1
|
Kim S, Ayan B, Shayan M, Rando TA, Huang NF. Skeletal muscle-on-a-chip in microgravity as a platform for regeneration modeling and drug screening. Stem Cell Reports 2024; 19:1061-1073. [PMID: 39059375 PMCID: PMC11368695 DOI: 10.1016/j.stemcr.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/22/2024] [Accepted: 06/23/2024] [Indexed: 07/28/2024] Open
Abstract
Microgravity has been shown to lead to both muscle atrophy and impaired muscle regeneration. The purpose was to study the efficacy of microgravity to model impaired muscle regeneration in an engineered muscle platform and then to demonstrate the feasibility of performing drug screening in this model. Engineered human muscle was launched to the International Space Station National Laboratory, where the effect of microgravity exposure for 7 days was examined by transcriptomics and proteomics approaches. Gene set enrichment analysis of engineered muscle cultured in microgravity, compared to normal gravity conditions, highlighted a metabolic shift toward lipid and fatty acid metabolism, along with increased apoptotic gene expression. The addition of pro-regenerative drugs, insulin-like growth factor-1 (IGF-1) and a 15-hydroxyprostaglandin dehydrogenase inhibitor (15-PGDH-i), partially inhibited the effects of microgravity. In summary, microgravity mimics aspects of impaired myogenesis, and the addition of these drugs could partially inhibit the effects induced by microgravity.
Collapse
Affiliation(s)
- Soochi Kim
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Bugra Ayan
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
| | - Mahdis Shayan
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA; Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto, Health Care System, Palo Alto, CA 94304, USA.
| | - Ngan F Huang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA; Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto, Health Care System, Palo Alto, CA 94304, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA; Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
2
|
Lu HJ, Koju N, Sheng R. Mammalian integrated stress responses in stressed organelles and their functions. Acta Pharmacol Sin 2024; 45:1095-1114. [PMID: 38267546 PMCID: PMC11130345 DOI: 10.1038/s41401-023-01225-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/30/2023] [Indexed: 01/26/2024] Open
Abstract
The integrated stress response (ISR) triggered in response to various cellular stress enables mammalian cells to effectively cope with diverse stressful conditions while maintaining their normal functions. Four kinases (PERK, PKR, GCN2, and HRI) of ISR regulate ISR signaling and intracellular protein translation via mediating the phosphorylation of eukaryotic translation initiation factor 2 α (eIF2α) at Ser51. Early ISR creates an opportunity for cells to repair themselves and restore homeostasis. This effect, however, is reversed in the late stages of ISR. Currently, some studies have shown the non-negligible impact of ISR on diseases such as ischemic diseases, cognitive impairment, metabolic syndrome, cancer, vanishing white matter, etc. Hence, artificial regulation of ISR and its signaling with ISR modulators becomes a promising therapeutic strategy for relieving disease symptoms and improving clinical outcomes. Here, we provide an overview of the essential mechanisms of ISR and describe the ISR-related pathways in organelles including mitochondria, endoplasmic reticulum, Golgi apparatus, and lysosomes. Meanwhile, the regulatory effects of ISR modulators and their potential application in various diseases are also enumerated.
Collapse
Affiliation(s)
- Hao-Jun Lu
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China
| | - Nirmala Koju
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
3
|
Lin F, Sun L, Zhang Y, Gao W, Chen Z, Liu Y, Tian K, Han X, Liu R, Li Y, Shen L. Mitochondrial stress response and myogenic differentiation. Front Cell Dev Biol 2024; 12:1381417. [PMID: 38681520 PMCID: PMC11055459 DOI: 10.3389/fcell.2024.1381417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/29/2024] [Indexed: 05/01/2024] Open
Abstract
Regeneration and repair are prerequisites for maintaining effective function of skeletal muscle under high energy demands, and myogenic differentiation is one of the key steps in the regeneration and repair process. A striking feature of the process of myogenic differentiation is the alteration of mitochondria in number and function. Mitochondrial dysfunction can activate a number of transcriptional, translational and post-translational programmes and pathways to maintain cellular homeostasis under different types and degrees of stress, either through its own signaling or through constant signaling interactions with the nucleus and cytoplasm, a process known as the mitochondrial stress responses (MSRs). It is now believed that mitochondrial dysfunction is closely associated with a variety of muscle diseases caused by reduced levels of myogenic differentiation, suggesting the possibility that MSRs are involved in messaging during myogenic differentiation. Also, MSRs may be involved in myogenesis by promoting bioenergetic remodeling and assisting myoblast survival during myogenic differentiation. In this review, we will take MSRs as an entry point to explore its concrete regulatory mechanisms during myogenic differentiation, with a perspective to provide a theoretical basis for the treatment and repair of related muscle diseases.
