1
|
Anees P, Saminathan A, Rozmus ER, Di A, Malik AB, Delisle BP, Krishnan Y. Detecting organelle-specific activity of potassium channels with a DNA nanodevice. Nat Biotechnol 2024; 42:1065-1074. [PMID: 37735264 PMCID: PMC11021130 DOI: 10.1038/s41587-023-01928-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 07/31/2023] [Indexed: 09/23/2023]
Abstract
Cell surface potassium ion (K+) channels regulate nutrient transport, cell migration and intercellular communication by controlling K+ permeability and are thought to be active only at the plasma membrane. Although these channels transit the trans-Golgi network, early and recycling endosomes, whether they are active in these organelles is unknown. Here we describe a pH-correctable, ratiometric reporter for K+ called pHlicKer, use it to probe the compartment-specific activity of a prototypical voltage-gated K+ channel, Kv11.1, and show that this cell surface channel is active in organelles. Lumenal K+ in organelles increased in cells expressing wild-type Kv11.1 channels but not after treatment with current blockers. Mutant Kv11.1 channels, with impaired transport function, failed to increase K+ levels in recycling endosomes, an effect rescued by pharmacological correction. By providing a way to map the organelle-specific activity of K+ channels, pHlicKer technology could help identify new organellar K+ channels or channel modulators with nuanced functions.
Collapse
Affiliation(s)
- Palapuravan Anees
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Grossman Center for Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, USA
- Institute of Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Anand Saminathan
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Grossman Center for Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, USA
| | - Ezekiel R Rozmus
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Anke Di
- Department of Pharmacology and Regenerative Medicine, The University of Illinois College of Medicine, Chicago, IL, USA
| | - Asrar B Malik
- Department of Pharmacology and Regenerative Medicine, The University of Illinois College of Medicine, Chicago, IL, USA
| | - Brian P Delisle
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA.
| | - Yamuna Krishnan
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.
- Grossman Center for Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, USA.
- Institute of Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
2
|
Egly CL, Barny LA, Do T, McDonald EF, Knollmann BC, Plate L. The proteostasis interactomes of trafficking-deficient variants of the voltage-gated potassium channel K V11.1 associated with long QT syndrome. J Biol Chem 2024; 300:107465. [PMID: 38876300 PMCID: PMC11284683 DOI: 10.1016/j.jbc.2024.107465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/16/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024] Open
Abstract
The voltage-gated potassium ion channel KV11.1 plays a critical role in cardiac repolarization. Genetic variants that render Kv11.1 dysfunctional cause long QT syndrome (LQTS), which is associated with fatal arrhythmias. Approximately 90% of LQTS-associated variants cause intracellular protein transport (trafficking) dysfunction, which pharmacological chaperones like E-4031 can rescue. Protein folding and trafficking decisions are regulated by chaperones, protein quality control factors, and trafficking machinery comprising the cellular proteostasis network. Here, we test whether trafficking dysfunction is associated with alterations in the proteostasis network of pathogenic Kv11.1 variants and whether pharmacological chaperones can normalize the proteostasis network of responsive variants. We used affinity-purification coupled with tandem mass tag-based quantitative mass spectrometry to assess protein interaction changes of WT KV11.1 or trafficking-deficient channel variants in the presence or absence of E-4031. We identified 572 core KV11.1 protein interactors. Trafficking-deficient variants KV11.1-G601S and KV11.1-G601S-G965∗ had significantly increased interactions with proteins responsible for folding, trafficking, and degradation compared to WT. We confirmed previous findings that the proteasome is critical for KV11.1 degradation. Our report provides the first comprehensive characterization of protein quality control mechanisms of KV11.1. We find extensive interactome remodeling associated with trafficking-deficient KV11.1 variants and with pharmacological chaperone rescue of KV11.1 cell surface expression. The identified protein interactions could be targeted therapeutically to improve KV11.1 trafficking and treat LQTS.
Collapse
Affiliation(s)
- Christian L Egly
- Department of Medicine, Vanderbilt University Medical Center, Nasville, Tennessee, USA
| | - Lea A Barny
- Program in Chemical and Physical Biology, Vanderbilt University, Nashville, Tennessee, USA; Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Tri Do
- Department of Medicine, Vanderbilt University Medical Center, Nasville, Tennessee, USA
| | - Eli F McDonald
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Björn C Knollmann
- Department of Medicine, Vanderbilt University Medical Center, Nasville, Tennessee, USA.
| | - Lars Plate
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA; Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| |
Collapse
|
3
|
Nasilli G, Verkerk AO, O’Reilly M, Yiangou L, Davis RP, Casini S, Remme CA. Chronic Mexiletine Administration Increases Sodium Current in Non-Diseased Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Biomedicines 2024; 12:1212. [PMID: 38927420 PMCID: PMC11200762 DOI: 10.3390/biomedicines12061212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
A sodium current (INa) reduction occurs in the setting of many acquired and inherited conditions and is associated with cardiac conduction slowing and increased arrhythmia risks. The sodium channel blocker mexiletine has been shown to restore the trafficking of mutant sodium channels to the membrane. However, these studies were mostly performed in heterologous expression systems using high mexiletine concentrations. Moreover, the chronic effects on INa in a non-diseased cardiomyocyte environment remain unknown. In this paper, we investigated the chronic and acute effects of a therapeutic dose of mexiletine on INa and the action potential (AP) characteristics in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) of a healthy individual. Control hiPSC-CMs were incubated for 48 h with 10 µM mexiletine or vehicle. Following the wash-out of mexiletine, patch clamp analysis and immunocytochemistry experiments were performed. The incubation of hiPSC-CMs for 48 h with mexiletine (followed by wash-out) induced a significant increase in peak INa of ~75%, without any significant change in the voltage dependence of (in)activation. This was accompanied by a significant increase in AP upstroke velocity, without changes in other AP parameters. The immunocytochemistry experiments showed a significant increase in membrane Nav1.5 fluorescence following a 48 h incubation with mexiletine. The acute re-exposure of hiPSC-CMs to 10 µM mexiletine resulted in a small but significant increase in AP duration, without changes in AP upstroke velocity, peak INa density, or the INa voltage dependence of (in)activation. Importantly, the increase in the peak INa density and resulting AP upstroke velocity induced by chronic mexiletine incubation was not counteracted by the acute re-administration of the drug. In conclusion, the chronic administration of a clinically relevant concentration of mexiletine increases INa density in non-diseased hiPSC-CMs, likely by enhancing the membrane trafficking of sodium channels. Our findings identify mexiletine as a potential therapeutic strategy to enhance and/or restore INa and cardiac conduction.
Collapse
Affiliation(s)
- Giovanna Nasilli
- Department of Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, Heart Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (A.O.V.)
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, 1105 AZ Amsterdam, The Netherlands
| | - Arie O. Verkerk
- Department of Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, Heart Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (A.O.V.)
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, 1105 AZ Amsterdam, The Netherlands
- Department of Medical Biology, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Molly O’Reilly
- Department of Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, Heart Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (A.O.V.)
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, 1105 AZ Amsterdam, The Netherlands
| | - Loukia Yiangou
- Department of Anatomy and Embryology, Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, The Netherlands
| | - Richard P. Davis
- Department of Anatomy and Embryology, Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, The Netherlands
| | - Simona Casini
- Department of Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, Heart Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (A.O.V.)
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, 1105 AZ Amsterdam, The Netherlands
| | - Carol Ann Remme
- Department of Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, Heart Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (A.O.V.)
