1
|
Zhu T, Zhao J, Liu J, Tian S, Li S, Yuan H. Advances in the role of ion channels in leukemia. Heliyon 2024; 10:e33452. [PMID: 39027429 PMCID: PMC11254732 DOI: 10.1016/j.heliyon.2024.e33452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
Ion channels are widely present in cell membranes, serving as crucial pathways for the movement of ions enter and exit cells. Variations in the expression of ion channels are crucial for regulating cellular functions. Among the genes associated with leukemia, certain genes encode ion channels. When these ion channels experience dysfunction or changes in expression, they can impact the physiological functions and signal transduction of hematopoietic cells, thereby regulating leukemia cell proliferation, differentiation, invasion/migration, and apoptosis. This article will provide a comprehensive review of the research progress on the expression and function of various ion channels in leukemia, thoroughly exploring their roles and mechanisms in the onset and progression of the disease, providing new insights and ideas for identifying potential biomarkers and developing new treatment methods for leukemia, thereby promoting innovations in future leukemia diagnosis and therapy.
Collapse
Affiliation(s)
- Tianjie Zhu
- Central Hospital of Dalian University of Technology, Dalian, China
| | - Jingyuan Zhao
- Central Hospital of Dalian University of Technology, Dalian, China
| | - Jinnan Liu
- Central Hospital of Dalian University of Technology, Dalian, China
| | - Siyu Tian
- Central Hospital of Dalian University of Technology, Dalian, China
| | - Shuai Li
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hong Yuan
- Central Hospital of Dalian University of Technology, Dalian, China
| |
Collapse
|
2
|
Liu W, Deng W, Hu L, Zou H. Advances in TRPV6 inhibitors for tumors by targeted therapies: Macromolecular proteins, synthetic small molecule compounds, and natural compounds. Eur J Med Chem 2024; 270:116379. [PMID: 38588625 DOI: 10.1016/j.ejmech.2024.116379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/30/2024] [Accepted: 03/31/2024] [Indexed: 04/10/2024]
Abstract
TRPV6, a Ca2+-selective member of the transient receptor potential vanilloid (TRPV) family, plays a key role in extracellular calcium transport, calcium ion reuptake, and maintenance of a local low calcium environment. An increasing number of studies have shown that TRPV6 is involved in the regulation of various diseases. Notably, overexpression of TRPV6 is closely related to the occurrence of various cancers. Research confirmed that knocking down TRPV6 could effectively reduce the proliferation and invasiveness of tumors by mainly mediating the calcium signaling pathway. Hence, TRPV6 has become a promising new drug target for numerous tumor treatments. However, the development of TRPV6 inhibitors is still in the early stage, and the existing TRPV6 inhibitors have poor selectivity and off-target effects. In this review, we focus on summarizing and describing the structure characters, and mechanisms of existing TRPV6 inhibitors to provide new ideas and directions for the development of novel TRPV6 inhibitors.
Collapse
Affiliation(s)
- Weikang Liu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, China
| | - Wenwen Deng
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, China
| | - Liqing Hu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, China.
| | - Hui Zou
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, China.
| |
Collapse
|
3
|
Marini M, Titiz M, Souza Monteiro de Araújo D, Geppetti P, Nassini R, De Logu F. TRP Channels in Cancer: Signaling Mechanisms and Translational Approaches. Biomolecules 2023; 13:1557. [PMID: 37892239 PMCID: PMC10605459 DOI: 10.3390/biom13101557] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Ion channels play a crucial role in a wide range of biological processes, including cell cycle regulation and cancer progression. In particular, the transient receptor potential (TRP) family of channels has emerged as a promising therapeutic target due to its involvement in several stages of cancer development and dissemination. TRP channels are expressed in a large variety of cells and tissues, and by increasing cation intracellular concentration, they monitor mechanical, thermal, and chemical stimuli under physiological and pathological conditions. Some members of the TRP superfamily, namely vanilloid (TRPV), canonical (TRPC), melastatin (TRPM), and ankyrin (TRPA), have been investigated in different types of cancer, including breast, prostate, lung, and colorectal cancer. TRP channels are involved in processes such as cell proliferation, migration, invasion, angiogenesis, and drug resistance, all related to cancer progression. Some TRP channels have been mechanistically associated with the signaling of cancer pain. Understanding the cellular and molecular mechanisms by which TRP channels influence cancer provides new opportunities for the development of targeted therapeutic strategies. Selective inhibitors of TRP channels are under initial scrutiny in experimental animals as potential anti-cancer agents. In-depth knowledge of these channels and their regulatory mechanisms may lead to new therapeutic strategies for cancer treatment, providing new perspectives for the development of effective targeted therapies.
Collapse
Affiliation(s)
| | | | | | | | - Romina Nassini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, 50139 Florence, Italy; (M.M.); (M.T.); (D.S.M.d.A.); (P.G.); (F.D.L.)
| | | |
Collapse
|
4
|
Neuberger A, Trofimov YA, Yelshanskaya MV, Nadezhdin KD, Krylov NA, Efremov RG, Sobolevsky AI. Structural mechanism of human oncochannel TRPV6 inhibition by the natural phytoestrogen genistein. Nat Commun 2023; 14:2659. [PMID: 37160865 PMCID: PMC10169861 DOI: 10.1038/s41467-023-38352-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 04/27/2023] [Indexed: 05/11/2023] Open
Abstract
Calcium-selective oncochannel TRPV6 is the major driver of cell proliferation in human cancers. While significant effort has been invested in the development of synthetic TRPV6 inhibitors, natural channel blockers have been largely neglected. Here we report the structure of human TRPV6 in complex with the plant-derived phytoestrogen genistein, extracted from Styphnolobium japonicum, that was shown to inhibit cell invasion and metastasis in cancer clinical trials. Despite the pharmacological value, the molecular mechanism of TRPV6 inhibition by genistein has remained enigmatic. We use cryo-EM combined with electrophysiology, calcium imaging, mutagenesis, and molecular dynamics simulations to show that genistein binds in the intracellular half of the TRPV6 pore and acts as an ion channel blocker and gating modifier. Genistein binding to the open channel causes pore closure and a two-fold symmetrical conformational rearrangement in the S4-S5 and S6-TRP helix regions. The unprecedented mechanism of TRPV6 inhibition by genistein uncovers new possibilities in structure-based drug design.
