youfei Guan
- Advanced Institute for Medical Sciences, Dalian Medical UniversityDalianChina
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Dalian Medical UniversityDalianChina
- Dalian Key Laboratory for Nuclear Receptors in Major Metabolic DiseasesDalianChina
| | - Xiaoyan Zhang
- Health Science Center, East China Normal UniversityShanghaiChina
| |
Collapse
|
2
|
Murakoshi M, Iwasawa T, Koshida T, Suzuki Y, Gohda T, Kato K. Development of an In-House EphA2 ELISA for Human Serum and Measurement of Circulating Levels of EphA2 in Hypertensive Patients with Renal Dysfunction. Diagnostics (Basel) 2022; 12:diagnostics12123023. [PMID: 36553030 PMCID: PMC9776842 DOI: 10.3390/diagnostics12123023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 12/12/2022] Open
Abstract
Identifying novel biomarkers of kidney function in patients with chronic kidney disease (CKD) has strong clinical value as current measures have limitations. This study aims to develop and validate a sensitive and specific ephrin type-A receptor 2 (EphA2) enzyme-linked immunosorbent assay (ELISA) for human serum, and determine whether its results correlate with traditional renal measures in patients with hypertension. The novel ELISA of the current study was validated and used to measure circulating EphA2 levels in 80 hypertensive patients with and without kidney function decline (eGFR less than 60 mL/min/1.73 m2). Validation of the EphA2 ELISA showed good recovery (87%) and linearity (103%) and no cross-reactivity with other Eph receptors. Patients with kidney function decline had lower diastolic blood pressure, and higher UPCR and EphA2 than those without kidney function decline. The association of age and eGFR with EphA2 was maintained in the stepwise multiple regression analysis. In a multivariate logistic model, EphA2 was associated with a lower eGFR (<60 mL/min/1.73 m2) after adjustment for age, sex, and UPCR. High circulating EphA2 levels have potential application as a clinical biomarker for the presence of CKD in patients with hypertension.
Collapse
Affiliation(s)
- Maki Murakoshi
- Department of Nephrology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Takumi Iwasawa
- Graduate School of Science and Engineering, Toyo University, Saitama 350-8585, Japan
| | - Takeo Koshida
- Department of Nephrology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Yusuke Suzuki
- Department of Nephrology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Tomohito Gohda
- Department of Nephrology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan
- Correspondence: (T.G.); (K.K.)
| | - Kazunori Kato
- Graduate School of Science and Engineering, Toyo University, Saitama 350-8585, Japan
- Atopy Research Center, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
- Correspondence: (T.G.); (K.K.)
| |
Collapse
|
3
|
Menchini RJ, Chaudhry FA. Multifaceted regulation of the system A transporter Slc38a2 suggests nanoscale regulation of amino acid metabolism and cellular signaling. Neuropharmacology 2019; 161:107789. [PMID: 31574264 DOI: 10.1016/j.neuropharm.2019.107789] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 09/16/2019] [Accepted: 09/20/2019] [Indexed: 02/07/2023]
Abstract
Amino acids are essential for cellular protein synthesis, growth, metabolism, signaling and in stress responses. Cell plasma membranes harbor specialized transporters accumulating amino acids to support a variety of cellular biochemical pathways. Several transporters for neutral amino acids have been characterized. However, Slc38a2 (also known as SA1, SAT2, ATA2, SNAT2) representing the classical transport system A activity stands in a unique position: Being a secondarily active transporter energized by the electrochemical gradient of Na+, it creates steep concentration gradients for amino acids such as glutamine: this may subsequently drive the accumulation of additional neutral amino acids through exchange via transport systems ASC and L. Slc38a2 is ubiquitously expressed, yet in a cell-specific manner. In this review, we show that Slc38a2 is regulated at the transcriptional and translational levels as well as by ions and proteins through direct interactions. We describe how Slc38a2 senses amino acid availability and passes this onto intracellular signaling pathways and how it regulates protein synthesis, cellular proliferation and apoptosis through the mechanistic (mammalian) target of rapamycin (mTOR) and general control nonderepressible 2 (GCN2) pathways. Furthermore, we review how this extensively regulated transporter contributes to cellular osmoadaptation and how it is regulated by endoplasmic reticulum stress and various hormonal stimuli to promote cellular metabolism, cellular signaling and cell survival. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.
Collapse
Affiliation(s)
| | - Farrukh Abbas Chaudhry
- Department of Molecular Medicine, University of Oslo, Oslo, Norway; Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
4
|
Choi H, Chaiyamongkol W, Doolittle AC, Johnson ZI, Gogate SS, Schoepflin ZR, Shapiro IM, Risbud MV. COX-2 expression mediated by calcium-TonEBP signaling axis under hyperosmotic conditions serves osmoprotective function in nucleus pulposus cells. J Biol Chem 2018; 293:8969-8981. [PMID: 29700115 DOI: 10.1074/jbc.ra117.001167] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/10/2018] [Indexed: 11/06/2022] Open
Abstract
The nucleus pulposus (NP) of intervertebral discs experiences dynamic changes in tissue osmolarity because of diurnal loading of the spine. TonEBP/NFAT5 is a transcription factor that is critical in osmoregulation as well as survival of NP cells in the hyperosmotic milieu. The goal of this study was to investigate whether cyclooxygenase-2 (COX-2) expression is osmoresponsive and dependent on TonEBP, and whether it serves an osmoprotective role. NP cells up-regulated COX-2 expression in hyperosmotic media. The induction of COX-2 depended on elevation of intracellular calcium levels and p38 MAPK pathway, but independent of calcineurin signaling as well as MEK/ERK and JNK pathways. Under hyperosmotic conditions, both COX-2 mRNA stability and its proximal promoter activity were increased. The proximal COX-2 promoter (-1840/+123 bp) contained predicted binding sites for TonEBP, AP-1, NF-κB, and C/EBP-β. While COX-2 promoter activity was positively regulated by both AP-1 and NF-κB, AP-1 had no effect and NF-κB negatively regulated COX-2 protein levels under hyperosmotic conditions. On the other hand, TonEBP was necessary for both COX-2 promoter activity and protein up-regulation in response to hyperosmotic stimuli. Ex vivo disc organ culture studies using hypomorphic TonEBP+/- mice confirmed that TonEBP is required for hyperosmotic induction of COX-2. Importantly, the inhibition of COX-2 activity under hyperosmotic conditions resulted in decreased cell viability, suggesting that COX-2 plays a cytoprotective and homeostatic role in NP cells for their adaptation to dynamically loaded hyperosmotic niches.
Collapse
Affiliation(s)
- Hyowon Choi
- From the Department of Orthopaedic Surgery and Graduate Program in Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, and
| | - Weera Chaiyamongkol
- From the Department of Orthopaedic Surgery and Graduate Program in Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, and.,Department of Orthopaedic Surgery, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Alexandra C Doolittle
- From the Department of Orthopaedic Surgery and Graduate Program in Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, and
| | - Zariel I Johnson
- From the Department of Orthopaedic Surgery and Graduate Program in Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, and
| | - Shilpa S Gogate
- From the Department of Orthopaedic Surgery and Graduate Program in Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, and
| | - Zachary R Schoepflin
- From the Department of Orthopaedic Surgery and Graduate Program in Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, and
| | - Irving M Shapiro
- From the Department of Orthopaedic Surgery and Graduate Program in Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, and
| | - Makarand V Risbud
- From the Department of Orthopaedic Surgery and Graduate Program in Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, and
| |
Collapse
|
5
|
Abstract
High extracellular NaCl is known to change expression of numerous genes, many of which are regulated by the osmoprotective transcription factor nuclear factor of activated T cells-5 (NFAT5). In the present study we employed RNA-Seq to provide a comprehensive, unbiased account of genes regulated by high NaCl in mouse embryonic fibroblast cells (MEFs). To identify genes regulated by NFAT5 we compared wild-type MEFs (WT-MEFs) to MEFs in which mutation of the NFAT5 gene inhibits its transcriptional activity (Null-MEFs). In WT-MEFs adding NaCl to raise osmolality from 300 to 500 mosmol/kg for 24 h increases expression of 167 genes and reduces expression of 412. Raising osmolality through multiple passages (adapted cells) increases expression of 196 genes and reduces expression of 528. In Null-MEFs, after 24 h of high NaCl, expression of 217 genes increase and 428 decrease, while in adapted Null-MEFs 143 increase and 622 decrease. Fewer than 10% of genes are regulated in common between WT- and null-MEFs, indicating a profound difference in regulation of high-NaCl induced genes induced by NFAT5 compared with those induced in the absence of NFAT5. Based on our findings we suggest a mechanism for this phenomenon, which had previously been unexplained. The NFAT5 DNA-binding motif (osmotic response element) is overrepresented in the vicinity of genes that NFAT5 upregulates, but not genes that it downregulates. We used Gene Ontology and manual curation to determine the function of the genes targeted by NFAT5, revealing many novel consequences of NFAT5 transcriptional activity.
Collapse
Affiliation(s)
- Yuichiro Izumi
- Systems Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Wenjing Yang
- Systems Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Jun Zhu
- Systems Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Maurice B Burg
- Systems Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Joan D Ferraris
- Systems Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
6
|
Park JE, Son AI, Zhou R. Roles of EphA2 in Development and Disease. Genes (Basel) 2013; 4:334-57. [PMID: 24705208 PMCID: PMC3924825 DOI: 10.3390/genes4030334] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 05/22/2013] [Accepted: 05/23/2013] [Indexed: 01/12/2023] Open
Abstract
The Eph family of receptor tyrosine kinases (RTKs) has been implicated in the regulation of many aspects of mammalian development. Recent analyses have revealed that the EphA2 receptor is a key modulator for a wide variety of cellular functions. This review focuses on the roles of EphA2 in both development and disease.
Collapse
Affiliation(s)
- Jeong Eun Park
- Susan Lehman-Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA.
| | - Alexander I Son
- Susan Lehman-Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA.
| | - Renping Zhou
- Susan Lehman-Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
7
|
A Single Amino Acid Substitution in the Renal Betaine/GABA Transporter Prevents Trafficking to the Plasma Membrane. ACTA ACUST UNITED AC 2013. [DOI: 10.1155/2013/598321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
One response to hypertonic stress in the renal medulla and MDCK cells is the upregulation of betaine transporter (BGT1) synthesis, followed by trafficking to the plasma membrane (PM) and an increase in betaine transport. Upregulation of BGT1 was enhanced by inhibitors of phosphatases PP1 and PP2A and was attenuated by inhibitors of protein kinase C, suggesting an important role for phosphorylation reactions. This was tested using mutants of BGT1 tagged with EGFP. The PM trafficking motifs of BGT1 reside near the C terminus, and truncation at lysine560 resulted in a protein that remained intracellular during hypertonic stress. This K560Δ mutant colocalized with endoplasmic reticulum (ER). Substitution of alanine at Thr40, a putative phosphorylation site, also prevented trafficking to the PM during hypertonic stress. Live-cell imaging showed that T40A was not retained in the ER and colocalized with markers for Golgi and endosomes. In contrast, substitution of aspartate or glutamate at Thr40, to mimic phosphorylation, restored normal trafficking to the PM. HEK293 cells transfected with K560Δ or T40A mutants had 10% of the GABA transport activity of native BGT1, but normal transport activity was restored in cells expressing T40E. Normal BGT1 trafficking likely requires phosphorylation at Thr40 in addition to C-terminal motifs.
