1
|
Barathi VA, Katz A, Chaudhary S, Li HL, Tal DM, Marcovich A, Do CW, Karlish SJD. A digoxin derivative that potently reduces intraocular pressure: efficacy and mechanism of action in different animal models. Am J Physiol Cell Physiol 2024; 326:C1505-C1519. [PMID: 38557355 PMCID: PMC11371363 DOI: 10.1152/ajpcell.00617.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
Glaucoma is a blinding disease. Reduction of intraocular pressure (IOP) is the mainstay of treatment, but current drugs show side effects or become progressively ineffective, highlighting the need for novel compounds. We have synthesized a family of perhydro-1,4-oxazepine derivatives of digoxin, the selective inhibitor of Na,K-ATPase. The cyclobutyl derivative (DcB) displays strong selectivity for the human α2 isoform and potently reduces IOP in rabbits. These observations appeared consistent with a hypothesis that in ciliary epithelium DcB inhibits the α2 isoform of Na,K-ATPase, which is expressed strongly in nonpigmented cells, reducing aqueous humor (AH) inflow. This paper extends assessment of efficacy and mechanism of action of DcB using an ocular hypertensive nonhuman primate model (OHT-NHP) (Macaca fascicularis). In OHT-NHP, DcB potently lowers IOP, in both acute (24 h) and extended (7-10 days) settings, accompanied by increased aqueous humor flow rate (AFR). By contrast, ocular normotensive animals (ONT-NHP) are poorly responsive to DcB, if at all. The mechanism of action of DcB has been analyzed using isolated porcine ciliary epithelium and perfused enucleated eyes to study AH inflow and AH outflow facility, respectively. 1) DcB significantly stimulates AH inflow although prior addition of 8-Br-cAMP, which raises AH inflow, precludes additional effects of DcB. 2) DcB significantly increases AH outflow facility via the trabecular meshwork (TM). Taken together, the data indicate that the original hypothesis on the mechanism of action must be revised. In the OHT-NHP, and presumably other species, DcB lowers IOP by increasing AH outflow facility rather than by decreasing AH inflow.NEW & NOTEWORTHY When applied topically, a cyclobutyl derivative of digoxin (DcB) potently reduces intraocular pressure in an ocular hypertensive nonhuman primate model (Macaca fascicularis), associated with increased aqueous humor (AH) flow rate (AFR). The mechanism of action of DcB involves increased AH outflow facility as detected in enucleated perfused porcine eyes and, in parallel, increased (AH) inflow as detected in isolated porcine ciliary epithelium. DcB might have potential as a drug for the treatment of open-angle human glaucoma.
Collapse
Affiliation(s)
- Veluchamy Amutha Barathi
- Translational Pre-Clinical Model Platform, Singapore Institute of Eye Research (SERI)
- ACP in Ophthalmology & Visual Sciences, DUKE-NUS Graduate Medical School, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Adriana Katz
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Shashikant Chaudhary
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China
| | - Hoi-Lam Li
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China
| | - Daniel M Tal
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Arie Marcovich
- Opthalmology Department, Kaplan Medical Center, Rehovot, Israel
- Hebrew University Medical School, Jerusalem, Israel
| | - Chi-Wai Do
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China
- Centre for Eye and Vision Research (CEVR), Hong Kong, People's Republic of China
- Research Institute for Smart Ageing (RISA), The Hong Kong Polytechnic University, Hong Kong, People's Republic of China
| | - Steven J D Karlish
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
2
|
Zhang X, Wang F, Su Y. TRPV: An emerging target in glaucoma and optic nerve damage. Exp Eye Res 2024; 239:109784. [PMID: 38199261 DOI: 10.1016/j.exer.2024.109784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/30/2023] [Accepted: 01/06/2024] [Indexed: 01/12/2024]
Abstract
Transient receptor potential vanilloid (TRPV) channels are members of the TRP channel superfamily, which are ion channels that sense mechanical and osmotic stimuli and participate in Ca2+ signalling across the cell membrane. TRPV channels play important roles in maintaining the normal functions of an organism, and defects or abnormalities in TRPV channel function cause a range of diseases, including cardiovascular, neurological and urological disorders. Glaucoma is a group of chronic progressive optic nerve diseases with pathological changes that can occur in the tissues of the anterior and posterior segments of the eye, including the ciliary body, trabecular meshwork, Schlemm's canal, and retina. TRPV channels are expressed in these tissues and play various roles in glaucoma. In this article, we review various aspects of the pathogenesis of glaucoma, the structure and function of TRPV channels, the relationship between TRPV channels and systemic diseases, and the relationship between TRPV channels and ocular diseases, especially glaucoma, and we suggest future research directions. This information will help to further our understanding of TRPV channels and provide new ideas and targets for the treatment of glaucoma and optic nerve damage.
