1
|
Root-Bernstein R, Churchill B. Co-Evolution of Opioid and Adrenergic Ligands and Receptors: Shared, Complementary Modules Explain Evolution of Functional Interactions and Suggest Novel Engineering Possibilities. Life (Basel) 2021; 11:life11111217. [PMID: 34833093 PMCID: PMC8623292 DOI: 10.3390/life11111217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022] Open
Abstract
Cross-talk between opioid and adrenergic receptors is well-characterized and involves second messenger systems, the formation of receptor heterodimers, and the presence of extracellular allosteric binding regions for the complementary ligand; however, the evolutionary origins of these interactions have not been investigated. We propose that opioid and adrenergic ligands and receptors co-evolved from a common set of modular precursors so that they share binding functions. We demonstrate the plausibility of this hypothesis through a review of experimental evidence for molecularly complementary modules and report unexpected homologies between the two receptor types. Briefly, opioids form homodimers also bind adrenergic compounds; opioids bind to conserved extracellular regions of adrenergic receptors while adrenergic compounds bind to conserved extracellular regions of opioid receptors; opioid-like modules appear in both sets of receptors within key ligand-binding regions. Transmembrane regions associated with homodimerization of each class of receptors are also highly conserved across receptor types and implicated in heterodimerization. This conservation of multiple functional modules suggests opioid–adrenergic ligand and receptor co-evolution and provides mechanisms for explaining the evolution of their crosstalk. These modules also suggest the structure of a primordial receptor, providing clues for engineering receptor functions.
Collapse
|
2
|
Root-Bernstein R, Churchill B, Turke M. Glutathione and Glutathione-Like Sequences of Opioid and Aminergic Receptors Bind Ascorbic Acid, Adrenergic and Opioid Drugs Mediating Antioxidant Function: Relevance for Anesthesia and Abuse. Int J Mol Sci 2020; 21:E6230. [PMID: 32872204 PMCID: PMC7504417 DOI: 10.3390/ijms21176230] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/19/2020] [Accepted: 08/26/2020] [Indexed: 12/13/2022] Open
Abstract
Opioids and their antagonists alter vitamin C metabolism. Morphine binds to glutathione (l-γ-glutamyl-l-cysteinyl-glycine), an intracellular ascorbic acid recycling molecule with a wide range of additional activities. The morphine metabolite morphinone reacts with glutathione to form a covalent adduct that is then excreted in urine. Morphine also binds to adrenergic and histaminergic receptors in their extracellular loop regions, enhancing aminergic agonist activity. The first and second extracellular loops of adrenergic and histaminergic receptors are, like glutathione, characterized by the presence of cysteines and/or methionines, and recycle ascorbic acid with similar efficiency. Conversely, adrenergic drugs bind to extracellular loops of opioid receptors, enhancing their activity. These observations suggest functional interactions among opioids and amines, their receptors, and glutathione. We therefore explored the relative binding affinities of ascorbic acid, dehydroascorbic acid, opioid and adrenergic compounds, as well as various control compounds, to glutathione and glutathione-like peptides derived from the extracellular loop regions of the human beta 2-adrenergic, dopamine D1, histamine H1, and mu opioid receptors, as well as controls. Some cysteine-containing peptides derived from these receptors do bind ascorbic acid and/or dehydroascorbic acid and the same peptides generally bind opioid compounds. Glutathione binds not only morphine but also naloxone, methadone, and methionine enkephalin. Some adrenergic drugs also bind to glutathione and glutathione-like receptor regions. These sets of interactions provide a novel basis for understanding some ways that adrenergic, opioid and antioxidant systems interact during anesthesia and drug abuse and may have utility for understanding drug interactions.
Collapse
Affiliation(s)
- Robert Root-Bernstein
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA; (B.C.); (M.T.)
| | - Beth Churchill
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA; (B.C.); (M.T.)
| | - Miah Turke
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA; (B.C.); (M.T.)
