1
|
Galkina SI, Fedorova NV, Golenkina EA, Ksenofontov AL, Serebryakova MV, Kordyukova LV, Stadnichuk VI, Baratova LA, Sud'ina GF. Differential effects of angiotensin II and aldosterone on human neutrophil adhesion and concomitant secretion of proteins, free amino acids and reactive oxygen and nitrogen species. Int Immunopharmacol 2024; 139:112687. [PMID: 39018693 DOI: 10.1016/j.intimp.2024.112687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Invasion and adhesion of neutrophils into tissues and their concomitant secretion play an important role in the development of vascular pathologies, including abdominal aortic aneurysm (AAA). Chronic administration of angiotensin II is used to initiate AAA formation in mice. The role of aldosterone in this process is being studied. We conducted for the first time a complex comparative study of the effects of angiotensin II and aldosterone on the adhesion of human neutrophils to fibronectin and the concomitant secretion of proteins, free amino acids as well as reactive oxygen (ROS) and nitrogen (NO) species. Neither angiotensin II nor aldosterone affected the attachment of neutrophils to fibronectin and the concomitant production of ROS. We showed for the first time that aldosterone stimulated the release of amino acid hydroxylysine, a product of lysyl hydroxylase, the activity of which is positively correlated with cell invasiveness. Aldosterone also initiates the secretion of matrix metalloproteinase 9 (MMP-9) and cathepsin G, which may reorganize the extracellular matrix and stimulate the recruitment and adhesion of neutrophils to the aortic walls. Angiotensin II did not affect protein secretion. It may contribute to neutrophil-induced vascular injury by inhibiting the production of NO or by increasing the secretion of isoleucine. Our results suggest that it is aldosterone-induced neutrophil secretion that may play a significant role in neutrophil-induced vascular wall destruction in angiotensin II-induced AAA or other vascular complications.
Collapse
Affiliation(s)
- Svetlana I Galkina
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia.
| | - Natalia V Fedorova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Ekaterina A Golenkina
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexander L Ksenofontov
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Marina V Serebryakova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Larisa V Kordyukova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | | | - Ludmila A Baratova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Galina F Sud'ina
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia.
| |
Collapse
|
2
|
Kim JH, Shin DB, Suk K, Chun BY. Clinical Relevance of Plasma Prolylcarboxypeptidase Level in Patients with Idiopathic Acute Optic Neuritis. J Clin Med 2024; 13:2038. [PMID: 38610803 PMCID: PMC11012312 DOI: 10.3390/jcm13072038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Objectives: This study evaluated the plasma concentration of prolylcarboxypeptidase (PRCP) and its clinical relevance in patients with idiopathic acute optic neuritis (ON). Methods: We investigated the expression of PRCP in the optic nerves of experimental autoimmune optic neuritis (EAON)-induced mice. Peripheral blood samples were collected from ON patients (n = 20) and healthy controls (n = 20). ELISA was used to measure the plasma PRCP levels. We performed measurements of visual acuity and the mean thicknesses of the macular ganglion cell layer plus inner plexiform layer (GCL+IPL) at diagnosis and 6 months after diagnosis. Results: The PRCP mRNA expression in EAON-induced mice was markedly higher than that in naïve mice. The mean plasma PRCP level was significantly higher in patients with ON than in controls. Plasma PRCP levels were negatively correlated with logMAR visual acuity at 6 months after diagnosis and differences in macular GCL+IPL thickness during an ON attack. A plasma PRCP level of 49.98 (pg/mL) predicted the recurrence of ON with a 75% sensitivity and 87.5% specificity. Conclusions: Patients with idiopathic acute ON had higher plasma PRCP levels, and this was positively correlated with final visual outcome and well-preserved macular GCL+IPL thickness during an ON attack. The increase in plasma PRCP level may reflect its compensatory secretion to counteract neuroinflammation in ON patients.
Collapse
Affiliation(s)
- Jong-Heon Kim
- Brain Science & Engineering Institute, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (J.-H.K.); (K.S.)
| | - Dae Beom Shin
- Department of Ophthalmology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Kyoungho Suk
- Brain Science & Engineering Institute, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (J.-H.K.); (K.S.)
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Bo Young Chun
- Brain Science & Engineering Institute, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (J.-H.K.); (K.S.)
- Department of Ophthalmology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
3
|
Pencheva M, Bozhkova M, Kalchev Y, Petrov S, Baldzhieva A, Kalfova T, Dichev V, Keskinova D, Genova S, Atanasova M, Murdzheva M. The Serum ACE2, CTSL, AngII, and TNFα Levels after COVID-19 and mRNA Vaccines: The Molecular Basis. Biomedicines 2023; 11:3160. [PMID: 38137381 PMCID: PMC10741205 DOI: 10.3390/biomedicines11123160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND The SARS-CoV-2 virus as well as the COVID-19 mRNA vaccines cause an increased production of proinflammatory cytokines. AIM We investigated the relationship between ACE2, CTSL, AngII, TNFα and the serum levels of IL-6, IL-10, IL-33, IL-28A, CD40L, total IgM, IgG, IgA and absolute count of T- and B-lymphocytes in COVID-19 patients, vaccinees and healthy individuals. METHODS We measured the serum levels ACE2, AngII, CTSL, TNFα and humoral biomarkers (CD40L, IL-28A, IL-10, IL-33) by the ELISA method. Immunophenotyping of lymphocyte subpopulations was performed by flow cytometry. Total serum immunoglobulins were analyzed by the turbidimetry method. RESULTS The results established an increase in the total serum levels for ACE2, CTSL, AngII and TNFα by severely ill patients and vaccinated persons. The correlation analysis described a positive relationship between ACE2 and proinflammatory cytokines IL-33 (r = 0.539) and CD40L (r = 0.520), a positive relationship between AngII and CD40L (r = 0.504), as well as between AngII and IL-33 (r = 0.416), and a positive relationship between CTSL, total IgA (r = 0.437) and IL-28A (r = 0.592). Correlation analysis confirmed only two of the positive relationships between TNFα and IL-28A (r = 0.491) and CD40L (r = 0.458). CONCLUSIONS In summary, the findings presented in this study unveil a complex web of interactions within the immune system in response to SARS-CoV-2 infection and vaccination.
Collapse
Affiliation(s)
- Mina Pencheva
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Martina Bozhkova
- Department of Medical Microbiology and Immunology, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (M.B.); (Y.K.); (S.P.); (A.B.); (T.K.); (M.A.); (M.M.)
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Yordan Kalchev
- Department of Medical Microbiology and Immunology, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (M.B.); (Y.K.); (S.P.); (A.B.); (T.K.); (M.A.); (M.M.)
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Steliyan Petrov
- Department of Medical Microbiology and Immunology, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (M.B.); (Y.K.); (S.P.); (A.B.); (T.K.); (M.A.); (M.M.)
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Alexandra Baldzhieva
- Department of Medical Microbiology and Immunology, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (M.B.); (Y.K.); (S.P.); (A.B.); (T.K.); (M.A.); (M.M.)
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Teodora Kalfova
- Department of Medical Microbiology and Immunology, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (M.B.); (Y.K.); (S.P.); (A.B.); (T.K.); (M.A.); (M.M.)
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Valentin Dichev
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
- Department of Medical Biology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Donka Keskinova
- Department of Applied and Institutional Sociology, Faculty of Philosophy and History, University of Plovdiv “Paisii Hilendarski”, 4000 Plovdiv, Bulgaria;
| | - Silvia Genova
- Department of General and Clinical Pathology, Medical Faculty, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Mariya Atanasova
- Department of Medical Microbiology and Immunology, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (M.B.); (Y.K.); (S.P.); (A.B.); (T.K.); (M.A.); (M.M.)
- Laboratory of Virology, UMBAL “St. George” EAD, 4002 Plovdiv, Bulgaria
| | - Mariana Murdzheva
- Department of Medical Microbiology and Immunology, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (M.B.); (Y.K.); (S.P.); (A.B.); (T.K.); (M.A.); (M.M.)
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| |
Collapse
|
4
|
Merkulova AA, Abdalian S, Silbak S, Pinheiro A, Schmaier AH. C1 inhibitor and prolylcarboxypeptidase modulate prekallikrein activation on endothelial cells. J Allergy Clin Immunol 2023; 152:961-971.e7. [PMID: 37399947 PMCID: PMC10592223 DOI: 10.1016/j.jaci.2023.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 05/19/2023] [Accepted: 06/05/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND We examined how prekallikrein (PK) activation on human microvascular endothelial cells (HMVECs) is regulated by the ambient concentration of C1 inhibitor (C1INH) and prolylcarboxypeptidase (PRCP). OBJECTIVE We sought to examine the specificity of PK activation on HMVECs by PRCP and the role of C1INH to regulate it, high-molecular-weight kininogen (HK) cleavage, and bradykinin (BK) liberation. METHODS Investigations were performed on cultured HMVECs. Immunofluorescence, enzymatic activity assays, immunoblots, small interfering RNA knockdowns, and cell transfections were used to perform these studies. RESULTS Cultured HMVECs constitutively coexpressed PK, HK, C1INH, and PRCP. PK activation on HMVECs was modulated by the ambient C1INH concentration. In the absence of C1INH, forming PKa on HMVECs cleaved 120-kDa HK completely to a 65-kDa H-chain and a 46-kDa L-chain in 60 minutes. In the presence of 2 μM C1INH, only 50% of the HK became cleaved. C1INH concentrations (0.0-2.5 μM) decreased but did not abolish BK liberated from HK by activated PK. Factor XII did not activate when incubated with HMVECs alone for 1 hour. However, if incubated in the presence of HK and PK, factor XII became activated. The specificity of PK activation on HMVECs by PRCP was shown by several inhibitors to each enzyme. Furthermore, PRCP small interfering RNA knockdowns magnified C1INH inhibitory activity on PK activation, and PRCP transfections reduced C1INH inhibition at any given concentration. CONCLUSIONS These combined studies indicated that on HMVECs, PK activation and HK cleavage to liberate BK were modulated by the local concentrations of C1INH and PRCP.
Collapse
Affiliation(s)
- Alona A Merkulova
- Hematology and Oncology Division, Department of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Sarah Abdalian
- Hematology and Oncology Division, Department of Medicine, Case Western Reserve University, Cleveland, Ohio; University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Sadiq Silbak
- Hematology and Oncology Division, Department of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Alessandro Pinheiro
- Hematology and Oncology Division, Department of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Alvin H Schmaier
- Hematology and Oncology Division, Department of Medicine, Case Western Reserve University, Cleveland, Ohio; University Hospitals Cleveland Medical Center, Cleveland, Ohio.
| |
Collapse
|
5
|
Angeli F, Zappa M, Verdecchia P. Rethinking the Role of the Renin-Angiotensin System in the Pandemic Era of SARS-CoV-2. J Cardiovasc Dev Dis 2023; 10:jcdd10010014. [PMID: 36661909 PMCID: PMC9862389 DOI: 10.3390/jcdd10010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
After assessing the levels of spread and severity of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, academic literature focused on the pathophysiology of coronavirus disease 2019 (COVID-19) [...].