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
4
|
Egly CL, Barny L, Do T, McDonald EF, Plate L, Knollmann BC. The proteostasis interactomes of trafficking-deficient K V 11.1 variants associated with Long QT Syndrome and pharmacological chaperone rescue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.574410. [PMID: 38352392 PMCID: PMC10862811 DOI: 10.1101/2024.01.31.574410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Introduction The voltage gated potassium ion channel K V 11.1 plays a critical role in cardiac repolarization. Genetic variants that render Kv11.1 dysfunctional cause Long QT Syndrome (LQTS), which is associated with fatal arrhythmias. Approximately 90% of LQTS-associated variants cause intracellular protein transport (trafficking) dysfunction, which can be rescued by pharmacological chaperones like E-4031. Protein folding and trafficking decisions are regulated by chaperones, protein quality control factors, and trafficking machinery, comprising the cellular proteostasis network. Here, we test whether trafficking dysfunction is associated with alterations in the proteostasis network of pathogenic Kv11.1 variants, and whether pharmacological chaperones can normalize the proteostasis network of responsive variants. Methods We used affinity-purification coupled with tandem mass tag-based quantitative mass spectrometry to assess protein interaction changes in human embryonic kidney (HEK293) cells expressing wild-type (WT) K V 11.1 or trafficking-deficient channel variants in the presence or absence of E-4031. Resultsa We identified 573 core K V 11.1 protein interactors. Both variants K V 11.1-G601S and K V 11.1-G601S-G965* had significantly increased interactions with proteins responsible for folding, trafficking, and degradation compared to WT. We found that proteasomal degradation is a key component for K V 11.1 degradation and that the K V 11.1-G601S-G965* variant was more responsive to E-4031 treatment. This suggests a role in the C-terminal domain and the ER retention motif of K V 11.1 in regulating trafficking. Conclusion Our report characterizes the proteostasis network of K V 11.1, two trafficking deficient K V 11.1 variants, and variants treated with a pharmacological chaperone. The identified protein interactions could be targeted therapeutically to improve K V 11.1 trafficking and treat Long QT Syndrome.
Collapse
|
5
|
Campagna N, Wall E, Lee K, Guo J, Li W, Yang T, Baranchuk A, El-Diasty M, Zhang S. Differential Effects of Remdesivir and Lumacaftor on Homomeric and Heteromeric hERG Channels. Mol Pharmacol 2023; 104:164-173. [PMID: 37419691 DOI: 10.1124/molpharm.123.000708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 07/09/2023] Open
Abstract
The human ether-a-go-go-related gene (hERG) encodes for the pore-forming subunit of the channel that conducts the rapidly activating delayed K+ current (IKr) in the heart. The hERG channel is important for cardiac repolarization, and reduction of its expression in the plasma membrane due to mutations causes long QT syndrome type 2 (LQT2). As such, promoting hERG membrane expression is a strategy to rescue mutant channel function. In the present study, we applied patch clamp, western blots, immunocytochemistry, and quantitative reverse transcription polymerase chain reaction techniques to investigate the rescue effects of two drugs, remdesivir and lumacaftor, on trafficking-defective mutant hERG channels. As our group has recently reported that the antiviral drug remdesivir increases wild-type (WT) hERG current and surface expression, we studied the effects of remdesivir on trafficking-defective LQT2-causing hERG mutants G601S and R582C expressed in HEK293 cells. We also investigated the effects of lumacaftor, a drug used to treat cystic fibrosis, that promotes CFTR protein trafficking and has been shown to rescue membrane expression of some hERG mutations. Our results show that neither remdesivir nor lumacaftor rescued the current or cell-surface expression of homomeric mutants G601S and R582C. However, remdesivir decreased while lumacaftor increased the current and cell-surface expression of heteromeric channels formed by WT hERG and mutant G601S or R582C hERG. We concluded that drugs can differentially affect homomeric WT and heteromeric WT+G601S (or WT+R582C) hERG channels. These findings extend our understanding of drug-channel interaction and may have clinical implications for patients with hERG mutations. SIGNIFICANCE STATEMENT: Various naturally occurring mutations in a cardiac potassium channel called hERG can impair channel function by decreasing cell-surface channel expression, resulting in cardiac electrical disturbances and even sudden cardiac death. Promotion of cell-surface expression of mutant hERG channels represents a strategy to rescue channel function. This work demonstrates that drugs such as remdesivir and lumacaftor can differently affect homomeric and heteromeric mutant hERG channels, which have biological and clinical implications.
Collapse
Affiliation(s)
- Noah Campagna
- Department of Biomedical and Molecular Sciences (N.C., E.W., K.L., J.G., W.L., T.Y., S.Z.); Division of Cardiology, Department of Medicine (A.B.); and Division of Cardiac Surgery, Department of Surgery (M.E.-D.), Queen's University, Kingston, Ontario, Canada
| | - Erika Wall
- Department of Biomedical and Molecular Sciences (N.C., E.W., K.L., J.G., W.L., T.Y., S.Z.); Division of Cardiology, Department of Medicine (A.B.); and Division of Cardiac Surgery, Department of Surgery (M.E.-D.), Queen's University, Kingston, Ontario, Canada
| | - Kevin Lee
- Department of Biomedical and Molecular Sciences (N.C., E.W., K.L., J.G., W.L., T.Y., S.Z.); Division of Cardiology, Department of Medicine (A.B.); and Division of Cardiac Surgery, Department of Surgery (M.E.-D.), Queen's University, Kingston, Ontario, Canada
| | - Jun Guo
- Department of Biomedical and Molecular Sciences (N.C., E.W., K.L., J.G., W.L., T.Y., S.Z.); Division of Cardiology, Department of Medicine (A.B.); and Division of Cardiac Surgery, Department of Surgery (M.E.-D.), Queen's University, Kingston, Ontario, Canada
| | - Wentao Li
- Department of Biomedical and Molecular Sciences (N.C., E.W., K.L., J.G., W.L., T.Y., S.Z.); Division of Cardiology, Department of Medicine (A.B.); and Division of Cardiac Surgery, Department of Surgery (M.E.-D.), Queen's University, Kingston, Ontario, Canada
| | - Tonghua Yang
- Department of Biomedical and Molecular Sciences (N.C., E.W., K.L., J.G., W.L., T.Y., S.Z.); Division of Cardiology, Department of Medicine (A.B.); and Division of Cardiac Surgery, Department of Surgery (M.E.-D.), Queen's University, Kingston, Ontario, Canada
| | - Adrian Baranchuk
- Department of Biomedical and Molecular Sciences (N.C., E.W., K.L., J.G., W.L., T.Y., S.Z.); Division of Cardiology, Department of Medicine (A.B.); and Division of Cardiac Surgery, Department of Surgery (M.E.-D.), Queen's University, Kingston, Ontario, Canada
| | - Mohammad El-Diasty
- Department of Biomedical and Molecular Sciences (N.C., E.W., K.L., J.G., W.L., T.Y., S.Z.); Division of Cardiology, Department of Medicine (A.B.); and Division of Cardiac Surgery, Department of Surgery (M.E.-D.), Queen's University, Kingston, Ontario, Canada
| | - Shetuan Zhang
- Department of Biomedical and Molecular Sciences (N.C., E.W., K.L., J.G., W.L., T.Y., S.Z.); Division of Cardiology, Department of Medicine (A.B.); and Division of Cardiac Surgery, Department of Surgery (M.E.-D.), Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
6
|
Meier S, Grundland A, Dobrev D, Volders PG, Heijman J. In silico analysis of the dynamic regulation of cardiac electrophysiology by K v 11.1 ion-channel trafficking. J Physiol 2023; 601:2711-2731. [PMID: 36752166 PMCID: PMC10313819 DOI: 10.1113/jp283976] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
Cardiac electrophysiology is regulated by continuous trafficking and internalization of ion channels occurring over minutes to hours. Kv 11.1 (also known as hERG) underlies the rapidly activating delayed-rectifier K+ current (IKr ), which plays a major role in cardiac ventricular repolarization. Experimental characterization of the distinct temporal effects of genetic and acquired modulators on channel trafficking and gating is challenging. Computer models are instrumental in elucidating these effects, but no currently available model incorporates ion-channel trafficking. Here, we present a novel computational model that reproduces the experimentally observed production, forward trafficking, internalization, recycling and degradation of Kv 11.1 channels, as well as their modulation by temperature, pentamidine, dofetilide and extracellular K+ . The acute effects of these modulators on channel gating were also incorporated and integrated with the trafficking model in the O'Hara-Rudy human ventricular cardiomyocyte model. Supraphysiological dofetilide concentrations substantially increased Kv 11.1 membrane levels while also producing a significant channel block. However, clinically relevant concentrations did not affect trafficking. Similarly, severe hypokalaemia reduced Kv 11.1 membrane levels based on long-term culture data, but had limited effect based on short-term data. By contrast, clinically relevant elevations in temperature acutely increased IKr due to faster kinetics, while after 24 h, IKr was decreased due to reduced Kv 11.1 membrane levels. The opposite was true for lower temperatures. Taken together, our model reveals a complex temporal regulation of cardiac electrophysiology by temperature, hypokalaemia, and dofetilide through competing effects on channel gating and trafficking, and provides a framework for future studies assessing the role of impaired trafficking in cardiac arrhythmias. KEY POINTS: Kv 11.1 channels underlying the rapidly activating delayed-rectifier K+ current are important for ventricular repolarization and are continuously shuttled from the cytoplasm to the plasma membrane and back over minutes to hours. Kv 11.1 gating and trafficking are modulated by temperature, drugs and extracellular K+ concentration but experimental characterization of their combined effects is challenging. Computer models may facilitate these analyses, but no currently available model incorporates ion-channel trafficking. We introduce a new two-state ion-channel trafficking model able to reproduce a wide range of experimental data, along with the effects of modulators of Kv 11.1 channel functioning and trafficking. The model reveals complex dynamic regulation of ventricular repolarization by temperature, extracellular K+ concentration and dofetilide through opposing acute (millisecond) effects on Kv 11.1 gating and long-term (hours) modulation of Kv 11.1 trafficking. This in silico trafficking framework provides a tool to investigate the roles of acute and long-term processes on arrhythmia promotion and maintenance.