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
3
|
Root-Bernstein R, Fewins J, Rhinesmith T, Koch A, Dillon PF. Enzymatic recycling of ascorbic acid from dehydroascorbic acid by glutathione-like peptides in the extracellular loops of aminergic G-protein coupled receptors. J Mol Recognit 2016; 29:296-302. [PMID: 26749062 DOI: 10.1002/jmr.2530] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 11/09/2015] [Accepted: 11/28/2015] [Indexed: 11/11/2022]
Abstract
The intracellular recycling of ascorbic acid from dehydroascorbic acid by the glutathione-glutathione reductase system has been well-characterized. We propose that extracellular recycling of ascorbic acid is performed in a similar manner by cysteine-rich, glutathione-like regions of the first and second extracellular loops of some aminergic receptors including adrenergic, histaminergic, and dopaminergic receptors. Previous research in our laboratory demonstrated that ascorbic acid binds to these receptors at a site on their first or second extracellular loops, significantly enhancing ligand activity, and apparently recycling hundreds of times their own concentration of ascorbate in an enzymatic fashion. In this study, we have synthesized 25 peptides from the first and second extracellular loops of aminergic and insulin receptors and compared them directly to glutathione for their ability to prevent the oxidation of ascorbate and to regenerate ascorbate from dehydroascorbic acid. Peptide sequences that mimic glutathione in containing a cysteine and a glutamic acid-like amino acid also mimic glutathione activity in effects and in kinetics. Some (but not all) peptide sequences that contain one or more methionines instead of cysteine can significantly retard the oxidation of ascorbic acid but do not recycle it from dehydroascorbate into ascorbate. Peptides lacking both cysteines and methionines uniformly failed to alter significantly ascorbate or dehydroascorbate oxidation or reduction. We believe that this is the first proof that receptors may carry out both ligand binding and enzymatic activity extracellularly. Our results suggest the existence of a previously unknown extracellular system for recycling ascorbate. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - Jenna Fewins
- Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA
| | - Tyler Rhinesmith
- Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA
| | - Ariana Koch
- Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA
| | - Patrick F Dillon
- Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
4
|
Root-Bernstein R, Dillon PF. A common molecular motif characterizes extracellular allosteric enhancers of GPCR aminergic receptors and suggests enhancer mechanism of action. Curr Med Chem 2015; 21:3673-86. [PMID: 25174918 PMCID: PMC4266041 DOI: 10.2174/0929867321666140826120604] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 04/08/2014] [Accepted: 08/22/2014] [Indexed: 11/22/2022]
Abstract
Several classes of compounds that have no intrinsic activity on aminergic systems nonetheless enhance the potency of aminergic receptor ligands three-fold or more while significantly increasing their duration of activity, preventing tachyphylaxis and reversing fade. Enhancer compounds include ascorbic acid, ethylenediaminetetraacetic acid, cortico-steroids, opioid peptides, opiates and opiate antagonists. This paper provides the first review of aminergic enhancement, demonstrating that all enhancers have a common, inobvious molecular motif and work through a common mechanism that is manifested by three common characteristics. First, aminergic enhancers bind directly to the amines they enhance, suggesting that the common structural motif is reflected in common binding targets. Second, one common target is the first extracellular loop of aminergic receptors. Third, at least some enhancers are antiphosphodiesterases. These observations suggest that aminergic enhancers act on the extracellular surface of aminergic receptors to keep the receptor in its high affinity state, trapping the ligand inside the receptor. Enhancer binding produces allosteric modifications of the receptor structure that interfere with phosphorylation of the receptor, thereby inhibiting down-regulation of the receptor. The mechanism explains how enhancers potentiate aminergic activity and increase duration of activity and makes testable predictions about additional compounds that should act as aminergic enhancers.
Collapse
Affiliation(s)
| | - Patrick F Dillon
- Department of Physiology, Michigan State University, East Lansing, MI 48824 USA.