Collapse
Affiliation(s)
- Arthur Neuberger
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Yury A Trofimov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Maria V Yelshanskaya
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Kirill D Nadezhdin
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Nikolay A Krylov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Roman G Efremov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
5
|
Khattar V, Wang L, Peng JB. Calcium selective channel TRPV6: Structure, function, and implications in health and disease. Gene 2022; 817:146192. [PMID: 35031425 PMCID: PMC8950124 DOI: 10.1016/j.gene.2022.146192] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/20/2021] [Accepted: 01/07/2022] [Indexed: 12/14/2022]
Abstract
Calcium-selective channel TRPV6 (Transient Receptor Potential channel family, Vanilloid subfamily member 6) belongs to the TRP family of cation channels and plays critical roles in transcellular calcium (Ca2+) transport, reuptake of Ca2+ into cells, and maintaining a local low Ca2+ environment for certain biological processes. Recent crystal and cryo-electron microscopy-based structures of TRPV6 have revealed mechanistic insights on how the protein achieves Ca2+ selectivity, permeation, and inactivation by calmodulin. The TRPV6 protein is expressed in a range of epithelial tissues such as the intestine, kidney, placenta, epididymis, and exocrine glands such as the pancreas, prostate and salivary, sweat, and mammary glands. The TRPV6 gene is a direct transcriptional target of the active form of vitamin D and is efficiently regulated to meet the body's need for Ca2+ demand. In addition, TRPV6 is also regulated by the level of dietary Ca2+ and under physiological conditions such as pregnancy and lactation. Genetic models of loss of function in TRPV6 display hypercalciuria, decreased bone marrow density, deficient weight gain, reduced fertility, and in some cases alopecia. The models also reveal that the channel plays an indispensable role in maintaining maternal-fetal Ca2+ transport and low Ca2+ environment in the epididymal lumen that is critical for male fertility. Most recently, loss of function mutations in TRPV6 gene is linked to transient neonatal hyperparathyroidism and early onset chronic pancreatitis. TRPV6 is overexpressed in a wide range of human malignancies and its upregulation is strongly correlated to tumor aggressiveness, metastasis, and poor survival in selected cancers. This review summarizes the current state of knowledge on the expression, structure, biophysical properties, function, polymorphisms, and regulation of TRPV6. The aberrant expression, polymorphisms, and dysfunction of this protein linked to human diseases are also discussed.
Collapse
Affiliation(s)
- Vinayak Khattar
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, Department of Urology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lingyun Wang
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, Department of Urology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ji-Bin Peng
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, Department of Urology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
6
|
Distribution and Assembly of TRP Ion Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1349:111-138. [PMID: 35138613 DOI: 10.1007/978-981-16-4254-8_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the last several decades, a large family of ion channels have been identified and studied intensively as cellular sensors for diverse physical and/or chemical stimuli. Named transient receptor potential (TRP) channels, they play critical roles in various aspects of cellular physiology. A large number of human hereditary diseases are found to be linked to TRP channel mutations, and their dysregulations lead to acute or chronical health problems. As TRP channels are named and categorized mostly based on sequence homology rather than functional similarities, they exhibit substantial functional diversity. Rapid advances in TRP channel study have been made in recent years and reported in a vast body of literature; a summary of the latest advancements becomes necessary. This chapter offers an overview of current understandings of TRP channel distribution and subunit assembly.
Collapse
|
7
|
Sharma A, Ramena GT, Elble RC. Advances in Intracellular Calcium Signaling Reveal Untapped Targets for Cancer Therapy. Biomedicines 2021; 9:1077. [PMID: 34572262 PMCID: PMC8466575 DOI: 10.3390/biomedicines9091077] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 02/07/2023] Open
Abstract
Intracellular Ca2+ distribution is a tightly regulated process. Numerous Ca2+ chelating, storage, and transport mechanisms are required to maintain normal cellular physiology. Ca2+-binding proteins, mainly calmodulin and calbindins, sequester free intracellular Ca2+ ions and apportion or transport them to signaling hubs needing the cations. Ca2+ channels, ATP-driven pumps, and exchangers assist the binding proteins in transferring the ions to and from appropriate cellular compartments. Some, such as the endoplasmic reticulum, mitochondria, and lysosomes, act as Ca2+ repositories. Cellular Ca2+ homeostasis is inefficient without the active contribution of these organelles. Moreover, certain key cellular processes also rely on inter-organellar Ca2+ signaling. This review attempts to encapsulate the structure, function, and regulation of major intracellular Ca2+ buffers, sensors, channels, and signaling molecules before highlighting how cancer cells manipulate them to survive and thrive. The spotlight is then shifted to the slow pace of translating such research findings into anticancer therapeutics. We use the PubMed database to highlight current clinical studies that target intracellular Ca2+ signaling. Drug repurposing and improving the delivery of small molecule therapeutics are further discussed as promising strategies for speeding therapeutic development in this area.
Collapse
Affiliation(s)
- Aarushi Sharma
- Department of Pharmacology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| | - Grace T. Ramena
- Department of Aquaculture, University of Arkansas, Pine Bluff, AR 71601, USA;
| | - Randolph C. Elble
- Department of Pharmacology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| |
Collapse
|
8
|
Lee J, Ju KD, Kim HJ, Tsogbadrakh B, Ryu H, Kang E, Kang M, Yang J, Kang HG, Ahn C, Oh KH. Soluble α-klotho anchors TRPV5 to the distal tubular cell membrane independent of FGFR1 by binding TRPV5 and galectin-1 simultaneously. Am J Physiol Renal Physiol 2021; 320:F559-F568. [PMID: 33615893 DOI: 10.1152/ajprenal.00044.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hypercalciuria is one of the early manifestations of diabetic nephropathy (DN). This is partially due to a decrease in the expression of renal transient receptor potential vanilloid type 5 (TRPV5), which is responsible for renal Ca2+ reabsorption. Soluble klotho has been previously determined to increase TRPV5 by cleaving sialic acid, causing TRPV5 to bind to membrane protein galectin-1. However, a recent study showed that soluble klotho binds to α2-3-sialyllactose, where sialic acid is located, on TRPV5, rather than cleave it. Here, we report that soluble klotho tethers TRPV5 on the membrane by binding both TRPV5 and galectin-1, thereby protecting membrane TRPV5 from diabetes-induced endocytosis. In the present study, we injected recombinant soluble α-klotho protein (rKL) into db/db and db/m mice for 8 wk and collected urine and kidneys. We administered rKL, AZD4547 [fibroblast growth factor (FGF) receptor type 1 inhibitor], and OTX008 (galectin-1 inhibitor) to cultured mouse distal tubular cells with or without 30 mM high-glucose (HG) exposure. db/db mice showed increased renal Ca2+ excretion and decreased renal TRPV5 expression. rKL treatment reversed this change. In vitro, TRPV5 expression in distal tubular cells decreased under HG conditions, and rKL successfully upregulated TRPV5 with or without FGF23. Also, immunofluorescence showed colocalization of klotho, TRPV5, and galectin-1 in distal tubule cells, suggesting that klotho binds to both TRPV5 and galectin-1. Moreover, when both FGF receptor type 1 and galectin-1 were inhibited, rKL failed to increase TRPV5 under HG conditions. Our results indicate that soluble klotho prevents TRPV5 from degradation and subsequent diabetes-induced endocytosis by anchoring TRPV5 through binding with both TRPV5 and galectin-1.NEW & NOTEWORTHY Soluble α-klotho anchors transient receptor potential vanilloid type 5 (TRPV5) on the apical membrane of the distal tubule by binding both TRPV5 and a membrane-abundant protein, galectin-1. This newly discovered mechanism works even when fibroblast growth factor (FGF)23 signaling is inhibited by treatment with FGF receptor type 1 inhibitor. Therefore, we identified how soluble α-klotho increases TRPV5 without FGF23. We confirmed this mechanism by observing that soluble α-klotho fails to enhance TRPV5 when both FGF receptor type 1 and galectin-1 are inhibited.