Collapse
Affiliation(s)
- Fabio Angeli
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy
- Department of Medicine and Cardiopulmonary Rehabilitation, Istituti Clinici Scientifici Maugeri IRCCS, 21049 Tradate, Italy
- Correspondence:
| | - Martina Zappa
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy
| | - Paolo Verdecchia
- Fondazione Umbra Cuore e Ipertensione-ONLUS, and Division of Cardiology, Hospital S. Maria della Misericordia, 06100 Perugia, Italy
| |
Collapse
|
6
|
Angeli F, Reboldi G, Trapasso M, Zappa M, Spanevello A, Verdecchia P. COVID-19, vaccines and deficiency of ACE 2 and other angiotensinases. Closing the loop on the "Spike effect". Eur J Intern Med 2022; 103:23-28. [PMID: 35753869 PMCID: PMC9217159 DOI: 10.1016/j.ejim.2022.06.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 06/20/2022] [Indexed: 11/03/2022]
Abstract
The role of a dysregulated renin-angiotensin system (RAS) in the pathogenesis of COVID-19 is well recognized. The imbalance between angiotensin II (Ang II) and Angiotensin1-7 (Ang1,7) caused by the interaction between SARS-CoV-2 and the angiotensin converting enzyme 2 (ACE2) receptors exerts a pivotal role on the clinical picture and outcome of COVID-19. ACE2 receptors are not the exclusive angiotensinases in nature. Other angiotensinases (PRCP, and POP) have the potential to limit the detrimental effects of the interactions between ACE2 and the Spike proteins. In the cardiovascular disease continuum, ACE2 activity tends to decrease, and POP/PRCP activity to increase, from the health status to advanced deterioration of the cardiovascular system. The failure of the counter-regulatory RAS axis during the acute phase of COVID-19 is characterized by a decrease of ACE2 expression coupled to unchanged activity of other angiotensinases, therefore failing to limit the accumulation of Ang II. COVID-19 vaccines increase the endogenous synthesis of SARS-CoV-2 spike proteins. Once synthetized, the free-floating spike proteins circulate in the blood, interact with ACE2 receptors and resemble the pathological features of SARS-CoV-2 ("Spike effect" of COVID-19 vaccines). It has been noted that an increased catalytic activity of POP/PRCP is typical in elderly individuals with comorbidities or previous cardiovascular events, but not in younger people. Thus, the adverse reactions to COVID-19 vaccination associated with Ang II accumulation are generally more common in younger and healthy subjects. Understanding the relationships between different mechanisms of Ang II cleavage and accumulation offers the opportunity to close the pathophysiological loop between the risk of progression to severe forms of COVID-19 and the potential adverse events of vaccination.
Collapse
Affiliation(s)
- Fabio Angeli
- Department of Medicine and Surgery, University of Insubria, Varese, Italy; Department of Medicine and Cardiopulmonary Rehabilitation, Maugeri Care and Research Institute, IRCCS, Tradate, Italy.
| | - Gianpaolo Reboldi
- Department of Medicine, and Centro di Ricerca Clinica e Traslazionale (CERICLET), University of Perugia, Perugia, Italy
| | - Monica Trapasso
- Dipartimento di Igiene e Prevenzione Sanitaria, ATS Insubria, PSAL, Sede Territoriale di Varese, Varese, Italy
| | - Martina Zappa
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Antonio Spanevello
- Department of Medicine and Surgery, University of Insubria, Varese, Italy; Department of Medicine and Cardiopulmonary Rehabilitation, Maugeri Care and Research Institute, IRCCS, Tradate, Italy
| | - Paolo Verdecchia
- Division of Cardiology, Hospital S. Maria Della Misericordia, Perugia, Italy; Fondazione Umbra Cuore e Ipertensione-ONLUS, Perugia, Italy
| |
Collapse
|
7
|
Lin H, Geurts F, Hassler L, Batlle D, Mirabito Colafella KM, Denton KM, Zhuo JL, Li XC, Ramkumar N, Koizumi M, Matsusaka T, Nishiyama A, Hoogduijn MJ, Hoorn EJ, Danser AHJ. Kidney Angiotensin in Cardiovascular Disease: Formation and Drug Targeting. Pharmacol Rev 2022; 74:462-505. [PMID: 35710133 PMCID: PMC9553117 DOI: 10.1124/pharmrev.120.000236] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The concept of local formation of angiotensin II in the kidney has changed over the last 10-15 years. Local synthesis of angiotensinogen in the proximal tubule has been proposed, combined with prorenin synthesis in the collecting duct. Binding of prorenin via the so-called (pro)renin receptor has been introduced, as well as megalin-mediated uptake of filtered plasma-derived renin-angiotensin system (RAS) components. Moreover, angiotensin metabolites other than angiotensin II [notably angiotensin-(1-7)] exist, and angiotensins exert their effects via three different receptors, of which angiotensin II type 2 and Mas receptors are considered renoprotective, possibly in a sex-specific manner, whereas angiotensin II type 1 (AT1) receptors are believed to be deleterious. Additionally, internalized angiotensin II may stimulate intracellular receptors. Angiotensin-converting enzyme 2 (ACE2) not only generates angiotensin-(1-7) but also acts as coronavirus receptor. Multiple, if not all, cardiovascular diseases involve the kidney RAS, with renal AT1 receptors often being claimed to exert a crucial role. Urinary RAS component levels, depending on filtration, reabsorption, and local release, are believed to reflect renal RAS activity. Finally, both existing drugs (RAS inhibitors, cyclooxygenase inhibitors) and novel drugs (angiotensin receptor/neprilysin inhibitors, sodium-glucose cotransporter-2 inhibitors, soluble ACE2) affect renal angiotensin formation, thereby displaying cardiovascular efficacy. Particular in the case of the latter three, an important question is to what degree they induce renoprotection (e.g., in a renal RAS-dependent manner). This review provides a unifying view, explaining not only how kidney angiotensin formation occurs and how it is affected by drugs but also why drugs are renoprotective when altering the renal RAS. SIGNIFICANCE STATEMENT: Angiotensin formation in the kidney is widely accepted but little understood, and multiple, often contrasting concepts have been put forward over the last two decades. This paper offers a unifying view, simultaneously explaining how existing and novel drugs exert renoprotection by interfering with kidney angiotensin formation.
Collapse
Affiliation(s)
- Hui Lin
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Frank Geurts
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Luise Hassler
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Daniel Batlle
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Katrina M Mirabito Colafella
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Kate M Denton
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Jia L Zhuo
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Xiao C Li
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Nirupama Ramkumar
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Masahiro Koizumi
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Taiji Matsusaka
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Akira Nishiyama
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Martin J Hoogduijn
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Ewout J Hoorn
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - A H Jan Danser
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| |
Collapse
|
8
|
De Hert E, Bracke A, Lambeir AM, Van der Veken P, De Meester I. The C-terminal cleavage of angiotensin II and III is mediated by prolyl carboxypeptidase in human umbilical vein and aortic endothelial cells. Biochem Pharmacol 2021; 192:114738. [PMID: 34418354 DOI: 10.1016/j.bcp.2021.114738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 11/26/2022]
Abstract
The renin-angiotensin system, with the octapeptide angiotensin II as key player, is important in the renal, cardiac and vascular physiology. Prolyl carboxypeptidase (PRCP), prolyl endopeptidase (PREP) and angiotensin converting enzyme 2 (ACE2) are reported to be involved in the conversion of angiotensin II to angiotensin (1-7). Previous investigations showed that the processing of angiotensin II is cell- and species-specific and little is known about its conversion in human endothelial cells. Therefore, we aimed to investigate the C-terminal processing of angiotensin II and III in comparison to the processing of des-Arg9-bradykinin in human endothelial cells. To this end, human umbilical vein and aortic endothelial cells (HUVEC and HAoEC) were incubated with the peptides for different time periods. Mass spectrometry analysis was performed on the supernatants to check for cleavage products. Contribution of PRCP, ACE2 and PREP to the peptide cleavage was evaluated by use of the selective inhibitors compound 8o, DX600 and KYP-2047. The use of these selective inhibitors revealed that the C-terminal cleavage of angiotensin II and III was PRCP-dependent in HUVEC and HAoEC. In contrast, the C-terminal cleavage of des-Arg9-bradykinin was PRCP-dependent in HUVEC and PRCP- and ACE2-dependent in HAoEC. With this study, we contribute to a better understanding of the processing of peptides involved in the alternative renin-angiotensin system. We conclude that PRCP is the main enzyme for the C-terminal processing of angiotensin peptides in human umbilical vein and aortic endothelial cells. For the first time the contribution of PRCP was investigated by use of a selective PRCP-inhibitor.
Collapse
Affiliation(s)
- Emilie De Hert
- Laboratory of Medical Biochemistry, University of Antwerp, Antwerp, Belgium
| | - An Bracke
- Laboratory of Medical Biochemistry, University of Antwerp, Antwerp, Belgium
| | - Anne-Marie Lambeir
- Laboratory of Medical Biochemistry, University of Antwerp, Antwerp, Belgium
| | | | - Ingrid De Meester
- Laboratory of Medical Biochemistry, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
9
|
Almutlaq M, Alamro AA, Alroqi F, Barhoumi T. Classical and Counter-Regulatory Renin-Angiotensin System: Potential Key Roles in COVID-19 Pathophysiology. CJC Open 2021; 3:1060-1074. [PMID: 33875979 PMCID: PMC8046706 DOI: 10.1016/j.cjco.2021.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/08/2021] [Indexed: 02/08/2023] Open
Abstract
In the current COVID-19 pandemic, severe acute respiratory syndrome coronavirus 2 uses angiotensin-converting enzyme-2 (ACE-2) receptors for cell entry, leading to ACE-2 dysfunction and downregulation, which disturb the balance between the classical and counter-regulatory renin-angiotensin system (RAS) in favor of the classical RAS. RAS dysregulation is one of the major characteristics of several cardiovascular diseases; thus, adjustment of this system is the main therapeutic target. RAS inhibitors-particularly angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin II type 1 receptor blockers (ARBs)-are commonly used for treatment of hypertension and cardiovascular disease. Patients with cardiovascular diseases are the group most commonly seen among those with COVID-19 comorbidity. At the beginning of this pandemic, a dilemma occurred regarding the use of ACEIs and ARBs, potentially aggravating cardiovascular and pulmonary dysfunction in COVID-19 patients. Urgent clinical trials from different countries and hospitals reported that there is no association between RAS inhibitor treatment and COVID-19 infection or comorbidity complication. Nevertheless, the disturbance of the RAS that is associated with COVID-19 infection and the potential treatment targeting this area have yet to be resolved. In this review, the link between the dysregulation of classical RAS and counter-regulatory RAS activities in COVID-19 patients with cardiovascular metabolic diseases is investigated. In addition, the latest findings based on ACEI and ARB administration and ACE-2 availability in relation to COVID-19, which may provide a better understanding of the RAS contribution to COVID-19 pathology, are discussed, as they are of the utmost importance amid the current pandemic.
Collapse
Affiliation(s)
- Moudhi Almutlaq
- King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
- Moudhi Almutlaq, King Abdullah International Medical Research Centre, Ministry of National Guard Health Affairs, Riyadh 11461, Saudi Arabia. Tel.: +1-966-543-159145.
| | - Abir Abdullah Alamro
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Fayhan Alroqi
- King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- Department of Pediatrics, King Abdulaziz Medical City, King Abdullah Specialized Children's Hospital, Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Tlili Barhoumi
- King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Corresponding authors: Dr Tlili Barhoumi, King Abdullah International Medical Research Centre, Ministry of National Guard Health Affairs, Riyadh 11461, Saudi Arabia. Tel.: +1-966-543-159145.
| |
Collapse
|
10
|
The interaction of the severe acute respiratory syndrome coronavirus 2 spike protein with drug-inhibited angiotensin converting enzyme 2 studied by molecular dynamics simulation. J Hypertens 2021; 39:1705-1716. [PMID: 34188005 DOI: 10.1097/hjh.0000000000002829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Hypertension has been identified as the most common comorbidity in coronavirus disease 2019 (COVID-19) patients, and has been suggested as a risk factor for COVID-19 disease outcomes. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus enters host human cells via binding to host cell angiotensin-converting enzyme 2 (ACE2) receptors. Inhibition of ACE2 has been proposed as a potential therapeutic approach to block SARS-CoV-2 contagion. However, some experts suggest that ACE2 inhibition could worsen the infection. Here, we aimed to study the effect of ACE2 inhibition on the SARS-CoV-2 spike protein binding to ACE2. METHOD Crystallographic structures of the SARS-CoV-2 spike protein, the spike receptor-binding domain, native ACE2, and the ACE2 complexed with MLN-4760 were used as the study model structures. The spike proteins were docked to the ACE2 structures and the dynamics of the complexes, ligand-protein, and protein-protein interactions were studied by molecular dynamics simulation for 100 ns. RESULTS Our result showed that inhibition of ACE2 by MLN-4760 increased the affinity of the SARS-CoV-2 spike protein binding to ACE2. Results also revealed that spike protein binding to the ACE2 inhibited by MLN-4760 restored the enzymatic active conformation of the ACE2 from closed/inactive to open/active conformation by removing MLN-4760 binding from the ligand-binding pocket of ACE2. CONCLUSION We conclude that using ACE2 inhibitors can increase the risk of SARS-CoV-2 infection and worsen COVID-19 disease outcome. We also found that the SARS-CoV-2 can abrogate the function of ACE2 inhibitors and rescue the enzymatic activity of ACE2. Therefore, ACE2 inhibition is not a useful treatment against COVID-19 infection.
