1
|
Popeda M, Markiewicz A, Stokowy T, Szade J, Niemira M, Kretowski A, Bednarz-Knoll N, Zaczek AJ. Reduced expression of innate immunity-related genes in lymph node metastases of luminal breast cancer patients. Sci Rep 2021; 11:5097. [PMID: 33658651 PMCID: PMC7930267 DOI: 10.1038/s41598-021-84568-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/18/2021] [Indexed: 01/31/2023] Open
Abstract
Immune system plays a dual role in cancer by either targeting or supporting neoplastic cells at various stages of disease, including metastasis. Yet, the exact immune-related transcriptome profiles of primary tumours (PT) and lymph node metastases (LNM) and their evolution during luminal breast cancer (BCa) dissemination remain undiscovered. In order to identify the immune-related transcriptome changes that accompany lymphatic spread, we analysed PT-LNM pairs of luminal BCa using NanoString technology. Decrease in complement C3-one of the top-downregulated genes, in LNM was validated at the protein level using immunohistochemistry. Thirty-three of 360 analysed genes were downregulated (9%), whereas only 3 (0.8%) upregulated in LNM when compared to the corresponding PT. In LNM, reduced expression was observed in genes related to innate immunity, particularly to the complement system (C1QB, C1S, C1R, C4B, CFB, C3, SERPING1 and C3AR1). In validation cohort, complement C3 protein was less frequently expressed in LNM than in PT and it was associated with worse prognosis. To conclude, local expression of the complement system components declines during lymphatic spread of non-metastatic luminal BCa, whilst further reduction of tumoral complement C3 in LNM is indicative for poor survival. This points to context-dependent role of complement C3 in BCa dissemination.
Collapse
Affiliation(s)
- Marta Popeda
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, 80-211, Gdansk, Poland
| | - Aleksandra Markiewicz
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, 80-211, Gdansk, Poland
| | - Tomasz Stokowy
- Department of Clinical Science, University of Bergen, 5021, Bergen, Norway
| | - Jolanta Szade
- Department of Pathomorphology, Medical University of Gdansk, 80-211, Gdansk, Poland
| | - Magdalena Niemira
- Clinical Research Centre, Medical University of Bialystok, 15-276, Bialystok, Poland
| | - Adam Kretowski
- Clinical Research Centre, Medical University of Bialystok, 15-276, Bialystok, Poland
| | - Natalia Bednarz-Knoll
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, 80-211, Gdansk, Poland
| | - Anna J Zaczek
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, 80-211, Gdansk, Poland.
| |
Collapse
|
2
|
Huang WY, Wang YP, Mahmmod YS, Wang JJ, Liu TH, Zheng YX, Zhou X, Zhang XX, Yuan ZG. A Double-Edged Sword: Complement Component 3 in Toxoplasma gondii Infection. Proteomics 2019; 19:e1800271. [PMID: 30515942 DOI: 10.1002/pmic.201800271] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/01/2018] [Indexed: 12/14/2022]
Abstract
Sprague Dawley rats and Kunming (KM) mice are artificially infected with type II Toxoplasma gondii strain Prugniaud (Pru) to generate toxoplasmosis, which is a fatal disease mediated by T. gondii invasion of the central nervous system (CNS) by unknown mechanisms. The aim is to explore the mechanism of differential susceptibility of mice and rats to T. gondii infection. Therefore, a strategy of isobaric tags for relative and absolute quantitation (iTRAQ) is established to identify differentially expressed proteins (DEPs) in the rats' and the mice's brains compared to the healthy groups. In KM mice, which is susceptible to T. gondii infection, complement component 3 (C3) is upregulated and the tight junction (TJ) pathway shows a disorder. It is presumed that T. gondii-stimulated C3 disrupts the TJ of the blood-brain barrier in the CNS. This effect allows more T. gondii passing to the brain through the intercellular space.
Collapse
Affiliation(s)
- Wan-Yi Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, P. R. China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510642, Guangdong, P. R. China
| | - Ya-Pei Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, P. R. China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510642, Guangdong, P. R. China
| | - Yasser S Mahmmod
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA), Campus de la Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain.,Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain.,Infectious Diseases, Department of Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Sharkia Province, Egypt
| | - Jun-Jie Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, P. R. China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510642, Guangdong, P. R. China
| | - Tang-Hui Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, P. R. China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510642, Guangdong, P. R. China
| | - Yu-Xiang Zheng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, P. R. China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510642, Guangdong, P. R. China
| | - Xue Zhou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, P. R. China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510642, Guangdong, P. R. China
| | - Xiu-Xiang Zhang
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, P. R. China
| | - Zi-Guo Yuan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, P. R. China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510642, Guangdong, P. R. China.,Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, Guangdong, P. R. China
| |
Collapse
|
3
|
Boire A, Zou Y, Shieh J, Macalinao DG, Pentsova E, Massagué J. Complement Component 3 Adapts the Cerebrospinal Fluid for Leptomeningeal Metastasis. Cell 2017; 168:1101-1113.e13. [PMID: 28283064 DOI: 10.1016/j.cell.2017.02.025] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/22/2016] [Accepted: 02/15/2017] [Indexed: 12/12/2022]
Abstract
We molecularly dissected leptomeningeal metastasis, or spread of cancer to the cerebrospinal fluid (CSF), which is a frequent and fatal condition mediated by unknown mechanisms. We selected lung and breast cancer cell lines for the ability to infiltrate and grow in CSF, a remarkably acellular, mitogen-poor metastasis microenvironment. Complement component 3 (C3) was upregulated in four leptomeningeal metastatic models and proved necessary for cancer growth within the leptomeningeal space. In human disease, cancer cells within the CSF produced C3 in correlation with clinical course. C3 expression in primary tumors was predictive of leptomeningeal relapse. Mechanistically, we found that cancer-cell-derived C3 activates the C3a receptor in the choroid plexus epithelium to disrupt the blood-CSF barrier. This effect allows plasma components, including amphiregulin, and other mitogens to enter the CSF and promote cancer cell growth. Pharmacologic interference with C3 signaling proved therapeutically beneficial in suppressing leptomeningeal metastasis in these preclinical models.