Collapse
Affiliation(s)
- Xiaotong Zhang
- Department of Ophthalmology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Feng Wang
- Department of Ophthalmology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China.
| | - Ying Su
- Eye Hospital, The First Affiliated Hospital, Harbin Medical University, Harbin, China.
| |
Collapse
|
3
|
Mechanical Stretch Activates TRPV4 and Hemichannel Responses in the Nonpigmented Ciliary Epithelium. Int J Mol Sci 2023; 24:ijms24021673. [PMID: 36675184 PMCID: PMC9865367 DOI: 10.3390/ijms24021673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/05/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Previously, we reported a mechanosensitive ion channel, TRPV4, along with functional connexin hemichannels on the basolateral surface of the ocular nonpigmented ciliary epithelium (NPE). In the lens, TRPV4-mediated hemichannel opening is part of a feedback loop that senses and respond to swelling. The present study was undertaken to test the hypothesis that TRPV4 and hemichannels in the NPE respond to a mechanical stimulus. Porcine NPE cells were cultured on flexible membranes to study effects of cyclic stretch and ATP release was determined by a luciferase assay. The uptake of propidium iodide (PI) was measured as an indicator of hemichannel opening. NPE cells subjected to cyclic stretch for 1-10 min (10%, 0.5 Hz) displayed a significant increase in ATP release into the bathing medium. In studies where PI was added to the bathing medium, the same stretch stimulus increased cell PI uptake. The ATP release and PI uptake responses to stretch both were prevented by a TRPV4 antagonist, HC067047 (10 µM), and a connexin mimetic peptide, Gap 27 (200µm). In the absence of a stretch stimulus, qualitatively similar ATP release and PI uptake responses were observed in cells exposed to the TRPV4 agonist GSK1016790A (10 nM), and Gap 27 prevented the responses. Cells subjected to an osmotic swelling stimulus (hypoosmotic medium: 200 mOsm) also displayed a significant increase in ATP release and PI uptake and the responses were abolished by TRPV4 inhibition. The findings point to TRPV4-dependent connexin hemichannel opening in response to mechanical stimulus. The TRPV4-hemichannel mechanism may act as a mechanosensor that facilitates the release of ATP and possibly other autocrine or paracrine signaling molecules that influence fluid (aqueous humor) secretion by the NPE.
Collapse
|
4
|
Delamere NA, Shahidullah M. Ion Transport Regulation by TRPV4 and TRPV1 in Lens and Ciliary Epithelium. Front Physiol 2022; 12:834916. [PMID: 35173627 PMCID: PMC8841554 DOI: 10.3389/fphys.2021.834916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 12/27/2021] [Indexed: 02/02/2023] Open
Abstract
Aside from a monolayer of epithelium at the anterior surface, the lens is formed by tightly compressed multilayers of fiber cells, most of which are highly differentiated and have a limited capacity for ion transport. Only the anterior monolayer of epithelial cells has high Na, K-ATPase activity. Because the cells are extensively coupled, the lens resembles a syncytium and sodium-potassium homeostasis of the entire structure is largely dependent on ion transport by the epithelium. Here we describe recent studies that suggest TRPV4 and TRPV1 ion channels activate signaling pathways that play an important role in matching epithelial ion transport activity with needs of the lens cell mass. A TRPV4 feedback loop senses swelling in the fiber mass and increases Na, K-ATPase activity to compensate. TRPV4 channel activation in the epithelium triggers opening of connexin hemichannels, allowing the release of ATP that stimulates purinergic receptors in the epithelium and results in the activation of Src family tyrosine kinases (SFKs) and SFK-dependent increase of Na, K-ATPase activity. A separate TRPV1 feedback loop senses shrinkage in the fiber mass and increases NKCC1 activity to compensate. TRPV1 activation causes calcium-dependent activation of a signaling cascade in the lens epithelium that involves PI3 kinase, ERK, Akt and WNK. TRPV4 and TRPV1 channels are also evident in the ciliary body where Na, K-ATPase is localized on one side of a bilayer in which two different cell types, non-pigmented and pigmented ciliary epithelium, function in a coordinated manner to secrete aqueous humor. TRPV4 and TRPV1 may have a role in maintenance of cell volume homeostasis as ions and water move through the bilayer.
