1
|
Roberts BM, Geddis AV, Matheny RW. The dose-response effects of flurbiprofen, indomethacin, ibuprofen, and naproxen on primary skeletal muscle cells. J Int Soc Sports Nutr 2024; 21:2302046. [PMID: 38198469 PMCID: PMC10783825 DOI: 10.1080/15502783.2024.2302046] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Non-steroidal anti-inflammatory drugs (NSAIDs) like ibuprofen, flurbiprofen, naproxen sodium, and indomethacin are commonly employed for their pain-relieving and inflammation-reducing qualities. NSAIDs work by blocking COX-1 and/or COX-2, enzymes which play roles in inflammation, fever, and pain. The main difference among NSAIDs lies in their affinity to these enzymes, which in turn, influences prostaglandin secretion, and skeletal muscle growth and regeneration. The current study investigated the effects of NSAIDs on human skeletal muscle cells, focusing on myoblast proliferation, differentiation, and muscle protein synthesis signaling. METHODS Using human primary muscle cells, we examined the dose-response impact of flurbiprofen (25-200 µM), indomethacin (25-200 µM), ibuprofen (25-200 µM), and naproxen sodium (25-200 µM), on myoblast viability, myotube area, fusion, and prostaglandin production. RESULTS We found that supraphysiological concentrations of indomethacin inhibited myoblast proliferation (-74 ± 2% with 200 µM; -53 ± 3% with 100 µM; both p < 0.05) compared to control cells and impaired protein synthesis signaling pathways in myotubes, but only attenuated myotube fusion at the highest concentrations (-18 ± 2% with 200 µM, p < 0.05) compared to control myotubes. On the other hand, ibuprofen had no such effects. Naproxen sodium only increased cell proliferation at low concentrations (+36 ± 2% with 25 µM, p < 0.05), and flurbiprofen exhibited divergent impacts depending on the concentration whereby low concentrations improved cell proliferation (+17 ± 1% with 25 µM, p < 0.05) but high concentrations inhibited cell proliferation (-32 ± 1% with 200 µM, p < 0.05). CONCLUSION Our findings suggest that indomethacin, at high concentrations, may detrimentally affect myoblast proliferation and differentiation via an AKT-dependent mechanism, and thus provide new understanding of NSAIDs' effects on skeletal muscle cell development.
Collapse
Affiliation(s)
- Brandon M. Roberts
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Alyssa V. Geddis
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Ronald W. Matheny
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA
- Military Operational Medicine Research Program, Detrick, MD, USA
| |
Collapse
|
2
|
Kobayashi AJ, Sesillo FB, Do E, Alperin M. Effect of nonsteroidal anti-inflammatory drugs on pelvic floor muscle regeneration in a preclinical birth injury rat model. Am J Obstet Gynecol 2024; 230:432.e1-432.e14. [PMID: 38065378 PMCID: PMC10990831 DOI: 10.1016/j.ajog.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/22/2023] [Accepted: 12/03/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Pelvic floor muscle injury is a common consequence of vaginal childbirth. Nonsteroidal anti-inflammatory drugs are widely used postpartum analgesics. Multiple studies have reported negative effects of these drugs on limb muscle regeneration, but their impact on pelvic floor muscle recovery following birth injury has not been explored. OBJECTIVE Using a validated rat model, we assessed the effects of nonsteroidal anti-inflammatory drug on acute and longer-term pelvic floor muscle recovery following simulated birth injury. STUDY DESIGN Three-month old Sprague Dawley rats were randomly assigned to the following groups: (1) controls, (2) simulated birth injury, (3) simulated birth injury+nonsteroidal anti-inflammatory drug, or (4) nonsteroidal anti-inflammatory drug. Simulated birth injury was induced using a well-established vaginal balloon distension protocol. Ibuprofen was administered in drinking water (0.2 mg/mL), which was consumed by the animals ad libitum. Animals were euthanized at 1, 3, 5, 7, 10, and 28 days after birth injury/ibuprofen administration. The pubocaudalis portion of the rat levator ani, which, like the human pubococcygeus, undergoes greater parturition-associated strains, was harvested (N=3-9/time point/group). The cross-sectional areas of regenerating (embryonic myosin heavy chain+) and mature myofibers were assessed at the acute and 28-day time points, respectively. The intramuscular collagen content was assessed at the 28-day time point. Myogenesis was evaluated using anti-Pax7 and anti-myogenin antibodies to identify activated and differentiated muscle stem cells, respectively. The overall immune infiltrate was assessed using anti-CD45 antibody. Expression of genes coding for pro- and anti-inflammatory cytokines was assessed by quantitative reverse transcriptase polymerase chain reaction at 3, 5, and 10 days after injury. RESULTS The pubocaudalis fiber size was significantly smaller in the simulated birth injury+nonsteroidal anti-inflammatory drug compared with the simulated birth injury group at 28 days after injury (P<.0001). The median size of embryonic myosin heavy chain+ fibers was also significantly reduced, with the fiber area distribution enriched with smaller fibers in the simulated birth injury+nonsteroidal anti-inflammatory drug group relative to the simulated birth injury group at 3 days after injury (P<.0001), suggesting a delay in the onset of regeneration in the presence of nonsteroidal anti-inflammatory drugs. By 10 days after injury, the median embryonic myosin heavy chain+ fiber size in the simulated birth injury group decreased from 7 days after injury (P<.0001) with a tight cross-sectional area distribution, indicating nearing completion of this state of regeneration. However, in the simulated birth injury+nonsteroidal anti-inflammatory drug group, the size of embryonic myosin heavy chain+ fibers continued to increase (P<.0001) with expansion of the cross-sectional area distribution, signifying a delay in regeneration in these animals. Nonsteroidal anti-inflammatory drugs decreased the muscle stem cell pool at 7 days after injury (P<.0001) and delayed muscle stem cell differentiation, as indicated by persistently elevated number of myogenin+ cells 7 days after injury (P<.05). In contrast, a proportion of myogenin+ cells returned to baseline by 5 days after injury in the simulated birth injury group. The analysis of expression of genes coding for pro- and anti-inflammatory cytokines demonstrated only transient elevation of Tgfb1 in the simulated birth injury+nonsteroidal anti-inflammatory drug group at 5 but not at 10 days after injury. Consistently with previous studies, nonsteroidal anti-inflammatory drug administration following simulated birth injury resulted in increased deposition of intramuscular collagen relative to uninjured animals. There were no significant differences in any outcomes of interest between the nonsteroidal anti-inflammatory drug group and the unperturbed controls. CONCLUSION Nonsteroidal anti-inflammatory drugs negatively impacted pelvic floor muscle regeneration in a preclinical simulated birth injury model. This appears to be driven by the negative impact of these drugs on pelvic muscle stem cell function, resulting in delayed temporal progression of pelvic floor muscle regeneration following birth injury. These findings provide impetus to investigate the impact of postpartum nonsteroidal anti-inflammatory drug administration on muscle regeneration in women at high risk for pelvic floor muscle injury.
Collapse
Affiliation(s)
- Alyssa J Kobayashi
- Division of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Francesca Boscolo Sesillo
- Division of Urogynecology and Reconstructive Pelvic Surgery, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Diego, San Diego, CA
| | - Emmy Do
- Division of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Marianna Alperin
- Division of Urogynecology and Reconstructive Pelvic Surgery, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Diego, San Diego, CA; Sanford Consortium for Regenerative Medicine, La Jolla, CA.
| |
Collapse
|
3
|
Toita R, Kitamura M, Tsuchiya A, Kang J, Kasahara S. Releasable, Immune-Instructive, Bioinspired Multilayer Coating Resists Implant-Induced Fibrosis while Accelerating Tissue Repair. Adv Healthc Mater 2024; 13:e2302611. [PMID: 38095751 PMCID: PMC11468989 DOI: 10.1002/adhm.202302611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Indexed: 12/21/2023]
Abstract
Implantable biomaterials trigger foreign body reactions (FBRs), which reduces the functional life of medical devices and prevents effective tissue regeneration. Although existing therapeutic approaches can circumvent collagen-rich fibrotic encapsulation secondary to FBRs, they disrupt native tissue repair. Herein, a new surface engineering strategy in which an apoptotic-mimetic, immunomodulatory, phosphatidylserine liposome (PSL) is released from an implant coating to induce the formation of a macrophage phenotype that mitigates FBRs and improves tissue healing is described. PSL-multilayers constructed on implant surfaces via the layer-by-layer method release PSLs over a 1-month period. In rat muscles, poly(etheretherketone) (PEEK), a nondegradable polymer implant model, induces FBRs with dense fibrotic scarring under an aberrant cellular profile that recruits high levels of inflammatory infiltrates, foreign body giant cells (FBGCs), scar-forming myofibroblasts, and inflammatory M1-like macrophages but negligible amounts of anti-inflammatory M2-like phenotypes. However, the PSL-multilayer coating markedly diminishes these detrimental signatures by shifting the macrophage phenotype. Unlike other therapeutics, PSL-multilayered coatings also stimulate muscle regeneration. This study demonstrates that PSL-multilayered coatings are effective in eliminating FBRs and promoting regeneration, hence offering potent and broad applications for implantable biomaterials.
Collapse
Affiliation(s)
- Riki Toita
- Biomedical Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)1‐8‐31 MidorigaokaIkedaOsaka563‐8577Japan
- AIST‐Osaka University Advanced Photonics and Biosensing Open Innovation LaboratoryAIST2‐1 YamadaokaSuitaOsaka565‐0871Japan
| | - Masahiro Kitamura
- Niterra Co., Ltd.2808 IwasakiKomakiAichi485–8510Japan
- NGK Spark Plug‐AIST Healthcare Materials Cooperative Research Laboratory2266–98 AnagahoraShimoshidami, Moriyama‐kuNagoyaAichi463–8560Japan
| | - Akira Tsuchiya
- Department of BiomaterialsFaculty of Dental ScienceKyushu University3‐1‐1 MaidashiHigashi‐kuFukuoka812–8582Japan
| | - Jeong‐Hun Kang
- Division of Biopharmaceutics and PharmacokineticsNational Cerebral and Cardiovascular Center Research Institute6‐1 Shinmachi, KishibeSuitaOsaka564–8565Japan
| | | |
Collapse
|
4
|
Pizza FX, Buckley KH. Regenerating Myofibers after an Acute Muscle Injury: What Do We Really Know about Them? Int J Mol Sci 2023; 24:12545. [PMID: 37628725 PMCID: PMC10454182 DOI: 10.3390/ijms241612545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Injury to skeletal muscle through trauma, physical activity, or disease initiates a process called muscle regeneration. When injured myofibers undergo necrosis, muscle regeneration gives rise to myofibers that have myonuclei in a central position, which contrasts the normal, peripheral position of myonuclei. Myofibers with central myonuclei are called regenerating myofibers and are the hallmark feature of muscle regeneration. An important and underappreciated aspect of muscle regeneration is the maturation of regenerating myofibers into a normal sized myofiber with peripheral myonuclei. Strikingly, very little is known about processes that govern regenerating myofiber maturation after muscle injury. As knowledge of myofiber formation and maturation during embryonic, fetal, and postnatal development has served as a foundation for understanding muscle regeneration, this narrative review discusses similarities and differences in myofiber maturation during muscle development and regeneration. Specifically, we compare and contrast myonuclear positioning, myonuclear accretion, myofiber hypertrophy, and myofiber morphology during muscle development and regeneration. We also discuss regenerating myofibers in the context of different types of myofiber necrosis (complete and segmental) after muscle trauma and injurious contractions. The overall goal of the review is to provide a framework for identifying cellular and molecular processes of myofiber maturation that are unique to muscle regeneration.
Collapse
Affiliation(s)
- Francis X. Pizza
- Department of Exercise and Rehabilitation Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Kole H. Buckley
- Division of Gastroenterology and Hepatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA;
| |
Collapse
|
5
|
Huschtscha Z, Fyfe JJ, Feros SA, Betik AC, Shaw CS, Main LC, Abbott G, Tan SY, Refalo MC, Gerhardy M, Grunwald E, May A, Silver J, Smith CM, White M, Hamilton DL. A randomised controlled trial assessing the potential of palmitoylethanolamide (PEA) to act as an adjuvant to resistance training in healthy adults: a study protocol. Trials 2023; 24:245. [PMID: 37004121 PMCID: PMC10064518 DOI: 10.1186/s13063-023-07199-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/22/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND Non-steroidal anti-inflammatory drugs (NSAIDs) and analgesics are used frequently by athletes either prophylactically for the prevention of pain, or to accelerate recovery following an injury. However, these types of pain management strategies have been shown to inhibit signalling pathways (e.g., cyclooxygenase-2) that may hinder muscular adaptations such as hypertrophy and strength. Nutraceuticals such as palmitoylethanolamide (PEA) have analgesic properties that act via different mechanisms to NSAIDS/analgesics. Furthermore, PEA has been shown to have a positive effect on sleep and may contribute positively to muscle hypertrophy via PKB activation. Although PEA has not been widely studied in the athletic or recreationally active population, it may provide an alternative solution for pain management if it is found not to interfere with, or enhance training adaptations. Therefore, the study aim is to investigate the effects of daily PEA supplementation (Levagen + ®) with resistance training on lean body mass, strength, power and physical performance and outcomes of recovery (e.g., sleep) compared to placebo. METHODS This double-blind, randomised controlled study will take place over an 11-week period (including 8-weeks of progressive resistance training). Participants for this study will be 18-35 years old, healthy active adults that are not resistance trained. Participants will attend a familiarisation (week 0), pre-testing (week 1) and final-testing (week 11). At the pre-testing and final-testing weeks, total lean body mass (dual-energy X-ray absorptiometry; DXA), total mid-thigh cross sectional area (pQCT), maximal muscular strength (1 repetition maximum bench press, isometric mid-thigh pull) and power (countermovement jump and bench throw) will be assessed. Additionally, circulating inflammatory cytokines and anabolic hormones, sleep quality and quantity (ActiGraph), pain and subjective wellbeing (questionnaires) will also be examined. DISCUSSION This study is designed to investigate the effects that PEA may have on pre-to post intervention changes in total body and regional lean muscle mass, strength, power, sleep, subjective wellbeing, and pain associated with resistance training and menstruation compared with the placebo condition. Unlike other NSAIDs and analgesics, which may inhibit muscle protein synthesis and training adaptations, PEA which provides analgesia via alternative mechanisms may provide an alternative pain management solution. It is therefore important to determine if this analgesic compound interferes with or enhances training adaptations so that athletes and active individuals can make an informed decision on their pain management strategies. TRIAL REGISTRATION Australian New Zealand Clinical Trials Registry (ANZCTR: ACTRN12621001726842p).