Collapse
Affiliation(s)
- Adrienne Boire
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yilong Zou
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jason Shieh
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Danilo G Macalinao
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elena Pentsova
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Joan Massagué
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
4
|
Mathura RA, Russell-Puleri S, Cancel LM, Tarbell JM. Hydraulic Conductivity of Smooth Muscle Cell-Initiated Arterial Cocultures. Ann Biomed Eng 2015; 44:1721-33. [PMID: 26265460 DOI: 10.1007/s10439-015-1421-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 08/07/2015] [Indexed: 01/18/2023]
Abstract
The purpose of the study was to examine the effects of arterial coculture conditions on the transport properties of several in vitro endothelial cell (EC)-smooth muscle cell (SMC)-porous filter constructs in which SMC were grown to confluence first and then EC were inoculated. This order of culturing simulates the environment of a blood vessel wall after endothelial layer damage due to stenting, vascular grafting or other vascular wall insult. For all coculture configurations examined, we observed that hydraulic conductivity (L(p)) values were significantly higher than predicted by a resistances-in-series (RIS) model accounting for the L(p) of EC and SMC measured separately. The greatest increases were observed when EC were plated directly on top of a confluent SMC layer without an intervening filter, presumably mediated by direct EC-SMC contacts that were observed under confocal microscopy. The results are the opposite of a previous study that showed L(p) was significantly reduced compared to an RIS model when EC were grown to confluency first. The physiological, pathophysiological and tissue engineering implications of these results are discussed.
Collapse
Affiliation(s)
- Rishi A Mathura
- Department of Biomedical Engineering, The City College of New York, New York, NY, 10031, USA
| | - Sparkle Russell-Puleri
- Department of Biomedical Engineering, The City College of New York, New York, NY, 10031, USA
| | - Limary M Cancel
- Department of Biomedical Engineering, The City College of New York, New York, NY, 10031, USA
| | - John M Tarbell
- Department of Biomedical Engineering, The City College of New York, New York, NY, 10031, USA.
| |
Collapse
|
5
|
Mathura RA, Russell-Puleri S, Cancel LM, Tarbell JM. Hydraulic conductivity of endothelial cell-initiated arterial cocultures. Ann Biomed Eng 2013; 42:763-75. [PMID: 24264601 DOI: 10.1007/s10439-013-0943-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 11/14/2013] [Indexed: 12/13/2022]
Abstract
This study describes cocultures of arterial smooth muscle cells (SMCs) and endothelial cells (ECs) and the influences of their heterotypic interactions on hydraulic conductivity (L p ), an important transport property. A unique feature of these cocultures is that ECs were first grown to confluence and then SMCs were inoculated. Bovine aortic smooth muscle cells and bovine aortic endothelial cells (BAECs) were cocultured on Transwell Permeable Supports, and then exposed to a pressure-driven transmural flow. L p across each culture was measured using a bubble tracking apparatus that determined water flux (J v ). Our results indicate that arterial L p is significantly modulated by EC-SMC proximity, and serum content in culture. The L p of cocultures was also compared to the predictions of a resistances-in-series model to distinguish the contributions of heterotypic interactions between SMCs and ECs. Conditions that lead to significantly reduced coculture L p , compared to BAEC monoculture controls, have been uncovered and the lowest L p in the literature for an in vitro system are reported. In addition, VE-cadherin immunostaining of intact BAEC monolayers in each culture configuration reveals that EC-SMC proximity on a porous membrane has a dramatic influence on EC morphology patterns. The cocultures with the lowest L p have ECs with significantly elongated morphology. Confocal imaging indicates that there are no direct EC-SMC contacts in coculture.
Collapse
Affiliation(s)
- Rishi A Mathura
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | | | | | | |
Collapse
|
6
|
Zhang Z, Cui X, Jeske DR, Borneman J. Biclustering scatter plots using data depth measures. Stat Anal Data Min 2013. [DOI: 10.1002/sam.11166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
7
|
Presley LL, Ye J, Li X, LeBlanc J, Zhang Z, Ruegger PM, Allard J, McGovern D, Ippoliti A, Roth B, Cui X, Jeske DR, Elashoff D, Goodglick L, Braun J, Borneman J. Host-microbe relationships in inflammatory bowel disease detected by bacterial and metaproteomic analysis of the mucosal-luminal interface. Inflamm Bowel Dis 2012; 18:409-17. [PMID: 21698720 PMCID: PMC3179764 DOI: 10.1002/ibd.21793] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 05/16/2011] [Indexed: 12/16/2022]
Abstract
BACKGROUND Host-microbe interactions at the intestinal mucosal-luminal interface (MLI) are critical factors in the biology of inflammatory bowel disease (IBD). METHODS To address this issue, we performed a series of investigations integrating analysis of the bacteria and metaproteome at the MLI of Crohn's disease, ulcerative colitis, and healthy human subjects. After quantifying these variables in mucosal specimens from a first sample set, we searched for bacteria exhibiting strong correlations with host proteins. This assessment identified a small subset of bacterial phylotypes possessing this host interaction property. Using a second and independent sample set, we tested the association of disease state with levels of these 14 "host interaction" bacterial phylotypes. RESULTS A high frequency of these bacteria (35%) significantly differentiated human subjects by disease type. Analysis of the MLI metaproteomes also yielded disease classification with exceptional confidence levels. Examination of the relationships between the bacteria and proteins, using regularized canonical correlation analysis (RCCA), sorted most subjects by disease type, supporting the concept that host-microbe interactions are involved in the biology underlying IBD. Moreover, this correlation analysis identified bacteria and proteins that were undetected by standard means-based methods such as analysis of variance, and identified associations of specific bacterial phylotypes with particular protein features of the innate immune response, some of which have been documented in model systems. CONCLUSIONS These findings suggest that computational mining of mucosa-associated bacteria for host interaction provides an unsupervised strategy to uncover networks of bacterial taxa and host processes relevant to normal and disease states. (Inflamm Bowel Dis 2012;).