Collapse
Affiliation(s)
- Jinho Lee
- Center of Medical Innovation, Seoul National University Hospital, Seoul, Korea
| | - Kyung Don Ju
- Center of Medical Innovation, Seoul National University Hospital, Seoul, Korea
| | - Hyo Jin Kim
- Department of Internal Medicine, Pusan National University Hospital, Busan, Korea
| | | | - Hyunjin Ryu
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Eunjeong Kang
- Department of Internal Medicine, Ewha Womans University Seoul Hospital, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Minjung Kang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jaeseok Yang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.,Transplantation Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Hee Gyung Kang
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea.,Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Korea.,Kidney Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - Curie Ahn
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.,Transplantation Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Kook-Hwan Oh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
9
|
Kärki T, Rajakylä EK, Acheva A, Tojkander S. TRPV6 calcium channel directs homeostasis of the mammary epithelial sheets and controls epithelial mesenchymal transition. Sci Rep 2020; 10:14683. [PMID: 32895467 PMCID: PMC7477193 DOI: 10.1038/s41598-020-71645-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 08/14/2020] [Indexed: 12/17/2022] Open
Abstract
Epithelial integrity is lost upon cancer progression as cancer cells detach from the primary tumor site and start to invade to the surrounding tissues. Invasive cancers of epithelial origin often express altered levels of TRP-family cation channels. Upregulation of TRPV6 Ca2+-channel has been associated with a number of human malignancies and its high expression in breast cancer has been linked to both proliferation and invasive disease. The mechanisms behind the potential of TRPV6 to induce invasive progression have, however, not been well elucidated. Here we show that TRPV6 is connected to both E-cadherin-based adherens junctions and intracellular cytoskeletal structures. Loss of TRPV6 from normal mammary epithelial cells led to disruption of epithelial integrity and abnormal 3D-mammo sphere morphology. Furthermore, expression level of TRPV6 was tightly linked to the levels of common EMT markers, suggesting that TRPV6 may have a role in the mesenchymal invasion of breast cancer cells. Thus, either too low or too high TRPV6 levels compromise homeostasis of the mammary epithelial sheets and may promote the progression of pathophysiological conditions.
Collapse
Affiliation(s)
- Tytti Kärki
- Section of Pathology, Department of Veterinary Biosciences, University of Helsinki, Agnes Sjöberginkatu 2, 00014, Helsinki, Finland
- Department of Applied Physics, Aalto University School of Science, Puumiehenkuja 2, 02150, Espoo, Finland
| | - Eeva Kaisa Rajakylä
- Section of Pathology, Department of Veterinary Biosciences, University of Helsinki, Agnes Sjöberginkatu 2, 00014, Helsinki, Finland
| | - Anna Acheva
- Section of Pathology, Department of Veterinary Biosciences, University of Helsinki, Agnes Sjöberginkatu 2, 00014, Helsinki, Finland
| | - Sari Tojkander
- Section of Pathology, Department of Veterinary Biosciences, University of Helsinki, Agnes Sjöberginkatu 2, 00014, Helsinki, Finland.
| |
Collapse
|
10
|
Yelshanskaya MV, Nadezhdin KD, Kurnikova MG, Sobolevsky AI. Structure and function of the calcium-selective TRP channel TRPV6. J Physiol 2020; 599:2673-2697. [PMID: 32073143 DOI: 10.1113/jp279024] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/03/2020] [Indexed: 12/23/2022] Open
Abstract
Epithelial calcium channel TRPV6 is a member of the vanilloid subfamily of TRP channels that is permeable to cations and highly selective to Ca2+ ; it shows constitutive activity regulated negatively by Ca2+ and positively by phosphoinositol and cholesterol lipids. In this review, we describe the molecular structure of TRPV6 and discuss how its structural elements define its unique functional properties. High Ca2+ selectivity of TRPV6 originates from the narrow selectivity filter, where Ca2+ ions are directly coordinated by a ring of anionic aspartate side chains. Divalent cations Ca2+ and Ba2+ permeate TRPV6 pore according to the knock-off mechanism, while tight binding of Gd3+ to the aspartate ring blocks the channel and prevents Na+ from permeating the pore. The iris-like channel opening is accompanied by an α-to-π helical transition in the pore-lining transmembrane helix S6. As a result of this transition, the intracellular halves of the S6 helices bend and rotate by about 100 deg, exposing different residues to the channel pore in the open and closed states. Channel opening is also associated with changes in occupancy of the transmembrane domain lipid binding sites. The inhibitor 2-aminoethoxydiphenyl borate (2-APB) binds to TRPV6 in a pocket formed by the cytoplasmic half of the S1-S4 transmembrane helical bundle and shifts open-closed channel equilibrium towards the closed state by outcompeting lipids critical for activation. Ca2+ inhibits TRPV6 via binding to calmodulin (CaM), which mediates Ca2+ -dependent inactivation. The TRPV6-CaM complex exhibits 1:1 stoichiometry; one TRPV6 tetramer binds both CaM lobes, which adopt a distinct head-to-tail arrangement. The CaM C-terminal lobe plugs the channel through a unique cation-π interaction by inserting the side chain of lysine K115 into a tetra-tryptophan cage at the ion channel pore intracellular entrance. Recent studies of TRPV6 structure and function described in this review advance our understanding of the role of this channel in physiology and pathophysiology and inform new therapeutic design.
Collapse
Affiliation(s)
- Maria V Yelshanskaya
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, NY, 10032, USA
| | - Kirill D Nadezhdin
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, NY, 10032, USA
| | - Maria G Kurnikova
- Chemistry Department, Carnegie Mellon University, 4400 Fifth Ave, Pittsburgh, PA, 15213, USA
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, NY, 10032, USA
| |
Collapse
|
11
|
Abstract
Two decades ago a class of ion channels, hitherto unsuspected, was discovered. In mammals these Transient Receptor Potential channels (TRPs) have not only expanded in number (to 26 functional channels) but also expanded the view of our interface with the physical and chemical environment. Some are heat and cold sensors while others monitor endogenous and/or exogenous chemical signals. Some TRP channels monitor osmotic potential, and others measure cell movement, stretching, and fluid flow. Many TRP channels are major players in nociception and integration of pain signals. One member of the vanilloid sub-family of channels is TRPV6. This channel is highly selective for divalent cations, particularly calcium, and plays a part in general whole-body calcium homeostasis, capturing calcium in the gut from the diet. TRPV6 can be greatly elevated in a number of cancers deriving from epithelia and considerable study has been made of its role in the cancer phenotype where calcium control is dysfunctional. This review compiles and updates recent published work on TRPV6 as a promising drug target in a number of cancers including those afflicting breast, ovarian, prostate and pancreatic tissues.
Collapse
Affiliation(s)
- John M. Stewart
- Soricimed Biopharma Inc. 18 Botsford Street, Moncton, NB, Canada, E1C 4W7
| |
Collapse
|
12
|
Altered expression and functional role of ion channels in leukemia: bench to bedside. Clin Transl Oncol 2019; 22:283-293. [PMID: 31280433 DOI: 10.1007/s12094-019-02147-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/26/2019] [Indexed: 12/21/2022]
Abstract
Leukemic cells' (LCs) survival, proliferation, activation, differentiation, and invasiveness/migration can be mediated through the function of cation and anion channels that are involved in volume regulation, polarization, cytoskeleton, and extracellular matrix reorganization. This study will review the expression of ion channels in LCs and their possible function in leukemia progression. We searched relevant literature by a PubMed (2002-2019) of English-language literature using the terms "ion channels", "leukemia", "proliferation", "differentiation", "apoptosis", and "migration". Altered expression and dysfunction of ion channels can have a strong impact on hematopoietic cell and LCs physiology and signaling, which contributes to the vital processes such as proliferation, differentiation, and apoptosis. Indeed, it can be stated that changing expression of ion channels can affect the onset and progression as well as clinical features and therapeutic responses of leukemia via inducing the maintenance of LCs. Since ion channels are membrane proteins, they can be easily accessible in LCs for understanding their influence on leukemia progression. On the other hand, ion channels can be new potential targets for chemotherapeutic agents, which may open a novel clinical and pharmaceutical field in leukemia therapy.