Collapse
|
11
|
Gouda AS, Adbelruhman FG, Elbendary RN, Alharbi FA, Alhamrani SQ, Mégarbane B. A comprehensive insight into the role of zinc deficiency in the renin-angiotensin and kinin-kallikrein system dysfunctions in COVID-19 patients. Saudi J Biol Sci 2021; 28:3540-3547. [PMID: 33746538 PMCID: PMC7962980 DOI: 10.1016/j.sjbs.2021.03.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Hypozincemia is prevalent in severe acute respiratory syndrome coronavirus-2 (SARS-COV-2)-infected patients and has been considered as a risk factor in severe coronavirus disease-2019 (COVID-19). Whereas zinc might affect SARS-COV-2 replication and cell entry, the link between zinc deficiency and COVID-19 severity could also be attributed to the effects of COVID-19 on the body metabolism and immune response. Zinc deficiency is more prevalent in the elderly and patients with underlying chronic diseases, with established deleterious consequences such as the increased risk of respiratory infection. We reviewed the expected effects of zinc deficiency on COVID-19-related pathophysiological mechanisms focusing on both the renin-angiotensin and kinin-kallikrein systems. Mechanisms and effects were extrapolated from the available scientific literature. Zinc deficiency alters angiotensin-converting enzyme-2 (ACE2) function, leading to the accumulation of angiotensin II, des-Arg9-bradykinin and Lys-des-Arg9-bradykinin, which results in an exaggerated pro-inflammatory response, vasoconstriction and pro-thrombotic effects. Additionally, zinc deficiency blocks the activation of the plasma contact system, a protease cascade initiated by factor VII activation. Suggested mechanisms include the inhibition of Factor XII activation and limitation of high-molecular-weight kininogen, prekallikrein and Factor XII to bind to endothelial cells. The subsequent accumulation of Factor XII and deficiency in bradykinin are responsible for increased production of inflammatory mediators and marked hypercoagulability, as typically observed in COVID-19 patients. To conclude, zinc deficiency may affect both the renin-angiotensin and kinin-kallikrein systems, leading to the exaggerated inflammatory manifestations characteristic of severe COVID-19.
Collapse
Affiliation(s)
- Ahmed S. Gouda
- National Egyptian Center for Toxicological Researches, Faculty of Medicine, Cairo University, Cairo, Egypt
- Poison Control and Forensic Chemistry Center, Northern Borders, Ministry of Health, Saudi Arabia
| | - Fatima G. Adbelruhman
- Department of Clinical Pathology, Alzahraa Hospital, Al-Azhar University, Cairo, Egypt
| | - Reham N. Elbendary
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Fadiyah Ahmed Alharbi
- Tabuk Poison Control and Forensic Medicinal Chemistry Center, Ministry of health, Saudi Arabia
| | - Sultan Qalit Alhamrani
- Tabuk Poison Control and Forensic Medicinal Chemistry Center, Ministry of health, Saudi Arabia
| | - Bruno Mégarbane
- Department of Medical and Toxicological Critical Care, Lariboisière Hospital, University of Paris, INSERM UMRS-1144, Paris, France
| |
Collapse
|
12
|
Oz M, Lorke DE. Multifunctional angiotensin converting enzyme 2, the SARS-CoV-2 entry receptor, and critical appraisal of its role in acute lung injury. Biomed Pharmacother 2021; 136:111193. [PMID: 33461019 PMCID: PMC7836742 DOI: 10.1016/j.biopha.2020.111193] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/15/2020] [Accepted: 12/26/2020] [Indexed: 12/11/2022] Open
Abstract
The recent emergence of coronavirus disease-2019 (COVID-19) as a pandemic affecting millions of individuals has raised great concern throughout the world, and the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) was identified as the causative agent for COVID-19. The multifunctional protein angiotensin converting enzyme 2 (ACE2) is accepted as its primary target for entry into host cells. In its enzymatic function, ACE2, like its homologue ACE, regulates the renin-angiotensin system (RAS) critical for cardiovascular and renal homeostasis in mammals. Unlike ACE, however, ACE2 drives an alternative RAS pathway by degrading Ang-II and thus operates to balance RAS homeostasis in the context of hypertension, heart failure, and cardiovascular as well as renal complications of diabetes. Outside the RAS, ACE2 hydrolyzes key peptides, such as amyloid-β, apelin, and [des-Arg9]-bradykinin. In addition to its enzymatic functions, ACE2 is found to regulate intestinal amino acid homeostasis and the gut microbiome. Although the non-enzymatic function of ACE2 as the entry receptor for SARS-CoV-2 has been well established, the contribution of enzymatic functions of ACE2 to the pathogenesis of COVID-19-related lung injury has been a matter of debate. A complete understanding of this central enzyme may begin to explain the various symptoms and pathologies seen in SARS-CoV-2 infected individuals, and may aid in the development of novel treatments for COVID-19.
Collapse
Affiliation(s)
- Murat Oz
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat 13110, Kuwait.
| | - Dietrich Ernst Lorke
- Department of Anatomy and Cellular Biology, Khalifa University, Abu Dhabi, United Arab Emirates; Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
13
|
Silva-Aguiar RP, Peruchetti DB, Rocco PRM, Schmaier AH, E Silva PMR, Martins MA, Carvalho VF, Pinheiro AAS, Caruso-Neves C. Role of the renin-angiotensin system in the development of severe COVID-19 in hypertensive patients. Am J Physiol Lung Cell Mol Physiol 2020; 319:L596-L602. [PMID: 32783619 PMCID: PMC7516382 DOI: 10.1152/ajplung.00286.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 02/08/2023] Open
Abstract
A new form of severe acute respiratory syndrome (SARS) caused by SARS-coronavirus 2 (CoV-2), called COVID-19, has become a global threat in 2020. The mortality rate from COVID-19 is high in hypertensive patients, making this association especially dangerous. There appears to be a consensus, despite the lack of experimental data, that angiotensin II (ANG II) is linked to the pathogenesis of COVID-19. This process may occur due to acquired deficiency of angiotensin-converting enzyme 2 (ACE2), resulting in reduced degradation of ANG II. Furthermore, ANG II has a critical role in the genesis and worsening of hypertension. In this context, the idea that there is a surge in the level of ANG II with COVID-19 infection, causing multiple organ injuries in hypertensive patients becomes attractive. However, the role of other components of the renin angiotensin system (RAS) in this scenario requires elucidation. The identification of other RAS components in COVID-19 hypertension may provide both diagnostic and therapeutic benefits. Here, we summarize the pathophysiologic contributions of different components of RAS in hypertension and their possible correlation with poor outcome observed in hypertensive patients with COVID-19.
Collapse
Affiliation(s)
| | - Diogo Barros Peruchetti
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia Rieken Macedo Rocco
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
- Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
| | - Alvin H Schmaier
- Case Western Reserve University, Cleveland, Ohio
- University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Patrícia Machado Rodrigues E Silva
- Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Marco Aurélio Martins
- Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Vinícius Frias Carvalho
- Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Ana Acacia Sá Pinheiro
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
| | - Celso Caruso-Neves
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
- Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Meini S, Zanichelli A, Sbrojavacca R, Iuri F, Roberts AT, Suffritti C, Tascini C. Understanding the Pathophysiology of COVID-19: Could the Contact System Be the Key? Front Immunol 2020; 11:2014. [PMID: 32849666 PMCID: PMC7432138 DOI: 10.3389/fimmu.2020.02014] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/24/2020] [Indexed: 12/20/2022] Open
Abstract
To date the pathophysiology of COVID-19 remains unclear: this represents a factor determining the current lack of effective treatments. In this paper, we hypothesized a complex host response to SARS-CoV-2, with the Contact System (CS) playing a pivotal role in innate immune response. CS is linked with different proteolytic defense systems operating in human vasculature: the Kallikrein–Kinin (KKS), the Coagulation/Fibrinolysis and the Renin–Angiotensin (RAS) Systems. We investigated the role of the mediators involved. CS consists of Factor XII (FXII) and plasma prekallikrein (complexed to high-molecular-weight kininogen-HK). Autoactivation of FXII by contact with SARS-CoV-2 could lead to activation of intrinsic coagulation, with fibrin formation (microthrombosis), and fibrinolysis, resulting in increased D-dimer levels. Activation of kallikrein by activated FXII leads to production of bradykinin (BK) from HK. BK binds to B2-receptors, mediating vascular permeability, vasodilation and edema. B1-receptors, binding the metabolite [des-Arg9]-BK (DABK), are up-regulated during infections and mediate lung inflammatory responses. BK could play a relevant role in COVID-19 as already described for other viral models. Angiotensin-Converting-Enzyme (ACE) 2 displays lung protective effects: it inactivates DABK and converts Angiotensin II (Ang II) into Angiotensin-(1-7) and Angiotensin I into Angiotensin-(1-9). SARS-CoV-2 binds to ACE2 for cell entry, downregulating it: an impaired DABK inactivation could lead to an enhanced activity of B1-receptors, and the accumulation of Ang II, through a negative feedback loop, may result in decreased ACE activity, with consequent increase of BK. Therapies targeting the CS, the KKS and action of BK could be effective for the treatment of COVID-19.
Collapse
Affiliation(s)
- Simone Meini
- Internal Medicine Unit, Azienda USL Toscana Centro, Santa Maria Annunziata Hospital, Florence, Italy
| | - Andrea Zanichelli
- General Medicine Unit, ASST Fatebenefratelli Sacco, Ospedale Luigi Sacco-Università degli Studi di Milano, Milan, Italy
| | - Rodolfo Sbrojavacca
- Infectious Diseases Clinic, Santa Maria Misericordia Hospital, Università degli Studi di Udine, Udine, Italy
| | - Federico Iuri
- Department of Emergency, Santa Maria Misericordia Hospital, Università degli Studi di Udine, Udine, Italy
| | | | - Chiara Suffritti
- General Medicine Unit, ASST Fatebenefratelli Sacco, Ospedale Luigi Sacco-Università degli Studi di Milano, Milan, Italy
| | - Carlo Tascini
- Infectious Diseases Clinic, Santa Maria Misericordia Hospital, Università degli Studi di Udine, Udine, Italy
| |
Collapse
|
15
|
Zolfaghari Emameh R, Falak R, Bahreini E. Application of System Biology to Explore the Association of Neprilysin, Angiotensin-Converting Enzyme 2 (ACE2), and Carbonic Anhydrase (CA) in Pathogenesis of SARS-CoV-2. Biol Proced Online 2020; 22:11. [PMID: 32572334 PMCID: PMC7302923 DOI: 10.1186/s12575-020-00124-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/01/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) appears with common symptoms including fever, dry cough, and fatigue, as well as some less common sysmptoms such as loss of taste and smell, diarrhea, skin rashes and discoloration of fingers. COVID-19 patients may also suffer from serious symptoms including shortness of breathing, chest pressure and pain, as well as loss of daily routine habits, pointing out to a sever reduction in the quality of life. COVID-19 has afftected almost all countries, however, the United States contains the highest number of infection (> 1,595,000 cases) and deaths cases (> 95,000 deaths) in the world until May 21, 2020. Finding an influential treatment strategy against COVID-19 can be facilitated through better understanding of the virus pathogenesis and consequently interrupting the biochemical pathways that the virus may play role in human body as the current reservoir of the virus. RESULTS In this study, we combined system biology and bioinformatic approaches to define the role of coexpression of angiotensin-converting enzyme 2 (ACE2), neprilysin or membrane metallo-endopeptidase (MME), and carbonic anhydrases (CAs) and their association in the pathogenesis of SARS-CoV-2. The results revealed that ACE2 as the cellular attachment site of SARS-CoV-2, neprilysin, and CAs have a great contribution together in the renin angiotensin system (RAS) and consequently in pathogenesis of SARS-CoV-2 in the vital organs such as respiratory, renal, and blood circulation systems. Any disorder in neprilysin, ACE2, and CAs can lead to increase of CO2 concentration in blood and respiratory acidosis, induction of pulmonary edema and heart and renal failures. CONCLUSIONS Due to the presence of ACE2-Neprilysin-CA complex in most of vital organs and as a receptor of COVID-19, it is expected that most organs are affected by SARS-CoV-2 such as inflammation and fibrosis of lungs, which may conversely affect their vital functions, temporary or permanently, sometimes leading to death. Therefore, ACE2-Neprilysin-CA complex could be the key factor of pathogenesis of SARS-CoV-2 and may provide us useful information to find better provocative and therapeutic strategies against COVID-19.