Collapse
Affiliation(s)
- Zoya Huschtscha
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, 3216, Australia
| | - Jackson J Fyfe
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, 3216, Australia
| | - Simon A Feros
- Centre for Sport Research (CSR), School of Exercise and Nutrition Sciences, Deakin University, Geelong, 3216, Australia
| | - Andrew C Betik
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, 3216, Australia
| | - Christopher S Shaw
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, 3216, Australia
| | - Luana C Main
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, 3216, Australia
| | - Gavin Abbott
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, 3216, Australia
| | - Sze-Yen Tan
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, 3216, Australia
| | - Martin C Refalo
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, 3216, Australia
| | - Michael Gerhardy
- Centre for Sport Research (CSR), School of Exercise and Nutrition Sciences, Deakin University, Geelong, 3216, Australia
| | - Emma Grunwald
- School of Exercise and Nutrition Sciences, Deakin University, Geelong, 3216, Australia
| | - Anthony May
- School of Exercise and Nutrition Sciences, Deakin University, Geelong, 3216, Australia
| | - Jessica Silver
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, 3216, Australia
| | - Craig M Smith
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, 3216, Australia
| | - Matthew White
- Centre for Sport Research (CSR), School of Exercise and Nutrition Sciences, Deakin University, Geelong, 3216, Australia
| | - D Lee Hamilton
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, 3216, Australia.
| |
Collapse
|
6
|
Zuntini ACS, Damico MV, Gil CD, Godinho RO, Pacini ESA, Fortes-Dias CL, Moreira V. The early inhibition of the COX-2 pathway in viperid phospholipase A 2-induced skeletal muscle myotoxicity accelerates the tissue regeneration. Toxicol Appl Pharmacol 2023; 461:116384. [PMID: 36702313 DOI: 10.1016/j.taap.2023.116384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/25/2023]
Abstract
The administration of non-steroidal anti-inflammatory drugs in the treatment of injury and muscle regeneration is still contradictory in effectiveness, especially regarding the timing of their administration. This can interfere with the production of prostaglandins originating from inflammatory isoform cyclooxygenase-2 (COX-2), which is essential to modulate tissue regeneration. The phospholipases A2 (PLA2) from viperid venoms cause myotoxicity, therefore constituting a tool for the study of supportive therapies to improve skeletal muscle regeneration. This study investigated the effect of early administration of lumiracoxib (selective inhibitor of COX-2) on the degeneration and regeneration stages of skeletal muscle after injury induced by a myotoxic PLA2. After 30 min and 48 h of intramuscular injection of PLA2, mice received lumiracoxib orally and histological, functional, and transcriptional parameters of muscle were evaluated from 6 h to 21 days. Inhibition of COX-2 in the early periods of PLA2-induced muscle degeneration reduced leukocyte influx, edema, and tissue damage. After the second administration of lumiracoxib, in regenerative stage, muscle showed increase in number of basophilic fibers, reduction in fibrosis content and advanced recovery of functionality characterized by the presence of fast type II fibers. The expression of Pax7 and myogenin were increased, indicating a great capacity for storing satellite cells and advanced mature state of tissue. Our data reveals a distinct role of COX-2-derived products during muscle degeneration and regeneration, in which early administration of lumiracoxib was a therapeutic strategy to modulate the effects of prostaglandins, providing a breakthrough in muscle tissue regeneration induced by a myotoxic PLA2.
Collapse
Affiliation(s)
- Ana Carolina Siqueira Zuntini
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP 04044-020, Brazil
| | - Marcio Vinícius Damico
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP 04044-020, Brazil
| | - Cristiane Damas Gil
- Departamento de Morfologia e Genética, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-900, Brazil
| | - Rosely Oliveira Godinho
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP 04044-020, Brazil
| | - Enio Setsuo Arakaki Pacini
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP 04044-020, Brazil
| | | | - Vanessa Moreira
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP 04044-020, Brazil.
| |
Collapse
|
7
|
Matheny RW, Kolb AL, Geddis AV, Roberts BM. Celecoxib impairs primary human myoblast proliferation and differentiation independent of cyclooxygenase 2 inhibition. Physiol Rep 2022; 10:e15481. [PMID: 36325583 PMCID: PMC9630763 DOI: 10.14814/phy2.15481] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/29/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023] Open
Abstract
The use of non-steroidal anti-inflammatory drugs (NSAIDs) for treatment of musculoskeletal injuries is commonplace in the general, athletic, and military populations. While NSAIDs have been studied in a variety of tissues, the effects of NSAIDs on skeletal muscle have not been fully defined. To address this, we investigated the degree to which the cyclooxygenase (COX)-2-selective NSAID celecoxib affects muscle cell proliferation, differentiation, anabolic signaling, and mitochondrial function in primary human skeletal myoblasts and myotubes. Primary muscle cells were treated with celecoxib or NS-398 (a pharmacological inhibitor of COX-2) as a control. Celecoxib administration significantly reduced myoblast proliferation, viability, fusion, and myotube area in a dose-dependent manner, whereas NS-398 had no effect on any of these outcomes. Celecoxib treatment was also associated with reduced phosphorylation of ribosomal protein S6 in myoblasts, and reduced phosphorylation of AKT, p70S6K, S6, and ERK in myotubes. In contrast, NS-398 did not alter phosphorylation of these molecules in myoblasts or myotubes. In myoblasts, celecoxib significantly reduced mitochondrial membrane potential and respiration, as evidenced by the decreased citric acid cycle (CAC) intermediates cis-aconitic acid, alpha-keto-glutarate acid, succinate acid, and malic acid. Similar results were observed in myotubes, although celecoxib also reduced pyruvic acid, citric acid, and fumaric acid. NS-398 did not affect CAC intermediates in myoblasts or myotubes. Together, these data reveal that celecoxib inhibits proliferation, differentiation, intracellular signaling, and mitochondrial function in primary human myoblasts and myotubes independent of its function as a COX-2 inhibitor.
Collapse
Affiliation(s)
- Ronald W. Matheny
- Military Performance DivisionUS Army Research Institute of Environmental MedicineNatickMassachusettsUSA
- Military Operational Medicine Research ProgramFt. DetrickMarylandUSA
| | - Alexander L. Kolb
- Military Performance DivisionUS Army Research Institute of Environmental MedicineNatickMassachusettsUSA
| | - Alyssa V. Geddis
- Military Performance DivisionUS Army Research Institute of Environmental MedicineNatickMassachusettsUSA
| | - Brandon M. Roberts
- Military Performance DivisionUS Army Research Institute of Environmental MedicineNatickMassachusettsUSA
| |
Collapse
|
8
|
Aidar FJ, Fraga GS, Getirana-Mota M, Marçal AC, Santos JL, de Souza RF, Vieira-Souza LM, Ferreira ARP, de Matos DG, de Almeida-Neto PF, Garrido ND, Díaz-de-Durana AL, Knechtle B, de Araújo Tinoco Cabral BG, Murawska-Ciałowicz E, Nobari H, Silva AF, Clemente FM, Badicu G. Evaluation of Ibuprofen Use on the Immune System Indicators and Force in Disabled Paralympic Powerlifters of Different Sport Levels. Healthcare (Basel) 2022; 10:healthcare10071331. [PMID: 35885857 PMCID: PMC9323516 DOI: 10.3390/healthcare10071331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Paralympic powerlifting (PP) training is typically intense and causes fatigue and alterations in the immune system. Objective: To analyze whether IBU would affect performance and the immune system after training in PP. Methodology: 10 athletes at the national level (NL) and 10 at the regional level (RL) participated in the study, where force and blood indicators were evaluated after training. The study took place over three weeks: (1) familiarization and (2 and 3) comparison between recovery methods, with ibuprofen or placebo (IBU vs. PLA), 800 mg. In the evaluation of the force, the peak torque (PT), fatigue index (FI), and blood immune system biomarkers were analyzed. The training consisted of five sets of five repetitions with 80% of one maximum repetition (5 × 5, 80% 1RM) on the bench press. Results: The PT at the national level using IBU was higher than with PLA (p = 0.007, η2p = 0.347), and the FI in the NL was lower with IBU than with PLA (p = 0.002, η2p = 0.635), and when comparing the use of IBU, the NL showed less fatigue than the regional level (p = 0.004, η2p = 0.414). Leukocytes, with the use of IBU in the NL group, were greater than in the RL (p = 0.001, η2p = 0.329). Neutrophils, in the NL with IBU, were greater than in the RL with IBU and PLA (p = 0.025, η2p = 0.444). Lymphocytes, in NL with IBU were lower than in RL with IBU and PLA (p = 0.001, η2p = 0.491). Monocytes, in the NL with IBU and PLA, were lower than in the RL with IBU (p = 0.049, η2p = 0.344). For hemoglobin, hematocrit, and erythrocyte, the NL with IBU and PLA were higher than the RL with IBU and PLA (p < 0.05). Ammonia, with the use of IBU in the NL, obtained values higher than in the RL (p = 0.007), and with the use of PLA, the NL was higher than the RL (p = 0.038, η2p = 0.570). Conclusion: The training level tends to influence the immune system and, combined with the use of the IBU, it tends to improve recovery and the immune system.
Collapse
Affiliation(s)
- Felipe J. Aidar
- Graduate Program of Physical Education, Federal University of Sergipe (UFS), São Cristovão 49100-000, Brazil; (F.J.A.); (G.S.F.); (M.G.-M.); (A.C.M.); (J.L.S.); (R.F.d.S.); (L.M.V.-S.)
- Group of Studies and Research of Performance, Sport, Health and Paralympic Sports (GEPEPS), Federal University of Sergipe (UFS), São Cristovão 49100-000, Brazil
- Department of Physical Education, Federal University of Sergipe (UFS), São Cristovão 49100-000, Brazil
- Graduate Program of Physiological Science, Federal University of Sergipe (UFS), São Cristovão 49100-000, Brazil
| | - Guacira S. Fraga
- Graduate Program of Physical Education, Federal University of Sergipe (UFS), São Cristovão 49100-000, Brazil; (F.J.A.); (G.S.F.); (M.G.-M.); (A.C.M.); (J.L.S.); (R.F.d.S.); (L.M.V.-S.)
| | - Márcio Getirana-Mota
- Graduate Program of Physical Education, Federal University of Sergipe (UFS), São Cristovão 49100-000, Brazil; (F.J.A.); (G.S.F.); (M.G.-M.); (A.C.M.); (J.L.S.); (R.F.d.S.); (L.M.V.-S.)
- Group of Studies and Research of Performance, Sport, Health and Paralympic Sports (GEPEPS), Federal University of Sergipe (UFS), São Cristovão 49100-000, Brazil
| | - Anderson Carlos Marçal
- Graduate Program of Physical Education, Federal University of Sergipe (UFS), São Cristovão 49100-000, Brazil; (F.J.A.); (G.S.F.); (M.G.-M.); (A.C.M.); (J.L.S.); (R.F.d.S.); (L.M.V.-S.)
- Group of Studies and Research of Performance, Sport, Health and Paralympic Sports (GEPEPS), Federal University of Sergipe (UFS), São Cristovão 49100-000, Brazil
| | - Jymmys L. Santos
- Graduate Program of Physical Education, Federal University of Sergipe (UFS), São Cristovão 49100-000, Brazil; (F.J.A.); (G.S.F.); (M.G.-M.); (A.C.M.); (J.L.S.); (R.F.d.S.); (L.M.V.-S.)
- Group of Studies and Research of Performance, Sport, Health and Paralympic Sports (GEPEPS), Federal University of Sergipe (UFS), São Cristovão 49100-000, Brazil
| | - Raphael Fabricio de Souza
- Graduate Program of Physical Education, Federal University of Sergipe (UFS), São Cristovão 49100-000, Brazil; (F.J.A.); (G.S.F.); (M.G.-M.); (A.C.M.); (J.L.S.); (R.F.d.S.); (L.M.V.-S.)
- Group of Studies and Research of Performance, Sport, Health and Paralympic Sports (GEPEPS), Federal University of Sergipe (UFS), São Cristovão 49100-000, Brazil
- Department of Physical Education, Federal University of Sergipe (UFS), São Cristovão 49100-000, Brazil
| | - Lucio Marques Vieira-Souza
- Graduate Program of Physical Education, Federal University of Sergipe (UFS), São Cristovão 49100-000, Brazil; (F.J.A.); (G.S.F.); (M.G.-M.); (A.C.M.); (J.L.S.); (R.F.d.S.); (L.M.V.-S.)
- Group of Studies and Research of Performance, Sport, Health and Paralympic Sports (GEPEPS), Federal University of Sergipe (UFS), São Cristovão 49100-000, Brazil
- Department of Physical Education, State Univerity of Minas Gerais (UEMG), Passos 37900-106, Brazil
| | | | - Dihogo Gama de Matos
- Cardiovascular & Physiology of Exercise Laboratory, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | - Paulo Francisco de Almeida-Neto
- Department of Physical Education, Federal University of Rio Grande do Norte, Natal 59064-741, Brazil; (P.F.d.A.-N.); (B.G.d.A.T.C.)
| | - Nuno Domingos Garrido
- Research Center in Sports Sciences, Health Sciences and Human Development (CIDESD), University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal;
| | - Alfonso López Díaz-de-Durana
- Sports Department, Physical Activity and Sports Faculty-INEF, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
| | - Beat Knechtle
- Institute of Primary Care, University of Zurich, 8091 Zurich, Switzerland;
- Medbase St. Gallen Am Vadianplatz, 9001 St. Gallen, Switzerland
| | | | - Eugenia Murawska-Ciałowicz
- Physiology and Biochemistry Department, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland;
| | - Hadi Nobari
- Department of Exercise Physiology, Faculty of Educational Sciences and Psychology, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran;
- Faculty of Sport Sciences, University of Extremadura, 10003 Cáceres, Spain
| | - Ana Filipa Silva
- Escola Superior de Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal; (A.F.S.); (F.M.C.)
- Research Center in Sports Sciences, Health Sciences and Human Development (CIDESD), Polytechnic Institute of Maia, Maia, 5001-801 Vila Real, Portugal
| | - Filipe Manuel Clemente
- Escola Superior de Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal; (A.F.S.); (F.M.C.)