Collapse
|
5
|
Affiliation(s)
- Chi‐ho To Phd
- Laboratory of Experimental Optometry, Department of Optometry and Radiography, The Hong Kong Polytechnic University
| | - Chi‐wing Kong Bsc
- Laboratory of Experimental Optometry, Department of Optometry and Radiography, The Hong Kong Polytechnic University
| | - Chu‐yan Chan Bsc
- Laboratory of Experimental Optometry, Department of Optometry and Radiography, The Hong Kong Polytechnic University
| | - Mohammad Shahidullah Phd
- Laboratory of Experimental Optometry, Department of Optometry and Radiography, The Hong Kong Polytechnic University
| | - Chi‐wai Do Phd
- Laboratory of Experimental Optometry, Department of Optometry and Radiography, The Hong Kong Polytechnic University
| |
Collapse
|
6
|
Digoxin derivatives with selectivity for the α2β3 isoform of Na,K-ATPase potently reduce intraocular pressure. Proc Natl Acad Sci U S A 2015; 112:13723-8. [PMID: 26483500 DOI: 10.1073/pnas.1514569112] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The ciliary epithelium in the eye consists of pigmented epithelial cells that express the α1β1 isoform of Na,K-ATPase and nonpigmented epithelial cells that express mainly the α2β3 isoform. In principle, a Na,K-ATPase inhibitor with selectivity for α2β3 that penetrates the cornea could effectively reduce intraocular pressure, with minimal systemic or local toxicity. We have recently synthesized perhydro-1,4-oxazepine derivatives of digoxin by NaIO4 oxidation of the third digitoxose and reductive amination with various R-NH2 substituents and identified derivatives with significant selectivity for human α2β1 over α1β1 (up to 7.5-fold). When applied topically, the most α2-selective derivatives effectively prevented or reversed pharmacologically raised intraocular pressure in rabbits. A recent structure of Na,K-ATPase, with bound digoxin, shows the third digitoxose approaching one residue in the β1 subunit, Gln84, suggesting a role for β in digoxin binding. Gln84 in β1 is replaced by Val88 in β3. Assuming that alkyl substituents might interact with β3Val88, we synthesized perhydro-1,4-oxazepine derivatives of digoxin with diverse alkyl substituents. The methylcyclopropyl and cyclobutyl derivatives are strongly selective for α2β3 over α1β1 (22-33-fold respectively), as determined either with purified human isoform proteins or intact bovine nonpigmented epithelium cells. When applied topically on rabbit eyes, these derivatives potently reduce both pharmacologically raised and basal intraocular pressure. The cyclobutyl derivative is more efficient than Latanoprost, the most widely used glaucoma drug. Thus, the conclusion is that α2β3-selective digoxin derivatives effectively penetrate the cornea and inhibit the Na,K-ATPase, hence reducing aqueous humor production. The new digoxin derivatives may have potential for glaucoma drug therapy.
