1
|
Durnell LA, Hippee CE, Cattaneo R, Bartlett JA, Singh BK, Sinn PL. Interferon-independent processes constrain measles virus cell-to-cell spread in primary human airway epithelial cells. Microbiol Spectr 2023; 11:e0136123. [PMID: 37724882 PMCID: PMC10580916 DOI: 10.1128/spectrum.01361-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/27/2023] [Indexed: 09/21/2023] Open
Abstract
Amplification of measles virus (MeV) in human airway epithelia may contribute to its extremely high contagious nature. We use well-differentiated primary cultures of human airway epithelial cells (HAE) to model ex vivo how MeV spreads in human airways. In HAE, MeV spreads cell-to-cell for 3-5 days, but then, infectious center growth is arrested. What stops MeV spread in HAE is not understood, but interferon (IFN) is known to slow MeV spread in other in vitro and in vivo models. Here, we assessed the role of type I and type III IFN in arresting MeV spread in HAE. The addition of IFN-β or IFN-λ1 to the medium of infected HAE slowed MeV infectious center growth, but when IFN receptor signaling was blocked, infectious center size was not affected. In contrast, blocking type-I IFN receptor signaling enhanced respiratory syncytial virus spread. HAE were also infected with MeV mutants defective for the V protein. The V protein has been demonstrated to interact with both MDA5 and STAT2 to inhibit activation of innate immunity; however, innate immune reactions were unexpectedly muted against the V-defective MeV in HAE. Minimal innate immunity activation was confirmed by deep sequencing, quantitative RT-PCR, and single-cell RNA-seq analyses of the transcription of IFN and IFN-stimulated genes. We conclude that in HAE, IFN-signaling can contribute to slowing infectious center growth; however, IFN-independent processes are most important for limiting cell-to-cell spread. IMPORTANCE Fundamental biological questions remain about the highly contagious measles virus (MeV). MeV amplifies within airway epithelial cells before spreading to the next host. This final step likely contributes to the ability of MeV to spread host-to-host. Over the course of 3-5 days post-infection of airway epithelial cells, MeV spreads directly cell-to-cell and forms infectious centers. Infectious center formation is unique to MeV. In this study, we show that interferon (IFN) signaling does not explain why MeV cell-to-cell spread is ultimately impeded within the cell layer. The ability of MeV to spread cell-to-cell in airway cells without appreciable IFN induction may contribute to its highly contagious nature. This study contributes to the understanding of a significant global health concern by demonstrating that infectious center formation occurs independent of the simplest explanation for limiting viral transmission within a host.
Collapse
Affiliation(s)
- Lorellin A. Durnell
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Camilla E. Hippee
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Roberto Cattaneo
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jennifer A. Bartlett
- Stead Family Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Brajesh K. Singh
- Stead Family Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Patrick L. Sinn
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
- Stead Family Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
2
|
Hill DB, Button B, Rubinstein M, Boucher RC. Physiology and pathophysiology of human airway mucus. Physiol Rev 2022; 102:1757-1836. [PMID: 35001665 PMCID: PMC9665957 DOI: 10.1152/physrev.00004.2021] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 01/27/2023] Open
Abstract
The mucus clearance system is the dominant mechanical host defense system of the human lung. Mucus is cleared from the lung by cilia and airflow, including both two-phase gas-liquid pumping and cough-dependent mechanisms, and mucus transport rates are heavily dependent on mucus concentration. Importantly, mucus transport rates are accurately predicted by the gel-on-brush model of the mucociliary apparatus from the relative osmotic moduli of the mucus and periciliary-glycocalyceal (PCL-G) layers. The fluid available to hydrate mucus is generated by transepithelial fluid transport. Feedback interactions between mucus concentrations and cilia beating, via purinergic signaling, coordinate Na+ absorptive vs Cl- secretory rates to maintain mucus hydration in health. In disease, mucus becomes hyperconcentrated (dehydrated). Multiple mechanisms derange the ion transport pathways that normally hydrate mucus in muco-obstructive lung diseases, e.g., cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), non-CF bronchiectasis (NCFB), and primary ciliary dyskinesia (PCD). A key step in muco-obstructive disease pathogenesis is the osmotic compression of the mucus layer onto the airway surface with the formation of adherent mucus plaques and plugs, particularly in distal airways. Mucus plaques create locally hypoxic conditions and produce airflow obstruction, inflammation, infection, and, ultimately, airway wall damage. Therapies to clear adherent mucus with hydrating and mucolytic agents are rational, and strategies to develop these agents are reviewed.
Collapse
Affiliation(s)
- David B Hill
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina
| | - Brian Button
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Michael Rubinstein
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Mechanical Engineering and Materials Science, Biomedical Engineering, Physics, and Chemistry, Duke University, Durham, North Carolina
| | - Richard C Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
3
|
A Splice Switch in SIGIRR Causes a Defect of IL-37-Dependent Anti-Inflammatory Activity in Cystic Fibrosis Airway Epithelial Cells. Int J Mol Sci 2022; 23:ijms23147748. [PMID: 35887095 PMCID: PMC9318995 DOI: 10.3390/ijms23147748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/05/2022] [Accepted: 07/12/2022] [Indexed: 11/23/2022] Open
Abstract
Cystic fibrosis (CF) is a hereditary disease typically characterized by infection-associated chronic lung inflammation. The persistent activation of toll-like receptor (TLR) signals is considered one of the mechanisms for the CF hyperinflammatory phenotype; however, how negative regulatory signals of TLRs associate with CF inflammation is still elusive. Here, we showed that the cell surface expression of a single immunoglobulin interleukin-1 receptor (IL-1R)-related molecule (SIGIRR), a membrane protein essential for suppressing TLRs- and IL-1R-dependent signals, was remarkably decreased in CF airway epithelial cells compared to non-CF cells. Notably, CF airway epithelial cells specifically and highly expressed a unique, alternative splice isoform of the SIGIRR that lacks exon 8 (Δ8-SIGIRR), which results in the production of a C-terminal truncated form of the SIGIRR. Δ8-SIGIRR was expressed intracellularly, and its over-expression abolished the cell surface expression and function of the full-length SIGIRR (WT-SIGIRR), indicating its dominant-negative effect leading to the deficiency of anti-inflammatory activity in CF cells. Consistently, IL-37, a ligand for the SIGIRR, failed to suppress viral dsRNA analogue poly(I:C)-dependent JNK activation and IL-8 production, confirming the reduction in the functional WT-SIGIRR expression in the CF cells. Together, our studies reveal that SIGIRR-dependent anti-inflammatory activity is defective in CF airway epithelial cells due to the unique splicing switch of the SIGIRR gene and provides the first evidence of IL-37-SIGIRR signaling as a target of CF airway inflammation.
Collapse
|
4
|
Rehman T, Karp PH, Tan P, Goodell BJ, Pezzulo AA, Thurman AL, Thornell IM, Durfey SL, Duffey ME, Stoltz DA, McKone EF, Singh PK, Welsh MJ. Inflammatory cytokines TNF-α and IL-17 enhance the efficacy of cystic fibrosis transmembrane conductance regulator modulators. J Clin Invest 2021; 131:e150398. [PMID: 34166230 DOI: 10.1172/jci150398] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
Without cystic fibrosis transmembrane conductance regulator-mediated (CFTR-mediated) HCO3- secretion, airway epithelia of newborns with cystic fibrosis (CF) produce an abnormally acidic airway surface liquid (ASL), and the decreased pH impairs respiratory host defenses. However, within a few months of birth, ASL pH increases to match that in non-CF airways. Although the physiological basis for the increase is unknown, this time course matches the development of inflammation in CF airways. To learn whether inflammation alters CF ASL pH, we treated CF epithelia with TNF-α and IL-17 (TNF-α+IL-17), 2 inflammatory cytokines that are elevated in CF airways. TNF-α+IL-17 markedly increased ASL pH by upregulating pendrin, an apical Cl-/HCO3- exchanger. Moreover, when CF epithelia were exposed to TNF-α+IL-17, clinically approved CFTR modulators further alkalinized ASL pH. As predicted by these results, in vivo data revealed a positive correlation between airway inflammation and CFTR modulator-induced improvement in lung function. These findings suggest that inflammation is a key regulator of HCO3- secretion in CF airways. Thus, they explain earlier observations that ASL pH increases after birth and indicate that, for similar levels of inflammation, the pH of CF ASL is abnormally acidic. These results also suggest that a non-cell-autonomous mechanism, airway inflammation, is an important determinant of the response to CFTR modulators.
Collapse
Affiliation(s)
- Tayyab Rehman
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine and
| | - Philip H Karp
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine and.,Howard Hughes Medical Institute, University of Iowa, Iowa City, Iowa, USA
| | - Ping Tan
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine and
| | - Brian J Goodell
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine and
| | - Alejandro A Pezzulo
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine and
| | - Andrew L Thurman
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine and
| | - Ian M Thornell
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine and
| | - Samantha L Durfey
- Departments of Medicine and Microbiology, University of Washington, Seattle, Washington, USA
| | - Michael E Duffey
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - David A Stoltz
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine and.,Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Edward F McKone
- National Referral Centre for Adult Cystic Fibrosis, St. Vincent's University Hospital and University College Dublin School of Medicine, Dublin, Ireland
| | - Pradeep K Singh
- Departments of Medicine and Microbiology, University of Washington, Seattle, Washington, USA
| | - Michael J Welsh
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine and.,Howard Hughes Medical Institute, University of Iowa, Iowa City, Iowa, USA.,Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
5
|
Aslanhan U, Cakir E, Pur Ozyigit L, Kucuksezer UC, Gelmez YM, Yuksel M, Deniz G, Cetin Aktas E. Pseudomonas aeruginosa colonization in cystic fibrosis: Impact on neutrophil functions and cytokine secretion capacity. Pediatr Pulmonol 2021; 56:1504-1513. [PMID: 33512090 DOI: 10.1002/ppul.25294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 01/03/2021] [Accepted: 01/22/2021] [Indexed: 01/13/2023]
Abstract
BACKGROUND Chronic colonization with Pseudomonas (P.) aeruginosa worsens the prognosis of cystic fibrosis (CF) patients. This study aims to analyze the functional properties of neutrophils in CF patients with P. aeruginosa colonization. METHODS Patients with CF (n = 16) were grouped by positivity of P. aeruginosa in sputum culture, as positive (P.+) or negative (P.-), then compared with age and sex matched healthy controls (n = 8). Adhesion molecules, apoptotic index, intracellular CAP-18, interleukin 8 (IL-8), and tumor necrosis factor α (TNF-α) levels of neutrophils, following P. aeruginosa and lipopolysaccharides (LPS) stimulation, were analyzed by flow cytometry. IL-1β, IL-6, TNF-α, and IL-17 plasma levels were determined by Luminex. RESULTS Patients with CF had increased phagocytosis of Escherichia coli and P. aeruginosa, upregulated oxidative burst and chemotaxis. Increased neutrophil apoptosis was noted in CF patients. In unstimulated conditions, higher levels of CD16+ TNF-α+ and CD16+ IL-8+ neutrophils were determined, whereas bacteria and LPS stimulation significantly decreased secretion of CAP-18 from CD16+ neutrophils of CF patients. Plasma levels of IL-1β, TNF-α and IL-17 in P.+ patients were higher than in P.- group. CONCLUSION Our findings confirm inadequate neutrophil defense towards pathogens in CF. A significant difference in migration, phagocytosis, oxidative burst, percentage of IL-8 producing neutrophils, IL-1β, TNF-α, and IL-17 secretions were noted among CF patients according to their colonization status, which might induce a further destructive effect on airways, resulting in an unfavorable prognosis for children with CF who also have colonization.