Collapse
Affiliation(s)
- Fu Lin
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Liankun Sun
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yu Zhang
- Experimental Teaching Center of Basic Medicine, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Weinan Gao
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Zihan Chen
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
- Clinical Medical College of Jilin University, The First Hospital of Jilin University, Changchun, China
| | - Yanan Liu
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Kai Tian
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
- China Japan Union Hospital of Jilin University, Changchun, China
| | - Xuyu Han
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
- China Japan Union Hospital of Jilin University, Changchun, China
| | - Ruize Liu
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
- China Japan Union Hospital of Jilin University, Changchun, China
| | - Yang Li
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Luyan Shen
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
4
|
Zhang J, Qiao W, Luo Y. Mitochondrial quality control proteases and their modulation for cancer therapy. Med Res Rev 2023; 43:399-436. [PMID: 36208112 DOI: 10.1002/med.21929] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 09/04/2022] [Accepted: 09/26/2022] [Indexed: 02/05/2023]
Abstract
Mitochondria, the main provider of energy in eukaryotic cells, contains more than 1000 different proteins and is closely related to the development of cells. However, damaged proteins impair mitochondrial function, further contributing to several human diseases. Evidence shows mitochondrial proteases are critically important for protein maintenance. Most importantly, quality control enzymes exert a crucial role in the modulation of mitochondrial functions by degrading misfolded, aged, or superfluous proteins. Interestingly, cancer cells thrive under stress conditions that damage proteins, so targeting mitochondrial quality control proteases serves as a novel regulator for cancer cells. Not only that, mitochondrial quality control proteases have been shown to affect mitochondrial dynamics by regulating the morphology of optic atrophy 1 (OPA1), which is closely related to the occurrence and progression of cancer. In this review, we introduce mitochondrial quality control proteases as promising targets and related modulators in cancer therapy with a focus on caseinolytic protease P (ClpP), Lon protease (LonP1), high-temperature requirement protein A2 (HrtA2), and OMA-1. Further, we summarize our current knowledge of the advances in clinical trials for modulators of mitochondrial quality control proteases. Overall, the content proposed above serves to suggest directions for the development of novel antitumor drugs.
Collapse
Affiliation(s)
- Jiangnan Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Wenliang Qiao
- Lung Cancer Center, Laboratory of Lung Cancer, Western China Hospital of Sichuan University, Chengdu, China
| | - Youfu Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Poláchová E, Bach K, Heuten E, Stanchev S, Tichá A, Lampe P, Majer P, Langer T, Lemberg MK, Stříšovský K. Chemical Blockage of the Mitochondrial Rhomboid Protease PARL by Novel Ketoamide Inhibitors Reveals Its Role in PINK1/Parkin-Dependent Mitophagy. J Med Chem 2022; 66:251-265. [PMID: 36540942 PMCID: PMC9841525 DOI: 10.1021/acs.jmedchem.2c01092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The mitochondrial rhomboid protease PARL regulates mitophagy by balancing intramembrane proteolysis of PINK1 and PGAM5. It has been implicated in the pathogenesis of Parkinson's disease, but its investigation as a possible therapeutic target is challenging in this context because genetic deficiency of PARL may result in compensatory mechanisms. To address this problem, we undertook a hitherto unavailable chemical biology strategy. We developed potent PARL-targeting ketoamide inhibitors and investigated the effects of acute PARL suppression on the processing status of PINK1 intermediates and on Parkin activation. This approach revealed that PARL inhibition leads to a robust activation of the PINK1/Parkin pathway without major secondary effects on mitochondrial properties, which demonstrates that the pharmacological blockage of PARL to boost PINK1/Parkin-dependent mitophagy is a feasible approach to examine novel therapeutic strategies for Parkinson's disease. More generally, this study showcases the power of ketoamide inhibitors for cell biological studies of rhomboid proteases.
