1
|
Warnhoff K, Bhattacharya S, Snoozy J, Breen PC, Ruvkun G. Hypoxia-inducible factor induces cysteine dioxygenase and promotes cysteine homeostasis in Caenorhabditis elegans. eLife 2024; 12:RP89173. [PMID: 38349720 PMCID: PMC10942545 DOI: 10.7554/elife.89173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024] Open
Abstract
Dedicated genetic pathways regulate cysteine homeostasis. For example, high levels of cysteine activate cysteine dioxygenase, a key enzyme in cysteine catabolism in most animal and many fungal species. The mechanism by which cysteine dioxygenase is regulated is largely unknown. In an unbiased genetic screen for mutations that activate cysteine dioxygenase (cdo-1) in the nematode Caenorhabditis elegans, we isolated loss-of-function mutations in rhy-1 and egl-9, which encode proteins that negatively regulate the stability or activity of the oxygen-sensing hypoxia inducible transcription factor (hif-1). EGL-9 and HIF-1 are core members of the conserved eukaryotic hypoxia response. However, we demonstrate that the mechanism of HIF-1-mediated induction of cdo-1 is largely independent of EGL-9 prolyl hydroxylase activity and the von Hippel-Lindau E3 ubiquitin ligase, the classical hypoxia signaling pathway components. We demonstrate that C. elegans cdo-1 is transcriptionally activated by high levels of cysteine and hif-1. hif-1-dependent activation of cdo-1 occurs downstream of an H2S-sensing pathway that includes rhy-1, cysl-1, and egl-9. cdo-1 transcription is primarily activated in the hypodermis where it is also sufficient to drive sulfur amino acid metabolism. Thus, the regulation of cdo-1 by hif-1 reveals a negative feedback loop that maintains cysteine homeostasis. High levels of cysteine stimulate the production of an H2S signal. H2S then acts through the rhy-1/cysl-1/egl-9 signaling pathway to increase HIF-1-mediated transcription of cdo-1, promoting degradation of cysteine via CDO-1.
Collapse
Affiliation(s)
- Kurt Warnhoff
- Pediatrics and Rare Diseases Group, Sanford ResearchSioux FallsUnited States
- Department of Pediatrics, Sanford School of Medicine, University of South DakotaSioux FallsUnited States
| | | | - Jennifer Snoozy
- Pediatrics and Rare Diseases Group, Sanford ResearchSioux FallsUnited States
| | - Peter C Breen
- Department of Molecular Biology, Massachusetts General HospitalBostonUnited States
| | - Gary Ruvkun
- Department of Molecular Biology, Massachusetts General HospitalBostonUnited States
| |
Collapse
|
2
|
Warnhoff K, Bhattacharya S, Snoozy J, Breen PC, Ruvkun G. Hypoxia-inducible factor induces cysteine dioxygenase and promotes cysteine homeostasis in Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.04.538701. [PMID: 37205365 PMCID: PMC10187278 DOI: 10.1101/2023.05.04.538701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Dedicated genetic pathways regulate cysteine homeostasis. For example, high levels of cysteine activate cysteine dioxygenase, a key enzyme in cysteine catabolism in most animal and many fungal species. The mechanism by which cysteine dioxygenase is regulated is largely unknown. In an unbiased genetic screen for mutations that activate cysteine dioxygenase (cdo-1) in the nematode C. elegans, we isolated loss-of-function mutations in rhy-1 and egl-9, which encode proteins that negatively regulate the stability or activity of the oxygen-sensing hypoxia inducible transcription factor (hif-1). EGL-9 and HIF-1 are core members of the conserved eukaryotic hypoxia response. However, we demonstrate that the mechanism of HIF-1-mediated induction of cdo-1 is largely independent of EGL-9 prolyl hydroxylase activity and the von Hippel-Lindau E3 ubiquitin ligase, the classical hypoxia signaling pathway components. We demonstrate that C. elegans cdo-1 is transcriptionally activated by high levels of cysteine and hif-1. hif-1-dependent activation of cdo-1 occurs downstream of an H2S-sensing pathway that includes rhy-1, cysl-1, and egl-9. cdo-1 transcription is primarily activated in the hypodermis where it is also sufficient to drive sulfur amino acid metabolism. Thus, the regulation of cdo-1 by hif-1 reveals a negative feedback loop that maintains cysteine homeostasis. High levels of cysteine stimulate the production of an H2S signal. H2S then acts through the rhy-1/cysl-1/egl-9 signaling pathway to increase HIF-1-mediated transcription of cdo-1, promoting degradation of cysteine via CDO-1.
Collapse
Affiliation(s)
- Kurt Warnhoff
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105 USA
| | - Sushila Bhattacharya
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Jennifer Snoozy
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Peter C. Breen
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Gary Ruvkun
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
3
|
Mahjoor M, Fakouri A, Farokhi S, Nazari H, Afkhami H, Heidari F. Regenerative potential of mesenchymal stromal cells in wound healing: unveiling the influence of normoxic and hypoxic environments. Front Cell Dev Biol 2023; 11:1245872. [PMID: 37900276 PMCID: PMC10603205 DOI: 10.3389/fcell.2023.1245872] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/11/2023] [Indexed: 10/31/2023] Open
Abstract
The innate and adaptive immune systems rely on the skin for various purposes, serving as the primary defense against harmful environmental elements. However, skin lesions may lead to undesirable consequences such as scarring, accelerated skin aging, functional impairment, and psychological effects over time. The rising popularity of mesenchymal stromal cells (MSCs) for skin wound treatment is due to their potential as a promising therapeutic option. MSCs offer advantages in terms of differentiation capacity, accessibility, low immunogenicity, and their central role in natural wound-healing processes. To accelerate the healing process, MSCs promote cell migration, angiogenesis, epithelialization, and granulation tissue development. Oxygen plays a critical role in the formation and expansion of mammalian cells. The term "normoxia" refers to the usual oxygen levels, defined at 20.21 percent oxygen (160 mm of mercury), while "hypoxia" denotes oxygen levels of 2.91 percent or less. Notably, the ambient O2 content (20%) in the lab significantly differs from the 2%-9% O2 concentration in their natural habitat. Oxygen regulation of hypoxia-inducible factor-1 (HIF-1) mediated expression of multiple genes plays a crucial role in sustaining stem cell destiny concerning proliferation and differentiation. This study aims to elucidate the impact of normoxia and hypoxia on MSC biology and draw comparisons between the two. The findings suggest that expanding MSC-based regenerative treatments in a hypoxic environment can enhance their growth kinetics, genetic stability, and expression of chemokine receptors, ultimately increasing their effectiveness.
Collapse
Affiliation(s)
- Mohamad Mahjoor
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Arshia Fakouri
- Student Research Committee, USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Simin Farokhi
- Student Research Committee, USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hojjatollah Nazari
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Fatemeh Heidari
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Anatomy, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran
| |
Collapse
|
4
|
Molley TG, Jiang S, Ong L, Kopecky C, Ranaweera CD, Jalandhra GK, Milton L, Kardia E, Zhou Z, Rnjak-Kovacina J, Waters SA, Toh YC, Kilian KA. Gas-modulating microcapsules for spatiotemporal control of hypoxia. Proc Natl Acad Sci U S A 2023; 120:e2217557120. [PMID: 37040415 PMCID: PMC10120079 DOI: 10.1073/pnas.2217557120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/28/2023] [Indexed: 04/12/2023] Open
Abstract
Oxygen is a vital molecule involved in regulating development, homeostasis, and disease. The oxygen levels in tissue vary from 1 to 14% with deviations from homeostasis impacting regulation of various physiological processes. In this work, we developed an approach to encapsulate enzymes at high loading capacity, which precisely controls the oxygen content in cell culture. Here, a single microcapsule is able to locally perturb the oxygen balance, and varying the concentration and distribution of matrix-embedded microcapsules provides spatiotemporal control. We demonstrate attenuation of hypoxia signaling in populations of stem cells, cancer cells, endothelial cells, cancer spheroids, and intestinal organoids. Varying capsule placement, media formulation, and timing of replenishment yields tunable oxygen gradients, with concurrent spatial growth and morphogenesis in a single well. Capsule containing hydrogel films applied to chick chorioallantoic membranes encourages neovascularization, providing scope for topical treatments or hydrogel wound dressings. This platform can be used in a variety of formats, including deposition in hydrogels, as granular solids for 3D bioprinting, and as injectable biomaterials. Overall, this platform's simplicity and flexibility will prove useful for fundamental studies of oxygen-mediated processes in virtually any in vitro or in vivo format, with scope for inclusion in biomedical materials for treating injury or disease.
Collapse
Affiliation(s)
- Thomas G. Molley
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW2052, Australia
- School of Chemistry, University of New South Wales, Sydney, NSW2052, Australia
| | - Shouyuan Jiang
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW2052, Australia
| | - Louis Ong
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD4000, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Kelvin Grove, QLD4059, Australia
- Max-Planck Queensland Centre, Queensland University of Technology, Kelvin Grove, QLD4059, Australia
| | - Chantal Kopecky
- School of Chemistry, University of New South Wales, Sydney, NSW2052, Australia
| | | | - Gagan K. Jalandhra
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW2052, Australia
| | - Laura Milton
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD4000, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Kelvin Grove, QLD4059, Australia
| | - Egi Kardia
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW2052, Australia
- Molecular and Integrative Cystic Fibrosis Research Center, University of New South Wales, Sydney, NSW2052, Australia
| | - Zeheng Zhou
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW2052, Australia
| | - Jelena Rnjak-Kovacina
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW2052, Australia
| | - Shafagh A. Waters
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW2052, Australia
- Molecular and Integrative Cystic Fibrosis Research Center, University of New South Wales, Sydney, NSW2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW2052, Australia
| | - Yi-Chin Toh
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD4000, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Kelvin Grove, QLD4059, Australia
- Max-Planck Queensland Centre, Queensland University of Technology, Kelvin Grove, QLD4059, Australia
- Centre for Microbiome Research, Queensland University of Technology, Woolloongabba, QLD4102, Australia
| | - Kristopher A. Kilian
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW2052, Australia
- School of Chemistry, University of New South Wales, Sydney, NSW2052, Australia
- Molecular and Integrative Cystic Fibrosis Research Center, University of New South Wales, Sydney, NSW2052, Australia
| |
Collapse
|
5
|
Vértesy Á, Eichmüller OL, Naas J, Novatchkova M, Esk C, Balmaña M, Ladstaetter S, Bock C, von Haeseler A, Knoblich JA. Gruffi: an algorithm for computational removal of stressed cells from brain organoid transcriptomic datasets. EMBO J 2022; 41:e111118. [PMID: 35919947 PMCID: PMC9433936 DOI: 10.15252/embj.2022111118] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 12/11/2022] Open
Abstract
Organoids enable in vitro modeling of complex developmental processes and disease pathologies. Like most 3D cultures, organoids lack sufficient oxygen supply and therefore experience cellular stress. These negative effects are particularly prominent in complex models, such as brain organoids, and can affect lineage commitment. Here, we analyze brain organoid and fetal single‐cell RNA sequencing (scRNAseq) data from published and new datasets, totaling about 190,000 cells. We identify a unique stress signature in the data from all organoid samples, but not in fetal samples. We demonstrate that cell stress is limited to a defined subpopulation of cells that is unique to organoids and does not affect neuronal specification or maturation. We have developed a computational algorithm, Gruffi, which uses granular functional filtering to identify and remove stressed cells from any organoid scRNAseq dataset in an unbiased manner. We validated our method using six additional datasets from different organoid protocols and early brains, and show its usefulness to other organoid systems including retinal organoids. Our data show that the adverse effects of cell stress can be corrected by bioinformatic analysis for improved delineation of developmental trajectories and resemblance to in vivo data.