- Instituto de Telecomunicações, Delegação da Covilhã, 1049-001 Lisboa, Portugal
| | - Georgian Badicu
- Department of Physical Education and Special Motricity, Transilvania University of Brasov, 500068 Brasov, Romania
- Correspondence:
| |
Collapse
|
9
|
Aidar FJ, Fraga GS, Getirana-Mota M, Marçal AC, Santos JL, de Souza RF, Ferreira ARP, Neves EB, Zanona ADF, Bulhões-Correia A, de Almeida-Neto PF, Fernandes TLB, Garrido ND, Cirilo-Sousa MDS, Merino-Fernández M, Díaz-de-Durana AL, Murawska-Ciałowicz E, Cabral BGDAT, Clemente FM. Effects of Ibuprofen Use on Lymphocyte Count and Oxidative Stress in Elite Paralympic Powerlifting. BIOLOGY 2021; 10:biology10100986. [PMID: 34681085 PMCID: PMC8533337 DOI: 10.3390/biology10100986] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/12/2021] [Accepted: 09/23/2021] [Indexed: 01/03/2023]
Abstract
Simple Summary Paralympic Powerlifting (PP) is a strength sport and training tends to promote fatigue. Ten national-level PP athletes were evaluated concerning post-training oxidative stress using Ibuprofen and a placebo. Strength indicators were evaluated. The training consisted of five sets of five repetitions (80–90% 1-Repetition Maximum) in the bench press. The IBU had a positive effect on strength indicators, with decreased fatigue and increased lymphocyte count. There were no differences in oxidative stress. The use of IBU provided improvements in strength and fatigue reduction and did not protect against oxidative stress. Abstract Background: Paralympic Powerlifting (PP) training tends to promote fatigue and oxidative stress. Objective: To analyze the effects of ibuprofen use on performance and oxidative stress in post-training PP athletes. Methodology: Ten national level PP athletes (age: 27.13 ± 5.57) were analyzed for oxidative stress in post-training. The study was carried out in three weeks, (1) familiarization and (2 and 3) evaluated the recovery with the use of a placebo (PLA) and ibuprofen (IBU), 800 mg. The Peak Torque (PT), Torque Development Rate (TDR), Fatigue Index (FI), reactive substances to thiobarbituric acid (TBARS) and sulfhydryl groups (SH) were evaluated. The training consisted of five sets of five repetitions (80–90%) 1-Repetition Maximum (1-RM) in the bench press. Results: The IBU showed a higher PT (24 and 48 h, p = 0.04, ɳ2 p = 0.39), a lower FI (24 h, p = 0.01, ɳ2p = 0.74) and an increased lymphocyte count (p < 0.001; ɳ2p = 4.36). There was no change in oxidative stress. Conclusions: The use of IBU provided improvements in strength and did not protect against oxidative stress.
Collapse
Affiliation(s)
- Felipe J. Aidar
- Graduate Program of Physical Education, Federal University of Sergipe (UFS), São Cristovão 49100-000, Brazil; (G.S.F.); (M.G.-M.); (A.C.M.); (J.L.S.); (R.F.d.S.)
- Group of Studies and Research of Performance, Sport, Health and Paralympic Sports (GEPEPS), Federal University of Sergipe (UFS), São Cristovão 49100-000, Brazil
- Department of Physical Education, Federal University of Sergipe (UFS), São Cristovão 49100-000, Brazil
- Graduate Program of Physiological Science, Federal University of Sergipe (UFS), São Cristovão 49100-000, Brazil
- Correspondence: ; Tel.: +55-(79)-99685-7777
| | - Guacira S. Fraga
- Graduate Program of Physical Education, Federal University of Sergipe (UFS), São Cristovão 49100-000, Brazil; (G.S.F.); (M.G.-M.); (A.C.M.); (J.L.S.); (R.F.d.S.)
| | - Márcio Getirana-Mota
- Graduate Program of Physical Education, Federal University of Sergipe (UFS), São Cristovão 49100-000, Brazil; (G.S.F.); (M.G.-M.); (A.C.M.); (J.L.S.); (R.F.d.S.)
- Group of Studies and Research of Performance, Sport, Health and Paralympic Sports (GEPEPS), Federal University of Sergipe (UFS), São Cristovão 49100-000, Brazil
| | - Anderson Carlos Marçal
- Graduate Program of Physical Education, Federal University of Sergipe (UFS), São Cristovão 49100-000, Brazil; (G.S.F.); (M.G.-M.); (A.C.M.); (J.L.S.); (R.F.d.S.)
- Group of Studies and Research of Performance, Sport, Health and Paralympic Sports (GEPEPS), Federal University of Sergipe (UFS), São Cristovão 49100-000, Brazil
| | - Jymmys L. Santos
- Graduate Program of Physical Education, Federal University of Sergipe (UFS), São Cristovão 49100-000, Brazil; (G.S.F.); (M.G.-M.); (A.C.M.); (J.L.S.); (R.F.d.S.)
- Group of Studies and Research of Performance, Sport, Health and Paralympic Sports (GEPEPS), Federal University of Sergipe (UFS), São Cristovão 49100-000, Brazil
| | - Raphael Fabricio de Souza
- Graduate Program of Physical Education, Federal University of Sergipe (UFS), São Cristovão 49100-000, Brazil; (G.S.F.); (M.G.-M.); (A.C.M.); (J.L.S.); (R.F.d.S.)
- Group of Studies and Research of Performance, Sport, Health and Paralympic Sports (GEPEPS), Federal University of Sergipe (UFS), São Cristovão 49100-000, Brazil
- Department of Physical Education, Federal University of Sergipe (UFS), São Cristovão 49100-000, Brazil
| | | | - Eduardo Borba Neves
- Graduate Program in Biomedical Engineering, Federal Technological University of Paraná (UTFPR), Curitiba 80230-901, Brazil;
| | | | - Alexandre Bulhões-Correia
- Department of Physical Education, Federal University of Rio Grande do Norte, Natal 59064-741, Brazil; (A.B.-C.); (P.F.d.A.-N.); (B.G.d.A.T.C.)
| | - Paulo Francisco de Almeida-Neto
- Department of Physical Education, Federal University of Rio Grande do Norte, Natal 59064-741, Brazil; (A.B.-C.); (P.F.d.A.-N.); (B.G.d.A.T.C.)
| | - Tulio Luiz Banja Fernandes
- Institute of Physical Education and Sport, Federal University of Ceará (UFC), Fortaleza 60020-181, Brazil;
| | - Nuno Domingos Garrido
- Research Center in Sports Sciences, Health Sciences and Human Development (CIDESD), University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal;
| | - Maria do Socorro Cirilo-Sousa
- Graduate Program Association of Physical Education, Federal University of Paraíba (UFPB), João Pessoa 58051-900, Brazil;
- Department of Physical Education, Regional of University (URCA), Crato 63105-010, Brazil
| | - María Merino-Fernández
- Faculty of Health Sciences, Universidad Francisco de Vitoria (UFV), 28223 Madrid, Spain;
| | - Alfonso López Díaz-de-Durana
- Sports Department, Physical Activity and Sports Faculty-INEF, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
| | - Eugenia Murawska-Ciałowicz
- Physiology and Biochemistry Department, University School of Physical Education, 51-612 Wroclaw, Poland;
| | | | - Filipe Manuel Clemente
- Escola Superior Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal;
- Instituto de Telecomunicações, Delegação da Covilhã, 1049-001 Lisboa, Portugal
| |
Collapse
|
10
|
Kumar A, Tahimic CGT, Almeida EAC, Globus RK. Spaceflight Modulates the Expression of Key Oxidative Stress and Cell Cycle Related Genes in Heart. Int J Mol Sci 2021; 22:9088. [PMID: 34445793 PMCID: PMC8396460 DOI: 10.3390/ijms22169088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
Spaceflight causes cardiovascular changes due to microgravity-induced redistribution of body fluids and musculoskeletal unloading. Cardiac deconditioning and atrophy on Earth are associated with altered Trp53 and oxidative stress-related pathways, but the effects of spaceflight on cardiac changes at the molecular level are less understood. We tested the hypothesis that spaceflight alters the expression of key genes related to stress response pathways, which may contribute to cardiovascular deconditioning during extended spaceflight. Mice were exposed to spaceflight for 15 days or maintained on Earth (ground control). Ventricle tissue was harvested starting ~3 h post-landing. We measured expression of select genes implicated in oxidative stress pathways and Trp53 signaling by quantitative PCR. Cardiac expression levels of 37 of 168 genes tested were altered after spaceflight. Spaceflight downregulated transcription factor, Nfe2l2 (Nrf2), upregulated Nox1 and downregulated Ptgs2, suggesting a persistent increase in oxidative stress-related target genes. Spaceflight also substantially upregulated Cdkn1a (p21) and cell cycle/apoptosis-related gene Myc, and downregulated the inflammatory response gene Tnf. There were no changes in apoptosis-related genes such as Trp53. Spaceflight altered the expression of genes regulating redox balance, cell cycle and senescence in cardiac tissue of mice. Thus, spaceflight may contribute to cardiac dysfunction due to oxidative stress.
Collapse
Affiliation(s)
- Akhilesh Kumar
- Space Biosciences Division, NASA Ames Research Center, Mail Stop 288-2, Moffett Field, CA 94035, USA; (A.K.); (E.A.C.A.)
| | | | - Eduardo A. C. Almeida
- Space Biosciences Division, NASA Ames Research Center, Mail Stop 288-2, Moffett Field, CA 94035, USA; (A.K.); (E.A.C.A.)
| | - Ruth K. Globus
- Space Biosciences Division, NASA Ames Research Center, Mail Stop 288-2, Moffett Field, CA 94035, USA; (A.K.); (E.A.C.A.)
| |
Collapse
|
11
|
Silva NC, Alvarez AM, DeOcesano-Pereira C, Fortes-Dias CL, Moreira V. Catalytically active phospholipase A 2 myotoxin from Crotalus durissus terrificus induces proliferation and differentiation of myoblasts dependent on prostaglandins produced by both COX-1 and COX-2 pathways. Int J Biol Macromol 2021; 187:603-613. [PMID: 34314795 DOI: 10.1016/j.ijbiomac.2021.07.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 01/18/2023]
Abstract
Although crotoxin B (CB) is a well-established catalytically active secretory phospholipase A2 group IIA (sPLA2-IIA) myotoxin, we investigated its potential stimulatory effect on myogenesis with the involvement of prostaglandins (PGs) produced by cyclooxygenase (COX)-1 and -2 pathways. Myoblast C2C12 were cultured in proliferation or commitment protocols and incubated with CB followed by lumiracoxib (selective COX-2 inhibitor) or valeryl salicylate (selective COX-1 inhibitor) and subjected to analysis of PG release, cell proliferation and activation of myogenic regulatory factors (MRFs). Our data showed that CB in non-cytotoxic concentrations induces an increase of COX-2 protein expression and stimulates the activity of both COX isoforms to produce PGE2, PGD2 and 15d-PGJ2. CB induced an increase in the proliferation of C2C12 myoblast cells dependent on PGs from both COX-1 and COX-2 pathways. In addition, CB stimulated the activity of Pax7, MyoD, Myf5 and myogenin in proliferated cells. Otherwise, CB increased myogenin activity but not MyoD in committed cells. Our findings evidence the role of COX-1- and COX-2-derived PGs in modulating CB-induced activation of MRFs. This study contributes to the knowledge that CB promote early myogenic events via regulatory mechanisms on PG-dependent COX pathways, showing new concepts about the effect of sPLA2-IIA in skeletal muscle repair.
Collapse
Affiliation(s)
- Nadine C Silva
- Pharmacology Department, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP 04044-020, Brazil
| | - Angela M Alvarez
- Pharmacology Department, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP 04044-020, Brazil; Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, SP 05503-900, Brazil.
| | - Carlos DeOcesano-Pereira
- Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, SP 05503-900, Brazil.
| | | | - Vanessa Moreira
- Pharmacology Department, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP 04044-020, Brazil.
| |
Collapse
|
12
|
Narayanan N, Calve S. Extracellular matrix at the muscle - tendon interface: functional roles, techniques to explore and implications for regenerative medicine. Connect Tissue Res 2021; 62:53-71. [PMID: 32856502 PMCID: PMC7718290 DOI: 10.1080/03008207.2020.1814263] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The muscle-tendon interface is an anatomically specialized region that is involved in the efficient transmission of force from muscle to tendon. Due to constant exposure to loading, the interface is susceptible to injury. Current treatment methods do not meet the socioeconomic demands of reduced recovery time without compromising the risk of reinjury, requiring the need for developing alternative strategies. The extracellular matrix (ECM) present in muscle, tendon, and at the interface of these tissues consists of unique molecules that play significant roles in homeostasis and repair. Better, understanding the function of the ECM during development, injury, and aging has the potential to unearth critical missing information that is essential for accelerating the repair at the muscle-tendon interface. Recently, advanced techniques have emerged to explore the ECM for identifying specific roles in musculoskeletal biology. Simultaneously, there is a tremendous increase in the scope for regenerative medicine strategies to address the current clinical deficiencies. Advancements in ECM research can be coupled with the latest regenerative medicine techniques to develop next generation therapies that harness ECM for treating defects at the muscle-tendon interface. The current work provides a comprehensive review on the role of muscle and tendon ECM to provide insights about the role of ECM in the muscle-tendon interface and discusses the latest research techniques to explore the ECM to gathered information for developing regenerative medicine strategies.
Collapse
Affiliation(s)
- Naagarajan Narayanan
- Paul M. Rady Department of Mechanical Engineering, University of Colorado – Boulder, 1111 Engineering Drive, Boulder, Colorado 80309 – 0427
| | - Sarah Calve
- Paul M. Rady Department of Mechanical Engineering, University of Colorado – Boulder, 1111 Engineering Drive, Boulder, Colorado 80309 – 0427
| |
Collapse
|
13
|
Palla AR, Ravichandran M, Wang YX, Alexandrova L, Yang AV, Kraft P, Holbrook CA, Schürch CM, Ho ATV, Blau HM. Inhibition of prostaglandin-degrading enzyme 15-PGDH rejuvenates aged muscle mass and strength. Science 2020; 371:science.abc8059. [PMID: 33303683 DOI: 10.1126/science.abc8059] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022]
Abstract
Treatments are lacking for sarcopenia, a debilitating age-related skeletal muscle wasting syndrome. We identifed increased amounts of 15-hydroxyprostaglandin dehydrogenase (15-PGDH), the prostaglandin E2 (PGE2)-degrading enzyme, as a hallmark of aged tissues, including skeletal muscle. The consequent reduction in PGE2 signaling contributed to muscle atrophy in aged mice and results from 15-PGDH-expressing myofibers and interstitial cells, such as macrophages, within muscle. Overexpression of 15-PGDH in young muscles induced atrophy. Inhibition of 15-PGDH, by targeted genetic depletion or a small-molecule inhibitor, increased aged muscle mass, strength, and exercise performance. These benefits arise from a physiological increase in PGE2 concentrations, which augmented mitochondrial function and autophagy and decreased transforming growth factor-β signaling and activity of ubiquitin-proteasome pathways. Thus, PGE2 signaling ameliorates muscle atrophy and rejuvenates muscle function, and 15-PGDH may be a suitable therapeutic target for countering sarcopenia.