Collapse
|
8
|
Du X, Baldwin C, Hooker E, Glorion P, Lemay S. Basal and Src kinase-mediated activation of the EphA2 promoter requires a cAMP-responsive element but is CREB-independent. J Cell Biochem 2011; 112:1268-76. [PMID: 21344481 DOI: 10.1002/jcb.23018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We have previously identified the EphA2 receptor tyrosine kinase as a potentially important injury-responsive gene and a transcriptional target of Src kinase activity in renal ischemia-reperfusion injury (IRI). In the present study, we confirmed, using EphA2 gene trap mice that the endogenous EphA2 promoter is strongly activated following renal IRI. We also examined in more detail the mechanisms responsible for Src kinase-induced activation of the -2 kb human EphA2 promoter and found that the minimal Src-responsive elements were contained in the -145 to +137 region of the human EphA2 gene. This region contains a canonical cAMP-responsive element (CRE) that we found to be critical for both basal and Src kinase-induced transcriptional activity. However, despite activation of the prototypical CRE-binding factor CREB by the Src kinase Fyn, siRNA-mediated knockdown of CREB had no significant impact on either basal or Fyn-induced EphA2 promoter activity. Similarly, activation of CREB by the adenylate cyclase agonist forskolin failed to induce EphA2 promoter activation. Thus, Src kinase-induced activation of the EphA2 promoter is CRE-dependent but CREB-independent.
Collapse
Affiliation(s)
- Xiaojian Du
- Department of Medicine, McGill University, and the McGill University Health Centre Research Institute, Montreal, Quebec, Canada H3A 2B4
| | | | | | | | | |
Collapse
|
9
|
Jiang F, Zhang Y, Dusting GJ. NADPH oxidase-mediated redox signaling: roles in cellular stress response, stress tolerance, and tissue repair. Pharmacol Rev 2011; 63:218-42. [PMID: 21228261 DOI: 10.1124/pr.110.002980] [Citation(s) in RCA: 434] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
NADPH oxidase (Nox) has a dedicated function of generating reactive oxygen species (ROS). Accumulating evidence suggests that Nox has an important role in signal transduction in cellular stress responses. We have reviewed the current evidence showing that the Nox system can be activated by a collection of chemical, physical, and biological cellular stresses. In many circumstances, Nox activation fits to the cellular stress response paradigm, in that (1) the response can be initiated by various forms of cellular stresses; (2) Nox-derived ROS may activate mitogen-activated protein kinases (extracellular signal-regulated kinase, p38) and c-Jun NH(2)-terminal kinase, which are the core of the cell stress-response signaling network; and (3) Nox is involved in the development of stress cross-tolerance. Activation of the cell survival pathway by Nox may promote cell adaptation to stresses, whereas Nox may also convey signals toward apoptosis in irreversibly injured cells. At later stage after injury, Nox is involved in tissue repair by modulating cell proliferation, angiogenesis, and fibrosis. We suggest that Nox may have an integral role in cell stress responses and the subsequent tissue repair process. Understanding Nox-mediated redox signaling mechanisms may be of prominent significance at the crossroads of directing cellular responses to stress, aiming at either enhancing the stress resistance (in such situations as preventing ischemia-reperfusion injuries and accelerating wound healing) or sensitizing the stress-induced cytotoxicity for proliferative diseases such as cancer. Therefore, an optimal outcome of interventions on Nox will only be achieved when this is dealt with in a timely and disease-and stage-specific manner.
Collapse
Affiliation(s)
- Fan Jiang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Qilu Hospital, Shandong University, 107 Wen Hua Xi Road, Jinan, Shandong 250012, China.
| | | | | |
Collapse
|
10
|
Cai Q, Nelson SK, McReynolds MR, Diamond-Stanic MK, Elliott D, Brooks HL. Vasopressin increases expression of UT-A1, UT-A3, and ER chaperone GRP78 in the renal medulla of mice with a urinary concentrating defect. Am J Physiol Renal Physiol 2010; 299:F712-9. [PMID: 20668095 PMCID: PMC2957250 DOI: 10.1152/ajprenal.00690.2009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 07/27/2010] [Indexed: 11/22/2022] Open
Abstract
Activation of V2 receptors (V2R) during antidiuresis increases the permeability of the inner medullary collecting duct to urea and water. Extracellular osmolality is elevated as the concentrating capacity of the kidney increases. Osmolality is known to contribute to the regulation of collecting duct water (aquaporin-2; AQP2) and urea transporter (UT-A1, UT-A3) regulation. AQP1KO mice are a concentrating mechanism knockout, a defect attributed to the loss of high interstitial osmolality. A V2R-specific agonist, deamino-8-D-arginine vasopressin (dDAVP), was infused into wild-type and AQP1KO mice for 7 days. UT-A1 mRNA and protein abundance were significantly increased in the medullas of wild-type and AQP1KO mice following dDAVP infusion. The mRNA and protein abundance of UT-A3, the basolateral urea transporter, was significantly increased by dDAVP in both wild-type and AQP1KO mice. Semiquantitative immunoblots revealed that dDAVP infusion induced a significant increase in the medullary expression of the endoplasmic reticulum (ER) chaperone GRP78. Immunofluorescence studies demonstrated that GRP78 expression colocalized with AQP2 in principal cells of the papillary tip of the renal medulla. Using immunohistochemistry and immunogold electron microscopy, we demonstrate that vasopressin induced a marked apical targeting of GRP78 in medullary principal cells. Urea-sensitive genes, GADD153 and ATF4 (components of the ER stress pathway), were significantly increased in AQP1KO mice by dDAVP infusion. These findings strongly support an important role of vasopressin in the activation of an ER stress response in renal collecting duct cells, in addition to its role in activating an increase in UT-A1 and UT-A3 abundance.
Collapse
Affiliation(s)
- Qi Cai
- Dept. of Physiology, College of Medicine, Univ. of Arizona, Tucson, AZ 85724-5218, USA
| | | | | | | | | | | |
Collapse
|
11
|
Roth I, Leroy V, Kwon HM, Martin PY, Féraille E, Hasler U. Osmoprotective transcription factor NFAT5/TonEBP modulates nuclear factor-kappaB activity. Mol Biol Cell 2010; 21:3459-74. [PMID: 20685965 PMCID: PMC2947481 DOI: 10.1091/mbc.e10-02-0133] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Tonicity responsive binding protein (TonEBP) is a transcription factor that plays a key role in osmoprotection. Here, we demonstrate enhanced activity of prosurvival NF-κB—at the onset of hypertonic challenge that depends on p38 kinase—and Akt-dependent formation of p65-TonEBP complexes that bind to elements of NF-κB-responsive genes. Tonicity-responsive binding-protein (TonEBP or NFAT5) is a widely expressed transcription factor whose activity is regulated by extracellular tonicity. TonEBP plays a key role in osmoprotection by binding to osmotic response element/TonE elements of genes that counteract the deleterious effects of cell shrinkage. Here, we show that in addition to this “classical” stimulation, TonEBP protects cells against hypertonicity by enhancing nuclear factor-κB (NF-κB) activity. We show that hypertonicity enhances NF-κB stimulation by lipopolysaccharide but not tumor necrosis factor-α, and we demonstrate overlapping protein kinase B (Akt)-dependent signal transduction pathways elicited by hypertonicity and transforming growth factor-α. Activation of p38 kinase by hypertonicity and downstream activation of Akt play key roles in TonEBP activity, IκBα degradation, and p65 nuclear translocation. TonEBP affects neither of these latter events and is itself insensitive to NF-κB signaling. Rather, we reveal a tonicity-dependent interaction between TonEBP and p65 and show that NF-κB activity is considerably enhanced after binding of NF-κB-TonEBP complexes to κB elements of NF-κB–responsive genes. We demonstrate the key roles of TonEBP and Akt in renal collecting duct epithelial cells and in macrophages. These findings reveal a novel role for TonEBP and Akt in NF-κB activation on the onset of hypertonic challenge.
Collapse
Affiliation(s)
- Isabelle Roth
- Department of Cellular Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|
12
|
Libert N, de Rudnicki S, Cirodde A, Thépenier C, Mion G. Il y a-t-il une place pour le sérum salé hypertonique dans les états septiques graves ? ACTA ACUST UNITED AC 2010; 29:25-35. [DOI: 10.1016/j.annfar.2009.10.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2008] [Accepted: 10/09/2009] [Indexed: 02/07/2023]
|
13
|
Cotton LM, Rodriguez CM, Suzuki K, Orgebin-Crist MC, Hinton BT. Organic cation/carnitine transporter, OCTN2, transcriptional activity is regulated by osmotic stress in epididymal cells. Mol Reprod Dev 2009; 77:114-25. [DOI: 10.1002/mrd.21122] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
14
|
Nayeem MA, Ponnoth DS, Boegehold MA, Zeldin DC, Falck JR, Mustafa SJ. High-salt diet enhances mouse aortic relaxation through adenosine A2A receptor via CYP epoxygenases. Am J Physiol Regul Integr Comp Physiol 2008; 296:R567-74. [PMID: 19109366 DOI: 10.1152/ajpregu.90798.2008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We hypothesize that A(2A) adenosine receptors (A(2A) AR) promote aortic relaxation in mice through cytochrome P450 (CYP)-epoxygenases and help to avoid salt sensitivity. Aortas from male mice maintained on a high-salt (HS; 7% NaCl) or normal-salt (NS; 0.45% NaCl) diet for 4-5 wks were used. Concentration-response curves (10(-11)-10(-5) M) for 5'-N-ethylcarboxamidoadenosine (NECA; a nonselective adenosine analog) and CGS 21680 (A(2A) AR agonist) were obtained with different antagonists including ZM 241385 (A(2A) AR antagonist; 10(-6) M), SCH 58261 (A(2A) AR antagonist; 10(-6) M), N(omega)-nitro-l-arginine methyl ester (l-NAME; endothelial nitric oxide synthase inhibitor; 10(-4) M) and inhibitors including methylsulfonyl-propargyloxyphenylhexanamide (MS-PPOH; CYP epoxygenases inhibitor; 10(-5)M), 14,15-epoxyeicosa-5(z)-enoic acid (14,15-EEZE; EET antagonist; 10(-5)M), dibromo-dodecenyl-methylsulfimide (DDMS; CYP4A inhibitor; 10(-5)M), and HET0016 (20-HETE inhibitor; 10(-5)M). At 10(-7) M of NECA, significant relaxation in HS (+22.58 +/- 3.12%) was observed compared with contraction in NS (-10.62 +/- 6.27%, P < 0.05). ZM 241385 changed the NECA response to contraction (P < 0.05) in HS. At 10(-7) M of CGS 21680, significant relaxation in HS (+32.04 +/- 3.08%) was observed compared with NS (+10.45 +/- 1.34%, P < 0.05). SCH 58261, l-NAME, MS-PPOH, and 14,15-EEZE changed the CGS 21680-induced relaxation to contraction (P < 0.05) in HS. Interestingly, DDMS and HET0016 changed CGS 21680 response to relaxation (P < 0.05) in NS; however, there was no significant difference found between DDMS, HET0016-treated HS and NS vs. nontreated HS group (P > 0.05). CYP2C29 protein was 55% and 74% upregulated in HS vs. NS (P < 0.05) mice aorta and kidney, respectively. CYP4A protein was 30.30% and 35.70% upregulated in NS vs. HS (P < 0.05) mice aorta and kidneys, respectively. A(1) AR was downregulated, whereas A(2A) AR was upregulated in HS compared with NS. These data suggest that HS may activate CYP2C29 via A(2A) AR, causing relaxation, whereas NS may contribute to the upregulation of CYP4A causing contraction.