Collapse
Affiliation(s)
- Laura L. Presley
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA, 92521, USA
| | - Jingxiao Ye
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA, 92521, USA
| | - Xiaoxiao Li
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - James LeBlanc
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Zhanpan Zhang
- Department of Statistics, University of California, Riverside, CA, 92521, USA
| | - Paul M. Ruegger
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA, 92521, USA
| | - Jeff Allard
- Department of Medicine, Division of Digestive Disease, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Dermot McGovern
- Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Andrew Ippoliti
- Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Bennett Roth
- Department of Medicine, Division of Digestive Disease, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Xinping Cui
- Department of Statistics, University of California, Riverside, CA, 92521, USA
| | - Daniel R. Jeske
- Department of Statistics, University of California, Riverside, CA, 92521, USA
| | - David Elashoff
- Department of Human Genetics and Department of Biostatistics, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Lee Goodglick
- Department of Pathology and Laboratory Medicine, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Jonathan Braun
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA, Department of Pathology and Laboratory Medicine, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA,Corresponding Authors: James Borneman, Department of Plant Pathology and Microbiology, University of California, Riverside, CA, 92521, USA, Phone: 951-827-3584, Fax: 951-827-4294, . Jonathan Braun, Department of Pathology and Laboratory Medicine, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA, Phone: 310-825-0650, Fax: 310-0825-5674,
| | - James Borneman
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA, 92521, USA,Corresponding Authors: James Borneman, Department of Plant Pathology and Microbiology, University of California, Riverside, CA, 92521, USA, Phone: 951-827-3584, Fax: 951-827-4294, . Jonathan Braun, Department of Pathology and Laboratory Medicine, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA, Phone: 310-825-0650, Fax: 310-0825-5674,
| |
Collapse
|
8
|
Ratcliffe DR, Iqbal J, Hussain MM, Cramer EB. Fibrillar collagen type I stimulation of apolipoprotein B secretion in Caco-2 cells is mediated by beta1 integrin. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:1144-54. [PMID: 19646550 DOI: 10.1016/j.bbalip.2009.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 06/29/2009] [Accepted: 07/21/2009] [Indexed: 11/19/2022]
Abstract
Caco-2 cells spontaneously differentiate into enterocyte-like cells and secrete apolipoprotein B (apoB) lipoproteins. We evaluated the effect of different extracellular matrix proteins on lipoprotein secretion by these cells. Caco-2 cells grown on human amnion connective tissue (HACT) secreted twice as much apoB as control cells on Transwells, but secreted similar amounts of apoA1. Cells cultured on fibrillar collagen type I secreted increased amounts of apoB similar to the cells cultured on HACT, but cells cultured on non-fibrillar collagen type I, type IV collagen or laminin-1 did not. The increased secretion was nullified by a function inhibiting anti-integrin beta1 monoclonal antibody. Therefore, interactions between type I collagen and beta1 integrins augment apoB secretion by Caco-2 cells. Cells on HACT formed a more uniform columnar epithelium with lipid droplets polarized to the basolateral membrane. We also studied the effect of extracellular matrix proteins on transepithelial resistance (TER) of differentiated Caco-2 cells. TER in cells cultured on HACT was similar to that on Transwells, but cells on laminin-1 and collagen IV exhibited higher TER. Thus, various extracellular matrix proteins regulate apoB secretion and TER differently. This new observation that extracellular matrix proteins can enhance apoB secretion in Caco-2 cells could be useful to explore the modulation of lipid transport by these proteins.
Collapse
Affiliation(s)
- Don R Ratcliffe
- Department of Anatomy, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA
| | | | | | | |
Collapse
|
9
|
Förster C. Tight junctions and the modulation of barrier function in disease. Histochem Cell Biol 2008; 130:55-70. [PMID: 18415116 PMCID: PMC2413111 DOI: 10.1007/s00418-008-0424-9] [Citation(s) in RCA: 424] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2008] [Indexed: 12/22/2022]
Abstract
Tight junctions create a paracellular barrier in epithelial and endothelial cells protecting them from the external environment. Two different classes of integral membrane proteins constitute the tight junction strands in epithelial cells and endothelial cells, occludin and members of the claudin protein family. In addition, cytoplasmic scaffolding molecules associated with these junctions regulate diverse physiological processes like proliferation, cell polarity and regulated diffusion. In many diseases, disruption of this regulated barrier occurs. This review will briefly describe the molecular composition of the tight junctions and then present evidence of the link between tight junction dysfunction and disease.
Collapse
Affiliation(s)
- Carola Förster
- Institute of Anatomy and Cell Biology, University of Würzburg, Koellikerstrasse 6, 97070, Würzburg, Germany.
| |
Collapse
|
10
|
Laukoetter MG, Bruewer M, Nusrat A. Regulation of the intestinal epithelial barrier by the apical junctional complex. Curr Opin Gastroenterol 2006; 22:85-9. [PMID: 16462161 DOI: 10.1097/01.mog.0000203864.48255.4f] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Epithelial intercellular junctions are important components of the epithelial barrier and are compromised in disorders such as Crohn's disease. We will highlight recent progress in understanding the role of an intercellular junction referred to as the apical junctional complex in regulating small intestinal epithelial permeability in health and disease. RECENT FINDINGS Recent studies have implicated aberrant regulation of the AJC as an underlying factor contributing to a leaky epithelial barrier in Crohn's patients. Consequences of increased epithelial permeability include exposure of intestinal tissue to luminal antigens/pathogens which in turn influence disease activity. Furthermore, proinflammatory cytokines released into the milieu of the epithelium in patients with Crohn's disease influence apical junctional complex and epithelial barrier function. Such cytokines induce disassembly of the apical junctional complex by promoting differential endocytosis of component proteins. Additionally, apical junctional complex proteins are targeted by pathogens that use the epithelium as a portal of entry to establish disease in the host. SUMMARY The epithelial apical junctional complex is important in determining epithelial barrier properties. Recent studies have highlighted contribution of proinflammatory cytokines and endocytosis of apical junctional complex proteins to the epithelial barrier defect. Continued advances in understanding of this field will yield new therapeutic targets for intestinal disorders.