Collapse
Affiliation(s)
- Umit Aslanhan
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.,Department of Immunology, Institute of Health Sciences, Istanbul University, Istanbul, Turkey
| | - Erkan Cakir
- Department of Pediatric Pulmonology, Bezmialem Vakif University Medical Faculty, Istanbul, Turkey
| | - Leyla Pur Ozyigit
- Department of Allergy and Immunology, University Hospitals of Leicester, Leicester, UK
| | - Umut Can Kucuksezer
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Yusuf Metin Gelmez
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Mine Yuksel
- Department of Pediatric Pulmonology, Bezmialem Vakif University Medical Faculty, Istanbul, Turkey
| | - Gunnur Deniz
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Esin Cetin Aktas
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
6
|
Nakada EM, Sun R, Fujii U, Martin JG. The Impact of Endoplasmic Reticulum-Associated Protein Modifications, Folding and Degradation on Lung Structure and Function. Front Physiol 2021; 12:665622. [PMID: 34122136 PMCID: PMC8188853 DOI: 10.3389/fphys.2021.665622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/23/2021] [Indexed: 12/15/2022] Open
Abstract
The accumulation of unfolded/misfolded proteins in the endoplasmic reticulum (ER) causes ER stress and induces the unfolded protein response (UPR) and other mechanisms to restore ER homeostasis, including translational shutdown, increased targeting of mRNAs for degradation by the IRE1-dependent decay pathway, selective translation of proteins that contribute to the protein folding capacity of the ER, and activation of the ER-associated degradation machinery. When ER stress is excessive or prolonged and these mechanisms fail to restore proteostasis, the UPR triggers the cell to undergo apoptosis. This review also examines the overlooked role of post-translational modifications and their roles in protein processing and effects on ER stress and the UPR. Finally, these effects are examined in the context of lung structure, function, and disease.
Collapse
Affiliation(s)
- Emily M. Nakada
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre (RI-MUHC), McGill University, Montreal, QC, Canada
- McGill University, Montreal, QC, Canada
| | - Rui Sun
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre (RI-MUHC), McGill University, Montreal, QC, Canada
- McGill University, Montreal, QC, Canada
| | - Utako Fujii
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre (RI-MUHC), McGill University, Montreal, QC, Canada
- McGill University, Montreal, QC, Canada
| | - James G. Martin
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre (RI-MUHC), McGill University, Montreal, QC, Canada
- McGill University, Montreal, QC, Canada
| |
Collapse
|
7
|
Barilli A, Visigalli R, Ferrari F, Borsani G, Dall'Asta V, Rotoli BM. Flagellin From Pseudomonas Aeruginosa Stimulates ATB 0,+ Transporter for Arginine and Neutral Amino Acids in Human Airway Epithelial Cells. Front Immunol 2021; 12:641563. [PMID: 33841424 PMCID: PMC8029981 DOI: 10.3389/fimmu.2021.641563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/08/2021] [Indexed: 01/08/2023] Open
Abstract
At present, the central role played by arginine in the modulation of the inflammatory cellular responses is well-recognized, and many pro-inflammatory stimuli are known to modulate the expression and activity of its transmembrane transporters. In this regard, we have addressed the effects of bacterial flagellin from Pseudomonas aeruginosa (FLA-PA) on the uptake of the amino acid in human epithelial respiratory cells. Among the arginine transporters, only ATB0,+, y+L, and y+ were operative in bronchial epithelial Calu-3 cells under control conditions; however, only the expression and activity of ATB0,+ were stimulated upon incubation with flagellin, whereas those of systems y+L and y+ were not stimulated. As a result, this induction, in turn, led to an increase in the intracellular content of arginine without making any change to its metabolic pathway. In addition, flagellin upregulated the amount of other amino acids substrates of ATB0,+, in particular, all the essential amino acids, such as valine, isoleucine, and leucine, along with the non-essential glutamine. At the molecular level, these effects were directly referable to the stimulation of a toll-like receptor-5 (TLR5) signaling pathway and to the induction of nuclear factor-κB (NF-κB) transcription factor. An induction of ATB0,+ expression has been observed also in EpiAirway™, a model of primary human normal tracheal-bronchial epithelial cells that mimics the in vitro pseudostratified columnar epithelium of the airways. In this tissue model, the incubation with flagellin is associated with the upregulation of messenger RNAs (mRNAs) for the chemokine IL-8 and for the cytokines IL-6 and interleukin-1β (IL-1β); as for the latter, a marked secretion in the extracellular medium was also observed due to the concomitant activation of caspase-1. The overall findings indicate that, in human respiratory epithelium, flagellin promotes cellular responses associating the increase of intracellular amino acids through ATB0,+ with the activation of the inflammasome. Given the role of the ATB0,+ transporter as a delivery system for bronchodilators in human airway epithelial cells, its induction under inflammatory conditions gains particular relevance in the field of respiratory pharmacology.
Collapse
Affiliation(s)
- Amelia Barilli
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Rossana Visigalli
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Francesca Ferrari
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giuseppe Borsani
- Section of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Valeria Dall'Asta
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Bianca Maria Rotoli
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
8
|
Turner MJ, Abbott-Banner K, Thomas DY, Hanrahan JW. Cyclic nucleotide phosphodiesterase inhibitors as therapeutic interventions for cystic fibrosis. Pharmacol Ther 2021; 224:107826. [PMID: 33662448 DOI: 10.1016/j.pharmthera.2021.107826] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/05/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022]
Abstract
Cystic Fibrosis (CF) lung disease results from mutations in the CFTR anion channel that reduce anion and fluid secretion by airway epithelia. Impaired secretion compromises airway innate defence mechanisms and leads to bacterial colonization, excessive inflammation and tissue damage; thus, restoration of CFTR function is the goal of many CF therapies. CFTR channels are activated by cyclic nucleotide-dependent protein kinases. The second messengers 3'5'-cAMP and 3'5'-cGMP are hydrolysed by a large family of cyclic nucleotide phosphodiesterases that provide subcellular spatial and temporal control of cyclic nucleotide-dependent signalling. Selective inhibition of these enzymes elevates cyclic nucleotide levels, leading to activation of CFTR and other downstream effectors. Here we examine members of the PDE family that are likely to regulate CFTR-dependent ion and fluid secretion in the airways and discuss other actions of PDE inhibitors that can influence cyclic nucleotide-regulated mucociliary transport, inflammation and bronchodilation. Finally, we review PDE inhibitors and the potential benefits they could provide as CF therapeutics.
Collapse
Affiliation(s)
- Mark J Turner
- Department of Physiology, McGill University, Montreal, QC, Canada; Cystic Fibrosis Translational Research Centre, McGill University, Montreal, QC, Canada.
| | | | - David Y Thomas
- Cystic Fibrosis Translational Research Centre, McGill University, Montreal, QC, Canada; Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - John W Hanrahan
- Department of Physiology, McGill University, Montreal, QC, Canada; Cystic Fibrosis Translational Research Centre, McGill University, Montreal, QC, Canada
| |
Collapse
|
9
|
UPR modulation of host immunity by Pseudomonas aeruginosa in cystic fibrosis. Clin Sci (Lond) 2020; 134:1911-1934. [PMID: 32537652 DOI: 10.1042/cs20200066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022]
Abstract
Cystic fibrosis (CF) is a progressive multiorgan autosomal recessive disease with devastating impact on the lungs caused by derangements of the CF transmembrane conductance regulator (CFTR) gene. Morbidity and mortality are caused by the triad of impaired mucociliary clearance, microbial infections and chronic inflammation. Pseudomonas aeruginosa is the main respiratory pathogen in individuals with CF infecting most patients in later stages. Despite its recognized clinical impact, molecular mechanisms that underlie P. aeruginosa pathogenesis and the host response to P. aeruginosa infection remain incompletely understood. The nuclear hormone receptor peroxisome proliferator-activated receptor (PPAR) γ (PPARγ), has shown to be reduced in CF airways. In the present study, we sought to investigate the upstream mechanisms repressing PPARγ expression and its impact on airway epithelial host defense. Endoplasmic reticulum-stress (ER-stress) triggered unfolded protein response (UPR) activated by misfolded CFTR and P. aeruginosa infection contributed to attenuated expression of PPARγ. Specifically, the protein kinase RNA (PKR)-like ER kinase (PERK) signaling pathway led to the enhanced expression of the CCAAT-enhancer-binding-protein homologous protein (CHOP). CHOP induction led to the repression of PPARγ expression. Mechanistically, we showed that CHOP induction mediated PPARγ attenuation, impacted the innate immune function of normal and ∆F508 primary airway epithelial cells by reducing expression of antimicrobial peptide (AMP) and paraoxanse-2 (PON-2), as well as enhancing IL-8 expression. Furthermore, mitochondrial reactive oxygen species production (mt-ROS) and ER-stress positive feedforward loop also dysregulated mitochondrial bioenergetics. Additionally, our findings implicate that PPARγ agonist pioglitazone (PIO) has beneficial effect on the host at the multicellular level ranging from host defense to mitochondrial re-energization.
Collapse
|
10
|
Gopallawa I, Lee RJ. Targeting the phosphoinositide-3-kinase/protein kinase B pathway in airway innate immunity. World J Biol Chem 2020; 11:30-51. [PMID: 33024516 PMCID: PMC7520643 DOI: 10.4331/wjbc.v11.i2.30] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/24/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
The airway innate immune system maintains the first line of defense against respiratory infections. The airway epithelium and associated immune cells protect the respiratory system from inhaled foreign organisms. These cells sense pathogens via activation of receptors like toll-like receptors and taste family 2 receptors (T2Rs) and respond by producing antimicrobials, inflammatory cytokines, and chemokines. Coordinated regulation of fluid secretion and ciliary beating facilitates clearance of pathogens via mucociliary transport. Airway cells also secrete antimicrobial peptides and radicals to directly kill microorganisms and inactivate viruses. The phosphoinositide-3-kinase/protein kinase B (Akt) kinase pathway regulates multiple cellular targets that modulate cell survival and proliferation. Akt also regulates proteins involved in innate immune pathways. Akt phosphorylates endothelial nitric oxide synthase (eNOS) enzymes expressed in airway epithelial cells. Activation of eNOS can have anti-inflammatory, anti-bacterial, and anti-viral roles. Moreover, Akt can increase the activity of the transcription factor nuclear factor erythroid 2 related factor-2 that protects cells from oxidative stress and may limit inflammation. In this review, we summarize the recent findings of non-cancerous functions of Akt signaling in airway innate host defense mechanisms, including an overview of several known downstream targets of Akt involved in innate immunity.
Collapse
Affiliation(s)
- Indiwari Gopallawa
- Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Robert J Lee
- Department of Otorhinolaryngology and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| |
Collapse
|
11
|
Laucirica DR, Garratt LW, Kicic A. Progress in Model Systems of Cystic Fibrosis Mucosal Inflammation to Understand Aberrant Neutrophil Activity. Front Immunol 2020; 11:595. [PMID: 32318073 PMCID: PMC7154161 DOI: 10.3389/fimmu.2020.00595] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/13/2020] [Indexed: 12/18/2022] Open
Abstract
In response to recurrent infection in cystic fibrosis (CF), powerful innate immune signals trigger polymorphonuclear neutrophil recruitment into the airway lumen. Exaggerated neutrophil proteolytic activity results in sustained inflammation and scarring of the airways. Consequently, neutrophils and their secretions are reliable clinical biomarkers of lung disease progression. As neutrophils are required to clear infection and yet a direct cause of airway damage, modulating adverse neutrophil activity while preserving their pathogen fighting function remains a key area of CF research. The factors that drive their pathological behavior are still under investigation, especially in early disease when aberrant neutrophil behavior first becomes evident. Here we examine the latest findings of neutrophils in pediatric CF lung disease and proposed mechanisms of their pathogenicity. Highlighted in this review are current and emerging experimental methods for assessing CF mucosal immunity and human neutrophil function in the laboratory.