Collapse
Affiliation(s)
- Mohammed A Nayeem
- Dept. of Physiology and Pharmacology, Center for Interdisciplinary Research in Cardiovascular Sciences, Health Science Center-North, 1 Morgantown, WV 26506, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Satsu H, Manabe M, Shimizu M. Activation of Ca2+/calmodulin-dependent protein kinase II is involved in hyperosmotic induction of the human taurine transporter. FEBS Lett 2008; 569:123-8. [PMID: 15225620 DOI: 10.1016/j.febslet.2004.05.062] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2004] [Accepted: 05/04/2004] [Indexed: 11/29/2022]
Abstract
We investigated the signaling pathways participating in hyperosmotic regulation of the human taurine transporter (TAUT) by using specific inhibitors of various intracellular signaling molecules. Among them, the specific inhibitor of calcium/calmodulin-dependent protein kinase II (Ca(2+)/CaM kinase II) completely repressed the hyperosmotic regulation of TAUT. The osmosensitive upregulation of TAUT was also significantly inhibited by calmodulin antagonists and calcium-chelators. The increased expression level of TAUT mRNA by hypertonicity was repressed by the specific Ca(2+)/CaM kinase II inhibitor. The activated form of Ca(2+)/CaM kinase II protein could only be detected in Caco-2 cells under hypertonic conditions.
Collapse
Affiliation(s)
- Hideo Satsu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | | | | |
Collapse
|
16
|
Bergler T, Stoelcker B, Jeblick R, Reinhold SW, Wolf K, Riegger GA, Krämer BK. High osmolality induces the kidney-specific chloride channel CLC-K1 by a serum and glucocorticoid-inducible kinase 1 MAPK pathway. Kidney Int 2008; 74:1170-7. [DOI: 10.1038/ki.2008.312] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Nayeem MA, Poloyac SM, Falck JR, Zeldin DC, Ledent C, Ponnoth DS, Ansari HR, Mustafa SJ. Role of CYP epoxygenases in A2A AR-mediated relaxation using A2A AR-null and wild-type mice. Am J Physiol Heart Circ Physiol 2008; 295:H2068-78. [PMID: 18805895 DOI: 10.1152/ajpheart.01333.2007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We hypothesized that A2A adenosine receptor (A2A AR) activation causes vasorelaxation through cytochrome P-450 (CYP) epoxygenases and endothelium-derived hyperpolarizing factors, whereas lack of A2A AR activation promotes vasoconstriction through Cyp4a in the mouse aorta. Adenosine 5'-N-ethylcarboxamide (NECA; 10(-6) M), an adenosine analog, caused relaxation in wild-type A2A AR (A2A AR+/+; +33.99 +/- 4.70%, P < 0.05) versus contraction in A2A AR knockout (A2A AR(-/-); -27.52 +/- 4.11%) mouse aortae. An A2A AR-specific antagonist (SCH-58261; 1 microM) changed the NECA (10(-6) M) relaxation response to contraction (-35.82 +/- 4.69%, P < 0.05) in A2A AR+/+ aortae, whereas no effect was noted in A2A AR(-/-) aortae. Significant contraction was seen in the absence of the endothelium in A2A AR+/+ (-2.58 +/- 2.25%) aortae compared with endothelium-intact aortae. An endothelial nitric oxide synthase inhibitor (N-nitro-L-arginine methyl ester; 100 microM) and a cyclooxygenase inhibitor (indomethacin; 10 microM) failed to block NECA-induced relaxation in A2A AR+/+ aortae. A selective inhibitor of CYP epoxygenases (methylsulfonyl-propargyloxyphenylhexanamide; 10 microM) changed NECA-mediated relaxation (-22.74 +/- 5.11% at 10(-6) M) and CGS-21680-mediated relaxation (-18.54 +/- 6.06% at 10(-6) M) to contraction in A2A AR+/+ aortae, whereas no response was noted in A2A AR(-/-) aortae. Furthermore, an epoxyeicosatrienoic acid (EET) antagonist [14,15-epoxyeicosa-5(Z)-enoic acid; 10 microM] was able to block NECA-induced relaxation in A2A AR+/+ aortae, whereas omega-hydroxylase inhibitors (10 microM dibromo-dodecenyl-methylsulfimide and 10 microM HET-0016) changed contraction into relaxation in A2A AR(-/-) aorta. Cyp2c29 protein was upregulated in A2A AR+/+ aortae, whereas Cyp4a was upregulated in A2A AR(-/-) aortae. Higher levels of dihydroxyeicosatrienoic acids (DHETs; 14,15-DHET, 11,12-DHET, and 8,9-DHET, P < 0.05) were found in A2A AR+/+ versus A2A AR(-/-) aortae. EET levels were not significantly different between A2A AR+/+ and A2A AR(-/-) aortae. It is concluded that CYP epoxygenases play an important role in A2A AR-mediated relaxation, and the deletion of the A2A AR leads to contraction through Cyp4a.
Collapse
Affiliation(s)
- Mohammed A Nayeem
- Department of Physiology and Pharmacology, Center for Interdisciplinary Research in Cardiovascular Sciences, West Virginia University, Morgantown, WV 26506, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Miao H, Wang B. Eph/ephrin signaling in epithelial development and homeostasis. Int J Biochem Cell Biol 2008; 41:762-70. [PMID: 18761422 DOI: 10.1016/j.biocel.2008.07.019] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 06/13/2008] [Accepted: 07/01/2008] [Indexed: 11/16/2022]
Abstract
Eph receptors and ephrin ligands are widely expressed during embryonic development with well-defined functions in directing neuronal and vascular network formation. Over the last decade, evidence has mounted that Ephs and ephrins are also actively involved in prenatal and postnatal development of epithelial tissues. Their functions beyond developmental settings are starting to be recognized as well. The diverse functions of Eph/ephrin are largely related to the complementary expression pattern of the Eph receptors and corresponding ephrin ligands that are expressed in adjacent compartments, although overlapping expression pattern also exists in epithelial tissue. The interconnection between Ephs or ephrins and classical cell junctional molecules suggests they may function coordinately in maintaining epithelial structural integrity and homeostasis. This review will highlight cellular and molecular evidence in current literature that support a role of Eph/ephrin systems in regulating epithelial cell development and physiology.
Collapse
Affiliation(s)
- Hui Miao
- Rammelkamp Center for Research, MetroHealth Campus, Case Western Reserve University School of Medicine, 2500 MetroHealth Drive, Cleveland, OH 44109, United States
| | | |
Collapse
|
19
|
Hasler U, Nunes P, Bouley R, Lu HAJ, Matsuzaki T, Brown D. Acute hypertonicity alters aquaporin-2 trafficking and induces a MAPK-dependent accumulation at the plasma membrane of renal epithelial cells. J Biol Chem 2008; 283:26643-61. [PMID: 18664568 DOI: 10.1074/jbc.m801071200] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The unique phenotype of renal medullary cells allows them to survive and functionally adapt to changes of interstitial osmolality/tonicity. We investigated the effects of acute hypertonic challenge on AQP2 (aquaporin-2) water channel trafficking. In the absence of vasopressin, hypertonicity alone induced rapid (<10 min) plasma membrane accumulation of AQP2 in rat kidney collecting duct principal cells in situ, and in several kidney epithelial lines. Confocal microscopy revealed that AQP2 also accumulated in the trans-Golgi network (TGN) following hypertonic challenge. AQP2 mutants that mimic the Ser(256)-phosphorylated and -nonphosphorylated state accumulated at the cell surface and TGN, respectively. Hypertonicity did not induce a change in cytosolic cAMP concentration, but inhibition of either calmodulin or cAMP-dependent protein kinase A activity blunted the hypertonicity-induced increase of AQP2 cell surface expression. Hypertonicity increased p38, ERK1/2, and JNK MAPK activity. Inhibiting MAPK activity abolished hypertonicity-induced accumulation of AQP2 at the cell surface but did not affect either vasopressin-dependent AQP2 trafficking or hypertonicity-induced AQP2 accumulation in the TGN. Finally, increased AQP2 cell surface expression induced by hypertonicity largely resulted from a reduction in endocytosis but not from an increase in exocytosis. These data indicate that acute hypertonicity profoundly alters AQP2 trafficking and that hypertonicity-induced AQP2 accumulation at the cell surface depends on MAP kinase activity. This may have important implications on adaptational processes governing transcellular water flux and/or cell survival under extreme conditions of hypertonicity.
Collapse
Affiliation(s)
- Udo Hasler
- Massachusetts General Hospital Center for Systems Biology, Program in Membrane Biology and Nephrology Division, Massachusetts General Hospital, Boston, Massachusetts 02114-2790, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Selective tonicity-induced expression of the neutral amino-acid transporter SNAT2 in oligodendrocytes in rat brain following systemic hypertonicity. Neuroscience 2008; 153:95-107. [DOI: 10.1016/j.neuroscience.2008.01.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Revised: 12/20/2007] [Accepted: 01/18/2008] [Indexed: 12/22/2022]
|
21
|
Maallem S, Wierinckx A, Lachuer J, Kwon MH, Tappaz ML. Gene expression profiling in brain following acute systemic hypertonicity: novel genes possibly involved in osmoadaptation. J Neurochem 2008; 105:1198-211. [PMID: 18194432 DOI: 10.1111/j.1471-4159.2008.05222.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In brain osmoprotective genes known to be involved in cellular osmoadaptation to hypertonicity, as well as the related transcription factor tonicity-responsive enhancer binding protein (TonEBP) are only expressed in some cell subsets. In the search for other genes possibly involved in osmoadaptation of brain cells we have analyzed, through microarray, the transcriptional profile of forebrain from rats subjected to 45 min, 90 min, and 6 h systemic hypertonicity. Microarray data were validated by quantitative real-time PCR. Around 23 000 genes gave a reliable hybridization signal. The number of genes showing a higher expression increased from around 15 (45 min) up to nearly 200 (6 h). Among about 30 immediate early genes (IEGs) encoding transcription factors, only Atf3, Verge, and Klf4 showed a rapid increased expression. TonEBP-mRNA tissue level and TonEBP-mRNA labeling in neurons remained unchanged whereas TonEBP labeling was rapidly increased in neurons. Sodium-dependent neutral amino acid transporter-2 (SNAT2) encoded by gene Slc38a2 showed a delayed increased expression. The rapid tonicity-induced activation of Atf3, Verge, and Klf4 may regulate genes involved in osmoadaptation. Nfat5 encoding TonEBP is not an IEG and the early tonicity-induced expression of TonEBP in neurons may result from translational activation. Increased expression of sodium-dependent neutral amino-acid transporter 2 may lead to the cellular accumulation of amino acids for adaptation to hypertonicity.