Collapse
Affiliation(s)
- Mike G Laukoetter
- Epithelial Pathobiology Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA
| | | | | |
Collapse
|
11
|
Schulzke JD, Gitter AH, Mankertz J, Spiegel S, Seidler U, Amasheh S, Saitou M, Tsukita S, Fromm M. Epithelial transport and barrier function in occludin-deficient mice. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1669:34-42. [PMID: 15842997 DOI: 10.1016/j.bbamem.2005.01.008] [Citation(s) in RCA: 227] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/09/2004] [Revised: 12/14/2004] [Accepted: 01/13/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND AND AIMS This study aimed at functional characterization of the tight junction protein occludin using the occludin-deficient mouse model. METHODS Epithelial transport and barrier functions were characterized in Ussing chambers. Impedance analysis revealed the ionic permeability of the epithelium (Re, epithelial resistance). Conductance scanning differentiated transcellular (Gc) and tight junctional conductance (Gtj). The pH-stat technique quantified gastric acid secretion. RESULTS In occludin+/+ mice, Re was 23+/-5 Omega cm2 in jejunum, 66+/-5 Omega cm2 in distal colon and 33+/-6 Omega cm2 in gastric corpus and was not altered in heterozygotic occludin+/- or homozygotic occludin-/- mice. Additionally, [3H]mannitol fluxes were unaltered. In the control colon, Gc and Gtj were 7.6+/-1.0 and 0.3+/-0.1 mS/cm2 and not different in occludin deficiency. Epithelial resistance after mechanical perturbation or EGTA exposition (low calcium switch) was not more affected in occludin-/- mice than in control. Barrier function was measured in the urinary bladder, a tight epithelium, and in the stomach. Control Rt was 5.8+/-0.8 kOmega cm2 in urinary bladder and 33+/-6 Omega cm2 in stomach and not altered in occludin-/- mice. In gastric corpus mucosa, the glandular structure exhibited a complete loss of parietal cells and mucus cell hyperplasia, as a result of which acid secretion was virtually abolished in occludin-/- mice. CONCLUSION Epithelial barrier characterization in occludin-deficiency points against an essential barrier function of occludin within the tight junction strands or to a substitutional redundancy of single tight junction molecules like occludin. A dramatic change in gastric morphology and secretory function indicates that occludin is involved in gastric epithelial differentiation.
Collapse
Affiliation(s)
- J D Schulzke
- Department of Gastroenterology, Campus Benjamin Franklin, Charité-Universitary Medicine Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Lee DBN, Jamgotchian N, Allen SG, Kan FWK, Hale IL. Annexin A2 heterotetramer: role in tight junction assembly. Am J Physiol Renal Physiol 2004; 287:F481-91. [PMID: 15113748 DOI: 10.1152/ajprenal.00175.2003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The tight junction has been characterized as a domain of focal fusions of the exoplasmic leaflets of the lipid bilayers from adjacent epithelial cells. Approximating membranes to within fusion distance is a thermodynamically unfavorable process and requires the participation of membrane-bridging or -fusion proteins. No known tight junction protein exhibits such activities. Annexin A2 (A2), in particular its heterotetramer (A2t), is known to form junctions between lipid bilayer structures through molecular bridging of their external leaflets. We demonstrate abundant A2 expression in Madin-Darby canine kidney II monolayers by two-dimensional gel electrophoresis. Confocal immunofluorescence microscopic analysis suggests the bulk of A2 is located along the apical and lateral plasma membrane in its tetrameric configuration, consisting of two A2 and two p11 (an 11-kDa calmodulin-related protein, S100A10) subunits. Immunocytochemistry and ultrastructural immunogold labeling demonstrate colocalization of the A2 subunit with bona fide tight junction proteins, zonula occludens-1, occludin, and claudin-1, at cell-cell contacts. The extracellular addition of a synthetic peptide, targeted to disrupt the binding between A2 and p11, completely aborts tight junction assembly in calcium chelation studies. We propose A2t as a member of a new class of tight junction proteins responsible for the long-observed convergence of adjacent exoplasmic lipid leaflets in tight junction assembly.
Collapse
Affiliation(s)
- David B N Lee
- The Epithelial Transport Laboratory, Veteran's Affairs Greater Los Angeles Healthcare System (VISN 22), Sepulveda, CA 91343, USA.
| | | | | | | | | |
Collapse
|
13
|
Hastings RH, Folkesson HG, Matthay MA. Mechanisms of alveolar protein clearance in the intact lung. Am J Physiol Lung Cell Mol Physiol 2004; 286:L679-89. [PMID: 15003932 DOI: 10.1152/ajplung.00205.2003] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transport of protein across the alveolar epithelial barrier is a critical process in recovery from pulmonary edema and is also important in maintaining the alveolar milieu in the normal healthy lung. Various mechanisms have been proposed for clearing alveolar protein, including transport by the mucociliary escalator, intra-alveolar degradation, or phagocytosis by macrophages. However, the most likely processes are endocytosis across the alveolar epithelium, known as transcytosis, or paracellular diffusion through the epithelial barrier. This article focuses on protein transport studies that evaluate these two potential mechanisms in whole lung or animal preparations. When protein concentrations in the air spaces are low, e.g., albumin concentrations <0.5 g/100 ml, protein transport demonstrates saturation kinetics, temperature dependence indicating high energy requirements, and sensitivity to pharmacological agents that affect endocytosis. At higher concentrations, the protein clearance rate is proportional to protein concentration without signs of saturation, inversely related to protein size, and insensitive to endocytosis inhibition. Temperature dependence suggests a passive process. Based on these findings, alveolar albumin clearance occurs by receptor-mediated transcytosis at low protein concentrations but proceeds by passive paracellular mechanisms at higher concentrations. Because protein concentrations in pulmonary edema fluid are high, albumin concentrations of 5 g/100 ml or more, clearance of alveolar protein occurs by paracellular pathways in the setting of pulmonary edema. Transcytosis may be important in regulating the alveolar milieu under nonpathological circumstances. Alveolar degradation may become important in long-term protein clearance, clearance of insoluble proteins, or under pathological conditions such as immune reactions or acute lung injury.