Collapse
Affiliation(s)
- A R Palla
- Blau Laboratory, Stanford School of Medicine, Stanford, CA 94305, USA.,Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA 94305, USA
| | - M Ravichandran
- Blau Laboratory, Stanford School of Medicine, Stanford, CA 94305, USA.,Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Y X Wang
- Blau Laboratory, Stanford School of Medicine, Stanford, CA 94305, USA.,Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA 94305, USA
| | - L Alexandrova
- Vincent Coates Foundation Mass Spectrometry Laboratory, Stanford University, Stanford, CA, USA
| | - A V Yang
- Blau Laboratory, Stanford School of Medicine, Stanford, CA 94305, USA.,Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA 94305, USA
| | - P Kraft
- Blau Laboratory, Stanford School of Medicine, Stanford, CA 94305, USA.,Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA 94305, USA
| | - C A Holbrook
- Blau Laboratory, Stanford School of Medicine, Stanford, CA 94305, USA.,Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA 94305, USA
| | - C M Schürch
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA 94305, USA.,Nolan Laboratory, Stanford School of Medicine, Stanford, CA 94305, USA
| | - A T V Ho
- Blau Laboratory, Stanford School of Medicine, Stanford, CA 94305, USA.,Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA 94305, USA
| | - H M Blau
- Blau Laboratory, Stanford School of Medicine, Stanford, CA 94305, USA. .,Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
14
|
Goldman SM, Valerio MS, Janakiram NB, Dearth CL. COX‐2 inhibition does not alter wound healing outcomes of a volumetric muscle loss injury treated with a biologic scaffold. J Tissue Eng Regen Med 2020; 14:1929-1938. [DOI: 10.1002/term.3144] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/21/2020] [Accepted: 10/06/2020] [Indexed: 01/03/2023]
Affiliation(s)
- Stephen M. Goldman
- Research & Surveillance Division DoD‐VA Extremity Trauma and Amputation Center of Excellence Bethesda Maryland USA
- Department of Surgery Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center Bethesda Maryland USA
| | - Michael S. Valerio
- Research & Surveillance Division DoD‐VA Extremity Trauma and Amputation Center of Excellence Bethesda Maryland USA
- Department of Surgery Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center Bethesda Maryland USA
| | - Naveena B. Janakiram
- Research & Surveillance Division DoD‐VA Extremity Trauma and Amputation Center of Excellence Bethesda Maryland USA
- Department of Surgery Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center Bethesda Maryland USA
| | - Christopher L. Dearth
- Research & Surveillance Division DoD‐VA Extremity Trauma and Amputation Center of Excellence Bethesda Maryland USA
- Department of Surgery Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center Bethesda Maryland USA
| |
Collapse
|
15
|
Dalle S, Poffé C, Hiroux C, Suhr F, Deldicque L, Koppo K. Ibuprofen does not impair skeletal muscle regeneration upon cardiotoxin-induced injury. Physiol Res 2020; 69:847-859. [PMID: 32901495 DOI: 10.33549/physiolres.934482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Muscle regeneration is regulated through interaction between muscle and immune cells. Studies showed that treatment with supra-physiological doses of Non-Steroidal Anti-Inflammatory Drug (NSAID) abolished inflammatory signaling and impaired muscle recovery. The present study examines the effects of pharmacologically-relevant NSAID treatment on muscle regeneration. C57BL/6 mice were injected in the tibialis anterior (TA) with either PBS or cardiotoxin (CTX). CTX-injected mice received ibuprofen (CTX-IBU) or were untreated (CTX-PLAC). After 2 days, Il-1beta and Il-6 expression was upregulated in the TA of CTX-IBU and CTX-PL vs. PBS. However, Cox-2 expression and macrophage infiltration were higher in CTX-PL vs. PBS, but not in CTX-IBU. At the same time, anabolic markers were higher in CTX-IBU vs. PBS, but not in CTX-PL. Nevertheless, ibuprofen did not affect muscle mass or muscle fiber regeneration. In conclusion, mild ibuprofen doses did not worsen muscle regeneration. There were even signs of a transient improvement in anabolic signaling and attenuation of inflammatory signaling.
Collapse
Affiliation(s)
- S Dalle
- Exercise Physiology Research Group, Department of Movement Sciences, Faculty of Movement and Rehabilitation Sciences, Catholic University of Leuven, Leuven, Belgium.
| | | | | | | | | | | |
Collapse
|
16
|
Muscle protein breakdown is impaired during immobilization compared to during a subsequent retraining period in older men: no effect of anti-inflammatory medication. Pflugers Arch 2020; 472:281-292. [PMID: 32025814 PMCID: PMC7035225 DOI: 10.1007/s00424-020-02353-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/29/2019] [Accepted: 01/26/2020] [Indexed: 12/25/2022]
Abstract
Muscle inactivity reduces muscle protein synthesis (MPS), whereas a subsequent period of rehabilitation resistance training (retraining) increases MPS. However, less is known regarding muscle protein breakdown (MPB) during such conditions. Furthermore, nonsteroidal anti-inflammatory drugs (NSAIDs) may have a dampening effect on MPB during periods of inactivity in older individuals. Thus, we measured the average MPB, by use of the deuterated water methodology, during an immobilization period and a subsequent retraining period in older individuals with and without NSAID treatment. Eighteen men (60–80 years: range) were randomly assigned to ibuprofen (1200 mg/d, Ibu) or placebo (Plc). One lower limb was immobilized in a cast for 2 weeks and retrained for 2 weeks, and 2 × 20 g of whey protein was ingested daily during both periods. Besides MPB, the protein expression of different muscle degradation signaling molecules was investigated. MPB was lower during immobilization compared to retraining (p < 0.01). NSAID treatment did not affect the MPB rate during immobilization or retraining (p > 0.05). The protein expression of muscle degradation signaling molecules changed during the study intervention but were unaffected by NSAID treatment. The finding that MPB was lower during immobilization than during retraining indicates that an increased MPB may play an important role in the muscle protein remodeling processes taking place within the initial retraining period. Moreover, NSAID treatment did not significantly influence the MPB rate during 2 weeks of lower limb immobilization or during 2 weeks of subsequent retraining in older individuals.
Collapse
|
17
|
Steckling FM, Lima FD, Farinha JB, Rosa PC, Royes LFF, Cuevas MJ, Bresciani G, Soares FA, González-Gallego J, Barcelos RP. Diclofenac attenuates inflammation through TLR4 pathway and improves exercise performance after exhaustive swimming. Scand J Med Sci Sports 2019; 30:264-271. [PMID: 31618484 DOI: 10.1111/sms.13579] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 09/25/2019] [Accepted: 10/14/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND The use of NSAIDs has become a common practice to counteract the pro-inflammatory acute effects of exercise, in order to improve sports performance. The liver, due to its central role in energy metabolism, may be involved primarily in the process of ROS generation and consequently inflammation after exhaustive exercise. OBJECTIVE To analyze the influence of diclofenac on the liver TLR4 pathway and time to exhaustion in rats submitted to repeated exhaustive swimming. METHODS An exhaustive test was performed in order to mimic athletes' routine, and inflammatory status and oxidative stress markers were evaluated in the liver. Animals were divided into sedentary and exhaustion groups, with this last performing three exhaustive swimming bouts. At the same time, diclofenac or saline was pre-administered once a day for nine days. RESULTS Data showed significantly increased COX-2, TLR4, and MyD88 protein content in the liver after exhaustive swimming bouts. The levels of pro-inflammatory cytokines also increased after exhaustive exercise, while these effects were attenuated in the group treated with diclofenac plus exhaustive swimming bouts. The anti-inflammatory modulation provoked by diclofenac treatment was associated with an increased time to exhaustion in the exercise bouts. The exhaustive exercise increased TBARS formation, but diclofenac treatment blunted this elevation, while GSH/GSSG ratios in both exhaustion-saline and exhaustion-diclofenac-treated groups were lower than in the sedentary-saline group. CONCLUSIONS Our findings suggest that diclofenac may improve exercise performance and represent an effective tool to ameliorate the pro-inflammatory status in liver when associated with exhaustive exercise, and the liver may be a possible therapeutic target.
Collapse
Affiliation(s)
- Flávia M Steckling
- Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas (CCNE), Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Frederico D Lima
- Departamento de Métodos e Técnicas Desportivas, Centro de Educação Física e Desportos, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Juliano B Farinha
- Programa de Pós-Graduação em Ciências do Movimento Humano, Escola de Educação Física, Fisioterapia e Dança, Universidade Federal do Rio Grande do Sul, Santa Maria, Brazil
| | - Pamela Carvalho Rosa
- Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas (CCNE), Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Luiz Fernando Freire Royes
- Departamento de Métodos e Técnicas Desportivas, Centro de Educação Física e Desportos, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Maria J Cuevas
- Institute of Biomedicine (IBIOMED) and Centro de Investigación Biomédica en Red (CIBERehd), University of León, León, Spain
| | - Guilherme Bresciani
- Grupo de Investigación en Rendimiento Físico y Salud (IRyS), Escuela de Educación Física, Pontificia Universidad Católica de Valparaiso, Valparaiso, Chile
| | - Félix Alexandre Soares
- Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas (CCNE), Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Javier González-Gallego
- Institute of Biomedicine (IBIOMED) and Centro de Investigación Biomédica en Red (CIBERehd), University of León, León, Spain
| | - Rômulo P Barcelos
- Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas (CCNE), Universidade Federal de Santa Maria, Santa Maria, Brazil.,Programa de Pós-graduação em Bioexperimentação, Universidade de Passo Fundo, Passo Fundo, Brazil
| |
Collapse
|
18
|
Sun LH, Huang JQ, Deng J, Lei XG. Avian selenogenome: response to dietary Se and vitamin E deficiency and supplementation. Poult Sci 2019; 98:4247-4254. [DOI: 10.3382/ps/pey408] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
19
|
Multi-Staged Regulation of Lipid Signaling Mediators during Myogenesis by COX-1/2 Pathways. Int J Mol Sci 2019; 20:ijms20184326. [PMID: 31487817 PMCID: PMC6769623 DOI: 10.3390/ijms20184326] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 01/04/2023] Open
Abstract
Cyclooxygenases (COXs), including COX-1 and -2, are enzymes essential for lipid mediator (LMs) syntheses from arachidonic acid (AA), such as prostaglandins (PGs). Furthermore, COXs could interplay with other enzymes such as lipoxygenases (LOXs) and cytochrome P450s (CYPs) to regulate the signaling of LMs. In this study, to comprehensively analyze the function of COX-1 and -2 in regulating the signaling of bioactive LMs in skeletal muscle, mouse primary myoblasts and C2C12 cells were transfected with specific COX-1 and -2 siRNAs, followed by targeted lipidomic analysis and customized quantitative PCR gene array analysis. Knocking down COXs, particularly COX-1, significantly reduced the release of PGs from muscle cells, especially PGE2 and PGF2α, as well as oleoylethanolamide (OEA) and arachidonoylethanolamine (AEA). Moreover, COXs could interplay with LOXs to regulate the signaling of hydroxyeicosatetraenoic acids (HETEs). The changes in LMs are associated with the expression of genes, such as Itrp1 (calcium signaling) and Myh7 (myogenic differentiation), in skeletal muscle. In conclusion, both COX-1 and -2 contribute to LMs production during myogenesis in vitro, and COXs could interact with LOXs during this process. These interactions and the fine-tuning of the levels of these LMs are most likely important for skeletal muscle myogenesis, and potentially, muscle repair and regeneration.
Collapse
|
20
|
Lundberg TR, Howatson G. Analgesic and anti-inflammatory drugs in sports: Implications for exercise performance and training adaptations. Scand J Med Sci Sports 2018; 28:2252-2262. [PMID: 30102811 DOI: 10.1111/sms.13275] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/07/2018] [Indexed: 12/22/2022]
Abstract
Over-the-counter analgesics, such as anti-inflammatory drugs (NSAIDs) and paracetamol, are widely consumed by athletes worldwide to increase pain tolerance, or dampen pain and reduce inflammation from injuries. Given that these drugs also can modulate tissue protein turnover, it is important to scrutinize the implications of acute and chronic use of these drugs in relation to exercise performance and the development of long-term training adaptations. In this review, we aim to provide an overview of the studies investigating the effects of analgesic drugs on exercise performance and training adaptations relevant for athletic development. There is emerging evidence that paracetamol might acutely improve important endurance parameters as well as aspects of neuromuscular performance, possibly through increased pain tolerance. Both NSAIDs and paracetamol have been demonstrated to inhibit cyclooxygenase (COX) activity, which might explain the reduced anabolic response to acute exercise bouts. Consistent with this, NSAIDs have been reported to interfere with muscle hypertrophy and strength gains in response to chronic resistance training in young individuals. Although it remains to be established whether any of these observations also translate into detriments in sport-specific performance or reduced training adaptations in elite athletes, the extensive use of these drugs certainly raises practical, ethical, and important safety concerns that need to be addressed. Overall, we encourage greater awareness among athletes, coaches, and support staff on the potential adverse effects of these drugs. A risk-benefit analysis and professional guidance are strongly advised before the athlete considers analgesic medicine for training or competition.
Collapse
Affiliation(s)
- Tommy R Lundberg
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, and Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Glyn Howatson
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle-upon-Tyne, UK.,Water Research Group, School of Environmental Sciences and Development, Northwest University, Potchefstroom, South Africa
| |
Collapse
|
21
|
Lilja M, Mandić M, Apró W, Melin M, Olsson K, Rosenborg S, Gustafsson T, Lundberg TR. High doses of anti-inflammatory drugs compromise muscle strength and hypertrophic adaptations to resistance training in young adults. Acta Physiol (Oxf) 2018; 222. [PMID: 28834248 DOI: 10.1111/apha.12948] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 07/20/2017] [Accepted: 08/17/2017] [Indexed: 01/14/2023]
Abstract
AIMS This study tested the hypothesis that high doses of anti-inflammatory drugs would attenuate the adaptive response to resistance training compared with low doses. METHODS Healthy men and women (aged 18-35 years) were randomly assigned to daily consumption of ibuprofen (IBU; 1200 mg; n = 15) or acetylsalicylic acid (ASA; 75 mg; n = 16) for 8 weeks. During this period, subjects completed supervised knee-extensor resistance training where one leg was subjected to training with maximal volitional effort in each repetition using a flywheel ergometer (FW), while the other leg performed conventional (work-matched across groups) weight-stack training (WS). Before and after training, muscle volume (MRI) and strength were assessed, and muscle biopsies were analysed for gene and protein expression of muscle growth regulators. RESULTS The increase in m. quadriceps volume was similar between FW and WS, yet was (averaged across legs) greater in ASA (7.5%) compared with IBU (3.7%, group difference 34 cm3 ; P = 0.029). In the WS leg, muscle strength improved similarly (11-20%) across groups. In the FW leg, increases (10-23%) in muscle strength were evident in both groups yet they were generally greater (interaction effects P < 0.05) for ASA compared with IBU. While our molecular analysis revealed several training effects, the only group interaction (P < 0.0001) arose from a downregulated mRNA expression of IL-6 in IBU. CONCLUSION Maximal over-the-counter doses of ibuprofen attenuate strength and muscle hypertrophic adaptations to 8 weeks of resistance training in young adults. Thus, young individuals using resistance training to maximize muscle growth or strength should avoid excessive intake of anti-inflammatory drugs.