Collapse
Affiliation(s)
- Saïd Maallem
- Unité INSERM 433, Neurobiologie Experimentale et Physiopathologie, Faculté de Médecine RTH Laennec, Rue Guillaume Paradin, Lyon, Cedex, France
| | | | | | | | | |
Collapse
|
22
|
Abstract
Cells in the renal inner medulla are normally exposed to extraordinarily high levels of NaCl and urea. The osmotic stress causes numerous perturbations because of the hypertonic effect of high NaCl and the direct denaturation of cellular macromolecules by high urea. High NaCl and urea elevate reactive oxygen species, cause cytoskeletal rearrangement, inhibit DNA replication and transcription, inhibit translation, depolarize mitochondria, and damage DNA and proteins. Nevertheless, cells can accommodate by changes that include accumulation of organic osmolytes and increased expression of heat shock proteins. Failure to accommodate results in cell death by apoptosis. Although the adapted cells survive and function, many of the original perturbations persist, and even contribute to signaling the adaptive responses. This review addresses both the perturbing effects of high NaCl and urea and the adaptive responses. We speculate on the sensors of osmolality and document the multiple pathways that signal activation of the transcription factor TonEBP/OREBP, which directs many aspects of adaptation. The facts that numerous cellular functions are altered by hyperosmolality and remain so, even after adaptation, indicate that both the effects of hyperosmolality and adaptation to it involve profound alterations of the state of the cells.
Collapse
|
23
|
Talukder MAH, Kalyanasundaram A, Zhao X, Zuo L, Bhupathy P, Babu GJ, Cardounel AJ, Periasamy M, Zweier JL. Expression of SERCA isoform with faster Ca2+ transport properties improves postischemic cardiac function and Ca2+ handling and decreases myocardial infarction. Am J Physiol Heart Circ Physiol 2007; 293:H2418-28. [PMID: 17630344 DOI: 10.1152/ajpheart.00663.2007] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myocardial ischemia-reperfusion (I/R) injury is associated with contractile dysfunction, arrhythmias, and myocyte death. Intracellular Ca(2+) overload with reduced activity of sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) is a critical mechanism of this injury. Although upregulation of SERCA function is well documented to improve postischemic cardiac function, there are conflicting reports where pharmacological inhibition of SERCA improved postischemic function. SERCA2a is the primary cardiac isoform regulating intracellular Ca(2+) homeostasis; however, SERCA1a has been shown to substitute SERCA2a with faster Ca(2+) transport kinetics. Therefore, to further address this issue and to evaluate whether SERCA1a expression could improve postischemic cardiac function and myocardial salvage, in vitro and in vivo myocardial I/R studies were performed on SERCA1a transgenic (SERCA1a(+/+)) and nontransgenic (NTG) mice. Langendorff-perfused hearts were subjected to 30 min of global ischemia followed by reperfusion. Baseline preischemic coronary flow and left ventricular developed pressure were significantly greater in SERCA1a(+/+) mice compared with NTG mice. Independent of reperfusion-induced oxidative stress, SERCA1a(+/+) hearts demonstrated greatly improved postischemic (45 min) contractile recovery with less persistent arrhythmias compared with NTG hearts. Morphometry showed better-preserved myocardial structure with less infarction, and electron microscopy demonstrated better-preserved myofibrillar and mitochondrial ultrastructure in SERCA1a(+/+) hearts. Importantly, intraischemic Ca(2+) levels were significantly lower in SERCA1a(+/+) hearts. The cardioprotective effect of SERCA1a was also observed during in vivo regional I/R with reduced myocardial infarct size after 24 h of reperfusion. Thus SERCA1a(+/+) hearts were markedly protected against I/R injury, suggesting that expression of SERCA 1a isoform reduces postischemic Ca(2+) overload and thus provides potent myocardial protection.
Collapse
MESH Headings
- Animals
- Arrhythmias, Cardiac/etiology
- Arrhythmias, Cardiac/metabolism
- Arrhythmias, Cardiac/physiopathology
- Arrhythmias, Cardiac/prevention & control
- Calcium/metabolism
- Coronary Circulation
- Disease Models, Animal
- Electron Spin Resonance Spectroscopy
- Fluorescent Dyes
- Free Radicals/metabolism
- Heterocyclic Compounds, 3-Ring
- Immunohistochemistry
- Isoenzymes/metabolism
- Mice
- Mice, Transgenic
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/ultrastructure
- Myocardial Contraction
- Myocardial Infarction/etiology
- Myocardial Infarction/genetics
- Myocardial Infarction/metabolism
- Myocardial Infarction/physiopathology
- Myocardial Infarction/prevention & control
- Myocardial Reperfusion Injury/complications
- Myocardial Reperfusion Injury/genetics
- Myocardial Reperfusion Injury/metabolism
- Myocardial Reperfusion Injury/physiopathology
- Myocardial Reperfusion Injury/prevention & control
- Myocardium/enzymology
- Myocardium/metabolism
- Myocardium/ultrastructure
- Sarcoplasmic Reticulum/enzymology
- Sarcoplasmic Reticulum/metabolism
- Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics
- Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
- Spectrometry, Fluorescence/methods
- Time Factors
- Tyrosine/analogs & derivatives
- Tyrosine/metabolism
- Ventricular Function, Left
- Ventricular Pressure
Collapse
Affiliation(s)
- M A Hassan Talukder
- Davis Heart and Lung Research Institute and Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine and Public Health, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Tsai TT, Guttapalli A, Agrawal A, Albert TJ, Shapiro IM, Risbud MV. MEK/ERK signaling controls osmoregulation of nucleus pulposus cells of the intervertebral disc by transactivation of TonEBP/OREBP. J Bone Miner Res 2007; 22:965-74. [PMID: 17371162 DOI: 10.1359/jbmr.070322] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
UNLABELLED Earlier studies have shown that intervertebral disc cells express TonEBP, a transcription factor that permits adaptation to osmotic stress and regulates aggrecan gene expression. However, the mechanism of hyperosmotic activation of TonEBP in disc cells is not known. Results of this study show that hypertonic activation of ERK signaling regulates transactivation activity of TonEBP, modulating its function. INTRODUCTION In an earlier report, we showed that tonicity enhancer binding protein (TonEBP) positively regulates aggrecan gene expression in disc cells, thereby autoregulating its osmotic environment. Although these studies indicated that the cells of the nucleus pulposus were optimally adapted to a hyperosmotic state, the mechanism by which the cells transduce the osmotic stress was not delineated. The primary goal of this study was to test the hypothesis that, in a hyperosmotic medium, the extracellular signal-regulated kinase (ERK) signaling pathway regulated TonEBP activity. MATERIALS AND METHODS Nucleus pulposus cells were maintained in isotonic or hypertonic media, and MAPK activation and TonEBP expression were analyzed. To study the role of MAPK in regulation of TonEBP function, gel shift and luciferase reporter assays were performed. ERK expression in cells was modulated by using expression plasmids or siRNA, and transactivation domain (TAD)-TonEBP activity was studied. RESULTS We found that hypertonicity resulted in phosphorylation and activation of ERK1/2 proteins and concomitant activation of C terminus TAD activity of ELK-1, a downstream transcription factor. In hypertonic media, treatment with ERK and p38 inhibitors resulted in downregulation of TonE promoter activity of TauT and HSP-70 and decreased binding of TonEBP to TonE motif. Similarly, forced expression of DN-ERK and DN-p38 in nucleus pulposus cells suppressed TauT and HSP-70 reporter gene activity. Finally, we noted that ERK was needed for transactivation of TonEBP. Expression of DN-ERK significantly suppressed, whereas, WT-ERK and CA-MEK1 enhanced, TAD activity of TonEBP. Experiments performed with HeLa cells indicated that the ERK signaling pathway also served a major role in regulating the osmotic response in nondiscal cells. CONCLUSIONS Together, these studies showed that adaptation of the nucleus pulposus cells to their hyperosmotic milieu is dependent on activation of the ERK and p38- MAPK pathways acting through TonEBP and its target genes.
Collapse
Affiliation(s)
- Tsung-Ting Tsai
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania19107, USA
| | | | | | | | | | | |
Collapse
|
25
|
Alfieri RR, Petronini PG. Hyperosmotic stress response: comparison with other cellular stresses. Pflugers Arch 2007; 454:173-85. [PMID: 17206446 DOI: 10.1007/s00424-006-0195-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Accepted: 11/24/2006] [Indexed: 10/23/2022]
Abstract
Cellular responses induced by stress are essential for the survival of cells under adverse conditions. These responses, resulting in cell adaptation to the stress, are accomplished by a variety of processes at the molecular level. After an alteration in homeostatic conditions, intracellular signalling processes link the sensing mechanism to adaptive or compensatory changes in gene expression. The ability of cells to adapt to hyperosmotic stress involves early responses in which ions move across cell membranes and late responses characterized by increased synthesis of either membrane transporters essential for uptake of organic osmolytes or of enzymes involved in their synthesis. The goal of these responses is to return the cell to its normal size and maintain cellular homeostasis. The enhanced synthesis of molecular chaperones, such as heat shock proteins, is another important component of the adaptive process that contributes to cell survival. Some responses are common to different stresses, whereas others are specific. In the first part of the review, we illustrate the characteristic and specific features of adaptive response to hypertonicity; we then describe similarities to and differences from other cellular stresses, such as genotoxic agents, nutrient starvation and heat shock.
Collapse
Affiliation(s)
- Roberta R Alfieri
- Dipartimento di Medicina Sperimentale, Sezione di Patologia Molecolare e Immunologia, Università degli Studi di Parma, 43100 Parma, Italy.
| | | |
Collapse
|
26
|
O'Connor RS, Mills ST, Jones KA, Ho SN, Pavlath GK. A combinatorial role for NFAT5 in both myoblast migration and differentiation during skeletal muscle myogenesis. J Cell Sci 2006; 120:149-59. [PMID: 17164296 DOI: 10.1242/jcs.03307] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Skeletal muscle regeneration depends on myoblast migration, differentiation and myofiber formation. Isoforms of the nuclear factor of activated T cells (NFAT) family of transcription factors display nonredundant roles in skeletal muscle. NFAT5, a new isoform of NFAT, displays many differences from NFATc1-c4. Here, we examine the role of NFAT5 in myogenesis. NFAT5+/- mice displayed a defect in muscle regeneration with fewer myofibers formed at early times after injury. NFAT5 has a muscle-intrinsic function because inhibition of NFAT5 transcriptional activity caused both a migratory and differentiation defect in cultured myoblasts. We identified Cyr61 as a target of NFAT5 signaling in skeletal muscle cells. Addition of Cyr61 to cells expressing inhibitory forms of NFAT5 rescued the migratory phenotype. These results demonstrate a role for NFAT5 in skeletal muscle cell migration and differentiation. Furthermore, as cell-cell interactions are crucial for myoblast differentiation, these data suggest that myoblast migration and differentiation are coupled and that NFAT5 is a key regulator.