Collapse
Affiliation(s)
- Randolph H Hastings
- VA Medical Center (125 3350 La Jolla Village D., San Diego, CA 92161-5085, USA.
| | | | | |
Collapse
|
14
|
Nitz T, Eisenblätter T, Psathaki K, Galla HJ. Serum-derived factors weaken the barrier properties of cultured porcine brain capillary endothelial cells in vitro. Brain Res 2003; 981:30-40. [PMID: 12885423 DOI: 10.1016/s0006-8993(03)02834-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Cultured cerebral capillary endothelial cells are often used as a functional in vitro model of the blood-brain barrier (BBB) to determine drug uptake or to study barrier properties. Usually serum is supplemented to these cultures for cell proliferation. Here, we demonstrate the effect of serum and the serum-derived factors lysophosphatidic acid (LPA) and vascular endothelial growth factor (VEGF) on the barrier properties of cultured porcine brain capillary endothelial cells (PBCEC). Serum prevents tight junction formation of confluent PBCEC monolayers and moreover, opens already established tight junctions shown by decreasing transendothelial electrical resistances (TER). These effects are highly polarised with serum almost exclusively acting from the basolateral side of the cell culture. Immunocytochemistry of PBCEC revealed a delocalisation of the cell border lining tight junction proteins ZO-1, occludin and claudin-5 when serum was added. A serum fraction of 67 kDa was isolated by size-exclusion chromatography, identified as albumin and found to cause a serum-like decrease of the TER. However, fatty acid-free serum albumin does not develop this barrier weakening effect, indicating that small protein-bound factors might be responsible. For instance, serum-bound LPA demonstrated a TER-decreasing effect as well, but in contrast to serum mainly when added to the apical side of PBCEC. Addition of VEGF caused a serum-like decrease of the TER with the same polar effect; however, VEGF will be denatured by heat and could thus not be the heat-sensitive factor. Thus, we hypothesise that serum contains a variety of factors which weaken the tightness of a PBCEC monolayer from the apical side as expected but also from the basolateral side. Although the structure of the 67 kDa factor could not be analysed, this finding is of importance for in vitro models not only of the blood-brain barrier mostly using serum-containing media.
Collapse
Affiliation(s)
- Thorsten Nitz
- Institut für Biochemie, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 2, 48149 Münster, Germany
| | | | | | | |
Collapse
|
15
|
Bürgel N, Bojarski C, Mankertz J, Zeitz M, Fromm M, Schulzke JD. Mechanisms of diarrhea in collagenous colitis. Gastroenterology 2002; 123:433-43. [PMID: 12145796 DOI: 10.1053/gast.2002.34784] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Collagenous colitis is an inflammatory disease of unknown etiology with diarrhea as the leading symptom. The aim of this study was to examine the pathogenic mechanisms of this disease. METHODS Biopsy specimens of the sigmoid colon were obtained endoscopically. Short-circuit current and (22)Na and (36)Cl fluxes were measured in miniaturized Ussing chambers. Alternating current impedance analysis discriminated epithelial from subepithelial resistance. Tight junction proteins occludin and claudin 1-5 were characterized in membrane fractions by Western blotting. Apoptotic ratio was determined by DAPI and TUNEL staining. RESULTS In collagenous colitis, net Na(+) flux decreased from 8.8 +/- 1.8 to 0.2 +/- 1.5 and net Cl(-) flux from 11.2 +/- 3.0 to -3.0 +/- 2.7 micromol x h(-1) x cm(-2), indicating a pronounced decrease in NaCl absorption. The fact that short-circuit current increased from 1.5 +/- 0.4 to 3.9 +/- 0.8 micromol x h(-1) x cm(-2), together with the negative net Cl(-) flux, points to activation of active electrogenic chloride secretion. Subepithelial resistance increased from 7 +/- 1 to 18 +/- 2 Omega x cm(2) due to subepithelial collagenous bands of 48 +/- 8-microm thickness. Epithelial resistance was diminished from 44 +/- 3 to 29 +/- 2 Omega x cm(2), and this was accompanied by a decrease in occludin and claudin-4 expression. Neither mucosal surface area nor apoptotic ratio was altered in collagenous colitis. CONCLUSIONS Reduced net Na(+) and Cl(-) absorption is the predominant diarrheal mechanism in collagenous colitis, accompanied by a secretory component of active electrogenic chloride secretion. The subepithelial collagenous band as a significant diffusion barrier is a cofactor. Down-regulation of tight junction molecules but not epithelial apoptoses is a structural correlate of barrier dysfunction contributing to diarrhea by a leak flux mechanism.