Collapse
Affiliation(s)
- M. Lilja
- Division of Clinical Physiology; Department of Laboratory Medicine; Karolinska Institutet; Karolinska University Hospital; Stockholm Sweden
- Unit of Clinical Physiology; Karolinska University Hospital; Stockholm Sweden
| | - M. Mandić
- Division of Clinical Physiology; Department of Laboratory Medicine; Karolinska Institutet; Karolinska University Hospital; Stockholm Sweden
- Unit of Clinical Physiology; Karolinska University Hospital; Stockholm Sweden
| | - W. Apró
- Åstrand Laboratory; Swedish School of Sport and Health Sciences; Stockholm Sweden
| | - M. Melin
- Division of Clinical Physiology; Department of Laboratory Medicine; Karolinska Institutet; Karolinska University Hospital; Stockholm Sweden
- Unit of Clinical Physiology; Karolinska University Hospital; Stockholm Sweden
- Department of Cardiology; Karolinska Institutet; Karolinska University Hospital; Stockholm Sweden
| | - K. Olsson
- Division of Clinical Physiology; Department of Laboratory Medicine; Karolinska Institutet; Karolinska University Hospital; Stockholm Sweden
- Unit of Clinical Physiology; Karolinska University Hospital; Stockholm Sweden
| | - S. Rosenborg
- Division of Clinical Pharmacology; Department of Laboratory Medicine; Karolinska Institutet; Stockholm Sweden
| | - T. Gustafsson
- Division of Clinical Physiology; Department of Laboratory Medicine; Karolinska Institutet; Karolinska University Hospital; Stockholm Sweden
- Unit of Clinical Physiology; Karolinska University Hospital; Stockholm Sweden
| | - T. R. Lundberg
- Division of Clinical Physiology; Department of Laboratory Medicine; Karolinska Institutet; Karolinska University Hospital; Stockholm Sweden
- Unit of Clinical Physiology; Karolinska University Hospital; Stockholm Sweden
| |
Collapse
|
22
|
Morelli KM, Brown LB, Warren GL. Effect of NSAIDs on Recovery From Acute Skeletal Muscle Injury: A Systematic Review and Meta-analysis. Am J Sports Med 2018; 46:224-233. [PMID: 28355084 DOI: 10.1177/0363546517697957] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND There is debate as to whether the use of nonsteroidal anti-inflammatory drugs (NSAIDs) is beneficial after acute skeletal muscle injury. Some studies have suggested that NSAID use may be detrimental to injured muscle. PURPOSE To determine whether NSAID use affects recovery from skeletal muscle injury as assessed by strength loss, soreness, and/or blood creatine kinase level. STUDY DESIGN Systematic review and meta-analysis. METHODS An extensive systematic review was completed searching 16 databases (eg, PubMed, Cochrane Library, EMBASE). Inclusion criteria were (1) acute injury to skeletal muscle, (2) use of a control condition, (3) certainty of the NSAID dose administered, and (4) use of 1 or more of the 3 desired outcome measures. A total of 5343 study reports were screened, of which 41 studies were deemed suitable for inclusion. The standardized mean difference was used as the effect size (ES) and was calculated such that a positive ES indicated NSAID efficacy. Meta-analyses were run using a random-effects model. RESULTS For all studies, time points after injury, and injury markers combined, NSAID use was found to elicit a small to medium, significant decrease in the markers of injury (overall ES = +0.34; P = .0001). Because heterogeneity in study ES was apparent (ie, Q- df = 52.4, P = .000005; I2 = 57%), subgroup meta-analyses and meta-regressions were run in an attempt to explain the heterogeneity. In human studies, study ESs were higher when lower body muscles were injured ( P = .045). In animal studies, study ESs were lower with longer NSAID administration durations ( P = .023) and at longer follow-up times after injury ( P = .010). CONCLUSION Overall, our analysis supports NSAID use for reducing strength loss, soreness, and blood creatine kinase level after an acute muscle injury, at least for humans and in the short term. Additional research is required to determine why NSAID use appears to be more effective when lower-body muscles in humans are injured. It would also be important to determine why NSAID use appears detrimental at later times after injury in animals but not humans.
Collapse
Affiliation(s)
- Kimberly M Morelli
- Department of Physical Therapy, Georgia State University, Atlanta, Georgia, USA
| | - Laura B Brown
- Department of Physical Therapy, Georgia State University, Atlanta, Georgia, USA
| | - Gordon L Warren
- Department of Physical Therapy, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
23
|
Kim J, Lee J. Role of transforming growth factor-β in muscle damage and regeneration: focused on eccentric muscle contraction. J Exerc Rehabil 2017; 13:621-626. [PMID: 29326892 PMCID: PMC5747195 DOI: 10.12965/jer.1735072.536] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/30/2017] [Indexed: 11/22/2022] Open
Abstract
High-intensity eccentric muscle contraction induces muscle damage. Damaged muscles recover through different processes, including degeneration, inflammation, regeneration, and fibrosis; some of these processes are mediated through the actions of cytokines. The transforming growth factor-beta (TGF-β) is one such cytokine involved in muscle recovery and repair. In this regard, TGF-β regulates the skeletal muscle inflammatory response, inhibits muscle regeneration, regulates extracellular matrix remodeling, and promotes fibrosis. Although some studies have suggested that inhibition of TGF-β after muscle damage promotes muscle regeneration and recovery, other studies have noted that TGF-β inhibition actually reduces muscle strength because it leads to incomplete muscle regeneration. Despite the importance of TGF-β in the repair of damaged muscles, most studies have focused on examining its role in muscle diseases such as chronic inflammatory diseases or Duchenne’s muscular dystrophy. Here, we have reviewed the existing literature for examining the role of TGF-β in muscle damage and regeneration after eccentric muscle contraction.
Collapse
Affiliation(s)
- Jooyoung Kim
- Sport, Health and Rehabilitation Major, College of Physical Education, Kookmin University, Seoul, Korea
| | - Joohyung Lee
- Sport, Health and Rehabilitation Major, College of Physical Education, Kookmin University, Seoul, Korea
| |
Collapse
|
24
|
Barcelos RP, Bresciani G, Cuevas MJ, Martínez-Flórez S, Soares FAA, González-Gallego J. Diclofenac pretreatment modulates exercise-induced inflammation in skeletal muscle of rats through the TLR4/NF-κB pathway. Appl Physiol Nutr Metab 2017; 42:757-764. [DOI: 10.1139/apnm-2016-0593] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nonsteroidal anti-inflammatory drugs, such as diclofenac, are widely used to treat inflammation and pain in several conditions, including sports injuries. This study analyzes the influence of diclofenac on the toll-like receptor-nuclear factor kappa B (TLR-NF-κB) pathway in skeletal muscle of rats submitted to acute eccentric exercise. Twenty male Wistar rats were divided into 4 groups: control-saline, control-diclofenac, exercise-saline, and exercise-diclofenac. Diclofenac or saline were administered for 7 days prior to an acute eccentric exercise bout. The inflammatory status was evaluated through mRNA levels of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), interleukin-6 (IL-6), IL-1β, and tumor necrosis factor alpha (TNF-α), and protein content of COX-2, IL-6, and TNF-α in vastus lateralis muscle. Data obtained showed that a single bout of eccentric exercise significantly increased COX-2 gene expression. Similarly, mRNA expression and protein content of other inflammation-related genes also increased after the acute exercise. However, these effects were attenuated in the exercise + diclofenac group. TLR4, myeloid differentiation primary response gene 88 (MyD88), and p65 were also upregulated after the acute eccentric bout and the effect was blunted by the anti-inflammatory drug. These findings suggest that pretreatment with diclofenac may represent an effective tool to ameliorate the pro-inflammatory status induced by acute exercise in rat skeletal muscle possibly through an attenuation of the TLR4-NF-κB signaling pathway.
Collapse
Affiliation(s)
- Rômulo Pillon Barcelos
- Programa de Pós-graduação em Bioexperimentação, Universidade de Passo Fundo, RS, 99052-900, Brazil
- Institute of Biomedicine, University of León, Campus Universitario, 24071 León, Spain
- Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900 Brazil
| | - Guilherme Bresciani
- Grupo de Investigación en Rendimiento Físico y Salud Escuela de Educación Física, Pontificia Universidad Católica de Valparaiso, Valparaiso, 2530388 Chile
| | - Maria José Cuevas
- Institute of Biomedicine, University of León, Campus Universitario, 24071 León, Spain
| | | | - Félix Alexandre Antunes Soares
- Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | | |
Collapse
|
25
|
Boire TC, Balikov DA, Lee Y, Guth CM, Cheung-Flynn J, Sung HJ. Biomaterial-Based Approaches to Address Vein Graft and Hemodialysis Access Failures. Macromol Rapid Commun 2016; 37:1860-1880. [PMID: 27673474 PMCID: PMC5156561 DOI: 10.1002/marc.201600412] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/15/2016] [Indexed: 12/19/2022]
Abstract
Veins used as grafts in heart bypass or as access points in hemodialysis exhibit high failure rates, thereby causing significant morbidity and mortality for patients. Interventional or revisional surgeries required to correct these failures have been met with limited success and exorbitant costs, particularly for the US Centers for Medicare & Medicaid Services. Vein stenosis or occlusion leading to failure is primarily the result of neointimal hyperplasia. Systemic therapies have achieved little long-term success, indicating the need for more localized, sustained, biomaterial-based solutions. Numerous studies have demonstrated the ability of external stents to reduce neointimal hyperplasia. However, successful results from animal models have failed to translate to the clinic thus far, and no external stent is currently approved for use in the US to prevent vein graft or hemodialysis access failures. This review discusses current progress in the field, design considerations, and future perspectives for biomaterial-based external stents. More comparative studies iteratively modulating biomaterial and biomaterial-drug approaches are critical in addressing mechanistic knowledge gaps associated with external stent application to the arteriovenous environment. Addressing these gaps will ultimately lead to more viable solutions that prevent vein graft and hemodialysis access failures.
Collapse
Affiliation(s)
- Timothy C Boire
- Department of Biomedical Engineering, Vanderbilt University, 37235, Nashville, TN, USA
| | - Daniel A Balikov
- Department of Biomedical Engineering, Vanderbilt University, 37235, Nashville, TN, USA
| | - Yunki Lee
- Department of Biomedical Engineering, Vanderbilt University, 37235, Nashville, TN, USA
| | - Christy M Guth
- Division of Vascular Surgery, Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, 37235, USA
| | - Joyce Cheung-Flynn
- Division of Vascular Surgery, Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, 37235, USA
| | - Hak-Joon Sung
- Department of Biomedical Engineering, Vanderbilt University, 37235, Nashville, TN, USA
- Severance Biomedical Science Institute, College of Medicine, Yonsei University, Seoul, 120-752, Republic of Korea
| |
Collapse
|
26
|
Itoh Y, Murakami T, Mori T, Agata N, Kimura N, Inoue-Miyazu M, Hayakawa K, Hirano T, Sokabe M, Kawakami K. Training at non-damaging intensities facilitates recovery from muscle atrophy. Muscle Nerve 2016; 55:243-253. [PMID: 27301985 DOI: 10.1002/mus.25218] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2016] [Indexed: 11/07/2022]
Abstract
INTRODUCTION Resistance training promotes recovery from muscle atrophy, but optimum training programs have not been established. We aimed to determine the optimum training intensity for muscle atrophy. METHODS Mice recovering from atrophied muscles after 2 weeks of tail suspension underwent repeated isometric training with varying joint torques 50 times per day. RESULTS Muscle recovery assessed by maximal isometric contraction and myofiber cross-sectional areas (CSAs) were facilitated at 40% and 60% maximum contraction strength (MC), but at not at 10% and 90% MC. At 60% and 90% MC, damaged and contained smaller diameter fibers were observed. Activation of myogenic satellite cells and a marked increase in myonuclei were observed at 40%, 60%, and 90% MC. CONCLUSIONS The increases in myofiber CSAs were likely caused by increased myonuclei formed through fusion of resistance-induced myofibers with myogenic satellite cells. These data indicate that resistance training without muscle damage facilitates efficient recovery from atrophy. Muscle Nerve 55: 243-253, 2017.
Collapse
Affiliation(s)
- Yuta Itoh
- Physical and Occupational Therapy Program, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Faculty of Rehabilitation Science, Nagoya Gakuin University, Seto, Japan
| | - Taro Murakami
- Faculty of Wellness, Shigakkan University, Ohbu, Japan
| | - Tomohiro Mori
- Physical and Occupational Therapy Program, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nobuhide Agata
- Physical and Occupational Therapy Program, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Faculty of Health and Medical Sciences, Tokoha University, Hamamatsu, Japan
| | - Nahoko Kimura
- Aiche Medical College for Physical and Occupational Therapy, Kiyosu, Japan
| | | | - Kimihide Hayakawa
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takayuki Hirano
- Faculty of Rehabilitation Science, Nagoya Gakuin University, Seto, Japan
| | - Masahiro Sokabe
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keisuke Kawakami
- Physical and Occupational Therapy Program, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Faculty of Welfare and Health Sciences, Oita University, Dannoharu 700, Oita City, 870-1192, Japan
| |
Collapse
|
27
|
Ozawa J, Kaneguchi A, Tanaka R, Kito N, Moriyama H. Cyclooxygenase-2 inhibitor celecoxib attenuates joint contracture following immobilization in rat knees. BMC Musculoskelet Disord 2016; 17:446. [PMID: 27776498 PMCID: PMC5078937 DOI: 10.1186/s12891-016-1303-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 10/17/2016] [Indexed: 12/31/2022] Open
Abstract
Background The aim of this study is to clarify the following two points: First, whether a cyclooxygenase-2 mediated pathway is involved in the formation of immobilization-induced joint contracture and, second, the effectiveness of oral administration of non-steroidal anti-inflammatory drug celecoxib (CBX) for the prevention of myogenic and arthrogenic contracture following immobilization in a rat model. Methods Thirty male rats were randomly divided into three groups: immobilization (Im), Im + CBX, and control (n = 10 each). External fixation immobilized the right knee joint of Im and Im + CBX groups in flexion for 3 weeks. 50 mg/kg of CBX was administrated daily to the Im + CBX group during this period. The passive range of motion (ROM) of knee joints was measured before and after transection of knee flexor muscles and myogenic and arthrogenic ROM restrictions were calculated. The semitendinosus muscles and knee joints were investigated histologically to elucidate factors responsible for contracture. Results Myogenic ROM restrictions were exhibited both in Im and Im + CBX groups (44 ± 5 and 36 ± 8 °, respectively), but restrictions significantly decreased in the Im + CBX group compared to the Im group. Significant reductions of the muscle length ratios (Rt/Lt) and sarcomere number ratios (Rt/Lt) in knee flexor semitendinosus muscle, which are responsible for myogenic contracture, were also seen both in Im group (92 ± 5 and 92 ± 4 %, respectively) and Im + CBX group (97 ± 3 and 97 ± 3 %, respectively), but were inhibited by CBX administration (P < 0.05). Im and Im + CBX groups exhibited arthrogenic ROM restrictions with no significant differences (82 ± 3 and 83 ± 5 °, respectively). Posterior synovial length shortening and pathological changes (hemorrhage in joint cavities and capsule edema) in the knee joints were comparable between Im and Im + CBX groups. Conclusions Oral administration of celecoxib partially reduced myogenic ROM restriction concomitantly with knee flexor muscle shortening following immobilization. These results imply that inflammation and nociception are involved in myogenic contracture formation independently of joint immobilization, and that CBX is effective in preventing joint contracture following immobilization in rats.