Collapse
Affiliation(s)
- Roddy S O'Connor
- Graduate Program in Molecular and Systems Pharmacology, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
27
|
Ansari HR, Nadeem A, Talukder MAH, Sakhalkar S, Mustafa SJ. Evidence for the involvement of nitric oxide in A2B receptor-mediated vasorelaxation of mouse aorta. Am J Physiol Heart Circ Physiol 2006; 292:H719-25. [PMID: 16920807 DOI: 10.1152/ajpheart.00593.2006] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have investigated the role of adenosine and its analogs on vasorelaxation of mouse aorta in intact endothelium with rank order of potency as follows: 5'-N-ethylcarboxamidoadenosine (NECA) > 2-chloroadenosine > adenosine >> CGS-21680, which is consistent with the profile of A(2B)-adenosine receptor (A(2B)AR). In endothelium-intact tissues, acetylcholine produced relaxation ranging from 65 to 80% in phenylephrine (PE, 10(-7) M)-precontracted mouse aorta, whereas no relaxation was observed in endothelium-denuded tissues. The A(2B)AR antagonist alloxazine (10(-5) M) shifted concentration-response curve for NECA (EC(50) = 0.005 x 10(-5) M) to the right with an EC(50) of 2.8 x 10(-5) M, demonstrating that this relaxation is partially dependent on functional endothelium mediated predominantly via A(2B)AR in this tissue. This conclusion was further supported by the following findings: 1) in the endothelium-intact mouse aorta, the EC(50) values for NECA and adenosine were found to be 0.05 and 1.99 x 10(-4) M, respectively; however, in denuded endothelium, these values were 0.098 and 3.55 x 10(-4) M, respectively; 2) NECA-induced relaxation was significantly blocked by N(G)-nitro-l-arginine methyl ester (l-NAME; 10(-4) M) in endothelium-intact tissues, which was reversed by pretreatment with l-arginine (10(-4) M), whereas no significant inhibition was found in endothelium-denuded tissues; 3) total nitrites and nitrates (NOx) in intact endothelium with l-NAME (10(-4) M) alone and in combination with l-arginine were 59% (P < 0.05) and 96%, respectively, in comparison with control (PE + NECA); and 4) endothelial nitric oxide synthase gene expression was found to be 67% (P < 0.05) less in endothelium-denuded as opposed to endothelium-intact mouse aorta. Thus these data demonstrate that adenosine-mediated vasorelaxation is partially dependent on A(2B)AR in mouse aorta.
Collapse
Affiliation(s)
- Habib R Ansari
- Dept. of Physiology and Pharmacology, Center for Interdisciplinary Research in Cardiovascular Sciences (CIRCS Robert C. Byrd Health Science Center, West Virginia Univ., Morgantown, WV 26506, USA
| | | | | | | | | |
Collapse
|
28
|
Baldwin C, Chen ZW, Bedirian A, Yokota N, Nasr SH, Rabb H, Lemay S. Upregulation of EphA2 during in vivo and in vitro renal ischemia-reperfusion injury: role of Src kinases. Am J Physiol Renal Physiol 2006; 291:F960-71. [PMID: 16735461 DOI: 10.1152/ajprenal.00020.2006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) is a major cause of acute kidney injury in both native kidneys and renal allografts. Disruption of the actin cytoskeleton is a key event with multiple repercussions on cell adhesion and function during IRI. However, receptors involved in regulating cytoskeletal repair following injury have not been identified. In an in vivo model of renal IRI, we used multiprobe RNase protection assay to examine the expression of Eph receptor tyrosine kinases, key regulators of actin dynamics in embryonic development. We found that one receptor in particular, EphA2, was strongly upregulated in the kidney following IRI. Ephrins, the cell-bound ligands of Eph receptors, were also strongly expressed. In cultured renal tubular cells, diverse injurious stimuli mimicking IRI also resulted in upregulation of EphA2 protein expression. Upregulation of EphA2 was inhibited by the Src kinase inhibitor PP2. Conversely, overexpression of Src kinases strongly enhanced the expression of endogenous EphA2 as well as the activity of a human EphA2 promoter construct. Activation of the Erk pathway was necessary, but not sufficient for full induction of EphA2 upreglation by Src kinases. Stimulation of renal tubular epithelial cells with the EphA2 ligand ephrin-A1 caused tyrosine phosphorylation of endogenous EphA2, paxillin, and an unidentified approximately 65-kDa protein and resulted in increased cortical F-actin staining. In summary, under in vitro conditions mimicking IRI, EphA2 expression is strongly upregulated through a Src kinase-dependent pathway. Interactions between upregulated EphA2 and its ephrin ligands may provide critical cell contact-dependent, bidirectional cues for cytoskeletal repair in renal IRI.
Collapse
Affiliation(s)
- Cindy Baldwin
- Dept. of Medicine, Division of Nephrology, McGill Univ., Lyman-Duff Bldg. Rm. 228, 3775 Univ. St., Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
29
|
Yang B, Hodgkinson AD, Oates PJ, Kwon HM, Millward BA, Demaine AG. Elevated activity of transcription factor nuclear factor of activated T-cells 5 (NFAT5) and diabetic nephropathy. Diabetes 2006; 55:1450-5. [PMID: 16644704 DOI: 10.2337/db05-1260] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The expression of aldose reductase is tightly regulated by the transcription factor tonicity response element binding protein (TonEBP/NFAT5) binding to three osmotic response elements (OREs; OREA, OREB, and OREC) in the gene. The aim was to investigate the contribution of NFAT5 to the pathogenesis of diabetic nephropathy. Peripheral blood mononuclear cells (PBMCs) were isolated from the following subjects: 44 Caucasoid patients with type 1 diabetes, of whom 26 had nephropathy and 18 had no nephropathy after a diabetes duration of 20 years, and 13 normal healthy control subjects. In addition, human mesangial cells (HMCs) were isolated from the normal lobe of 10 kidneys following radical nephrectomy for renal cell carcinoma. Nuclear and cytoplasmic proteins were extracted from PBMCs and HMCs and cultured in either normal or high-glucose (31 mmol/l D-glucose) conditions for 5 days. NFAT5 binding activity was quantitated using electrophoretic mobility shift assays for each of the OREs. Western blotting was used to measure aldose reductase and sorbitol dehydrogenase protein levels. There were significant fold increases in DNA binding activities of NFAT5 to OREB (2.06 +/- 0.03 vs. 1.33 +/- 0.18, P = 0.033) and OREC (1.94 +/- 0.21 vs. 1.39 +/- 0.11, P = 0.024) in PBMCs from patients with diabetic nephropathy compared with diabetic control subjects cultured under high glucose. Aldose reductase and sorbitol dehydrogenase protein levels in the patients with diabetic nephropathy were significantly increased in PBMCs cultured in high-glucose conditions. In HMCs cultured under high glucose, there were significant increases in NFAT5 binding activities to OREA, OREB, and OREC by 1.38 +/- 0.22-, 1.84 +/- 0.44-, and 2.38 +/- 1.15-fold, respectively. Similar results were found in HMCs exposed to high glucose (aldose reductase 1.30 +/- 0.06-fold and sorbitol dehydrogenease 1.54 +/- 0.24-fold increases). Finally, the silencing of the NFAT5 gene in vitro reduced the expression of the aldose reductase gene. In conclusion, these results show that aldose reductase is upregulated by the transcriptional factor NFAT5 under high-glucose conditions in both PBMCs and HMCs.
Collapse
Affiliation(s)
- Bingmei Yang
- Molecular Medicine Research Group, The John Bull Building, Research Way, Peninsula Medical School, Universities of Exeter and Plymouth, Plymouth PL6 8BU, U.K
| | | | | | | | | | | |
Collapse
|
30
|
Lezama R, Díaz-Téllez A, Ramos-Mandujano G, Oropeza L, Pasantes-Morales H. Epidermal growth factor receptor is a common element in the signaling pathways activated by cell volume changes in isosmotic, hyposmotic or hyperosmotic conditions. Neurochem Res 2006; 30:1589-97. [PMID: 16362778 DOI: 10.1007/s11064-005-8837-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2005] [Indexed: 01/12/2023]
Abstract
Changes in external osmolarity, including both hyper- or hyposmotic conditions, elicit the tyrosine phosphorylation of a number of tyrosine kinase receptors (TKR). We show here that the epidermal growth factor receptor (EGFR) is activated by both cell swelling (hyposmolarity, isosmotic urea, hyperosmotic sorbitol) or shrinkage (hyperosmotic NaCl or raffinose) and discuss the mechanisms by which these apparently opposed conditions come to the same effect, i.e., EGFR activation. Evidence suggests that this results from early activation of integrins, p38 and tyrosine kinases of the Src family, which are all activated in the two anisosmotic conditions. TKR transactivation by integrins and p38 is likely occurring via an effect on the metalloproteinases. Information discussed in this review, points to TKR as elements in osmotransduction as a useful mechanism to amplify and diversify the initial response to anisosmolarity and cell volume changes, due to their privileged situation as convergence point for numerous intracellular signaling pathways. The variety of effector pathways connected to TKR is advantageous for the cell to cope with the changes in cell volume including adaptation to stress, cytoskeleton remodeling, adhesion reactions, cell survival and the adaptive mechanisms to ultimately restore the original cell volume.
