1
|
Blazer-Yost BL. Following Ussing's legacy: from amphibian models to mammalian kidney and brain. Am J Physiol Cell Physiol 2022; 323:C1061-C1069. [PMID: 36036449 PMCID: PMC9529261 DOI: 10.1152/ajpcell.00303.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/22/2022]
Abstract
Professor Hans H. Ussing (1911-2000) was one of the founding members of the field of epithelial cell biology. He is most famous for the electrophysiological technique that he developed to measure electrogenic ion flux across epithelial tissues. Ussing-style electrophysiology has been applied to multiple tissues and has informed fields as diverse as amphibian biology and medicine. In the latter, this technique has contributed to a basic understanding of maladies such as hypertension, polycystic kidney disease, cystic fibrosis, and diarrheal diseases to mention but a few. In addition to this valuable contribution to biological methods, Prof. Ussing also provided strong evidence for the concept of active transport several years before the elucidation of Na+K+ATPase. In addition, he provided cell biologists with the important concept of polarized epithelia with specific and different transporters found in the apical and basolateral membranes, thus providing these cells with the ability to conduct directional, active and passive transepithelial transport. My studies have used Ussing chamber electrophysiology to study the toad urinary bladder, an amphibian cell line, renal cell lines, and, most recently, choroid plexus cell lines. This technique has formed the basis of our in vitro mechanistic studies that are used in an iterative manner with animal models to better understand disease progress and treatment. I was honored to be invited to deliver the 2022 Hans Ussing Lecture sponsored by the Epithelial Transport Group of the American Physiological Society. This manuscript is a version of the material presented in that lecture.
Collapse
Affiliation(s)
- Bonnie L Blazer-Yost
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana
| |
Collapse
|
2
|
Nickerson AJ, Rajendran VM. Aldosterone up-regulates basolateral Na + -K + -2Cl - cotransporter-1 to support enhanced large-conductance K + channel-mediated K + secretion in rat distal colon. FASEB J 2021; 35:e21606. [PMID: 33908679 PMCID: PMC9777186 DOI: 10.1096/fj.202100203r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/24/2021] [Accepted: 04/05/2021] [Indexed: 12/25/2022]
Abstract
Na+ -K+ -2Cl- cotransporter-1 (NKCC1) facilitates basolateral K+ and Cl- uptake, supporting their efflux across mucosal membranes of colonic epithelial cells. NKCC1 activity has also been shown to be critical for electrogenic K+ secretion induced by aldosterone, which is known to stimulate large-conductance K+ (BK) channel expression in mucosal membranes. This study was aimed to (1) identify whether aldosterone enhances NKCC1 expression specifically to support BK-mediated K+ secretion and (2) to determine whether increased NKCC1 supports electrogenic Cl- secretion in parallel to K+ secretion. Dietary Na+ depletion was used to induce secondary hyperaldosteronism in rats, or aldosterone was administered ex vivo to rat distal colonic mucosae. NKCC1-dependent electrogenic K+ or Cl- secretion was measured as a function of short circuit current (ISC ). qRT-PCR, western blot, and immunofluorescence analyses were performed using standard techniques. Aldosterone enhanced NKCC1 and BKα expression and electrogenic K+ secretion in the distal colon, which was inhibited by either serosal bumetanide (NKCC1 inhibitor) or mucosal iberiotoxin (IbTX; BK channel blocker), but not TRAM-34 (IK channel blocker). Expression of NKCC1 and BKα proteins was enhanced in crypt cells of hyper-aldosterone rats. However, neither NKCC1-dependent Cl- secretion nor CFTR (apical Cl- channel) expression was enhanced by aldosterone. We conclude that aldosterone enhances NKCC1 to support BK-mediated K+ secretion independently of Cl- secretion in the distal colon. The regulation of NKCC1 expression/K+ secretion by aldosterone may be a therapeutic target in treating gastrointestinal disorders associated with alterations in colonic K+ transport, such as colonic pseudo-obstruction, and hyperkalemia associated with renal disease.
Collapse
Affiliation(s)
- Andrew J. Nickerson
- Department of Physiology, Pharmacology and Neuroscience, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Vazhaikkurichi M. Rajendran
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia
- Departments of Medicine, West Virginia University School of Medicine, Morgantown, West Virginia
| |
Collapse
|
3
|
Cosme D, Estevinho MM, Rieder F, Magro F. Potassium channels in intestinal epithelial cells and their pharmacological modulation: a systematic review. Am J Physiol Cell Physiol 2020; 320:C520-C546. [PMID: 33326312 DOI: 10.1152/ajpcell.00393.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Several potassium channels (KCs) have been described throughout the gastrointestinal tract. Notwithstanding, their contribution to both physiologic and pathophysiologic conditions, as inflammatory bowel disease (IBD), remains underexplored. Therefore, we aim to systematically review, for the first time, the evidence on the characteristics and modulation of KCs in intestinal epithelial cells (IECs). PubMed, Scopus, and Web of Science were searched to identify studies focusing on KCs and their modulation in IECs. The included studies were assessed using a reporting inclusiveness checklist. From the 745 identified records, 73 met the inclusion criteria; their reporting inclusiveness was moderate-high. Some studies described the physiological role of KCs, while others explored their importance in pathological settings. Globally, in IBD animal models, apical KCa1.1 channels, responsible for luminal secretion, were upregulated. In human colonocytes, basolateral KCa3.1 channels were downregulated. The pharmacological inhibition of K2P and Kv influenced intestinal barrier function, promoting inflammation. Evidence suggests a strong association between KCs expression and secretory mechanisms in human and animal IECs. Further research is warranted to explore the usefulness of KC pharmacological modulation as a therapeutic target.
Collapse
Affiliation(s)
- Dina Cosme
- Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal.,MedInUP, Center for Drug Discovery and Innovative Medicines, Porto, Portugal
| | - Maria Manuela Estevinho
- Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal.,Department of Gastroenterology, Centro Hospitalar Vila Nova de Gaia/Espinho, Vila Nova de Gaia, Portugal
| | - Florian Rieder
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases, and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Fernando Magro
- Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal.,MedInUP, Center for Drug Discovery and Innovative Medicines, Porto, Portugal.,Department of Gastroenterology, Centro Hospitalar São João, Porto, Portugal
| |
Collapse
|
4
|
Preston D, Simpson S, Halm D, Hochstetler A, Schwerk C, Schroten H, Blazer-Yost BL. Activation of TRPV4 stimulates transepithelial ion flux in a porcine choroid plexus cell line. Am J Physiol Cell Physiol 2018; 315:C357-C366. [PMID: 29791207 DOI: 10.1152/ajpcell.00312.2017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The choroid plexus (CP) epithelium plays a major role in the production of cerebrospinal fluid (CSF). A polarized cell line, the porcine CP-Riems (PCP-R) line, which exhibits many of the characteristics of the native epithelium, was used to study the effect of activation of the transient receptor potential vanilloid 4 (TRPV4) cation channel found in the PCP-R cells as well as in the native epithelium. Ussing-style electrophysiological experiments showed that activation of TRPV4 with a specific agonist, GSK1016790A, resulted in an immediate increase in both transepithelial ion flux and conductance. These changes were inhibited by either of two distinct antagonists, HC067047 or RN1734. The change in conductance was reversible and did not involve disruption of epithelial junctional complexes. Activation of TRPV4 results in Ca2+ influx, therefore, we examined whether the electrophysiological changes were the result of secondary activation of Ca2+-sensitive channels. PCP-R cells contain two Ca2+-activated K+ channels, the small conductance 2 (SK2) and the intermediate conductance (IK) channels. Based on inhibitor studies, the former is not involved in the TRPV4-mediated electrophysiological changes whereas one of the three isoforms of the IK channel (KCNN4c) may play a role in the apical secretion of K+. Blocking the activity of this IK isoform with TRAM34 inhibited the TRPV4-mediated change in net transepithelial ion flux and the increased conductance. These studies implicate TRPV4 as a hub protein in the control of CSF production through stimulation by multiple effectors resulting in transepithelial ion and subsequent water movement.