Collapse
Affiliation(s)
- Junya Ozawa
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose- Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, 739-2695, Japan.
| | - Akinori Kaneguchi
- Graduate School of Medical Technology and Health Welfare Sciences, Hiroshima International University, Higashi-Hiroshima, Hiroshima, Japan
| | - Ryo Tanaka
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose- Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, 739-2695, Japan
| | - Nobuhiro Kito
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose- Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, 739-2695, Japan
| | - Hideki Moriyama
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Tomogaoka 7-10-2, Suma-ku, Kobe, Hyogo, Japan
| |
Collapse
|
28
|
Yilmaz A, Kattamuri C, Ozdeslik RN, Schmiedel C, Mentzer S, Schorl C, Oancea E, Thompson TB, Fallon JR. MuSK is a BMP co-receptor that shapes BMP responses and calcium signaling in muscle cells. Sci Signal 2016; 9:ra87. [PMID: 27601729 DOI: 10.1126/scisignal.aaf0890] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bone morphogenetic proteins (BMPs) function in most tissues but have cell type-specific effects. Given the relatively small number of BMP receptors, this exquisite signaling specificity requires additional molecules to regulate this pathway's output. The receptor tyrosine kinase MuSK (muscle-specific kinase) is critical for neuromuscular junction formation and maintenance. Here, we show that MuSK also promotes BMP signaling in muscle cells. MuSK bound to BMP4 and related BMPs with low nanomolar affinity in vitro and to the type I BMP receptors ALK3 and ALK6 in a ligand-independent manner both in vitro and in cultured myotubes. High-affinity binding to BMPs required the third, alternatively spliced MuSK immunoglobulin-like domain. In myoblasts, endogenous MuSK promoted BMP4-dependent phosphorylation of SMADs and transcription of Id1, which encodes a transcription factor involved in muscle differentiation. Gene expression profiling showed that MuSK was required for the BMP4-induced expression of a subset of genes in myoblasts, including regulator of G protein signaling 4 (Rgs4). In myotubes, MuSK enhanced the BMP4-induced expression of a distinct set of genes, including transcripts characteristic of slow muscle. MuSK-mediated stimulation of BMP signaling required type I BMP receptor activity but was independent of MuSK tyrosine kinase activity. MuSK-dependent expression of Rgs4 resulted in the inhibition of Ca(2+) signaling induced by the muscarinic acetylcholine receptor in myoblasts. These findings establish that MuSK has dual roles in muscle cells, acting both as a tyrosine kinase-dependent synaptic organizing molecule and as a BMP co-receptor that shapes BMP transcriptional output and cholinergic signaling.
Collapse
Affiliation(s)
- Atilgan Yilmaz
- Department of Neuroscience, Brown University, Providence, RI 02912, USA. Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Chandramohan Kattamuri
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Medical Sciences Building, Cincinnati, OH 45267, USA
| | - Rana N Ozdeslik
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI 02912, USA
| | - Carolyn Schmiedel
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Sarah Mentzer
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Christoph Schorl
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Elena Oancea
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI 02912, USA
| | - Thomas B Thompson
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Medical Sciences Building, Cincinnati, OH 45267, USA
| | - Justin R Fallon
- Department of Neuroscience, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
29
|
Vella L, Markworth JF, Paulsen G, Raastad T, Peake JM, Snow RJ, Cameron-Smith D, Russell AP. Ibuprofen Ingestion Does Not Affect Markers of Post-exercise Muscle Inflammation. Front Physiol 2016; 7:86. [PMID: 27064890 PMCID: PMC4809889 DOI: 10.3389/fphys.2016.00086] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 02/22/2016] [Indexed: 01/24/2023] Open
Abstract
Purpose: We investigated if oral ingestion of ibuprofen influenced leucocyte recruitment and infiltration following an acute bout of traditional resistance exercise Methods: Sixteen male subjects were divided into two groups that received the maximum over-the-counter dose of ibuprofen (1200mg d−1) or a similarly administered placebo following lower body resistance exercise. Muscle biopsies were taken from m.vastus lateralis and blood serum samples were obtained before and immediately after exercise, and at 3 and 24 h after exercise. Muscle cross-sections were stained with antibodies against neutrophils (CD66b and MPO) and macrophages (CD68). Muscle damage was assessed via creatine kinase and myoglobin in blood serum samples, and muscle soreness was rated on a ten-point pain scale. Results: The resistance exercise protocol stimulated a significant increase in the number of CD66b+ and MPO+ cells when measured 3 h post exercise. Serum creatine kinase, myoglobin and subjective muscle soreness all increased post-exercise. Muscle leucocyte infiltration, creatine kinase, myoglobin and subjective muscle soreness were unaffected by ibuprofen treatment when compared to placebo. There was also no association between increases in inflammatory leucocytes and any other marker of cellular muscle damage. Conclusion: Ibuprofen administration had no effect on the accumulation of neutrophils, markers of muscle damage or muscle soreness during the first 24 h of post-exercise muscle recovery.
Collapse
Affiliation(s)
- Luke Vella
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Science, Deakin University Burwood, VIC, Australia
| | | | - Gøran Paulsen
- Department of Physical Performance, Norwegian School of Sport Science Oslo, Norway
| | - Truls Raastad
- Department of Physical Performance, Norwegian School of Sport Science Oslo, Norway
| | - Jonathan M Peake
- School of Biomedical Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology Brisbane, QLD, Australia
| | - Rod J Snow
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Science, Deakin University Burwood, VIC, Australia
| | | | - Aaron P Russell
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Science, Deakin University Burwood, VIC, Australia
| |
Collapse
|
30
|
Burn injury induces skeletal muscle degeneration, inflammatory host response, and oxidative stress in wistar rats. J Burn Care Res 2016; 36:428-33. [PMID: 25933049 DOI: 10.1097/bcr.0000000000000122] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Burn injuries (BIs) result in both local and systemic responses distant from the site of thermal injury, such as skeletal muscle. The purpose of this study was to investigate the expression of cyclooxygenase-2 (COX-2) and hydroxy-2'-deoxyguanosine (8-OHdG) as a result of inflammation and reactive oxygen species production, respectively. A total of 16 male rats were distributed into two groups: control (C) and submitted to BI. The medial part of gastrocnemius muscle formed the specimens, which were stained with hematoxylin and eosin and were evaluated. COX-2 and 8-OHdG expressions were assessed by immunohistochemistry, and cell profile area and density of muscle fibers (number of fibers per square millimeter) were evaluated by morphometric methods. The results revealed inflammatory infiltrate associated with COX-2 immunoexpression in BI-gastrocnemius muscle. Furthermore, a substantial decrease in the muscle cell profile area of BI group was noticed when compared with the control group, whereas the density of muscle fibers was higher in the BI group. 8-OHdG expression in numerous skeletal muscle nuclei was detected in the BI group. In conclusion, the BI group is able to induce skeletal muscle degeneration as a result of systemic host response closely related to reactive oxygen species production and inflammatory process.
Collapse
|
31
|
Dearth CL, Slivka PF, Stewart SA, Keane TJ, Tay JK, Londono R, Goh Q, Pizza FX, Badylak SF. Inhibition of COX1/2 alters the host response and reduces ECM scaffold mediated constructive tissue remodeling in a rodent model of skeletal muscle injury. Acta Biomater 2016; 31:50-60. [PMID: 26612417 DOI: 10.1016/j.actbio.2015.11.043] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/19/2015] [Accepted: 11/19/2015] [Indexed: 12/26/2022]
Abstract
Extracellular matrix (ECM) has been used as a biologic scaffold material to both reinforce the surgical repair of soft tissue and serve as an inductive template to promote a constructive tissue remodeling response. Success of such an approach is dependent on macrophage-mediated degradation and remodeling of the biologic scaffold. Macrophage phenotype during these processes is a predictive factor of the eventual remodeling outcome. ECM scaffolds have been shown to promote an anti-inflammatory or M2-like macrophage phenotype in vitro that includes secretion of downstream products of cycolooxygenases 1 and 2 (COX1/2). The present study investigated the effect of a common COX1/2 inhibitor (Aspirin) on macrophage phenotype and tissue remodeling in a rodent model of ECM scaffold treated skeletal muscle injury. Inhibition of COX1/2 reduced the constructive remodeling response by hindering myogenesis and collagen deposition in the defect area. The inhibited response was correlated with a reduction in M2-like macrophages in the defect area. The effects of Aspirin on macrophage phenotype were corroborated using an established in vitro macrophage model which showed a reduction in both ECM induced prostaglandin secretion and expression of a marker of M2-like macrophages (CD206). These results raise questions regarding the common peri-surgical administration of COX1/2 inhibitors when biologic scaffold materials are used to facilitate muscle repair/regeneration. STATEMENT OF SIGNIFICANCE COX1/2 inhibitors such as nonsteroidal anti-inflammatory drugs (NSAIDs) are routinely administered post-surgically for analgesic purposes. While COX1/2 inhibitors are important in pain management, they have also been shown to delay or diminish the healing process, which calls to question their clinical use for treating musculotendinous injuries. The present study aimed to investigate the influence of a common NSAID, Aspirin, on the constructive remodeling response mediated by an ECM scaffold (UBM) in a rat skeletal muscle injury model. The COX1/2 inhibitor, Aspirin, was found to mitigate the ECM scaffold-mediated constructive remodeling response both in an in vitro co-culture system and an in vivo rat model of skeletal muscle injury. The results presented herein provide data showing that NSAIDs may significantly alter tissue remodeling outcomes when a biomaterial is used in a regenerative medicine/tissue engineering application. Thus, the decision to prescribe NSAIDs to manage the symptoms of inflammation post-ECM scaffold implantation should be carefully considered.
Collapse
|
32
|
Ectopic expression of Msx2 in mammalian myotubes recapitulates aspects of amphibian muscle dedifferentiation. Stem Cell Res 2015; 15:542-553. [DOI: 10.1016/j.scr.2015.09.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 09/23/2015] [Accepted: 09/26/2015] [Indexed: 11/20/2022] Open
|
33
|
Huang JQ, Ren FZ, Jiang YY, Xiao C, Lei XG. Selenoproteins protect against avian nutritional muscular dystrophy by metabolizing peroxides and regulating redox/apoptotic signaling. Free Radic Biol Med 2015; 83:129-38. [PMID: 25668720 DOI: 10.1016/j.freeradbiomed.2015.01.033] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 01/09/2015] [Accepted: 01/30/2015] [Indexed: 01/01/2023]
Abstract
Nutritional muscular dystrophy (NMD) of chicks is induced by dietary selenium (Se)/vitamin E (Vit. E) deficiencies and may be associated with oxidative cell damage. To reveal the underlying mechanisms related to the presumed oxidative cell damage, we fed four groups of 1-day-old broiler chicks (n = 40/group) with a basal diet (BD; 10 μg Se/kg; no Vit. E added, -Se -Vit. E) or the BD plus all-rac-α-tocopheryl acetate at 50mg/kg (-Se +Vit. E), Se (as sodium selenite) at 0.3mg/kg (+Se -Vit. E), or both of these nutrients (+Se +Vit. E) for 6 weeks. High incidences of NMD (93%) and mortality (36%) of the chicks were induced by the BD, starting at week 3. Dietary Se deficiency alone also induced muscle fiber rupture and coagulation necrosis in the pectoral muscle of chicks at week 3 and thereafter, with increased (P < 0.05) malondialdehyde, decreased (P < 0.05) total antioxidant capacity, and diminished (P < 0.05) glutathione peroxidase activities in the muscle. To link these oxidative damages of the muscle cells to the Se-deficiency-induced NMD, we first determined gene expression of the potential 26 selenoproteins in the muscle of the chicks at week 2 before the onset of symptoms. Compared with the +Se chicks, the -Se chicks had lower (P < 0.05) muscle mRNA levels of Gpx1, Gpx3, Gpx4, Sepp1, Selo, Selk, Selu, Selh, Selm, Sepw1, and Sep15. The -Se chicks also had decreased (P < 0.05) production of 6 selenoproteins (long-form selenoprotein P (SelP-L), GPx1, GPx4, Sep15, SelW, and SelN), but increased levels (P < 0.05) of the short-form selenoprotein P in muscle at weeks 2 and 4. Dietary Se deficiency elevated (P < 0.05) muscle p53, cleaved caspase 3, cleaved caspase 9, cyclooxygenase 2 (COX2), focal adhesion kinase (FAK), phosphatidylinositol 3-kinase (PI3K), phospho-Akt, nuclear factor-κB (NF-κB), p38 mitogen-activated protein kinase (p38 MAPK), phospho-p38 MAPK, phospho-JNK, and phospho-ERK and decreased (P < 0.05) muscle procaspase 3, procaspase 9, and NF-κB inhibitor α. In conclusion, the downregulation of SelP-L, GPx1, GPx4, Sep15, SelW, and SelN by dietary Se deficiency might account for induced oxidative stress and the subsequent peroxidative damage of chick muscle cells via the activation of the p53/caspase 9/caspase 3, COX2/FAK/PI3K/Akt/NF-κB, and p38 MAPK/JNK/ERK signaling pathways. Metabolism of peroxides and redox regulation are likely to be the mechanisms whereby these selenoproteins prevented the onset of NMD in chicks.