Collapse
Affiliation(s)
- Ábel Vértesy
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | - Oliver L Eichmüller
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | - Julia Naas
- Max Perutz Labs, Center for Integrative Bioinformatics Vienna (CIBIV), University of Vienna, Vienna, Austria.,Medical University of Vienna, Vienna Biocenter, Vienna, Austria.,Vienna Biocenter PhD Program, A Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | | | - Christopher Esk
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | - Meritxell Balmaña
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | - Sabrina Ladstaetter
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Arndt von Haeseler
- Max Perutz Labs, Center for Integrative Bioinformatics Vienna (CIBIV), University of Vienna, Vienna, Austria.,Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria
| | - Juergen A Knoblich
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria.,Department of Neurology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
The Potential Role of Creatine in Vascular Health. Nutrients 2021; 13:nu13030857. [PMID: 33807747 PMCID: PMC7999364 DOI: 10.3390/nu13030857] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/24/2021] [Accepted: 03/04/2021] [Indexed: 12/11/2022] Open
Abstract
Creatine is an organic compound, consumed exogenously in the diet and synthesized endogenously via an intricate inter-organ process. Functioning in conjunction with creatine kinase, creatine has long been known for its pivotal role in cellular energy provision and energy shuttling. In addition to the abundance of evidence supporting the ergogenic benefits of creatine supplementation, recent evidence suggests a far broader application for creatine within various myopathies, neurodegenerative diseases, and other pathologies. Furthermore, creatine has been found to exhibit non-energy related properties, contributing as a possible direct and in-direct antioxidant and eliciting anti-inflammatory effects. In spite of the new clinical success of supplemental creatine, there is little scientific insight into the potential effects of creatine on cardiovascular disease (CVD), the leading cause of mortality. Taking into consideration the non-energy related actions of creatine, highlighted in this review, it can be speculated that creatine supplementation may serve as an adjuvant therapy for the management of vascular health in at-risk populations. This review, therefore, not only aims to summarize the current literature surrounding creatine and vascular health, but to also shed light onto the potential mechanisms in which creatine may be able to serve as a beneficial supplement capable of imparting vascular-protective properties and promoting vascular health.
Collapse
|
7
|
Development of a novel acetyl glucose-modified gefitinib derivative to enhance the radiosensitizing effect. Bioorg Med Chem 2021; 29:115889. [PMID: 33260051 DOI: 10.1016/j.bmc.2020.115889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/03/2020] [Accepted: 11/17/2020] [Indexed: 11/21/2022]
Abstract
Various radiosensitizers are being developed to increase the radiation sensitivity of hypoxic cancer cells, which show resistance to radiation. Previously, we demonstrated that an acetyl glucose-modified nitroimidazole derivative showed a high radiosensitizing effect by inhibiting glucose uptake and glycolysis. Based on this finding, we designed and synthesized novel sugar hybrid radiosensitizers, wherein acetyl glucose was introduced into gefitinib. Among them, UTX-114 had higher autophosphorylation and radiosensitizing activity than gefitinib and inhibited glucose uptake. This result supports our hypothesis that an acetyl glucose moiety improves the radiosensitizing effect of the drug, and UTX-114 can be expected to be a leading compound with a radiosensitizing effect.
Collapse
|
8
|
Abstract
Complex multicellular life in mammals relies on functional cooperation of different organs for the survival of the whole organism. The kidneys play a critical part in this process through the maintenance of fluid volume and composition homeostasis, which enables other organs to fulfil their tasks. The renal endothelium exhibits phenotypic and molecular traits that distinguish it from endothelia of other organs. Moreover, the adult kidney vasculature comprises diverse populations of mostly quiescent, but not metabolically inactive, endothelial cells (ECs) that reside within the kidney glomeruli, cortex and medulla. Each of these populations supports specific functions, for example, in the filtration of blood plasma, the reabsorption and secretion of water and solutes, and the concentration of urine. Transcriptional profiling of these diverse EC populations suggests they have adapted to local microenvironmental conditions (hypoxia, shear stress, hyperosmolarity), enabling them to support kidney functions. Exposure of ECs to microenvironment-derived angiogenic factors affects their metabolism, and sustains kidney development and homeostasis, whereas EC-derived angiocrine factors preserve distinct microenvironment niches. In the context of kidney disease, renal ECs show alteration in their metabolism and phenotype in response to pathological changes in the local microenvironment, further promoting kidney dysfunction. Understanding the diversity and specialization of kidney ECs could provide new avenues for the treatment of kidney diseases and kidney regeneration.
Collapse
|
9
|
Hong J, Kim Y, Yanpallewar S, Lin PC. The Rho/Rac Guanine Nucleotide Exchange Factor Vav1 Regulates Hif-1α and Glut-1 Expression and Glucose Uptake in the Brain. Int J Mol Sci 2020; 21:ijms21041341. [PMID: 32079227 PMCID: PMC7072975 DOI: 10.3390/ijms21041341] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 12/18/2022] Open
Abstract
Vav1 is a Rho/Rac (Ras-related C3 botulinum toxin substrate) guanine nucleotide exchange factor expressed in hematopoietic and endothelial cells that are involved in a wide range of cellular functions. It is also stabilized under hypoxic conditions when it regulates the accumulation of the transcription factor HIF (Hypoxia Inducible Factor)-1α, which activates the transcription of target genes to orchestrate a cellular response to low oxygen. One of the genes induced by HIF-1α is GLUT (Glucose Transporter)-1, which is the major glucose transporter expressed in vessels that supply energy to the brain. Here, we identify a role for Vav1 in providing glucose to the brain. We found that Vav1 deficiency downregulates HIF-1α and GLUT-1 levels in endothelial cells, including blood-brain barrier cells. This downregulation of GLUT-1, in turn, reduced glucose uptake to endothelial cells both in vitro and in vivo, and reduced glucose levels in the brain. Furthermore, endothelial cell-specific Vav1 knock-out in mice, which caused glucose uptake deficiency, also led to a learning delay in fear conditioning experiments. Our results suggest that Vav1 promotes learning by activating HIF-1α and GLUT-1 and thereby distributing glucose to the brain. We further demonstrate the importance of glucose transport by endothelial cells in brain functioning and reveal a potential new axis for targeting GLUT-1 deficiency syndromes and other related brain diseases.
Collapse
Affiliation(s)
- Jaewoo Hong
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA;
- Correspondence: (J.H.); (P.C.L.); Tel.: +1-301-846-6515 (J.H.); +1-301-228-4688 (P.C.L.)
| | - Yurim Kim
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA;
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Sudhirkumar Yanpallewar
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA;
| | - P. Charles Lin
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA;
- Correspondence: (J.H.); (P.C.L.); Tel.: +1-301-846-6515 (J.H.); +1-301-228-4688 (P.C.L.)
| |
Collapse
|
10
|
Singh S, Pandey S, Chawla AS, Bhatt AN, Roy BG, Saluja D, Dwarakanath BS. Dietary 2-deoxy-D-glucose impairs tumour growth and metastasis by inhibiting angiogenesis. Eur J Cancer 2019; 123:11-24. [PMID: 31670076 DOI: 10.1016/j.ejca.2019.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/09/2019] [Indexed: 01/05/2023]
Abstract
Accumulating evidence suggests the antiangiogenic potential of the glycolytic inhibitor 2-deoxy-D-glucose (2-DG) among the anticancerous properties of this drug. In the present studies, we investigated the antiangiogenic effects of dietary 2-DG on tumour (Lewis lung carcinoma [LLC]) as well as ionising radiation-induced angiogenesis in mouse models. Dietary 2-DG reduced the serum vascular endothelial growth factor levels (∼40%) in LLC-bearing mice along with a significant inhibition of tumour growth and metastases. In vivo Matrigel plug assays showed significant decrease in vascularisation, Fluorescein isothiocyanate (FITC)-dextran fluorescence and factor VIII-positive cells in the plugs from 2-DG-fed mice, supporting the notion that dietary 2-DG significantly suppresses the tumour-associated and radiation-induced angiogenesis. 2-DG inhibited the glucose usage and lactate production as well as ATP levels of human umbilical vein endothelial cells (HUVECs) in a concentration-dependent manner, accompanied by growth inhibition and loss of viability in vitro. Furthermore, 2-DG inhibited the capillary-like tube formation in Matrigel as well as migration and transwell invasion by HUVECs, which are functional indicators of the process of angiogenesis. These results suggest that dietary 2-DG inhibits processes related to angiogenesis, which can impair the growth and metastasis of tumours.
Collapse
Affiliation(s)
- Saurabh Singh
- Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India; Medical Biotechnology Laboratory, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India; Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Sanjay Pandey
- Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India; Medical Biotechnology Laboratory, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India; Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Amanpreet Singh Chawla
- Medical Biotechnology Laboratory, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Anant Narayan Bhatt
- Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Bal Gangadhar Roy
- Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Daman Saluja
- Medical Biotechnology Laboratory, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Bilikere S Dwarakanath
- Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India; Shanghai Proton and Heavy Ion Center, Shanghai, China.