| |
Collapse
|
5
|
Root-Bernstein R, Podufaly A, Dillon PF. Estradiol Binds to Insulin and Insulin Receptor Decreasing Insulin Binding in vitro. Front Endocrinol (Lausanne) 2014; 5:118. [PMID: 25101056 PMCID: PMC4104309 DOI: 10.3389/fendo.2014.00118] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 07/04/2014] [Indexed: 11/13/2022] Open
Abstract
RATIONALE Insulin (INS) resistance associated with hyperestrogenemias occurs in gestational diabetes mellitus, polycystic ovary syndrome, ovarian hyperstimulation syndrome, estrogen therapies, metabolic syndrome, and obesity. The mechanism by which INS and estrogen interact is unknown. We hypothesize that estrogen binds directly to INS and the insulin receptor (IR) producing INS resistance. OBJECTIVES To determine the binding constants of steroid hormones to INS, the IR, and INS-like peptides derived from the IR; and to investigate the effect of estrogens on the binding of INS to its receptor. METHODS Ultraviolet spectroscopy, capillary electrophoresis, and NMR demonstrated estrogen binding to INS and its receptor. Horse-radish peroxidase-linked INS was used in an ELISA-like procedure to measure the effect of estradiol on binding of INS to its receptor. MEASUREMENTS Binding constants for estrogens to INS and the IR were determined by concentration-dependent spectral shifts. The effect of estradiol on INS binding to its receptor was determined by shifts in the INS binding curve. MAIN RESULTS Estradiol bound to INS with a K d of 12 × 10(-9) M and to the IR with a K d of 24 × 10(-9) M, while other hormones had significantly less affinity. Twenty-two nanomolars of estradiol shifted the binding curve of INS to its receptor 0.8 log units to the right. CONCLUSION Estradiol concentrations in hyperestrogenemic syndromes may interfere with INS binding to its receptor producing significant INS resistance.
Collapse
Affiliation(s)
- Robert Root-Bernstein
- Department of Physiology, Michigan State University, East Lansing, MI, USA
- *Correspondence: Robert Root-Bernstein, Department of Physiology, Michigan State University, 2174 Biomedical and Physical Science Building, East Lansing, MI 48824, USA e-mail:
| | - Abigail Podufaly
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Patrick F. Dillon
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
6
|
Root-Bernstein R. A modular hierarchy-based theory of the chemical origins of life based on molecular complementarity. Acc Chem Res 2012; 45:2169-77. [PMID: 22369101 DOI: 10.1021/ar200209k] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Albert Szent-Gyorgyi once defined discovery as seeing what everyone else sees and thinking what no one else thinks. I often find that phenomena that are obvious to other people are not obvious to me. Molecular complementarity is one of these phenomena: while rare among any random set of compounds, it is ubiquitous in living systems. Because every molecule in a living system binds more or less specifically to several others, we now speak of "interactomes". What explains the ubiquity of molecular complementarity in living systems? What might such an explanation reveal about the chemical origins of life and the principles that have governed its evolution? Beyond this, what might complementarity tell us about the optimization of integrated systems in general? My research combines theoretical and experimental approaches to molecular complementarity relating to evolution from prebiotic chemical systems to superorganismal interactions. Experimentally, I have characterized complementarity involving specific binding between small molecules and explored how these small-molecule modules have been incorporated into macromolecular systems such as receptors and transporters. Several general principles have emerged from this research. Molecules that bind to each other almost always alter each other's physiological effects; and conversely, molecules that have antagonistic or synergistic physiological effects almost always bind to each other. This principle suggests a chemical link between biological structure and function. Secondly, modern biological systems contain an embedded molecular paleontology based on complementarity that can reveal their chemical origins. This molecular paleontology is often manifested through modules involving small, molecularly complementary subunits that are built into modern macromolecular structures such as receptors and transporters. A third principle is that complementary modules are conserved and repurposed at every stage of evolution. Molecular complementarity plays critical roles in the evolution of chemical systems and resolves a significant number of outstanding problems in the emergence of complex systems. All physical and mathematical models of organization within complex systems rely upon nonrandom linkage between components. Molecular complementarity provides a naturally occurring nonrandom linker. More importantly, the formation of hierarchically organized stable modules vastly improves the probability of achieving self-organization, and molecular complementarity provides a mechanism by which hierarchically organized stable modules can form. Finally, modularity based on molecular complementarity produces a means for storing and replicating information. Linear replicating molecules such as DNA or RNA are not required to transmit information from one generation of compounds to the next: compositional replication is as ubiquitous in living systems as genetic replication and is equally important to its functions. Chemical systems composed of complementary modules mediate this compositional replication and gave rise to linear replication schemes. In sum, I propose that molecular complementarity is ubiquitous in living systems because it provides the physicochemical basis for modular, hierarchical ordering and replication necessary for the evolution of the chemical systems upon which life is based. I conjecture that complementarity more generally is an essential agent that mediates evolution at every level of organization.