Collapse
Affiliation(s)
- Stefan Meier
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Faculty of Health, Medicine, and Life Sciences, Maastricht University and Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Adaïa Grundland
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Faculty of Health, Medicine, and Life Sciences, Maastricht University and Maastricht University Medical Center+, Maastricht, The Netherlands
- Department of Data Science and Knowledge Engineering, Faculty of Science and Engineering, Maastricht University, Maastricht, The Netherlands
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University of Duisburg-Essen, Essen, Germany
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Quebec, Canada
| | - Paul G.A. Volders
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Faculty of Health, Medicine, and Life Sciences, Maastricht University and Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Faculty of Health, Medicine, and Life Sciences, Maastricht University and Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
7
|
Guo R, Chen L, Zhu J, Li J, Ding Q, Chang K, Han Q, Li S. Monounsaturated fatty acid-enriched olive oil exacerbates chronic alcohol-induced hepatic steatosis and liver injury in C57BL/6J mice. Food Funct 2023; 14:1573-1583. [PMID: 36655918 DOI: 10.1039/d2fo03323b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Dietary oil composition determines the pathological processes of alcoholic fatty liver disease (AFLD). Oil rich in saturated fatty acids protects, whereas oil rich in polyunsaturated fatty acids aggravates the alcohol-induced liver injury. However, limited studies have been conducted to address how monounsaturated fatty acids (MUFAs) enriched oil controls the pathological development of AFLD. Therefore, this study was designed to evaluate the effect of MUFA-enriched extra virgin olive oil (OO) on AFLD. Twenty C57BL/6J mice were randomly allocated into four groups and fed modified Lieber-DeCarli liquid diets containing isocaloric maltose dextrin a non-alcohol or alcohol with corn oil and OO for four weeks. Dietary OO significantly exacerbated alcohol-induced liver dysfunction, evidenced by histological examinations and disturbed biochemical parameters. Dietary OO with alcohol decreased hormone-sensitive lipase (HSL), phosphorylated 5'-AMP-activated protein kinase (p-AMPK), and carnitine palmitoyltransferase-Iα (CPT1α) expression, and increased sterol regulatory element-binding protein-1c (SREBP-1c), diacylglycerol acyltransferase-2 (DGAT2), and very low-density lipoprotein receptor (VLDLR) expression in the liver. It also promoted the expression of hepatic interleukin-6 (IL-6) and hepatic tumour necrosis factor-alpha (TNF-α) at the transcriptional level. Additionally, adipose tissue lipolysis partially had an etiologic effect on alcohol-induced hepatic steatosis under OO pretreatment. In conclusion, MUFA-enriched OO exacerbated liver dysfunction in vivo. OO should be cautiously considered as a unique dietary oil source for individuals with AFLD.
Collapse
Affiliation(s)
- Rui Guo
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China. .,Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Lin Chen
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Jinyan Zhu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Jiaomei Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China. .,Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Qingchao Ding
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Kaixin Chang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Qiang Han
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China. .,Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Songtao Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China. .,Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| |
Collapse
|
8
|
Zhou Z, Li JV, Martinac B, Cox CD. Loss-of-Function Piezo1 Mutations Display Altered Stability Driven by Ubiquitination and Proteasomal Degradation. Front Pharmacol 2021; 12:766416. [PMID: 34867393 PMCID: PMC8640252 DOI: 10.3389/fphar.2021.766416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/03/2021] [Indexed: 01/02/2023] Open
Abstract
Missense mutations in the gene that encodes for the mechanically-gated ion channel Piezo1 have been linked to a number of diseases. Gain-of-function variants are linked to a hereditary anaemia and loss-of-function variants have been linked to generalized lymphatic dysplasia and bicuspid aortic valve. Two previously characterized mutations, S217L and G2029R, both exhibit reduced plasma membrane trafficking. Here we show that both mutations also display reduced stability and higher turnover rates than wild-type Piezo1 channels. This occurs through increased ubiquitination and subsequent proteasomal degradation. Congruent with this, proteasome inhibition using N-acetyl-l-leucyl-l-leucyl-l-norleucinal (ALLN) reduced the degradation of both mutant proteins. While ALLN treatment could not rescue the function of S217L we show via multiple complementary methodologies that proteasome inhibition via ALLN treatment can not only prevent G2029R turnover but increase the membrane localized pool of this variant and the functional Piezo1 mechanosensitive currents. This data in combination with a precision medicine approach provides a new potential therapeutic avenue for the treatment of Piezo1 mediated channelopathies.
Collapse
Affiliation(s)
- Zijing Zhou
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | - Jinyuan Vero Li
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | - Boris Martinac
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Charles D Cox
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
9
|
Li JV, Ng CA, Cheng D, Zhou Z, Yao M, Guo Y, Yu ZY, Ramaswamy Y, Ju LA, Kuchel PW, Feneley MP, Fatkin D, Cox CD. Modified N-linked glycosylation status predicts trafficking defective human Piezo1 channel mutations. Commun Biol 2021; 4:1038. [PMID: 34489534 PMCID: PMC8421374 DOI: 10.1038/s42003-021-02528-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 08/05/2021] [Indexed: 02/06/2023] Open
Abstract
Mechanosensitive channels are integral membrane proteins that sense mechanical stimuli. Like most plasma membrane ion channel proteins they must pass through biosynthetic quality control in the endoplasmic reticulum that results in them reaching their destination at the plasma membrane. Here we show that N-linked glycosylation of two highly conserved asparagine residues in the 'cap' region of mechanosensitive Piezo1 channels are necessary for the mature protein to reach the plasma membrane. Both mutation of these asparagines (N2294Q/N2331Q) and treatment with an enzyme that hydrolyses N-linked oligosaccharides (PNGaseF) eliminates the fully glycosylated mature Piezo1 protein. The N-glycans in the cap are a pre-requisite for N-glycosylation in the 'propeller' regions, which are present in loops that are essential for mechanotransduction. Importantly, trafficking-defective Piezo1 variants linked to generalized lymphatic dysplasia and bicuspid aortic valve display reduced fully N-glycosylated Piezo1 protein. Thus the N-linked glycosylation status in vitro correlates with efficient membrane trafficking and will aid in determining the functional impact of Piezo1 variants of unknown significance.
Collapse
Affiliation(s)
- Jinyuan Vero Li
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, Australia
| | - Chai-Ann Ng
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Delfine Cheng
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Zijing Zhou
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, Australia
| | - Mingxi Yao
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Yang Guo
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Ze-Yan Yu
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Yogambha Ramaswamy
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Camperdown, NSW, Australia
| | - Lining Arnold Ju
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Camperdown, NSW, Australia
| | - Philip W Kuchel
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Michael P Feneley
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
- Department of Cardiology, St Vincent's Hospital, Sydney, Australia
| | - Diane Fatkin
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Charles D Cox
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, Australia.