Collapse
Affiliation(s)
- Daniel R Laucirica
- Faculty of Health and Medical Sciences, University of Western Australia, Nedlands, WA, Australia.,Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Luke W Garratt
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Anthony Kicic
- Faculty of Health and Medical Sciences, University of Western Australia, Nedlands, WA, Australia.,Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia.,Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, WA, Australia.,School of Public Health, Curtin University, Bentley, WA, Australia
| |
Collapse
|
12
|
Kim D, Huang J, Billet A, Abu-Arish A, Goepp J, Matthes E, Tewfik MA, Frenkiel S, Hanrahan JW. Pendrin Mediates Bicarbonate Secretion and Enhances Cystic Fibrosis Transmembrane Conductance Regulator Function in Airway Surface Epithelia. Am J Respir Cell Mol Biol 2020; 60:705-716. [PMID: 30742493 DOI: 10.1165/rcmb.2018-0158oc] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Bicarbonate facilitates mucin unpacking and bacterial killing; however, its transport mechanisms in the airways are not well understood. cAMP stimulates anion efflux through the cystic fibrosis (CF) transmembrane conductance regulator (CFTR; ABCC7) anion channel, and this is defective in CF. The anion exchanger pendrin (SLC26A4) also mediates HCO3- efflux and is upregulated by proinflammatory cytokines. Here, we examined pendrin and CFTR expression and their contributions to HCO3- secretion by human nasal and bronchial epithelia. In native tissue, both proteins were most abundant at the apical pole of ciliated surface cells with little expression in submucosal glands. In well-differentiated primary nasal and bronchial cell cultures, IL-4 dramatically increased pendrin mRNA levels and apical immunostaining. Exposure to low-Cl- apical solution caused intracellular alkalinization (ΔpHi) that was enhanced fourfold by IL-4 pretreatment. ΔpHi was unaffected by 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS) or CFTR inhibitor CFTRinh-172, but was reduced by adenoviral shRNA targeting pendrin. Forskolin increased ΔpHi, and this stimulation was prevented by CFTRinh-172, implicating CFTR, yet forskolin only increased ΔpHi after pendrin expression had been induced by IL-4. The dependence of ΔpHi on pendrin suggests there is minimal electrical coupling between Cl- and HCO3- fluxes and that CFTR activation increases anion exchange-mediated HCO3- influx. Conversely, inducing pendrin expression increased forskolin-stimulated, CFTRinh-172-sensitive current by approximately twofold in epithelial and nonepithelial cells. We conclude that pendrin mediates most HCO3- secretion across airway surface epithelium during inflammation and enhances electrogenic Cl- secretion via CFTR, as described for other SLC26A transporters.
Collapse
Affiliation(s)
- Dusik Kim
- 1 Department of Physiology and.,2 Cystic Fibrosis Translational Research Centre, McGill University, Montréal, Québec, Canada; and
| | - Junwei Huang
- 1 Department of Physiology and.,2 Cystic Fibrosis Translational Research Centre, McGill University, Montréal, Québec, Canada; and
| | - Arnaud Billet
- 1 Department of Physiology and.,2 Cystic Fibrosis Translational Research Centre, McGill University, Montréal, Québec, Canada; and
| | - Asmahan Abu-Arish
- 1 Department of Physiology and.,2 Cystic Fibrosis Translational Research Centre, McGill University, Montréal, Québec, Canada; and
| | - Julie Goepp
- 1 Department of Physiology and.,2 Cystic Fibrosis Translational Research Centre, McGill University, Montréal, Québec, Canada; and
| | - Elizabeth Matthes
- 1 Department of Physiology and.,2 Cystic Fibrosis Translational Research Centre, McGill University, Montréal, Québec, Canada; and
| | - Marc A Tewfik
- 2 Cystic Fibrosis Translational Research Centre, McGill University, Montréal, Québec, Canada; and.,3 Department of Otolaryngology-Head and Neck Surgery and
| | - Saul Frenkiel
- 2 Cystic Fibrosis Translational Research Centre, McGill University, Montréal, Québec, Canada; and.,3 Department of Otolaryngology-Head and Neck Surgery and
| | - John W Hanrahan
- 1 Department of Physiology and.,2 Cystic Fibrosis Translational Research Centre, McGill University, Montréal, Québec, Canada; and.,4 Research Institute, McGill University Health Centre, Montréal, Québec, Canada
| |
Collapse
|
13
|
Bouvet GF, Voisin G, Cyr Y, Bascunana V, Massé C, Berthiaume Y. DNA Methylation Regulates RGS2-induced S100A12 Expression in Airway Epithelial Cells. Am J Respir Cell Mol Biol 2019; 59:601-613. [PMID: 29944393 DOI: 10.1165/rcmb.2016-0164oc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
RGS2 is a key modulator of stress in human airway epithelial cells, especially of hyperresponsiveness and mucin hypersecretion, both of which are features of cystic fibrosis (CF). Because its expression can be modulated through the DNA methylation pathway, we hypothesize that RGS2 is downregulated by DNA hypermethylation in CF airway epithelial cells. This downregulation would then lead to an enhanced inflammatory response. We demonstrated RGS2 transcript and protein downregulation in cultured airway epithelial cells from patients with CF and validated our findings in two CF epithelial cell lines. A methylated DNA immunoprecipitation array showed the presence of methylated cytosine on 13 gene promoters in CF. Among these genes, we confirmed that the RGS2 promoter was hypermethylated by using bisulfite conversion coupled with a methylation-specific PCR assay. Finally, we showed that downregulation of RGS2 in non-CF cells increased the expression of S100A12, a proinflammatory marker. These results highlight the importance of epigenetic regulation in gene expression in CF and show that RGS2 might modulate the inflammatory response in CF through DNA methylation control.
Collapse
Affiliation(s)
| | - Gregory Voisin
- Institut de Recherches Cliniques de Montréal, Montréal, Québec, Canada
| | - Yannick Cyr
- Institut de Recherches Cliniques de Montréal, Montréal, Québec, Canada
| | | | - Chantal Massé
- Institut de Recherches Cliniques de Montréal, Montréal, Québec, Canada
| | - Yves Berthiaume
- Institut de Recherches Cliniques de Montréal, Montréal, Québec, Canada
| |
Collapse
|
14
|
Malhotra S, Hayes D, Wozniak DJ. Cystic Fibrosis and Pseudomonas aeruginosa: the Host-Microbe Interface. Clin Microbiol Rev 2019; 32:e00138-18. [PMID: 31142499 PMCID: PMC6589863 DOI: 10.1128/cmr.00138-18] [Citation(s) in RCA: 273] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In human pathophysiology, the clash between microbial infection and host immunity contributes to multiple diseases. Cystic fibrosis (CF) is a classical example of this phenomenon, wherein a dysfunctional, hyperinflammatory immune response combined with chronic pulmonary infections wreak havoc upon the airway, leading to a disease course of substantial morbidity and shortened life span. Pseudomonas aeruginosa is an opportunistic pathogen that commonly infects the CF lung, promoting an accelerated decline of pulmonary function. Importantly, P. aeruginosa exhibits significant resistance to innate immune effectors and to antibiotics, in part, by expressing specific virulence factors (e.g., antioxidants and exopolysaccharides) and by acquiring adaptive mutations during chronic infection. In an effort to review our current understanding of the host-pathogen interface driving CF pulmonary disease, we discuss (i) the progression of disease within the primitive CF lung, specifically focusing on the role of host versus bacterial factors; (ii) critical, neutrophil-derived innate immune effectors that are implicated in CF pulmonary disease, including reactive oxygen species (ROS) and antimicrobial peptides (e.g., LL-37); (iii) P. aeruginosa virulence factors and adaptive mutations that enable evasion of the host response; and (iv) ongoing work examining the distribution and colocalization of host and bacterial factors within distinct anatomical niches of the CF lung.
Collapse
Affiliation(s)
- Sankalp Malhotra
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
- The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Don Hayes
- The Ohio State University College of Medicine, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
- Section of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Daniel J Wozniak
- The Ohio State University College of Medicine, Columbus, Ohio, USA
- Section of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
15
|
Towards Targeting the Aryl Hydrocarbon Receptor in Cystic Fibrosis. Mediators Inflamm 2018; 2018:1601486. [PMID: 29670460 PMCID: PMC5835240 DOI: 10.1155/2018/1601486] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 12/05/2017] [Indexed: 01/28/2023] Open
Abstract
Tryptophan (trp) metabolism is an important regulatory component of gut mucosal homeostasis and the microbiome. Metabolic pathways targeting the trp can lead to a myriad of metabolites, of both host and microbial origins, some of which act as endogenous low-affinity ligands for the aryl hydrocarbon receptor (AhR), a cytosolic, ligand-operated transcription factor that is involved in many biological processes, including development, cellular differentiation and proliferation, xenobiotic metabolism, and the immune response. Low-level activation of AhR by endogenous ligands is beneficial in the maintenance of immune health and intestinal homeostasis. We have defined a functional node whereby certain bacteria species contribute to host/microbial symbiosis and mucosal homeostasis. A microbial trp metabolic pathway leading to the production of indole-3-aldehyde (3-IAld) by lactobacilli provided epithelial protection while inducing antifungal resistance via the AhR/IL-22 axis. In this review, we highlight the role of AhR in inflammatory lung diseases and discuss the possible therapeutic use of AhR ligands in cystic fibrosis.
Collapse
|
16
|
Guan X, Hou Y, Sun F, Yang Z, Li C. Dysregulated Chemokine Signaling in Cystic Fibrosis Lung Disease: A Potential Therapeutic Target. Curr Drug Targets 2017; 17:1535-44. [PMID: 26648071 DOI: 10.2174/1389450117666151209120516] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 10/27/2015] [Accepted: 10/28/2015] [Indexed: 12/26/2022]
Abstract
CF lung disease is characterized by a chronic and non-resolving activation of the innate immune system with excessive release of chemokines/cytokines including IL-8 and persistent infiltration of immune cells, mainly neutrophils, into the airways. Chronic infection and impaired immune response eventually lead to pulmonary damage characterized by bronchiectasis, emphysema, and lung fibrosis. As a complete knowledge of the pathways responsible for the exaggerated inflammatory response in CF lung disease is lacking, understanding these pathways could reveal new therapeutic targets, and lead to novel treatments. Therefore, there is a strong rationale for the identification of mechanisms and pathways underlying the exaggerated inflammatory response in CF lung disease. This article reviews the role of inflammation in the pathogenesis of CF lung disease, with a focus on the dysregulated signaling involved in the overexpression of chemokine IL-8 and excessive recruitment of neutrophils in CF airways. The findings suggest that targeting the exaggerated IL-8/IL-8 receptor (mainly CXCR2) signaling pathway in immune cells (especially neutrophils) may represent a potential therapeutic strategy for CF lung disease.
Collapse
Affiliation(s)
| | | | | | - Zhe Yang
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine. 540 E. Canfield Avenue, 5312 Scott Hall, Detroit, MI 48201, USA
| | - Chunying Li
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine. 540 E. Canfield Avenue, 5312 Scott Hall, Detroit, MI 48201, USA
| |
Collapse
|
17
|
Bergougnoux A, Petit A, Knabe L, Bribes E, Chiron R, De Sario A, Claustres M, Molinari N, Vachier I, Taulan-Cadars M, Bourdin A. The HDAC inhibitor SAHA does not rescue CFTR membrane expression in Cystic Fibrosis. Int J Biochem Cell Biol 2017; 88:124-132. [PMID: 28478266 DOI: 10.1016/j.biocel.2017.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 04/21/2017] [Accepted: 05/03/2017] [Indexed: 01/04/2023]
Abstract
The development of suitable Cystic Fibrosis (CF) models for preclinical bench tests of therapeutic candidates is challenging. Indeed, the validation of molecules to rescue the p.Phe508del-CFTR channel (encoded by the Cystic Fibrosis Transmembrane conductance Regulator gene carrying the p.Phe508del mutation) requires taking into account their overall effects on the epithelium. Suberoylanilide Hydroxamic Acid (SAHA), a histone deacetylase inhibitor (HDACi), was previously shown to be a CFTR corrector via proteostasis modulation in CFTR-deficient immortalized cells. Here, we tested SAHA effects on goblet cell metaplasia using an ex vivo model based on the air-liquid interface (ALI) culture of differentiated airway epithelial cells obtained by nasal scraping from CF patients and healthy controls. Ex vivo epithelium grew successfully in ALI cultures with significant rise in the expression of CFTR and of markers of airway epithelial differentiation compared to monolayer cell culture. SAHA decreased CFTR transcript and protein levels in CF and non-CF epithelia. Whereas SAHA induced lysine hyperacetylation, it did not change histone modifications at the CFTR promoter. SAHA reduced MUC5AC and MUC5B expression and inhibited goblet epithelial cell differentiation. Similar effects were obtained in CF and non-CF epithelia. All the effects were fully reversible within five days from SAHA withdrawal. We conclude that, ex vivo, SAHA modulate the structure of airway epithelia without specific effect on CFTR gene and protein suggesting that HDACi cannot be useful for CF treatment.