| |
Collapse
|
11
|
(Energetic metabolism of endothelial cell). COR ET VASA 2019. [DOI: 10.33678/cor.2019.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Fajersztajn L, Veras MM. Hypoxia: From Placental Development to Fetal Programming. Birth Defects Res 2018; 109:1377-1385. [PMID: 29105382 DOI: 10.1002/bdr2.1142] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 09/21/2017] [Indexed: 12/18/2022]
Abstract
Hypoxia may influence normal and different pathological processes. Low oxygenation activates a variety of responses, many of them regulated by hypoxia-inducible factor 1 complex, which is mostly involved in cellular control of O2 consumption and delivery, inhibition of growth and development, and promotion of anaerobic metabolism. Hypoxia plays a significant physiological role in fetal development; it is involved in different embryonic processes, for example, placentation, angiogenesis, and hematopoiesis. More recently, fetal hypoxia has been associated directly or indirectly with fetal programming of heart, brain, and kidney function and metabolism in adulthood. In this review, the role of hypoxia in fetal development, placentation, and fetal programming is summarized. Hypoxia is a basic mechanism involved in different pregnancy disorders and fetal health developmental complications. Although there are scientific data showing that hypoxia mediates changes in the growth trajectory of the fetus, modulates gene expression by epigenetic mechanisms, and determines the health status later in adulthood, more mechanistic studies are needed. Furthermore, if we consider that intrauterine hypoxia is not a rare event, and can be a consequence of unavoidable exposures to air pollution, nutritional deficiencies, obesity, and other very common conditions (drug addiction and stress), the health of future generations may be damaged and the incidence of some diseases will markedly increase as a consequence of disturbed fetal programming. Birth Defects Research 109:1377-1385, 2017.© 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lais Fajersztajn
- LIM 05 Departamento de Patologia, Hospital da Clinicas, Faculdade de Medicina Universidade de Sao Paulo, Sao Paulo, SP, Brasil
| | - Mariana Matera Veras
- LIM 05 Departamento de Patologia, Hospital da Clinicas, Faculdade de Medicina Universidade de Sao Paulo, Sao Paulo, SP, Brasil
| |
Collapse
|
13
|
Wall VZ, Barnhart S, Kanter JE, Kramer F, Shimizu-Albergine M, Adhikari N, Wight TN, Hall JL, Bornfeldt KE. Smooth muscle glucose metabolism promotes monocyte recruitment and atherosclerosis in a mouse model of metabolic syndrome. JCI Insight 2018; 3:96544. [PMID: 29875324 DOI: 10.1172/jci.insight.96544] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 05/01/2018] [Indexed: 12/21/2022] Open
Abstract
Metabolic syndrome contributes to cardiovascular disease partly through systemic risk factors. However, local processes in the artery wall are becoming increasingly recognized to exacerbate atherosclerosis both in mice and humans. We show that arterial smooth muscle cell (SMC) glucose metabolism markedly synergizes with metabolic syndrome in accelerating atherosclerosis progression, using a low-density lipoprotein receptor-deficient mouse model. SMCs in proximity to atherosclerotic lesions express increased levels of the glucose transporter GLUT1. Cytokines, such as TNF-α produced by lesioned arteries, promote GLUT1 expression in SMCs, which in turn increases expression of the chemokine CCL2 through increased glycolysis and the polyol pathway. Furthermore, overexpression of GLUT1 in SMCs, but not in myeloid cells, accelerates development of larger, more advanced lesions in a mouse model of metabolic syndrome, which also exhibits elevated levels of circulating Ly6Chi monocytes expressing the CCL2 receptor CCR2. Accordingly, monocyte tracing experiments demonstrate that targeted SMC GLUT1 overexpression promotes Ly6Chi monocyte recruitment to lesions. Strikingly, SMC-targeted GLUT1 overexpression fails to accelerate atherosclerosis in mice that do not exhibit the metabolic syndrome phenotype or monocytosis. These results reveal a potentially novel mechanism whereby arterial smooth muscle glucose metabolism synergizes with metabolic syndrome to accelerate monocyte recruitment and atherosclerosis progression.
Collapse
Affiliation(s)
- Valerie Z Wall
- Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, Washington, USA
| | - Shelley Barnhart
- Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, Washington, USA
| | - Jenny E Kanter
- Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, Washington, USA
| | - Farah Kramer
- Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, Washington, USA
| | - Masami Shimizu-Albergine
- Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, Washington, USA
| | - Neeta Adhikari
- Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - Thomas N Wight
- Benaroya Research Institute, Matrix Biology Program, Seattle, Washington, USA
| | - Jennifer L Hall
- Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota, USA.,American Heart Association Institute for Precision Cardiovascular Medicine, Dallas, Texas USA
| | - Karin E Bornfeldt
- Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, Washington, USA.,Department of Pathology, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
14
|
Tang CY, Mauro C. Similarities in the Metabolic Reprogramming of Immune System and Endothelium. Front Immunol 2017; 8:837. [PMID: 28785263 PMCID: PMC5519526 DOI: 10.3389/fimmu.2017.00837] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/03/2017] [Indexed: 01/06/2023] Open
Abstract
Cellular metabolism has been known for its role in bioenergetics. In recent years, much light has been shed on the reprogrammable cellular metabolism underlying many vital cellular processes, such as cell activation, proliferation, and differentiation. Metabolic reprogramming in immune and endothelial cells (ECs) is being studied extensively. These cell compartments are implicated in inflammation and pathogenesis of many diseases but their similarities in metabolic reprogramming have not been analyzed in detail. One of the most notable metabolic reprogramming is the Warburg-like effect, famously described as one of the hallmarks of cancer cells. Immune cells and ECs can display this phenotype that is characterized by a metabolic switch favoring glycolysis over oxidative phosphorylation (OXPHOS) in aerobic conditions. Though energy-inefficient, aerobic glycolysis confers many benefits to the respiring cells ranging from higher rate of adenosine triphosphate production to maintaining redox homeostasis. Chemical and biological regulators either promote or perturb this effect. In this review, nitric oxide, hypoxia-inducible factor, and adenosine monophosphate-activated protein kinase have been discussed for their common involvement in metabolic reprogramming of both systems. From in vitro and animal studies, various discrepancies exist regarding the effects of those regulators on metabolic switch. However, it is generally accepted that glycolysis favors inflammatory reactions while OXPHOS favors anti-inflammatory processes. The reasons for such observation are currently subject of intense studies and not completely understood. Finally, metabolic reprogramming in immune cells and ECs does not limit to the physiological state in health but can also be observed in pathological states, such as atherosclerosis and cancer. These new insights provide us with a better understanding of the similarities in metabolic reprogramming across a number of cell types, which could pave the way for future research and possible metabolic-based therapeutics.
Collapse
Affiliation(s)
- Chu-Yik Tang
- Barts and The London School of Medicine and Dentistry, Institute of Health Sciences Education, Queen Mary University of London, London, United Kingdom
| | - Claudio Mauro
- Barts and The London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
15
|
Yu Q, Chan SY. Mitochondrial and Metabolic Drivers of Pulmonary Vascular Endothelial Dysfunction in Pulmonary Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 967:373-383. [PMID: 29047100 DOI: 10.1007/978-3-319-63245-2_24] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Pulmonary hypertension (PH) is a deadly and increasingly prevalent vascular disease characterized by excessive pulmonary vascular remodeling and right ventricular dysfunction which leads to right heart failure, multiorgan dysfunction, and premature death. The cause of the vascular remodeling in PH remains elusive, and thus current treatments are marginally effective and prognosis of PH remains poor. Increasing evidence indicates the pathogenic importance of endothelial dysfunction in PH. However, the underlying mechanisms of such dysfunction are not well described. Endothelial apoptosis and hyperproliferation have been identified in patients with PH. Both are linked with the increased oxidative stress and inflammatory responses, and are influenced by various genetic and exogenous stresses. Importantly, contrary to historic dogma that suggested a negligible role for mitochondria and energy balance in endothelial pathology, recent findings have implicated the role of endothelial metabolism directly in PH. This chapter addresses the emerging role of mitochondria in pulmonary vascular endothelial dysfunction in PH. A more sophisticated understanding of the biochemical, metabolic, molecular, and physiologic underpinnings of this emerging paradigm should enable the development of a new generation of targeted therapies that will stunt or reverse pulmonary vascular remodeling.
Collapse
Affiliation(s)
- Qiujun Yu
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh Medical Center, 200 Lothrop Street BST1704.2, Pittsburgh, PA, 15261, USA.,Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, 200 Lothrop Street BST1704.2, Pittsburgh, PA, 15261, USA
| | - Stephen Y Chan
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh Medical Center, 200 Lothrop Street BST1704.2, Pittsburgh, PA, 15261, USA. .,Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, 200 Lothrop Street BST1704.2, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
16
|
Paik JY, Jung KH, Lee JH, Park JW, Lee KH. Reactive oxygen species-driven HIF1α triggers accelerated glycolysis in endothelial cells exposed to low oxygen tension. Nucl Med Biol 2016; 45:8-14. [PMID: 27835826 DOI: 10.1016/j.nucmedbio.2016.10.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 10/12/2016] [Accepted: 10/24/2016] [Indexed: 12/26/2022]
Abstract
Endothelial cells and their metabolic state regulate glucose transport into underlying tissues. Here, we show that low oxygen tension stimulates human umbilical vein endothelial cell 18F-fluorodeoxyglucose (18F-FDG) uptake and lactate production. This was accompanied by augmented hexokinase activity and membrane Glut-1, and increased accumulation of hypoxia-inducible factor-1α (HIF1α). Restoration of oxygen reversed the metabolic effect, but this was blocked by HIF1α stabilization. Hypoxia-stimulated 18F-FDG uptake was completely abrogated by silencing of HIF1α expression or by a specific inhibitor. There was a rapid and marked increase of reactive oxygen species (ROS) by hypoxia, and ROS scavenging or NADPH oxidase inhibition completely abolished hypoxia-stimulated HIF1α and 18F-FDG accumulation, placing ROS production upstream of HIF1α signaling. Hypoxia-stimulated HIF1α and 18F-FDG accumulation was blocked by the protein kinase C (PKC) inhibitor, staurosporine. The phosphatidylinositol 3-kinase (PI3K) inhibitor, wortmannin, blocked hypoxia-stimulated 18F-FDG uptake and attenuated hypoxia-responsive element binding of HIF1α without influencing its accumulation. Thus, ROS-driven HIF1α accumulation, along with PKC and PI3K signaling, play a key role in triggering accelerated glycolysis in endothelial cells under hypoxia, thereby contributing to 18F-FDG transport.