Collapse
Affiliation(s)
- Daniel Preston
- Department of Biology, Indiana University-Purdue University at Indianapolis, Indianapolis, Indiana
| | - Stefanie Simpson
- Department of Biology, Indiana University-Purdue University at Indianapolis, Indianapolis, Indiana
| | - Dan Halm
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University , Dayton, Ohio
| | - Alexandra Hochstetler
- Department of Biology, Indiana University-Purdue University at Indianapolis, Indianapolis, Indiana
| | - Christian Schwerk
- Mannheim Medical Faculty, University of Heidelberg, Children's Hospital , Mannheim , Germany
| | - Horst Schroten
- Mannheim Medical Faculty, University of Heidelberg, Children's Hospital , Mannheim , Germany
| | - Bonnie L Blazer-Yost
- Department of Biology, Indiana University-Purdue University at Indianapolis, Indianapolis, Indiana
| |
Collapse
|
5
|
Nichols JM, Maiellaro I, Abi-Jaoude J, Curci S, Hofer AM. "Store-operated" cAMP signaling contributes to Ca2+-activated Cl- secretion in T84 colonic cells. Am J Physiol Gastrointest Liver Physiol 2015; 309:G670-9. [PMID: 26316590 PMCID: PMC4609931 DOI: 10.1152/ajpgi.00214.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/21/2015] [Indexed: 01/31/2023]
Abstract
Apical cAMP-dependent CFTR Cl(-) channels are essential for efficient vectorial movement of ions and fluid into the lumen of the colon. It is well known that Ca(2+)-mobilizing agonists also stimulate colonic anion secretion. However, CFTR is apparently not activated directly by Ca(2+), and the existence of apical Ca(2+)-dependent Cl(-) channels in the native colonic epithelium is controversial, leaving the identity of the Ca(2+)-activated component unresolved. We recently showed that decreasing free Ca(2+) concentration ([Ca(2+)]) within the endoplasmic reticulum (ER) lumen elicits a rise in intracellular cAMP. This process, which we termed "store-operated cAMP signaling" (SOcAMPS), requires the luminal ER Ca(2+) sensor STIM1 and does not depend on changes in cytosolic Ca(2+). Here we assessed the degree to which SOcAMPS participates in Ca(2+)-activated Cl(-) transport as measured by transepithelial short-circuit current (Isc) in polarized T84 monolayers in parallel with imaging of cAMP and PKA activity using fluorescence resonance energy transfer (FRET)-based reporters in single cells. In Ca(2+)-free conditions, the Ca(2+)-releasing agonist carbachol and Ca(2+) ionophore increased Isc, cAMP, and PKA activity. These responses persisted in cells loaded with the Ca(2+) chelator BAPTA-AM. The effect on Isc was enhanced in the presence of the phosphodiesterase (PDE) inhibitor 3-isobutyl-1-methylxanthine (IBMX), inhibited by the CFTR inhibitor CFTRinh-172 and the PKA inhibitor H-89, and unaffected by Ba(2+) or flufenamic acid. We propose that a discrete component of the "Ca(2+)-dependent" secretory activity in the colon derives from cAMP generated through SOcAMPS. This alternative mode of cAMP production could contribute to the actions of diverse xenobiotic agents that disrupt ER Ca(2+) homeostasis, leading to diarrhea.
Collapse
Affiliation(s)
- Jonathan M. Nichols
- Department of Veterans Affairs Boston Healthcare System and Department of Surgery, Brigham & Women's Hospital and Harvard Medical School, West Roxbury, Massachusetts
| | - Isabella Maiellaro
- Department of Veterans Affairs Boston Healthcare System and Department of Surgery, Brigham & Women's Hospital and Harvard Medical School, West Roxbury, Massachusetts
| | - Joanne Abi-Jaoude
- Department of Veterans Affairs Boston Healthcare System and Department of Surgery, Brigham & Women's Hospital and Harvard Medical School, West Roxbury, Massachusetts
| | - Silvana Curci
- Department of Veterans Affairs Boston Healthcare System and Department of Surgery, Brigham & Women's Hospital and Harvard Medical School, West Roxbury, Massachusetts
| | - Aldebaran M. Hofer
- Department of Veterans Affairs Boston Healthcare System and Department of Surgery, Brigham & Women's Hospital and Harvard Medical School, West Roxbury, Massachusetts
| |
Collapse
|
6
|
Marie C, Verkerke HP, Theodorescu D, Petri WA. A whole-genome RNAi screen uncovers a novel role for human potassium channels in cell killing by the parasite Entamoeba histolytica. Sci Rep 2015; 5:13613. [PMID: 26346926 PMCID: PMC4561901 DOI: 10.1038/srep13613] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 07/30/2015] [Indexed: 01/29/2023] Open
Abstract
The parasite Entamoeba histolytica kills human cells resulting in ulceration, inflammation and invasion of the colonic epithelium. We used the cytotoxic properties of ameba to select a genome-wide RNAi library to reveal novel host factors that control susceptibility to amebic killing. We identified 281 candidate susceptibility genes and bioinformatics analyses revealed that ion transporters were significantly enriched among susceptibility genes. Potassium (K+) channels were the most common transporter identified. Their importance was further supported by colon biopsy of humans with amebiasis that demonstrated suppressed K+ channel expression. Inhibition of human K+ channels by genetic silencing, pharmacologic inhibitors and with excess K+ protected diverse cell types from E. histolytica-induced death. Contact with E. histolytica parasites triggered K+ channel activation and K+ efflux by intestinal epithelial cells, which preceded cell killing. Specific inhibition of Ca2+-dependent K+ channels was highly effective in preventing amebic cytotoxicity in intestinal epithelial cells and macrophages. Blockade of K+ efflux also inhibited caspase-1 activation, IL-1β secretion and pyroptotic death in THP-1 macrophages. We concluded that K+ channels are host mediators of amebic cytotoxicity in multiple cells types and of inflammasome activation in macrophages.
Collapse
Affiliation(s)
- Chelsea Marie
- Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, Virginia USA
| | - Hans P Verkerke
- Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, Virginia USA
| | - Dan Theodorescu
- Department of Surgery, Department of Pharmacology, University of Colorado Comprehensive Cancer Center, University of Colorado, Denver, CO, USA
| | - William A Petri
- Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, Virginia USA
| |
Collapse
|
7
|
Chen YJ, Wallace BK, Yuen N, Jenkins DP, Wulff H, O'Donnell ME. Blood-brain barrier KCa3.1 channels: evidence for a role in brain Na uptake and edema in ischemic stroke. Stroke 2014; 46:237-44. [PMID: 25477223 DOI: 10.1161/strokeaha.114.007445] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND PURPOSE KCa3.1, a calcium-activated potassium channel, regulates ion and fluid secretion in the lung and gastrointestinal tract. It is also expressed on vascular endothelium where it participates in blood pressure regulation. However, the expression and physiological role of KCa3.1 in blood-brain barrier (BBB) endothelium has not been investigated. BBB endothelial cells transport Na(+) and Cl(-) from the blood into the brain transcellularly through the co-operation of multiple cotransporters, exchangers, pumps, and channels. In the early stages of cerebral ischemia, when the BBB is intact, edema formation occurs by processes involving increased BBB transcellular Na(+) transport. This study evaluated whether KCa3.1 is expressed on and participates in BBB ion transport. METHODS The expression of KCa3.1 on cultured cerebral microvascular endothelial cells, isolated microvessels, and brain sections was evaluated by Western blot and immunohistochemistry. Activity of KCa3.1 on cerebral microvascular endothelial cells was examined by K(+) flux assays and patch-clamp. Magnetic resonance spectroscopy and MRI were used to measure brain Na(+) uptake and edema formation in rats with focal ischemic stroke after TRAM-34 treatment. RESULTS KCa3.1 current and channel protein were identified on bovine cerebral microvascular endothelial cells and freshly isolated rat microvessels. In situ KCa3.1 expression on BBB endothelium was confirmed in rat and human brain sections. TRAM-34 treatment significantly reduced Na(+) uptake, and cytotoxic edema in the ischemic brain. CONCLUSIONS BBB endothelial cells exhibit KCa3.1 protein and activity and pharmacological blockade of KCa3.1 seems to provide an effective therapeutic approach for reducing cerebral edema formation in the first 3 hours of ischemic stroke.