Collapse
Affiliation(s)
- Natalie Bürgel
- Department of Gastroenterology, Universitätsklinikum Benjamin Franklin, Freie Universität Berlin, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Ojakian GK, Ratcliffe DR, Schwimmer R. Integrin regulation of cell-cell adhesion during epithelial tubule formation. J Cell Sci 2001; 114:941-52. [PMID: 11181177 DOI: 10.1242/jcs.114.5.941] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The extracellular matrix plays an important role in regulation of epithelial development and organization. To determine more precisely the function of extracellular matrix in this process, the initial steps in collagen-mediated formation of epithelial tubules were studied using a model cell culture system. Previous studies have demonstrated that incubation of Madin-Darby canine kidney (MDCK) epithelial cells with a collagen gel overlay induces (beta)1 integrin-regulated epithelial remodeling accompanied by extensive cell rearrangements and formation of epithelial tubules. During epithelial remodeling there was extensive disruption of the epithelial junctional complex. Progressive opening of tight junctions was observed over 8 hours using transepithelial resistance measurements and immunofluorescence microscopy demonstrated that tight and adherens junction proteins were dispersed throughout the apical and basolateral membranes. Junction complex disruption allowed the formation of apical cell extensions and subsequent migration of selected cell sheets from the epithelial monolayer. Confocal microscopy demonstrated the presence of adherens junction (E-cadherin, (alpha)-catenin, (beta)-catenin, plakoglobin) and desmosomal (desmoplakin-1/2, plakoglobin) proteins on, and within, cell extensions demonstrating that cell junctions had undergone considerable disassembly. However, groups of cell extensions appeared to be associated by E-cadherin/catenin-mediated interactions. Association of E-cadherin/catenin complexes with the epithelial cytoskeleton was analyzed by differential detergent extraction. SDS-PAGE and immunoblot analysis demonstrated that adherens junction proteins were primarily cytoskeleton-associated in control cells. During integrin-regulated remodeling, there was a progressive reduction in the interaction of adherens junction proteins with the cytoskeleton suggesting that they play an important role in the maintenance of epithelial integrity. Since loss of transepithelial electrical resistance and disruption of junctional complexes were inhibited by an antifunctional integrin antibody, we propose that activation of integrin signaling pathways regulate junctional complex stability, cell-cell interactions and cell migration. These observations provide evidence that integrin-regulated MDCK epithelial tubule formation can serve as a model system for studying rearrangements of epithelial sheets which occur during development.
Collapse
Affiliation(s)
- G K Ojakian
- Department of Anatomy and Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA.
| | | | | |
Collapse
|
17
|
Pasternak AS, Miller WM. Measurement of trans-epithelial electrical resistance in perfusion: Potential application for in vitro ocular toxicity testing. Biotechnol Bioeng 2000; 50:568-79. [DOI: 10.1002/(sici)1097-0290(19960605)50:5<568::aid-bit12>3.0.co;2-f] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Meyle J, Gültig K, Rascher G, Wolburg H. Transepithelial electrical resistance and tight junctions of human gingival keratinocytes. J Periodontal Res 1999; 34:214-22. [PMID: 10444745 DOI: 10.1111/j.1600-0765.1999.tb02244.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human gingival keratinocytes (HGKs) were studied by means of freeze-fracture technique, conventional electron microscopy and the transepithelial electrical resistance for the investigation of intercellular contacts. For the purpose of comparison, MDCK cells and HaCat cells were also included. An unexpected finding was the presence of tight junctions in the HGKs. In vivo the tight junctions, which were of low complexity and P-face-associated, were co-distributed with desmosomes; in one case, the strands ran directly through desmosomal plaques. Where tight junctions and desmosomes occurred together, no gap junctions were seen. In contrast, where no tight junctions were present, gap junctions and desmosomes were co-localized. However, the unfavourable fracture planes through the tissue did not allow a clearcut allocation of gap junction/tight junction occurrence to certain strata. In vitro, HGKs also expressed tight junctions which formed networks of low complexity and high P-face association. Whereas desmosomes were highly expressed, gap junctions were not observed in cultured keratinocytes. Transepithelial electrical resistances (TEER) of cultured HGKs were higher than the values in low resistance-MDCK cells and HaCat cells but considerably lower than the values in high resistance MDCK cells, supporting the fundamental correlation between tight junction morphology and TEER. The results with this cell culture model of the human gingiva provide some valuable information about in vitro differentation and concommittent changes in cellular contacts of human gingival keratinocytes.
Collapse
Affiliation(s)
- J Meyle
- Department of Periodontology, University of Giessen, Germany
| | | | | | | |
Collapse
|
19
|
Schmitz H, Barmeyer C, Fromm M, Runkel N, Foss HD, Bentzel CJ, Riecken EO, Schulzke JD. Altered tight junction structure contributes to the impaired epithelial barrier function in ulcerative colitis. Gastroenterology 1999; 116:301-9. [PMID: 9922310 DOI: 10.1016/s0016-5085(99)70126-5] [Citation(s) in RCA: 405] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS Mechanisms of diarrhea in ulcerative colitis (UC) are still unknown. Functional and structural characterization of epithelial barrier and transport properties in ulcerative colitis (UC) was performed. METHODS Inflamed sigmoid colon epithelium from UC patients was studied by alternating current impedance analysis to determine the pure epithelial resistance as a measure of intestinal barrier function. Tight junction (TJ) structure was investigated by freeze-fracture electron microscopy. RESULTS Although total wall resistance was reduced in UC by 50%, impedance analysis uncovered a much more pronounced barrier defect. Epithelial resistance decreased from 95 +/- 5 to 20 +/- 3 omega3. cm2, which in conventional analysis is masked by an increase in subepithelial resistance from 14 +/- 1 to 36 +/- 3 omega3. cm2 caused by inflammation. This was paralleled by a change in epithelial cell TJ structure in UC. Strand count decreased from 6.94 +/- 0.25 to 4.76 +/- 0.47 at the surface and from 7.26 +/- 0.31 to 5.46 +/- 0.37 in the crypts. CONCLUSIONS The inflamed colonic mucosa in UC has an impaired barrier function that is much more pronounced than previously assumed. An altered TJ structure contributes to this barrier defect which, because of increased back leak, can reduce net ion transport. Thus, a leak-flux mechanism contributes to the diarrhea in UC.