Collapse
Affiliation(s)
- R Lezama
- Departamento de Biofísica, Instituto de Fisiología Celular, Universidad Naecoual Autonoma de México(UNAM), O4510, México DF, Mexico
| | | | | | | | | |
Collapse
|
31
|
Tawfik HE, Teng B, Morrison RR, Schnermann J, Mustafa SJ. Role of A1 adenosine receptor in the regulation of coronary flow. Am J Physiol Heart Circ Physiol 2006; 291:H467-72. [PMID: 16517942 DOI: 10.1152/ajpheart.01319.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To determine whether A1 adenosine receptors (AR) participate in adenosine-induced changes of coronary flow, isolated hearts from A1AR(-/-) and A1AR(+/+) mice were perfused under constant pressure, and the effects of nonselective and selective agonists were examined. Adenosine, 5'-N-ethylcarboxamidoadenosine (NECA, nonselective), and the selective A2AAR agonist 2-2-carboxyethylphenethylamino-5'-N-ethylcarboxamidoadenosine (CGS-21680) augmented maximal coronary vasodilation in A1AR(-/-) hearts compared with A1AR(+/+) hearts. Basal coronary flow was increased (P < 0.05) in A1AR(-/-) hearts compared with A1AR(+/+) hearts: 2.548 +/- 0.1 vs. 2.059 +/- 0.17 ml/min. In addition, selective activation of A1AR with 2-chloro-N6-cyclopentyladenosine (CCPA) at nanomolar concentrations (1-100 nM) did not significantly change coronary flow; at higher concentrations, CCPA increased coronary flow in A1AR(-/-) and A1AR(+/+) hearts. Because deletion of A1AR increased basal coronary flow, it is speculated that this effect is due to removal of an inhibitory influence associated with A1AR. Adenosine and NECA at approximately EC50 (100 and 50 nM, respectively) increased coronary flow in A1AR(+/+) hearts to 177.86 +/- 8.75 and 172.72 +/- 17% of baseline, respectively. In the presence of the selective A1AR antagonist 1,3-dipropyl-8-cyclopentylxanthine (DPCPX, 50 nM), the adenosine- and NECA-induced increase in coronary flow in A1AR(+/+) hearts was significantly augmented to 216.106 +/- 8.35 and 201.61 +/- 21.89% of normalized baseline values, respectively. The adenosine- and NECA-induced increase in coronary flow in A1AR(-/-) hearts was not altered by DPCPX. These data indicate that A1AR may inhibit or negatively modulate coronary flow mediated by other AR subtypes (A2A and A2B).
Collapse
Affiliation(s)
- Huda E Tawfik
- Department of Pharmacology, Brody School of Medicine, East Corlina University, Greenville, North Carolina, USA
| | | | | | | | | |
Collapse
|
32
|
Abstract
Typical drug development timelines are 10 - 15 years, with high attrition rates that make it difficult for companies to sustain productive pipelines. Investigational and discovery toxicology are novel and revolutionary extensions of the field of general toxicology, which has been created to fulfil the growing need for generating higher throughput, and integrative and predictive toxicological information, in an effort to reduce attrition. Included in this new paradigm is transcript profiling, and recent innovations have led some to speculate that genomics would help revolutionise drug development, as more better predictive biomarkers of organ damage would be identified. The kidney has been a focus of toxicogenomics investigations, and candidate genomic-based biomarkers of renal damage have been identified for rodent as well as nonhuman primate models of nephrotoxicity. This review highlights published results that have led to the preliminary identification of candidate genomic-based markers of nephrotoxicity and provides insight into the future of toxicogenomics.
Collapse
Affiliation(s)
- John W Davis
- Pfizer Global Research and Development, Worldwide Safety Sciences, Chesterfield, MO 63017, USA.
| | | |
Collapse
|
33
|
Teng B, Ansari HR, Oldenburg PJ, Schnermann J, Mustafa SJ. Isolation and characterization of coronary endothelial and smooth muscle cells from A1 adenosine receptor-knockout mice. Am J Physiol Heart Circ Physiol 2005; 290:H1713-20. [PMID: 16299260 PMCID: PMC3875310 DOI: 10.1152/ajpheart.00826.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mice have been used widely in in vivo and in vitro cardiovascular research. The availability of knockout mice provides further clues to the physiological significance of specific receptor subtypes. Adenosine A(1) receptor (A(1)AR)-knockout (A(1)KO) mice and their wild-type (A(1)WT) controls were employed in this investigation. The heart and aortic arch were carefully removed and retroinfused with enzyme solution (1 mg/ml collagenase type I, 0.5 mg/ml soybean trypsin inhibitor, 3% BSA, and 2% antibiotics) through the aortic arch. The efflux was collected at 30-, 60-, and 90-min intervals. The cells were centrifuged, and the pellets were mixed with medium [medium 199-F-12 medium with 10% FBS and 2% antibiotics (for endothelial cells) and advanced DMEM with 10% FBS, 10% mouse serum, 2% GlutaMax, and 2% antibiotics (for smooth muscle cells)] and plated. Endothelial cells were characterized by a cobblestone appearance and positive staining with acetylated LDL labeled with 1,1'-dioctadecyl-3,3,3',3-tetramethylindocarbocyanine perchlorate. Smooth muscle cells were characterized by positive staining of smooth muscle alpha-actin and smooth muscle myosin heavy chain. Homogeneity of the smooth muscle cells was approximately 91%. Western blot analysis showed expression of smoothelin in the cells from passages 3, 7, and 11 in A(1)WT and A(1)KO mice. Furthermore, the A(1)AR was characterized by Western blot analysis using an A(1)AR-specific antibody. To our knowledge, this is the first isolation and successful characterization of smooth muscle cells from the mouse coronary system.
Collapse
Affiliation(s)
- Bunyen Teng
- Dept. of Pharmacology, East Carolina University, Greenville, North Carolina, USA
| | | | | | | | | |
Collapse
|
34
|
Bevilacqua E, Bussolati O, Dall'Asta V, Gaccioli F, Sala R, Gazzola GC, Franchi-Gazzola R. SNAT2 silencing prevents the osmotic induction of transport system A and hinders cell recovery from hypertonic stress. FEBS Lett 2005; 579:3376-80. [PMID: 15922329 DOI: 10.1016/j.febslet.2005.05.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Revised: 05/04/2005] [Accepted: 05/04/2005] [Indexed: 11/17/2022]
Abstract
Under hypertonic conditions the induction of SLC38A2/SNAT2 leads to the stimulation of transport system A and to the increase in the cell content of amino acids. In hypertonically stressed human fibroblasts transfection with two siRNAs for SNAT2 suppressed the increase in SNAT2 mRNA and the stimulation of system A transport activity. Under the same condition, the expansion of the intracellular amino acid pool was significantly lowered and cell volume recovery markedly delayed. It is concluded that the up-regulation of SNAT2 is essential for the rapid restoration of cell volume after hypertonic stress.
Collapse
Affiliation(s)
- Elena Bevilacqua
- Sezione di Patologia Generale e Clinica, Dipartimento di Medicina, Sperimentale, Università degli Studi di Parma, Via Volturno 39, 43100 Parma, Italy
| | | | | | | | | | | | | |
Collapse
|
35
|
Liang M, Cowley AW, Hessner MJ, Lazar J, Basile DP, Pietrusz JL. Transcriptome analysis and kidney research: Toward systems biology. Kidney Int 2005; 67:2114-22. [PMID: 15882254 DOI: 10.1111/j.1523-1755.2005.00315.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An enormous amount of data has been generated in kidney research using transcriptome analysis techniques. In this review article, we first describe briefly the principles and major characteristics of several of these techniques. We then summarize the progress in kidney research that has been made by using transcriptome analysis, emphasizing the experience gained and the lessons learned. Several technical issues regarding DNA microarray are highlighted because of the rapidly increased use of this technology. It appears clear from this brief survey that transcriptome analysis is an effective and important tool for question-driven exploratory science. To further enhance the power of this and other high throughput, as well as conventional approaches, in future studies of the kidney, we propose a multidimensional systems biology paradigm that integrates investigation at multiple levels of biologic regulation toward the goal of achieving a global understanding of physiology and pathophysiology.
Collapse
Affiliation(s)
- Mingyu Liang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Talukder MAH, Fujiki T, Morikawa K, Motoishi M, Matsuo Y, Hatanaka M, Tsutsui M, Takeshita A, Shimokawa H. Endothelial nitric oxide synthase-independent effects of an ACE inhibitor on coronary flow response to bradykinin in aged mice. J Cardiovasc Pharmacol 2005; 44:557-63. [PMID: 15505492 DOI: 10.1097/00005344-200411000-00007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ACE inhibitors are known to ameliorate cardiovascular complications in aging; however, their effects on the coronary circulation in relation to aging and eNOS dependence remain to be examined. Coronary flow responses to bradykinin with or without ACE inhibitors were examined in Langendorff-perfused hearts from young (16-20 weeks) and aged (16-20 months) control and eNOS mice. Western blot analysis was performed for cardiac eNOS, nNOS, and ACE. Baseline coronary flow was comparable between young and aged mice of both strains. Aging did not affect bradykinin-induced coronary flow in either strain. Interestingly, both acute and chronic treatment with an ACE inhibitor markedly augmented the flow response in aged control and eNOS mice. Aged eNOS mice were markedly hypertensive and had larger ventricular mass than control mice. The antihypertensive effect of temocapril was greater in aged eNOS mice, associated with reduction in the ventricular weight in both strains. Western blot analysis demonstrated an increased expression of eNOS in aged control mice, and ACE expression was increased in eNOS mice. These results indicate that coronary flow response to bradykinin is preserved in aged mice even in the absence of eNOS, and an ACE inhibitor augments this response by both eNOS-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- M A Hassan Talukder
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kempson SA, Montrose MH. Osmotic regulation of renal betaine transport: transcription and beyond. Pflugers Arch 2005; 449:227-34. [PMID: 15452713 DOI: 10.1007/s00424-004-1338-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cells in the kidney inner medulla are routinely exposed to high extracellular osmolarity during normal operation of the urinary concentrating mechanism. One adaptation critical for survival in this environment is the intracellular accumulation of organic osmolytes to balance the osmotic stress. Betaine is an important osmolyte that is accumulated via the betaine/gamma-aminobutyric acid transporter (BGT1) in the basolateral plasma membrane of medullary epithelial cells. In response to hypertonic stress, there is transcriptional activation of the BGT1 gene, followed by trafficking and membrane insertion of BGT1 protein. Transcriptional activation, triggered by changes in ionic strength and water content, is an early response that is a key regulatory step and has been studied in detail. Recent studies suggest there are additional post-transcriptional regulatory steps in the pathway leading to upregulation of BGT1 transport, and that additional proteins are required for membrane insertion. Reversal of this adaptive process, upon removal of hypertonic stress, involves a rapid efflux of betaine through specific release pathways, a reduction in betaine influx, and a slower downregulation of BGT1 protein abundance. There is much more to be learned about many of these steps in BGT1 regulation.