Collapse
Affiliation(s)
- Jia-Qiang Huang
- The Innovation Centre of Food Nutrition and Human Health (Beijing), Beijing Laboratory of Food Quality and Safety, and Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Fa-Zheng Ren
- The Innovation Centre of Food Nutrition and Human Health (Beijing), Beijing Laboratory of Food Quality and Safety, and Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Higher Institution Engineering Research Center for Animal Products, Beijing 100083, China.
| | - Yun-Yun Jiang
- The Innovation Centre of Food Nutrition and Human Health (Beijing), Beijing Laboratory of Food Quality and Safety, and Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Higher Institution Engineering Research Center for Animal Products, Beijing 100083, China
| | - Chen Xiao
- The Innovation Centre of Food Nutrition and Human Health (Beijing), Beijing Laboratory of Food Quality and Safety, and Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Higher Institution Engineering Research Center for Animal Products, Beijing 100083, China
| | - Xin Gen Lei
- The Innovation Centre of Food Nutrition and Human Health (Beijing), Beijing Laboratory of Food Quality and Safety, and Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Department of Animal Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
34
|
Schisandrae Fructus Supplementation Ameliorates Sciatic Neurectomy-Induced Muscle Atrophy in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:872428. [PMID: 26064425 PMCID: PMC4443785 DOI: 10.1155/2015/872428] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 04/20/2015] [Indexed: 01/20/2023]
Abstract
The objective of this study was to assess the possible beneficial skeletal muscle preserving effects of ethanol extract of Schisandrae Fructus (EESF) on sciatic neurectomy- (NTX-) induced hindlimb muscle atrophy in mice. Here, calf muscle atrophy was induced by unilateral right sciatic NTX. In order to investigate whether administration of EESF prevents or improves sciatic NTX-induced muscle atrophy, EESF was administered orally. Our results indicated that EESF dose-dependently diminished the decreases in markers of muscle mass and activity levels, and the increases in markers of muscle damage and fibrosis, inflammatory cell infiltration, cytokines, and apoptotic events in the gastrocnemius muscle bundles are induced by NTX. Additionally, destruction of gastrocnemius antioxidant defense systems after NTX was dose-dependently protected by treatment with EESF. EESF also upregulated muscle-specific mRNAs involved in muscle protein synthesis but downregulated those involved in protein degradation. The overall effects of 500 mg/kg EESF were similar to those of 50 mg/kg oxymetholone, but it showed more favorable antioxidant effects. The present results suggested that EESF exerts a favorable ameliorating effect on muscle atrophy induced by NTX, through anti-inflammatory and antioxidant effects related to muscle fiber protective effects and via an increase in protein synthesis and a decrease in protein degradation.
Collapse
|
35
|
Brown BN, Sicari BM, Badylak SF. Rethinking regenerative medicine: a macrophage-centered approach. Front Immunol 2014; 5:510. [PMID: 25408693 PMCID: PMC4219501 DOI: 10.3389/fimmu.2014.00510] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 10/01/2014] [Indexed: 12/14/2022] Open
Abstract
Regenerative medicine, a multi-disciplinary approach that seeks to restore form and function to damaged or diseased tissues and organs, has evolved significantly during the past decade. By adapting and integrating fundamental knowledge from cell biology, polymer science, and engineering, coupled with an increasing understanding of the mechanisms which underlie the pathogenesis of specific diseases, regenerative medicine has the potential for innovative and transformative therapies for heretofore unmet medical needs. However, the translation of novel technologies from the benchtop to animal models and clinical settings is non-trivial and requires an understanding of the mechanisms by which the host will respond to these novel therapeutic approaches. The role of the innate immune system, especially the role of macrophages, in the host response to regenerative medicine based strategies has recently received considerable attention. Macrophage phenotype and function have been suggested as critical and determinant factors in downstream outcomes. The constructive and regulatory, and in fact essential, role of macrophages in positive outcomes represents a significant departure from the classical paradigms of host-biomaterial interactions, which typically consider activation of the host immune system as a detrimental event. It appears desirable that emerging regenerative medicine approaches should not only accommodate but also promote the involvement of the immune system to facilitate positive outcomes. Herein, we describe the current understanding of macrophage phenotype as it pertains to regenerative medicine and suggest that improvement of our understanding of context-dependent macrophage polarization will lead to concurrent improvement in outcomes.
Collapse
Affiliation(s)
- Bryan N Brown
- McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, PA , USA ; Department of Bioengineering, University of Pittsburgh , Pittsburgh, PA , USA
| | - Brian M Sicari
- McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, PA , USA ; Department of Surgery, University of Pittsburgh , Pittsburgh, PA , USA
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, PA , USA ; Department of Surgery, University of Pittsburgh , Pittsburgh, PA , USA
| |
Collapse
|
36
|
Aline G, Sotiropoulos A. Srf: A key factor controlling skeletal muscle hypertrophy by enhancing the recruitment of muscle stem cells. BIOARCHITECTURE 2014; 2:88-90. [PMID: 22880147 PMCID: PMC3414385 DOI: 10.4161/bioa.20699] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Adult skeletal muscles adapt their fiber size to workload. We show that serum response factor (Srf) is required for satellite cell-mediated hypertrophic muscle growth. Deletion of Srf from myofibers, and not satellite cells, blunts overload-induced hypertrophy, and impairs satellite cell proliferation and recruitment to pre-existing fibers. We reveal a gene network in which Srf within myofibers modulates interleukin-6 and cyclooxygenase-2/interleukin-4 expressions and therefore exerts a paracrine control of satellite cell functions. In Srf-deleted muscles, in vivo overexpression of interleukin-6 is sufficient to restore satellite cell proliferation, but not satellite cell fusion and overall growth. In contrast, cyclooxygenase-2/interleukin-4 overexpression rescues satellite cell recruitment and muscle growth without affecting satellite cell proliferation, identifying altered fusion as the limiting cellular event. These findings unravel a role for Srf in the translation of mechanical cues applied to myofibers into paracrine signals, which in turn will modulate satellite cell functions and support muscle growth.
Collapse
|
37
|
Dingemans AMC, de Vos-Geelen J, Langen R, Schols AMW. Phase II drugs that are currently in development for the treatment of cachexia. Expert Opin Investig Drugs 2014; 23:1655-69. [DOI: 10.1517/13543784.2014.942729] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
38
|
Markworth JF, Vella LD, Figueiredo VC, Cameron-Smith D. Ibuprofen treatment blunts early translational signaling responses in human skeletal muscle following resistance exercise. J Appl Physiol (1985) 2014; 117:20-8. [PMID: 24833778 DOI: 10.1152/japplphysiol.01299.2013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Cyclooxygenase-1 and -2 pathway-derived prostaglandins (PGs) have been implicated in adaptive muscle responses to exercise, but the role of PGs in contraction-induced muscle signaling has not been determined. We investigated the effect of inhibition of cyclooxygenase-1 and -2 activities with the nonsteroidal anti-inflammatory drug ibuprofen on human muscle signaling responses to resistance exercise. Subjects orally ingested 1,200 mg ibuprofen (or placebo control) in three 400-mg doses administered ∼30 min before and ∼6 h and ∼12 h following a bout of unaccustomed resistance exercise (80% one repetition maximum). Muscle biopsies were obtained at rest (preexercise), immediately postexercise (0 h), 3 h postexercise, and at 24 h of recovery. In the placebo (PLA) group, phosphorylation of ERK1/2 (Thr202/Tyr204), ribosomal protein S6 kinase (RSK, Ser380), mitogen-activated kinase 1 (Mnk1, Thr197/202), and p70S6 kinase (p70S6K, Thr421/Ser424) increased at both 0 and 3 h postexercise, with delayed elevation of phospho (p)-p70S6K (Thr389) and p-rpS6 (Ser235/S36 and Ser240/244) at 3 h postexercise. Only p-ERK1/2 (Thr202/Tyr204) remained significantly elevated in the 24-h postexercise biopsy. Ibuprofen treatment prevented sustained elevation of MEK-ERK signaling at 3 h (p-ERK1/2, p-RSK, p-Mnk1, p-p70S6K Thr421/Ser424) and 24 h (p-ERK1/2) postexercise, and this was associated with suppressed phosphorylation of ribosomal protein S6 (Ser235/236 and Ser240/244). Early contraction-induced p-Akt (Ser473) and p-p70S6K (Thr389) were not influenced by ibuprofen, but p-p70S6K (Thr389) remained elevated 24 h postexercise only in those receiving ibuprofen treatment. Early muscle signaling responses to resistance exercise are, in part, ibuprofen sensitive, suggesting that PGs are important signaling molecules during early postexercise recovery.
Collapse
Affiliation(s)
- James F Markworth
- School of Exercise and Nutrition Science, Deakin University, Melbourne, Victoria, Australia; and Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Luke D Vella
- School of Exercise and Nutrition Science, Deakin University, Melbourne, Victoria, Australia; and
| | | | | |
Collapse
|
39
|
Bhattacharya A, Hamilton R, Jernigan A, Zhang Y, Sabia M, Rahman MM, Li Y, Wei R, Chaudhuri A, Van Remmen H. Genetic ablation of 12/15-lipoxygenase but not 5-lipoxygenase protects against denervation-induced muscle atrophy. Free Radic Biol Med 2014; 67:30-40. [PMID: 24121057 DOI: 10.1016/j.freeradbiomed.2013.10.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 08/30/2013] [Accepted: 10/01/2013] [Indexed: 12/15/2022]
Abstract
Skeletal muscle atrophy is a debilitating outcome of a number of chronic diseases and conditions associated with loss of muscle innervation by motor neurons, such as aging and neurodegenerative diseases. We previously reported that denervation-induced loss of muscle mass is associated with activation of cytosolic phospholipase A2 (cPLA2), the rate-limiting step for the release of arachidonic acid from membrane phospholipids, which then acts as a substrate for metabolic pathways that generate bioactive lipid mediators. In this study, we asked whether 5- and 12/15-lipoxygenase (LO) lipid metabolic pathways downstream of cPLA2 mediate denervation-induced muscle atrophy in mice. Both 5- and 12/15-LO were activated in response to surgical denervation; however, 12/15-LO activity was increased ~2.5-fold versus an ~1.5-fold increase in activity of 5-LO. Genetic and pharmacological inhibition of 12/15-LO (but not 5-LO) significantly protected against denervation-induced muscle atrophy, suggesting a selective role for the 12/15-LO pathway in neurogenic muscle atrophy. The activation of the 12/15-LO pathway (but not 5-LO) during muscle atrophy increased NADPH oxidase activity, protein ubiquitination, and ubiquitin-proteasome-mediated proteolytic degradation. In conclusion, this study reveals a novel pathway for neurogenic muscle atrophy and suggests that 12/15-LO may be a potential therapeutic target in diseases associated with loss of innervation and muscle atrophy.
Collapse
Affiliation(s)
- Arunabh Bhattacharya
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, USA.
| | - Ryan Hamilton
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, USA
| | - Amanda Jernigan
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, USA
| | - Yiqiang Zhang
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, USA; Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Marian Sabia
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, USA
| | - Md M Rahman
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, USA; Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Yan Li
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, USA
| | - Rochelle Wei
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, USA
| | - Asish Chaudhuri
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, USA; Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Geriatric Research Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX 78229, USA
| | - Holly Van Remmen
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, USA; Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Geriatric Research Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX 78229, USA
| |
Collapse
|
40
|
The skeletal muscle arachidonic acid cascade in health and inflammatory disease. Nat Rev Rheumatol 2014; 10:295-303. [PMID: 24468934 DOI: 10.1038/nrrheum.2014.2] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Muscle atrophy and weakness are often observed in patients with chronic inflammatory diseases, and are the major clinical features of the autoimmune myopathies, polymyositis and dermatomyositis. A general understanding of the pathogenesis of muscle atrophy and the impaired muscle function associated with chronic inflammatory diseases has not been clarified. In this context, arachidonic acid metabolites, such as the prostaglandin and leukotriene subfamilies, are of interest because they contribute to immune and nonimmune processes. Accumulating evidence suggests that prostaglandins and leukotrienes are involved in causing muscular pain and inflammation, and also in myogenesis and the repair of muscles. In this Review, we summarize novel findings that implicate prostaglandins and leukotrienes in the muscle atrophy and weakness that occur in inflammatory diseases of the muscles, with a focus on inflammatory myopathies. We discuss the role of the arachidonic acid cascade in skeletal muscle growth and function, and individual metabolites as potential therapeutic targets for the treatment of inflammatory muscle diseases.
Collapse
|
41
|
Chilibeck PD, Vatanparast H, Cornish SM, Abeysekara S, Charlesworth S. Evidence-based risk assessment and recommendations for physical activity: arthritis, osteoporosis, and low back pain. Appl Physiol Nutr Metab 2013; 36 Suppl 1:S49-79. [PMID: 21800948 DOI: 10.1139/h11-037] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We systematically reviewed the safety of physical activity (PA) for people with arthritis, osteoporosis, and low back pain. We searched PubMed, MEDLINE, Sport Discus, and the Cochrane Central Register of Controlled Trials (1966 through March 2008) for relevant articles on PA and adverse events. A total of 111 articles met our inclusion criteria. The incidence for adverse events during PA was 3.4%-11% (0.06%-2.4% serious adverse events) and included increased joint pain, fracture, and back pain for those with arthritis, osteoporosis, and low back pain, respectively. Recommendations were based on the Appraisal of Guidelines for Research and Evaluation, which applies Levels of Evidence based on type of study ranging from high-quality randomized controlled trials (Level 1) to anecdotal evidence (Level 4) and Grades from A (strong) to C (weak). Our main recommendations are that (i) arthritic patients with highly progressed forms of disease should avoid heavy load-bearing activities, but should participate in non-weight-bearing activities (Level 2, Grade A); and (ii) patients with osteoporosis should avoid trunk flexion (Level 2, Grade A) and powerful twisting of the trunk (Level 3, Grade C); (iii) patients with acute low back pain can safely do preference-based PA (i.e., PA that does not induce pain), including low back extension and flexion (Level 2, Grade B); (iv) arthritic patients with stable disease without progressive joint damage and patients with stable osteoporosis or low back pain can safely perform a variety of progressive aerobic or resistance-training PAs (Level 2, Grades A and B). Overall, the adverse event incidence from reviewed studies was low. PA can safely be done by most individuals with musculoskeletal conditions.