Collapse
|
7
|
Maserejian NN, Giovannucci EL, McVary KT, McKinlay JB. Intakes of vitamins and minerals in relation to urinary incontinence, voiding, and storage symptoms in women: a cross-sectional analysis from the Boston Area Community Health survey. Eur Urol 2011; 59:1039-47. [PMID: 21444148 DOI: 10.1016/j.eururo.2011.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 03/07/2011] [Indexed: 10/18/2022]
Abstract
BACKGROUND Whether lower urinary tract symptoms (LUTS), including voiding, storage, and urinary incontinence, are affected by dietary micronutrients is uncertain. OBJECTIVE To test the hypothesis that carotenoid, vitamin C, zinc, and calcium intakes are associated with LUTS and urinary incontinence in women. DESIGN, SETTING, AND PARTICIPANTS During an observational, cross-sectional, population-based epidemiologic study of 2060 women (30-79 yr of age) in the Boston Area Community Health (BACH) survey (2002-2005), data were collected by validated food frequency questionnaire and in-person interviews and analyzed using multivariate regression. MEASUREMENTS LUTS, storage, and voiding symptoms were assessed using the American Urological Association Symptom Index (AUASI) and a validated severity index for urinary incontinence. RESULTS AND LIMITATIONS Women who consumed high-dose vitamin C from diet and supplements were more likely to report storage symptoms, especially combined frequency and urgency (≥ 500 vs < 50mg/d; odds ratio [OR]: 3.42; 95% confidence interval [CI], 1.44-8.12). However, greater consumption of dietary vitamin C or β-cryptoxanthin was inversely associated with voiding symptoms (p(trend) ≤ 0.01). Both dietary and supplemental calcium were positively associated with storage symptoms (eg, supplement ≥ 1000 mg/d vs none; OR: 2.04; 95% CI, 1.35-3.09; p(trend)=0.0002). No consistent associations were observed for β-carotene, lycopene, or other carotenoids, although smokers using β-carotene supplements were more likely to report storage problems. Whether the observed associations represent direct causes of diet on LUTS is uncertain. CONCLUSIONS High-dose intakes of vitamin C and calcium were positively associated with urinary storage or incontinence, whereas vitamin C and β-cryptoxanthin from foods and beverages were inversely associated with voiding symptoms. Results indicate that micronutrient intakes may contribute to LUTS in dose-dependent and symptom-specific ways. Further study is needed to confirm these findings and their relevance to clinical treatment decisions.
Collapse
|
8
|
Dillon PF, Root-Bernstein R, Robinson NE, Abraham WM, Berney C. Receptor-mediated enhancement of beta adrenergic drug activity by ascorbate in vitro and in vivo. PLoS One 2010; 5:e15130. [PMID: 21179213 PMCID: PMC3001466 DOI: 10.1371/journal.pone.0015130] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 10/25/2010] [Indexed: 11/25/2022] Open
Abstract
Rationale Previous in vitro research demonstrated that ascorbate enhances potency and duration of activity of agonists binding to alpha 1 adrenergic and histamine receptors. Objectives Extending this work to beta 2 adrenergic systems in vitro and in vivo. Methods Ultraviolet spectroscopy was used to study ascorbate binding to adrenergic receptor preparations and peptides. Force transduction studies on acetylcholine-contracted trachealis preparations from pigs and guinea pigs measured the effect of ascorbate on relaxation due to submaximal doses of beta adrenergic agonists. The effect of inhaled albuterol with and without ascorbate was tested on horses with heaves and sheep with carbachol-induced bronchoconstriction. Measurements Binding constants for ascorbate binding to beta adrenergic receptor were derived from concentration-dependent spectral shifts. Dose- dependence curves were obtained for the relaxation of pre-contracted trachealis preparations due to beta agonists in the presence and absence of varied ascorbate. Tachyphylaxis and fade were also measured. Dose response curves were determined for the effect of albuterol plus-and-minus ascorbate on airway resistance in horses and sheep. Main Results Ascorbate binds to the beta 2 adrenergic receptor at physiological concentrations. The receptor recycles dehydroascorbate. Physiological and supra-physiological concentrations of ascorbate enhance submaximal epinephrine and isoproterenol relaxation of trachealis, producing a 3–10-fold increase in sensitivity, preventing tachyphylaxis, and reversing fade. In vivo, ascorbate improves albuterol's effect on heaves and produces a 10-fold enhancement of albuterol activity in “asthmatic” sheep. Conclusions Ascorbate enhances beta-adrenergic activity via a novel receptor-mediated mechanism; increases potency and duration of beta adrenergic agonists effective in asthma and COPD; prevents tachyphylaxis; and reverses fade. These novel effects are probably caused by a novel mechanism involving phosphorylation of aminergic receptors and have clinical and drug-development applications.