Collapse
Affiliation(s)
- Stephen A Kempson
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Medical Sciences Bldg., Room 309, 635 Barnhill Drive, Indianapolis, IN 46202-5120, USA.
| | | |
Collapse
|
38
|
Hasler U, Vinciguerra M, Vandewalle A, Martin PY, Féraille E. Dual effects of hypertonicity on aquaporin-2 expression in cultured renal collecting duct principal cells. J Am Soc Nephrol 2005; 16:1571-82. [PMID: 15843469 DOI: 10.1681/asn.2004110930] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The driving force for renal water reabsorption is provided by the osmolarity gradient between the interstitium and the tubular lumen, which is subject to rapid physiologic variations as a consequence of water intake fluctuations. The effect of increased extracellular tonicity/osmolarity on vasopressin-inducible aquaporin-2 (AQP2) expression in immortalized mouse collecting duct principal cells (mpkCCD(cl4)) is investigated in this report. Increasing the osmolarity of the medium either by the addition of NaCl, sucrose, or urea first decreased AQP2 expression after 3 h. AQP2 expression then increased in cells exposed to NaCl- or sucrose-supplemented hypertonic medium after longer periods of time (24 h), while urea-supplemented hyperosmotic medium had no effect. Altered AQP2 expression induced by both short-term (3 h) and long-term (24 h) exposure of cells to hypertonicity arose from changes in AQP2 gene transcription because hypertonicity did not modify AQP2 mRNA stability nor AQP2 protein turnover. On the long-term, vasopressin (AVP) and hypertonicity increased AQP2 expression in a synergistic manner. Hypertonicity altered neither the dose-responsiveness of AVP-induced AQP2 expression nor cAMP-protein kinase (PKA) activity, while PKA inhibition did not reduce the extent of the hypertonicity-induced increase of AQP2 expression. These results indicate that in collecting duct principal cells: (1) a short-term increase of extracellular osmolarity decreases AQP2 expression through inhibition of AQP2 gene transcription; (2) a long-term increase of extracellular tonicity, but not osmolarity, enhances AQP2 expression via stimulation of AQP2 gene transcription; and (3) long-term hypertonicity and PKA increases AQP2 expression through synergistic but independent mechanisms.
Collapse
Affiliation(s)
- Udo Hasler
- Division de Nephrologye, Fondation pour Recherches Médicales, 64 Avenue de la Roseraie, Genève 4, Switzerland, CH-1211
| | | | | | | | | |
Collapse
|
39
|
Franchi-Gazzola R, Gaccioli F, Bevilacqua E, Visigalli R, Dall'Asta V, Sala R, Varoqui H, Erickson JD, Gazzola GC, Bussolati O. The synthesis of SNAT2 transporters is required for the hypertonic stimulation of system A transport activity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1667:157-66. [PMID: 15581851 DOI: 10.1016/j.bbamem.2004.09.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2004] [Revised: 07/06/2004] [Accepted: 09/24/2004] [Indexed: 11/29/2022]
Abstract
In cultured human fibroblasts incubated under hypertonic conditions, the stimulation of system A for neutral amino acid transport, associated to the increased expression of the mRNA for SNAT2 transporter, leads to an expanded intracellular amino acid pool and to the recovery of cell volume. A protein of nearly 60 kDa, recognized by an antiserum against SNAT2, is increased both in the pool of biotinylated membrane proteins and in the total cell lysate of hypertonically stressed cells. The increased level of SNAT2 transporters in hypertonically stressed cells is confirmed by immunocytochemistry. DRB, an inhibitor of transcription, substantially inhibits the increase of SNAT2 proteins on the plasma membrane, completely suppresses the stimulation of system A transport activity, and markedly delays the cell volume recovery observed during the hypertonic treatment. On the contrary, if the transport activity of system A is adaptively increased by amino acid starvation in the presence of DRB, the increase of SNAT2 transporters on the plasma membrane is still clearly detectable and the transport change only partially inhibited. It is concluded that the synthesis of new SNAT2 transporters is essential for the hypertonic stimulation of transport system A, but accounts only in part for the adaptive increase of the system.
Collapse
Affiliation(s)
- Renata Franchi-Gazzola
- Dipartimento di Medicina Sperimentale, Sezione di Patologia Generale e Clinica, Università degli Studi di Parma, Via Volturno 39, 43100 Parma, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Teng B, Qin W, Ansari HR, Mustafa SJ. Involvement of p38-mitogen-activated protein kinase in adenosine receptor-mediated relaxation of coronary artery. Am J Physiol Heart Circ Physiol 2005; 288:H2574-80. [PMID: 15653766 DOI: 10.1152/ajpheart.00912.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The purpose of this study was to explore the involvement of adenosine receptor(s) in porcine coronary artery (PCA) relaxation and to define the role of MAPK signaling pathways. Isometric tensions were recorded in denuded PCA rings. 5'-(N-ethylcarboxamido)adenosine (NECA), a nonselective adenosine receptor agonist, induced a concentration-dependent relaxation (EC(50) = 16.8 nM) of PGF(2alpha) (10 microM)-preconstricted arterial rings. NECA-induced relaxation was completely blocked by 0.1 microM SCH-58261 (A(2A) antagonist) at lower doses (1-40 nM) but not at higher doses (80-1,000 nM). MRS-1706 (1 microM, A(2B) antagonist) was able to shift the NECA concentration-response curve to the right. CGS-21680 (selective A(2A) agonist) induced responses similarly to NECA, whereas N(6)-cyclopentyladenosine (A(1) agonist) and Cl-IB-MECA (A(3) agonist) did not. Furthermore, the effect of NECA was attenuated by the addition of SB-203580 (10 microM, p38 MAPK inhibitor) but not by PD-98059 (10 microM, MEK inhibitor). Interestingly, SB-203580 had no effect on CGS-21680-induced relaxation. Western blot analysis demonstrated that PGF(2alpha) and adenosine agonists stimulated p38 MAPK at a concentration of 40 nM in PCA smooth muscle cells. MRS-1706 (1 microM) significantly reduced NECA-induced p38 MAPK phosphorylation. Addition of NECA and SB-203580 alone or in combination inhibited PGF(2alpha)-induced p38 MAPK. Western blot data were further confirmed by p38 MAPK activity measurement using activating transcription factor-2 assay. Our results suggest that the adenosine receptor subtype involved in causing relaxation of porcine coronary smooth muscle is mainly A(2A) subtype, although A(2B) also may play a role, possibly through p38 MAPK pathway.
Collapse
Affiliation(s)
- Bunyen Teng
- Dept. of Pharmacology and Toxicology, Brody School of Medicine, East Carolina Univ., Greenville, NC 27834, USA
| | | | | | | |
Collapse
|
41
|
Alfieri RR, Bonelli MA, Petronini PG, Desenzani S, Cavazzoni A, Borghetti AF, Wheeler KP. Hypertonic stress and amino acid deprivation both increase expression of mRNA for amino Acid transport system A. ACTA ACUST UNITED AC 2004; 125:37-9. [PMID: 15596537 PMCID: PMC2217484 DOI: 10.1085/jgp.200409195] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
42
|
Xu H, Tian W, Lindsley JN, Oyama TT, Capasso JM, Rivard CJ, Cohen HT, Bagnasco SM, Anderson S, Cohen DM. EphA2: expression in the renal medulla and regulation by hypertonicity and urea stress in vitro and in vivo. Am J Physiol Renal Physiol 2004; 288:F855-66. [PMID: 15561974 DOI: 10.1152/ajprenal.00347.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
EphA2, a member of the large family of Eph receptor tyrosine kinases, is highly expressed in epithelial tissue and has been implicated in cell-cell and cell-matrix interactions, as well as cell growth and survival. Expression of EphA2 mRNA and protein was markedly upregulated by both hypertonic stress and by elevated urea concentrations in cells derived from the murine inner medullary collecting duct. This upregulation likely required transactivation of the epidermal growth factor (EGF) receptor tyrosine kinase and metalloproteinase-dependent ectodomain cleavage of an EGF receptor ligand, based on pharmacological inhibitor studies. A human EphA2 promoter fragment spanning nucleotides -4030 to +21 relative to the putative EphA2 transcriptional start site was responsive to tonicity but insensitive to urea. A promoter fragment spanning -1890 to +128 recapitulated both tonicity- and urea-dependent upregulation of expression, consistent with transcriptional activation. Neither the bona fide p53 response element at approximately -1.5 kb nor a pair of putative TonE elements at approximately -3 kb conferred the tonicity responsiveness. EphA2 mRNA and protein were expressed at low levels in rat renal cortex but at high levels in the collecting ducts of the renal medulla and papilla. Water deprivation in rats increased EphA2 expression in renal papilla, whereas dietary supplementation with 20% urea increased EphA2 expression in outer medulla. These data indicate that transcription and expression of the EphA2 receptor tyrosine kinase are regulated by tonicity and urea in vitro and suggest that this phenomenon is also operative in vivo. Renal medullary EphA2 expression may represent an adaptive response to medullary hypertonicity or urea exposure.
Collapse
Affiliation(s)
- Hongshi Xu
- Mailcode PP262, Oregon Health & Science Univ., 3314 S.W. US Veterans Hospital Rd., Portland, OR 97201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Tawfik HE, Schnermann J, Oldenburg PJ, Mustafa SJ. Role of A1 adenosine receptors in regulation of vascular tone. Am J Physiol Heart Circ Physiol 2004; 288:H1411-6. [PMID: 15539423 DOI: 10.1152/ajpheart.00684.2004] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The vascular response to adenosine and its analogs is mediated by four adenosine receptors (ARs), namely, A(1), A(2A), A(2B), and A(3). A(2A)ARs and/or A(2B)ARs are involved in adenosine-mediated vascular relaxation of coronary and aortic beds. However, the role of A(1)ARs in the regulation of vascular tone is less well substantiated. The aim of this study was to determine the role of A(1)ARs in adenosine-mediated regulation of vascular tone. A(1)AR-knockout [A(1)AR((-/-))] mice and available pharmacological tools were used to elucidate the function of A(1)ARs and the impact of these receptors on the regulation of vascular tone. Isolated aortic rings from A(1)AR((-/-)) and wild-type [A(1)AR((+/+))] mice were precontracted with phenylephrine, and concentration-response curves for adenosine and its analogs, 5'-N-ethyl-carboxamidoadenosine (NECA, nonselective), 2-chloro-N(6)-cyclopentyladenosine (CCPA, A(1)AR selective), 2-(2-carboxyethyl)phenethyl amino-5'-N-ethylcarboxamido-adenosine (CGS-21680, A(2A) selective), and 2-chloro-N(6)-3-iodobenzyladenosine-5'-N-methyluronamide (Cl-IBMECA, A(3) selective) were obtained to determine relaxation. Adenosine and NECA (0.1 microM) caused small contractions of 13.9 +/- 3.0 and 16.4 +/- 6.4%, respectively, and CCPA at 0.1 and 1.0 microM caused contractions of 30.8 +/- 4.3 and 28.1 +/- 3.9%, respectively, in A(1)AR((+/+)) rings. NECA- and CCPA-induced contractions were eliminated by 100 nM of 1,3-dipropyl-8-cyclopentylxanthine (DPCPX, selective A(1)AR antagonist). Adenosine, NECA, and CGS-21680 produced an increase in maximal relaxation in A(1)AR((-/-)) compared with A(1)AR((+/+)) rings, whereas Cl-IBMECA did not produce contraction in either A(1)AR((+/+)) or A(1)AR((-/-)) rings. CCPA-induced contraction at 1.0 microM was eliminated by the PLC inhibitor U-73122. These data suggest that activation of A(1)ARs causes contraction of vascular smooth muscle through PLC pathways and negatively modulates the vascular relaxation mediated by other adenosine receptor subtypes.