Collapse
Affiliation(s)
- H Schmitz
- Department of Gastroenterology, Universitätsklinikum Benjamin Franklin, Freie Universität, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Verkoelen CF, van der Boom BG, Houtsmuller AB, Schröder FH, Romijn JC. Increased calcium oxalate monohydrate crystal binding to injured renal tubular epithelial cells in culture. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:F958-65. [PMID: 9612335 DOI: 10.1152/ajprenal.1998.274.5.f958] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The retention of crystals in the kidney is considered to be a crucial step in the development of a renal stone. This study demonstrates the time-dependent alterations in the extent of calcium oxalate (CaOx) monohydrate (COM) crystal binding to Madin-Darby canine kidney (MDCK) cells during their growth to confluence and during the healing of wounds made in confluent monolayers. As determined by radiolabeled COM crystal binding studies and confirmed by confocal-scanning laser microscopy, relatively large amounts of crystals (10.4 +/- 0.4 micrograms/cm2) bound to subconfluent cultures that still exhibited a low transepithelial electrical resistance (TER < 400 omega.cm2). The development of junctional integrity, indicated by a high resistance (TER > 1,500 omega.cm2), was followed by a decrease of the crystal binding capacity to almost undetectable low levels (0.13 +/- 0.03 microgram/cm2). Epithelial injury resulted in increased crystal adherence. The highest level of crystal binding was observed 2 days postinjury when the wounds were already morphologically closed but TER was still low. Confocal images showed that during the repair process, crystals selectively adhered to migrating cells at the wound border and to stacked cells at sites were the wounds were closed. After the barrier integrity was restored, crystal binding decreased again to the same low levels as in undamaged controls. These results indicate that, whereas functional MDCK monolayers are largely protected against COM crystal adherence, epithelial injury and the subsequent process of wound healing lead to increased crystal binding.
Collapse
Affiliation(s)
- C F Verkoelen
- Department of Urology, Erasmus University, Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
21
|
Schulzke JD, Bentzel CJ, Schulzke I, Riecken EO, Fromm M. Epithelial tight junction structure in the jejunum of children with acute and treated celiac sprue. Pediatr Res 1998; 43:435-41. [PMID: 9544995 DOI: 10.1203/00006450-199804000-00001] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tight junction morphology was analyzed in freeze fracture electron micrographs from biopsies at two locations along the surface-crypt axis in the jejunum of children with treated and untreated sprue and in control subjects. In control jejunum, strand number, meshwork depth, and total depth of the tight junction decreased from surface to crypt, consistent with the concept of the crypt being more permeable than the surface epithelium. In acute sprue, strand number was reduced in all regions along the surface-crypt axis, from 5.5+/-0.2 to 3.4+/-0.3 (surface) and from 4.7+/-0.2 to 3.6+/-0.1 (crypt). Meshwork depth was also reduced at all regions along the surface-crypt axis. Strand discontinuities were more frequent in acute sprue. Aberrant strands appeared below the main meshwork of crypt tight junctions in acute sprue. In asymptomatic children treated with the gluten-free diet, jejunal tight junctional structure only partially recovered. Strand number was restored to normal at the surface, but was still decreased in the crypts, from 4.7+/-0.2 to 3.9+/-0.3. We conclude that the epithelial barrier function of the small intestine is seriously disturbed by structural modifications of the tight junction in acute symptomatic celiac disease, thereby accounting for increased ionic permeability noted in a parallel study on identical specimens. This epithelial barrier defect may contribute to diarrhea in celiac disease by a "leak flux mechanism." In children with sprue treated with a gluten-free diet, barrier dysfunction was only partly recovered, suggesting a level of "minimal damage."
Collapse
Affiliation(s)
- J D Schulzke
- Department of Gastroenterology, Universitätsklinikum Benjamin Franklin, Freie Universität Berlin, Germany
| | | | | | | | | |
Collapse
|
22
|
Hoheisel D, Nitz T, Franke H, Wegener J, Hakvoort A, Tilling T, Galla HJ. Hydrocortisone reinforces the blood-brain barrier properties in a serum free cell culture system. Biochem Biophys Res Commun 1998; 244:312-6. [PMID: 9514852 DOI: 10.1006/bbrc.1997.8051] [Citation(s) in RCA: 200] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The increasing number of newly developed drugs demands for functional in vitro models of the blood-brain barrier to determine their brain uptake. Cultured cerebral capillary endothelial cells are considered to be such a model, however in serum containing media they exhibit low electrical resistances and high permeabilities compared to the in vivo situation. Here we report the establishment of a serum-free cell culture model. Withdrawal of serum already caused a twofold increase of transendothelial resistance (TER), which in presence of serum is about 100-150 omega.cm2. We tested several supplements and found that hydrocortisone is a potent stimulator for the formation of barrier properties. TERs up to 1000 omega.cm2 were measured in the presence of physiological relevant hydrocortisone concentrations. In correspondence to the TER increase hydrocortisone decreased cell monolayer permeability for sucrose down to 5 x 10(-7) cm/s, which is close to the in vivo value of 1.2 x 10(-7) cm/s and by a factor of five lower compared to cultures without hydrocortisone and in presence of serum.
Collapse
Affiliation(s)
- D Hoheisel
- Institut für Biochemie, Westfälische Wilhelms-Universität, Münster, Germany
| | | | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Lo CM, Keese CR, Giaever I. Impedance analysis of MDCK cells measured by electric cell-substrate impedance sensing. Biophys J 1995; 69:2800-7. [PMID: 8599686 PMCID: PMC1236517 DOI: 10.1016/s0006-3495(95)80153-0] [Citation(s) in RCA: 215] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Transepithelial impedance of Madin-Darby canine kidney cell layers is measured by a new instrumental method, referred to as electric cell-substrate impedance sensing. In this method, cells are cultured on small evaporated gold electrodes, and the impedance is measured in the frequency range 20-50,000 Hz by a small probing current. A model for impedance analysis of epithelial cells measured by this method is developed. The model considers three different pathways for the current flowing from the electrode through the cell layer: (1) in through the basal and out through the apical membrane, (2) in through the lateral and out through the apical membrane, and (3) between the cells through the paracellular space. By comparing model calculation with experimental impedance data, several morphological and cellular parameters can be determined: (1) the resistivity of the cell layer, (2) the average distance between the basal cell surface and substratum, and (3) the capacitance of apical, basal, and lateral cell membranes. This model is used to analyze impedance changes on removal of Ca2+ from confluent Mardin-Darby canine kidney cell layers. The method shows that reduction of Ca2+ concentration causes junction resistance between cells to drop and the distance between the basal cell surface and substratum to increase.