Collapse
Affiliation(s)
- Jin-Young Paik
- Department of Nuclear Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Kyung-Ho Jung
- Department of Nuclear Medicine, Samsung Medical Center, Seoul, Republic of Korea; Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jin-Hee Lee
- Department of Nuclear Medicine, Samsung Medical Center, Seoul, Republic of Korea; Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jin-Won Park
- Department of Nuclear Medicine, Samsung Medical Center, Seoul, Republic of Korea; Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyung-Han Lee
- Department of Nuclear Medicine, Samsung Medical Center, Seoul, Republic of Korea; Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
17
|
Skeletal muscles respond differently when piglets are offered a diet 30 % deficient in total sulfur amino acid for 10 days. Eur J Nutr 2015; 55:117-26. [DOI: 10.1007/s00394-014-0830-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 12/30/2014] [Indexed: 11/30/2022]
|
18
|
Gross JJ, van Dorland HA, Wellnitz O, Bruckmaier RM. Glucose transport and milk secretion during manipulated plasma insulin and glucose concentrations and during LPS-induced mastitis in dairy cows. J Anim Physiol Anim Nutr (Berl) 2014; 99:747-56. [DOI: 10.1111/jpn.12259] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/01/2014] [Indexed: 12/13/2022]
Affiliation(s)
- J. J. Gross
- Veterinary Physiology; Vetsuisse Faculty; University of Bern; Bern Switzerland
| | - H. A. van Dorland
- Veterinary Physiology; Vetsuisse Faculty; University of Bern; Bern Switzerland
| | - O. Wellnitz
- Veterinary Physiology; Vetsuisse Faculty; University of Bern; Bern Switzerland
| | - R. M. Bruckmaier
- Veterinary Physiology; Vetsuisse Faculty; University of Bern; Bern Switzerland
| |
Collapse
|
19
|
Shao Y, Zhao FQ. Emerging evidence of the physiological role of hypoxia in mammary development and lactation. J Anim Sci Biotechnol 2014; 5:9. [PMID: 24444333 PMCID: PMC3929241 DOI: 10.1186/2049-1891-5-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 01/17/2014] [Indexed: 01/22/2023] Open
Abstract
Hypoxia is a physiological or pathological condition of a deficiency of oxygen supply in the body as a whole or within a tissue. During hypoxia, tissues undergo a series of physiological responses to defend themselves against a low oxygen supply, including increased angiogenesis, erythropoiesis, and glucose uptake. The effects of hypoxia are mainly mediated by hypoxia-inducible factor 1 (HIF-1), which is a heterodimeric transcription factor consisting of α and β subunits. HIF-1β is constantly expressed, whereas HIF-1α is degraded under normal oxygen conditions. Hypoxia stabilizes HIF-1α and the HIF complex, and HIF then translocates into the nucleus to initiate the expression of target genes. Hypoxia has been extensively studied for its role in promoting tumor progression, and emerging evidence also indicates that hypoxia may play important roles in physiological processes, including mammary development and lactation. The mammary gland exhibits an increasing metabolic rate from pregnancy to lactation to support mammary growth, lactogenesis, and lactation. This process requires increasing amounts of oxygen consumption and results in localized chronic hypoxia as confirmed by the binding of the hypoxia marker pimonidazole HCl in mouse mammary gland. We hypothesized that this hypoxic condition promotes mammary development and lactation, a hypothesis that is supported by the following several lines of evidence: i) Mice with an HIF-1α deletion selective for the mammary gland have impaired mammary differentiation and lipid secretion, resulting in lactation failure and striking changes in milk compositions; ii) We recently observed that hypoxia significantly induces HIF-1α-dependent glucose uptake and GLUT1 expression in mammary epithelial cells, which may be responsible for the dramatic increases in glucose uptake and GLUT1 expression in the mammary gland during the transition period from late pregnancy to early lactation; and iii) Hypoxia and HIF-1α increase the phosphorylation of signal transducers and activators of transcription 5a (STAT5a) in mammary epithelial cells, whereas STAT5 phosphorylation plays important roles in the regulation of milk protein gene expression and mammary development. Based on these observations, hypoxia effects emerge as a new frontier for studying the regulation of mammary development and lactation.
Collapse
Affiliation(s)
| | - Feng-Qi Zhao
- Laboratory of Lactation and Metabolic Physiology, Department of Animal Science, University of Vermont, Burlington, Vermont 05405, USA.
| |
Collapse
|
20
|
Hypoxic conditioned medium from human amniotic fluid-derived mesenchymal stem cells accelerates skin wound healing through TGF-β/SMAD2 and PI3K/Akt pathways. Int J Mol Sci 2014; 15:605-28. [PMID: 24398984 PMCID: PMC3907828 DOI: 10.3390/ijms15010605] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 12/21/2013] [Accepted: 01/02/2014] [Indexed: 12/26/2022] Open
Abstract
In a previous study, we isolated human amniotic fluid (AF)-derived mesenchymal stem cells (AF-MSCs) and utilized normoxic conditioned medium (AF-MSC-norCM) which has been shown to accelerate cutaneous wound healing. Because hypoxia enhances the wound healing function of mesenchymal stem cell-conditioned medium (MSC-CM), it is interesting to explore the mechanism responsible for the enhancement of wound healing function. In this work, hypoxia not only increased the proliferation of AF-MSCs but also maintained their constitutive characteristics (surface marker expression and differentiation potentials). Notably, more paracrine factors, VEGF and TGF-β1, were secreted into hypoxic conditioned medium from AF-MSCs (AF-MSC-hypoCM) compared to AF-MSC-norCM. Moreover, AF-MSC-hypoCM enhanced the proliferation and migration of human dermal fibroblasts in vitro, and wound closure in a skin injury model, as compared to AF-MSC-norCM. However, the enhancement of migration of fibroblasts accelerated by AF-MSC-hypoCM was inhibited by SB505124 and LY294002, inhibitors of TGF-β/SMAD2 and PI3K/AKT, suggesting that AF-MSC-hypoCM-enhanced wound healing is mediated by the activation of TGF-β/SMAD2 and PI3K/AKT. Therefore, AF-MSC-hypoCM enhances wound healing through the increase of hypoxia-induced paracrine factors via activation of TGF-β/SMAD2 and PI3K/AKT pathways.
Collapse
|
21
|
Cura AJ, Carruthers A. Role of monosaccharide transport proteins in carbohydrate assimilation, distribution, metabolism, and homeostasis. Compr Physiol 2013; 2:863-914. [PMID: 22943001 DOI: 10.1002/cphy.c110024] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The facilitated diffusion of glucose, galactose, fructose, urate, myoinositol, and dehydroascorbicacid in mammals is catalyzed by a family of 14 monosaccharide transport proteins called GLUTs. These transporters may be divided into three classes according to sequence similarity and function/substrate specificity. GLUT1 appears to be highly expressed in glycolytically active cells and has been coopted in vitamin C auxotrophs to maintain the redox state of the blood through transport of dehydroascorbate. Several GLUTs are definitive glucose/galactose transporters, GLUT2 and GLUT5 are physiologically important fructose transporters, GLUT9 appears to be a urate transporter while GLUT13 is a proton/myoinositol cotransporter. The physiologic substrates of some GLUTs remain to be established. The GLUTs are expressed in a tissue specific manner where affinity, specificity, and capacity for substrate transport are paramount for tissue function. Although great strides have been made in characterizing GLUT-catalyzed monosaccharide transport and mapping GLUT membrane topography and determinants of substrate specificity, a unifying model for GLUT structure and function remains elusive. The GLUTs play a major role in carbohydrate homeostasis and the redistribution of sugar-derived carbons among the various organ systems. This is accomplished through a multiplicity of GLUT-dependent glucose sensing and effector mechanisms that regulate monosaccharide ingestion, absorption,distribution, cellular transport and metabolism, and recovery/retention. Glucose transport and metabolism have coevolved in mammals to support cerebral glucose utilization.
Collapse
Affiliation(s)
- Anthony J Cura
- Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | |
Collapse
|
22
|
Xu W, Erzurum SC. Endothelial cell energy metabolism, proliferation, and apoptosis in pulmonary hypertension. Compr Physiol 2013; 1:357-72. [PMID: 23737177 DOI: 10.1002/cphy.c090005] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a fatal disease characterized by impaired regulation of pulmonary hemodynamics and excessive growth and dysfunction of the endothelial cells that line the arteries in PAH lungs. Establishment of methods for culture of pulmonary artery endothelial cells from PAH lungs has provided the groundwork for mechanistic translational studies that confirm and extend findings from model systems and spontaneous pulmonary hypertension in animals. Endothelial cell hyperproliferation, survival, and alterations of biochemical-metabolic pathways are the unifying endothelial pathobiology of the disease. The hyperproliferative and apoptosis-resistant phenotype of PAH endothelial cells is dependent upon the activation of signal transducer and activator of transcription (STAT) 3, a fundamental regulator of cell survival and angiogenesis. Animal models of PAH, patients with PAH, and human PAH endothelial cells produce low nitric oxide (NO). In association with the low level of NO, endothelial cells have reduced mitochondrial numbers and cellular respiration, which is associated with more than a threefold increase in glycolysis for energy production. The shift to glycolysis is related to low levels of NO and likely to the pathologic expression of the prosurvival and proangiogenic signal transducer, hypoxia-inducible factor (HIF)-1, and the reduced mitochondrial antioxidant manganese superoxide dismutase (MnSOD). In this article, we review the phenotypic changes of the endothelium in PAH and the biochemical mechanisms accounting for the proliferative, glycolytic, and strongly proangiogenic phenotype of these dysfunctional cells, which consequently foster the panvascular progressive pulmonary remodeling in PAH.
Collapse
Affiliation(s)
- Weiling Xu
- Departments of Pathobiology, Lerner Research Institute, Respiratory Institute, Cleveland Clinic, Cleveland, OH, USA.
| | | |
Collapse
|
23
|
Widmer DS, Hoek KS, Cheng PF, Eichhoff OM, Biedermann T, Raaijmakers MIG, Hemmi S, Dummer R, Levesque MP. Hypoxia contributes to melanoma heterogeneity by triggering HIF1α-dependent phenotype switching. J Invest Dermatol 2013; 133:2436-2443. [PMID: 23474946 DOI: 10.1038/jid.2013.115] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 01/21/2013] [Accepted: 02/06/2013] [Indexed: 02/06/2023]
Abstract
We have previously reported a model for melanoma progression in which oscillation between melanoma cell phenotypes characterized by invasion or proliferation is fundamental to tumor heterogeneity and disease progression. In this study we examine the possible role of hypoxia as one of the microenvironmental influences driving metastatic progression by promoting a switch from a proliferative to an invasive phenotype. Immunohistochemistry on primary human cutaneous melanoma biopsies showed intratumoral heterogeneity for cells expressing melanocytic markers, and a loss of these markers correlated with hypoxic regions. Furthermore, we show that the downregulation of melanocytic markers is dependent on hypoxia inducible factor 1α (HIF1α), a known regulator of the hypoxic response. In vitro invasion assays showed that a hypoxic environment increases the invasiveness of proliferative melanoma cell cultures in a HIF1α-dependent manner. In contrast, invasive phenotype melanoma cells showed no increase in invasive potential upon exposure to hypoxia. Thus, exposure of proliferative melanoma cells to hypoxic microenvironments is sufficient, in a HIF1α-dependent manner, to downregulate melanocytic marker expression and increase their invasive potential.
Collapse
Affiliation(s)
- Daniel S Widmer
- Department of Dermatology, University Hospital of Zürich, Zürich, Switzerland
| | - Keith S Hoek
- Department of Dermatology, University Hospital of Zürich, Zürich, Switzerland
| | - Phil F Cheng
- Department of Dermatology, University Hospital of Zürich, Zürich, Switzerland
| | - Ossia M Eichhoff
- Department of Dermatology, University Hospital of Zürich, Zürich, Switzerland
| | - Thomas Biedermann
- Department of Surgery, University Children's Hospital Zürich, Zürich, Switzerland
| | | | - Silvio Hemmi
- Faculty of Mathematics and Natural Sciences, Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, University Hospital of Zürich, Zürich, Switzerland
| | - Mitchell P Levesque
- Department of Dermatology, University Hospital of Zürich, Zürich, Switzerland.
| |
Collapse
|
24
|
Kumar P, Shustov G, Liang H, Khlebnikov V, Zheng W, Yang XH, Cheeseman C, Wiebe LI. Design, synthesis, and preliminary biological evaluation of 6-O-glucose-azomycin adducts for diagnosis and therapy of hypoxic tumors. J Med Chem 2012; 55:6033-46. [PMID: 22708968 DOI: 10.1021/jm2017336] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Several 2-nitroimidazole-based molecules (NIs) are used as clinical hypoxic tumor radiodiagnostics, but they are not effective as radiosensitizers/radiochemotherapeutics. These NIs permeate tumor cells nonselectively via diffusion, and in therapy, where high doses are required, their dose limiting toxicities preclude success. The synthesis and preliminary in vitro evaluations of three glucoazomycins, members of a novel class of C6-O-glucose-linked-azomycin conjugates that are putative substrates of glucose transport proteins (GLUTs) and possess hypoxia-selective radiosensitization features, are now reported. The hypoxia-dependent upregulation of several GLUTs provides a rational basis to develop these glucoazomycins because more selective uptake in hypoxic cells would decrease systemic toxicities at effective doses. Calculated partition coefficients (ClogP, -1.70 to -2.99) predict rapid in vivo clearance for low systemic toxicity. In vitro experimental data show that glucoazomycins are radiosensitizers and that they competitively inhibit glucose uptake.