Collapse
Affiliation(s)
- Yi-Je Chen
- From the Department of Pharmacology (Y.-J.C., D.P.J., H.W.) and Department of Physiology and Membrane Biology (B.K.W., N.Y., M.E.O.), University of California, Davis.
| | - Breanna K Wallace
- From the Department of Pharmacology (Y.-J.C., D.P.J., H.W.) and Department of Physiology and Membrane Biology (B.K.W., N.Y., M.E.O.), University of California, Davis
| | - Natalie Yuen
- From the Department of Pharmacology (Y.-J.C., D.P.J., H.W.) and Department of Physiology and Membrane Biology (B.K.W., N.Y., M.E.O.), University of California, Davis
| | - David P Jenkins
- From the Department of Pharmacology (Y.-J.C., D.P.J., H.W.) and Department of Physiology and Membrane Biology (B.K.W., N.Y., M.E.O.), University of California, Davis
| | - Heike Wulff
- From the Department of Pharmacology (Y.-J.C., D.P.J., H.W.) and Department of Physiology and Membrane Biology (B.K.W., N.Y., M.E.O.), University of California, Davis
| | - Martha E O'Donnell
- From the Department of Pharmacology (Y.-J.C., D.P.J., H.W.) and Department of Physiology and Membrane Biology (B.K.W., N.Y., M.E.O.), University of California, Davis
| |
Collapse
|
8
|
Abstract
There is an urgent need to identify novel interventions for mitigating the progression of diabetic nephropathy. Diabetic nephropathy is characterized by progressive renal fibrosis, in which tubulointerstitial fibrosis has been shown to be the final common pathway of all forms of chronic progressive renal disease, including diabetic nephropathy. Therefore targeting the possible mechanisms that drive this process may provide novel therapeutics which allow the prevention and potentially retardation of the functional decline in diabetic nephropathy. Recently, the Ca2+-activated K+ channel KCa3.1 (KCa3.1) has been suggested as a potential therapeutic target for nephropathy, based on its ability to regulate Ca2+ entry into cells and modulate Ca2+-signalling processes. In the present review, we focus on the physiological role of KCa3.1 in those cells involved in the tubulointerstitial fibrosis, including proximal tubular cells, fibroblasts, inflammatory cells (T-cells and macrophages) and endothelial cells. Collectively these studies support further investigation into KCa3.1 as a therapeutic target in diabetic nephropathy.
Collapse
|
9
|
Gustafsson JK, Lindén SK, Alwan AH, Scholte BJ, Hansson GC, Sjövall H. Carbachol-induced colonic mucus formation requires transport via NKCC1, K⁺ channels and CFTR. Pflugers Arch 2014; 467:1403-1415. [PMID: 25139191 DOI: 10.1007/s00424-014-1595-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 08/01/2014] [Accepted: 08/06/2014] [Indexed: 12/26/2022]
Abstract
The colonic mucosa protects itself from the luminal content by secreting mucus that keeps the bacteria at a distance from the epithelium. For this barrier to be effective, the mucus has to be constantly replenished which involves exocytosis and expansion of the secreted mucins. Mechanisms involved in regulation of mucus exocytosis and expansion are poorly understood, and the aim of this study was to investigate whether epithelial anion secretion regulates mucus formation in the colon. The muscarinic agonist carbachol was used to induce parallel secretion of anions and mucus, and by using established inhibitors of ion transport, we studied how inhibition of epithelial transport affected mucus formation in mouse colon. Anion secretion and mucin exocytosis were measured by changes in membrane current and epithelial capacitance, respectively. Mucus thickness measurements were used to determine the carbachol effect on mucus growth. The results showed that the carbachol-induced increase in membrane current was dependent on NKCC1 co-transport, basolateral K(+) channels and Cftr activity. In contrast, the carbachol-induced increase in capacitance was partially dependent on NKCC1 and K(+) channel activity, but did not require Cftr activity. Carbachol also induced an increase in mucus thickness that was inhibited by the NKCC1 blocker bumetanide. However, mice that lacked a functional Cftr channel did not respond to carbachol with an increase in mucus thickness, suggesting that carbachol-induced mucin expansion requires Cftr channel activity. In conclusion, these findings suggest that colonic epithelial transport regulates mucus formation by affecting both exocytosis and expansion of the mucin molecules.
Collapse
Affiliation(s)
- Jenny K Gustafsson
- Department of Medical Biochemistry, University of Gothenburg, Medicinaregatan 9A, Box 440, Gothenburg, 405 30, Sweden.
| | - Sara K Lindén
- Department of Medical Biochemistry, University of Gothenburg, Medicinaregatan 9A, Box 440, Gothenburg, 405 30, Sweden
| | - Ala H Alwan
- Department of Medical Biochemistry, University of Gothenburg, Medicinaregatan 9A, Box 440, Gothenburg, 405 30, Sweden
| | - Bob J Scholte
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Gunnar C Hansson
- Department of Medical Biochemistry, University of Gothenburg, Medicinaregatan 9A, Box 440, Gothenburg, 405 30, Sweden
| | - Henrik Sjövall
- Department of Internal Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
10
|
Linley J, Loganathan A, Kopanati S, Sandle GI, Hunter M. Evidence that two distinct crypt cell types secrete chloride and potassium in human colon. Gut 2014; 63:472-9. [PMID: 23740188 DOI: 10.1136/gutjnl-2013-304695] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
BACKGROUND Human colon may secrete substantial amounts of water secondary to chloride (Cl(-)) and/or potassium (K(+)) secretion in a variety of diarrhoeal diseases. Ion secretion occurs via Cl(-) and K(+) channels, which are generally assumed to be co-located in the colonocyte apical membrane, although their exact cellular sites remain unclear. OBJECTIVE To investigate the location of apical Cl(-) (CFTR) and apical K(+) (large conductance; BK) channels within human colonic epithelium. DESIGN Whole-cell patch clamp recordings were obtained from intact human colonic crypts. Specific blockers of K(+) channels and CFTR identified different types of K(+) channel and CFTR under resting conditions and after stimulating intracellular cAMP with forskolin. The BK channel β3-subunit was localised by immunostaining. RESULTS Two types of crypt cells were identified. One (73% of cells) had whole-cell currents dominated by intermediate conductance (IK) K(+) channels under resting conditions, which developed large CFTR-mediated currents in response to increasing intracellular cAMP. The other (27% of cells) had resting currents dominated by BK channels inhibited by the BK channel blocker penitrem A, but insensitive to both forskolin and the IK channel blocker clotrimazole. Immunostaining showed co-localisation of the BK channel β3-subunit and the goblet cell marker, MUC2. CONCLUSIONS In human colon, Cl(-) secretion originates from the dominant population of colonocytes expressing apical CFTR, whereas K(+) secretion is derived from a smaller population of goblet cells expressing apical BK channels. These findings provide new insights into the pathophysiology of secretory diarrhoea and should be taken into account during the development of anti-diarrhoeal drugs.