Collapse
Affiliation(s)
- Anne Bergougnoux
- Laboratory of Molecular Genetics, CHU Montpellier, Montpellier F-34093, France; EA7402, Rare Diseases Laboratory, University of Montpellier, Montpellier F-34093, France.
| | - Aurélie Petit
- Respiratory Disease Department - CHU Montpellier, Montpellier F-34295, France
| | - Lucie Knabe
- Respiratory Disease Department - CHU Montpellier, Montpellier F-34295, France; PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, Montpellier F-34295, France
| | - Estelle Bribes
- Respiratory Disease Department - CHU Montpellier, Montpellier F-34295, France
| | - Raphaël Chiron
- Respiratory Disease Department - CHU Montpellier, Montpellier F-34295, France
| | - Albertina De Sario
- EA7402, Rare Diseases Laboratory, University of Montpellier, Montpellier F-34093, France
| | - Mireille Claustres
- Laboratory of Molecular Genetics, CHU Montpellier, Montpellier F-34093, France; EA7402, Rare Diseases Laboratory, University of Montpellier, Montpellier F-34093, France
| | - Nicolas Molinari
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, Montpellier F-34295, France; Service DIM, CHU Montpellier, Montpellier F-34093, France
| | - Isabelle Vachier
- Respiratory Disease Department - CHU Montpellier, Montpellier F-34295, France
| | - Magali Taulan-Cadars
- EA7402, Rare Diseases Laboratory, University of Montpellier, Montpellier F-34093, France
| | - Arnaud Bourdin
- Respiratory Disease Department - CHU Montpellier, Montpellier F-34295, France; PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, Montpellier F-34295, France
| |
Collapse
|
18
|
Torres IM, Demirdjian S, Vargas J, Goodale BC, Berwin B. Acidosis increases the susceptibility of respiratory epithelial cells to Pseudomonas aeruginosa-induced cytotoxicity. Am J Physiol Lung Cell Mol Physiol 2017; 313:L126-L137. [PMID: 28385813 DOI: 10.1152/ajplung.00524.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/16/2017] [Accepted: 03/31/2017] [Indexed: 12/21/2022] Open
Abstract
Bacterial infection can lead to acidosis of the local microenvironment, which is believed to exacerbate disease pathogenesis; however, the mechanisms by which changes in pH alter disease progression are poorly understood. We test the hypothesis that acidosis enhances respiratory epithelial cell death in response to infection with Pseudomonas aeruginosa Our findings support the idea that acidosis in the context of P. aeruginosa infection results in increased epithelial cell cytotoxicity due to ExoU intoxication. Importantly, enforced maintenance of neutral pH during P. aeruginosa infection demonstrates that cytotoxicity is dependent on the acidosis. Investigation of the underlying mechanisms revealed that host cell cytotoxicity correlated with increased bacterial survival during an acidic infection that was due to reduced bactericidal activity of host-derived antimicrobial peptides. These findings extend previous reports that the activities of antimicrobial peptides are pH-dependent and provide novel insights into the consequences of acidosis on infection-derived pathology. Therefore, this report provides the first evidence that physiological levels of acidosis increase the susceptibility of epithelial cells to acute Pseudomonas infection and demonstrates the benefit of maintaining pH homeostasis during a bacterial infection.
Collapse
Affiliation(s)
- Iviana M Torres
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Sally Demirdjian
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Jennifer Vargas
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Britton C Goodale
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Brent Berwin
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| |
Collapse
|
19
|
In silico search for modifier genes associated with pancreatic and liver disease in Cystic Fibrosis. PLoS One 2017; 12:e0173822. [PMID: 28339466 PMCID: PMC5365109 DOI: 10.1371/journal.pone.0173822] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 02/27/2017] [Indexed: 12/15/2022] Open
Abstract
Cystic Fibrosis is the most common lethal autosomal recessive disorder in the white population, affecting among other organs, the lung, the pancreas and the liver. Whereas Cystic Fibrosis is a monogenic disease, many studies reveal a very complex relationship between genotype and clinical phenotype. Indeed, the broad phenotypic spectrum observed in Cystic Fibrosis is far from being explained by obvious genotype-phenotype correlations and it is admitted that Cystic Fibrosis disease is the result of multiple factors, including effects of the environment as well as modifier genes. Our objective was to highlight new modifier genes with potential implications in the lung, pancreatic and liver outcomes of the disease. For this purpose we performed a system biology approach which combined, database mining, literature mining, gene expression study and network analysis as well as pathway enrichment analysis and protein-protein interactions. We found that IFI16, CCNE2 and IGFBP2 are potential modifiers in the altered lung function in Cystic Fibrosis. We also found that EPHX1, HLA-DQA1, HLA-DQB1, DSP and SLC33A1, GPNMB, NCF2, RASGRP1, LGALS3 and PTPN13, are potential modifiers in pancreas and liver, respectively. Associated pathways indicate that immune system is likely involved and that Ubiquitin C is probably a central node, linking Cystic Fibrosis to liver and pancreatic disease. We highlight here new modifier genes with potential implications in Cystic Fibrosis. Nevertheless, our in silico analysis requires functional analysis to give our results a physiological relevance.
Collapse
|
20
|
Abstract
Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene that encodes a chloride channel located in the apical membrane of epithelia cells. The cAMP signaling pathway and protein phosphorylation are known to be primary controlling mechanisms for channel function. In this study, we present an alternative activation pathway that involves calcium-activated calmodulin binding of the intrinsically disordered regulatory (R) region of CFTR. Beyond their potential therapeutic value, these data provide insights into the intersection of calcium signaling with control of ion homeostasis and the ways in which the local CFTR microdomain organizes itself. Cystic fibrosis results from mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel, leading to defective apical chloride transport. Patients also experience overactivation of inflammatory processes, including increased calcium signaling. Many investigations have described indirect effects of calcium signaling on CFTR or other calcium-activated chloride channels; here, we investigate the direct response of CFTR to calmodulin-mediated calcium signaling. We characterize an interaction between the regulatory region of CFTR and calmodulin, the major calcium signaling molecule, and report protein kinase A (PKA)-independent CFTR activation by calmodulin. We describe the competition between calmodulin binding and PKA phosphorylation and the differential effects of this competition for wild-type CFTR and the major F508del mutant, hinting at potential therapeutic strategies. Evidence of CFTR binding to isolated calmodulin domains/lobes suggests a mechanism for the role of CFTR as a molecular hub. Together, these data provide insights into how loss of active CFTR at the membrane can have additional consequences besides impaired chloride transport.
Collapse
|
21
|
Wang H, Cebotaru L, Lee HW, Yang Q, Pollard BS, Pollard HB, Guggino WB. CFTR Controls the Activity of NF-κB by Enhancing the Degradation of TRADD. Cell Physiol Biochem 2016; 40:1063-1078. [PMID: 27960153 DOI: 10.1159/000453162] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND/AIMS Chronic lung infection in cystic fibrosis leads to an inflammatory response that persists because of the chronic presence of bacteria and ultimately leads to a catastrophic failure of lung function. METHODS We use a combination of biochemistry, cell and molecular biology to study the interaction of TRADD, a key adaptor molecule in TNFα signaling, with CFTR in the regulation of NFκB. RESULTS We show that Wt CFTR binds to and colocalizes with TRADD. TRADD is a key signaling intermediate connecting TNFα with activation of NFκB. By contrast, ΔF508 CFTR does not bind to TRADD. NF-κB activation is higher in CFBE expressing ΔF508 CFTR than in cells expressing Wt CFTR. However, this differential effect is abolished when TRADD levels are knocked down. Transfecting Wt CFTR into CFBE cells reduces NF-κB activity. However the reduction is abolished by the CFTR chloride transport inhibitor-172. Consistently, transfecting in the correctly trafficked CFTR conduction mutants G551D or S341A also fail to reduce NFκB activity. Thus CFTR must be functional if it is to regulate NF-κB activity. We also found that TNFα produced a greater increase in NF-κB activity in CFBE cells than in the same cell when Wt CFTR-corrected. Consistently, the effect is also abolished when TRADD is knocked down by shRNA. Thus, Wt CFTR control of TRADD modulates the physiological activation of NF-κB by TNFα. Based on studies with proteosomal and lysosomal inhibitors, the mechanism by which Wt CFTR, but not ΔF508 CFTR, suppresses TRADD is by lysosomal degradation. CONCLUSION We have uncovered a novel mechanism whereby Wt CFTR regulates TNFα signaling by enhancing TRADD degradation. Thus by reducing the levels of TRADD, Wt CFTR suppresses downstream proinflammatory NFκB signaling. By contrast, suppression of NF-κB activation fails in CF cells expressing ΔF508 CFTR.
Collapse
Affiliation(s)
- Hua Wang
- Department of Physiology, Medicine, School of Medicine, The Johns Hopkins University, Baltimore, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Aureli M, Schiumarini D, Loberto N, Bassi R, Tamanini A, Mancini G, Tironi M, Munari S, Cabrini G, Dechecchi MC, Sonnino S. Unravelling the role of sphingolipids in cystic fibrosis lung disease. Chem Phys Lipids 2016; 200:94-103. [DOI: 10.1016/j.chemphyslip.2016.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/22/2016] [Accepted: 08/25/2016] [Indexed: 12/13/2022]
|
23
|
Mijošek V, Lasitschka F, Warth A, Zabeck H, Dalpke AH, Weitnauer M. Endoplasmic Reticulum Stress Is a Danger Signal Promoting Innate Inflammatory Responses in Bronchial Epithelial Cells. J Innate Immun 2016; 8:464-78. [PMID: 27423489 DOI: 10.1159/000447668] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/15/2016] [Indexed: 12/22/2022] Open
Abstract
Endoplasmic reticulum (ER) stress is associated with chronic pulmonary inflammatory diseases. We hypothesized that the combined activation of both Toll-like receptor (TLR) signaling and ER stress might increase inflammatory reactions in otherwise tolerant airway epithelial cells. Indeed, ER stress resulted in an increased response of BEAS-2B and human primary bronchial epithelial cells to pathogen-associated molecular pattern stimulation with respect to IL6 and IL8 production. ER stress elevated p38 and ERK MAP kinase activation, and pharmacological inhibition of these kinases could inhibit the boosting effect. Knockdown of unfolded protein response signaling indicated that mainly PERK and ATF6 were responsible for the synergistic activity. Specifically, PERK and ATF6 mediated increased MAPK activation, which is needed for effective cytokine secretion. We conclude that within airway epithelial cells the combined activation of TLR signaling and ER stress-mediated MAPK activation results in synergistic proinflammatory activity. We speculate that ER stress, present in various chronic pulmonary diseases, boosts TLR signaling and therefore proinflammatory cytokine production, thus acting as a costimulatory danger signal.
Collapse
Affiliation(s)
- Vedrana Mijošek
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University Hospital Heidelberg, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Livraghi A, Randell SH. Cystic Fibrosis and Other Respiratory Diseases of Impaired Mucus Clearance. Toxicol Pathol 2016; 35:116-29. [PMID: 17325980 DOI: 10.1080/01926230601060025] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Exposed to a diverse array of potentially noxious agents, the respiratory tract is protected by a highly developed innate defense system. Physiologically regulated epithelial ion and water transport coordinated with mucin secretion, beating cilia, and cough results in continuous flow of fluid and mucus over airway surfaces toward the larynx. This cleansing action is the initial and perhaps most quantitatively important innate defense mechanism. Repeated lung infections and eventual respiratory insufficiency characteristic of human cystic fibrosis (CF) and primary ciliary dyskinesia (PCD) illustrate the consequences of impaired mucus clearance. Altered mucus clearance likely contributes to the initiation, progression, and chronicity of other airway diseases characterized by inflammation and mucous secretory cell hyper/metaplasia that afflict millions worldwide, including chronic obstructive pulmonary disease (COPD). This review concisely discusses the pathophysiology of human diseases characterized by genetic defects that impair mucus clearance. It then explores animal models in which components of the mucus clearance system have been disrupted. These models firmly establish the importance of mucus clearance for respiratory health, and will help elucidate disease mechanisms and therapeutic strategies in CF, PCD and COPD.
Collapse
Affiliation(s)
- Alessandra Livraghi
- Cystic Fibrosis/Pulmonary Research and Treatment Center, Department of Medicine, The University of North Carolina at Chapel Hill, 27599, USA
| | | |
Collapse
|
25
|
Epithelial Anion Transport as Modulator of Chemokine Signaling. Mediators Inflamm 2016; 2016:7596531. [PMID: 27382190 PMCID: PMC4921137 DOI: 10.1155/2016/7596531] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 05/03/2016] [Accepted: 05/12/2016] [Indexed: 12/16/2022] Open
Abstract
The pivotal role of epithelial cells is to secrete and absorb ions and water in order to allow the formation of a luminal fluid compartment that is fundamental for the epithelial function as a barrier against environmental factors. Importantly, epithelial cells also take part in the innate immune system. As a first line of defense they detect pathogens and react by secreting and responding to chemokines and cytokines, thus aggravating immune responses or resolving inflammatory states. Loss of epithelial anion transport is well documented in a variety of diseases including cystic fibrosis, chronic obstructive pulmonary disease, asthma, pancreatitis, and cholestatic liver disease. Here we review the effect of aberrant anion secretion with focus on the release of inflammatory mediators by epithelial cells and discuss putative mechanisms linking these transport defects to the augmented epithelial release of chemokines and cytokines. These mechanisms may contribute to the excessive and persistent inflammation in many respiratory and gastrointestinal diseases.