Collapse
|
7
|
Katz A, Tal DM, Heller D, Haviv H, Rabah B, Barkana Y, Marcovich AL, Karlish SJD. Digoxin derivatives with enhanced selectivity for the α2 isoform of Na,K-ATPase: effects on intraocular pressure in rabbits. J Biol Chem 2014; 289:21153-62. [PMID: 24917667 DOI: 10.1074/jbc.m114.557629] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the ciliary epithelium of the eye, the pigmented cells express the α1β1 isoform of Na,K-ATPase, whereas the non-pigmented cells express mainly the α2β3 isoform of Na,K-ATPase. In principle, a Na,K-ATPase inhibitor with selectivity for α2 could effectively reduce intraocular pressure with only minimal local and systemic toxicity. Such an inhibitor could be applied topically provided it was sufficiently permeable via the cornea. Previous experiments with recombinant human α1β1, α2β1, and α3β1 isoforms showed that the classical cardiac glycoside, digoxin, is partially α2-selective and also that the trisdigitoxose moiety is responsible for isoform selectivity. This led to a prediction that modification of the third digitoxose might increase α2 selectivity. A series of perhydro-1,4-oxazepine derivatives of digoxin have been synthesized by periodate oxidation and reductive amination using a variety of R-NH2 substituents. Several derivatives show enhanced selectivity for α2 over α1, close to 8-fold in the best case. Effects of topically applied cardiac glycosides on intraocular pressure in rabbits have been assessed by their ability to either prevent or reverse acute intraocular pressure increases induced by 4-aminopyridine or a selective agonist of the A3 adenosine receptor. Two relatively α2-selective digoxin derivatives efficiently normalize the ocular hypertension, by comparison with digoxin, digoxigenin, or ouabain. This observation is consistent with a major role of α2 in aqueous humor production and suggests that, potentially, α2-selective digoxin derivatives could be of interest as novel drugs for control of intraocular pressure.
Collapse
Affiliation(s)
- Adriana Katz
- From the Department of Biological Chemistry, Weizmann Institute of Science, Rehovoth 76100, Israel
| | - Daniel M Tal
- From the Department of Biological Chemistry, Weizmann Institute of Science, Rehovoth 76100, Israel
| | - Dan Heller
- the Department of Ophthalmology, Asaf Harofeh Hospital, Zerifin 608183, Israel, and
| | - Haim Haviv
- From the Department of Biological Chemistry, Weizmann Institute of Science, Rehovoth 76100, Israel
| | - Bilal Rabah
- the Department of Ophthalmology, Kaplan Hospital, Rehovoth 76100, Israel
| | - Yaniv Barkana
- the Department of Ophthalmology, Asaf Harofeh Hospital, Zerifin 608183, Israel, and
| | - Arie L Marcovich
- the Department of Ophthalmology, Kaplan Hospital, Rehovoth 76100, Israel
| | - Steven J D Karlish
- From the Department of Biological Chemistry, Weizmann Institute of Science, Rehovoth 76100, Israel,
| |
Collapse
|
8
|
Connexins form functional hemichannels in porcine ciliary epithelium. Exp Eye Res 2013; 118:20-9. [PMID: 24262135 DOI: 10.1016/j.exer.2013.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/05/2013] [Accepted: 11/11/2013] [Indexed: 01/20/2023]
Abstract
The expression of connexins in the ciliary epithelium is consistent with gap junctions between the pigmented (PE) and nonpigmented ciliary epithelium (NPE) that form when connexon hemichannels from adjacent cells pair to form a channel. Here we present evidence that suggests undocked connexons may form functional hemichannels that permit exchange of substances between NPE and the aqueous humor. Intact porcine eyes were perfused via the ciliary artery and propidium iodide (PI) (MW 668) was added to the aqueous humor compartment as a tracer. After calcium-free solution containing PI was introduced into the aqueous humor compartment for 30 min, fluorescence microscopy revealed PI in the NPE cell layer. PI entry into the NPE was inhibited by calcium and by the connexin antagonist 18α-glycyrrhetinic acid (18-AGA). Studies also were carried out with cultured porcine NPE. Under normal conditions, little PI entered the cultured cells but calcium-free medium stimulated PI accumulation and the entry was inhibited by 18-AGA. In cells loaded with calcein (MW 622), calcium-free solution stimulated calcein exit. 18-AGA partially suppressed calcein exit in calcium-free medium. Connexin 43 and connexin 50 proteins were detected by western blot analysis in both native and cultured NPE. In the intact eye, immunolocalization studies revealed connexin 50 at the basolateral, aqueous humor-facing, margin of the NPE. In contrast, connexin 43 was observed at the junction of the PE and NPE layer and on the basolateral membrane of PE. The results point to functional hemichannels at the NPE basolateral surface. It is feasible that hemichannels might contribute to the transfer of substances between the ciliary epithelium cytoplasm and aqueous humor.