Collapse
Affiliation(s)
- Huda E Tawfik
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27858, USA
| | | | | | | |
Collapse
|
44
|
Abstract
Hypertonicity affects many parts of the immune system. Animal studies and experiments in isolated cell cultures show that hypertonicity reversibly suppresses several neutrophil functions and at the same time up-regulates T-lymphocyte function. Infusion of hypertonic saline with or without colloids may thus, besides providing efficient plasma volume expansion, ameliorate the detrimental consequences on the immune function of trauma, shock, reperfusion, and major surgery. However, the few clinical studies conducted to date, specifically addressing the immune effect of hypertonic saline infusion, have shown little, if any, effect on markers of immune function, and larger clinical trials have not demonstrated benefit in terms of morbidity or mortality. Thus, as opposed to animal and cell-culture studies, the immune-modulating properties of hypertonic saline infusion would appear to be of limited value in clinical practice. This review presents in vitro studies, animal experiments, and clinical trials which investigated the consequences of hypertonic saline on markers of immune function.
Collapse
Affiliation(s)
- J A Kølsen-Petersen
- Department of Anesthesia and Intensive Care, Viborg County Hospital, Viborg, Denmark.
| |
Collapse
|
45
|
Bratkovsky S, Aasum E, Birkeland CH, Riemersma RA, Myhre ESP, Larsen TS. Measurement of coronary flow reserve in isolated hearts from mice. ACTA ACUST UNITED AC 2004; 181:167-72. [PMID: 15180788 DOI: 10.1111/j.1365-201x.2004.01280.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AIM Langendorff-perfused murine hearts are increasingly used in cardiovascular research, but coronary cardiovascular haemodynamics vary considerably from one research group to another. The aim of this study was to establish an isolated, retrogradely perfused mouse heart preparation for the simultaneous measurement of left ventricular haemodynamics and of coronary flow (CF). METHODS Heart rate was controlled by right atrial pacing (480 beats min(-1)) and heart temperature was kept constant. Accurate flow values of <0.5 mL min(-1) could be determined, and this methodology was then used to study the stability of this preparation, as well as coronary response to vasoactive drugs and to short-term ischaemia. RESULTS The CF and maximum systolic pressure were well maintained over a 2-h perfusion period, both showing a 10% decline per hour. Sodium-nitroprusside (endothelium-independent) and adenosine (endothelium-dependent) increased CF relatively modest (30-50% above baseline values). Short-term no-flow ischaemia caused a transient 40-50% increase in CF on reperfusion. Peak reflow occurred approximately 15 s after start of reperfusion and flow returned to baseline during the following 1-2 min. Increased coronary blood flow following infusion of vasoactive drugs (nitroprusside or adenosine) or short-term ischaemia were associated with minor changes in ventricular pressure development. CONCLUSIONS Blood flow and haemodynamics can readily be determined in this isolated perfused mouse heart model, but CF reserve is relatively small, compared with blood-perfused organs.
Collapse
Affiliation(s)
- S Bratkovsky
- Department of Medical Physiology, Faculty of Medicine, University of Tromsø, Norway
| | | | | | | | | | | |
Collapse
|
46
|
Mackenzie B, Erickson JD. Sodium-coupled neutral amino acid (System N/A) transporters of the SLC38 gene family. Pflugers Arch 2004; 447:784-95. [PMID: 12845534 DOI: 10.1007/s00424-003-1117-9] [Citation(s) in RCA: 379] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2003] [Revised: 05/16/2003] [Accepted: 05/16/2003] [Indexed: 01/04/2023]
Abstract
The sodium-coupled neutral amino acid transporters (SNAT) of the SLC38 gene family resemble the classically-described System A and System N transport activities in terms of their functional properties and patterns of regulation. Transport of small, aliphatic amino acids by System A subtypes (SNAT1, SNAT2, and SNAT4) is rheogenic and pH sensitive. The System N subtypes SNAT3 and SNAT5 also countertransport H(+), which may be key to their operation in reverse, and have narrower substrate profiles than do the System A subtypes. Glutamine emerges as a favored substrate throughout the family, except for SNAT4. The SLC38 transporters undoubtedly play many physiological roles including the transfer of glutamine from astrocyte to neuron in the CNS, ammonia detoxification and gluconeogenesis in the liver, and the renal response to acidosis. Probing their regulation has revealed additional roles, and recent work has considered SLC38 transporters as therapeutic targets in neoplasia.
Collapse
Affiliation(s)
- Bryan Mackenzie
- Membrane Biology Program and Renal Division, Brigham and Women's Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| | | |
Collapse
|
47
|
Alfieri RR, Petronini PG, Bonelli MA, Desenzani S, Cavazzoni A, Borghetti AF, Wheeler KP. Roles of compatible osmolytes and heat shock protein 70 in the induction of tolerance to stresses in porcine endothelial cells. J Physiol 2004; 555:757-67. [PMID: 14724189 PMCID: PMC1664863 DOI: 10.1113/jphysiol.2003.058412] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Studies of the responses of porcine pulmonary endothelial cells to acute hypertonic stress have been extended by examining the induction and underlying mechanisms of cell tolerance to both osmotic and heat stresses. Preliminary adaptation of these cells to 0.4osmol (kg H(2)O)(-1) rendered them tolerant either to subsequent severe osmotic stress (0.7osmol (kg H(2)O)(-1)) or to subsequent severe heat shock (50 min at 49 degrees C). In contrast, preliminary exposure of the cells to mild heat shock (44 degrees C for 30 min) induced tolerance only to severe heat shock, not to hyperosmotic stress. Induction of tolerance to heat shock by either procedure correlated with the induced expression of heat shock protein 70 (HSP70). Induction of tolerance to hyperosmotic stress, on the other hand, was associated with the cellular accumulation of osmolytes, such as amino acids, betaine and myo-inositol, and did not correlate with the induced expression of HSP70. It also required a reduction in the final change of osmotic pressure applied to the cells, such that maximum cell shrinkage would not be much more than 40%. In general, therefore, HSP70 and compatible osmolytes have distinct roles in cellular adaptation to these stresses.
Collapse
Affiliation(s)
- Roberta R Alfieri
- Dipartimento di Medicina Sperimentale, Sezione di Patologia Molecolare e Immunologia, Università degli Studi di Parma, Parma, Italy
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
PURPOSE OF REVIEW The kidney plays an essential role in maintaining sodium and water balance, thereby controlling the volume and osmolarity of the extracellular body fluids, the blood volume and the blood pressure. The final adjustment of sodium and water reabsorption in the kidney takes place in cells of the distal part of the nephron in which a set of apical and basolateral transporters participate in vectorial sodium and water transport from the tubular lumen to the interstitium and, finally, to the general circulation. According to a current model, the activity and/or cell-surface expression of these transporters is/are under the control of a gene network composed of the hormonally regulated, as well as constitutively expressed, genes. It is proposed that this gene network may include new candidate genes for salt- and water-losing syndromes and for salt-sensitive hypertension. A new generation of functional genomics techniques have recently been applied to the characterization of this gene network. The purpose of this review is to summarize these studies and to discuss the potential of the different techniques for characterization of the renal transcriptome. RECENT FINDINGS Recently, DNA microarrays and serial analysis of gene expression have been applied to characterize the kidney transcriptome in different in-vivo and in-vitro models. In these studies, a set of new interesting genes potentially involved in the regulation of sodium and water reabsorption by the kidney have been identified and are currently under detailed investigation. SUMMARY Characterization of the kidney transcriptome is greatly expanding our knowledge of the gene networks involved in multiple kidney functions, including the maintenance of sodium and water homeostasis.
Collapse
Affiliation(s)
- Dmitri Firsov
- Institute of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
49
|
Lee SD, Colla E, Sheen MR, Na KY, Kwon HM. Multiple domains of TonEBP cooperate to stimulate transcription in response to hypertonicity. J Biol Chem 2003; 278:47571-7. [PMID: 12970349 DOI: 10.1074/jbc.m308795200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tonicity-responsive enhancer binding protein (TonEBP), also known as NFAT5, belongs to the Rel family of transcriptional activators. In the kidney medulla and thymus, TonEBP plays a major role in protecting renal cells and T cells from the deleterious effects of ambient hypertonicity. TonEBP is stimulated by hypertonicity via several pathways: increased expression of protein, nuclear translocation, and increased transactivation. In this study, we identified five domains of TonEBP involved in transactivation. The two conserved glutamine repeats were not involved in transactivation. There were three activation domains that could stimulate transcription independently. In addition, there were two modulation domains that potentiated the activity of the activation domains. One of the activation domains is unique to a splice isoform that is more active than others, indicating that alternative splicing can affect the activity of TonEBP. Another activation domain and one of the modulation domains were stimulated by hypertonicity. All the five domains acted in synergy in every combination. Although overall phosphorylation of TonEBP increased in response to hypertonicity, phosphorylation of the activation and modulation domains did not increase in isolation. In sum, TonEBP possesses far more elaborate domains involved in transactivation compared with other Rel proteins.
Collapse
Affiliation(s)
- Sang Do Lee
- Department of Medicine, University of Maryland, Baltimore, Maryland 21201, USA
| | | | | | | | | |
Collapse
|
50
|
Kempson SA, Parikh V, Xi L, Chu S, Montrose MH. Subcellular redistribution of the renal betaine transporter during hypertonic stress. Am J Physiol Cell Physiol 2003; 285:C1091-100. [PMID: 12839828 DOI: 10.1152/ajpcell.00021.2003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The betaine transporter (BGT1) protects cells in the hypertonic renal inner medulla by mediating uptake and accumulation of the osmolyte betaine. Transcriptional regulation plays an essential role in upregulation of BGT1 transport when renal cells are exposed to hypertonic medium for 24 h. Posttranscriptional regulation of the BGT1 protein is largely unexplored. We have investigated the distribution of BGT1 protein in live cells after transfection with BGT1 tagged with enhanced green fluorescent protein (EGFP). Fusion of EGFP to the NH2 terminus of BGT1 produced a fusion protein (EGFP-BGT) with transport properties identical to normal BGT1, as determined by ion dependence, inhibitor sensitivity, and apparent Km for GABA. Confocal microscopy of EGFP-BGT fluorescence in transfected Madin-Darby canine kidney (MDCK) cells showed that hypertonic stress for 24 h induced a shift in subcellular distribution from cytoplasm to plasma membrane. This was confirmed by colocalization with anti-BGT1 antibody staining. In fibroblasts, transfected EGFP-BGT caused increased transport in response to hypertonic stress. The activation of transport was not accompanied by increased expression of EGFP-BGT, as determined by Western blotting. Membrane insertion of EGFP-BGT protein in MDCK cells began within 2-3 h after onset of hypertonic stress and was blocked by cycloheximide. We conclude that posttranscriptional regulation of BGT1 is essential for adaptation to hypertonic stress and that insertion of BGT1 protein to the plasma membrane may require accessory proteins.
Collapse
Affiliation(s)
- Stephen A Kempson
- Department of Cellular and Integrative Medicine, Indiana University School of Medicine, Medical Sciences 451, 635 Barnhill Drive, Indianapolis, IN 46202-5120, USA.
| | | | | | | | | |
Collapse
|