Collapse
Affiliation(s)
- Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), 14965/161, Tehran, Iran
| | - Reza Falak
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Elham Bahreini
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Kaltenecker CC, Domenig O, Kopecky C, Antlanger M, Poglitsch M, Berlakovich G, Kain R, Stegbauer J, Rahman M, Hellinger R, Gruber C, Grobe N, Fajkovic H, Eskandary F, Böhmig GA, Säemann MD, Kovarik JJ. Critical Role of Neprilysin in Kidney Angiotensin Metabolism. Circ Res 2020; 127:593-606. [PMID: 32418507 DOI: 10.1161/circresaha.119.316151] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
RATIONALE Kidney homeostasis is critically determined by the coordinated activity of the renin-angiotensin system (RAS), including the balanced synthesis of its main effector peptides Ang (angiotensin) II and Ang (1-7). The condition of enzymatic overproduction of Ang II relative to Ang (1-7) is termed RAS dysregulation and leads to cellular signals, which promote hypertension and organ damage, and ultimately progressive kidney failure. ACE2 (angiotensin-converting enzyme 2) and NEP (neprilysin) induce the alternative, and potentially reno-protective axis by enhancing Ang (1-7) production. However, their individual contribution to baseline RAS balance and whether their activities change in chronic kidney disease (CKD) has not yet been elucidated. OBJECTIVE To examine whether NEP-mediated Ang (1-7) generation exceeds Ang II formation in the healthy kidney compared with diseased kidney. METHODS AND RESULTS In this exploratory study, we used liquid chromatography-tandem mass spectrometry to measure Ang II and Ang (1-7) synthesis rates of ACE, chymase and NEP, ACE2, PEP (prolyl-endopeptidase), PCP (prolyl-carboxypeptidase) in kidney biopsy homogenates in 11 healthy living kidney donors, and 12 patients with CKD. The spatial expression of RAS enzymes was determined by immunohistochemistry. Healthy kidneys showed higher NEP-mediated Ang (1-7) synthesis than Ang II formation, thus displaying a strong preference towards the reno-protective alternative RAS axis. In contrast, in CKD kidneys higher levels of Ang II were recorded, which originated from mast cell chymase activity. CONCLUSIONS Ang (1-7) is the dominant RAS peptide in healthy human kidneys with NEP rather than ACE2 being essential for its generation. Severe RAS dysregulation is present in CKD dictated by high chymase-mediated Ang II formation. Kidney RAS enzyme analysis might lead to novel therapeutic approaches for CKD.
Collapse
Affiliation(s)
- Christopher C Kaltenecker
- From the Division of Nephrology and Dialysis, Department of Internal Medicine III (C.C.K., F.E., G.A.B., J.J.K.), Medical University of Vienna, Austria
| | - Oliver Domenig
- Attoquant Diagnostics GmbH, Vienna, Austria (O.D., M.P.)
| | - Chantal Kopecky
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia (C.K.)
| | - Marlies Antlanger
- 2nd Department of Internal Medicine, Kepler University Hospital, Med Campus III, Linz, Austria (M.A.)
| | | | - Gabriela Berlakovich
- Division of Transplantation, Department of Surgery (G.B.), Medical University of Vienna, Austria
| | - Renate Kain
- Department of Pathology (R.K.), Medical University of Vienna, Austria
| | - Johannes Stegbauer
- Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany (J.S., M.R.)
| | - Masudur Rahman
- Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany (J.S., M.R.)
| | - Roland Hellinger
- Center for Physiology and Pharmacology (R.H., C.G.), Medical University of Vienna, Austria
| | - Christian Gruber
- Center for Physiology and Pharmacology (R.H., C.G.), Medical University of Vienna, Austria
| | - Nadja Grobe
- Renal Research Institute, New York, NY (N.G.)
| | - Harun Fajkovic
- Department of Urology (H.F.), Medical University of Vienna, Austria
| | - Farsad Eskandary
- From the Division of Nephrology and Dialysis, Department of Internal Medicine III (C.C.K., F.E., G.A.B., J.J.K.), Medical University of Vienna, Austria
| | - Georg A Böhmig
- From the Division of Nephrology and Dialysis, Department of Internal Medicine III (C.C.K., F.E., G.A.B., J.J.K.), Medical University of Vienna, Austria
| | - Marcus D Säemann
- 6th Medical Department with Nephrology and Dialysis, Wilhelminenhospital, Vienna, Austria (M.D.S.).,Sigmund-Freud University, Vienna, Austria (M.D.S.)
| | - Johannes J Kovarik
- From the Division of Nephrology and Dialysis, Department of Internal Medicine III (C.C.K., F.E., G.A.B., J.J.K.), Medical University of Vienna, Austria
| |
Collapse
|
17
|
Serfozo P, Wysocki J, Gulua G, Schulze A, Ye M, Liu P, Jin J, Bader M, Myöhänen T, García-Horsman JA, Batlle D. Ang II (Angiotensin II) Conversion to Angiotensin-(1-7) in the Circulation Is POP (Prolyloligopeptidase)-Dependent and ACE2 (Angiotensin-Converting Enzyme 2)-Independent. Hypertension 2019; 75:173-182. [PMID: 31786979 DOI: 10.1161/hypertensionaha.119.14071] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The Ang II (Angiotensin II)-Angiotensin-(1-7) axis of the Renin Angiotensin System encompasses 3 enzymes that form Angiotensin-(1-7) [Ang-(1-7)] directly from Ang II: ACE2 (angiotensin-converting enzyme 2), PRCP (prolylcarboxypeptidase), and POP (prolyloligopeptidase). We investigated their relative contribution to Ang-(1-7) formation in vivo and also ex vivo in serum, lungs, and kidneys using models of genetic ablation coupled with pharmacological inhibitors. In wild-type (WT) mice, infusion of Ang II resulted in a rapid increase of plasma Ang-(1-7). In ACE2-/-/PRCP-/- mice, Ang II infusion resulted in a similar increase in Ang-(1-7) as in WT (563±48 versus 537±70 fmol/mL, respectively), showing that the bulk of Ang-(1-7) formation in circulation is essentially independent of ACE2 and PRCP. By contrast, a POP inhibitor, Z-Pro-Prolinal reduced the rise in plasma Ang-(1-7) after infusing Ang II to control WT mice. In POP-/- mice, the increase in Ang-(1-7) was also blunted as compared with WT mice (309±46 and 472±28 fmol/mL, respectively P=0.01), and moreover, the rate of recovery from acute Ang II-induced hypertension was delayed (P=0.016). In ex vivo studies, POP inhibition with ZZP reduced Ang-(1-7) formation from Ang II markedly in serum and in lung lysates. By contrast, in kidney lysates, the absence of ACE2, but not POP, obliterated Ang-(1-7) formation from added Ang II. We conclude that POP is the main enzyme responsible for Ang II conversion to Ang-(1-7) in the circulation and in the lungs, whereas Ang-(1-7) formation in the kidney is mainly ACE2-dependent.
Collapse
Affiliation(s)
- Peter Serfozo
- From the Division of Nephrology and Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL (P.S., J.W., G.G., A.S., M.Y., P.L., J.J., D.B.).,Charité-Universitätsmedizin Berlin, Germany (P.S., G.G., A.S., M.B.)
| | - Jan Wysocki
- From the Division of Nephrology and Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL (P.S., J.W., G.G., A.S., M.Y., P.L., J.J., D.B.)
| | - Gvantca Gulua
- From the Division of Nephrology and Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL (P.S., J.W., G.G., A.S., M.Y., P.L., J.J., D.B.).,Charité-Universitätsmedizin Berlin, Germany (P.S., G.G., A.S., M.B.)
| | - Arndt Schulze
- From the Division of Nephrology and Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL (P.S., J.W., G.G., A.S., M.Y., P.L., J.J., D.B.).,Charité-Universitätsmedizin Berlin, Germany (P.S., G.G., A.S., M.B.)
| | - Minghao Ye
- From the Division of Nephrology and Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL (P.S., J.W., G.G., A.S., M.Y., P.L., J.J., D.B.)
| | - Pan Liu
- From the Division of Nephrology and Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL (P.S., J.W., G.G., A.S., M.Y., P.L., J.J., D.B.)
| | - Jing Jin
- From the Division of Nephrology and Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL (P.S., J.W., G.G., A.S., M.Y., P.L., J.J., D.B.)
| | - Michael Bader
- Charité-Universitätsmedizin Berlin, Germany (P.S., G.G., A.S., M.B.).,Max-Delbrueck Center for Molecular Medicine Berlin, Germany (M.B.)
| | - Timo Myöhänen
- Division of Pharmacology and Pharmacotherapy (T.M.), University of Helsinki, Finland
| | | | - Daniel Batlle
- From the Division of Nephrology and Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL (P.S., J.W., G.G., A.S., M.Y., P.L., J.J., D.B.)
| |
Collapse
|
18
|
|
19
|
A Fluorometric Method of Measuring Carboxypeptidase Activities for Angiotensin II and Apelin-13. Sci Rep 2017; 7:45473. [PMID: 28378780 PMCID: PMC5381230 DOI: 10.1038/srep45473] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 02/28/2017] [Indexed: 12/29/2022] Open
Abstract
Degradation of the biologically potent octapeptide angiotensin Ang II-(1-8) is mediated by the activities of several peptidases. The conversion of Ang II to the septapeptide Ang-(1-7) is of particular interest as the latter also confers organ protection. The conversion is catalyzed by angiotensin-converting enzyme 2 and other enzymes that selectively cleave the peptide bond between the proline and the phenylalanine at the carboxyl terminus of Ang II. The contribution of various enzyme activities that collectively lead to the formation of Ang-(1-7) from Ang II, in both normal conditions and in disease states, remains only partially understood. This is largely due to the lack of a reliable and sensitive method to detect these converting activities in complex samples, such as blood and tissues. Here, we report a fluorometric method to measure carboxypeptidase activities that cleave the proline-phenylalanine dipeptide bond in Ang II. This method is also suitable for measuring the conversion of apelin-13. The assay detects the release of phenylalanine amino acid in a reaction with the yeast enzyme of phenylalanine ammonia lyase (PAL). When used in cell and mouse organs, the assay can robustly measure endogenous Ang II and apelin-13-converting activities involved in the renin-angiotensin and the apelinergic systems, respectively.