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia.
| |
Collapse
|
10
|
Ji M, Fang C, Jia W, Du H, Xu Y. Regulatory effect of volatile compounds in fermented alcoholic beverages on gut microbiota and serum metabolism in a mouse model. Food Funct 2021; 12:5576-5590. [PMID: 34008602 DOI: 10.1039/d0fo03028g] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ethanol (EtOH) is the main risk factor for alcoholic liver disease. However, fermented alcoholic beverages contain not only ethanol but also various volatile compounds. Currently, the effects of volatile compounds in ethanol-containing fermented beverages on gut microbiota and host metabolism are largely unclear. To fill this gap, we constructed an 8-week mice model using three types of Baijiu (a traditional fermented alcoholic beverage), sterile water and ethanol as controls. Results revealed that three types of Baijiu contain various volatiles, mainly belonging to esters, alcohols, and acids. All of Baijiu caused the lower levels of liver injury in mice than EtOH (at the same EtOH concentration) by phenotypic, biochemical and pathological analysis. We observed that Baijiu volatiles affect the gut microbiota structure and serum metabolomic patterns of mice. Compared with EtOH, Baijiu feeding profoundly increased the relative abundance of Lactobacillus (the highest relative abundance in the Baijiu-fed group was 11.16 ± 1.52%, and in the EtOH-fed group it was 1.80 ± 0.66%). Esters, acids and phenols in volatiles showed strong positive correlations (P < 0.01, R > 0.6) with Lactobacillus. Moreover, Baijiu feeding significantly (P < 0.05) enriched serum metabolites related to bioenergy (i.e., D-glucose, the highest fold change was 1.16) and anti-inflammatory activity (i.e., arachidonic acid, the highest fold change was 1.43) as compared to EtOH. Finally, the microbial and metabolic function analysis showed that volatiles will enhance the citrate cycle and biosynthesis of unsaturated fatty acid pathways. Overall, these data demonstrated the potential of volatile compounds for attenuating the progress of alcoholic liver disease by regulating the gut microbiota and host metabolism.
Collapse
Affiliation(s)
- Mei Ji
- Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | | | | | | | | |
Collapse
|
11
|
Long QT Syndrome Type 2: Emerging Strategies for Correcting Class 2 KCNH2 ( hERG) Mutations and Identifying New Patients. Biomolecules 2020. [PMID: 32759882 DOI: 10.3390/biom10081144s] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Significant advances in our understanding of the molecular mechanisms that cause congenital long QT syndrome (LQTS) have been made. A wide variety of experimental approaches, including heterologous expression of mutant ion channel proteins and the use of inducible pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) from LQTS patients offer insights into etiology and new therapeutic strategies. This review briefly discusses the major molecular mechanisms underlying LQTS type 2 (LQT2), which is caused by loss-of-function (LOF) mutations in the KCNH2 gene (also known as the human ether-à-go-go-related gene or hERG). Almost half of suspected LQT2-causing mutations are missense mutations, and functional studies suggest that about 90% of these mutations disrupt the intracellular transport, or trafficking, of the KCNH2-encoded Kv11.1 channel protein to the cell surface membrane. In this review, we discuss emerging strategies that improve the trafficking and functional expression of trafficking-deficient LQT2 Kv11.1 channel proteins to the cell surface membrane and how new insights into the structure of the Kv11.1 channel protein will lead to computational approaches that identify which KCNH2 missense variants confer a high-risk for LQT2.
Collapse
|
12
|
Ono M, Burgess DE, Schroder EA, Elayi CS, Anderson CL, January CT, Sun B, Immadisetty K, Kekenes-Huskey PM, Delisle BP. Long QT Syndrome Type 2: Emerging Strategies for Correcting Class 2 KCNH2 ( hERG) Mutations and Identifying New Patients. Biomolecules 2020; 10:E1144. [PMID: 32759882 PMCID: PMC7464307 DOI: 10.3390/biom10081144] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 12/15/2022] Open
Abstract
Significant advances in our understanding of the molecular mechanisms that cause congenital long QT syndrome (LQTS) have been made. A wide variety of experimental approaches, including heterologous expression of mutant ion channel proteins and the use of inducible pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) from LQTS patients offer insights into etiology and new therapeutic strategies. This review briefly discusses the major molecular mechanisms underlying LQTS type 2 (LQT2), which is caused by loss-of-function (LOF) mutations in the KCNH2 gene (also known as the human ether-à-go-go-related gene or hERG). Almost half of suspected LQT2-causing mutations are missense mutations, and functional studies suggest that about 90% of these mutations disrupt the intracellular transport, or trafficking, of the KCNH2-encoded Kv11.1 channel protein to the cell surface membrane. In this review, we discuss emerging strategies that improve the trafficking and functional expression of trafficking-deficient LQT2 Kv11.1 channel proteins to the cell surface membrane and how new insights into the structure of the Kv11.1 channel protein will lead to computational approaches that identify which KCNH2 missense variants confer a high-risk for LQT2.
Collapse
Affiliation(s)
- Makoto Ono
- Department of Physiology, Cardiovascular Research Center, Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA; (M.O.); (D.E.B.); (E.A.S.)
| | - Don E. Burgess
- Department of Physiology, Cardiovascular Research Center, Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA; (M.O.); (D.E.B.); (E.A.S.)
| | - Elizabeth A. Schroder
- Department of Physiology, Cardiovascular Research Center, Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA; (M.O.); (D.E.B.); (E.A.S.)
| | | | - Corey L. Anderson
- Cellular and Molecular Arrhythmia Research Program, University of Wisconsin, Madison, WI 53706, USA; (C.L.A.); (C.T.J.)
| | - Craig T. January
- Cellular and Molecular Arrhythmia Research Program, University of Wisconsin, Madison, WI 53706, USA; (C.L.A.); (C.T.J.)
| | - Bin Sun
- Department of Cellular & Molecular Physiology, Loyola University Chicago, Chicago, IL 60153, USA; (B.S.); (K.I.); (P.M.K.-H.)
| | - Kalyan Immadisetty
- Department of Cellular & Molecular Physiology, Loyola University Chicago, Chicago, IL 60153, USA; (B.S.); (K.I.); (P.M.K.-H.)
| | - Peter M. Kekenes-Huskey
- Department of Cellular & Molecular Physiology, Loyola University Chicago, Chicago, IL 60153, USA; (B.S.); (K.I.); (P.M.K.-H.)
| | - Brian P. Delisle
- Department of Physiology, Cardiovascular Research Center, Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA; (M.O.); (D.E.B.); (E.A.S.)
| |
Collapse
|
13
|
Juarez-Navarro K, Ayala-Garcia VM, Ruiz-Baca E, Meneses-Morales I, Rios-Banuelos JL, Lopez-Rodriguez A. Assistance for Folding of Disease-Causing Plasma Membrane Proteins. Biomolecules 2020; 10:biom10050728. [PMID: 32392767 PMCID: PMC7277483 DOI: 10.3390/biom10050728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
An extensive catalog of plasma membrane (PM) protein mutations related to phenotypic diseases is associated with incorrect protein folding and/or localization. These impairments, in addition to dysfunction, frequently promote protein aggregation, which can be detrimental to cells. Here, we review PM protein processing, from protein synthesis in the endoplasmic reticulum to delivery to the PM, stressing the main repercussions of processing failures and their physiological consequences in pathologies, and we summarize the recent proposed therapeutic strategies to rescue misassembled proteins through different types of chaperones and/or small molecule drugs that safeguard protein quality control and regulate proteostasis.
Collapse
|
14
|
Marinko J, Huang H, Penn WD, Capra JA, Schlebach JP, Sanders CR. Folding and Misfolding of Human Membrane Proteins in Health and Disease: From Single Molecules to Cellular Proteostasis. Chem Rev 2019; 119:5537-5606. [PMID: 30608666 PMCID: PMC6506414 DOI: 10.1021/acs.chemrev.8b00532] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Indexed: 12/13/2022]
Abstract
Advances over the past 25 years have revealed much about how the structural properties of membranes and associated proteins are linked to the thermodynamics and kinetics of membrane protein (MP) folding. At the same time biochemical progress has outlined how cellular proteostasis networks mediate MP folding and manage misfolding in the cell. When combined with results from genomic sequencing, these studies have established paradigms for how MP folding and misfolding are linked to the molecular etiologies of a variety of diseases. This emerging framework has paved the way for the development of a new class of small molecule "pharmacological chaperones" that bind to and stabilize misfolded MP variants, some of which are now in clinical use. In this review, we comprehensively outline current perspectives on the folding and misfolding of integral MPs as well as the mechanisms of cellular MP quality control. Based on these perspectives, we highlight new opportunities for innovations that bridge our molecular understanding of the energetics of MP folding with the nuanced complexity of biological systems. Given the many linkages between MP misfolding and human disease, we also examine some of the exciting opportunities to leverage these advances to address emerging challenges in the development of therapeutics and precision medicine.