Collapse
|
26
|
Schwarzer C, Fischer H, Machen TE. Chemotaxis and Binding of Pseudomonas aeruginosa to Scratch-Wounded Human Cystic Fibrosis Airway Epithelial Cells. PLoS One 2016; 11:e0150109. [PMID: 27031335 PMCID: PMC4816407 DOI: 10.1371/journal.pone.0150109] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 02/09/2016] [Indexed: 11/18/2022] Open
Abstract
Confocal imaging was used to characterize interactions of Pseudomonas aeruginosa (PA, expressing GFP or labeled with Syto 11) with CF airway epithelial cells (CFBE41o-, grown as confluent monolayers with unknown polarity on coverglasses) in control conditions and following scratch wounding. Epithelia and PAO1-GFP or PAK-GFP (2 MOI) were incubated with Ringer containing typical extracellular salts, pH and glucose and propidium iodide (PI, to identify dead cells). PAO1 and PAK swam randomly over and did not bind to nonwounded CFBE41o- cells. PA migrated rapidly (began within 20 sec, maximum by 5 mins) and massively (10–80 fold increase, termed “swarming”), but transiently (random swimming after 15 mins), to wounds, particularly near cells that took up PI. Some PA remained immobilized on cells near the wound. PA swam randomly over intact CFBE41o- monolayers and wounded monolayers that had been incubated with medium for 1 hr. Expression of CFTR and altered pH of the media did not affect PA interactions with CFBE41o- wounds. In contrast, PAO1 swarming and immobilization along wounds was abolished in PAO1 (PAO1ΔcheYZABW, no expression of chemotaxis regulatory components cheY, cheZ, cheA, cheB and cheW) and greatly reduced in PAO1 that did not express amino acid receptors pctA, B and C (PAO1ΔpctABC) and in PAO1 incubated in Ringer containing a high concentration of mixed amino acids. Non-piliated PAKΔpilA swarmed normally towards wounded areas but bound infrequently to CFBE41o- cells. In contrast, both swarming and binding of PA to CFBE41o- cells near wounds were prevented in non-flagellated PAKΔfliC. Data are consistent with the idea that (i) PA use amino acid sensor-driven chemotaxis and flagella-driven swimming to swarm to CF airway epithelial cells near wounds and (ii) PA use pili to bind to epithelial cells near wounds.
Collapse
Affiliation(s)
- Christian Schwarzer
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Horst Fischer
- Children’s Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Terry E. Machen
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
27
|
Meijer L, Nelson DJ, Riazanski V, Gabdoulkhakova AG, Hery-Arnaud G, Le Berre R, Loaëc N, Oumata N, Galons H, Nowak E, Gueganton L, Dorothée G, Prochazkova M, Hall B, Kulkarni AB, Gray RD, Rossi AG, Witko-Sarsat V, Norez C, Becq F, Ravel D, Mottier D, Rault G. Modulating Innate and Adaptive Immunity by (R)-Roscovitine: Potential Therapeutic Opportunity in Cystic Fibrosis. J Innate Immun 2016; 8:330-49. [PMID: 26987072 PMCID: PMC4800827 DOI: 10.1159/000444256] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/25/2016] [Accepted: 01/25/2016] [Indexed: 12/17/2022] Open
Abstract
(R)-Roscovitine, a pharmacological inhibitor of kinases, is currently in phase II clinical trial as a drug candidate for the treatment of cancers, Cushing's disease and rheumatoid arthritis. We here review the data that support the investigation of (R)-roscovitine as a potential therapeutic agent for the treatment of cystic fibrosis (CF). (R)-Roscovitine displays four independent properties that may favorably combine against CF: (1) it partially protects F508del-CFTR from proteolytic degradation and favors its trafficking to the plasma membrane; (2) by increasing membrane targeting of the TRPC6 ion channel, it rescues acidification in phagolysosomes of CF alveolar macrophages (which show abnormally high pH) and consequently restores their bactericidal activity; (3) its effects on neutrophils (induction of apoptosis), eosinophils (inhibition of degranulation/induction of apoptosis) and lymphocytes (modification of the Th17/Treg balance in favor of the differentiation of anti-inflammatory lymphocytes and reduced production of various interleukins, notably IL-17A) contribute to the resolution of inflammation and restoration of innate immunity, and (4) roscovitine displays analgesic properties in animal pain models. The fact that (R)-roscovitine has undergone extensive preclinical safety/pharmacology studies, and phase I and II clinical trials in cancer patients, encourages its repurposing as a CF drug candidate.
Collapse
Affiliation(s)
- Laurent Meijer
- Centre de Perharidy, ManRos Therapeutics, Roscoff, France
| | - Deborah J. Nelson
- Department of Pharmacological and Physiological Sciences, The University of Chicago, Chicago, Ill., USA
| | - Vladimir Riazanski
- Department of Pharmacological and Physiological Sciences, The University of Chicago, Chicago, Ill., USA
| | - Aida G. Gabdoulkhakova
- Department of Pharmacological and Physiological Sciences, The University of Chicago, Chicago, Ill., USA
| | - Geneviève Hery-Arnaud
- Unité de Bactériologie, Hôpital de la Cavale Blanche, CHRU Brest, Brest, France
- EA3882-LUBEM, Université de Brest, UFR de Médecine et des Sciences de la Santé, Brest, France
| | - Rozenn Le Berre
- EA3882-LUBEM, Université de Brest, UFR de Médecine et des Sciences de la Santé, Brest, France
- Département de Médecine Interne et Pneumologie, CHRU Brest, Brest, France
| | - Nadège Loaëc
- Centre de Perharidy, ManRos Therapeutics, Roscoff, France
| | - Nassima Oumata
- Centre de Perharidy, ManRos Therapeutics, Roscoff, France
| | - Hervé Galons
- Unité de Technologies Chimiques et Biologiques pour la Santé, Université Paris Descartes UMR-S 1022 INSERM, Paris, France
| | - Emmanuel Nowak
- Hôpital de la Cavale Blanche, CHRU Brest, Centre d'Investigation Clinique, INSERM CIC 1412, Brest, France
| | | | - Guillaume Dorothée
- Immune System, Neuroinflammation and Neurodegenerative Diseases Laboratory, Inflammation-Immunopathology-Biotherapy Department (DHU i2B), CdR Saint-Antoine, INSERM, UMRS 938, Paris, France
- Hôpital Saint-Antoine, CdR Saint-Antoine, UMRS 938, UPMC University Paris 06, Sorbonne Universités, Paris, France
| | - Michaela Prochazkova
- Functional Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, NIH, Bethesda, Md., USA
| | - Bradford Hall
- Functional Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, NIH, Bethesda, Md., USA
| | - Ashok B. Kulkarni
- Functional Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, NIH, Bethesda, Md., USA
| | - Robert D. Gray
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh Medical School, Edinburgh, UK
| | - Adriano G. Rossi
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh Medical School, Edinburgh, UK
| | | | - Caroline Norez
- Laboratoire Signalisation et Transports Ioniques Membranaires, CNRS, Université de Poitiers, Poitiers, France
| | - Frédéric Becq
- Laboratoire Signalisation et Transports Ioniques Membranaires, CNRS, Université de Poitiers, Poitiers, France
| | | | - Dominique Mottier
- Hôpital de la Cavale Blanche, CHRU Brest, Centre d'Investigation Clinique, INSERM CIC 1412, Brest, France
| | | |
Collapse
|
28
|
Peters-Hall JR, Brown KJ, Pillai DK, Tomney A, Garvin LM, Wu X, Rose MC. Quantitative proteomics reveals an altered cystic fibrosis in vitro bronchial epithelial secretome. Am J Respir Cell Mol Biol 2015; 53:22-32. [PMID: 25692303 PMCID: PMC4566109 DOI: 10.1165/rcmb.2014-0256rc] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 02/05/2015] [Indexed: 12/25/2022] Open
Abstract
Alterations in epithelial secretions and mucociliary clearance contribute to chronic bacterial infection in cystic fibrosis (CF) lung disease, but whether CF lungs are unchanged in the absence of infection remains controversial. A proteomic comparison of airway secretions from subjects with CF and control subjects shows alterations in key biological processes, including immune response and proteolytic activity, but it is unclear if these are due to mutant CF transmembrane conductance regulator (CFTR) and/or chronic infection. We hypothesized that the CF lung apical secretome is altered under constitutive conditions in the absence of inflammatory cells and pathogens. To test this, we performed quantitative proteomics of in vitro apical secretions from air-liquid interface cultures of three life-extended CF (ΔF508/ΔF508) and three non-CF human bronchial epithelial cells after labeling of CF cells by stable isotope labeling with amino acids in cell culture. Mass spectrometry analysis identified and quantitated 666 proteins across samples, of which 70 exhibited differential enrichment or depletion in CF secretions (±1.5-fold change; P < 0.05). The key molecular functions were innate immunity (24%), cytoskeleton/extracellular matrix organization (24%), and protease/antiprotease activity (17%). Oxidative proteins and classical complement pathway proteins that are altered in CF secretions in vivo were not altered in vitro. Specific differentially increased proteins-MUC5AC and MUC5B mucins, fibronectin, and matrix metalloproteinase-9-were validated by antibody-based assays. Overall, the in vitro CF secretome data are indicative of a constitutive airway epithelium with altered innate immunity, suggesting that downstream consequences of mutant CFTR set the stage for chronic inflammation and infection in CF airways.
Collapse
Affiliation(s)
| | - Kristy J. Brown
- Departments of Integrative Systems Biology and
- Pediatrics, George Washington University School of Medicine, Washington, DC; and
- Research Center for Genetic Medicine and
| | - Dinesh K. Pillai
- Departments of Integrative Systems Biology and
- Pediatrics, George Washington University School of Medicine, Washington, DC; and
- Research Center for Genetic Medicine and
- Division of Pulmonary and Sleep Medicine, Children's National, Washington, DC
| | | | - Lindsay M. Garvin
- Departments of Integrative Systems Biology and
- Research Center for Genetic Medicine and
| | - Xiaofang Wu
- Departments of Integrative Systems Biology and
- Pediatrics, George Washington University School of Medicine, Washington, DC; and
- Research Center for Genetic Medicine and
| | - Mary C. Rose
- Departments of Integrative Systems Biology and
- Pediatrics, George Washington University School of Medicine, Washington, DC; and
- Research Center for Genetic Medicine and
| |
Collapse
|
29
|
Stanton BA, Coutermarsh B, Barnaby R, Hogan D. Pseudomonas aeruginosa Reduces VX-809 Stimulated F508del-CFTR Chloride Secretion by Airway Epithelial Cells. PLoS One 2015; 10:e0127742. [PMID: 26018799 PMCID: PMC4446214 DOI: 10.1371/journal.pone.0127742] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 04/19/2015] [Indexed: 12/25/2022] Open
Abstract
Background P. aeruginosa is an opportunistic pathogen that chronically infects the lungs of 85% of adult patients with Cystic Fibrosis (CF). Previously, we demonstrated that P. aeruginosa reduced wt-CFTR Cl secretion by airway epithelial cells. Recently, a new investigational drug VX-809 has been shown to increase F508del-CFTR Cl secretion in human bronchial epithelial (HBE) cells, and, in combination with VX-770, to increase FEV1 (forced expiratory volume in 1 second) by an average of 3-5% in CF patients homozygous for the F508del-CFTR mutation. We propose that P. aeruginosa infection of CF lungs reduces VX-809 + VX-770- stimulated F508del-CFTR Cl secretion, and thereby reduces the clinical efficacy of VX-809 + VX-770. Methods and Results F508del-CFBE cells and primary cultures of CF-HBE cells (F508del/F508del) were exposed to VX-809 alone or a combination of VX-809 + VX-770 for 48 hours and the effect of P. aeruginosa on F508del-CFTR Cl secretion was measured in Ussing chambers. The effect of VX-809 on F508del-CFTR abundance was measured by cell surface biotinylation and western blot analysis. PAO1, PA14, PAK and 6 clinical isolates of P. aeruginosa (3 mucoid and 3 non-mucoid) significantly reduced drug stimulated F508del-CFTR Cl secretion, and plasma membrane F508del-CFTR. Conclusion The observation that P. aeruginosa reduces VX-809 and VX-809 + VX-770 stimulated F508del CFTR Cl secretion may explain, in part, why VX-809 + VX-770 has modest efficacy in clinical trials.