Collapse
|
20
|
Velez JCQ, Arif E, Rodgers J, Hicks MP, Arthur JM, Nihalani D, Bruner ET, Budisavljevic MN, Atkinson C, Fitzgibbon WR, Janech MG. Deficiency of the Angiotensinase Aminopeptidase A Increases Susceptibility to Glomerular Injury. J Am Soc Nephrol 2017; 28:2119-2132. [PMID: 28202497 DOI: 10.1681/asn.2016111166] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/04/2017] [Indexed: 01/13/2023] Open
Abstract
Aminopeptidase A (APA) is expressed in glomerular podocytes and tubular epithelia and metabolizes angiotensin II (AngII), a peptide known to promote glomerulosclerosis. In this study, we tested whether APA expression changes in response to progressive nephron loss or whether APA exerts a protective role against glomerular damage and during AngII-mediated hypertensive kidney injury. At advanced stages of FSGS, fawn-hooded hypertensive rat kidneys exhibited distinctly increased APA staining in areas of intact glomerular capillary loops. Moreover, BALB/c APA-knockout (KO) mice injected with a nephrotoxic serum showed persistent glomerular hyalinosis and albuminuria 96 hours after injection, whereas wild-type controls achieved virtually full recovery. We then tested the effect of 4-week infusion of AngII (400 ng/kg per minute) in APA-KO and wild-type mice. Although we observed no significant difference in achieved systolic BP, AngII-treated APA-KO mice developed a significant rise in albuminuria not observed in AngII-treated wild-type mice along with increased segmental and global sclerosis and/or collapse of juxtamedullary glomeruli, microcystic tubular dilation, and tubulointerstitial fibrosis. In parallel, AngII treatment significantly increased the kidney AngII content and attenuated the expression of podocyte nephrin in APA-KO mice but not in wild-type controls. These data show that deficiency of APA increases susceptibility to glomerular injury in BALB/c mice. The augmented AngII-mediated kidney injury observed in association with increased intrarenal AngII accumulation in the absence of APA suggests a protective metabolizing role of APA in AngII-mediated glomerular diseases.
Collapse
Affiliation(s)
- Juan Carlos Q Velez
- Department of Nephrology, Ochsner Clinic Foundation, New Orleans, Louisiana;
| | | | | | - Megan P Hicks
- Institute of Public and Preventative Health, Augusta University, Augusta, Georgia; and
| | - John M Arthur
- Division of Nephrology, Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | | | | | | - Carl Atkinson
- Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | | | | |
Collapse
|
21
|
Maier C, Schadock I, Haber PK, Wysocki J, Ye M, Kanwar Y, Flask CA, Yu X, Hoit BD, Adams GN, Schmaier AH, Bader M, Batlle D. Prolylcarboxypeptidase deficiency is associated with increased blood pressure, glomerular lesions, and cardiac dysfunction independent of altered circulating and cardiac angiotensin II. J Mol Med (Berl) 2017; 95:473-486. [PMID: 28160049 DOI: 10.1007/s00109-017-1513-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/20/2016] [Accepted: 01/20/2017] [Indexed: 12/28/2022]
Abstract
Prolylcarboxypeptidase (PRCP) is a carboxypeptidase that cleaves angiotensin II (AngII) forming Ang(1-7). The impact of genetic PRCP deficiency on AngII metabolism, blood pressure (BP), kidney histology, and cardiac phenotype was investigated in two lines of PRCP-deficient mice: KST302 derived in C57BL/6 background and GST090 derived in FVB/N background. The GST090 line had increased mean arterial pressure (MAP) (113.7 ± 2.07 vs. WT 105.0 ± 1.23 mmHg; p < 0.01) and left ventricular hypertrophy (LVH) (ratio of diastolic left ventricular posterior wall dimension to left ventricular diameter 0.239 ± 0.0163 vs. WT 0.193 ± 0.0049; p < 0.05). Mice in the KST302 line also had mild hypertension and LVH. Cardiac defects, increased glomerular size, and glomerular mesangial expansion were also observed. After infusion of AngII to mice in the KST302 line, both MAP and LVH increased, but the constitutive differences between the gene trap mice and controls were no longer observed. Plasma and cardiac AngII and Ang(1-7) were not significantly different between PRCP-deficient mice and controls. Thus, PRCP deficiency is associated with elevated blood pressure and cardiac alterations including LVH and cardiac defects independently of systemic or cardiac AngII and Ang(1-7). An ex vivo assay showed that recombinant PRCP, unlike recombinant ACE2, did not degrade AngII to form Ang(1-7) in plasma at pH 7.4. PRCP was localized in α-intercalated cells of the kidney collecting tubule. The low pH prevailing at this site and the acidic pH preference of PRCP suggest a role of this enzyme in regulating AngII degradation in the collecting tubule where this peptide increases sodium reabsorption and therfore BP. However, there are other potential mechanisms for increased BP in this model that need to be considered as well. PRCP converts AngII to Ang(1-7) but only at an acidic pH. Global PRCP deficiency causes heart and kidney alterations and a moderate rise in BP. PRCP is abundant in the kidney collecting tubules, where the prevailing pH is low. In collecting tubules, PRCP deficiency could result in impaired AngII degradation. Increased AngII at this nephron site stimulates Na reabsorption and increases BP. KEY MESSAGE Prolylcarboxypeptidase (PRCP) converts AngII to Ang (1-7) but only at an acidic pH. Global PRCP deficiency causes heart and kidney alterations and a moderate rise in BP. PRCP is abundant in the kidney collecting tubules, where the prevailing pH is low. In collecting tubules, PRCP deficiency could result in impaired AngII degradation. Increased AngII at this nephron site stimulates Na reabsorption and increases BP.
Collapse
Affiliation(s)
- Christoph Maier
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ines Schadock
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Philipp K Haber
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jan Wysocki
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Minghao Ye
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yashpal Kanwar
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Christopher A Flask
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA.,Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Xin Yu
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA.,Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Brian D Hoit
- Department of Medicine, Division of Cardiology, University Hospitals Case Medical Center and Case Western Reserve University, Cleveland, OH, USA
| | - Gregory N Adams
- Department of Medicine, Division of Hematology and Oncology, University Hospitals Case Medical Center and Case Western Reserve University, Cleveland, OH, USA
| | - Alvin H Schmaier
- Department of Medicine, Division of Hematology and Oncology, University Hospitals Case Medical Center and Case Western Reserve University, Cleveland, OH, USA
| | - Michael Bader
- Charité-Universitätsmedizin Berlin, Berlin, Germany.,Max Delbrück Center for Molecular Medicine, Berlin, Germany.,National Institute of Science and Technology in Nanobiopharmaceutics, Federal University of Minas Gerais, Belo Horizonte, Brazil.,German Center for Cardiovascular Research (DZHK), Berlin site, Berlin, Germany
| | - Daniel Batlle
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
22
|
Thatcher SE. A Brief Introduction into the Renin-Angiotensin-Aldosterone System: New and Old Techniques. Methods Mol Biol 2017; 1614:1-19. [PMID: 28500591 DOI: 10.1007/978-1-4939-7030-8_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The renin-angiotensin-aldosterone system (RAAS) is a complex system of enzymes, receptors, and peptides that help to control blood pressure and fluid homeostasis. Techniques in studying the RAAS can be difficult due to such factors as peptide/enzyme stability and receptor localization. This paper gives a brief account of the different components of the RAAS and current methods in measuring each component. There is also a discussion of different methods in measuring stem and immune cells by flow cytometry, hypertension, atherosclerosis, oxidative stress, energy balance, and other RAAS-activated phenotypes. While studies on the RAAS have been performed for over 100 years, new techniques have allowed scientists to come up with new insights into this system. These techniques are detailed in this Methods in Molecular Biology Series and give students new to studying the RAAS the proper controls and technical details needed to perform each procedure.
Collapse
Affiliation(s)
- Sean E Thatcher
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Charles T. Wethington Bldg, 593, 900 South Limestone Street, Lexington, KY, 40536, USA.
| |
Collapse
|
23
|
Domenig O, Manzel A, Grobe N, Königshausen E, Kaltenecker CC, Kovarik JJ, Stegbauer J, Gurley SB, van Oyen D, Antlanger M, Bader M, Motta-Santos D, Santos RA, Elased KM, Säemann MD, Linker RA, Poglitsch M. Neprilysin is a Mediator of Alternative Renin-Angiotensin-System Activation in the Murine and Human Kidney. Sci Rep 2016; 6:33678. [PMID: 27649628 PMCID: PMC5030486 DOI: 10.1038/srep33678] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 08/31/2016] [Indexed: 02/08/2023] Open
Abstract
Cardiovascular and renal pathologies are frequently associated with an activated renin-angiotensin-system (RAS) and increased levels of its main effector and vasoconstrictor hormone angiotensin II (Ang II). Angiotensin-converting-enzyme-2 (ACE2) has been described as a crucial enzymatic player in shifting the RAS towards its so-called alternative vasodilative and reno-protective axis by enzymatically converting Ang II to angiotensin-(1-7) (Ang-(1-7)). Yet, the relative contribution of ACE2 to Ang-(1-7) formation in vivo has not been elucidated. Mass spectrometry based quantification of angiotensin metabolites in the kidney and plasma of ACE2 KO mice surprisingly revealed an increase in Ang-(1-7), suggesting additional pathways to be responsible for alternative RAS activation in vivo. Following assessment of angiotensin metabolism in kidney homogenates, we identified neprilysin (NEP) to be a major source of renal Ang-(1-7) in mice and humans. These findings were supported by MALDI imaging, showing NEP mediated Ang-(1-7) formation in whole kidney cryo-sections in mice. Finally, pharmacologic inhibition of NEP resulted in strongly decreased Ang-(1-7) levels in murine kidneys. This unexpected new role of NEP may have implications for the combination therapy with NEP-inhibitors and angiotensin-receptor-blockade, which has been shown being a promising therapeutic approach for heart failure therapy.
Collapse
Affiliation(s)
- Oliver Domenig
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Arndt Manzel
- Department of Neurology, University Hospital Erlangen, Erlangen, Germany
| | - Nadja Grobe
- Department of Pharmacology and Toxicology, Wright State University, OH, USA
| | - Eva Königshausen
- Department of Nephrology, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Christopher C Kaltenecker
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Johannes J Kovarik
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Johannes Stegbauer
- Department of Nephrology, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Susan B Gurley
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, NC 27710, USA
| | | | - Marlies Antlanger
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin-Buch, Germany
| | - Daisy Motta-Santos
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Robson A Santos
- Institute of Cardiology, University Cardiology Foundation, Porto Alegre, RS, Brazil
| | - Khalid M Elased
- Department of Pharmacology and Toxicology, Wright State University, OH, USA
| | - Marcus D Säemann
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Ralf A Linker
- Department of Neurology, University Hospital Erlangen, Erlangen, Germany
| | | |
Collapse
|
24
|
Abstract
Angiotensin (Ang)-(1-7) is recognized as a new bioactive peptide in renin-angiotensin system (RAS). Ang-(1-7) is a counter-regulatory mediator of Ang-II which appears to be protective against cardiovascular disease. Recent studies have found that Ang-(1-7) played an important role in reducing smooth muscle cell proliferation and migration, improving endothelial function and regulating lipid metabolism, leading to inhibition of atherosclerotic lesions and increase of plaque stability. Although clinical application of Ang-(1-7) is restricted due to its pharmacokinetic properties, identification of stabilized compounds, including more stable analogues and specific delivery compounds, has enabled clinical application of Ang-(1-7). In this review, we discussed recent findings concerning the biological role of Ang-(1-7) and related mechanism during atherosclerosis development. In addition, we highlighted the perspective to develop therapeutic strategies using Ang-(1-7) to treat atherosclerosis.