Collapse
Affiliation(s)
- Justin
T. Marinko
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Hui Huang
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Wesley D. Penn
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - John A. Capra
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
- Department
of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37245, United States
| | - Jonathan P. Schlebach
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Charles R. Sanders
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
| |
Collapse
|
15
|
McDonald SK, Levitz TS, Valiyaveetil FI. A Shared Mechanism for the Folding of Voltage-Gated K + Channels. Biochemistry 2019; 58:1660-1671. [PMID: 30793887 DOI: 10.1021/acs.biochem.9b00068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this study, we probe the folding of KvAP, a voltage-gated K+ (Kv) channel. The KvAP channel, though of archaebacterial origin, is structurally and functionally similar to eukaryotic Kv channels. An advantage of the KvAP channel is that it can be folded in vitro from an extensively unfolded state and the folding can be controlled by temperature. We utilize these properties of the KvAP channel to separately study the membrane insertion and the tetramerization stages during folding. We use two quantitative assays: a Cys PEGylation assay to monitor membrane insertion and a cross-linking assay to monitor tetramerization. We show that during folding the KvAP polypeptide is rapidly inserted into the lipid bilayer with a "native-like" topology. We identify a segment at the C-terminus that is important for multimerization of the KvAP channel. We show that this C-terminal domain forms a dimer, which raises the possibility that the tetramerization of the KvAP channel proceeds through a dimer of dimers pathway. Our studies show that the in vitro folding of the KvAP channel mirrors aspects of the cellular assembly pathway for voltage-gated K+ channels and therefore suggest that evolutionarily distinct Kv channels share a common folding pathway. The pathway for the folding and assembly of a Kv channel is of central importance as defects in this pathway have been implicated in the etiology of several disease states. Our studies indicate that the KvAP channel provides an experimentally tractable system for elucidating the folding mechanism of Kv channels.
Collapse
Affiliation(s)
- Sarah K McDonald
- Program in Chemical Biology, Department of Physiology and Pharmacology , Oregon Health & Science University , 3181 Southwest Sam Jackson Park Road , Portland , Oregon 97239 , United States
| | - Talya S Levitz
- Program in Chemical Biology, Department of Physiology and Pharmacology , Oregon Health & Science University , 3181 Southwest Sam Jackson Park Road , Portland , Oregon 97239 , United States
| | - Francis I Valiyaveetil
- Program in Chemical Biology, Department of Physiology and Pharmacology , Oregon Health & Science University , 3181 Southwest Sam Jackson Park Road , Portland , Oregon 97239 , United States
| |
Collapse
|
16
|
Bertalovitz AC, Badhey MLO, McDonald TV. Synonymous nucleotide modification of the KCNH2 gene affects both mRNA characteristics and translation of the encoded hERG ion channel. J Biol Chem 2018; 293:12120-12136. [PMID: 29907571 PMCID: PMC6078446 DOI: 10.1074/jbc.ra118.001805] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/06/2018] [Indexed: 11/06/2022] Open
Abstract
Synonymous nucleotide variation is increasingly recognized as a factor than can affect protein expression, but the underlying mechanisms are incompletely understood. Here, we investigated whether synonymous changes could affect expression of the potassium voltage-gated channel subfamily H member 2 (KCNH2) gene, encoding the human ether-a-go-go-related gene (hERG) ion channel, which is linked to hereditary cardiac arrhythmia. We examined a previously described synthetic version (hERG-codon modified (CM)) with synonymous substitutions designed to reduce GC content, rare codons, and mRNA secondary structure relative to the native construct (hERG-NT). hERG-CM exhibited lower protein expression than hERG-NT in HEK293T cells. We found that the steady-state abundance of hERG-NT mRNA was greater than hERG-CM because of an enhanced transcription rate and increased mRNA stability for hERG-NT. Translation of hERG-CM was independently reduced, contributing to the overall greater synthesis of hERG-NT channel protein. This was partially offset, however, by a higher aggregation of a newly synthesized hERG-NT channel, resulting in nonfunctional protein. Regional mRNA analyses of chimeras of hERG-NT and hERG-CM revealed that synonymous changes in the 5' segments of the coding region had the greatest influence on hERG synthesis at both the mRNA and protein levels. Taken together, these results indicate that synonymous nucleotide variations within the coding region, particularly in the 5' region of the hERG mRNA, can affect both transcription and translation. These findings support the notion that greater attention should be given to the effects of synonymous genetic variation when analyzing hERG DNA sequences in the study of hereditary cardiac disease.
Collapse
Affiliation(s)
- Alexander C Bertalovitz
- Department of Molecular Pharmacology, Department of Medicine, Division of Cardiology, Albert Einstein College of Medicine, Bronx, New York 10461; Department of Cardiovascular Sciences, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612
| | - Marika L Osterbur Badhey
- Department of Molecular Pharmacology, Department of Medicine, Division of Cardiology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Thomas V McDonald
- Department of Molecular Pharmacology, Department of Medicine, Division of Cardiology, Albert Einstein College of Medicine, Bronx, New York 10461; Department of Cardiovascular Sciences, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612.
| |
Collapse
|
17
|
Hou ZS, Ulloa-Aguirre A, Tao YX. Pharmacoperone drugs: targeting misfolded proteins causing lysosomal storage-, ion channels-, and G protein-coupled receptors-associated conformational disorders. Expert Rev Clin Pharmacol 2018; 11:611-624. [DOI: 10.1080/17512433.2018.1480367] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Zhi-Shuai Hou
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación (RAI), Universidad Nacional Autónoma de México (UNAM) and Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City, Mexico
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
18
|
Yan M, Feng L, Shi Y, Wang J, Liu Y, Li F, Li B. Mechanism of As2O3-Induced Action Potential Prolongation and Using hiPS-CMs to Evaluate the Rescue Efficacy of Drugs With Different Rescue Mechanism. Toxicol Sci 2018; 158:379-390. [PMID: 28521025 DOI: 10.1093/toxsci/kfx098] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Arsenic trioxide (As2O3) has been verified as a breakthrough in the management of acute promyelocytic leukemia in recent decades. However, cardiotoxicity, especially long QT syndrome (LQTS) has become the most important issue during As2O3 treatment. The characterized mechanisms behind this adverse effect are inhibition of cardiac hERG channel trafficking and increase of cardiac calcium currents. In our study, we found a new pathway underlying As2O3-induced cardiotoxicity that As2O3 accelerates lysosomal degradation of hERG on plasma membrane after using brefeldin A (BFA) to block protein trafficking. Then we explored pharmacological rescue strategies on As2O3-induced LQTS, and found that 4 therapeutic agents exert rescue efficacy via 3 different pathways: fexofenadine and astemizole facilitate hERG trafficking via promotion of channel-chaperone formation after As2O3 incubation; ranolazine slows hERG degradation in the presence of As2O3; and resveratrol shows significant attenuation on calcium current increase triggered by As2O3. Moreover, we used human-induced pluripotent stem cell derived cardiomyocytes (hiPS-CMs) to evaluate the rescue effects of the above agents on As2O3-induced prolongation of action potential duration (APD) and demonstrated that fexofenadine and resveratrol significantly ameliorate the prolonged APD. These observations suggested that pharmacological chaperone like fexofenadine and resveratrol might have the potential to protect against the cardiotoxicity of As2O3.