Collapse
Affiliation(s)
- John Linley
- Institute of Systems and Membrane Biology, University of Leeds, , Leeds, West Yorkshire, UK
| | | | | | | | | |
Collapse
|
11
|
Zhang J, Halm ST, Halm DR. Role of the BK channel (KCa1.1) during activation of electrogenic K+ secretion in guinea pig distal colon. Am J Physiol Gastrointest Liver Physiol 2012; 303:G1322-34. [PMID: 23064759 PMCID: PMC3532550 DOI: 10.1152/ajpgi.00325.2012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Secretagogues acting at a variety of receptor types activate electrogenic K(+) secretion in guinea pig distal colon, often accompanied by Cl(-) secretion. Distinct blockers of K(Ca)1.1 (BK, Kcnma1), iberiotoxin (IbTx), and paxilline inhibited the negative short-circuit current (I(sc)) associated with K(+) secretion. Mucosal addition of IbTx inhibited epinephrine-activated I(sc) ((epi)I(sc)) and transepithelial conductance ((epi)G(t)) consistent with K(+) secretion occurring via apical membrane K(Ca)1.1. The concentration dependence of IbTx inhibition of (epi)I(sc) yielded an IC(50) of 193 nM, with a maximal inhibition of 51%. Similarly, IbTx inhibited (epi)G(t) with an IC(50) of 220 nM and maximal inhibition of 48%. Mucosally added paxilline (10 μM) inhibited (epi)I(sc) and (epi)G(t) by ∼50%. IbTx and paxilline also inhibited I(sc) activated by mucosal ATP, supporting apical K(Ca)1.1 as a requirement for this K(+) secretagogue. Responses to IbTx and paxilline indicated that a component of K(+) secretion occurred during activation of Cl(-) secretion by prostaglandin-E(2) and cholinergic stimulation. Analysis of K(Ca)1.1α mRNA expression in distal colonic epithelial cells indicated the presence of the ZERO splice variant and three splice variants for the COOH terminus. The presence of the regulatory β-subunits K(Ca)β1 and K(Ca)β4 also was demonstrated. Immunolocalization supported the presence of K(Ca)1.1α in apical and basolateral membranes of surface and crypt cells. Together these results support a cellular mechanism for electrogenic K(+) secretion involving apical membrane K(Ca)1.1 during activation by several secretagogue types, but the observed K(+) secretion likely required the activity of additional K(+) channel types in the apical membrane.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Neuroscience, Cell Biology and Physiology, Wright State University Boonshoft School of Medicine, Dayton, Ohio
| | - Susan T. Halm
- Department of Neuroscience, Cell Biology and Physiology, Wright State University Boonshoft School of Medicine, Dayton, Ohio
| | - Dan R. Halm
- Department of Neuroscience, Cell Biology and Physiology, Wright State University Boonshoft School of Medicine, Dayton, Ohio
| |
Collapse
|
12
|
Balut CM, Hamilton KL, Devor DC. Trafficking of intermediate (KCa3.1) and small (KCa2.x) conductance, Ca(2+)-activated K(+) channels: a novel target for medicinal chemistry efforts? ChemMedChem 2012; 7:1741-55. [PMID: 22887933 DOI: 10.1002/cmdc.201200226] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 07/09/2012] [Indexed: 12/22/2022]
Abstract
Ca(2+)-activated K(+) (KCa) channels play a pivotal role in the physiology of a wide variety of tissues and disease states, including vascular endothelia, secretory epithelia, certain cancers, red blood cells (RBC), neurons, and immune cells. Such widespread involvement has generated an intense interest in elucidating the function and regulation of these channels, with the goal of developing pharmacological strategies aimed at selective modulation of KCa channels in various disease states. Herein we give an overview of the molecular and functional properties of these channels and their therapeutic importance. We discuss the achievements made in designing pharmacological tools that control the function of KCa channels by modulating their gating properties. Moreover, this review discusses the recent advances in our understanding of KCa channel assembly and anterograde trafficking toward the plasma membrane, the micro-domains in which these channels are expressed within the cell, and finally the retrograde trafficking routes these channels take following endocytosis. As the regulation of intracellular trafficking by agonists as well as the protein-protein interactions that modify these events continue to be explored, we anticipate this will open new therapeutic avenues for the targeting of these channels based on the pharmacological modulation of KCa channel density at the plasma membrane.
Collapse
Affiliation(s)
- Corina M Balut
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
13
|
Sandle GI, Rajendran VM. Cyclic AMP-induced K+ secretion occurs independently of Cl- secretion in rat distal colon. Am J Physiol Cell Physiol 2012; 303:C328-33. [PMID: 22648950 DOI: 10.1152/ajpcell.00099.2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
cAMP induces both active Cl(-) and active K(+) secretion in mammalian colon. It is generally assumed that a mechanism for K(+) exit is essential to maintain cells in the hyperpolarized state, thus favoring a sustained Cl(-) secretion. Both Kcnn4c and Kcnma1 channels are located in colon, and this study addressed the questions of whether Kcnn4c and/or Kcnma1 channels mediate cAMP-induced K(+) secretion and whether cAMP-induced K(+) secretion provides the driving force for Cl(-) secretion. Forskolin (FSK)-enhanced short-circuit current (indicator of net electrogenic ion transport) and K(+) fluxes were measured simultaneously in colonic mucosa under voltage-clamp conditions. Mucosal Na(+) orthovanadate (P-type ATPase inhibitor) inhibited active K(+) absorption normally present in rat distal colon. In the presence of mucosal Na(+) orthovanadate, serosal FSK induced both K(+) and Cl(-) secretion. FSK-induced K(+) secretion was 1) not inhibited by either mucosal or serosal 1-[(2-chlorophenyl) diphenylmethyl]-1H-pyrazole (TRAM-34; a Kcnn4 channel blocker), 2) inhibited (92%) by mucosal iberiotoxin (Kcnma1 channel blocker), and 3) not affected by mucosal cystic fibrosis transmembrane conductance regulator inhibitor (CFTR(inh)-172). By contrast, FSK-induced Cl(-) secretion was 1) completely inhibited by serosal TRAM-34, 2) not inhibited by either mucosal or serosal iberiotoxin, and 3) completely inhibited by mucosal CFTR(inh)-172. These results indicate that cAMP-induced colonic K(+) secretion is mediated via Kcnma1 channels located in the apical membrane and most likely contributes to stool K(+) losses in secretory diarrhea. On the other hand, cAMP-induced colonic Cl(-) secretion requires the activity of Kcnn4b channels located in the basolateral membrane and is not dependent on the concurrent activation of apical Kcnma1 channels.
Collapse
Affiliation(s)
- Geoffrey I Sandle
- Leeds Institute of Molecular Medicine, Saint James's University Hospital, Leeds, United Kingdom
| | | |
Collapse
|
14
|
Singh SK, O'Hara B, Talukder JR, Rajendran VM. Aldosterone induces active K⁺ secretion by enhancing mucosal expression of Kcnn4c and Kcnma1 channels in rat distal colon. Am J Physiol Cell Physiol 2012; 302:C1353-60. [PMID: 22322970 DOI: 10.1152/ajpcell.00216.2011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although both Kcnn4c and Kcnma1 channels are present on colonic mucosal membranes, only Kcnma1 has been suggested to mediate K(+) secretion in the colon. Therefore, studies were initiated to investigate the relative roles of Kcnn4c and Kcnma1 in mediating aldosterone (Na-free diet)-induced K(+) secretion. Mucosal to serosal (m-s), serosal to mucosal (s-m), and net (86)Rb(+) (K(+) surrogate) fluxes as well as short circuit currents (I(sc); measure of net ion movement) were measured under voltage clamp condition in rat distal colon. Active K(+) absorption, but not K(+) secretion, is present in normal, while aldosterone induces active K(+) secretion (1.04 ± 0.26 vs. -1.21 ± 0.15 μeq·h(-1)·cm(-2); P < 0.001) in rat distal colon. Mucosal VO(4) (a P-type ATPase inhibitor) inhibited the net K(+) absorption in normal, while it significantly enhanced net K(+) secretion in aldosterone animals. The aldosterone-induced K(+) secretion was inhibited by the mucosal addition of 1) either Ba(2+) (a nonspecific K(+) channel blocker) or charybdotoxin (CTX; a common Kcnn4 and Kcnma1 channel blocker) by 89%; 2) tetraethyl ammonium (TEA) or iberiotoxin (IbTX; a Kcnma1 channel blocker) by 64%; and 3) TRAM-34 (a Kcnn4 channel blocker) by 29%. TRAM-34, but not TEA, in the presence of IbTX further significantly inhibited the aldosterone-induced K(+) secretion. Thus the aldosterone-induced Ba(2+)/CTX-sensitive K(+) secretion consists of IbTX/TEA-sensitive (Kcnma1) and IbTX/TEA-insensitive fractions. TRAM-34 inhibition of the IbTX-insensitive fraction is consistent with the aldosterone-induced K(+) secretion being mediated partially via Kcnn4c. Western and quantitative PCR analyses indicated that aldosterone enhanced both Kcnn4c and Kcnma1α protein expression and mRNA abundance. In vitro exposure of isolated normal colonic mucosa to aldosterone also enhanced Kcnn4c and Kcnma1α mRNA levels, and this was prevented by exposure to actinomycin D (an RNA synthesis inhibitor). These observations indicate that aldosterone induces active K(+) secretion by enhancing mucosal Kcnn4c and Kcnma1 expression at the transcriptional level.