Collapse
Affiliation(s)
- Patrick F. Dillon
- Department of Physiology, Michigan State University, East Lansing, Michigan, United States of America
| | - Robert Root-Bernstein
- Department of Physiology, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| | - N. Edward Robinson
- Department of Large Animal Clinical Science, Michigan State University, East Lansing, Michigan, United States of America
| | - William M. Abraham
- Department of Research, Mount Sinai Medical Center, Miami Beach, Florida, United States of America
| | - Catherine Berney
- Department of Large Animal Clinical Science, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
9
|
Experimental Test of L- and D-Amino Acid Binding to L- and D-Codons Suggests that Homochirality and Codon Directionality Emerged with the Genetic Code. Symmetry (Basel) 2010. [DOI: 10.3390/sym2021180] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
10
|
Assem ESK, Mann S, Wan BYC, Marson CM. Effect of antioxidants on airway smooth muscle contraction: action of lipoic acid and some of its novel derivatives on guinea pig tracheal smooth muscle. Inflamm Res 2009; 59 Suppl 2:S235-7. [DOI: 10.1007/s00011-009-0137-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
11
|
Root-Bernstein R, Vonck J. Glucose binds to the insulin receptor affecting the mutual affinity of insulin and its receptor. Cell Mol Life Sci 2009; 66:2721-32. [PMID: 19554259 PMCID: PMC11115712 DOI: 10.1007/s00018-009-0065-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 06/01/2009] [Accepted: 06/04/2009] [Indexed: 10/20/2022]
Abstract
Insulin activity is sensitive to glucose concentration but the mechanisms are still unclear. An unexamined possibility is that the insulin receptor (IR) is sensitive to glucose concentration. We demonstrate here that insulin-like peptides derived from the IR bind glucose at low millimolar, and cytochalasin B at low micromolar, concentrations; several insulin-like IR peptides bind insulin at nanomolar Kd; and this binding is antagonized by increasing glucose concentrations. In addition, glucose and cytochalasin B bind to IR isolated from rat liver and increasing glucose decreases insulin binding to this IR preparation. The presence of GLUT 1 in our IR preparation suggests the possibility of additional glucose-mediated allosteric control. We propose a model in which glucose binds to insulin, the IR, and GLUT; insulin binds to the IR; and the IR binds to GLUT. This set of interactions produces an integrated system of insulin-dependent interactions that is highly sensitive to glucose concentration.
Collapse
Affiliation(s)
- Robert Root-Bernstein
- Department of Physiology, Michigan State University, 2174 Biomedical and Physical Sciences Building, East Lansing, MI 48824, USA.
| | | |
Collapse
|
12
|
Root-Bernstein R, Dillon PF, Hollingsworth R. A tethered ascorbate-norepinephrine compound, 4-UT, displays long-acting adrenergic activity on rabbit aortic smooth muscle. Drug Dev Res 2008. [DOI: 10.1002/ddr.20250] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Certíková Chábová V, Kramer HJ, Vanecková I, Thumová M, Skaroupková P, Tesar V, Falck JR, Imig JD, Cervenka L. The Roles of Intrarenal 20-Hydroxyeicosatetraenoic and Epoxyeicosatrienoic Acids in the Regulation of Renal Function in Hypertensive Ren-2 Transgenic Rats. Kidney Blood Press Res 2007; 30:335-46. [PMID: 17785988 DOI: 10.1159/000107710] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Accepted: 06/24/2007] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The present study was performed in hypertensive Ren-2 transgenic rats (TGR) and in normotensive Hannover Sprague-Dawley (HanSD) rats. First, the intrarenal protein expression of CYP4A, the enzyme catalyzing the formation of 20-hydroxyeicosatetraenoic acid (20-HETE), and of CYP2C23, the enzyme responsible for epoxyeicosatrienoic acid (EET) production, was evaluated. Second, the renal functional responses to inhibition of the intrarenal formation of 20-HETE and EETs were investigated. METHODS Renal hemodynamics and electrolyte excretion were evaluated in response to the administration of inhibitors of 20-HETE and EET formation into the renal artery. In renal cortical tissue, CYP4A and CYP2C23 protein expression was assessed by Western blot analysis. Urinary concentrations of 20-HETE and EETs were measured using a fluorescent HPLC assay. RESULTS TGR have higher kidney CYP4A protein expression and urinary 20-HETE excretion but significantly lower CYP2C23 protein expression and urinary EET excretion than HanSD. Intrarenal inhibition of 20-HETE and EET formation decreased sodium excretion in HanSD, whereas inhibition of 20-HETE increased urinary excretion of sodium in TGR without altering renal hemodynamics. CONCLUSIONS Our data suggest that in TGR, deficient intrarenal synthesis of EETs combined with increased synthesis of 20-HETE with its stimulation of tubular sodium absorption may contribute to the development of hypertension in TGR.