Collapse
|
9
|
Mokhtar Ibrahim M, Tawfique SAH, Mahdy MM. Liposomal diltiazem HCl as ocular drug delivery system for glaucoma. Drug Dev Ind Pharm 2013; 40:765-73. [DOI: 10.3109/03639045.2013.783589] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Rizzolo LJ, Peng S, Luo Y, Xiao W. Integration of tight junctions and claudins with the barrier functions of the retinal pigment epithelium. Prog Retin Eye Res 2011; 30:296-323. [PMID: 21704180 DOI: 10.1016/j.preteyeres.2011.06.002] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 06/01/2011] [Accepted: 06/06/2011] [Indexed: 02/02/2023]
Abstract
The retinal pigment epithelium (RPE) forms the outer blood-retinal barrier by regulating the movement of solutes between the fenestrated capillaries of the choroid and the photoreceptor layer of the retina. Blood-tissue barriers use various mechanisms to accomplish their tasks including membrane pumps, transporters, and channels, transcytosis, metabolic alteration of solutes in transit, and passive but selective diffusion. The last category includes tight junctions, which regulate transepithelial diffusion through the spaces between neighboring cells of the monolayer. Tight junctions are extraordinarily complex structures that are dynamically regulated. Claudins are a family of tight junctional proteins that lend tissue specificity and selectivity to tight junctions. This review discusses how the claudins and tight junctions of the RPE differ from other epithelia and how its functions are modulated by the neural retina. Studies of RPE-retinal interactions during development lend insight into this modulation. Notably, the characteristics of RPE junctions, such as claudin composition, vary among species, which suggests the physiology of the outer retina may also vary. Comparative studies of barrier functions among species should deepen our understanding of how homeostasis is maintained in the outer retina. Stem cells provide a way to extend these studies of RPE-retinal interactions to human RPE.
Collapse
Affiliation(s)
- Lawrence J Rizzolo
- Department of Surgery and Department of Ophthalmology and Visual Science, Yale University School of Medicine, PO Box 208062, New Haven, CT 06520-8062, USA.
| | | | | | | |
Collapse
|
11
|
Hamann S, Herrera-Perez JJ, Zeuthen T, Alvarez-Leefmans FJ. Cotransport of water by the Na+-K+-2Cl(-) cotransporter NKCC1 in mammalian epithelial cells. J Physiol 2011; 588:4089-101. [PMID: 20819947 DOI: 10.1113/jphysiol.2010.194738] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Water transport by the Na+-K+-2Cl(-) cotransporter (NKCC1) was studied in confluent cultures of pigmented epithelial (PE) cells from the ciliary body of the fetal human eye. Interdependence among water, Na+ and Cl(-) fluxes mediated by NKCC1 was inferred from changes in cell water volume, monitored by intracellular self-quenching of the fluorescent dye calcein. Isosmotic removal of external Cl(-) or Na+ caused a rapid efflux of water from the cells, which was inhibited by bumetanide (10 μm). When returned to the control solution there was a rapid water influx that required the simultaneous presence of external Na+ and Cl(-). The water influx could proceed uphill, against a transmembrane osmotic gradient, suggesting that energy contained in the ion fluxes can be transferred to the water flux. The influx of water induced by changes in external [Cl(-)] saturated in a sigmoidal fashion with a Km of 60 mm, while that induced by changes in external [Na+] followed first order kinetics with a Km of about 40 mm. These parameters are consistent with ion transport mediated by NKCC1. Our findings support a previous investigation, in which we showed water transport by NKCC1 to be a result of a balance between ionic and osmotic gradients. The coupling between salt and water transport in NKCC1 represents a novel aspect of cellular water homeostasis where cells can change their volume independently of the direction of an osmotic gradient across the membrane. This has relevance for both epithelial and symmetrical cells.