Collapse
|
13
|
Xue H, Wang Y, MacCormack TJ, Lutes T, Rice C, Davey M, Dugourd D, Ilenchuk TT, Stewart JM. Inhibition of Transient Receptor Potential Vanilloid 6 channel, elevated in human ovarian cancers, reduces tumour growth in a xenograft model. J Cancer 2018; 9:3196-3207. [PMID: 30210643 PMCID: PMC6134823 DOI: 10.7150/jca.20639] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 10/06/2017] [Indexed: 12/22/2022] Open
Abstract
Background: Transient Receptor Potential Vanilloid 6 (TRPV6), a non-voltage gated calcium channel, is implicated in malignancies and correlates with Gleason scores in prostate cancer and with poor prognosis in breast cancer. Data on the TRPV6 status of ovarian malignancies has not received significant attention. The effect of inhibiting TRPV6 activity on ovarian tumour growth has never been reported. Methods: We quantified TRPV6 mRNA and protein in biopsies of five types of ovarian cancer at different stages and grades by quantitative PCR and immunohistochemistry respectively. We verified the presence of TRPV6 in SKOV-3 cells and xenografts by Western Blotting. NOD/SCID mice bearing xenografted ovarian tumours derived from SKOV-3 were treated daily with TRPV6-antagonistic peptides (SOR-C13 and SOR-C27) at 400, 600 and 800 mg/kg delivered intraperitoneally (i.p.) over 12 days. Data from qPCR and tumour growth experiments were compared with a Student's t-test. Immunohistochemical ranking of staining were compared with Kruskall-Wallace one-way ANOVA and Dunn's Multiple Comparison post-test. Results: TRPV6 mRNA and protein are significantly elevated at all stages and grades of 5 ovarian cancer types over normal tissue. Overall qPCR log2 values (n, mean, ± SEM) for mRNA in tumour (n = 165, 5.06 ± 0.16) were greater (p < 0.05) than normal tissues (n = 26, 0.45 ± 0.41). All stages and grades included in the biopsy arrays were significantly greater than normal tissues. Immunohistochemical staining of TRPV6 was ranked >2 (faint in most cells) in 80.5% of tumours (123) while 92% of normal tissues (23) ranked ≤ 2. Daily i.p. injection with SOR-C13 (400, 600 and 800 mg/kg) over 12 days inhibits tumour growth (59%) at the highest dose compared to non-treated controls. SOR-C27 at 800 mg/kg SOR-C27 inhibited tumour growth 55% after 12 days. Results of daily and intermittent dosing (Days 1, 2, 3 and 8, 9, 10) with SOR-C13 were indistinguishable. Conclusion: TRPV6 mRNA and protein are elevated in biopsies of ovarian cancers compared to normal tissue. Inhibition of TRPV6 activity significantly reduces ovarian tumour growth providing evidence that TRPV6 is a feasible oncology target in ovarian cancers.
Collapse
Affiliation(s)
- Hui Xue
- Department of Experimental Therapeutics, BC Cancer Agency, 675 West 10 th Avenue, Vancouver BC, Canada, V5Z 1L3
| | - Yuzhuo Wang
- Department of Experimental Therapeutics, BC Cancer Agency, 675 West 10 th Avenue, Vancouver BC, Canada, V5Z 1L3
| | - Tyson J MacCormack
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, New Brunswick, Canada. E4L 1E4
| | - Tyler Lutes
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, New Brunswick, Canada. E4L 1E4.,Soricimed Biopharma Inc. 18 Botsford Street, Suite 201, Moncton, NB, Canada, E1C 4W7
| | - Christopher Rice
- Soricimed Biopharma Inc. 18 Botsford Street, Suite 201, Moncton, NB, Canada, E1C 4W7
| | - Michelle Davey
- Soricimed Biopharma Inc. 18 Botsford Street, Suite 201, Moncton, NB, Canada, E1C 4W7
| | - Dominique Dugourd
- Soricimed Biopharma Inc. 18 Botsford Street, Suite 201, Moncton, NB, Canada, E1C 4W7
| | - T Toney Ilenchuk
- Soricimed Biopharma Inc. 18 Botsford Street, Suite 201, Moncton, NB, Canada, E1C 4W7
| | - John M Stewart
- Soricimed Biopharma Inc. 18 Botsford Street, Suite 201, Moncton, NB, Canada, E1C 4W7
| |
Collapse
|
14
|
Structural bases of TRP channel TRPV6 allosteric modulation by 2-APB. Nat Commun 2018; 9:2465. [PMID: 29941865 PMCID: PMC6018633 DOI: 10.1038/s41467-018-04828-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/23/2018] [Indexed: 01/16/2023] Open
Abstract
Transient receptor potential (TRP) channels are involved in various physiological processes, including sensory transduction. The TRP channel TRPV6 mediates calcium uptake in epithelia and its expression is dramatically increased in numerous types of cancer. TRPV6 inhibitors suppress tumor growth, but the molecular mechanism of inhibition remains unknown. Here, we present crystal and cryo-EM structures of human and rat TRPV6 bound to 2-aminoethoxydiphenyl borate (2-APB), a TRPV6 inhibitor and modulator of numerous TRP channels. 2-APB binds to TRPV6 in a pocket formed by the cytoplasmic half of the S1-S4 transmembrane helix bundle. Comparing human wild-type and high-affinity mutant Y467A structures, we show that 2-APB induces TRPV6 channel closure by modulating protein-lipid interactions. Mutagenesis and functional analyses suggest that the identified 2-APB binding site might be present in other members of vanilloid subfamily TRP channels. Our findings reveal a mechanism of ion channel allosteric modulation that can be exploited for therapeutic design.
Collapse
|
15
|
Pennington MW, Czerwinski A, Norton RS. Peptide therapeutics from venom: Current status and potential. Bioorg Med Chem 2017; 26:2738-2758. [PMID: 28988749 DOI: 10.1016/j.bmc.2017.09.029] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/14/2017] [Accepted: 09/19/2017] [Indexed: 12/19/2022]
Abstract
Peptides are recognized as being highly selective, potent and relatively safe as potential therapeutics. Peptides isolated from the venom of different animals satisfy most of these criteria with the possible exception of safety, but when isolated as single compounds and used at appropriate concentrations, venom-derived peptides can become useful drugs. Although the number of venom-derived peptides that have successfully progressed to the clinic is currently limited, the prospects for venom-derived peptides look very optimistic. As proteomic and transcriptomic approaches continue to identify new sequences, the potential of venom-derived peptides to find applications as therapeutics, cosmetics and insecticides grows accordingly.