Collapse
Affiliation(s)
- Meng Yan
- Department of Pharmacology Harbin Medical University, Nangang District, Harbin, Heilongjiang Province 150086, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Nangang District, Harbin, Heilongjiang Province 150081, China
| | - Lifang Feng
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Nangang District, Harbin, Heilongjiang Province 150081, China
| | - Yanhui Shi
- Department of Pharmacology Harbin Medical University, Nangang District, Harbin, Heilongjiang Province 150086, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Nangang District, Harbin, Heilongjiang Province 150081, China
| | - Junnan Wang
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Nangang District, Harbin, Heilongjiang Province 150081, China
| | - Yan Liu
- Department of Pharmacology Harbin Medical University, Nangang District, Harbin, Heilongjiang Province 150086, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Nangang District, Harbin, Heilongjiang Province 150081, China
| | - Fengmei Li
- Department of Pharmacology Harbin Medical University, Nangang District, Harbin, Heilongjiang Province 150086, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Nangang District, Harbin, Heilongjiang Province 150081, China
| | - Baoxin Li
- Department of Pharmacology Harbin Medical University, Nangang District, Harbin, Heilongjiang Province 150086, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Nangang District, Harbin, Heilongjiang Province 150081, China
| |
Collapse
|
19
|
Hall AR, Anderson CL, Smith JL, Mirshahi T, Elayi CS, January CT, Delisle BP. Visualizing Mutation-Specific Differences in the Trafficking-Deficient Phenotype of Kv11.1 Proteins Linked to Long QT Syndrome Type 2. Front Physiol 2018; 9:584. [PMID: 29875689 PMCID: PMC5974211 DOI: 10.3389/fphys.2018.00584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/02/2018] [Indexed: 02/05/2023] Open
Abstract
KCNH2 encodes the Kv11.1 α-subunit that underlies the rapidly activating delayed-rectifier K+ current in the heart. Loss-of-function KCNH2 mutations cause long QT syndrome type 2 (LQT2), and most LQT2-linked missense mutations inhibit the trafficking of Kv11.1 channel protein to the cell surface membrane. Several trafficking-deficient LQT2 mutations (e.g., G601S) generate Kv11.1 proteins that are sequestered in a microtubule-dependent quality control (QC) compartment in the transitional endoplasmic reticulum (ER). We tested the hypothesis that the QC mechanisms that regulate LQT2-linked Kv11.1 protein trafficking are mutation-specific. Confocal imaging analyses of HEK293 cells stably expressing the trafficking-deficient LQT2 mutation F805C showed that, unlike G601S-Kv11.1 protein, F805C-Kv11.1 protein was concentrated in several transitional ER subcompartments. The microtubule depolymerizing drug nocodazole differentially affected G601S- and F805C-Kv11.1 protein immunostaining. Nocodazole caused G601S-Kv11.1 protein to distribute into peripheral reticular structures, and it increased the diffuse immunostaining of F805C-Kv11.1 protein around the transitional ER subcompartments. Proteasome inhibition also affected the immunostaining of G601S- and F805C-Kv11.1 protein differently. Incubating cells in MG132 minimally impacted G601S-Kv11.1 immunostaining, but it dramatically increased the diffuse immunostaining of F805C-Kv11.1 protein in the transitional ER. Similar results were seen after incubating cells in the proteasome inhibitor lactacystin. Differences in the cellular distribution of G601S-Kv11.1 and F805C-Kv11.1 protein persisted in transfected human inducible pluripotent stem cell derived cardiomyocytes. These are the first data to visually demonstrate mutation-specific differences in the trafficking-deficient LQT2 phenotype, and this study has identified a novel way to categorize trafficking-deficient LQT2 mutations based on differences in intracellular retention.
Collapse
Affiliation(s)
- Allison R. Hall
- Department of Physiology, University of Kentucky, Lexington, KY, United States
| | - Corey L. Anderson
- Cellular and Molecular Arrhythmia Research Program, University of Wisconsin–Madison, Madison, WI, United States
| | - Jennifer L. Smith
- Department of Physiology, University of Kentucky, Lexington, KY, United States
| | - Tooraj Mirshahi
- Department of Molecular and Functional Genomics, Genomic Medicine Institute, Geisinger Clinic, Danville, PA, United States
| | - Claude S. Elayi
- Department of Cardiology, Gill Heart Institute, University of Kentucky, Lexington, KY, United States
| | - Craig T. January
- Cellular and Molecular Arrhythmia Research Program, University of Wisconsin–Madison, Madison, WI, United States
| | - Brian P. Delisle
- Department of Physiology, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
20
|
Ji Y, Veldhuis MG, Zandvoort J, Romunde FL, Houtman MJC, Duran K, van Haaften G, Zangerl-Plessl EM, Takanari H, Stary-Weinzinger A, van der Heyden MAG. PA-6 inhibits inward rectifier currents carried by V93I and D172N gain-of-function K IR2.1 channels, but increases channel protein expression. J Biomed Sci 2017; 24:44. [PMID: 28711067 PMCID: PMC5513211 DOI: 10.1186/s12929-017-0352-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/11/2017] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The inward rectifier potassium current IK1 contributes to a stable resting membrane potential and phase 3 repolarization of the cardiac action potential. KCNJ2 gain-of-function mutations V93I and D172N associate with increased IK1, short QT syndrome type 3 and congenital atrial fibrillation. Pentamidine-Analogue 6 (PA-6) is an efficient (IC50 = 14 nM with inside-out patch clamp methodology) and specific IK1 inhibitor that interacts with the cytoplasmic pore region of the KIR2.1 ion channel, encoded by KCNJ2. At 10 μM, PA-6 increases wild-type (WT) KIR2.1 expression in HEK293T cells upon chronic treatment. We hypothesized that PA-6 will interact with and inhibit V93I and D172N KIR2.1 channels, whereas impact on channel expression at the plasma membrane requires higher concentrations. METHODS Molecular modelling was performed with the human KIR2.1 closed state homology model using FlexX. WT and mutant KIR2.1 channels were expressed in HEK293 cells. Patch-clamp single cell electrophysiology measurements were performed in the whole cell and inside-out mode of the patch clamp method. KIR2.1 expression level and localization were determined by western blot analysis and immunofluorescence microscopy, respectively. RESULTS PA-6 docking in the V93I/D172N double mutant homology model of KIR2.1 demonstrated that mutations and drug-binding site are >30 Å apart. PA-6 inhibited WT and V93I outward currents with similar potency (IC50 = 35.5 and 43.6 nM at +50 mV for WT and V93I), whereas D172N currents were less sensitive (IC50 = 128.9 nM at +50 mV) using inside-out patch-clamp electrophysiology. In whole cell mode, 1 μM of PA-6 inhibited outward IK1 at -50 mV by 28 ± 36%, 18 ± 20% and 10 ± 6%, for WT, V93I and D172N channels respectively. Western blot analysis demonstrated that PA-6 (5 μM, 24 h) increased KIR2.1 expression levels of WT (6.3 ± 1.5 fold), and V93I (3.9 ± 0.9) and D172N (4.8 ± 2.0) mutants. Immunofluorescent microscopy demonstrated dose-dependent intracellular KIR2.1 accumulation following chronic PA-6 application (24 h, 1 and 5 μM). CONCLUSIONS 1) KCNJ2 gain-of-function mutations V93I and D172N in the KIR2.1 ion channel do not impair PA-6 mediated inhibition of IK1, 2) PA-6 elevates KIR2.1 protein expression and induces intracellular KIR2.1 accumulation, 3) PA-6 is a strong candidate for further preclinical evaluation in treatment of congenital SQT3 and AF.
Collapse
Affiliation(s)
- Yuan Ji
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| | - Marlieke G. Veldhuis
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| | - Jantien Zandvoort
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| | - Fee L. Romunde
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| | - Marien J. C. Houtman
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| | - Karen Duran
- Center for Molecular Medicine, Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gijs van Haaften
- Center for Molecular Medicine, Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Hiroki Takanari
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| | | | - Marcel A. G. van der Heyden
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| |
Collapse
|
21
|
Harmer SC, Tinker A. The impact of recent advances in genetics in understanding disease mechanisms underlying the long QT syndromes. Biol Chem 2017; 397:679-93. [PMID: 26910742 DOI: 10.1515/hsz-2015-0306] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/18/2016] [Indexed: 11/15/2022]
Abstract
Long QT syndrome refers to a characteristic abnormality of the electrocardiogram and it is associated with a form of ventricular tachycardia known as torsade-de-pointes and sudden arrhythmic death. It can occur as part of a hereditary syndrome or can be acquired usually because of drug administration. Here we review recent genetic, molecular and cellular discoveries and outline how they have furthered our understanding of this disease. Specifically we focus on compound mutations, genome wide association studies of QT interval, modifier genes and the therapeutic implications of this recent work.