Collapse
|
25
|
Schmaier AH. The contact activation and kallikrein/kinin systems: pathophysiologic and physiologic activities. J Thromb Haemost 2016; 14:28-39. [PMID: 26565070 DOI: 10.1111/jth.13194] [Citation(s) in RCA: 253] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/29/2015] [Indexed: 12/31/2022]
Abstract
The contact activation system (CAS) and kallikrein/kinin system (KKS) are older recognized biochemical pathways that include several proteins that skirt the fringes of the blood coagulation, fibrinolytic, complement and renin-angiotensin fields. These proteins initially were proposed as part of the hemostatic pathways because their deficiencies are associated with prolonged clinical assays. However, the absence of bleeding states with deficiencies of factor XII (FXII), prekallikrein (PK) and high-molecular-weight kininogen indicates that the CAS and KKS do not contribute to hemostasis. Since the discovery of the Hageman factor 60 years ago much has been learned about the biochemistry, cell biology and animal physiology of these proteins. The CAS is a pathophysiologic surface defense mechanism against foreign proteins, organisms and artificial materials. The KKS is an inflammatory response mechanism. Targeting their activation through FXIIa or plasma kallikrein inhibition when blood interacts with the artificial surfaces of modern interventional medicine or in acute attacks of hereditary angioedema restores vascular homeostasis. FXII/FXIIa and products that arise with PK deficiency also offer novel ways to reduce arterial and venous thrombosis without an effect on hemostasis. In summary, there is revived interest in the CAS and KKS due to better understanding of their activities. The new appreciation of these systems will lead to several new therapies for a variety of medical disorders.
Collapse
Affiliation(s)
- A H Schmaier
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
- University Hospitals Case Medical Center, Cleveland, OH, USA
| |
Collapse
|
26
|
Wysocki J, Ye M, Batlle D. Plasma and Kidney Angiotensin Peptides: Importance of the Aminopeptidase A/Angiotensin III Axis. Am J Hypertens 2015; 28:1418-26. [PMID: 25968123 DOI: 10.1093/ajh/hpv054] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 02/23/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The renin-angiotensin system is a complex regulatory hormonal network with a main biological peptide and therapeutic target, angiotensin (Ang) II (1-8). There are other potentially important Ang peptides that have not been well evaluated. METHODS Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used for concurrent evaluation of multiple Angs downstream of Ang I (1-10) and Ang II (1-8) in kidney and plasma from wild-type (WT) mice. Angiotensin converting enzyme 2 knockout (ACE2KO) was also used as a way to examine the Angs profile in the absence of ACE2, an enzyme that cleaves both Ang I (1-10) and Ang II (1-8). RESULTS In plasma from both WT and ACE2KO, levels of Ang I (1-10), Ang III (2-8), and Ang (2-10) were the highest of all the renin-angiotensin system (RAS) peptides. The latter two peptides are products of aminopeptidase A cleavage of Ang II (1-8) and Ang I (1-10), respectively. In contrast, plasma levels of Ang II (1-8), and Ang (1-7), the product of Ang II (1-8) cleavage by ACE2, were low. In kidney from both WT and ACE2KO, Ang II (1-8) levels were high as compared to plasma levels. In the ACE2KO mice, a significant increase in either Ang II (1-8) or a decrease in Ang (1-7) was not observed in plasma or in the kidney. CONCLUSION RAS-focused peptidomic approach revealed major differences in Ang peptides between mouse plasma and kidney. These Ang peptide profiles show the dominance of the aminopeptidase A/Ang (2-10) and aminopeptidase A/Ang III (2-8) pathways in the metabolism of Ang I (1-10) and Ang II (1-8) over the ACE2/Ang (1-7) axis. Ang III (2-8) and other peptides formed from aminopeptidase A cleavage may be important therapeutic RAS targets.
Collapse
Affiliation(s)
- Jan Wysocki
- Division of Nephrology & Hypertension, Department of Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Minghao Ye
- Division of Nephrology & Hypertension, Department of Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Daniel Batlle
- Division of Nephrology & Hypertension, Department of Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.
| |
Collapse
|
27
|
Angiotensinase C mRNA and Protein Downregulations Are Involved in Ethanol-Deteriorated Left Ventricular Systolic Dysfunction in Spontaneously Hypertensive Rats. BIOMED RESEARCH INTERNATIONAL 2015; 2015:409350. [PMID: 26509155 PMCID: PMC4609779 DOI: 10.1155/2015/409350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/10/2015] [Accepted: 08/11/2015] [Indexed: 11/26/2022]
Abstract
The influences of angiotensinase C on ethanol-induced left ventricular (LV) systolic function were assessed in spontaneously hypertensive rats (SHRs). SHRs were fed by a liquid diet with or without ethanol for 49 days. The normotensive Wistar Kyoto rats (WKY) were fed by the liquid diet without ethanol and used as control. We evaluated LV systolic function, angiotensinase C mRNA and protein expressions, activation of the renin-angiotensin system (RAS), and the gene expressions of LV collagen (Col) III a1 and matrix metalloproteinases- (MMP-) 9. Compared to the WKY, LV systolic dysfunction (expressed by decreased fractional shortening and ejection fraction) was observed in the SHRs before ethanol treatment and further deteriorated by ethanol treatment. In the ethanol-treated SHRs, the following were observed: downregulations of angiotensinase C mRNA and protein, increased RAS activity with low collagen production as evidenced by angiotensin II and angiotensin type 1 receptor (AT1R) protein upregulation, AT1aR mRNA downregulation, and an MMP-9 mRNA expression upregulation trend with the downregulation of Col III a1 mRNA expression in LV. We conclude that chronic ethanol regimen is sufficient to promote the enhanced RAS activity-induced decrease in the production of cardiac collagen via downregulated angiotensinase C, leading to the further deterioration of LV systolic dysfunction in SHRs.
Collapse
|
28
|
Wang J, Matafonov A, Madkhali H, Mahdi F, Watson D, Schmaier AH, Gailani D, Shariat-Madar Z. Prolylcarboxypeptidase independently activates plasma prekallikrein (fletcher factor). Curr Mol Med 2015; 14:1173-85. [PMID: 25324000 DOI: 10.2174/1566524014666141015153519] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 04/11/2014] [Accepted: 04/17/2014] [Indexed: 11/22/2022]
Abstract
Prolylcarboxypeptidase isoform 1 (PRCP1) is capable of regulating numerous autocrines and hormones, such as angiotensin II, angiotensin III, αMSH1-13, and DesArg(9) bradykinin. It does so by cleaving a C-terminal PRO-X bond. Recent work also indicates that the human PRCP1 activates plasma prekallikrein (PK) to kallikrein on endothelial cells through an uncharacterized mechanism. This study aims to identify PRCP1 binding interaction and cleavage site on PK. Recently, a cDNA encoding a novel splice variant of the human PRCP1 was identified. This isoform differed only in the N-terminal region of the deduced amino acid sequence. Using structural and functional studies, a combination of peptide mapping and site-directed mutagenesis approaches were employed to investigate the interaction of PRCP1 with PK. Three PRCP peptides, in decreasing order of potency, from 1) the N-terminus of the secreted protein, 2) spanning the opening of the active site pocket, and 3) in the dimerization region inhibit PRCP activation of PK on endothelial cells. Investigations also tested the hypothesis that PRCP cleavage site on PK is between its C-terminal Pro 637 (P(637)) and Ala 638 (A(638)). Recombinant forms of PK with C-terminal alanine mutagenesis or a stop codon is activated equally as wild type PK by PRCP. In conclusion, PRCP1 interacts with PK at multiple sites for PK activation. PRCP1 also enhances FXIIa activation of PK, suggesting that its activation site on PK is not identical to that of FXIIa.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Z Shariat-Madar
- Department of Pharmacology, The University of Mississippi, University, MS 38677- 1848, USA.
| |
Collapse
|
29
|
Grobe N, Di Fulvio M, Kashkari N, Chodavarapu H, Somineni HK, Singh R, Elased KM. Functional and molecular evidence for expression of the renin angiotensin system and ADAM17-mediated ACE2 shedding in COS7 cells. Am J Physiol Cell Physiol 2015; 308:C767-77. [PMID: 25740155 PMCID: PMC4420792 DOI: 10.1152/ajpcell.00247.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 02/24/2015] [Indexed: 12/29/2022]
Abstract
The renin angiotensin system (RAS) plays a vital role in the regulation of the cardiovascular and renal functions. COS7 is a robust and easily transfectable cell line derived from the kidney of the African green monkey, Cercopithecus aethiops. The aims of this study were to 1) demonstrate the presence of an endogenous and functional RAS in COS7, and 2) investigate the role of a disintegrin and metalloproteinase-17 (ADAM17) in the ectodomain shedding of angiotensin converting enzyme-2 (ACE2). Reverse transcription coupled to gene-specific polymerase chain reaction demonstrated expression of ACE, ACE2, angiotensin II type 1 receptor (AT1R), and renin at the transcript levels in total RNA cell extracts. Western blot and immunohistochemistry identified ACE (60 kDa), ACE2 (75 kDa), AT1R (43 kDa), renin (41 kDa), and ADAM17 (130 kDa) in COS7. At the functional level, a sensitive and selective mass spectrometric approach detected endogenous renin, ACE, and ACE2 activities. ANG-(1-7) formation (m/z 899) from the natural substrate ANG II (m/z 1,046) was detected in lysates and media. COS7 cells stably expressing shRNA constructs directed against endogenous ADAM17 showed reduced ACE2 shedding into the media. This is the first study demonstrating endogenous expression of the RAS and ADAM17 in the widely used COS7 cell line and its utility to study ectodomain shedding of ACE2 mediated by ADAM17 in vitro. The transfectable nature of this cell line makes it an attractive cell model for studying the molecular, functional, and pharmacological properties of the renal RAS.
Collapse
Affiliation(s)
- Nadja Grobe
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio
| | - Mauricio Di Fulvio
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio
| | - Nada Kashkari
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio
| | - Harshita Chodavarapu
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio
| | - Hari K Somineni
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio
| | - Richa Singh
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio
| | - Khalid M Elased
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio
| |
Collapse
|
30
|
Grobe N, Leiva O, Morris M, Elased KM. Loss of prolyl carboxypeptidase in two-kidney, one-clip goldblatt hypertensive mice. PLoS One 2015; 10:e0117899. [PMID: 25706121 PMCID: PMC4338234 DOI: 10.1371/journal.pone.0117899] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 01/05/2015] [Indexed: 11/19/2022] Open
Abstract
It is well documented that angiotensin (Ang) II contributes to kidney disease progression. The protease prolyl carboxypeptidase (PRCP) is highly expressed in the kidney and may be renoprotective by degrading Ang II to Ang-(1-7). The aim of the study was to investigate whether renal PRCP protein expression and activity are altered in two-kidney, one-clip (2K1C) Goldblatt hypertensive mice. Left renal artery was constricted by using 0.12 mm silver clips. Blood pressure was measured using telemetry over the eleven weeks of study period and revealed an immediate increase in 2K1C animals during the first week of clip placement which was followed by a gradual decrease to baseline blood pressure. Similarly, urinary albumin excretion was significantly increased one week after 2K1C and returned to baseline levels during the following weeks. At 2 weeks and at the end of the study, renal pathologies were exacerbated in the 2K1C model as revealed by a significant increase in mesangial expansion and renal fibrosis. Renal PRCP expression and activity were significantly reduced in clipped kidneys. Immunofluorescence revealed the loss of renal tubular PRCP but not glomerular PRCP. In contrast, expression of prolyl endopeptidase, another enzyme capable of converting Ang II into Ang-(1-7), was not affected, while angiotensin converting enzyme was elevated in unclipped kidneys and renin was increased in clipped kidneys. Results suggest that PRCP is suppressed in 2K1C and that this downregulation may attenuate renoprotective effects via impaired Ang II degradation by PRCP.