Collapse
Affiliation(s)
| | - Andrzej Czerwinski
- Peptides International, Inc., 11621 Electron Drive, Louisville, KY 40299, USA
| | - Raymond S Norton
- Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Monash University, Parkville, 3052, Australia
| |
Collapse
|
16
|
Fecher-Trost C, Wissenbach U, Weissgerber P. TRPV6: From identification to function. Cell Calcium 2017; 67:116-122. [PMID: 28501141 DOI: 10.1016/j.ceca.2017.04.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 04/26/2017] [Accepted: 04/26/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Claudia Fecher-Trost
- Institute of Experimental and Clinical Pharmacology and Toxicology, Saarland University, Building 46, 66421 Homburg, Germany.
| | - Ulrich Wissenbach
- Institute of Experimental and Clinical Pharmacology and Toxicology, Saarland University, Building 46, 66421 Homburg, Germany
| | - Petra Weissgerber
- Institute of Experimental and Clinical Pharmacology and Toxicology, Saarland University, Building 46, 66421 Homburg, Germany.
| |
Collapse
|
17
|
Kumar S, Singh U, Singh O, Goswami C, Singru PS. Transient receptor potential vanilloid 6 (TRPV6) in the mouse brain: Distribution and estrous cycle-related changes in the hypothalamus. Neuroscience 2016; 344:204-216. [PMID: 28039038 DOI: 10.1016/j.neuroscience.2016.12.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/28/2016] [Accepted: 12/16/2016] [Indexed: 12/28/2022]
Abstract
Transient receptor potential vanilloid (TRPV) subfamily of cationic channels have emerged as novel players in neural regulation. Unlike other members of TRPV subfamily, TRPV5 and TRPV6 are highly Ca2+-selective. Although TRPV5/TRPV6 transcripts are expressed in mouse brain, understanding the full functional spectrum of these ion channels in the brain is however limited due to the lack of information on their neuroanatomical distribution. We have studied TRPV6 in mouse brain in further detail. In the hypothalamus, while Western blot analysis using TRPV6 specific antiserum showed a distinct ∼95 kDa band corresponding to the molecular weight of TRPV6, transcripts for TRPV6 were detected with RT-PCR. TRPV6-immunoreactive cells/fibers were observed in vascular organ of the lamina terminalis, olfactory bulb, amygdala, hippocampus, septohypothalamic, supraoptic, arcuate (ARC), dorsomedial, and subincertal nuclei. TRPV6-immunoreactive cells/fibers were also observed in the brainstem and cerebellum. Estrogen has emerged as a potential regulator of TRPV6 in peripheral tissues. TRPV6 gene promoter contains estrogen-response element, estrogen activates TRPV6 via estrogen receptor alpha (ERα), and ERα-expressing ARC neurons in mediobasal hypothalamus (MBH) serve as primary site for estradiol feedback. Using double immunofluorescence, co-expression of TRPV6 and ERα was observed in several ARC neurons. MBH of mice during different phases of estrous cycle were subjected to Western blot analysis of TRPV6. Compared to proestrus, a significant reduction (P<0.01) in intensity of TRPV6-immunoreactive band was observed in MBH during metestrus and diestrus phases. While the wide distribution of TRPV6-expressing elements in the brain suggests its role in a range of CNS functions, the ion channel may serve as novel component of the neural pathway mediating effects of estradiol in MBH.
Collapse
Affiliation(s)
- Santosh Kumar
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Uday Singh
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Omprakash Singh
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Chandan Goswami
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Praful S Singru
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|
18
|
Shapovalov G, Ritaine A, Skryma R, Prevarskaya N. Role of TRP ion channels in cancer and tumorigenesis. Semin Immunopathol 2016; 38:357-69. [PMID: 26842901 DOI: 10.1007/s00281-015-0525-1] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 09/03/2015] [Indexed: 12/12/2022]
Abstract
Transient receptor potential (TRP) channels are recently identified proteins that form a versatile family of ion channels, the majority of which are calcium permeable and exhibit complex regulatory patterns with sensitivity to multiple environmental factors. While this sensitivity has captured early attention, leading to recognition of TRP channels as environmental and chemical sensors, many later studies concentrated on the regulation of intracellular calcium by TRP channels. Due to mutations, dysregulation of ion channel gating or expression levels, normal spatiotemporal patterns of local Ca(2+) distribution become distorted. This causes deregulation of downstream effectors sensitive to changes in Ca(2+) homeostasis that, in turn, promotes pathophysiological cancer hallmarks, such as enhanced survival, proliferation and invasion. These observations give rise to the appreciation of the important contributions that TRP channels make to many cellular processes controlling cell fate and positioning these channels as important players in cancer regulation. This review discusses the accumulated scientific knowledge focused on TRP channel involvement in regulation of cell fate in various transformed tissues.
Collapse
Affiliation(s)
- George Shapovalov
- Inserm U1003, Equipe Labellisee par la Ligue Nationale Contre le Cancer, Universite de Sciences et Technologies de Lille (USTL), F-59655, Villeneuve d'Ascq, France.,Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille I Sciences et Technologies, Villeneuve d'Ascq, France
| | - Abigael Ritaine
- Inserm U1003, Equipe Labellisee par la Ligue Nationale Contre le Cancer, Universite de Sciences et Technologies de Lille (USTL), F-59655, Villeneuve d'Ascq, France.,Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille I Sciences et Technologies, Villeneuve d'Ascq, France
| | - Roman Skryma
- Inserm U1003, Equipe Labellisee par la Ligue Nationale Contre le Cancer, Universite de Sciences et Technologies de Lille (USTL), F-59655, Villeneuve d'Ascq, France.,Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille I Sciences et Technologies, Villeneuve d'Ascq, France
| | - Natalia Prevarskaya
- Inserm U1003, Equipe Labellisee par la Ligue Nationale Contre le Cancer, Universite de Sciences et Technologies de Lille (USTL), F-59655, Villeneuve d'Ascq, France. .,Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille I Sciences et Technologies, Villeneuve d'Ascq, France.