Collapse
|
22
|
Grandi E, Sanguinetti MC, Bartos DC, Bers DM, Chen-Izu Y, Chiamvimonvat N, Colecraft HM, Delisle BP, Heijman J, Navedo MF, Noskov S, Proenza C, Vandenberg JI, Yarov-Yarovoy V. Potassium channels in the heart: structure, function and regulation. J Physiol 2016; 595:2209-2228. [PMID: 27861921 DOI: 10.1113/jp272864] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 07/18/2016] [Indexed: 12/22/2022] Open
Abstract
This paper is the outcome of the fourth UC Davis Systems Approach to Understanding Cardiac Excitation-Contraction Coupling and Arrhythmias Symposium, a biannual event that aims to bring together leading experts in subfields of cardiovascular biomedicine to focus on topics of importance to the field. The theme of the 2016 symposium was 'K+ Channels and Regulation'. Experts in the field contributed their experimental and mathematical modelling perspectives and discussed emerging questions, controversies and challenges on the topic of cardiac K+ channels. This paper summarizes the topics of formal presentations and informal discussions from the symposium on the structural basis of voltage-gated K+ channel function, as well as the mechanisms involved in regulation of K+ channel gating, expression and membrane localization. Given the critical role for K+ channels in determining the rate of cardiac repolarization, it is hardly surprising that essentially every aspect of K+ channel function is exquisitely regulated in cardiac myocytes. This regulation is complex and highly interrelated to other aspects of myocardial function. K+ channel regulatory mechanisms alter, and are altered by, physiological challenges, pathophysiological conditions, and pharmacological agents. An accompanying paper focuses on the integrative role of K+ channels in cardiac electrophysiology, i.e. how K+ currents shape the cardiac action potential, and how their dysfunction can lead to arrhythmias, and discusses K+ channel-based therapeutics. A fundamental understanding of K+ channel regulatory mechanisms and disease processes is fundamental to reveal new targets for human therapy.
Collapse
Affiliation(s)
- Eleonora Grandi
- Department of Pharmacology, University of California, Davis, Davis, CA, 95616, USA
| | - Michael C Sanguinetti
- Department of Internal Medicine, University of Utah, Nora Eccles Harrison Cardiovascular Research and Training Institute, Salt Lake City, UT, 84112, USA
| | - Daniel C Bartos
- Department of Pharmacology, University of California, Davis, Davis, CA, 95616, USA
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis, Davis, CA, 95616, USA
| | - Ye Chen-Izu
- Department of Pharmacology, University of California, Davis, Davis, CA, 95616, USA.,Department of Internal Medicine, Division of Cardiology, University of California, Davis, CA, 95616, USA
| | - Nipavan Chiamvimonvat
- Department of Internal Medicine, Division of Cardiology, University of California, Davis, CA, 95616, USA
| | - Henry M Colecraft
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Brian P Delisle
- Department of Physiology, University of Kentucky, Lexington, KY, 40536, USA
| | - Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Manuel F Navedo
- Department of Pharmacology, University of California, Davis, Davis, CA, 95616, USA
| | - Sergei Noskov
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Catherine Proenza
- Department of Physiology and Biophysics, University of Colorado - Anschutz Medical Campus, Denver, CO, 80045, USA
| | - Jamie I Vandenberg
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, University of California, Davis, CA, 95616, USA
| |
Collapse
|
23
|
Huo J, Zhang A, Guo X, Qiang H, Liu P, Bai L, Ma A. Pharmacological rescue of hERG currents carried out by G604S and wide type hERG co-expression. Clin Exp Pharmacol Physiol 2016; 43:851-61. [PMID: 27199074 DOI: 10.1111/1440-1681.12593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 03/23/2016] [Accepted: 05/15/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Jianhua Huo
- Department of Cardiovascular Medicine; First Affiliated Hospital of Xi'an Jiaotong University; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University); Ministry of Education; Shaanxi China
| | - Aifeng Zhang
- Department of Cardiology; Second Affiliated Hospital; Xi'an Jiaotong University; Shaanxi China
| | - Xueyan Guo
- Shaanxi Provincial People's Hospital; Shaanxi China
| | - Hua Qiang
- Department of Cardiovascular Medicine; First Affiliated Hospital of Xi'an Jiaotong University; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University); Ministry of Education; Shaanxi China
| | - Ping Liu
- Department of Cardiovascular Medicine; First Affiliated Hospital of Xi'an Jiaotong University; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University); Ministry of Education; Shaanxi China
| | - Ling Bai
- Department of Cardiovascular Medicine; First Affiliated Hospital of Xi'an Jiaotong University; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University); Ministry of Education; Shaanxi China
| | - Aiqun Ma
- Department of Cardiovascular Medicine; First Affiliated Hospital of Xi'an Jiaotong University; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University); Ministry of Education; Shaanxi China
| |
Collapse
|
24
|
Abstract
Cardiac delayed rectifier potassium channels conduct outward potassium currents during the plateau phase of action potentials and play pivotal roles in cardiac repolarization. These include IKs, IKr and the atrial specific IKur channels. In this article, we will review their molecular identities and biophysical properties. Mutations in the genes encoding delayed rectifiers lead to loss- or gain-of-function phenotypes, disrupt normal cardiac repolarization and result in various cardiac rhythm disorders, including congenital Long QT Syndrome, Short QT Syndrome and familial atrial fibrillation. We will also discuss the prospect of using delayed rectifier channels as therapeutic targets to manage cardiac arrhythmia.
Collapse
Affiliation(s)
- Lei Chen
- Department of Pharmacology, College of Physicians & Surgeons of Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - Kevin J Sampson
- Department of Pharmacology, College of Physicians & Surgeons of Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - Robert S Kass
- Department of Pharmacology, College of Physicians & Surgeons of Columbia University, 630 West 168th Street, New York, NY 10032, USA.
| |
Collapse
|
25
|
Calcaterra NE, Hoeppner DJ, Wei H, Jaffe AE, Maher BJ, Barrow JC. Schizophrenia-Associated hERG channel Kv11.1-3.1 Exhibits a Unique Trafficking Deficit that is Rescued Through Proteasome Inhibition for High Throughput Screening. Sci Rep 2016; 6:19976. [PMID: 26879421 PMCID: PMC4754628 DOI: 10.1038/srep19976] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/22/2015] [Indexed: 12/24/2022] Open
Abstract
The primate-specific brain voltage-gated potassium channel isoform Kv11.1-3.1 has been identified as a novel therapeutic target for the treatment of schizophrenia. While this ether-a-go-go related K + channel has shown clinical relevance, drug discovery efforts have been hampered due to low and inconsistent activity in cell-based assays. This poor activity is hypothesized to result from poor trafficking via the lack of an intact channel-stabilizing Per-Ant-Sim (PAS) domain. Here we characterize Kv11.1-3.1 cellular localization and show decreased channel expression and cell surface trafficking relative to the PAS-domain containing major isoform, Kv11.1-1A. Using small molecule inhibition of proteasome degradation, cellular expression and plasma membrane trafficking are rescued. These findings implicate the importance of the unfolded-protein response and endoplasmic reticulum associated degradation pathways in the expression and regulation of this schizophrenia risk factor. Utilizing this identified phenomenon, an electrophysiological and high throughput in-vitro fluorescent assay platform has been developed for drug discovery in order to explore a potentially new class of cognitive therapeutics.