Collapse
Affiliation(s)
- Piyush Kumar
- Department of Oncology, University of Alberta , Edmonton, Alberta T6G 1Z2, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Wuest M, Kumar P, Wang M, Yang J, Jans HS, Wiebe LI. In vitro and in vivo evaluation of [(18)F]F-GAZ, a novel oxygen-mimetic azomycin-glucose conjugate, for imaging hypoxic tumor. Cancer Biother Radiopharm 2012; 27:473-80. [PMID: 22746267 DOI: 10.1089/cbr.2011.1148] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Several F-18-labeled 2-nitroimidazole (azomycin) derivatives have been proposed for imaging hypoxia using positron emission tomography (PET). Their cell penetration is based on passive diffusion, which limits their intracellular concentration maxima. The purpose of this study was to investigate the uptake of N-(2-[(18)F]fluoro-3-(6-O-glucosyl)propyl-azomycin ([(18)F]F-GAZ), a new azomycin-glucose conjugate, in vitro and in vivo. [(18)F]F-GAZ was synthesized from its tetraacetyl nosylate precursor by nucleophilic radiofluorination. [(18)F]F-GAZ was evaluated in vivo in EMT-6 tumor-bearing Balb/C mice utilizing the PET and biodistribution analysis. In vitro uptake of [(18)F]FDG by EMT-6 cells was measured in the presence of unlabeled F-GAZ, 2-FDG, and D-glucose. [(18)F]F-GAZ was rapidly cleared from all tissues, including the blood pool and kidneys, with ultimate accumulation in the urinary bladder. Uptake of tracer doses of [(18)F]F-GAZ into EMT-6 tumors was fast, reaching a standardized uptake value of 0.66±0.05 within 5-6 minutes postinjection (p.i.), and decreased to 0.24±0.04 by 60 minutes p.i. (n=6). A tumor-muscle ratio of 1.87±0.18 was observed after 60 minutes. Total uptake of [(18)F]F-GAZ in tumors (60 minutes) amounted to 1.25%±0.15% ID/g versus 0.61%±0.14% ID/g (n=4) in muscle. Similar biodistribution and excretion were observed using carrier-added (100 mg/kg) doses of F-GAZ. In vitro, D-glucose and unlabeled 2-FDG were two orders of magnitude more potent than F-GAZ as competitive inhibitors of [(18)F]FDG uptake into EMT-6 cells. Besides its interaction with glucose transporters, F-GAZ seems to be not transported in the presence of glucose. Furthermore, [(18)F]F-GAZ is unlikely to be effective as a hypoxia imaging agent. The low in vivo toxicity and substantial retention in tumor observed at high doses of F-GAZ do provide rationale for further testing as a radiosensitizer for external beam radiation therapy of radioresistant, hypoxic tumors.
Collapse
Affiliation(s)
- Melinda Wuest
- Department of Oncology, University of Alberta , and Cross Cancer Institute, Edmonton, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
26
|
Piña Y, Houston SK, Murray TG, Koru-Sengul T, Decatur C, Scott WK, Nathanson L, Clarke J, Lampidis TJ. Retinoblastoma treatment: impact of the glycolytic inhibitor 2-deoxy-d-glucose on molecular genomics expression in LH(BETA)T(AG) retinal tumors. Clin Ophthalmol 2012; 6:817-30. [PMID: 22701083 PMCID: PMC3373226 DOI: 10.2147/opth.s29688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PURPOSE The purpose of this study was to evaluate the effect of 2-deoxy-D-glucose (2-DG) on the spatial distribution of the genetic expression of key elements involved in angiogenesis, hypoxia, cellular metabolism, and apoptosis in LH(BETA)T(AG) retinal tumors. METHODS The right eye of each LH(BETA)T(AG) transgenic mouse (n = 24) was treated with either two or six subconjunctival injections of 2-DG (500 mg/kg) or saline control at 16 weeks of age. A gene expression array analysis was performed on five different intratumoral regions (apex, center, base, anterior-lateral, and posterior-lateral) using Affymetrix GeneChip Mouse Gene 1.0 ST arrays. To test for treatment effects of each probe within each region, a two-way analysis of variance was used. RESULTS Significant differences between treatment groups (ie, 0, 2, and 6 injections) were found as well as differences among the five retinal tumor regions evaluated (P < 0.01). More than 100 genes were observed to be dysregulated by ≥2-fold difference in expression between the three treatment groups, and their dysregulation varied across the five regions assayed. Several genes involved in pathways important for tumor cell growth (ie, angiogenesis, hypoxia, cellular metabolism, and apoptosis) were identified. CONCLUSIONS 2-DG was found to significantly alter the gene expression in LH(BETA)T(AG) retinal tumor cells according to their location within the tumor as well as the treatment schedule. 2-DG's effects on genetic expression found here correlate with previous reported results on varied processes involved in its in vitro and in vivo activity in inhibiting tumor cell growth.
Collapse
Affiliation(s)
- Yolanda Piña
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Volochayev R, Csako G, Wesley R, Rider LG, Miller FW. Laboratory Test Abnormalities are Common in Polymyositis and Dermatomyositis and Differ Among Clinical and Demographic Groups. Open Rheumatol J 2012; 6:54-63. [PMID: 22723809 PMCID: PMC3377888 DOI: 10.2174/1874312901206010054] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Revised: 05/08/2012] [Accepted: 05/10/2012] [Indexed: 11/23/2022] Open
Abstract
Objective: Given the difficulties regarding the interpretation of common laboratory test results in polymyositis (PM) and dermatomyositis (DM) in clinical practice, we assessed their range of abnormalities, differences among phenotypes and interrelationships in a large referral population. Methods: We retrospectively assessed 20 commonly measured blood laboratory tests in 620 well-defined PM/DM patients at different stages of illness and treatment to determine the frequency, range of abnormalities and correlations among clinical, gender, racial and age phenotypes. Results: Myositis patients at various stages of their disease showed frequent elevations of the serum activities of creatine kinase (51%), alanine aminotransferase (43%), aspartate aminotransferase (51%), lactate dehydrogenase (60%), aldolase (65%) and myoglobin levels (48%) as expected. Other frequent abnormalities, however, included elevated high white blood cell counts (36%), low lymphocyte counts (37%), low hematocrit levels (29%), low albumin levels (22%), high creatine kinase MB isoenzyme fractions (52%), high erythrocyte sedimentation rates (33%) and high IgM and IgG levels (16% and 18%, respectively). Many of these tests significantly differed among the clinical, gender, racial and age groups. Significant correlations were also found among a number of these laboratory tests, particularly in the serum activity levels of creatine kinase, the transaminases, lactate dehydrogenase and aldolase. Conclusion: Laboratory test abnormalities are common in PM/DM. Knowledge of the range of these expected abnormalities in different myositis phenotypes, gender and age groups and their correlations should assist clinicians in better interpretation of these test results, allow for a clearer understanding what level of abnormality warrants further evaluation for liver or other diseases, and may avoid unnecessary laboratory or other testing.
Collapse
Affiliation(s)
- Rita Volochayev
- Environmental Autoimmunity Group, Program of Clinical Research, National Institute of Environmental Health Sciences, National Institutes of Health, HHS, Bethesda, Maryland, USA
| | | | | | | | | |
Collapse
|
28
|
Addition of NMDA-receptor antagonist MK801 during oxygen/glucose deprivation moderately attenuates the upregulation of glucose uptake after subsequent reoxygenation in brain endothelial cells. Neurosci Lett 2011; 506:44-9. [PMID: 22040671 DOI: 10.1016/j.neulet.2011.10.045] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Revised: 10/03/2011] [Accepted: 10/15/2011] [Indexed: 11/22/2022]
Abstract
During stroke the blood-brain barrier (BBB) is damaged which can result in vasogenic brain edema and inflammation. The reduced blood supply leads to decreased delivery of oxygen and glucose to affected areas of the brain. Oxygen and glucose deprivation (OGD) can cause upregulation of glucose uptake of brain endothelial cells. In this letter, we investigated the influence of MK801, a non-competitive inhibitor of the NMDA-receptor, on the regulation of the glucose uptake and of the main glucose transporters glut1 and sglt1 in murine BBB cell line cerebEND during OGD. mRNA expression of glut1 was upregulated 68.7-fold after 6h OGD, which was significantly reduced by 10μM MK801 to 28.9-fold. Sglt1 mRNA expression decreased during OGD which was further reduced by MK801. Glucose uptake was significantly increased up to 907% after 6h OGD and was still higher (210%) after the 20h reoxygenation phase compared to normoxia. Ten micromolar MK801 during OGD was able to reduce upregulated glucose uptake after OGD and reoxygenation significantly. Presence of several NMDAR subunits was proven on the mRNA level in cerebEND cells. Furthermore, it was shown that NMDAR subunit NR1 was upregulated during OGD and that this was inhibitable by MK801. In conclusion, the addition of MK801 during the OGD phase reduced significantly the glucose uptake after the subsequent reoxygenation phase in brain endothelial cells.
Collapse
|
29
|
Mattmiller SA, Corl CM, Gandy JC, Loor JJ, Sordillo LM. Glucose transporter and hypoxia-associated gene expression in the mammary gland of transition dairy cattle. J Dairy Sci 2011; 94:2912-22. [PMID: 21605761 DOI: 10.3168/jds.2010-3936] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 02/02/2011] [Indexed: 11/19/2022]
Abstract
Glucose is an important energy substrate, especially needed by dairy cows postpartum to support the onset of lactation. The prioritization and regulation of glucose uptake is accomplished, in part, by changes in expression of cellular glucose transport molecules (GLUT) within the mammary gland. The objectives of this study were to (1) evaluate the expression and cell-type specific localization of GLUT and hypoxia-associated genes that may regulate GLUT expression over the transition period and through lactation in bovine mammary tissue and (2) determine functionality of GLUT on primary bovine mammary endothelial cells (BMEC). Mammary tissue biopsies were taken from cows at 15 d before calving and again at 1, 15, 30, 60, 120, and 240 d post-parturition for quantitative real-time PCR analysis of GLUT and hypoxia-associated genes. Additional mammary tissue samples were used to localize GLUT within the cells of the lobulo-alveolar system via fluorescence microscopy. Cultures of primary bovine mammary endothelial cells were used to confirm the functionality of GLUT with a fluorescent glucose analog uptake assay. Significant increases in GLUT1 gene expression were observed during early lactation, whereas both GLUT3 and GLUT4 gene expression increased during late lactation. The gene expression for 2 receptors of vascular endothelial growth factor increased significantly during early lactation and remained increased throughout lactation when compared with gene expression during the transition period. All GLUT were detected on cultured BMEC and were capable of internalizing glucose through GLUT-mediated mechanisms. These data suggest mammary vascular tissues express GLUT during lactation and BMEC express functional glucose transporters. A better understanding of glucose uptake at the endothelial level may prove to be critical to improve glucose absorption from the blood for utilization by mammary epithelial cells.