Collapse
Affiliation(s)
- Nadja Grobe
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, United States of America
- * E-mail:
| | - Orly Leiva
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, United States of America
| | - Mariana Morris
- College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, United States of America
| | - Khalid M. Elased
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, United States of America
| |
Collapse
|
31
|
Abstract
The plasma contact activation (CAS) and kallikrein/kinin (KKS) systems consist of 4 proteins: factor XII, prekallikrein, high molecular weight kininogen, and the bradykinin B2 receptor. Murine genetic deletion of factor XII (F12(-/-)), prekallikrein (Klkb1(-/-)), high molecular weight kininogen (Kgn1(-/-)) and the bradykinin B2 receptor (Bdkrb2(-/-)) yield animals protected from thrombosis. With possible exception of F12(-/-) and Kgn1(-/-) mice, the mechanism(s) for thrombosis protection is not reduced contact activation. Bdkrb2(-/-) mice are best characterized and they are protected from thrombosis through over expression of components of the renin angiotensin system (RAS) leading to elevated prostacyclin with vascular and platelet inhibition. Alternatively, prolylcarboxypeptidase, a PK activator and degrader of angiotensin II, when deficient in the mouse leads to a prothrombotic state. Its mechanism for increased thrombosis also is mediated in part by components of the RAS. These observations suggest that thrombosis in mice of the CAS and KKS are mediated in part through the RAS and independent of reduced contact activation.
Collapse
|
32
|
Spainhour JCG, Janech MG, Schwacke JH, Velez JCQ, Ramakrishnan V. The application of Gaussian mixture models for signal quantification in MALDI-TOF mass spectrometry of peptides. PLoS One 2014; 9:e111016. [PMID: 25372836 PMCID: PMC4221630 DOI: 10.1371/journal.pone.0111016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 09/19/2014] [Indexed: 02/07/2023] Open
Abstract
Matrix assisted laser desorption/ionization time-of-flight (MALDI-TOF) coupled with stable isotope standards (SIS) has been used to quantify native peptides. This peptide quantification by MALDI-TOF approach has difficulties quantifying samples containing peptides with ion currents in overlapping spectra. In these overlapping spectra the currents sum together, which modify the peak heights and make normal SIS estimation problematic. An approach using Gaussian mixtures based on known physical constants to model the isotopic cluster of a known compound is proposed here. The characteristics of this approach are examined for single and overlapping compounds. The approach is compared to two commonly used SIS quantification methods for single compound, namely Peak Intensity method and Riemann sum area under the curve (AUC) method. For studying the characteristics of the Gaussian mixture method, Angiotensin II, Angiotensin-2-10, and Angiotenisn-1-9 and their associated SIS peptides were used. The findings suggest, Gaussian mixture method has similar characteristics as the two methods compared for estimating the quantity of isolated isotopic clusters for single compounds. All three methods were tested using MALDI-TOF mass spectra collected for peptides of the renin-angiotensin system. The Gaussian mixture method accurately estimated the native to labeled ratio of several isolated angiotensin peptides (5.2% error in ratio estimation) with similar estimation errors to those calculated using peak intensity and Riemann sum AUC methods (5.9% and 7.7%, respectively). For overlapping angiotensin peptides, (where the other two methods are not applicable) the estimation error of the Gaussian mixture was 6.8%, which is within the acceptable range. In summary, for single compounds the Gaussian mixture method is equivalent or marginally superior compared to the existing methods of peptide quantification and is capable of quantifying overlapping (convolved) peptides within the acceptable margin of error.
Collapse
Affiliation(s)
- John Christian G. Spainhour
- Medical University of South Carolina, Department of Public Health Sciences, Charleston, South Carolina, United States of America
- * E-mail:
| | - Michael G. Janech
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - John H. Schwacke
- Scientific Research Corporation, North Charleston, South Carolina, United States of America
| | - Juan Carlos Q. Velez
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, United States of America
| | - Viswanathan Ramakrishnan
- Medical University of South Carolina, Department of Public Health Sciences, Charleston, South Carolina, United States of America
| |
Collapse
|
33
|
Marangoni RA, Santos RA, Piccolo C. Deficient prolylcarboxypeptidase gene and protein expression in left ventricles of spontaneously hypertensive rats (SHR). Peptides 2014; 61:69-74. [PMID: 25218829 DOI: 10.1016/j.peptides.2014.08.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 08/29/2014] [Accepted: 08/29/2014] [Indexed: 01/21/2023]
Abstract
Prolylcarboxypeptidase (PRCP), an endothelial cell membrane serine peptidase that inactivates angiotensin II and activates pre-kallikrein, is thought to have anti-hypertensive and anti-proliferative roles in cardiovascular homeostasis. We hypothesized that PRCP function may be altered in heart tissue under conditions that predispose to left ventricle hypertrophy (LVH) in rats. We therefore used real-time PCR and western-blotting to examine the mRNA and protein expression of PRCP in the hearts of spontaneously hypertensive rats (SHR) at pre-hypertensive (5-week-old) and hypertensive (16-week-old) stages compared with age-matched hypertensive (2 kidney-1 clip; 2K-1C) rats and normotensive Wistar rats. PRCP mRNA expression was significantly reduced in hearts of 5- and 16-week-old SHR compared with age-matched Wistar controls, 2K-1C hypertensive rats and sham-operated normotensive rats. There were no significant differences in the PRCP mRNA and protein expression levels in hearts from hypertensive renovascular and sham-operated normotensive rats. Prolonged treatment of SHR with the AT1 receptor antagonist losartan (40 mg/kg, gavage for 8 weeks) reduced the left ventricular weight/body weight ratio (LVW/BW), as well as the mRNA expression of collagen type 1, collagen type 3 and MMP9 in left ventricular tissue, without affecting PRCP gene and protein expression. Our results suggest that diminished PRCP gene and protein expression might be constitutionally involved in the SHR phenotype. In addition, since neither the development of arterial hypertension in the 2K-1C model nor its successful treatment in SHR altered PRCP gene and protein expression in heart tissue, it appears unlikely that PRCP function is regulated by the renin-angiotensin system or by afterload conditions.
Collapse
Affiliation(s)
- Rossana Anderson Marangoni
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil.
| | - Rosangela Aparecida Santos
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Camila Piccolo
- Department of Physiology, Medical School of São Paulo, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| |
Collapse
|
34
|
Reduced thrombosis in Klkb1-/- mice is mediated by increased Mas receptor, prostacyclin, Sirt1, and KLF4 and decreased tissue factor. Blood 2014; 125:710-9. [PMID: 25339356 DOI: 10.1182/blood-2014-01-550285] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The precise mechanism for reduced thrombosis in prekallikrein null mice (Klkb1(-/-)) is unknown. Klkb1(-/-) mice have delayed carotid artery occlusion times on the rose bengal and ferric chloride thrombosis models. Klkb1(-/-) plasmas have long-activated partial thromboplastin times and defective contact activation-induced thrombin generation that partially corrects upon prolonged incubation. However, in contact activation-induced pulmonary thromboembolism by collagen/epinephrine or long-chain polyphosphate, Klkb1(-/-) mice, unlike F12(-/-) mice, do not have survival advantage. Klkb1(-/-) mice have reduced plasma BK levels and renal B2R mRNA. They also have increased expression of the renal receptor Mas and plasma prostacyclin. Increased prostacyclin is associated with elevated aortic vasculoprotective transcription factors Sirt1 and KLF4. Treatment of Klkb1(-/-) mice with the Mas antagonist A-779, COX-2 inhibitor nimesulide, or Sirt1 inhibitor splitomicin lowers plasma prostacyclin and normalizes arterial thrombosis times. Treatment of normal mice with the Mas agonist AVE0991 reduces thrombosis. Klkb1(-/-) mice have reduced aortic tissue factor (TF) mRNA, antigen, and activity. In sum, Klkb1(-/-) mice have a novel mechanism for thrombosis protection in addition to reduced contact activation. This pathway arises when bradykinin delivery to vasculature is compromised and mediated by increased receptor Mas, prostacyclin, Sirt1, and KLF4, leading to reduced vascular TF.
Collapse
|
35
|
Velez JCQ, Janech MG, Hicks MP, Morinelli TA, Rodgers J, Self SE, Arthur JM, Fitzgibbon WR. Lack of renoprotective effect of chronic intravenous angiotensin-(1-7) or angiotensin-(2-10) in a rat model of focal segmental glomerulosclerosis. PLoS One 2014; 9:e110083. [PMID: 25337950 PMCID: PMC4206519 DOI: 10.1371/journal.pone.0110083] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 09/15/2014] [Indexed: 11/18/2022] Open
Abstract
Unopposed angiotensin (Ang) II-mediated cellular effects may lead to progressive glomerulosclerosis. While Ang-II can be locally generated in the kidneys, we previously showed that glomerular podocytes primarily convert Ang-I, the precursor of Ang-II, to Ang-(1-7) and Ang-(2-10), peptides that have been independently implicated in biological actions opposing those of Ang-II. Therefore, we hypothesized that Ang-(1-7) and Ang-(2-10) could be renoprotective in the fawn-hooded hypertensive rat, a model of focal segmental glomerulosclerosis. We evaluated the ability of 8-12 week-long intravenous administration of either Ang-(1-7) or Ang-(2-10) (100-400 ng/kg/min) to reduce glomerular injury in uni-nephrectomized fawn-hooded hypertensive rats, early or late in the disease. Vehicle-treated rats developed hypertension and lesions of focal segmental glomerulosclerosis. No reduction in glomerular damage was observed, as measured by either 24-hour urinary protein excretion or histological examination of glomerulosclerosis, upon Ang-(1-7) or Ang-(2-10) administration, regardless of peptide dose or disease stage. On the contrary, when given at 400 ng/kg/min, both peptides induced a further increase in systolic blood pressure. Content of Ang peptides was measured by parallel reaction monitoring in kidneys harvested at sacrifice. Exogenous administration of Ang-(1-7) and Ang-(2-10) did not lead to a significant increase in their corresponding intrarenal levels. However, the relative abundance of Ang-(1-7) with respect to Ang-II was increased in kidney homogenates of Ang-(1-7)-treated rats. We conclude that chronic intravenous administration of Ang-(1-7) or Ang-(2-10) does not ameliorate glomerular damage in a rat model of focal segmental glomerulosclerosis and may induce a further rise in blood pressure, potentially aggravating glomerular injury.
Collapse
Affiliation(s)
- Juan Carlos Q. Velez
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Medical Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, United States of America
- * E-mail:
| | - Michael G. Janech
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Megan P. Hicks
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Thomas A. Morinelli
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Jessalyn Rodgers
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Sally E. Self
- Department of Pathology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - John M. Arthur
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Medical Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, United States of America
| | - Wayne R. Fitzgibbon
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| |
Collapse
|
36
|
de Rond T, Danielewicz M, Northen T. High throughput screening of enzyme activity with mass spectrometry imaging. Curr Opin Biotechnol 2014; 31:1-9. [PMID: 25129648 DOI: 10.1016/j.copbio.2014.07.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 07/29/2014] [Accepted: 07/29/2014] [Indexed: 10/24/2022]
Abstract
Mass spectrometry imaging (MSI) has found a diversity of applications ranging from localizing metabolites and proteins in tissues to investigating microbial interactions, and as a result is perhaps the fastest growing subfield of mass spectrometry. Advances in surface mass spectrometry technologies are equally applicable to the analysis of arrayed samples. One promising field in which this capacity has been leveraged is the high-throughput analysis of enzyme activity, an important step in the development of a wide range of biotechnologies. This review article describes several emerging approaches that seek to improve the quality and scope of this application of MSI.