Collapse
Affiliation(s)
- Edita Poláchová
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague 160 00, Czech Republic,First
Faculty of Medicine, Charles University, Kateřinská 32, Prague 121 08, Czech Republic
| | - Kathrin Bach
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague 160 00, Czech Republic,Department
of Molecular Genetics, Faculty of Science, Charles University, Viničná 5, Prague 128 44, Czech Republic
| | - Elena Heuten
- Center
for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer
Feld 282, Heidelberg 69120, Germany,Center
for Biochemistry and Cologne Excellence Cluster on Cellular Stress
Responses in Aging-Associated Diseases (CECAD), Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, Cologne 50931, Germany
| | - Stancho Stanchev
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague 160 00, Czech Republic
| | - Anežka Tichá
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague 160 00, Czech Republic
| | - Philipp Lampe
- Institute
for Genetics and Cologne Excellence Cluster on Cellular Stress Responses
in Aging-Associated Diseases (CECAD), Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, Cologne 50931, Germany
| | - Pavel Majer
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague 160 00, Czech Republic
| | - Thomas Langer
- Institute
for Genetics and Cologne Excellence Cluster on Cellular Stress Responses
in Aging-Associated Diseases (CECAD), Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, Cologne 50931, Germany,Center
for Molecular Medicine (CMMC), Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, Cologne 50931, Germany,Max-Planck-Institute
for Biology of Ageing, Joseph-Stelzmann-Str. 9b, Cologne 50931, Germany
| | - Marius K. Lemberg
- Center
for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer
Feld 282, Heidelberg 69120, Germany,Center
for Biochemistry and Cologne Excellence Cluster on Cellular Stress
Responses in Aging-Associated Diseases (CECAD), Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, Cologne 50931, Germany,
| | - Kvido Stříšovský
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague 160 00, Czech Republic,
| |
Collapse
|
6
|
Roles of LonP1 in Oral-Maxillofacial Developmental Defects and Tumors: A Novel Insight. Int J Mol Sci 2022; 23:ijms232113370. [PMID: 36362158 PMCID: PMC9657610 DOI: 10.3390/ijms232113370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/22/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Recent studies have indicated a central role for LonP1 in mitochondrial function. Its physiological functions include proteolysis, acting as a molecular chaperone, binding mitochondrial DNA, and being involved in cellular respiration, cellular metabolism, and oxidative stress. Given its vital role in energy metabolism, LonP1 has been suggested to be associated with multi-system neoplasms and developmental disorders. In this study, we investigated the roles, possible mechanisms of action, and therapeutic roles of LonP1 in oral and maxillofacial tumor development. LonP1 was highly expressed in oral-maxillofacial cancers and regulated their development through a sig-naling network. LonP1 may therefore be a promising anticancer therapy target. Mutations in LONP1 have been found to be involved in the etiology of cerebral, ocular, dental, auricular, and skeletal syndrome (CODAS). Only patients carrying specific LONP1 mutations have certain dental abnormalities (delayed eruption and abnormal morphology). LonP1 is therefore a novel factor in the development of oral and maxillofacial tumors. Greater research should therefore be conducted on the diagnosis and therapy of LonP1-related diseases to further define LonP1-associated oral phenotypes and their underlying molecular mechanisms.