Collapse
Affiliation(s)
- Satish K Singh
- Department of Medicine, Boston University School of Medicine and Veterans Affairs Boston Healthcare System, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
15
|
Paul G, Marchelletta RR, McCole DF, Barrett KE. Interferon-γ alters downstream signaling originating from epidermal growth factor receptor in intestinal epithelial cells: functional consequences for ion transport. J Biol Chem 2011; 287:2144-55. [PMID: 22069319 DOI: 10.1074/jbc.m111.318139] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The epidermal growth factor receptor (EGFr) regulates many cellular functions, such as proliferation, apoptosis, and ion transport. Our aim was to investigate whether long term treatment with interferon-γ (IFN-γ) modulates EGF activation of downstream signaling pathways in intestinal epithelial cells and if this contributes to dysregulation of epithelial ion transport in inflammation. Polarized monolayers of T(84) and HT29/cl.19A colonocytes were preincubated with IFN-γ prior to stimulation with EGF. Basolateral potassium transport was studied in Ussing chambers. We also studied inflamed colonic mucosae from C57BL/6 mice treated with dextran sulfate sodium or mdr1a knock-out mice and controls. IFN-γ increased intestinal epithelial EGFr expression without increasing its phosphorylation. Conversely, IFN-γ caused a significant decrease in EGF-stimulated phosphorylation of specific EGFr tyrosine residues and activation of ERK but not Akt-1. In IFNγ-pretreated cells, the inhibitory effect of EGF on carbachol-stimulated K(+) channel activity was lost. In inflamed colonic tissues, EGFr expression was significantly increased, whereas ERK phosphorylation was reduced. Thus, although it up-regulates EGFr expression, IFN-γ causes defective EGFr activation in colonic epithelial cells via reduced phosphorylation of specific EGFr tyrosine residues. This probably accounts for altered downstream signaling consequences. These observations were corroborated in the setting of colitis. IFN-γ also abrogates the ability of EGF to inhibit carbachol-stimulated basolateral K(+) currents. Our data suggest that, in the setting of inflammation, the biological effect of EGF, including the inhibitory effect of EGF on Ca(2+)-dependent ion transport, is altered, perhaps contributing to diarrheal and other symptoms in vivo.
Collapse
Affiliation(s)
- Gisela Paul
- Division of Gastroenterology, University of California, San Diego, School of Medicine, La Jolla, California 92093, USA
| | | | | | | |
Collapse
|
16
|
Basalingappa KM, Rajendran VM, Wonderlin WF. Characteristics of Kcnn4 channels in the apical membranes of an intestinal epithelial cell line. Am J Physiol Gastrointest Liver Physiol 2011; 301:G905-11. [PMID: 21868633 PMCID: PMC3220323 DOI: 10.1152/ajpgi.00558.2010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Intermediate-conductance K(+) (Kcnn4) channels in the apical and basolateral membranes of epithelial cells play important roles in agonist-induced fluid secretion in intestine and colon. Basolateral Kcnn4 channels have been well characterized in situ using patch-clamp methods, but the investigation of Kcnn4 channels in apical membranes in situ has been hampered by a layer of mucus that prevents seal formation. In the present study, we used patch-clamp methods to characterize Kcnn4 channels in the apical membrane of IEC-18 cells, a cell line derived from rat small intestine. A monolayer of IEC-18 cells grown on a permeable support is devoid of mucus, and tight junctions enable selective access to the apical membrane. In inside-out patches, Ca(2+)-dependent K(+) channels observed with iberiotoxin (a Kcnma1/large-conductance, Ca(2+)-activated K(+) channel blocker) and apamin (a Kcnn1-3/small-conductance, Ca(2+)-activated K(+) channel blocker) present in the pipette solution exhibited a single-channel conductance of 31 pS with inward rectification. The currents were reversibly blocked by TRAM-34 (a Kcnn4 blocker) with an IC(50) of 8.7 ± 2.0 μM. The channels were not observed when charybdotoxin, a peptide inhibitor of Kcnn4 channels, was added to the pipette solution. TRAM-34 was less potent in inhibiting Kcnn4 channels in patches from apical membranes than in patches from basolateral membranes, which was consistent with a preferential expression of Kcnn4c and Kcnn4b isoforms in apical and basolateral membranes, respectively. The expression of both isoforms in IEC-18 cells was confirmed by RT-PCR and Western blot analyses. This is the first characterization of Kcnn4 channels in the apical membrane of intestinal epithelial cells.
Collapse
Affiliation(s)
| | - Vazhaikkurichi M. Rajendran
- Departments of 1Biochemistry and ,2Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia
| | | |
Collapse
|
17
|
Nanda Kumar NS, Singh SK, Rajendran VM. Mucosal potassium efflux mediated via Kcnn4 channels provides the driving force for electrogenic anion secretion in colon. Am J Physiol Gastrointest Liver Physiol 2010; 299:G707-14. [PMID: 20616305 PMCID: PMC2950693 DOI: 10.1152/ajpgi.00101.2010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Intermediate conductance K(+) (Kcnn4) channels are present in both mucosal and serosal membranes of colon. However, only serosal Kcnn4 channels have been shown to be essential for agonist-induced (cAMP and Ca(2+)) anion secretion. The present study sought to determine whether mucosal Kcnn4 channels also play a role in colonic anion secretion. Mucosal-to-serosal and serosal-to-mucosal unidirectional (86)Rb (K(+) surrogate) fluxes as well as short-circuit current (I(sc); a measure of anion secretion) were measured under voltage-clamp conditions in distal colon from rats fed either a standard or K(+)-free diet. 5,6-Dichloro-1-ethyl-1,3-dihydro-2H-benzimidazole-2-one (DC-EBIO) was used to activate Kcnn4 channels. Mucosal DC-EBIO both induced K(+) secretion and enhanced anion secretion in normal rat distal colon. The DC-EBIO-induced K(+) secretion was completely blocked by nonspecific (Ba(2+)) and Kcnn4-specific (TRAM-34) inhibitors, but was not blocked by the large-conductance K(+) (iberiotoxin), small-conductance K(+) (apamin), or KCNQ1 (chromanol 293B) specific blockers. Ba(2+) and TRAM-34 also inhibited DC-EBIO-enhanced anion secretion. The DC-EBIO-enhanced anion secretion was completely inhibited by the nonspecific anion channel blocker 5-nitro-2-(3-phenylpropyl-amino)benzoic acid, whereas it was only partially inhibited by CFTR [CFTR(inh)-172, glibenclamide]- and CaCC (niflumic acid)-specific Cl(-) channel blockers. In contrast, mucosal DC-EBIO-enhanced K(+) and anion secretion was not present in distal colon of dietary K-depleted rats, indicating absence of mucosal Kcnn4 channels. These observations indicate that mucosal Kcnn4 channels are capable of driving agonist-induced anion secretion mediated via CFTR and CaCC and likely contribute to stool K(+) losses that accompany diarrheal illnesses.