Collapse
Affiliation(s)
- Tristan de Rond
- Dept. of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Megan Danielewicz
- Lawrence Berkeley National Lab, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Trent Northen
- Lawrence Berkeley National Lab, One Cyclotron Road, Berkeley, CA 94720, USA; Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA 94608, USA.
| |
Collapse
|
37
|
Marshall AC, Pirro NT, Rose JC, Diz DI, Chappell MC. Evidence for an angiotensin-(1-7) neuropeptidase expressed in the brain medulla and CSF of sheep. J Neurochem 2014; 130:313-23. [PMID: 24661079 DOI: 10.1111/jnc.12720] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 03/20/2014] [Accepted: 03/21/2014] [Indexed: 11/29/2022]
Abstract
Angiotensin-(1-7) [Ang-(1-7)] is an alternative product of the brain renin-angiotensin system that exhibits central actions to lower blood pressure and improve baroreflex sensitivity. We previously identified a peptidase that metabolizes Ang-(1-7) to the inactive metabolite product Ang-(1-4) in CSF of adult sheep. This study purified the peptidase 1445-fold from sheep brain medulla and characterized this activity. The peptidase was sensitive to the chelating agents o-phenanthroline and EDTA, as well as the mercury compound p-chloromercuribenzoic acid (PCMB). Selective inhibitors to angiotensin-converting enzyme, neprilysin, neurolysin, and thimet oligopeptidase did not attenuate activity; however, the metallopeptidase agent JMV-390 was a potent inhibitor of Ang-(1-7) hydrolysis (Ki = 0.8 nM). Kinetic studies using (125) I-labeled Ang-(1-7), Ang II, and Ang I revealed comparable apparent Km values (2.6, 2.8, and 4.3 μM, respectively), but a higher apparent Vmax for Ang-(1-7) (72 vs. 30 and 6 nmol/min/mg, respectively; p < 0.01). HPLC analysis of the activity confirmed the processing of unlabeled Ang-(1-7) to Ang-(1-4) by the peptidase, but revealed < 5% hydrolysis of Ang II or Ang I, and no hydrolysis of neurotensin, bradykinin or apelin-13. The unique characteristics of the purified neuropeptidase may portend a novel pathway to influence actions of Ang-(1-7) within the brain. Angiotensin-(1-7) actions are mediated by the AT7 /Mas receptor and include reduced blood pressure, decreased oxidative stress, enhanced baroreflex sensitivity, and increased nitric oxide (NO). Ang-(1-7) is directly formed from Ang I by neprilysin (NEP). We identify a new pathway for Ang-(1-7) metabolism in the brain distinct from angiotensin-converting enzyme-dependent hydrolysis. The Ang-(1-7) endopeptidase (A7-EP) degrades the peptide to Ang-(1-4) and may influence central Ang-(1-7) tone.
Collapse
Affiliation(s)
- Allyson C Marshall
- Hypertension and Vascular Research Center, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| | | | | | | | | |
Collapse
|
38
|
Mori J, Patel VB, Ramprasath T, Alrob OA, DesAulniers J, Scholey JW, Lopaschuk GD, Oudit GY. Angiotensin 1–7 mediates renoprotection against diabetic nephropathy by reducing oxidative stress, inflammation, and lipotoxicity. Am J Physiol Renal Physiol 2014; 306:F812-21. [DOI: 10.1152/ajprenal.00655.2013] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The renin-angiotensin system, especially angiotensin II (ANG II), plays a key role in the development and progression of diabetic nephropathy. ANG 1–7 has counteracting effects on ANG II and is known to exert beneficial effects on diabetic nephropathy. We studied the mechanism of ANG 1–7-induced beneficial effects on diabetic nephropathy in db/db mice. We administered ANG 1–7 (0.5 mg·kg−1·day−1) or saline to 5-mo-old db/db mice for 28 days via implanted micro-osmotic pumps. ANG 1–7 treatment reduced kidney weight and ameliorated mesangial expansion and increased urinary albumin excretion, characteristic features of diabetic nephropathy, in db/db mice. ANG 1–7 decreased renal fibrosis in db/db mice, which correlated with dephosphorylation of the signal transducer and activator of transcription 3 (STAT3) pathway. ANG 1–7 treatment also suppressed the production of reactive oxygen species via attenuation of NADPH oxidase activity and reduced inflammation in perirenal adipose tissue. Furthermore, ANG 1–7 treatment decreased lipid accumulation in db/db kidneys, accompanied by increased expressions of renal adipose triglyceride lipase (ATGL). Alterations in ATGL expression correlated with increased SIRT1 expression and deacetylation of FOXO1. The upregulation of angiotensin-converting enzyme 2 levels in diabetic nephropathy was normalized by ANG 1–7. ANG 1–7 treatment exerts renoprotective effects on diabetic nephropathy, associated with reduction of oxidative stress, inflammation, fibrosis, and lipotoxicity. ANG 1–7 can represent a promising therapy for diabetic nephropathy.
Collapse
Affiliation(s)
- Jun Mori
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; and
| | - Vaibhav B. Patel
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; and
| | - Tharmarajan Ramprasath
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; and
| | - Osama Abo Alrob
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jessica DesAulniers
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; and
| | - James W. Scholey
- Division of Nephrology, Department of Medicine, University of Toronto, Ontario, Canada
| | - Gary D. Lopaschuk
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Gavin Y. Oudit
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; and
| |
Collapse
|
39
|
Alghamri MS, Morris M, Meszaros JG, Elased KM, Grobe N. Novel role of aminopeptidase-A in angiotensin-(1-7) metabolism post myocardial infarction. Am J Physiol Heart Circ Physiol 2014; 306:H1032-40. [PMID: 24464749 DOI: 10.1152/ajpheart.00911.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aminopeptidase-A (APA) is a less well-studied enzyme of the renin-angiotensin system. We propose that it is involved in cardiac angiotensin (ANG) metabolism and its pathologies. ANG-(1-7) can ameliorate remodeling after myocardial injury. The aims of this study are to (1) develop mass spectrometric (MS) approaches for the assessment of ANG processing by APA within the myocardium; and (2) investigate the role of APA in cardiac ANG-(1-7) metabolism after myocardial infarction (MI) using sensitive MS techniques. MI was induced in C57Bl/6 male mice by ligating the left anterior descending (LAD) artery. Frozen mouse heart sections (in situ assay) or myocardial homogenates (in vitro assay) were incubated with the endogenous APA substrate, ANG II. Results showed concentration- and time-dependent cardiac formation of ANG III from ANG II, which was inhibited by the specific APA inhibitor, 4-amino-4-phosphonobutyric acid. Myocardial APA activity was significantly increased 24 h after LAD ligation (0.82 ± 0.02 vs. 0.32 ± 0.02 ρmol·min(-1)·μg(-1), MI vs. sham, P < 0.01). Both MS enzyme assays identified the presence of a new peptide, ANG-(2-7), m/z 784, which accumulated in the MI (146.45 ± 6.4 vs. 72.96 ± 7.0%, MI vs. sham, P < 0.05). Use of recombinant APA enzyme revealed that APA is responsible for ANG-(2-7) formation from ANG-(1-7). APA exhibited similar substrate affinity for ANG-(1-7) compared with ANG II {Km (ANG II) = 14.67 ± 1.6 vs. Km [ANG-(1-7)] = 6.07 ± 1.12 μmol/l, P < 0.05}. Results demonstrate a novel role of APA in ANG-(1-7) metabolism and suggest that the upregulation of APA, which occurs after MI, may deprive the heart of cardioprotective ANG-(1-7). Thus APA may serve as a potentially novel therapeutic target for management of tissue remodeling after MI.
Collapse
Affiliation(s)
- Mahmoud S Alghamri
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio
| | | | | | | | | |
Collapse
|
40
|
Knepper MA. Proteomic pearl diving versus systems biology in cell physiology. Focus on "proteomic mapping of proteins released during necrosis and apoptosis from cultured neonatal cardiac myocytes". Am J Physiol Cell Physiol 2014; 306:C634-5. [PMID: 24429064 DOI: 10.1152/ajpcell.00010.2014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Mark A Knepper
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
41
|
Chappell MC, Marshall AC, Alzayadneh EM, Shaltout HA, Diz DI. Update on the Angiotensin converting enzyme 2-Angiotensin (1-7)-MAS receptor axis: fetal programing, sex differences, and intracellular pathways. Front Endocrinol (Lausanne) 2014; 4:201. [PMID: 24409169 PMCID: PMC3886117 DOI: 10.3389/fendo.2013.00201] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 12/18/2013] [Indexed: 12/12/2022] Open
Abstract
The renin-angiotensin-system (RAS) constitutes an important hormonal system in the physiological regulation of blood pressure. Indeed, dysregulation of the RAS may lead to the development of cardiovascular pathologies including kidney injury. Moreover, the blockade of this system by the inhibition of angiotensin converting enzyme (ACE) or antagonism of the angiotensin type 1 receptor (AT1R) constitutes an effective therapeutic regimen. It is now apparent with the identification of multiple components of the RAS that the system is comprised of different angiotensin peptides with diverse biological actions mediated by distinct receptor subtypes. The classic RAS can be defined as the ACE-Ang II-AT1R axis that promotes vasoconstriction, sodium retention, and other mechanisms to maintain blood pressure, as well as increased oxidative stress, fibrosis, cellular growth, and inflammation in pathological conditions. In contrast, the non-classical RAS composed of the ACE2-Ang-(1-7)-Mas receptor axis generally opposes the actions of a stimulated Ang II-AT1R axis through an increase in nitric oxide and prostaglandins and mediates vasodilation, natriuresis, diuresis, and oxidative stress. Thus, a reduced tone of the Ang-(1-7) system may contribute to these pathologies as well. Moreover, the non-classical RAS components may contribute to the effects of therapeutic blockade of the classical system to reduce blood pressure and attenuate various indices of renal injury. The review considers recent studies on the ACE2-Ang-(1-7)-Mas receptor axis regarding the precursor for Ang-(1-7), the intracellular expression and sex differences of this system, as well as an emerging role of the Ang1-(1-7) pathway in fetal programing events and cardiovascular dysfunction.
Collapse
Affiliation(s)
- Mark C. Chappell
- The Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Allyson C. Marshall
- The Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Ebaa M. Alzayadneh
- The Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Hossam A. Shaltout
- The Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Obstetrics and Gynecology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Pharmacology and Toxicology, School of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Debra I. Diz
- The Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- *Correspondence: Debra I. Diz, The Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157-1032, USA e-mail:
| |
Collapse
|
42
|
Fu Z, Wang M, Everett A, Lakatta E, Van Eyk J. Can proteomics yield insight into aging aorta? Proteomics Clin Appl 2013; 7:477-89. [PMID: 23788441 DOI: 10.1002/prca.201200138] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 06/13/2013] [Accepted: 06/14/2013] [Indexed: 12/16/2022]
Abstract
The aging aorta exhibits structural and physiological changes that are reflected in the proteome of its component cells types. The advance in proteomic technologies has made it possible to analyze the quantity of proteins associated with the natural history of aortic aging. These alterations reflect the molecular and cellular mechanisms of aging and could provide an opportunity to predict vascular health. This paper focuses on whether discoveries stemming from the application of proteomic approaches of the intact aging aorta or vascular smooth muscle cells can provide useful insights. Although there have been limited studies to date, a number of interesting proteins have been identified that are closely associated with aging in the rat aorta. Such proteins, including milk fat globule-EGF factor 8, matrix metalloproteinase type-2, and vitronectin, could be used as indicators of vascular health, or even explored as therapeutic targets for aging-related vascular diseases.
Collapse
Affiliation(s)
- Zongming Fu
- Department of Pediatrics, The Johns Hopkins University, Baltimore, MD 21224, USA
| | | | | | | | | |
Collapse
|
43
|
Velez JCQ. Prolyl carboxypeptidase: a forgotten kidney angiotensinase. Focus on "Identification of prolyl carboxypeptidase as an alternative enzyme for processing of renal angiotensin II using mass spectrometry". Am J Physiol Cell Physiol 2013; 304:C939-40. [PMID: 23552286 DOI: 10.1152/ajpcell.00081.2013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|