Collapse
Affiliation(s)
- C M Lo
- Department of Physics and Biology, School of Science, Rensselaer Polytechnic Institute, Troy, New York 12180-3590, USA
| | | | | |
Collapse
|
25
|
Gogarten W, Köckerling A, Fromm M, Riecken EO, Schulzke JD. Effect of acute Yersinia enterocolitica infection on intestinal barrier function in the mouse. Scand J Gastroenterol 1994; 29:814-9. [PMID: 7824861 DOI: 10.3109/00365529409092516] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Yersinia enterocolitica is an important cause of diarrhea, but little is known about the underlying mechanisms. We therefore studied the impact of acute Y. enterocolitica infection on intestinal barrier function in a mouse model. METHODS For this purpose CD-1 mice were infected with Y. enterocolitica (serotype 08; 6 x 10(7) viable bacteria), and alternating current impedance analysis was performed on days 1, 2, 3, 5, and 8 after infection. RESULTS The infection resulted in a decrease in epithelial resistance from 18.0 +/- 0.9 omega.cm2 (controls) to 12.1 +/- 0.5 omega.cm2 (day 1, p < 0.001), from which the animals recovered by day 5. To locate this loss in barrier function, the horizontal distribution of local conductances was measured by voltage scanning, yielding two results. First, conductance was homogeneously distributed across the chamber area, excluding erosions or ulcers among the gross surface area and favoring tight junction opening as the source of barrier dysfunction. Second, the conductance of villus tips was compared with that of the intervillus region (consisting of lateral villus walls plus crypts). On day 1 the former was increased by 74% and the latter by 18%. Then, two other mechanisms of diarrhea were tested, namely malabsorption and secretion. First, the increase in ISC after the addition of 3-O-methylglucose, representing Na(+)-glucose cotransport, was shown not to be impaired. Second, bumetanide-inhibitable ISC, representing electrogenic Cl- secretion, also did not differ between controls and infected animals. CONCLUSIONS Our data show that epithelial barrier dysfunction plays a role in Y. enterocolitica infection, while Na(+)-glucose cotransport and electrogenic Cl- secretion are unaltered.
Collapse
Affiliation(s)
- W Gogarten
- Dept. of Clinical Physiology, Freie Universität Berlin, Germany
| | | | | | | | | |
Collapse
|
26
|
Ubels JL, Dennis M, Lantz W. The influence of retinoic acid on growth and morphology of rat exorbital lacrimal gland acinar cells in culture. Curr Eye Res 1994; 13:441-9. [PMID: 7924408 DOI: 10.3109/02713689408999872] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The lacrimal gland transports and metabolizes retinoids and may require vitamin A for normal function. To study effects of retinoic acid on morphology and growth of the lacrimal gland, rat lacrimal acinar cells were cultured in medium with serum or in serum-free medium in the presence or absence of retinoic acid. In the presence of serum, the acinar cells have a somewhat fibroblastic morphology and form confluent layers. Addition of retinoic acid to these cultures causes formation of tubule-like structures. Retinoic acid inhibits the growth of lacrimal cells in medium with serum and the cells do not reach confluence; however, the labeling of the cells with bromodeoxyuridine is not affected by retinoic acid. In serum-free medium the growth of acinar cells is reduced, but their morphology is epithelial and structures resembling secretory domes are present. Retinoic acid causes a further reduction in growth, domes are absent, and cell spreading and enlargement occurs. The effects of retinoic acid on growth and morphology of lacrimal acinar cells in culture are complex and the relevance of these observations to lacrimal function in vivo is unclear; the study demonstrates, however, that these cells are responsive to retinoic acid.
Collapse
Affiliation(s)
- J L Ubels
- Department of Ophthalmology, University of Pittsburgh, PA 15213
| | | | | |
Collapse
|
27
|
Mortell KH, Marmorstein AD, Cramer EB. Fetal bovine serum and other sera used in tissue culture increase epithelial permeability. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 1993; 29A:235-8. [PMID: 8463189 DOI: 10.1007/bf02634190] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Fetal bovine serum (FBS) or heat-inactivated FBS (56 degrees C for 30 min, HFBS) caused a dose-dependent decrease in the transepithelial electrical resistance of an epithelial monolayer (MDCK). A saturating concentration of HFBS (30%) caused an average fall of 25 +/- 2% within 60 min. Upon removal of HFBS, the resistance returned to its starting value within 1 h. Flux studies with [3H]mannitol demonstrate that the fall in resistance is due to an increased permeability of the tight junctions. Thirty percent heat inactivated sera from goat, newborn calf, calf, bovine, and horse caused falls ranging from 26 to 47%. In contrast with the basolateral preference of human and bovine adult sera, fetal bovine and newborn calf sera elicit this response primarily by interacting with the apical surface of the epithelium. HFBS-treated monolayers show a significant increase in the condensation of F-actin at points where > or = 3 cells meet. These results demonstrate that FBS and other sera used as nutritional supplements can increase the permeability of the tight junctions of cultured epithelial cells.
Collapse
Affiliation(s)
- K H Mortell
- Department of Anatomy and Cell Biology, State University of New York Health Science Center, Brooklyn 11203
| | | | | |
Collapse
|
28
|
|