Collapse
Affiliation(s)
- S A Mattmiller
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing 48824, USA
| | | | | | | | | |
Collapse
|
30
|
Protein and Amino Acid Supplementation Does Not Alter Proteolytic Gene Expression following Immobilization. J Nutr Metab 2011; 2011:539690. [PMID: 21845220 PMCID: PMC3153915 DOI: 10.1155/2011/539690] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 01/28/2011] [Accepted: 06/13/2011] [Indexed: 01/23/2023] Open
Abstract
Objective. To determine if supplementation of protein and amino acids (PAA) decreases skeletal muscle expression of atrophy-related genes, muscle mass, and strength during immobilization in humans. Methods. Twenty males wore a lower-limb immobilization boot for 28 days and consumed either a PAA supplement (28 g protein) or carbohydrate placebo (28 g maltodextrose), while consuming their normal daily diet. Testing sessions included dietary analysis, lower-leg girth and body composition measurements, strength testing, and gastrocnemius muscle biopsies. Muscle was analyzed for mRNA expression of markers in the ubiquitin and calpain systems, myostatin, TNF-α, and NF-κB. Results. All genes of interest increased over time (P < .05), but there was no difference between groups. Lower-leg girth decreased over time (P = 0.02); however, there were no significant changes in body composition or strength. Conclusion. Short-term lower-limb disuse, despite the absence of significant muscle atrophy, is associated with increases in skeletal muscle gene expression of several proteolysis-related genes. These changes do not appear to be altered by oral PAA supplementation.
Collapse
|
31
|
Rosová I, Link D, Nolta JA. shRNA-mediated decreases in c-Met levels affect the differentiation potential of human mesenchymal stem cells and reduce their capacity for tissue repair. Tissue Eng Part A 2011; 16:2627-39. [PMID: 20367286 DOI: 10.1089/ten.tea.2009.0363] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mesenchymal stem cells/marrow stromal cells (MSC) are adult multipotent cells that can augment tissue repair. We previously demonstrated that culturing MSC in hypoxic conditions causes upregulation of the hepatocyte growth factor (HGF) receptor c-Met, allowing them to respond more robustly to HGF. MSC preconditioned in hypoxic environments contributed to restoration of blood flow after an ischemic injury more rapidly than MSC cultured in normoxic conditions. We now investigated the specific role of HGF/c-Met signaling in MSC function. An shRNA-mediated knockdown (KD) of c-Met in MSC did not alter their phenotypic profile, proliferation, or viability in vitro. However, we determined that while HGF/c-Met signaling does not play a role in the adipogenic differentiation of the cells, the disruption of this signaling pathway inhibited the ability of MSC to differentiate into the osteogenic and chondrogenic lineages. We next assessed the impact of c-Met KD on human MSC function in a xenogeneic hindlimb ischemia injury model. A 70% KD of c-Met in MSC resulted in a significant decrease in their capacity to regenerate blood flow to the ischemic limb, as compared to the MSC transduced with control shRNA. MSC with only a 60% KD of c-Met exhibited an intermediate capacity to restore blood flow, suggesting that MSC function is sensitive to the dosage of c-Met signaling. The current study highlights the significance of HGF/c-Met signaling in the capacity of MSC to restore blood flow after an ischemic injury and in their ability to differentiate into the osteogenic and chondrogenic lineages.
Collapse
Affiliation(s)
- Ivana Rosová
- Division of Oncology, Stem Cell Biology Program, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | |
Collapse
|
32
|
Merchan JR, Kovács K, Railsback JW, Kurtoglu M, Jing Y, Piña Y, Gao N, Murray TG, Lehrman MA, Lampidis TJ. Antiangiogenic activity of 2-deoxy-D-glucose. PLoS One 2010; 5:e13699. [PMID: 21060881 PMCID: PMC2965179 DOI: 10.1371/journal.pone.0013699] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 10/02/2010] [Indexed: 01/06/2023] Open
Abstract
Background During tumor angiogenesis, endothelial cells (ECs) are engaged in a number of energy consuming biological processes, such as proliferation, migration, and capillary formation. Since glucose uptake and metabolism are increased to meet this energy need, the effects of the glycolytic inhibitor 2-deoxy-D-glucose (2-DG) on in vitro and in vivo angiogenesis were investigated. Methodology/Principal Findings In cell culture, 2-DG inhibited EC growth, induced cytotoxicity, blocked migration, and inhibited actively forming but not established endothelial capillaries. Surprisingly, 2-DG was a better inhibitor of these EC properties than two more efficacious glycolytic inhibitors, 2-fluorodeoxy-D-glucose and oxamate. As an alternative to a glycolytic inhibitory mechanism, we considered 2-DG's ability to interfere with endothelial N-linked glycosylation. 2-DG's effects were reversed by mannose, an N-linked glycosylation precursor, and at relevant concentrations 2-DG also inhibited synthesis of the lipid linked oligosaccharide (LLO) N-glycosylation donor in a mannose-reversible manner. Inhibition of LLO synthesis activated the unfolded protein response (UPR), which resulted in induction of GADD153/CHOP and EC apoptosis (TUNEL assay). Thus, 2-DG's effects on ECs appeared primarily due to inhibition of LLOs synthesis, not glycolysis. 2-DG was then evaluated in two mouse models, inhibiting angiogenesis in both the matrigel plug assay and the LHBETATAG transgenic retinoblastoma model. Conclusions/Significance In conclusion, 2-DG inhibits endothelial cell angiogenesis in vitro and in vivo, at concentrations below those affecting tumor cells directly, most likely by interfering with N-linked glycosylation rather than glycolysis. Our data underscore the importance of glucose metabolism on neovascularization, and demonstrate a novel approach for anti-angiogenic strategies.
Collapse
Affiliation(s)
- Jaime R Merchan
- Department of Medicine, University of Miami Miller School of Medicine and Sylvester Comprehensive Cancer Center, Miami, Florida, United States of America.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
HPLC-UV measurements of metabolites in the supernatant of endothelial cells exposed to oxidative stress. Anal Bioanal Chem 2010; 396:1763-71. [DOI: 10.1007/s00216-009-3398-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 12/10/2009] [Indexed: 01/08/2023]
|
34
|
Colonna V, Resta L, Napoli A, Bonifazi E. Placental hypoxia and neonatal haemangioma: clinical and histological observations. Br J Dermatol 2009; 162:208-9. [DOI: 10.1111/j.1365-2133.2009.09493.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
35
|
|
36
|
Abstract
Infantile haemangioma is the most common tumour of infancy, yet the origin of these lesions remains controversial and the predictable life cycle is poorly understood. Much new information on infantile haemangiomas has emerged over the past decade, but experts continue to debate fundamental features, including cell of origin, nonrandom distribution, and mechanisms regulating the sometimes explosive growth and slow involution. The development of useful laboratory models has been difficult, in turn restricting the development of treatment options available to the clinician. Despite this, new research and creative thinking has spawned several hypotheses on the origin of these tumours and their interesting clinical behaviour, including suggestions of an intrinsic defect in local endothelial cells, a contribution of circulating endothelial progenitors or haemangioblasts, embolisation of shed placental cells and developmental field defects. While no single hypothesis seems to describe all features of infantile haemangioma, continued research seeks to integrate these ideas, create a better understanding of these important tumours and bring new treatments to the clinic.
Collapse
|
37
|
Saxena V, Orgill D, Kohane I. A set of genes previously implicated in the hypoxia response might be an important modulator in the rat ear tissue response to mechanical stretch. BMC Genomics 2007; 8:430. [PMID: 18034909 PMCID: PMC2258306 DOI: 10.1186/1471-2164-8-430] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2006] [Accepted: 11/23/2007] [Indexed: 01/03/2023] Open
Abstract
Background Wounds are increasingly important in our aging societies. Pathologies such as diabetes predispose patients to chronic wounds that can cause pain, infection, and amputation. The vacuum assisted closure device shows remarkable outcomes in wound healing. Its mechanism of action is unclear despite several hypotheses advanced. We previously hypothesized that micromechanical forces can heal wounds. To understand better the biological response of soft tissue to forces, rat ears in vivo were stretched and their gene expression patterns over time obtained. The absolute enrichment (AE) algorithm that obtains a combined up and down regulated picture of the expression analysis was implemented. Results With the use of AE, the hypoxia gene set was the most important at a highly significant level. A co-expression network analysis showed that important co-regulated members of the hypoxia pathway include a glucose transporter (slc2a8), heme oxygenase, and nitric oxide synthase2 among others. Conclusion It appears that the hypoxia pathway may be an important modulator of response of soft tissue to forces. This finding gives us insights not only into the underlying biology, but also into clinical interventions that could be designed to mimic within wounded tissue the effects of forces without all the negative effects that forces themselves create.
Collapse
Affiliation(s)
- Vishal Saxena
- Surgery, Brigham and Women's Hospital, Boston, MA, USA.
| | | | | |
Collapse
|
38
|
Xu W, Koeck T, Lara AR, Neumann D, DiFilippo FP, Koo M, Janocha AJ, Masri FA, Arroliga AC, Jennings C, Dweik RA, Tuder RM, Stuehr DJ, Erzurum SC. Alterations of cellular bioenergetics in pulmonary artery endothelial cells. Proc Natl Acad Sci U S A 2007; 104:1342-7. [PMID: 17227868 PMCID: PMC1783136 DOI: 10.1073/pnas.0605080104] [Citation(s) in RCA: 290] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Idiopathic pulmonary arterial hypertension (IPAH) is pathogenetically related to low levels of the vasodilator nitric oxide (NO). Because NO regulates cellular respiration and mitochondrial biogenesis, we hypothesized that abnormalities of bioenergetics may be present in IPAH. Evaluation of pulmonary artery endothelial cells from IPAH and control lungs in vitro revealed that oxygen consumption of IPAH cells was decreased, especially in state 3 respiration with substrates glutamate-malate or succinate, and this decrease paralleled reduction in Complex IV activity and IPAH cellular NO synthesis. IPAH pulmonary artery endothelial cells had decreased mitochondrial dehydrogenase activity and lowered mitochondrial numbers per cell and mitochondrial DNA content, all of which increased after exposure to NO donors. Although IPAH/pulmonary artery endothelial cells' ATP content was similar to control under normoxia, cellular ATP did not change significantly in IPAH cells under hypoxia, whereas ATP decreased 35% in control cells, identifying a greater dependence on cellular respiration for energy in control cells. Evidence that glucose metabolism was subserving the primary role for energy requirements of IPAH cells was provided by the approximately 3-fold greater glycolytic rate of IPAH cells. Positron emission tomography scan with [18F]fluoro-deoxy-D-glucose performed on IPAH patients and healthy controls revealed significantly higher uptake in IPAH lungs as compared with controls, confirming that the glycolytic rate was increased in vivo. Thus, there are substantial changes in bioenergetics of IPAH endothelial cells, which may have consequences for pulmonary hypertensive responses and potentially in development of novel imaging modalities for diagnosis and evaluation of treatment.