Collapse
Affiliation(s)
- Steffen Hamann
- Nordic Centre for Water Imbalance Related Disorders, Institute of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
12
|
Shahidullah M, Mandal A, Delamere NA. Responses of sodium-hydrogen exchange to nitric oxide in porcine cultured nonpigmented ciliary epithelium. Invest Ophthalmol Vis Sci 2009; 50:5851-8. [PMID: 19608532 DOI: 10.1167/iovs.09-3453] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To better understand how nitric oxide (NO) alters the function of the nonpigmented ciliary epithelium (NPE), studies were performed to determine the influence of NO on sodium-hydrogen exchanger (NHE) activity. METHODS Cytoplasmic pH (pH(i)) was measured in cultured porcine NPE loaded with BCECF (2',7'-bis(2-carboxyl)-5(6)-carboxyfluorescein-acetoxyethyl ester). Na-H exchanger (NHE) was examined by immunolocalization. RESULTS In cells acidified by 5 minutes of exposure to 20 mM ammonium chloride, pH(i) recovery was partially inhibited by sodium nitroprusside (SNP), an NO donor, and l-arginine, the endogenous substrate for NO synthase. SNP and dimethyl amiloride (DMA), an NHE inhibitor, inhibited pH(i) recovery to a similar degree. In bicarbonate-free buffer SNP+DMA elicited no additional change in pH(i) recovery beyond that elicited by DMA alone. This suggests that SNP causes NHE inhibition. the SNP's effect on pH(i) recovery was mimicked by 8-pCPT-cGMP but suppressed by ODQ and H-8. Ouabain alone reduced pH(i) recovery, but SNP+ouabain caused significant further reduction. Immunolocalization studies revealed NHE1 and -4 in native and cultured NPE. CONCLUSIONS NHE1 and -4 are expressed at the NPE basolateral margin. The findings suggest the NHE is inhibited by NO which acts via a cGMP and protein kinase G signaling pathway. The NHE response does not appear to be the consequence of NO-induced Na,K-ATPase inhibition. Because NO synthases are expressed in porcine NPE, NO could act as an autocrine regulator of NHE activity. Although NHE inhibitors are known to lower intraocular pressure (IOP), further studies are needed to understand whether changes in NHE activity contribute to the IOP-lowering effect of NO donors.
Collapse
|
13
|
Do CW, Civan MM. Species variation in biology and physiology of the ciliary epithelium: similarities and differences. Exp Eye Res 2008; 88:631-40. [PMID: 19056380 DOI: 10.1016/j.exer.2008.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 11/04/2008] [Accepted: 11/10/2008] [Indexed: 11/30/2022]
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide. Lowering intraocular pressure (IOP) is the only strategy documented to delay the appearance and retard the progression of vision loss. One major approach for lowering IOP is to slow the rate of aqueous humor formation by the ciliary epithelium. As discussed in the present review, the transport basis for this secretion is largely understood. However, several substantive issues are yet to be resolved, including the integrated regulation of secretion, the functional topography of the ciliary epithelium, and the degree and significance of species variation in aqueous humor inflow. This review discusses species differences in net secretion, particularly of Cl(-) and HCO(3)(-) secretion. Identifying animal models most accurately mimicking aqueous humor formation in the human will facilitate development of future novel initiatives to lower IOP.
Collapse
Affiliation(s)
- Chi Wai Do
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | | |
Collapse
|
14
|
Wiechmann AF, Summers JA. Circadian rhythms in the eye: The physiological significance of melatonin receptors in ocular tissues. Prog Retin Eye Res 2008; 27:137-60. [DOI: 10.1016/j.preteyeres.2007.10.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
|
16
|
Chapter 4 Regional Dependence of Inflow. CURRENT TOPICS IN MEMBRANES 2008. [DOI: 10.1016/s1063-5823(08)00404-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Abstract
PURPOSE Primary culture of nonpigmented ciliary epithelium (NPE) has proved difficult in the past. Here we report development of a method of growing and maintaining primary cultures of NPE from porcine eye. Studies were conducted to confirm that the cultured NPE expressed proteins characteristic of native NPE. METHODS Intact rings of NPE were isolated from adult pig eyes. A mixture of hyaluronidase and collagenase was used to detach the cells from the basement membrane and vitreous. Dispersed cells were seeded at high density and grown in DMEM with 20% fetal bovine serum under 5% CO2 and 95% air. Protein expression was examined by immunohistochemistry and immunoblot analysis. RESULTS NPE cells were grown in primary culture and maintained up to 10th passage. Analysis of the ciliary body showed three Na, K-ATPase isoforms (alpha 1, alpha 2, alpha 3) and three nitric oxide synthase isoforms (eNOS, nNOS, iNOS) enriched in the NPE layer but weaker or absent in the PE layer. Each of these proteins as well as the tight junction-specific protein ZO-1 was detected in the cultured NPE. CONCLUSIONS We developed a simple and reliable way to isolate, culture, and maintain NPE cells from porcine eyes. Success of the method hinged on our ability to isolate pure NPE in large number, detach the cells from the vitreous, and seed the cells at high density. The cultured cells express several proteins that are characteristic of native NPE. NPE cells cultured in this way may prove to be valuable for the study of ciliary body function.