Collapse
Affiliation(s)
- Vera Certíková Chábová
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Holowatz LA, Kenney WL. Local ascorbate administration augments NO- and non-NO-dependent reflex cutaneous vasodilation in hypertensive humans. Am J Physiol Heart Circ Physiol 2007; 293:H1090-6. [PMID: 17483240 DOI: 10.1152/ajpheart.00295.2007] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Full expression of reflex cutaneous vasodilation (VD) is dependent on nitric oxide (NO) and is attenuated with essential hypertension. Decreased NO-dependent VD may be due to 1) increased oxidant stress and/or 2) decreased L-arginine availability through upregulated arginase activity, potentially leading to increased superoxide production through uncoupled NO synthase (NOS). The purpose of this study was to determine the effect of antioxidant supplementation (alone and combined with arginase inhibition) on attenuated NO-dependent reflex cutaneous VD in hypertensive subjects. Nine unmedicated hypertensive [HT; mean arterial pressure (MAP) = 112 +/- 1 mmHg] and nine age-matched normotensive (NT; MAP = 81 +/- 10 mmHg) men and women were instrumented with four intradermal microdialysis (MD) fibers: control (Ringer), NOS inhibited (NOS-I; 10 mM N(G)-nitro-L-arginine), L-ascorbate supplemented (Asc; 10 mM L-ascorbate), and Asc + arginase inhibited [Asc+A-I; 10 mM L-ascorbate + 5 mM (S)-(2-boronoethyl)-L-cysteine-HCl + 5 mM N(omega)-hydroxy-nor-L-arginine]. Oral temperature was increased by 0.8 degrees C via a water-perfused suit. N(G)-nitro-L-arginine was then ultimately perfused through all MD sites to quantify the change in VD due to NO. Red blood cell flux was measured by laser-Doppler flowmetry over each skin MD site, and cutaneous vascular conductance (CVC) was calculated (CVC = flux/MAP) and normalized to maximal CVC (%CVC(max); 28 mM sodium nitroprusside + local heating to 43 degrees C). During the plateau in skin blood flow (Delta T(or) = 0.8 degrees C), cutaneous VD was attenuated in HT skin (NT: 42 +/- 4, HT: 35 +/- 3 %CVC(max); P < 0.05). Asc and Asc+A-I augmented cutaneous VD in HT (Asc: 57 +/- 5, Asc+A-I: 53 +/- 6 %CVC(max); P < 0.05 vs. control) but not in NT. %CVC(max) after NOS-I in the Asc- and Asc+A-I-treated sites was increased in HT (Asc: 41 +/- 4, Asc+A-I: 40 +/- 4, control: 29 +/- 4; P < 0.05). Compared with the control site, the change in %CVC(max) within each site after NOS-I was greater in HT (Asc: -19 +/- 4, Asc+A-I: -17 +/- 4, control: -9 +/- 2; P < 0.05) than in NT. Antioxidant supplementation alone or combined with arginase inhibition augments attenuated reflex cutaneous VD in hypertensive skin through NO- and non-NO-dependent mechanisms.
Collapse
Affiliation(s)
- Lacy A Holowatz
- Noll Laboratory, The Pennsylvania State University, Univerisity Park, PA 16802, USA.
| | | |
Collapse
|