| |
Collapse
|
19
|
Hoover RS, Tomilin V, Hanson L, Pochynyuk O, Ko B. PTH modulation of NCC activity regulates TRPV5 Ca2+ reabsorption. Am J Physiol Renal Physiol 2015; 310:F144-51. [PMID: 26608788 DOI: 10.1152/ajprenal.00323.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 11/24/2015] [Indexed: 02/02/2023] Open
Abstract
Since parathyroid hormone (PTH) is known to increase transient receptor potential vanilloid (TRPV)5 activity and decrease Na(+)-Cl(-) cotransporter (NCC) activity, we hypothesized that decreased NCC-mediated Na(+) reabsorption contributes to the enhanced TRPV5 Ca(2+) reabsorption seen with PTH. To test this, we used mDCT15 cells expressing functional TRPV5 and ruthenium red-sensitive (45)Ca(2+) uptake. PTH increased (45)Ca(2+) uptake to 8.8 ± 0.7 nmol·mg(-1)·min(-1) (n = 4, P < 0.01) and decreased NCC activity from 75.4 ± 2.7 to 20.3 ± 1.3 nmol·mg(-1)·min(-1) (n = 4, P < 0.01). Knockdown of Ras guanyl-releasing protein (RasGRP)1 had no baseline effect on (45)Ca(2+) uptake but significantly attenuated the response to PTH from a 45% increase (6.0 ± 0.2 to 8.7 ± 0.4 nmol·mg(-1)·min(-1)) in control cells to only 20% in knockdown cells (6.1 ± 0.1 to 7.3 ± 0.2 nmol·mg(-1)·min(-1), n = 4, P < 0.01). Inhibition of PKC and PKA resulted in further attenuation of the PTH effect. RasGRP1 knockdown decreased the magnitude of the TRPV5 response to PTH (7.9 ± 0.1 nmol·mg(-1)·min(-1) for knockdown compared with 9.1 ± 0.1 nmol·mg(-1)·min(-1) in control), and the addition of thiazide eliminated this effect (a nearly identical 9.0 ± 0.1 nmol·mg(-1)·min(-1)). This indicates that functionally active NCC is required for RasGRP1 knockdown to impact the PTH effect on TRPV5 activity. Knockdown of with no lysine kinase (WNK)4 resulted in an attenuation of the increase in PTH-mediated TRPV5 activity. TRPV5 activity increased by 36% compared with 45% in control (n = 4, P < 0.01 between PTH-treated groups). PKC blockade further attenuated the PTH effect, whereas combined PKC and PKA blockade in WNK4KD cells abolished the effect. We conclude that modulation of NCC activity contributes to the response to PTH, implying a role for hormonal modulation of NCC activity in distal Ca(2+) handling.
Collapse
Affiliation(s)
- Robert S Hoover
- Division of Nephrology, Department of Medicine, Emory University, Atlanta, Georgia; Atlanta Veteran's Administration Medical Center, Decatur, Georgia
| | - Viktor Tomilin
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, Texas; Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russian Federation; and
| | - Lauren Hanson
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Oleh Pochynyuk
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, Texas
| | - Benjamin Ko
- Department of Medicine, University of Chicago, Chicago, Illinois
| |
Collapse
|
20
|
Chinthala Y, K M, Sharma P, Kvn SS, Jonnala K, Arigari NK, Khan F, Oh S. Synthesis and Cytotoxicity Evaluation of Novel Andrographolide-1,2,3-Triazole Derivatives. J Heterocycl Chem 2015. [DOI: 10.1002/jhet.2505] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yakaiah Chinthala
- Natural Product Chemistry; CSIR-Central Institute of Medicinal and Aromatic Plants-Research Centre; Boduppal Hyderabad 500092 Telangana India
| | - Manjulatha K
- Department of Biochemistry, School of Life Sciences; University of Hyderabad; India
| | - Pooja Sharma
- Metabolic and Structural Biology Department; CSIR-Central Institute of Medicinal and Aromatic Plants; Kukrail Picnic Spot Road Lucknow 226015 Uttar Pradesh India
| | - Satya Srinivas Kvn
- Natural Product Chemistry; CSIR-Central Institute of Medicinal and Aromatic Plants-Research Centre; Boduppal Hyderabad 500092 Telangana India
| | - Kotesh Jonnala
- Natural Product Chemistry; CSIR-Central Institute of Medicinal and Aromatic Plants-Research Centre; Boduppal Hyderabad 500092 Telangana India
| | - Niranjana Kumar Arigari
- Natural Product Chemistry; CSIR-Central Institute of Medicinal and Aromatic Plants-Research Centre; Boduppal Hyderabad 500092 Telangana India
| | - Feroz Khan
- Metabolic and Structural Biology Department; CSIR-Central Institute of Medicinal and Aromatic Plants; Kukrail Picnic Spot Road Lucknow 226015 Uttar Pradesh India
| | - Setty Oh
- Department of Biochemistry, School of Life Sciences; University of Hyderabad; India
| |
Collapse
|
21
|
Giusti L, Cetani F, Da Valle Y, Pardi E, Ciregia F, Donadio E, Gargini C, Piano I, Borsari S, Jaber A, Caputo A, Basolo F, Giannaccini G, Marcocci C, Lucacchini A. First evidence of TRPV5 and TRPV6 channels in human parathyroid glands: possible involvement in neoplastic transformation. J Cell Mol Med 2014; 18:1944-52. [PMID: 25164318 PMCID: PMC4244010 DOI: 10.1111/jcmm.12372] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 06/12/2014] [Indexed: 11/27/2022] Open
Abstract
The parathyroid glands play an overall regulatory role in the systemic calcium (Ca2+) homeostasis. The purpose of the present study was to demonstrate the presence of the Ca2+ channels transient receptor potential vanilloid (TRPV) 5 and TRPV6 in human parathyroid glands. Semi-quantitative and quantitative PCR was carried out to evaluate the presence of TRPV5 and TRPV6 mRNAs in sporadic parathyroid adenomas and normal parathyroid glands. Western blot and immunocytochemical assays were used to assess protein expression, cellular localization and time expression in primary cultures from human parathyroid adenoma. TRPV5 and TRPV6 transcripts were then identified both in normal and pathological tissues. Predominant immunoreactive bands were detected at 75–80 kD for both vanilloid channels. These channels co-localized with the calcium-sensing receptor (CASR) on the membrane surface, but immunoreactivity was also detected in the cytosol and around the nuclei. Our data showed that western blotting recorded an increase of protein expression of both channels in adenoma samples compared with normal glands suggesting a potential relation with the cell calcium signalling pathway and the pathological processes of these glands.
Collapse
Affiliation(s)
- Laura Giusti
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kucherenko YV, Lang F. Niflumic Acid Affects Store-Operated Ca2+-Permeable (SOC) and Ca2+-Dependent K+ and Cl− Ion Channels and Induces Apoptosis in K562 Cells. J Membr Biol 2014; 247:627-38. [DOI: 10.1007/s00232-014-9680-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 05/10/2014] [Indexed: 02/07/2023]
|
23
|
Abstract
TRPV5 is one of the two channels in the TRPV family that exhibit high selectivity to Ca(2+) ions. TRPV5 mediates Ca(2+) influx into cells as the first step to transport Ca(2+) across epithelia. The specialized distribution in the distal tubule of the kidney positions TRPV5 as a key player in Ca(2+) reabsorption. The responsiveness in expression and/or activity of TRPV5 to hormones such as 1,25-dihydroxyvitamin D3, parathyroid hormone, estrogen, and testosterone makes TRPV5 suitable for its role in the fine-tuning of Ca(2+) reabsorption. This role is further optimized by the modulation of TRPV5 trafficking and activity via its binding partners; co-expressed proteins; tubular factors such as calbindin-D28k, calmodulin, klotho, uromodulin, and plasmin; extracellular and intracellular factors such as proton, Mg(2+), Ca(2+), and phosphatidylinositol-4,5-bisphosphate; and fluid flow. These regulations allow TRPV5 to adjust its overall activity in response to the body's demand for Ca(2+) and to prevent kidney stone formation. A point mutation in mouse Trpv5 gene leads to hypercalciuria similar to Trpv5 knockout mice, suggesting a possible role of TRPV5 in hypercalciuric disorders in humans. In addition, the single nucleotide polymorphisms in Trpv5 gene prevalently present in African descents may contribute to the efficient renal Ca(2+) reabsorption among African descendants. TRPV5 represents a potential therapeutic target for disorders with altered Ca(2+) homeostasis.