Collapse
Affiliation(s)
| | | | - Huijun Wei
- Lieber Institute for Brain Development, Baltimore, MD 21205
| | - Andrew E Jaffe
- Lieber Institute for Brain Development, Baltimore, MD 21205.,Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205
| | - Brady J Maher
- Lieber Institute for Brain Development, Baltimore, MD 21205.,Departments of Psychiatry and Behavioral Sciences, Baltimore, MD 21205.,Departments of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - James C Barrow
- Departments of Pharmacology and Molecular Sciences, Baltimore, MD 21205.,Lieber Institute for Brain Development, Baltimore, MD 21205
| |
Collapse
|
26
|
Smith JL, Anderson CL, Burgess DE, Elayi CS, January CT, Delisle BP. Molecular pathogenesis of long QT syndrome type 2. J Arrhythm 2016; 32:373-380. [PMID: 27761161 PMCID: PMC5063260 DOI: 10.1016/j.joa.2015.11.009] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/21/2015] [Accepted: 11/17/2015] [Indexed: 12/26/2022] Open
Abstract
The molecular mechanisms underlying congenital long QT syndrome (LQTS) are now beginning to be understood. New insights into the etiology and therapeutic strategies are emerging from heterologous expression studies of LQTS-linked mutant proteins, as well as inducible pluripotent stem cell derived cardiomyocytes (iPSC-CMs) from LQTS patients. This review focuses on the major molecular mechanism that underlies LQTS type 2 (LQT2). LQT2 is caused by loss of function (LOF) mutations in KCNH2 (also known as the human Ether-à-go-go-Related Gene or hERG). Most LQT2-linked mutations are missense mutations and functional studies suggest that ~90% of them disrupt the intracellular transport (trafficking) of KCNH2-encoded Kv11.1 proteins to the cell membrane. Trafficking deficient LQT2 mutations disrupt Kv11.1 protein folding and misfolded Kv11.1 proteins are retained in the endoplasmic reticulum (ER) until they are degraded in the ER associated degradation pathway (ERAD). This review focuses on the quality control mechanisms in the ER that contribute to the folding and ERAD of Kv11.1 proteins; the mechanism for ER export of Kv11.1 proteins in the secretory pathway; different subclasses of trafficking deficient LQT2 mutations; and strategies being developed to mitigate or correct trafficking deficient LQT2-related phenotypes.
Collapse
Affiliation(s)
- Jennifer L Smith
- Department of Physiology, Cardiovascular Research Center, Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Corey L Anderson
- Cellular and Molecular Arrhythmia Research Program, University of Wisconsin, Madison, WI, USA
| | - Don E Burgess
- Department of Physiology, Cardiovascular Research Center, Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Claude S Elayi
- Department of Cardiology, Gill Heart Institute, University of Kentucky, Lexington, KY, USA
| | - Craig T January
- Cellular and Molecular Arrhythmia Research Program, University of Wisconsin, Madison, WI, USA
| | - Brian P Delisle
- Department of Physiology, Cardiovascular Research Center, Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
27
|
Regulation of nicotinic acetylcholine receptors in Alzheimer׳s disease: a possible role of chaperones. Eur J Pharmacol 2015; 755:34-41. [PMID: 25771456 DOI: 10.1016/j.ejphar.2015.02.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/15/2015] [Accepted: 02/22/2015] [Indexed: 12/25/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) seem to play an integral role in the progress and/or prevention of Alzheimer׳s diseases (AD). Functional abnormalities and problems in biogenesis and trafficking of nAChRs are two major culprits in AD; on the other hand, chaperones modulate post-translational changes in nAChRs. Moreover, they indirectly regulate nAChRs by controlling AD-related proteins such as tau and amyloid beta (Aβ). In this review, we go through recent studies which are showing that chaperones modulate the expression of nAChRs in a subtype-specific manner and explain how AD progress is affected by nAChRs chaperoning.
Collapse
|
28
|
Ranolazine inhibition of hERG potassium channels: drug-pore interactions and reduced potency against inactivation mutants. J Mol Cell Cardiol 2014; 74:220-30. [PMID: 24877995 PMCID: PMC4121676 DOI: 10.1016/j.yjmcc.2014.05.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 05/14/2014] [Accepted: 05/19/2014] [Indexed: 01/06/2023]
Abstract
The antianginal drug ranolazine, which combines inhibitory actions on rapid and sustained sodium currents with inhibition of the hERG/IKr potassium channel, shows promise as an antiarrhythmic agent. This study investigated the structural basis of hERG block by ranolazine, with lidocaine used as a low potency, structurally similar comparator. Recordings of hERG current (IhERG) were made from cell lines expressing wild-type (WT) or mutant hERG channels. Docking simulations were performed using homology models built on MthK and KvAP templates. In conventional voltage clamp, ranolazine inhibited IhERG with an IC50 of 8.03 μM; peak IhERG during ventricular action potential clamp was inhibited ~ 62% at 10 μM. The IC50 values for ranolazine inhibition of the S620T inactivation deficient and N588K attenuated inactivation mutants were respectively ~ 73-fold and ~ 15-fold that for WT IhERG. Mutations near the bottom of the selectivity filter (V625A, S624A, T623A) exhibited IC50s between ~ 8 and 19-fold that for WT IhERG, whilst the Y652A and F656A S6 mutations had IC50s ~ 22-fold and 53-fold WT controls. Low potency lidocaine was comparatively insensitive to both pore helix and S6 mutations, but was sensitive to direction of K+ flux and particularly to loss of inactivation, with an IC50 for S620T-hERG ~ 49-fold that for WT IhERG. Docking simulations indicated that the larger size of ranolazine gives it potential for a greater range of interactions with hERG pore side chains compared to lidocaine, in particular enabling interaction of its two aromatic groups with side chains of both Y652 and F656. The N588K mutation is responsible for the SQT1 variant of short QT syndrome and our data suggest that ranolazine is unlikely to be effective against IKr/hERG in SQT1 patients. hERG K+ channels regulate cardiac action potential repolarization. The molecular basis of hERG block by ranolazine and structurally related lidocaine was studied. S6 Y652A and F656A mutations affected greatly ranolazine but not lidocaine binding. T623 and S624 residues may directly interact with ranolazine but not lidocaine. N588K and S620T attenuated inactivation mutants had reduced sensitivity to both drugs.
Collapse
|
29
|
Pharmacological chaperoning: a primer on mechanism and pharmacology. Pharmacol Res 2014; 83:10-9. [PMID: 24530489 DOI: 10.1016/j.phrs.2014.01.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 01/29/2014] [Indexed: 12/26/2022]
Abstract
Approximately forty percent of diseases are attributable to protein misfolding, including those for which genetic mutation produces misfolding mutants. Intriguingly, many of these mutants are not terminally misfolded since native-like folding, and subsequent trafficking to functional locations, can be induced by target-specific, small molecules variably termed pharmacological chaperones, pharmacoperones, or pharmacochaperones (PCs). PC targets include enzymes, receptors, transporters, and ion channels, revealing the breadth of proteins that can be engaged by ligand-assisted folding. The purpose of this review is to provide an integrated primer of the diverse mechanisms and pharmacology of PCs. In this regard, we examine the structural mechanisms that underlie PC rescue of misfolding mutants, including the ability of PCs to act as surrogates for defective intramolecular interactions and, at the intermolecular level, overcome oligomerization deficiencies and dominant negative effects, as well as influence the subunit stoichiometry of heteropentameric receptors. Not surprisingly, PC-mediated structural correction of misfolding mutants normalizes interactions with molecular chaperones that participate in protein quality control and forward-trafficking. A variety of small molecules have proven to be efficacious PCs and the advantages and disadvantages of employing orthostatic antagonists, active-site inhibitors, orthostatic agonists, and allosteric modulator PCs are considered. Also examined is the possibility that several therapeutic agents may have unrecognized activity as PCs, and this chaperoning activity may mediate/contribute to therapeutic action and/or account for adverse effects. Lastly, we explore evidence that pharmacological chaperoning exploits intrinsic ligand-assisted folding mechanisms. Given the widespread applicability of PC rescue of mutants associated with protein folding disorders, both in vitro and in vivo, the therapeutic potential of PCs is vast. This is most evident in the treatment of lysosomal storage disorders, cystic fibrosis, and nephrogenic diabetes insipidus, for which proof of principle in humans has been demonstrated.
Collapse
|
30
|
Ayon RJ, Fernandez RA, Yuan JXJ. Mutant hERG channel traffic jam. Focus on "Pharmacological correction of long QT-linked mutations in KCNH2 (hERG) increases the trafficking of Kv11.1 channels stored in the transitional endoplasmic reticulum". Am J Physiol Cell Physiol 2013; 305:C916-8. [PMID: 23986200 DOI: 10.1152/ajpcell.00256.2013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ramon J Ayon
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois; Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois; and Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois
| | | | | |
Collapse
|