Collapse
Affiliation(s)
- Bruce A. Stanton
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- * E-mail:
| | - Bonita Coutermarsh
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Roxanna Barnaby
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Deborah Hogan
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| |
Collapse
|
30
|
Jeannet N, Fierz M, Schneider S, Künzi L, Baumlin N, Salathe M, Burtscher H, Geiser M. Acute toxicity of silver and carbon nanoaerosols to normal and cystic fibrosis human bronchial epithelial cells. Nanotoxicology 2015; 10:279-91. [DOI: 10.3109/17435390.2015.1049233] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Natalie Jeannet
- Institute of Anatomy, University of Bern, Bern, Switzerland,
| | - Martin Fierz
- Institute of Aerosol and Sensor Technology, University of Applied Sciences Northwestern Switzerland, Windisch, Switzerland, and
| | - Sarah Schneider
- Institute of Anatomy, University of Bern, Bern, Switzerland,
| | - Lisa Künzi
- Institute of Anatomy, University of Bern, Bern, Switzerland,
| | - Nathalie Baumlin
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Miami, Miami, FL, USA
| | - Matthias Salathe
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Miami, Miami, FL, USA
| | - Heinz Burtscher
- Institute of Aerosol and Sensor Technology, University of Applied Sciences Northwestern Switzerland, Windisch, Switzerland, and
| | - Marianne Geiser
- Institute of Anatomy, University of Bern, Bern, Switzerland,
| |
Collapse
|
31
|
Pfister S, Weber T, Härtig W, Schwerdel C, Elsaesser R, Knuesel I, Fritschy JM. Novel role of cystic fibrosis transmembrane conductance regulator in maintaining adult mouse olfactory neuronal homeostasis. J Comp Neurol 2014; 523:406-30. [PMID: 25271146 DOI: 10.1002/cne.23686] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/25/2014] [Accepted: 09/26/2014] [Indexed: 02/03/2023]
Abstract
The olfactory epithelium (OE) of mice deficient in cystic fibrosis transmembrane conductance regulator (CFTR) exhibits ion transport deficiencies reported in human CF airways, as well as progressive neuronal loss, suggesting defects in olfactory neuron homeostasis. Microvillar cells, a specialized OE cell-subtype, have been implicated in maintaining tissue homeostasis. These cells are endowed with a PLCβ2/IP3 R3/TRPC6 signal transduction pathway modulating release of neuropeptide Y (NPY), which stimulates OE stem cell activity. It is unknown, however, whether microvillar cells also mediate the deficits observed in CFTR-null mice. Here we show that Cftr mRNA in mouse OE is exclusively localized in microvillar cells and CFTR immunofluorescence is coassociated with the scaffolding protein NHERF-1 and PLCβ2 in microvilli. In CFTR-null mice, PLCβ2 was undetectable, NHERF-1 mislocalized, and IP3 R3 more intensely stained, along with increased levels of NPY, suggesting profound alteration of the PLCβ2/IP3 R3 signaling pathway. In addition, basal olfactory neuron homeostasis was altered, shown by increased progenitor cell proliferation, differentiation, and apoptosis and by reduced regenerative capacity following methimazole-induced neurodegeneration. The importance of CFTR in microvillar cells was further underscored by decreased thickness of the OE mucus layer and increased numbers of immune cells within this tissue in CFTR-KO mice. Finally, we observed enhanced immune responses to an acute viral-like infection, as well as hyper-responsiveness to chemical and physical stimuli applied intranasally. Taken together, these data strengthen the notion that microvillar cells in the OE play a key role in maintaining tissue homeostasis and identify several mechanisms underlying this regulation through the multiple functions of CFTR.
Collapse
Affiliation(s)
- Sandra Pfister
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
32
|
Garratt LW, Sutanto EN, Foo CJ, Ling KM, Looi K, Kicic-Starcevich E, Iosifidis T, Martinovich KM, Lannigan FJ, Stick SM, Kicic A. Determinants of culture success in an airway epithelium sampling program of young children with cystic fibrosis. Exp Lung Res 2014; 40:447-59. [PMID: 25191759 DOI: 10.3109/01902148.2014.946631] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIM OF THE STUDY The bronchial brushing technique presents an opportunity to establish a gold standard in vitro model of Cystic Fibrosis (CF) airway disease. However, unique obstacles exist when establishing CF airway epithelial cells (pAECCF). We aimed to identify determinants of culture success through retrospective analysis of a program of routinely brushing children with CF. MATERIALS AND METHODS Anaesthetised children (CF and non-CF) had airway samples taken which were immediately processed for cell culture. Airway data for the CF cohort was obtained from clinical records and the AREST CF database. RESULTS Of 260 brushings processed for culture, 114 (43.8%) pAECCF successfully cultured to passage one (P1) and 63 (24.2% of total) progressed to passage two (P2). However, >80% of non-CF specimens (pAECnon-CF) cultured to P2 from similar cell numbers. Within the CF cohort, specimens successfully cultured to P2 had a higher initial cell count and lower proportion of severe CF mutation phenotype than those that did not proliferate beyond initial seeding. Elevated airway IL-8 concentration was also negatively associated with culture establishment. Contamination by opportunistic pathogens was observed in 81 (31.2% of total) cultures and brushings from children with lower respiratory tract infections were more likely to co-culture contaminating flora. CONCLUSIONS Lower passage rates of pAECCF cultures uniquely contrasts with pAECnon-CF despite similar cell numbers. An equivalent establishment rate of CF nasal epithelium reported elsewhere, significant associations to CFTR mutation phenotype, elevated airway IL-8 and opportunistic pathogens all suggest this is likely related to the CF disease milieu.
Collapse
Affiliation(s)
- Luke W Garratt
- 1School of Paediatrics and Child Health, University of Western Australia, Nedlands, Perth, Western Australia, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Easwaran N, Karthikeyan S, Sridharan B, Gothandam KM. Identification and analysis of the salt tolerant property of AHL lactonase (AiiATSAWB ) of Bacillus species. J Basic Microbiol 2014; 55:579-90. [PMID: 25041996 DOI: 10.1002/jobm.201400013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 06/10/2014] [Indexed: 01/13/2023]
Abstract
Bacterial biofilms communicate by a process called Quorum Sensing. Gram negative bacterial pathogens specifically talk through the production, detection, and response to the signal or autoinducer called Acyl Homoserine Lactones. Bacterial lactonases are important AHL hydrolysing or quorum quenching enzymes. The present study deals with ten endospore forming gram positive isolates of the saltern soil. Preliminary screening for Quorum Quenching activity with the QS Inhibition indicator strain Chromobacterium violaceum ATCC 12472, showed positive activity in four isolates namely TS2, TS16, TSAWB, and TS53B. AHL lactonase (AiiA) specific primers amplified Acyl Homoserine Lactone lactonase gene in the TSAWB genome alone. Phylogenetic relationship of the identified AiiATSAWB confirmed its evolutionary relationship with bacterial AiiA like AHL lactonase of the metallo-beta-lactamase super family. Our in vitro AHL hydrolysis assay under wide percentage (0-5) of salt solutions with TSAWB isolate and also its intracellular soluble protein fraction showed halotolerant AHL hydrolysis ability of the AiiATSAWB enzyme. In silico determination of putative tertiary structure, the ESBRI derived conserved salt bridges, aminoacid residue characterization with high mole percent of acidic and hydrophobic residues reaffirmed the halotolerant ability of the enzyme. So we propound the future use of purified AiiATSAWB , as hypertonic suspension for inhalation to substitute the action of inactivated host's paraoxonase in treating Pseudomonas aeruginosa infection in cystic fibrosis patients.
Collapse
Affiliation(s)
- Nalini Easwaran
- School of Biosciences and Technology, VIT University, Vellore, India
| | | | | | | |
Collapse
|
34
|
Voisin G, Bouvet GF, Legendre P, Dagenais A, Massé C, Berthiaume Y. Oxidative stress modulates the expression of genes involved in cell survival in ΔF508 cystic fibrosis airway epithelial cells. Physiol Genomics 2014; 46:634-46. [PMID: 24893876 DOI: 10.1152/physiolgenomics.00003.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although cystic fibrosis (CF) pathophysiology is explained by a defect in CF transmembrane conductance regulator (CFTR) protein, the broad spectrum of disease severity is the consequence of environmental and genetic factors. Among them, oxidative stress has been demonstrated to play an important role in the evolution of this disease, with susceptibility to oxidative damage, decline of pulmonary function, and impaired lung antioxidant defense. Although oxidative stress has been implicated in the regulation of inflammation, its molecular outcomes in CF cells remain to be evaluated. To address the question, we compared the gene expression profile in NuLi-1 cells with wild-type CFTR and CuFi-1 cells homozygous for ΔF508 mutation cultured at air-liquid interface. We analyzed the transcriptomic response of these cell lines with microarray technology, under basal culture conditions and after 24 h oxidative stress induced by 15 μM 2,3-dimethoxy-1,4-naphtoquinone. In the absence of oxidative conditions, CuFi-1 gene profiling showed typical dysregulated inflammatory responses compared with NuLi-1. In the presence of oxidative conditions, the transcriptome of CuFi-1 cells reflected apoptotic transcript modulation. These results were confirmed in the CFBE41o- and corrCFBE41o- cell lines as well as in primary culture of human CF airway epithelial cells. Altogether, our data point to the influence of oxidative stress on cell survival functions in CF and identify several genes that could be implicated in the inflammation response observed in CF patients.
Collapse
Affiliation(s)
- Grégory Voisin
- Centre de recherche, Centre hospitalier de l'Université de Montréal - Hôtel Dieu, Montréal, Quebec, Canada
| | | | - Pierre Legendre
- Département de sciences biologiques, Université de Montréal, Succursale Centre-ville, Montréal, Quebec, Canada; and
| | - André Dagenais
- Institut de recherches cliniques de Montréal, Montréal, Quebec, Canada
| | - Chantal Massé
- Institut de recherches cliniques de Montréal, Montréal, Quebec, Canada
| | - Yves Berthiaume
- Institut de recherches cliniques de Montréal, Montréal, Quebec, Canada; Département de médecine, Faculté de médecine, Université de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
35
|
Nucleoside diphosphate kinase and flagellin from Pseudomonas aeruginosa induce interleukin 1 expression via the Akt/NF-κB signaling pathways. Infect Immun 2014; 82:3252-60. [PMID: 24866792 DOI: 10.1128/iai.02007-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Inflammatory responses are a first line of host defense against a range of invading pathogens, consisting of the release of proinflammatory cytokines followed by attraction of polymorphonuclear neutrophils (PMNs) to the site of inflammation. Among the many virulence factors that contribute to the pathogenesis of infections, nucleoside diphosphate kinase (Ndk) mediates bacterially induced toxicity against eukaryotic cells. However, no study has examined how Ndk affects inflammatory responses. The present study examined the mechanisms by which Pseudomonas aeruginosa activates inflammatory responses upon infection of cells. The results showed that bacterial Ndk, with the aid of an additional bacterial factor, flagellin, induced expression of the proinflammatory cytokines interleukin-1α (IL-1α) and IL-1β. Cytokine induction appeared to be dependent on the kinase activity of Ndk and was mediated via the NF-κB signaling pathway. Notably, Ndk activated the Akt signaling pathway, which acts upstream of NF-κB, as well as caspase-1, which is a key component of inflammasome. Thus, this study demonstrated that P. aeruginosa, through the combined effects of Ndk and flagellin, upregulates the expression of proinflammatory cytokines via the Akt/NF-κB signaling pathways.