Collapse
Affiliation(s)
| | | | | | - Donald Neumann
- Nuclear Medicine, Cleveland Clinic, Cleveland, OH 44195; and
| | | | | | | | | | | | | | - Raed A. Dweik
- Departments of *Pathobiology
- Pulmonary and Critical Care Medicine, and
| | - Rubin M. Tuder
- Division of Cardiopulmonary Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | | | - Serpil C. Erzurum
- Departments of *Pathobiology
- Pulmonary and Critical Care Medicine, and
- To whom correspondence should be addressed at:
Cleveland Clinic, Lerner Research Institute, 9500 Euclid Avenue/NC22, Cleveland, OH 44195. E-mail:
| |
Collapse
|
39
|
Kögel D, Svensson B, Copanaki E, Anguissola S, Bonner C, Thurow N, Gudorf D, Hetschko H, Müller T, Peters M, König HG, Prehn JHM. Induction of transcription factor CEBP homology protein mediates hypoglycaemia-induced necrotic cell death in human neuroblastoma cells. J Neurochem 2006; 99:952-64. [PMID: 16942595 DOI: 10.1111/j.1471-4159.2006.04135.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Oxygen and glucose deprivation are direct consequences of tissue ischaemia. We explored the interaction of hypoxia and hypoglycaemia on cell survival and gene expression in the absence of glutamatergic signalling using human SH-SY5Y neuroblastoma cells as a model. In agreement with previous investigations in non-neural cells, prolonged hypoxia (0.5% O(2)) failed to induce significant cell death in this system. In contrast, exposure to hypoglycaemia induced significant necrotic cell death (> 80% after 72 h). Interestingly, hypoglycaemia-induced cell death was completely abrogated by simultaneous exposure to hypoxia, suggesting strong cytoprotective effects of hypoxia. Subsequent microarray analysis of the underlying transcriptional responses revealed that the transcription factor CEBP homology protein (CHOP) was strongly induced by hypoglycaemia, and suppressed by simultaneous hypoxia. RNA interference against CHOP significantly protected cells from glucose deprivation-induced cell death. Hypoxia-induced vascular endothelial growth factor (VEGF) activation also protected cells against hypoglycaemia-induced cell death, but VEGF failed to modify hypoglycaemia-induced CHOP induction. Our data suggest that hypoglycaemia-induced necrotic cell death of neuroblastoma cells is an active process mediated via the induction of the transcription factor CHOP, and that hypoxia counteracts this cell death via at least two distinct mechanisms: repression of CHOP and induction of VEGF.
Collapse
Affiliation(s)
- Donat Kögel
- Experimental Neurosurgery, Center for Neurology and Neurosurgery, Johann Wolfgang Goethe University Clinics, Frankfurt, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Peters DG, Ning W, Chu TJ, Li CJ, Choi AMK. Comparative SAGE analysis of the response to hypoxia in human pulmonary and aortic endothelial cells. Physiol Genomics 2006; 26:99-108. [PMID: 16595741 DOI: 10.1152/physiolgenomics.00152.2005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We utilized serial analysis of gene expression (SAGE) to analyze the temporal response of human pulmonary artery endothelial cells (HPAECs) to short-term chronic hypoxia at the level of transcription. Primary cultures of HPAECs were exposed to 1% O2hypoxia for 8 and 24 h and compared with identical same-passage cells cultured under standard (5% CO2-95% air) conditions. Hierarchical clustering of significant hypoxia-responsive genes identified temporal changes in the expressions of a number of well-described gene families including those encoding proteins involved in thrombosis, stress response, apoptosis, angiogenesis, and cell proliferation. These experiments build on previously published data describing the transcriptomic response of human aortic endothelial cells (HAECs) obtained from the same donor and cultured under identical conditions, and we have thus taken advantage of the immortality of SAGE data to make direct comparisons between these two data sets. This approach revealed comprehensive information relating to the similarities and differences at the level of mRNA expression between HAECs and HPAECs. For example, we found differences in the cell type-specific response to hypoxia among genes encoding cytoskeletal factors, including paxillin, and proteins involved in metabolic energy production, the response to oxidative stress, and vasoreactivity (e.g., endothelin-1). These efforts contribute to the expanding collection of publicly available SAGE data and provide a foundation on which to base further efforts to understand the characteristics of the vascular response to hypoxia in the pulmonary circulation relative to systemic vasculature.
Collapse
Affiliation(s)
- D G Peters
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, USA.
| | | | | | | | | |
Collapse
|
41
|
Grayson WL, Zhao F, Izadpanah R, Bunnell B, Ma T. Effects of hypoxia on human mesenchymal stem cell expansion and plasticity in 3D constructs. J Cell Physiol 2006; 207:331-9. [PMID: 16331674 DOI: 10.1002/jcp.20571] [Citation(s) in RCA: 298] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Low oxygen tension is thought to be an integral component of the human mesenchymal stem cell (hMSC) native bone marrow microenvironment. HMSC were cultured under physiologically relevant oxygen environments (2% O2) in three-dimensional (3D) constructs for up to 1 month in order to investigate the combined effects of chronic hypoxia and 3D architecture on hMSC tissue-development patterns. Hypoxic hMSC exhibited an extended lag phase in order to acclimatize to culture conditions. However, they subsequently proliferated continuously throughout the culture period, while maintaining significantly higher colony-forming unit capabilities and expressing higher levels of stem cell genes than hMSC cultured at 20% O2 (normoxic) conditions. Upon induction, hypoxic hMSC also expressed higher levels of osteoblastic and adipocytic differentiation markers than normoxic controls. Hypoxia induced increased total protein levels in hMSC throughout the culture period, as well as significantly different fibronectin expression patterns suggesting that oxygen levels can significantly affect tissue-development patterns. Importantly, hMSC maintained the ability to thrive in prolonged hypoxic conditions suggesting that hypoxia may be an essential element of the in vivo hMSC niche. Further studies are required to determine how variations in cellular characteristics and ECM expression impact on the physiological properties of the engineered tissue, yet these results strongly indicate that oxygen tension is a key parameter that influences the in vitro characteristics of hMSC and their development into tissues.
Collapse
Affiliation(s)
- Warren L Grayson
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310, USA
| | | | | | | | | |
Collapse
|
42
|
Abstract
1. Nitric oxide (NO) plays a fundamental role in the vasculature because of its diverse influence in vascular protection, including its well-reported antiproliferative, anti-inflammatory, antithrombotic and vasodilator effects. In many vascular disease states, NO production is reduced as a result of endothelial dysfunction, in part caused by a decrease in substrate (L-arginine) availability. 2. The role of L-arginine and other amino acids important in nitrogen balance has been re-examined in the context of their effects on vascular health. The metabolism of L-arginine is complex because it is involved in a plethora of other pathways, such as urea, creatine and agmatine production. L-Arginine supplementation in patients with vascular disease is well reported to benefit patients therapeutically because of its effect on both NO-dependent and -independent mechanisms. 3. L-Arginine availability depends on the flux of other amino acids in the body, including L-glutamine, L-glutamate, L-ornithine, L-citrulline and L-lysine. The role of L-methionine and homocystine and their effect on NO also play an influential role in the body. 4. Recent data suggest that the key enzyme involved in the L-arginine-urea cycle, arginase, is coexpressed in NO-producing cells in the vasculature. In the present review, we examine the potential role of arginase as a therapeutic target for vascular health.
Collapse
Affiliation(s)
- Ngan Ngoc Huynh
- Vascular Pharmacology, Baker Heart Research Institute, Melbourne, Victoria, Australia
| | | |
Collapse
|
43
|
Bélanger M, Desjardins P, Chatauret N, Butterworth RF. Selectively increased expression of the astrocytic/endothelial glucose transporter protein GLUT1 in acute liver failure. Glia 2006; 53:557-62. [PMID: 16374780 DOI: 10.1002/glia.20310] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Acute liver failure (ALF) is consistently accompanied by alterations in brain energy metabolites and recent nuclear magnetic resonance (NMR) studies suggest disturbances in brain oxidative metabolism in experimental ALF. Glucose transport across the blood-brain barrier is essential to sustain brain energy metabolism and is accomplished by the facilitative glucose transporter GLUT1. To investigate alterations in brain glucose uptake in acute liver failure further, GLUT1 expression and [14C]-2-deoxy-D-glucose uptake were measured in the brains of rats with hepatic devascularization. RT-PCR and Western blot analyses showed significant increases in steady-state levels of GLUT1 mRNA and protein in frontal cortex as early as 6 h following hepatic devascularization, (prior to the onset of brain edema and encephalopathy) which remained elevated at coma stages of encephalopathy. Expression of the astrocytic (45-kDa) and endothelial (55-kDa) forms of GLUT1 was increased as a result of hepatic devascularization. Exposure of cultured astrocytes to pathophysiologically relevant concentrations of ammonia resulted in increased GLUT1 expression, suggesting that elevated ammonia levels are responsible for GLUT1 upregulation in ALF. Increased GLUT1 expression in ALF was selective, since expression of the neuronal glucose transporter GLUT3 and other glucose-regulated proteins (GRP-78 and GRP-94) was unaltered. [14C]-2-deoxy-D-glucose autoradiography revealed increases in cerebral glucose uptake following the induction of GLUT1 in ALF. These results suggest that ammonia-induced increases of GLUT1 expression resulting in increased cerebral glucose uptake occur in ALF and could contribute to the pathophysiological mechanisms responsible for the neurological complications of this condition.
Collapse
Affiliation(s)
- Mireille Bélanger
- Neuroscience Research Unit, C.H.U.M. (Hôpital Saint-Luc), Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
44
|
Ritter MR, Reinisch J, Friedlander SF, Friedlander M. Myeloid cells in infantile hemangioma. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 168:621-8. [PMID: 16436675 PMCID: PMC1606494 DOI: 10.2353/ajpath.2006.050618] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/26/2005] [Indexed: 12/23/2022]
Abstract
Little is known about the pathogenesis of infantile hemangiomas despite the fact that they are relatively common tumors. These benign neoplasms occur in as many as 1 in 10 births, and although rarely life threatening, hemangiomas can pose serious concerns to the cosmetic and psychosocial development of the afflicted child. Ulceration, scarring, and disfigurement are significant problems as are encroachment of the ear and eye, which can threaten hearing and vision. The precise mechanisms controlling the rapid growth observed in the first months of life and the spontaneous involution that follows throughout the course of years remain unknown. In this report we demonstrate the presence of large numbers of hematopoietic cells of the myeloid lineage in proliferating hemangiomas and propose a mechanism for the observed evolution of these lesions that is triggered by hypoxia and involves the participation of myeloid cells. We report the results of experiments using myeloid markers (CD83, CD32, CD14, CD15) that unexpectedly co-labeled hemangioma endothelial cells, providing new evidence that these cells are distinct from normal endothelium.