Collapse
Affiliation(s)
- Philip D Chilibeck
- College of Kinesiology, University of Saskatchewan, 87 Campus Drive, Saskatoon, SK, Canada.
| | | | | | | | | |
Collapse
|
42
|
Markworth JF, Vella L, Lingard BS, Tull DL, Rupasinghe TW, Sinclair AJ, Maddipati KR, Cameron-Smith D. Human inflammatory and resolving lipid mediator responses to resistance exercise and ibuprofen treatment. Am J Physiol Regul Integr Comp Physiol 2013; 305:R1281-96. [PMID: 24089379 DOI: 10.1152/ajpregu.00128.2013] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Classical proinflammatory eicosanoids, and more recently discovered lipid mediators with anti-inflammatory and proresolving bioactivity, exert a complex role in the initiation, control, and resolution of inflammation. Using a targeted lipidomics approach, we investigated circulating lipid mediator responses to resistance exercise and treatment with the NSAID ibuprofen. Human subjects undertook a single bout of unaccustomed resistance exercise (80% of one repetition maximum) following oral ingestion of ibuprofen (400 mg) or placebo control. Venous blood was collected during early recovery (0-3 h and 24 h postexercise), and serum lipid mediator composition was analyzed by LC-MS-based targeted lipidomics. Postexercise recovery was characterized by elevated levels of cyclooxygenase (COX)-1 and 2-derived prostanoids (TXB2, PGE2, PGD2, PGF2α, and PGI2), lipooxygenase (5-LOX, 12-LOX, and 15-LOX)-derived hydroxyeicosatetraenoic acids (HETEs), and leukotrienes (e.g., LTB4), and epoxygenase (CYP)-derived epoxy/dihydroxy eicosatrienoic acids (EpETrEs/DiHETrEs). Additionally, we detected elevated levels of bioactive lipid mediators with anti-inflammatory and proresolving properties, including arachidonic acid-derived lipoxins (LXA4 and LXB4), and the EPA (E-series) and DHA (D-series)-derived resolvins (RvD1 and RvE1), and protectins (PD1 isomer 10S, 17S-diHDoHE). Ibuprofen treatment blocked exercise-induced increases in COX-1 and COX-2-derived prostanoids but also resulted in off-target reductions in leukotriene biosynthesis, and a diminished proresolving lipid mediator response. CYP pathway product metabolism was also altered by ibuprofen treatment, as indicated by elevated postexercise serum 5,6-DiHETrE and 8,9-DiHETrE only in those receiving ibuprofen. These findings characterize the blood inflammatory lipid mediator response to unaccustomed resistance exercise in humans and show that acute proinflammatory signals are mechanistically linked to the induction of a biological active inflammatory resolution program, regulated by proresolving lipid mediators during postexercise recovery.
Collapse
Affiliation(s)
- James F Markworth
- School of Exercise and Nutrition Science, Deakin University, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Nedergaard A, Henriksen K, Karsdal MA, Christiansen C. Musculoskeletal ageing and primary prevention. Best Pract Res Clin Obstet Gynaecol 2013; 27:673-88. [PMID: 23891483 DOI: 10.1016/j.bpobgyn.2013.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 05/17/2013] [Accepted: 06/10/2013] [Indexed: 12/12/2022]
Abstract
Loss of musculoskeletal mass and function is a natural ageing trait, reinforced by an unhealthy life style. Loss of bone (osteoporosis) and muscle (sarcopaenia) are conditions whose prevalence are increasing because of the change in population distribution in the western world towards an older mean age. Improvements in lifestyle factors, such as diet, smoking and exercise, are the most powerful tools to combat this decline efficiently; however, public health interventions aimed at tackling these problems have shown abysmal success at the population level, mostly due to failure in compliance. With these issues in mind, we believe that the primary prevention modality in coming decades will be pharmacological. We review the basic biology of musculoskeletal ageing and what measures can be taken to prevent ageing-associated loss of musculoskeletal mass and function, with particular emphasis on pharmacological means.
Collapse
Affiliation(s)
- Anders Nedergaard
- Nordic Bioscience Biomarkers and Research, Herlev Hovedgade 207, 2720 Herlev, Denmark; Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Building 8, Bispebjerg Bakke 23, 2400 Copenhagen NW, Denmark.
| | | | | | | |
Collapse
|
44
|
Carroll CC, O'Connor DT, Steinmeyer R, Del Mundo JD, McMullan DR, Whitt JA, Ramos JE, Gonzales RJ. The influence of acute resistance exercise on cyclooxygenase-1 and -2 activity and protein levels in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2013; 305:R24-30. [PMID: 23637134 DOI: 10.1152/ajpregu.00593.2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study evaluated the activity and content of cyclooxygenase (COX)-1 and -2 in response to acute resistance exercise (RE) in human skeletal muscle. Previous work suggests that COX-1, but not COX-2, is the primary COX isoform elevated with resistance exercise in human skeletal muscle. COX activity, however, has not been assessed after resistance exercise in humans. It was hypothesized that RE would increase COX-1 but not COX-2 activity. Muscle biopsies were taken from the vastus lateralis of nine young men (25 ± 1 yr) at baseline (preexercise), 4, and 24 h after a single bout of knee extensor RE (three sets of 10 repetitions at 70% of maximum). Tissue lysate was assayed for COX-1 and COX-2 activity. COX-1 and COX-2 protein levels were measured via Western blot analysis. COX-1 activity increased at 4 h (P < 0.05) compared with preexercise, but returned to baseline at 24 h (PRE: 60 ± 10, 4 h: 106 ± 22, 24 h: 72 ± 8 nmol PGH2·g total protein(-1)·min(-1)). COX-2 activity was elevated at 4 and 24 h after RE (P < 0.05, PRE: 51 ± 7, 4 h: 100 ± 19, 24 h: 98 ± 14 nmol PGH2·g total protein(-1)·min(-1)). The protein level of COX-1 was not altered (P > 0.05) with acute RE. In contrast, COX-2 protein levels were nearly 3-fold greater (P > 0.05) at 4 h and 5-fold greater (P = 0.06) at 24 h, compared with preexercise. In conclusion, COX-1 activity increases transiently with exercise independent of COX-1 protein levels. In contrast, both COX-2 activity and protein levels were elevated with exercise, and this elevation persisted to at least 24 h after RE.
Collapse
Affiliation(s)
- Chad C Carroll
- Department of Physiology, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Trappe TA, Liu SZ. Effects of prostaglandins and COX-inhibiting drugs on skeletal muscle adaptations to exercise. J Appl Physiol (1985) 2013; 115:909-19. [PMID: 23539318 DOI: 10.1152/japplphysiol.00061.2013] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It has been ∼40 yr since the discovery that PGs are produced by exercising skeletal muscle and since the discovery that inhibition of PG synthesis is the mechanism of action of what are now known as cyclooxygenase (COX)-inhibiting drugs. Since that time, it has been established that PGs are made during and after aerobic and resistance exercise and have a potent paracrine and autocrine effect on muscle metabolism. Consequently, it has also been determined that orally consumed doses of COX inhibitors can profoundly influence muscle PG synthesis, muscle protein metabolism, and numerous other cellular processes that regulate muscle adaptations to exercise loading. Although data from acute human exercise studies, as well as animal and cell-culture data, would predict that regular consumption of a COX inhibitor during exercise training would dampen the typical muscle adaptations, the chronic data do not support this conjecture. From the studies in young and older individuals, lasting from 1.5 to 4 mo, no interfering effects of COX inhibitors on muscle adaptations to resistance-exercise training have been noted. In fact, in older individuals, a substantial enhancement of muscle mass and strength has been observed. The collective findings of the PG/COX-pathway regulation of skeletal muscle responses and adaptations to exercise are compelling. Considering the discoveries in other areas of COX regulation of health and disease, there is certainly an interesting future of investigation in this re-emerging area, especially as it pertains to older individuals and the condition of sarcopenia, as well as exercise training and performance of individuals of all ages.
Collapse
Affiliation(s)
- Todd A Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | | |
Collapse
|
46
|
Mikkelsen UR, Paulsen G, Schjerling P, Helmark IC, Langberg H, Kjær M, Heinemeier KM. The heat shock protein response following eccentric exercise in human skeletal muscle is unaffected by local NSAID infusion. Eur J Appl Physiol 2013; 113:1883-93. [PMID: 23467900 DOI: 10.1007/s00421-013-2606-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 02/03/2013] [Indexed: 12/20/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are widely consumed in relation to pain and injuries in skeletal muscle, but may adversely affect muscle adaptation probably via inhibition of prostaglandin synthesis. Induction of heat shock proteins (HSP) represents an important adaptive response in muscle subjected to stress, and in several cell types including cardiac myocytes prostaglandins are important in induction of the HSP response. This study aimed to determine the influence of NSAIDs on the HSP response to eccentric exercise in human skeletal muscle. Healthy males performed 200 maximal eccentric contractions with each leg with intramuscular infusion of the NSAID indomethacin or placebo. Biopsies were obtained from m. vastus lateralis before and after (5, 28 hrs and 8 days) the exercise bout from both legs (NSAID vs unblocked leg) and analysed for expression of the HSPs HSP70, HSP27 and αB-crystallin (mRNA and protein). NSAID did not affect the mRNA expression of any of the HSPs. Compared to pre values, the mRNA expression of all HSPs was increased; αB-crystallin, 3.6- and 5.4-fold; HSP70, 26- and 3.4-fold; and HSP27: 4.8- and 6.5-fold at 5 and 28 hrs post-exercise, respectively (all p < 0.008). Immunohistochemical stainings for αB-crystallin and HSP70 revealed increased staining in some samples but with no differences between legs. Changes in force-generating capacity correlated with both αB-crystallin and HSP70 mRNA and immunohistochemisty data. Increased expression of HSPs was observed on mRNA and protein level following eccentric exercise; however, this response was unaffected by local intramuscular infusion of NSAIDs.
Collapse
Affiliation(s)
- U R Mikkelsen
- Institute of Sports Medicine, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | | |
Collapse
|
47
|
Kelc R, Trapecar M, Vogrin M, Cencic A. Skeletal muscle-derived cell cultures as potent models in regenerative medicine research. Muscle Nerve 2013; 47:477-82. [PMID: 23460453 DOI: 10.1002/mus.23688] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2012] [Indexed: 11/08/2022]
Abstract
Cell cultures have been used extensively by many scientists in recent decades to study various cell and tissue mechanisms. The use of cell cultures has many advantages over use of in vivo experimental models, but there are also limitations. As skeletal muscle-derived cell cultures become more commonly utilized in studies of muscle regeneration processes the question of their relevance in experimentation is highlighted with regard to in vivo experimental models. This article reviews studies that have been performed simultaneously in in vivo and in vitro experiments on skeletal muscle and assesses the correlation of results. Although they seem to correlate, no such studies on humans have been performed so far.
Collapse
Affiliation(s)
- Robi Kelc
- Department of Orthopaedic Surgery, University Medical Center Maribor, Ljubljanska Ulica 5, Maribor, SI-2000, Slovenia.
| | | | | | | |
Collapse
|
48
|
Kvirkvelia N, McMenamin M, Chaudhary K, Bartoli M, Madaio MP. Prostaglandin E2 promotes cellular recovery from established nephrotoxic serum nephritis in mice, prosurvival, and regenerative effects on glomerular cells. Am J Physiol Renal Physiol 2013; 304:F463-70. [PMID: 23283994 DOI: 10.1152/ajprenal.00575.2012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We postulated that prostaglandin E2 (PGE2), which exhibits regulatory functions to control immune-mediated inflammation, fibrosis, oxidative stress, and tissue/cellular regeneration, has the potential to improve the course of nephritis. Therefore, the therapeutic potential of prostanoid on established nephritis in mice was evaluated focusing on its role on renal cellular recovery, with emphasis on its cytoprotecting and growth-promoting effects. Acute nephritis was induced in mice by single injection of nephrotoxic serum (NTS), followed by PGE2 administration with severity of nephritis evaluated over time. Mice injected with PGE2 recovered promptly with normalization of blood urea nitrogen and urine protein levels and histology. Recovery was observed with dosing of prostanoid at day 1, as well as day 4. With the use of selective EP1-4 receptor agonists, EP3 receptor has been identified as important in mediating beneficial effects of PGE2 in our system. PGE2 normalized glomerular cell losses during nephrotoxic serum-induced nephritis, restored synaptopodin distribution and F-actin filaments arrangement in glomeruli. In cell culture, PGE2 reduced nephrotoxim serum (NTS)-induced apoptosis of glomerular cells and promoted cell reproliferation after NTS-mediated injury. In conclusion, PGE2 treatment promotes resolution of glomerular inflammation. Consistent with this observation, the regenerative and cytoprotective effects of prostanoid on glomerular cells in culture were observed, suggesting that PGE2 may be beneficial in the treatment of glomerulonephritis.
Collapse
Affiliation(s)
- Nino Kvirkvelia
- Dept. of Medicine, Medical College of Georgia, Georgia Health Sciences Univ., Georgia, GA, USA
| | | | | | | | | |
Collapse
|
49
|
Markworth JF, Cameron-Smith D. Arachidonic acid supplementation enhances in vitro skeletal muscle cell growth via a COX-2-dependent pathway. Am J Physiol Cell Physiol 2013; 304:C56-67. [DOI: 10.1152/ajpcell.00038.2012] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Arachidonic acid (AA) is the metabolic precursor to a diverse range of downstream bioactive lipid mediators. A positive or negative influence of individual eicosanoid species [e.g., prostaglandins (PGs), leukotrienes, and hydroxyeicosatetraenoic acids] has been implicated in skeletal muscle cell growth and development. The collective role of AA-derived metabolites in physiological states of skeletal muscle growth/atrophy remains unclear. The present study aimed to determine the direct effect of free AA supplementation and subsequent eicosanoid biosynthesis on skeletal myocyte growth in vitro . C2C12 (mouse) skeletal myocytes induced to differentiate with supplemental AA exhibited dose-dependent increases in the size, myonuclear content, and protein accretion of developing myotubes, independent of changes in cell density or the rate/extent of myogenic differentiation. Nonselective (indomethacin) or cyclooxygenase 2 (COX-2)-selective (NS-398) nonsteroidal anti-inflammatory drugs blunted basal myogenesis, an effect that was amplified in the presence of supplemental free AA substrate. The stimulatory effects of AA persisted in preexisting myotubes via a COX-2-dependent (NS-389-sensitive) pathway, specifically implying dependency on downstream PG biosynthesis. AA-stimulated growth was associated with markedly increased secretion of PGF2α and PGE2; however, incubation of myocytes with PG-rich conditioned medium failed to mimic the effects of direct AA supplementation. In vitro AA supplementation stimulates PG release and skeletal muscle cell hypertrophy via a COX-2-dependent pathway.
Collapse
Affiliation(s)
- James F. Markworth
- School of Exercise and Nutrition Science, Deakin University, Melbourne, Australia; and
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
50
|
The Use of Nonsteroidal Anti-Inflammatory Drugs for Exercise-Induced Muscle Damage. Sports Med 2012; 42:1017-28. [DOI: 10.1007/bf03262309] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|