Collapse
Affiliation(s)
| | - Satish K. Singh
- 2Departments of Medicine, Boston University School of Medicine and Veterans Affairs Boston Healthcare System, Boston, Massachusetts
| | - Vazhaikkurichi M. Rajendran
- 1Department of Biochemistry and Molecular Biology, and ,3Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia; and
| |
Collapse
|
18
|
Halm ST, Zhang J, Halm DR. beta-Adrenergic activation of electrogenic K+ and Cl- secretion in guinea pig distal colonic epithelium proceeds via separate cAMP signaling pathways. Am J Physiol Gastrointest Liver Physiol 2010; 299:G81-95. [PMID: 20413718 PMCID: PMC2904107 DOI: 10.1152/ajpgi.00035.2010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Adrenergic stimulation of isolated guinea pig distal colonic mucosa produced transient Cl(-) and sustained K(+) secretion. Transient short-circuit current (I(sc)) depended on beta(2)-adrenergic receptors (beta(2)-AdrR), and sustained I(sc) relies on a beta(1)-AdrR/beta(2)-AdrR complex. Epinephrine (epi) increased cAMP content with a biphasic time course similar to changes in epi-activated I(sc) ((epi)I(sc)). Inhibition of transmembrane adenylyl cyclases (tmACs) reduced peak (epi)I(sc) and cAMP to near zero without decreasing sustained (epi)I(sc), consistent with cAMP from tmAC signaling for only Cl(-) secretion. Inhibition of soluble adenylyl cyclase (sAC) reduced sustained (epi)I(sc) and cAMP to near zero without decreasing peak (epi)I(sc) or cAMP, consistent with cAMP from sAC signaling for K(+) secretion. Sensitivity to phosphodiesterase (PDE) inhibitors and peptide YY (PYY) stimulation further supported separate signaling for the two components. PDE3 or PDE4 inhibitors enhanced peak (epi)I(sc) but not sustained (epi)I(sc), consistent with these PDEs as part of the beta(2)-AdrR signaling domain. PYY suppressed peak (epi)I(sc) in a pertussis toxin (PTx)-sensitive manner, supporting Galpha(i)-dependent inhibition of tmACs producing cAMP for Cl(-) secretion. Since PYY or PTx did not alter sustained (epi)I(sc), signaling for K(+) secretion occurred via a Galpha(i)-independent mechanism. Presence of multiple sAC variants in colonic epithelial cells was supported by domain-specific antibodies. Responses to specific activators and inhibitors suggested that protein kinase A was not involved in activating peak or sustained components of (epi)I(sc), but the cAMP-dependent guanine nucleotide exchange factor, Epac, may contribute. Thus beta-adrenergic activation of electrogenic Cl(-) and K(+) secretion, respectively, required tmAC- and sAC-dependent signaling pathways.
Collapse
Affiliation(s)
- Susan T. Halm
- Department of Neuroscience, Cell Biology and Physiology, Wright State University Boonshoft School of Medicine, Dayton, Ohio
| | - Jin Zhang
- Department of Neuroscience, Cell Biology and Physiology, Wright State University Boonshoft School of Medicine, Dayton, Ohio
| | - Dan R. Halm
- Department of Neuroscience, Cell Biology and Physiology, Wright State University Boonshoft School of Medicine, Dayton, Ohio
| |
Collapse
|
19
|
Barmeyer C, Rahner C, Yang Y, Sigworth FJ, Binder HJ, Rajendran VM. Cloning and identification of tissue-specific expression of KCNN4 splice variants in rat colon. Am J Physiol Cell Physiol 2010; 299:C251-63. [PMID: 20445171 DOI: 10.1152/ajpcell.00091.2009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
KCNN4 channels that provide the driving force for cAMP- and Ca(2+)-induced anion secretion are present in both apical and basolateral membranes of the mammalian colon. However, only a single KCNN4 has been cloned. This study was initiated to identify whether both apical and basolateral KCNN4 channels are encoded by the same or different isoforms. Reverse transcriptase-PCR (RT-PCR), real-time quantitative-PCR (RT-QPCR), and immunofluorescence studies were used to clone and identify tissue-specific expression of KCNN4 isoforms. Three distinct KCNN4 cDNAs that are designated as KCNN4a, KCNN4b, and KCNN4c encoding 425, 424, and 395 amino acid proteins, respectively, were isolated from the rat colon. KCNN4a differs from KCNN4b at both the nucleotide and the amino acid level with distinct 628 bp at the 3'-untranslated region and an additional glutamine at position 415, respectively. KCNN4c differs from KCNN4b by lacking the second exon that encodes a 29 amino acid motif. KCNN4a and KCNN4b/c are identified as smooth muscle- and epithelial cell-specific transcripts, respectively. KCNN4b and KCNN4c transcripts likely encode basolateral (40 kDa) and apical (37 kDa) membrane proteins in the distal colon, respectively. KCNN4c, which lacks the S2 transmembrane segment, requires coexpression of a large conductance K(+) channel beta-subunit for plasma membrane expression. The KCNN4 channel blocker TRAM-34 inhibits KCNN4b- and KCNN4c-mediated (86)Rb (K(+) surrogate) efflux with an apparent inhibitory constant of 0.6 +/- 0.1 and 7.8 +/- 0.4 muM, respectively. We conclude that apical and basolateral KCNN4 K(+) channels that regulate K(+) and anion secretion are encoded by distinct isoforms in colonic epithelial cells.
Collapse
Affiliation(s)
- Christian Barmeyer
- Department of Internal Medicine, Yale University, New Haven, Connecticut, USA
| | | | | | | | | | | |
Collapse
|
20
|
Yu K, Lujan R, Marmorstein A, Gabriel S, Hartzell HC. Bestrophin-2 mediates bicarbonate transport by goblet cells in mouse colon. J Clin Invest 2010; 120:1722-35. [PMID: 20407206 DOI: 10.1172/jci41129] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 02/17/2010] [Indexed: 01/17/2023] Open
Abstract
Anion transport by the colonic mucosa maintains the hydration and pH of the colonic lumen, and its disruption causes a variety of diarrheal diseases. Cholinergic agonists raise cytosolic Ca2+ levels and stimulate anion secretion, but the mechanisms underlying this effect remain unclear. Cholinergic stimulation of anion secretion may occur via activation of Ca2+-activated Cl- channels (CaCCs) or an increase in the Cl- driving force through CFTR after activation of Ca2+-dependent K+ channels. Here we investigated the role of a candidate CaCC protein, bestrophin-2 (Best2), using Best2-/- mice. Cholinergic stimulation of anion current was greatly reduced in Best2-/- mice, consistent with our proposed role for Best2 as a CaCC. However, immunostaining revealed Best2 localized to the basolateral membrane of mucin-secreting colonic goblet cells, not the apical membrane of Cl--secreting enterocytes. In addition, in the absence of HCO3-, cholinergic-activated current was identical in control and Best2-/- tissue preparations, which suggests that most of the Best2 current was carried by HCO3-. These data delineate an alternative model of cholinergic regulation of colonic anion secretion in which goblet cells play a critical role in HCO3- homeostasis. We therefore propose that Best2 is a HCO3- channel that works in concert with a Cl:HCO3- exchanger in the apical membrane to affect transcellular HCO3- transport. Furthermore, previous models implicating CFTR in cholinergic Cl- secretion may be explained by substantial downregulation of Best2 in Cftr-/- mice.
Collapse
Affiliation(s)
- Kuai Yu
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | |
Collapse
|
21
|
O'Mahony F, Alzamora R, Chung HL, Thomas W, Harvey BJ. Genomic priming of the antisecretory response to estrogen in rat distal colon throughout the estrous cycle. Mol Endocrinol 2009; 23:1885-99. [PMID: 19846538 DOI: 10.1210/me.2008-0248] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The secretion of Cl(-) across distal colonic crypt cells provides the driving force for the movement of fluid into the luminal space. 17beta-Estradiol (E2) produces a rapid and sustained reduction in secretion in females, which is dependent on the novel protein kinase C delta (PKC delta) isozyme and PKA isoform I targeting of KCNQ1 channels. This sexual dimorphism in the E2 response is associated with a higher expression level of PKC delta in female compared with the male tissue. The present study revealed the antisecretory response is regulated throughout the female reproductive (estrous) cycle and is primed by genomic regulation of the kinases. E2 (1-10 nm) decreased cAMP-dependent secretion in colonic epithelia during the estrus, metestrus, and diestrus stages. A weak inhibition of secretion was demonstrated in the proestrus stage. The expression levels of PKC delta and PKA fluctuated throughout the estrous cycle and correlated with the potency of the antisecretory effect of E2. The expression of PKC delta and PKA were up-regulated by estrogen at a transcriptional level via a PKC delta-MAPK-cAMP response element-binding protein-regulated pathway indicating a genomic priming of the antisecretory response. PK Cdelta was activated by the membrane-impermeant E2-BSA, and this response was inhibited by the estrogen receptor antagonist ICI 182,780. The 66-kDa estrogen receptor-alpha isoform was present at the plasma membrane of female colonic crypt cells with a lower abundance found in male colonic crypts. The study demonstrates estrogen regulation of intestinal secretion both at a rapid and transcriptional level, demonstrating an interdependent relationship between both nongenomic and genomic hormone responses.