Collapse
Affiliation(s)
- Matthew R Ritter
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
45
|
Gomez-Pinilla F, Vaynman S. A “deficient environment” in prenatal life may compromise systems important for cognitive function by affecting BDNF in the hippocampus. Exp Neurol 2005; 192:235-43. [PMID: 15755541 DOI: 10.1016/j.expneurol.2004.12.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Revised: 11/09/2004] [Accepted: 12/01/2004] [Indexed: 10/25/2022]
Abstract
The intrauterine environment has the capacity to mold the prenatal nervous system. Particularly, recent findings show that an adverse prenatal environment produces structural defects of the hippocampus, a critical area sub-serving learning and memory functions. These structural changes are accompanied by a disruption in the normal expression pattern of brain-derived neurotrophic factor (BDNF) and its cognate tyrosine kinase B (TrkB) receptor. The important role that the BDNF system plays in neural modeling and learning and memory processes suggests that fetal exposure to unfavorable intrauterine conditions may compromise proper cognitive function in adult life. These findings have implications for disorders that involve a dysfunction in the BDNF system and are accompanied by cognitive deficits.
Collapse
Affiliation(s)
- F Gomez-Pinilla
- Division of Neurosurgery, Department of Physiology Science, UCLA, 621 Charles E. Young Dr, Los Angeles, CA 90095, USA.
| | | |
Collapse
|
46
|
Ning W, Chu TJ, Li CJ, Choi AMK, Peters DG. Genome-wide analysis of the endothelial transcriptome under short-term chronic hypoxia. Physiol Genomics 2004; 18:70-8. [PMID: 15100389 DOI: 10.1152/physiolgenomics.00221.2003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have utilized serial analysis of gene expression (SAGE) to analyze the temporal response of human aortic endothelial cells (HAECs) to short-term chronic hypoxia at the level of transcription. Primary cultures of HAECs were exposed to 1% O2hypoxia for 8 and 24 h and compared with identical same passage cells cultured under standard (5% CO2-95% air) conditions. A total of 121,446 tags representing 37,096 unique tags were sequenced and genes whose expression levels were modulated by hypoxia identified by novel statistical analyses. Hierarchical clustering of genes displaying statistically significant hypoxia-responsive alterations in expression revealed temporal modulation of a number of major functional gene families including those encoding heat shock factors, glycolytic enzymes, extracellular matrix factors, cytoskeletal factors, apoptotic factors, cell cycle regulators and angiogenic factors. Within these families we documented the coordinated modulation of both previously known hypoxia-responsive genes, numerous genes whose expressions have not been previously shown to be altered by hypoxia, tags matching uncharacterized UniGene entries and entirely novel tags with no UniGene match. These preliminary data, which indicate a reduction in cell cycle progression, elevated metabolic stress and increased cytoskeletal remodeling under acute hypoxic stress, provide a foundation for further analyses of the molecular mechanisms underlying the endothelial response to short-term chronic hypoxia.
Collapse
Affiliation(s)
- W Ning
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | |
Collapse
|
47
|
Heilig C, Brosius F, Siu B, Concepcion L, Mortensen R, Heilig K, Zhu M, Weldon R, Wu G, Conner D. Implications of glucose transporter protein type 1 (GLUT1)-haplodeficiency in embryonic stem cells for their survival in response to hypoxic stress. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:1873-85. [PMID: 14578187 PMCID: PMC1892427 DOI: 10.1016/s0002-9440(10)63546-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Glucose transporter protein type 1 (GLUT1) is a major glucose transporter of the fertilized egg and preimplantation embryo. Haploinsufficiency for GLUT1 causes the GLUT1 deficiency syndrome in humans, however the embryo appears unaffected. Therefore, here we produced heterozygous GLUT1 knockout murine embryonic stem cells (GT1+/-) to study the role of GLUT1 deficiency in their growth, glucose metabolism, and survival in response to hypoxic stress. GT1(-/-) cells were determined to be nonviable. Both the GLUT1 and GLUT3 high-affinity, facilitative glucose transporters were expressed in GT1(+/+) and GT1(+/-) embryonic stem cells. GT1(+/-) demonstrated 49 +/- 4% reduction of GLUT1 mRNA. This induced a posttranscriptional, GLUT1 compensatory response resulting in 24 +/- 4% reduction of GLUT1 protein. GLUT3 was unchanged. GLUT8 and GLUT12 were also expressed and unchanged in GT1(+/-). Stimulation of glycolysis by azide inhibition of oxidative phosphorylation was impaired by 44% in GT1(+/-), with impaired up-regulation of GLUT1 protein. Hypoxia for up to 4 hours led to 201% more apoptosis in GT1(+/-) than in GT1(+/+) controls. Caspase-3 activity was 76% higher in GT1(+/-) versus GT1(+/+) at 2 hours. Heterozygous knockout of GLUT1 led to a partial GLUT1 compensatory response protecting nonstressed cells. However, inhibition of oxidative phosphorylation and hypoxia both exposed their increased susceptibility to these stresses.
Collapse
Affiliation(s)
- Charles Heilig
- Division of Nephrology, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 947, Baltimore, MD 21205, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Witt KA, Mark KS, Hom S, Davis TP. Effects of hypoxia-reoxygenation on rat blood-brain barrier permeability and tight junctional protein expression. Am J Physiol Heart Circ Physiol 2003; 285:H2820-31. [PMID: 12907427 DOI: 10.1152/ajpheart.00589.2003] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cerebral microvessel endothelial cells that form the blood-brain barrier (BBB) have tight junctions (TJs) that are critical for maintaining brain homeostasis. The effects of initial reoxygenation after a hypoxic insult (H/R) on functional and molecular properties of the BBB and TJs remain unclear. In situ brain perfusion and Western blot analyses were performed to assess in vivo BBB integrity on reoxygenation after a hypoxic insult of 6% O2 for 1 h. Model conditions [blood pressure, blood gas chemistries, cerebral blood flow (CBF), and brain ATP concentration] were also assessed to ensure consistent levels and criteria for insult. In situ brain perfusion revealed that initial reoxygenation (10 min) significantly increased the uptake of [14C]sucrose into brain parenchyma. Capillary depletion and CBF analyses indicated the perturbations were due to increased paracellular permeability rather than vascular volume changes. Hypoxia with reoxygenation (10 min) produced an increase in BBB permeability with associated alterations in tight junctional protein expression. These results suggest that H/R leads to reorganization of TJs and increased paracellular diffusion at the BBB, which is not a result of increased CBF, vascular volume change, or endothelial uptake of marker. Additionally, the tight junctional protein occludin had a shift in bands that correlated with functional changes (i.e., increased permeability) without significant change in expression of claudin-3, zonula occludens-1, or actin. H/R-induced changes in the BBB may result in edema and/or associated pathological outcomes.
Collapse
Affiliation(s)
- Ken A Witt
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | | | | | | |
Collapse
|
49
|
Lolmède K, Durand de Saint Front V, Galitzky J, Lafontan M, Bouloumié A. Effects of hypoxia on the expression of proangiogenic factors in differentiated 3T3-F442A adipocytes. Int J Obes (Lond) 2003; 27:1187-95. [PMID: 14513066 DOI: 10.1038/sj.ijo.0802407] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Adipocyte hypertrophy combined with hyperplasia, observed during the growth of adipose tissue in obesity, might promote the occurrence of hypoxic areas within the tissue. The aim of the present study is to assess the influence of hypoxia on the expression and secretion of adipocyte-derived proangiogenic factors. DESIGN AND METHODS Differentiated 3T3-F442A adipocytes were submitted either to ambient hypoxia (5% O(2)) or to chemically induced hypoxia by treatments with cobalt chloride or desferrioxamine. The activities of the matrix metalloproteinases 2 and 9 (MMP-2 and -9) were determined by gelatin zymography. The expression of vascular endothelial growth factor (VEGF), hypoxia inducible factor 1 alpha (HIF-1alpha), leptin, MMP-2 and -9 were studied by the use of Western blotting and RT-PCR analyses. RESULTS Low oxygen pressure exposure and hypoxia mimics treatments were associated with increased glucose consumption and release of lactate in differentiated 3T3-F442A adipocytes. They also led to an upregulation of the expression of leptin, VEGF and MMPs. An enhanced accumulation of HIF-1alpha protein was observed in the hypoxic adipocyte nuclei. CONCLUSION Hypoxia, in adipocytes, markedly enhances the expression of leptin, VEGF and MMPs and stimulates the HIF-1 pathway. The present data demonstrate that hypoxic adipocytes express more proangiogenic factors and suggest that hypoxia, if occurring in adipose tissue, might be a modulator of the angiogenic process.
Collapse
Affiliation(s)
- K Lolmède
- Unité de recherche sur les obésités, Institut National de la Santé et de la Recherche Médicale (INSERM U586), Institut Louis Bugnard, Centre Hospitalier Universitaire de Toulouse, Université Paul-Sabatier, Toulouse, France.
| | | | | | | | | |
Collapse
|
50
|
Nicchia GP, Frigeri A, Liuzzi GM, Svelto M. Inhibition of aquaporin-4 expression in astrocytes by RNAi determines alteration in cell morphology, growth, and water transport and induces changes in ischemia-related genes. FASEB J 2003; 17:1508-10. [PMID: 12824287 DOI: 10.1096/fj.02-1183fje] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent studies indicate a key role of aquaporin (AQP) 4 in astrocyte swelling and brain edema and suggest that AQP4 inhibition may be a new therapeutic way for reducing cerebral water accumulation. To understand the physiological role of AQP4-mediated astroglial swelling, we used 21-nucleotide small interfering RNA duplexes (siRNA) to specifically suppress AQP4 expression in astrocyte primary cultures. Semiquantitative RT-PCR experiments and Western blot analysis showed that AQP4 silencing determined a progressive and parallel reduction in AQP4 mRNA and protein. AQP4 gene suppression determined the appearance of a new morphological cell phenotype associated with a strong reduction in cell growth. Water transport measurements showed that the rate of shrinkage of AQP4 knockdown astrocytes was one-half of that of controls. Finally, cDNA microarray analysis revealed that the gene expression pattern perturbed by AQP4 gene silencing concerned ischemia-related genes, such as GLUT1 and hexokinase. Taken together, these results indicate that 1) AQP4 seems to be the major factor responsible for the fast water transport of cultured astrocytes; 2) as in skeletal muscle, AQP4 is a protein involved in cell plasticity; 3) AQP4 alteration may be a primary factor in ischemia-induced cerebral edema; and 4) RNA interference could be a new potent tool for studying AQP pathophysiology in those organs and tissues where they are expressed.
Collapse
Affiliation(s)
- Grazia Paola Nicchia
- Department of General and Environmental Physiology and Center of Excellence in Comparative Genomics (CEGBA), University of Bari, I-70126 Bari, Italy
| | | | | | | |
Collapse
|