Collapse
|
36
|
Costello A, Reen FJ, O'Gara F, Callaghan M, McClean S. Inhibition of co-colonizing cystic fibrosis-associated pathogens by Pseudomonas aeruginosa and Burkholderia multivorans. MICROBIOLOGY-SGM 2014; 160:1474-1487. [PMID: 24790091 DOI: 10.1099/mic.0.074203-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cystic fibrosis (CF) is a recessive genetic disease characterized by chronic respiratory infections and inflammation causing permanent lung damage. Recurrent infections are caused by Gram-negative antibiotic-resistant bacterial pathogens such as Pseudomonas aeruginosa, Burkholderia cepacia complex (Bcc) and the emerging pathogen genus Pandoraea. In this study, the interactions between co-colonizing CF pathogens were investigated. Both Pandoraea and Bcc elicited potent pro-inflammatory responses that were significantly greater than Ps. aeruginosa. The original aim was to examine whether combinations of pro-inflammatory pathogens would further exacerbate inflammation. In contrast, when these pathogens were colonized in the presence of Ps. aeruginosa the pro-inflammatory response was significantly decreased. Real-time PCR quantification of bacterial DNA from mixed cultures indicated that Ps. aeruginosa significantly inhibited the growth of Burkholderia multivorans, Burkholderia cenocepacia, Pandoraea pulmonicola and Pandoraea apista, which may be a factor in its dominance as a colonizer of CF patients. Ps. aeruginosa cell-free supernatant also suppressed growth of these pathogens, indicating that inhibition was innate rather than a response to the presence of a competitor. Screening of a Ps. aeruginosa mutant library highlighted a role for quorum sensing and pyoverdine biosynthesis genes in the inhibition of B. cenocepacia. Pyoverdine was confirmed to contribute to the inhibition of B. cenocepacia strain J2315. B. multivorans was the only species that could significantly inhibit Ps. aeruginosa growth. B. multivorans also inhibited B. cenocepacia and Pa. apista. In conclusion, both Ps. aeruginosa and B. multivorans are capable of suppressing growth and virulence of co-colonizing CF pathogens.
Collapse
Affiliation(s)
- Anne Costello
- Centre of Microbial Host Interactions, Centre of Applied Science for Health, Institute of Technology Tallaght, Old Blessington Road, Tallaght, Dublin 24, Ireland
| | - F Jerry Reen
- BIOMERIT Research Centre, Department of Microbiology, University College Cork, Ireland
| | - Fergal O'Gara
- Curtin University, School of Biomedical Sciences, Perth, WA 6845, Australia.,BIOMERIT Research Centre, Department of Microbiology, University College Cork, Ireland
| | - Máire Callaghan
- Centre of Microbial Host Interactions, Centre of Applied Science for Health, Institute of Technology Tallaght, Old Blessington Road, Tallaght, Dublin 24, Ireland
| | - Siobhán McClean
- Centre of Microbial Host Interactions, Centre of Applied Science for Health, Institute of Technology Tallaght, Old Blessington Road, Tallaght, Dublin 24, Ireland
| |
Collapse
|
37
|
Distinct action of flavonoids, myricetin and quercetin, on epithelial Cl⁻ secretion: useful tools as regulators of Cl⁻ secretion. BIOMED RESEARCH INTERNATIONAL 2014; 2014:902735. [PMID: 24818160 PMCID: PMC4000985 DOI: 10.1155/2014/902735] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 03/06/2014] [Accepted: 03/10/2014] [Indexed: 01/01/2023]
Abstract
Epithelial Cl− secretion plays important roles in water secretion preventing bacterial/viral infection and regulation of body fluid. We previously suggested that quercetin would be a useful compound for maintaining epithelial Cl− secretion at a moderate level irrespective of cAMP-induced stimulation. However, we need a compound that stimulates epithelial Cl− secretion even under cAMP-stimulated conditions, since in some cases epithelial Cl− secretion is not large enough even under cAMP-stimulated conditions. We demonstrated that quercetin and myricetin, flavonoids, stimulated epithelial Cl− secretion under basal conditions in epithelial A6 cells. We used forskolin, which activates adenylyl cyclase increasing cytosolic cAMP concentrations, to study the effects of quercetin and myricetin on cAMP-stimulated epithelial Cl− secretion. In the presence of forskolin, quercetin diminished epithelial Cl− secretion to a level similar to that with quercetin alone without forskolin. Conversely, myricetin further stimulated epithelial Cl− secretion even under forskolin-stimulated conditions. This suggests that the action of myricetin is via a cAMP-independent pathway. Therefore, myricetin may be a potentially useful compound to increase epithelial Cl− secretion under cAMP-stimulated conditions. In conclusion, myricetin would be a useful compound for prevention from bacterial/viral infection even under conditions that the amount of water secretion driven by cAMP-stimulated epithelial Cl− secretion is insufficient.
Collapse
|
38
|
Lovewell RR, Patankar YR, Berwin B. Mechanisms of phagocytosis and host clearance of Pseudomonas aeruginosa. Am J Physiol Lung Cell Mol Physiol 2014; 306:L591-603. [PMID: 24464809 DOI: 10.1152/ajplung.00335.2013] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic bacterial pathogen responsible for a high incidence of acute and chronic pulmonary infection. These infections are particularly prevalent in patients with chronic obstructive pulmonary disease and cystic fibrosis: much of the morbidity and pathophysiology associated with these diseases is due to a hypersusceptibility to bacterial infection. Innate immunity, primarily through inflammatory cytokine production, cellular recruitment, and phagocytic clearance by neutrophils and macrophages, is the key to endogenous control of P. aeruginosa infection. In this review, we highlight recent advances toward understanding the innate immune response to P. aeruginosa, with a focus on the role of phagocytes in control of P. aeruginosa infection. Specifically, we summarize the cellular and molecular mechanisms of phagocytic recognition and uptake of P. aeruginosa, and how current animal models of P. aeruginosa infection reflect clinical observations in the context of phagocytic clearance of the bacteria. Several notable phenotypic changes to the bacteria are consistently observed during chronic pulmonary infections, including changes to mucoidy and flagellar motility, that likely enable or reflect their ability to persist. These traits are likewise examined in the context of how the bacteria avoid phagocytic clearance, inflammation, and sterilizing immunity.
Collapse
Affiliation(s)
- Rustin R Lovewell
- Dept. of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr., Lebanon, NH 03756.
| | | | | |
Collapse
|
39
|
Fung SY, Sofiyev V, Schneiderman J, Hirschfeld AF, Victor RE, Woods K, Piotrowski JS, Deshpande R, Li SC, de Voogd NJ, Myers CL, Boone C, Andersen RJ, Turvey SE. Unbiased screening of marine sponge extracts for anti-inflammatory agents combined with chemical genomics identifies girolline as an inhibitor of protein synthesis. ACS Chem Biol 2014; 9:247-57. [PMID: 24117378 DOI: 10.1021/cb400740c] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Toll-like receptors (TLRs) play a critical role in innate immunity, but activation of TLR signaling pathways is also associated with many harmful inflammatory diseases. Identification of novel anti-inflammatory molecules targeting TLR signaling pathways is central to the development of new treatment approaches for acute and chronic inflammation. We performed high-throughput screening from crude marine sponge extracts on TLR5 signaling and identified girolline. We demonstrated that girolline inhibits signaling through both MyD88-dependent and -independent TLRs (i.e., TLR2, 3, 4, 5, and 7) and reduces cytokine (IL-6 and IL-8) production in human peripheral blood mononuclear cells and macrophages. Using a chemical genomics approach, we identified Elongation Factor 2 as the molecular target of girolline, which inhibits protein synthesis at the elongation step. Together these data identify the sponge natural product girolline as a potential anti-inflammatory agent acting through inhibition of protein synthesis.
Collapse
Affiliation(s)
- Shan-Yu Fung
- Department of Pediatrics, British Columbia Children’s Hospital and Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Vladimir Sofiyev
- Department
of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Julia Schneiderman
- Department of Pediatrics, British Columbia Children’s Hospital and Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Aaron F. Hirschfeld
- Department of Pediatrics, British Columbia Children’s Hospital and Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Rachel E. Victor
- Department of Pediatrics, British Columbia Children’s Hospital and Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Kate Woods
- Department
of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Jeff S. Piotrowski
- Great
Lakes Bioenergy Research Center, University of Wisconsin−Madison, Madison, Wisconsin 53726, United States
| | - Raamesh Deshpande
- Department
of Computer Science and Engineering, University of Minnesota−Twin Cities, Mineapolis, Minnesota 55455, United States
| | - Sheena C. Li
- Department
of Molecular Genetics, Terrence Donnelly Centre for Cellular and Biomolecular
Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Nicole J. de Voogd
- Netherlands
Centre for Biodiversity Naturalis, P.O.
Box 9517, 2300 RA, Leiden, The Netherlands
| | - Chad L. Myers
- Department
of Computer Science and Engineering, University of Minnesota−Twin Cities, Mineapolis, Minnesota 55455, United States
| | - Charlie Boone
- Department
of Molecular Genetics, Terrence Donnelly Centre for Cellular and Biomolecular
Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Raymond J. Andersen
- Department
of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Stuart E. Turvey
- Department of Pediatrics, British Columbia Children’s Hospital and Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| |
Collapse
|
40
|
Abstract
Proteomics was initially viewed as a promising new scientific discipline to study complex disorders such as polygenic, infectious and environment-related diseases. However, the first attempts to understand a monogenic disease such as cystic fibrosis (CF) by proteomics-based approaches have proved quite rewarding. In CF, the impairment of a unique protein, the CF transmembrane conductance regulator, does not completely explain the complex and variable CF clinical phenotype. The great advances in our knowledge about the molecular and cellular consequences of such impairment have not been sufficient to be translated into effective treatments, and CF patients are still dying due to chronic progressive lung dysfunction. The progression of proteomics application in CF will certainly unravel new proteins that could be useful as biomarkers either to elucidate CF basic mechanisms and to better monitor the disease progression, or to promote the development of novel therapeutic strategies against CF. This review will summarize the recent technological advances in proteomics and the first results of its application to address the most important issues in the CF field.
Collapse
Affiliation(s)
- Deborah Penque
- Instituto Nacional de Saúde Dr Ricardo Jorge, Laboratório de Proteómica, Centro de Genética Humana, Lisboa, Portugal.
| |
Collapse
|
41
|
Kim YJ, Paek SH, Jin S, Park BS, Ha UH. A novel Pseudomonas aeruginosa-derived effector cooperates with flagella to mediate the upregulation of interleukin 8 in human epithelial cells. Microb Pathog 2013; 66:24-8. [PMID: 24361345 DOI: 10.1016/j.micpath.2013.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/05/2013] [Accepted: 12/09/2013] [Indexed: 02/06/2023]
Abstract
Infection with Pseudomonas aeruginosa results in a massive accumulation of neutrophils in response to prolonged and sustained expression of inflammatory mediators. The major chemokine associated with this excessive neutrophil recruitment is IL-8, the accumulation of which is a hallmark of cornea and cystic fibrosis airway inflammation. To date, several P. aeruginosa-associated and extracellular factors required for the stimulation of IL-8 expression have been identified. Here, we report a novel effector molecule, nucleoside diphosphate kinase (Ndk), which increases the expression of IL-8 by translocating into host cells. The induction appears to be dependent on both the kinase activity of Ndk and an additional bacterial factor, flagellin, via an NF-κB signaling pathway. This study demonstrates the role of a novel effector, Ndk, which is capable of inducing prominent inflammatory chemokine IL-8 expression with the aid of flagellin during P. aeruginosa infection.
Collapse
Affiliation(s)
- Yong-Jae Kim
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 339-700, Republic of Korea
| | - Se-Hwan Paek
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 339-700, Republic of Korea
| | - Shouguang Jin
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Beom Seok Park
- Department of Biomedical Laboratory Science, Eulji University, Seongnam 461-713, Republic of Korea.
| | - Un-Hwan Ha
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 339-700, Republic of Korea.
| |
Collapse
|
42
|
Junkins RD, Shen A, Rosen K, McCormick C, Lin TJ. Autophagy enhances bacterial clearance during P. aeruginosa lung infection. PLoS One 2013; 8:e72263. [PMID: 24015228 PMCID: PMC3756076 DOI: 10.1371/journal.pone.0072263] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 07/10/2013] [Indexed: 12/21/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic bacterial pathogen which is the leading cause of morbidity and mortality among cystic fibrosis patients. Although P. aeruginosa is primarily considered an extacellular pathogen, recent reports have demonstrated that throughout the course of infection the bacterium acquires the ability to enter and reside within host cells. Normally intracellular pathogens are cleared through a process called autophagy which sequesters and degrades portions of the cytosol, including invading bacteria. However the role of autophagy in host defense against P. aeruginosa in vivo remains unknown. Understanding the role of autophagy during P. aeruginosa infection is of particular importance as mutations leading to cystic fibrosis have recently been shown to cause a blockade in the autophagy pathway, which could increase susceptibility to infection. Here we demonstrate that P. aeruginosa induces autophagy in mast cells, which have been recognized as sentinels in the host defense against bacterial infection. We further demonstrate that inhibition of autophagy through pharmacological means or protein knockdown inhibits clearance of intracellular P. aeruginosa in vitro, while pharmacologic induction of autophagy significantly increased bacterial clearance. Finally we find that pharmacological manipulation of autophagy in vivo effectively regulates bacterial clearance of P. aeruginosa from the lung. Together our results demonstrate that autophagy is required for an effective immune response against P. aeruginosa infection in vivo, and suggest that pharmacological interventions targeting the autophagy pathway could have considerable therapeutic potential in the treatment of P. aeruginosa lung infection.