Collapse
Affiliation(s)
- Tao Na
- Cell Collection and Research Center, Institute for Biological Product Control, National Institutes for Food and Drug Control, Beijing, China
| | | |
Collapse
|
24
|
Abstract
TRPV6 (former synonyms ECAC2, CaT1, CaT-like) displays several specific features which makes it unique among the members of the mammalian Trp gene family (1) TRPV6 (and its closest relative, TRPV5) are the only highly Ca(2+)-selective channels of the entire TRP superfamily (Peng et al. 1999; Wissenbach et al. 2001; Voets et al. 2004). (2) Translation of Trpv6 initiates at a non-AUG codon, at ACG, located upstream of the annotated AUG, which is not used for initiation (Fecher-Trost et al. 2013). The ACG codon is nevertheless decoded by methionine. Not only a very rare event in eukaryotic biology, the full-length TRPV6 protein existing in vivo comprises an amino terminus extended by 40 amino acid residues compared to the annotated truncated TRPV6 protein which has been used in most studies on TRPV6 channel activity so far. (In the following numbering occurs according to this full-length protein, with the numbers of the so far annotated truncated protein in brackets). (3) Only in humans a coupled polymorphism of Trpv6 exists causing three amino acid exchanges and resulting in an ancestral Trpv6 haplotype and a so-called derived Trpv6 haplotype (Wissenbach et al. 2001). The ancestral allele encodes the amino acid residues C197(157), M418(378) and M721(681) and the derived alleles R197(157), V418(378) and T721(681). The ancestral haplotype is found in all species, the derived Trpv6 haplotype has only been identified in humans, and its frequency increases with the distance to the African continent. Apparently the Trpv6 gene has been a strong target for selection in humans, and its derived variant is one of the few examples showing consistently differences to the orthologues genes of other primates (Akey et al. 2004, 2006; Stajich and Hahn 2005; Hughes et al. 2008). (4) The Trpv6 gene expression is significantly upregulated in several human malignancies including the most common cancers, prostate and breast cancer (Wissenbach et al. 2001; Zhuang et al. 2002; Fixemer et al. 2003; Bolanz et al. 2008). (5) Male mice lacking functional TRPV6 channels are hypo-/infertile making TRPV6 one of the very few channels essential for male fertility (Weissgerber et al. 2011, 2012).
Collapse
Affiliation(s)
- Claudia Fecher-Trost
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421, Homburg, Germany
| | | | | |
Collapse
|
25
|
In vivo detection of human TRPV6-rich tumors with anti-cancer peptides derived from soricidin. PLoS One 2013; 8:e58866. [PMID: 23554944 PMCID: PMC3598914 DOI: 10.1371/journal.pone.0058866] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 02/07/2013] [Indexed: 01/04/2023] Open
Abstract
Soricidin is a 54-amino acid peptide found in the paralytic venom of the northern short-tailed shrew (Blarina brevicauda) and has been found to inhibit the transient receptor potential of vallinoid type 6 (TRPV6) calcium channels. We report that two shorter peptides, SOR-C13 and SOR-C27, derived from the C-terminus of soricidin, are high-affinity antagonists of human TRPV6 channels that are up-regulated in a number of cancers. Herein, we report molecular imaging methods that demonstrate the in vivo diagnostic potential of SOR-C13 and SOR-C27 to target tumor sites in mice bearing ovarian or prostate tumors. Our results suggest that these novel peptides may provide an avenue to deliver diagnostic and therapeutic reagents directly to TRPV6-rich tumors and, as such, have potential applications for a range of carcinomas including ovarian, breast, thyroid, prostate and colon, as well as certain leukemia's and lymphomas.
Collapse
|
26
|
Kv3.4 potassium channel-mediated electrosignaling controls cell cycle and survival of irradiated leukemia cells. Pflugers Arch 2013; 465:1209-21. [PMID: 23443853 DOI: 10.1007/s00424-013-1249-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 01/29/2013] [Accepted: 02/08/2013] [Indexed: 10/27/2022]
Abstract
Aberrant ion channel expression in the plasma membrane is characteristic for many tumor entities and has been attributed to neoplastic transformation, tumor progression, metastasis, and therapy resistance. The present study aimed to define the function of these "oncogenic" channels for radioresistance of leukemia cells. Chronic myeloid leukemia cells were irradiated (0-6 Gy X ray), ion channel expression and activity, Ca(2+)- and protein signaling, cell cycle progression, and cell survival were assessed by quantitative reverse transcriptase-polymerase chain reaction, patch-clamp recording, fura-2 Ca(2+)-imaging, immunoblotting, flow cytometry, and clonogenic survival assays, respectively. Ionizing radiation-induced G2/M arrest was preceded by activation of Kv3.4-like voltage-gated potassium channels. Channel activation in turn resulted in enhanced Ca(2+) entry and subsequent activation of Ca(2+)/calmodulin-dependent kinase-II, and inactivation of the phosphatase cdc25B and the cyclin-dependent kinase cdc2. Accordingly, channel inhibition by tetraethylammonium and blood-depressing substance-1 and substance-2 or downregulation by RNA interference led to release from radiation-induced G2/M arrest, increased apoptosis, and decreased clonogenic survival. Together, these findings indicate the functional significance of voltage-gated K(+) channels for the radioresistance of myeloid leukemia cells.
Collapse
|
27
|
Expression of Transient Receptor Potential Vanilloid Channels TRPV5 and TRPV6 in Human Blood Lymphocytes and Jurkat Leukemia T Cells. J Membr Biol 2012; 246:131-40. [DOI: 10.1007/s00232-012-9511-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 10/15/2012] [Indexed: 01/24/2023]
|
28
|
Koo TH, Yang H, An BS, Choi KC, Hyun SH, Jeung EB. Calcium transport genes are differently regulated in maternal and fetal placenta in the knockout mice of calbindin-D(9k) and -D(28k). Mol Reprod Dev 2012; 79:346-55. [PMID: 22407925 DOI: 10.1002/mrd.22033] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 02/21/2012] [Indexed: 12/20/2022]
Abstract
Calbindin-D(9k) (CaBP-9k) and -D(28k) (CaBP-28k) are cytosolic proteins with EF-hand motifs that have a high affinity for calcium ions. Many types of calcium channels and intracellular calcium binding proteins, such as sodium/calcium exchangers (NCXs) and transient receptor potential cation channels (TRPVs), have been detected in the placenta. In this study, the expression of calcium channels involved in maternal-fetal calcium transport were investigated in wild-type mice versus CaBP-9k, CaBP-28k, and CaBP-9k/28k double knockout (KO) mouse models. The expression of calcium transport genes in three dissected sections of the placenta (maternal, central, and fetal) was examined on gestational day 19 (GD 19). The expression of CaBP-9k, TRPV6, TRPV5, and NCX1 mRNA was high in fetal compared to maternal placenta, while CaBP-28k was abundant in the maternal placenta. CaBP-9k was enhanced in all sections of placenta in CaBP-28k KO mice, whereas CaBP-28k was reduced in CaBP-9k KO mice. The expression of TRPV6, TRPV5, and NCX1 were induced in both maternal and fetal placentas in CaBP-9k KO mice, but were upregulated in maternal and central placentas of CaBP-28k KO mice. The levels of these proteins showed similar patterns with those of their mRNA. Placental CaBP-9k, TRPV6, TRPV5, and NCX1 proteins were abundantly expressed in the intraplacental yolk sac located in the fetal placenta. CaBP-28k did not colocalize with other calcium transport genes, although it was enriched in the placental trophoblasts of the decidual zone in the maternal placenta. These results indicate that placental TRPV6, TRPV5, and NCX1 compensate for CaBPs in CaBP-9k and/or CaBP-28k KO mice, and may take over the roles of CaBP-9k and CaBP-28k to transfer calcium ions in the placenta. Taken together, these results indicate that TRPV6, NCX1, and CaBP-9k in the fetal placenta and CaBP-28k in the maternal placenta may play key roles in controlling calcium transport across the placenta during pregnancy.