Collapse
Affiliation(s)
- Fiona O'Mahony
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre Smurfit Building, Beaumont Hospital, P.O. Box 9063, Dublin 9, Ireland.
| | | | | | | | | |
Collapse
|
22
|
Zhang J, Halm ST, Halm DR. Adrenergic activation of electrogenic K+ secretion in guinea pig distal colonic epithelium: involvement of beta1- and beta2-adrenergic receptors. Am J Physiol Gastrointest Liver Physiol 2009; 297:G269-77. [PMID: 19460844 PMCID: PMC2724081 DOI: 10.1152/ajpgi.00076.2009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Adrenergic stimulation of electrogenic K+ secretion in isolated mucosa from guinea pig distal colon required activation of two beta-adrenergic receptor subtypes (beta-AdrR). Addition of epinephrine (epi) or norepinephrine (norepi) to the bathing solution of mucosae in Ussing chambers increased short-circuit current (Isc) and transepithelial conductance (Gt), consistent with this cation secretion. A beta-adrenergic classification was supported by propranolol antagonism of this secretory response and the lack of effect by the alpha-AdrR antagonists BE2254 (alpha1-AdrR) and yohimbine (alpha2-AdrR). Subtype-selective antagonists CGP20712A (beta1-AdrR), ICI-118551 (beta2-AdrR), and SR59320A (beta3-AdrR) were relatively ineffective at inhibiting the epi-stimulated Isc response. In combination, CGP20712A and ICI-118551 inhibited the response, which supported a synergistic action by beta1-AdrR and beta2-AdrR. Expression of mRNA for both beta1-AdrR and beta2-AdrR was indicated by RT-PCR of RNA from colonic epithelial cells. Protein expression was indicated by immunoblot showing bands at molecular weights consistent with monomers and oligomers. Immunoreactivity (ir) for beta1-AdrR and beta2-AdrR was prominent in basolateral membranes of columnar epithelial cells in the crypts of Lieberkühn as well as intercrypt surface epithelium. Cells in the pericryptal sheath also had beta1-AdrR(ir) but did not have discernable beta2-AdrR(ir). The adrenergic sensitivity of K+ secretion measured by Isc and Gt was relatively low as indicated by EC(50)s of 41 +/- 7 nM for epi and 50 +/- 14 nM for norepi. Adrenergic activation of electrogenic K+ secretion required the involvement of both beta1-AdrR and beta2-AdrR, occurring with an agonist sensitivity reduced compared with reported values for either receptor subtype.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Neuroscience, Cell Biology and Physiology, Wright State University Boonshoft School of Medicine, Dayton, Ohio
| | - Susan T. Halm
- Department of Neuroscience, Cell Biology and Physiology, Wright State University Boonshoft School of Medicine, Dayton, Ohio
| | - Dan R. Halm
- Department of Neuroscience, Cell Biology and Physiology, Wright State University Boonshoft School of Medicine, Dayton, Ohio
| |
Collapse
|
23
|
Zhang J, Halm ST, Halm DR. Adrenergic activation of electrogenic K+ secretion in guinea pig distal colonic epithelium: desensitization via the Y2-neuropeptide receptor. Am J Physiol Gastrointest Liver Physiol 2009; 297:G278-91. [PMID: 19497958 PMCID: PMC2724082 DOI: 10.1152/ajpgi.00077.2009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Adrenergic activation of electrogenic K+ secretion in isolated mucosa from guinea pig distal colon was desensitized by peptide-YY (PYY). Addition of PYY or neuropeptide-Y (NPY) to the bathing solution of mucosae in Ussing chambers suppressed the short-circuit current (Isc) corresponding to electrogenic Cl- secretion, whether stimulated by epinephrine (epi), prostaglandin-E2 (PGE2), or carbachol (CCh). Neither peptide markedly inhibited the large transient component of synergistic secretion (PGE2 + CCh). Sustained Cl- secretory Isc was inhibited approximately 65% by PYY or NPY, with IC50s of 4.1 +/- 0.9 nM and 9.4 +/- 3.8 nM, respectively. This inhibition was eliminated by BIIE0246, an antagonist of the Y2-neuropeptide receptor (Y2-NpR), but not by Y1-NpR antagonist BVD10. Adrenergic sensitivity for activation of K+ secretion in the presence of Y2-NpR blockade by BIIE0246 was (EC50s) 2.9 +/- 1.2 nM for epi and 13.3 +/- 1.0 nM for norepinephrine, approximately fourfold greater than in the presence of PYY. Expression of mRNA for both Y1-NpR and Y2-NpR was indicated by RT-PCR of RNA from colonic mucosa, and protein expression was indicated by immunoblot. Immunoreactivity (ir) for Y1-NpR and Y2-NpR was distinct in basolateral membranes of columnar epithelial cells in the crypts of Lieberkühn as well as intercrypt surface epithelium. Adrenergic nerves in proximity with crypts were detected by ir for dopamine-beta-hydroxylase, and a portion of these nerves also contained NPY(ir). BIIE0246 addition increased secretagog-activated Isc, consistent with in vitro release of either PYY or NPY. Thus PYY and NPY were able to suppress Cl- secretory capacity and desensitize the adrenergic K+ secretory response, providing a direct inhibitory counterbalance against secretory activation.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Neuroscience, Cell Biology and Physiology, Wright State University Boonshoft School of Medicine, Dayton, Ohio
| | - Susan T. Halm
- Department of Neuroscience, Cell Biology and Physiology, Wright State University Boonshoft School of Medicine, Dayton, Ohio
| | - Dan R. Halm
- Department of Neuroscience, Cell Biology and Physiology, Wright State University Boonshoft School of Medicine, Dayton, Ohio
| |
Collapse
|
24
|
Gragasin FS, Davidge ST. The effects of propofol on vascular function in mesenteric arteries of the aging rat. Am J Physiol Heart Circ Physiol 2009; 297:H466-74. [DOI: 10.1152/ajpheart.01317.2008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypotension following administration of propofol, an anesthetic agent, is strongly predicted by advanced age and is partly due to direct vasodilation. We hypothesized that propofol increases nitric oxide (NO)-mediated vasodilation by enhancing its bioavailability in the aged adult vasculature, leading to greater vasodilation than in the young adult. Small mesenteric arteries from rats aged 13–15 versus 3 to 4 mo were compared in this study. Reactivity to propofol (1–100 μM) alone and with the addition of acetylcholine (ACh; 0.1–10 μM) in endothelial-intact and dunuded arteries following phenylephrine constriction was assessed using myography. NG-nitro-l-arginine methyl ester (l-NAME) and meclofenamate (Meclo) were used to inhibit NO and prostaglandin synthesis, respectively. Superoxide dismutase (SOD) and catalase were used as antioxidants during ACh relaxation and were compared with propofol in aging arteries. Propofol alone induced greater relaxation in 1) endothelial-intact compared with denuded arteries and 2) aged compared with young arteries, which were inhibited by l-NAME. ACh-induced relaxation was greater in young compared with aged control arteries; however, propofol pretreatment increased this relaxation in aged but not in young arteries. Additionally, propofol inhibited ACh-induced relaxation in arteries treated with l-NAME + Meclo [relaxation attributed to endothelium-derived hyperpolarizing factor (EDHF)]. Pretreatment with SOD and catalase increased relaxation to ACh in aged arteries similar to propofol. In conclusion, propofol causes relaxation in small mesenteric arteries in an endothelial-dependent and independent manner and increases ACh-induced relaxation in aged arteries. Interestingly, propofol inhibits EDHF-mediated relaxation but increases availability of NO, which leads to overall vascular relaxation.