Collapse
Affiliation(s)
- Robert D. Junkins
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Pediatrics, IWK Health Centre, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Ann Shen
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kirill Rosen
- Department of Biochemistry and Molecular Biology, Halifax, Nova Scotia, Canada
| | - Craig McCormick
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Tong-Jun Lin
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Pediatrics, IWK Health Centre, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
- * E-mail:
| |
Collapse
|
43
|
Melvin TAN, Lane AP, Nguyen MT, Lin SY. Sinonasal epithelial cell expression of Toll-like receptor 9 is elevated in cystic fibrosis-associated chronic rhinosinusitis. Am J Rhinol Allergy 2013; 27:30-3. [PMID: 23406596 DOI: 10.2500/ajra.2013.27.3834] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Cystic fibrosis (CF) patients frequently suffer from chronic rhinosinusitis (CRS). The extent to which alterations in sinonasal innate immunity contribute to this disease process is unknown. Activation of sinonasal epithelial cell (SNEC) Toll-like receptors (TLRs), an important component of the innate immune system, may be associated with the hyperinflammatory state observed in sinonasal mucosa of CF patients with CRS. This study compares expression of Toll-like receptor 9 (TLR9), in SNRCs collected from CF subjects with CRS to that of normal control subjects. METHODS This was a prospective study measuring TLR9 on SNECs collected via endoscopic-guided middle meatal brushings from 8 adult controls and 14 adult subjects with CF-associated CRS. RESULTS TLR9 expression was significantly elevated in CF subjects at 91% ± 6% when compared with 76% ± 10% in normal controls (p = 0.001). CONCLUSION The significantly greater expression of sinonasal epithelial TLR9 in CF likely reflects increased antimicrobial innate immune activity in chronically colonized and frequently infected CF individuals. However, this finding contrasts with previously reported decreased epithelial TLR9 expression in eosinophilic CRS with nasal polyposis and may indicate differential modulation of innate immunity in Th1-predominent CF versus Th2-dominated CRS with nasal polyps, despite both being diseases of sinonasal mucosal inflammation.
Collapse
Affiliation(s)
- Thuy-Anh N Melvin
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | | | | | | |
Collapse
|
44
|
Kravtsov DV, Ameen NA. Molecular motors and apical CFTR traffic in epithelia. Int J Mol Sci 2013; 14:9628-42. [PMID: 23644890 PMCID: PMC3676803 DOI: 10.3390/ijms14059628] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 04/19/2013] [Accepted: 05/02/2013] [Indexed: 02/02/2023] Open
Abstract
Intracellular protein traffic plays an important role in the regulation of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) chloride channels. Microtubule and actin-based motor proteins direct CFTR movement along trafficking pathways. As shown for other regulatory proteins such as adaptors, the involvement of protein motors in CFTR traffic is cell-type specific. Understanding motor specificity provides insight into the biology of the channel and opens opportunity for discovery of organ-specific drug targets for treating CFTR-mediated diseases.
Collapse
Affiliation(s)
- Dmitri V. Kravtsov
- Department of Pediatrics/Gastroenterology & Hepatology, School of Medicine, Yale University, New Haven, CT 06520, USA; E-Mail:
| | - Nadia A. Ameen
- Department of Pediatrics/Gastroenterology & Hepatology, School of Medicine, Yale University, New Haven, CT 06520, USA; E-Mail:
- Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, CT 06520, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-203-785-4649 (ext. 123); Fax: +1-203-737-1384
| |
Collapse
|
45
|
Clarke LA, Sousa L, Barreto C, Amaral MD. Changes in transcriptome of native nasal epithelium expressing F508del-CFTR and intersecting data from comparable studies. Respir Res 2013; 14:38. [PMID: 23537407 PMCID: PMC3637641 DOI: 10.1186/1465-9921-14-38] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 03/07/2013] [Indexed: 01/06/2023] Open
Abstract
Background Microarray studies related to cystic fibrosis (CF) airway gene expression have gone some way in clarifying the complex molecular background of CF lung diseases, but have made little progress in defining a robust “molecular signature” associated with mutant CFTR expression. Disparate methodological and statistical analyses complicate comparisons between independent studies of the CF transcriptome, and although each study may be valid in isolation, the conclusions reached differ widely. Methods We carried out a small-scale whole genome microarray study of gene expression in human native nasal epithelial cells from F508del-CFTR homozygotes in comparison to non-CF controls. We performed superficial comparisons with other microarray datasets in an attempt to identify a subset of regulated genes that could act as a signature of F508del-CFTR expression in native airway tissue samples. Results Among the alterations detected in CF, up-regulation of genes involved in cell proliferation, and down-regulation of cilia genes were the most notable. Other changes involved gene expression changes in calcium and membrane pathways, inflammation, defence response, wound healing and the involvement of estrogen signalling. Comparison of our data set with previously published studies allowed us to assess the consistency of independent microarray data sets, and shed light on the limitations of such snapshot studies in measuring a system as subtle and dynamic as the transcriptome. Comparison of in-vivo studies nevertheless yielded a small molecular CF signature worthy of future investigation. Conclusions Despite the variability among the independent studies, the current CF transcriptome meta-analysis identified subsets of differentially expressed genes in native airway tissues which provide both interesting clues to CF pathogenesis and a possible CF biomarker.
Collapse
Affiliation(s)
- Luka A Clarke
- BioFIG-Centre for Biodiversity, Functional and Integrative Genomics, FCUL-Faculty of Sciences, University of Lisboa, Lisboa 1749-016, Portugal.
| | | | | | | |
Collapse
|
46
|
Tsuchiya M, Kumar P, Bhattacharyya S, Chattoraj S, Srivastava M, Pollard HB, Biswas R. Differential Regulation of Inflammation by Inflammatory Mediators in Cystic Fibrosis Lung Epithelial Cells. J Interferon Cytokine Res 2013; 33:121-9. [DOI: 10.1089/jir.2012.0074] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Motohiro Tsuchiya
- Molecular and Cell Biology Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Parameet Kumar
- Graduate School of Nursing, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Sharmistha Bhattacharyya
- Graduate School of Nursing, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Sangbrita Chattoraj
- Graduate School of Nursing, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Meera Srivastava
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Harvey B. Pollard
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Roopa Biswas
- Graduate School of Nursing, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
47
|
Mayer ML, Blohmke CJ, Falsafi R, Fjell CD, Madera L, Turvey SE, Hancock REW. Rescue of Dysfunctional Autophagy Attenuates Hyperinflammatory Responses from Cystic Fibrosis Cells. THE JOURNAL OF IMMUNOLOGY 2012; 190:1227-38. [DOI: 10.4049/jimmunol.1201404] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
48
|
Hunter RC, Klepac-Ceraj V, Lorenzi MM, Grotzinger H, Martin TR, Newman DK. Phenazine Content in the Cystic Fibrosis Respiratory Tract Negatively Correlates with Lung Function and Microbial Complexity. Am J Respir Cell Mol Biol 2012; 47:738-45. [DOI: 10.1165/rcmb.2012-0088oc] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
49
|
Castellani S, Guerra L, Favia M, Di Gioia S, Casavola V, Conese M. NHERF1 and CFTR restore tight junction organisation and function in cystic fibrosis airway epithelial cells: role of ezrin and the RhoA/ROCK pathway. J Transl Med 2012; 92:1527-40. [PMID: 22964850 DOI: 10.1038/labinvest.2012.123] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Tight junctions (TJs) restrict the transit of ions and molecules through the paracellular route and act as a barrier to regulate access of inflammatory cells into the airway lumen. The pathophysiology of cystic fibrosis (CF) lung disease is characterised by abnormal ion and fluid transport across the epithelium and polymorphonuclear (PMN) leukocyte-dominated inflammatory response. Na⁺/H⁺ exchanger regulatory factor 1 (NHERF1) is a protein involved in PKA-dependent activation of CFTR by interacting with CFTR via its PDZ domains and with ezrin via its C-terminal domain. We have previously found that the NHERF1-overexpression dependent rescue CFTR-dependent chloride secretion is due to the re-organisation of the actin cytoskeleton network induced by the formation of the multiprotein complex NHERF1-RhoA-ezrin-actin. In this context, we here studied whether NHERF1 and CFTR are involved in the organisation and function of TJs. F508del CFBE41o⁻ monolayers presented nuclear localisation of zonula occludens (ZO-1) and occludin as well as disorganisation of claudin 1 and junction-associated adhesion molecule 1 as compared with wild-type 16HBE14o⁻ monolayers, paralleled by increased permeability to dextrans and PMN transmigration. Overexpression of either NHERF1 or CFTR in CFBE41o⁻ cells rescued TJ proteins to their proper intercellular location and decreased permeability and PMN transmigration, while this effect was not achieved by overexpressing either NHERF1 deprived of ezrin-binding domain. Further, expression of a phospho-dead ezrin mutant, T567A, increased permeability in both 16HBE14o⁻ cells and in a CFBE clone stably overexpressing NHERF1 (CFBE/sNHERF1), whereas a constitutively active form of ezrin, T567D, achieved the opposite effect in CFBE41o⁻ cells. A dominant-negative form of RhoA (RhoA-N19) also disrupted ZO-1 localisation at the intercellular contacts dislodging it to the nucleus and increased permeability in CFBE/sNHERF1. The inhibitor Y27632 of Rho kinase (ROCK) increased permeability as well. Overall, these data suggest a significant role for the multiprotein complex CFTR-NHERF1-ezrin-actin in maintaining TJ organisation and barrier function, and suggest that the RhoA/ROCK pathway is involved.
Collapse
Affiliation(s)
- Stefano Castellani
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | | | | | | | | | | |
Collapse
|
50
|
Ungaro F, De Stefano D, Giovino C, Masuccio A, Miro A, Sorrentino R, Carnuccio R, Quaglia F. PEI-engineered respirable particles delivering a decoy oligonucleotide to NF-κB: inhibiting MUC2 expression in LPS-stimulated airway epithelial cells. PLoS One 2012; 7:e46457. [PMID: 23056313 PMCID: PMC3463602 DOI: 10.1371/journal.pone.0046457] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 08/30/2012] [Indexed: 11/24/2022] Open
Abstract
A specific and promising approach to limit inflammation and mucin iperproduction in chronic lung diseases relies on specific inhibition of nuclear Factor-κB (NF-κB) by a decoy oligonucleotide (dec-ODN). To fulfill the requirements dictated by translation of dec-ODN therapy in humans, inhalable dry powders were designed on a rational basis to provide drug protection, sustained release and to optimize pharmacological response. To this end, large porous particles (LPP) for dec-ODN delivery made of a sustained release biomaterial (poly(lactic-co-glycolic) acid, PLGA) and an “adjuvant” hydrophilic polymer (polyethylenimine, PEI) were developed and their effects on LPS-stimulated human airway epithelial cells evaluated. The composite PLGA/PEI particles containing dec-ODN (i.e., LPPPEI) were successfully engineered for widespread deposition in the lung and prolonged release of intact dec-ODN in vitro. LPPPEI caused a prolonged inhibition of IL-8 and MUC2 expression in CF human bronchial epithelial cells and human epithelial pulmonary NCI-H292 cells, respectively, as compared to naked dec-ODN. Nonetheless, as compared to previously developed LPP, the presence of PEI was essential to construct a dec-ODN delivery system able to act in mucoepidermoid lung epithelial cells. In perspective, engineering LPP with PEI may become a key factor for tuning carrier properties, controlling lung inflammation and mucin production which, in turn, can foster in vivo translation of dec-ODN therapy.
Collapse
Affiliation(s)
- Francesca Ungaro
- Department of Pharmaceutical and Toxicological Chemistry, University of Naples Federico II, Naples, Italy.
| | | | | | | | | | | | | | | |
Collapse
|