Collapse
|
7
|
Sun H, Shen L, Zhang P, Lin F, Ma J, Wu Y, Yu H, Sun L. Inhibition of High-Temperature Requirement Protein A2 Protease Activity Represses Myogenic Differentiation via UPRmt. Int J Mol Sci 2022; 23:ijms231911761. [PMID: 36233059 PMCID: PMC9569504 DOI: 10.3390/ijms231911761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 12/02/2022] Open
Abstract
Skeletal muscles require muscle satellite cell (MuSC) differentiation to facilitate the replenishment and repair of muscle fibers. A key step in this process is called myogenic differentiation. The differentiation ability of MuSCs decreases with age and can result in sarcopenia. Although mitochondria have been reported to be involved in myogenic differentiation by promoting a bioenergetic remodeling, little is known about the interplay of mitochondrial proteostasis and myogenic differentiation. High-temperature-requirement protein A2 (HtrA2/Omi) is a protease that regulates proteostasis in the mitochondrial intermembrane space (IMS). Mice deficient in HtrA2 protease activity show a distinct phenotype of sarcopenia. To investigate the role of IMS proteostasis during myogenic differentiation, we treated C2C12 myoblasts with UCF101, a specific inhibitor of HtrA2 during differentiation process. A key step in this process is called myogenic differentiation. The differentiation ability of MuSCs decreases with age and can result in sarcopenia. Further, CHOP, p-eIF2α, and other mitochondrial unfolded protein response (UPRmt)-related proteins are upregulated. Therefore, we suggest that imbalance of mitochondrial IMS proteostasis acts via a retrograde signaling pathway to inhibit myogenic differentiation via the UPRmt pathway. These novel mechanistic insights may have implications for the development of new strategies for the treatment of sarcopenia.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Huimei Yu
- Correspondence: (H.Y.); (L.S.); Tel.: +86-0431-8561-9495 (H.Y. & L.S.)
| | - Liankun Sun
- Correspondence: (H.Y.); (L.S.); Tel.: +86-0431-8561-9495 (H.Y. & L.S.)
| |
Collapse
|
8
|
Xu Z, Fu T, Guo Q, Zhou D, Sun W, Zhou Z, Chen X, Zhang J, Liu L, Xiao L, Yin Y, Jia Y, Pang E, Chen Y, Pan X, Fang L, Zhu MS, Fei W, Lu B, Gan Z. Disuse-associated loss of the protease LONP1 in muscle impairs mitochondrial function and causes reduced skeletal muscle mass and strength. Nat Commun 2022; 13:894. [PMID: 35173176 PMCID: PMC8850466 DOI: 10.1038/s41467-022-28557-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 02/02/2022] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial proteolysis is an evolutionarily conserved quality-control mechanism to maintain proper mitochondrial integrity and function. However, the physiological relevance of stress-induced impaired mitochondrial protein quality remains unclear. Here, we demonstrate that LONP1, a major mitochondrial protease resides in the matrix, plays a role in controlling mitochondrial function as well as skeletal muscle mass and strength in response to muscle disuse. In humans and mice, disuse-related muscle loss is associated with decreased mitochondrial LONP1 protein. Skeletal muscle-specific ablation of LONP1 in mice resulted in impaired mitochondrial protein turnover, leading to mitochondrial dysfunction. This caused reduced muscle fiber size and strength. Mechanistically, aberrant accumulation of mitochondrial-retained protein in muscle upon loss of LONP1 induces the activation of autophagy-lysosome degradation program of muscle loss. Overexpressing a mitochondrial-retained mutant ornithine transcarbamylase (ΔOTC), a known protein degraded by LONP1, in skeletal muscle induces mitochondrial dysfunction, autophagy activation, and cause muscle loss and weakness. Thus, these findings reveal a role of LONP1-dependent mitochondrial protein quality-control in safeguarding mitochondrial function and preserving skeletal muscle mass and strength, and unravel a link between mitochondrial protein quality and muscle mass maintenance during muscle disuse. Mitochondrial function is important for muscle maintenance and function, and mitochondrial proteolysis maintains mitochondrial integrity and function. Here the authors report that that loss of LONP1-dependent mitochondrial proteolysis in muscle causes reduced muscle mass and strength via activation of autophagy.
Collapse
Affiliation(s)
- Zhisheng Xu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Tingting Fu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Qiqi Guo
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Danxia Zhou
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Wanping Sun
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Zheng Zhou
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Xinyi Chen
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Jingzi Zhang
- Jiangsu Key Laboratory of Molecular Medicine & Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing, China
| | - Lin Liu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Liwei Xiao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Yujing Yin
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Yuhuan Jia
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Erkai Pang
- Sports Medicine Department, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Xin Pan
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Lei Fang
- Jiangsu Key Laboratory of Molecular Medicine & Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing, China
| | - Min-Sheng Zhu
- The State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Wenyong Fei
- Sports Medicine Department, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Bin Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhenji Gan
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University Medical School, Nanjing University, Nanjing, China. .,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing University, Nanjing, China. .,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China.
| |
Collapse
|