Collapse
|
25
|
Abstract
Disruption of normal gastrointestinal function as a result of infection, hereditary or acquired diseases, or complications of surgical procedures uncovers its important role in acid-base homeostasis. Metabolic acidosis or alkalosis may occur, depending on the nature and volume of the unregulated losses that occur. Investigation into the specific pathophysiology of gastrointestinal disorders has provided important new insights into the normal physiology of ion transport along the gut and has also provided new avenues for treatment. This review provides a brief overview of normal ion transport along the gut and then discusses the pathophysiology and treatment of the metabolic acid-base disorders that occur when normal gut function is disrupted.
Collapse
Affiliation(s)
- F John Gennari
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont, USA.
| | | |
Collapse
|
26
|
Mosa AS, Hansen MB, Tilotta CM, Bindslev N. EP4and EP2Receptor Subtypes Involved in Colonic Secretion in Rat. Basic Clin Pharmacol Toxicol 2008; 103:214-21. [DOI: 10.1111/j.1742-7843.2008.00257.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
27
|
Bajwa PJ, Alioua A, Lee JW, Straus DS, Toro L, Lytle C. Fenofibrate inhibits intestinal Cl- secretion by blocking basolateral KCNQ1 K+ channels. Am J Physiol Gastrointest Liver Physiol 2007; 293:G1288-99. [PMID: 17916649 DOI: 10.1152/ajpgi.00234.2007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Fibrates are peroxisome proliferator-activated receptor-alpha (PPARalpha) ligands in widespread clinical use to lower plasma triglyceride levels. We investigated the effect of fenofibrate and clofibrate on ion transport in mouse intestine and in human T84 colonic adenocarcinoma cells through the use of short-circuit current (I(sc)) and ion flux analysis. In mice, oral administration of fenofibrate produced a persistent inhibition of cAMP-stimulated electrogenic Cl(-) secretion by isolated jejunum and colon without affecting electroneutral fluxes of (22)Na(+) or (86)Rb(+) (K(+)) across unstimulated colonic mucosa. When applied acutely to isolated mouse intestinal mucosa, 100 microM fenofibrate inhibited cAMP-stimulated I(sc) within 5 min. In T84 cells, fenofibrate rapidly inhibited approximately 80% the Cl(-) secretory responses to forskolin (cAMP) and to heat stable enterotoxin STa (cGMP) without affecting the response to carbachol (Ca(2+)). Both fenofibrate and clofibrate inhibited cAMP-stimulated I(sc) with an IC(50) approximately 1 muM, whereas other PPARalpha activators (gemfibrozil and Wy-14,643) were without effect. Membrane permeabilization experiments on T84 cells indicated that fenofibrate inhibits basolateral cAMP-stimulated K(+) channels (putatively KCNQ1/KCNE3) without affecting Ca(2+)-stimulated K(+) channel activity, whereas clofibrate inhibits both K(+) pathways. Fenofibrate had no effect on apical cAMP-stimulated Cl(-) channel activity. Patch-clamp analysis of HEK-293T cells confirmed that 100 microM fenofibrate rapidly inhibits K(+) currents associated with ectopic expression of human KCNQ1 with or without the KCNE3 beta-subunit. We conclude that fenofibrate inhibits intestinal cAMP-stimulated Cl(-) secretion through a nongenomic mechanism that involves a selective inhibition of basolateral KCNQ1/KCNE3 channel complexes. Our findings raise the prospect of fenofibrate as a safe and effective antidiarrheal agent.
Collapse
Affiliation(s)
- Poonam J Bajwa
- Division of Biomedical Sciences, University of California, Riverside, CA 92521-0121, USA
| | | | | | | | | | | |
Collapse
|
28
|
Flores CA, Melvin JE, Figueroa CD, Sepúlveda FV. Abolition of Ca2+-mediated intestinal anion secretion and increased stool dehydration in mice lacking the intermediate conductance Ca2+-dependent K+ channel Kcnn4. J Physiol 2007; 583:705-17. [PMID: 17584847 PMCID: PMC2277011 DOI: 10.1113/jphysiol.2007.134387] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Intestinal fluid secretion is driven by apical membrane, cystic fibrosis transmembrane conductance regulator (CFTR)-mediated efflux of Cl- that is concentrated in cells by basolateral Na(+)-K(+)-2Cl- cotransporters (NKCC1). An absolute requirement for Cl- efflux is the parallel activation of K(+) channels which maintain a membrane potential that sustains apical anion secretion. Both cAMP and Ca(2+) are intracellular signals for intestinal Cl- secretion. The K(+) channel involved in cAMP-dependent secretion has been identified as the KCNQ1-KCNE3 complex, but the identity of the K(+) channel driving Ca(2+)-activated Cl- secretion is controversial. We have now used a Kcnn4 null mouse to show that the intermediate conductance IK1 K(+) channel is necessary and sufficient to support Ca(2+)-dependent Cl- secretion in large and small intestine. Ussing chambers were used to monitor transepithelial potential, resistance and equivalent short-circuit current in colon and jejunum from control and Kcnn4 null mice. Na(+), K(+) and water content of stools was also measured. Distal colon and small intestinal epithelia from Kcnn4 null mice had normal cAMP-dependent Cl- secretory responses. In contrast, they completely lacked Cl- secretion in response to Ca(2+)-mobilizing agonists. Ca(2+)-activated electrogenic K(+) secretion was increased in colon epithelium of mice deficient in the IK1 channel. Na(+) and water content of stools was diminished in IK1-null animals. The use of Kcnn4 null mice has allowed us to demonstrate that IK1 K(+) channels are solely responsible for driving intestinal Ca(2+)-activated Cl- secretion. The absence of this channel leads to a marked reduction in water content in the stools, probably as a consequence of decreased electrolyte and water secretion.
Collapse
Affiliation(s)
- Carlos A Flores
- Centro de Estudios Científicos, Avenida Arturo Prat 514, Valdivia, Chile
| | | | | | | |
Collapse
|
29
|
O'Mahony F, Alzamora R, Betts V, LaPaix F, Carter D, Irnaten M, Harvey BJ. Female gender-specific inhibition of KCNQ1 channels and chloride secretion by 17beta-estradiol in rat distal colonic crypts. J Biol Chem 2007; 282:24563-73. [PMID: 17556370 DOI: 10.1074/jbc.m611682200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The estrogen sex steroid 17beta-estradiol rapidly inhibits secretagogue-stimulated cAMP-dependent Cl(-) secretion in the female rat distal colonic crypt by the inhibition of basolateral K(+) channels. In Ussing chamber studies, both the anti-secretory response and inhibition of basolateral K(+) current was shown to be attenuated by pretreatment with rottlerin, a PKCdelta-specific inhibitor. In whole cell patch-clamp analysis, 17beta-estradiol inhibited a chromanol 293B-sensitive KCNQ1 channel current in isolated female rat distal colonic crypts. Estrogen had no effect on KCNQ1 channel currents in colonic crypts isolated from male rats. Female distal colonic crypts expressed a significantly higher amount of PKCdelta in comparison to male tissue. PKCdelta and PKA were activated at 5 min in response to 17beta-estradiol in female distal colonic crypts only. Both PKCdelta- and PKA-associated with the KCNQ1 channel in response to 17beta-estradiol in female distal colonic crypts, and no associations were observed in crypts from males. PKA activation, association with KCNQ1, and phosphorylation of the channel were regulated by PKCdelta as the responses were blocked by pretreatment with rottlerin. Taken together, our experiments have identified the molecular targets underlying the anti-secretory response to estrogen involving the inhibition of KCNQ1 channel activity via PKCdelta- and PKA-dependent signaling pathways. This is a novel gender-specific mechanism of regulation of an ion channel by estrogen. The anti-secretory response described in this study provides molecular insights whereby estrogen causes fluid retention effects in the female during periods of high circulating plasma estrogen levels.
Collapse
Affiliation(s)
- Fiona O'Mahony
- Department of Molecular Medicine, Beaumont Hospital, Royal College of Surgeons in Ireland, Dublin 9, Ireland.
| | | | | | | | | | | | | |
Collapse
|