Collapse
Affiliation(s)
- Tae-Hyoung Koo
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | | | | | | | | | | |
Collapse
|
29
|
Lehen'kyi V, Raphaël M, Prevarskaya N. The role of the TRPV6 channel in cancer. J Physiol 2012; 590:1369-76. [PMID: 22331416 DOI: 10.1113/jphysiol.2011.225862] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Abstract The TRPV6 channel belongs to the superfamily of transient receptor potential (TRP) channels, subfamily vanilloid, member 6. Its expression in health is mainly confined to epithelial tissue of different organs such as digestive tract, kidney, testis, ovaries and skin. Due to its high calcium selectivity over other TRP channels, this channel was shown to participate in close regulation of calcium homeostasis in the body. In cancer a number of pieces of evidence demonstrate its upregulation and correlation with the advanced stages in prostate, colon, breast, thyroid, and ovarian carcinomas. Little is known about its role in initiation or progression for most of cancers, though in prostate cancer its oncogenic potential in vitro has been suggested. The most probable mechanisms involve calcium signalling in the control of processes such as proliferation and apoptosis resistance, though in some cases first evidence was reported as to its likely protective role in some cancers such as colon cancer. Further studies are needed to confirm whether this channel does really have an oncogenic potential or is just the last hope for transformed cells/tissues to stop cancer.
Collapse
Affiliation(s)
- V'yacheslav Lehen'kyi
- Inserm, U-1003, Equipe labellisée par la Ligue Nationale contre le cancer, Villeneuve d'Ascq, France
| | | | | |
Collapse
|
30
|
TRPV channels in tumor growth and progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 704:947-67. [PMID: 21290335 DOI: 10.1007/978-94-007-0265-3_49] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Transient receptor potential (TRP) channels affect several physiological and pathological processes. In particular, TRP channels have been recently involved in the triggering of enhanced proliferation, aberrant differentiation, and resistance to apoptotic cell death leading to the uncontrolled tumor invasion. About thirty TRPs have been identified to date, and are classified in seven different families: TRPC (Canonical), TRPV (Vanilloid), TRPM (Melastatin), TRPML (Mucolipin), TRPP (Polycystin), and TRPA (Ankyrin transmembrane protein) and TRPN (NomPC-like). Among these channel families, the TRPC, TRPM, and TRPV families have been mainly correlated with malignant growth and progression. The aim of this review is to summarize data reported so far on the expression and the functional role of TRPV channels during cancer growth and progression. TRPV channels have been found to regulate cancer cell proliferation, apoptosis, angiogenesis, migration and invasion during tumor progression, and depending on the stage of the cancer, up- and down-regulation of TRPV mRNA and protein expression have been reported. These changes may have cancer promoting effects by increasing the expression of constitutively active TRPV channels in the plasma membrane of cancer cells by enhancing Ca(2+)-dependent proliferative response; in addition, an altered expression of TRPV channels may also offer a survival advantage, such as resistance of cancer cells to apoptotic-induced cell death. However, recently, a role of TRPV gene mutations in cancer development, and a relationship between the expression of specific TRPV gene single nucleotide polymorphisms and increased cancer risk have been reported. We are only at the beginning, a more deep studies on the physiopathology role of TRPV channels are required to understand the functional activity of these channels in cancer, to assess which TRPV proteins are associated with the development and progression of cancer and to develop further knowledge of TRPV proteins as valuable diagnostic and/or prognostic markers, as well as targets for pharmaceutical intervention and targeting in cancer.
Collapse
|
31
|
Dhennin-Duthille I, Gautier M, Faouzi M, Guilbert A, Brevet M, Vaudry D, Ahidouch A, Sevestre H, Ouadid-Ahidouch H. High Expression of Transient Receptor Potential Channels in Human Breast Cancer Epithelial Cells and Tissues: Correlation with Pathological Parameters. Cell Physiol Biochem 2011; 28:813-22. [DOI: 10.1159/000335795] [Citation(s) in RCA: 184] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2011] [Indexed: 01/19/2023] Open
|
32
|
Abstract
Ion channels and notably TRP channels play a crucial role in a variety of physiological functions and in addition these channels have been also shown associated with several diseases including cancer. The process of cancer initiation and progression involves the altered expression of one or more of TRP proteins, depending on the nature of the cancer. The most clearly described role in pathogenesis has been evidenced for TRPM8, TRPV6 and TRPM1 channels. The increased expression of some other channels, such as TRPV1, TRPC1, TRPC6, TRPM4, and TRPM5 has also been demonstrated in some cancers. Further investigations are required to precise the role of TRP channels in cancer development and/or progression and to specifically develop further knowledge of TRP proteins as discriminative markers and prospective targets for pharmaceutical intervention in treating cancer.
Collapse
|
33
|
Ding X, He Z, Shi Y, Wang Q, Wang Y. Targeting TRPC6 channels in oesophageal carcinoma growth. Expert Opin Ther Targets 2010; 14:513-27. [PMID: 20235901 DOI: 10.1517/14728221003733602] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
34
|
New insights into the regulation of ion channels by integrins. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 279:135-90. [PMID: 20797679 DOI: 10.1016/s1937-6448(10)79005-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
By controlling cell adhesion to the extracellular matrix, integrin receptors regulate processes as diverse as cell migration, proliferation, differentiation, apoptosis, and synaptic stability. Because the underlying mechanisms are generally accompanied by changes in transmembrane ion flow, a complex interplay occurs between integrins, ion channels, and other membrane transporters. This reciprocal interaction regulates bidirectional signal transduction across the cell surface and may take place at all levels of control, from transcription to direct conformational coupling. In particular, it is becoming increasingly clear that integrin receptors form macromolecular complexes with ion channels. Besides contributing to the membrane localization of the channel protein, the integrin/channel complex can regulate a variety of downstream signaling pathways, centered on regulatory proteins like tyrosine kinases and small GTPases. In turn, the channel protein usually controls integrin activation and expression. We review some recent advances in the field, with special emphasis on hematology and neuroscience. Some oncological implications are also discussed.
Collapse
|
35
|
Sopjani M, Kunert A, Czarkowski K, Klaus F, Laufer J, Föller M, Lang F. Regulation of the Ca2+ Channel TRPV6 by the Kinases SGK1, PKB/Akt, and PIKfyve. J Membr Biol 2009; 233:35-41. [DOI: 10.1007/s00232-009-9222-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 12/02/2009] [Indexed: 12/29/2022]
|