Collapse
|
18
|
Do CW, Civan MM. Swelling-activated chloride channels in aqueous humour formation: on the one side and the other. Acta Physiol (Oxf) 2006; 187:345-52. [PMID: 16734771 DOI: 10.1111/j.1748-1716.2006.01548.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aqueous humour is secreted by the ciliary epithelium comprising pigmented and non-pigmented cell layers facing the stroma and aqueous humour respectively. Net chloride secretion likely limits the rate of aqueous humour formation and proceeds in three steps: stromal chloride entry into pigmented cells, diffusion through gap junctions and final non-pigmented cell secretion. Swelling-activated chloride channels function on both epithelial surfaces. At the stromal surface, swelling- and cyclic adenosine monophosphate-activated maxi-chloride channels can recycle chloride, reducing net chloride secretion. At the aqueous-humour surface, swelling- and A3 adenosine receptor-activated chloride channels subserve chloride release into the aqueous humour. The similar macroscopic properties of the two non-pigmented cell chloride currents suggest that both flow through a common conduit. In addition, measurements of intraocular pressure (IOP) in living wild-type and mutant mice have confirmed that A3 adenosine receptor-activated agonists and antagonists increase and lower IOP respectively. Isolated ciliary epithelial cells are commonly perfused with hypotonic solution to probe and characterize chloride channels, but the physiological role of swelling-activated channels has been unclear without knowing their epithelial distribution. Recently, hypotonic challenge has been found to stimulate the chloride-sensitive short-circuit current across the intact bovine ciliary epithelium, suggesting that the net effect of the swelling-activated chloride currents is oriented to enhance aqueous humour formation. Taken together, the results suggest that swelling-activated chloride channels are predominantly oriented to enhance aqueous humour secretion, and these chloride channels at the aqueous surface may be identical with adenosine receptor-activated chloride channels which likely modulate aqueous inflow and IOP in the living mouse.
Collapse
Affiliation(s)
- C W Do
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6085, USA
| | | |
Collapse
|
19
|
Vessey JP, Shi C, Jollimore CA, Stevens KT, Coca-Prados M, Barnes S, Kelly ME. Hyposmotic activation of ICl,swell in rabbit nonpigmented ciliary epithelial cells involves increased ClC-3 trafficking to the plasma membrane. Biochem Cell Biol 2005; 82:708-18. [PMID: 15674438 DOI: 10.1139/o04-107] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In mammalian nonpigmented ciliary epithelial (NPE) cells, hyposmotic stimulation leading to cell swelling activates an outwardly rectifying Cl(-) conductance (I(Cl,swell)), which, in turn, results in regulatory volume decrease. The aim of this study was to determine whether increased trafficking of intracellular ClC-3 Cl channels to the plasma membrane could contribute to the I(Cl,swell) following hyposmotic stimulation. Our results demonstrate that hyposmotic stimulation reversibly activates an outwardly rectifying Cl(-) current that is inhibited by phorbol-12-dibutyrate and niflumic acid. Transfection with ClC-3 antisense, but not sense, oligonucleotides reduced ClC-3 expression as well as I(Cl,swell). Intracellular dialysis with 2 different ClC-3 antibodies abolished activation of I(Cl,swell). Immunofluorescence microscopy showed that hyposmotic stimulation increased ClC-3 immunoreactivity at the plasma membrane. To determine whether this increased expression of ClC-3 at the plasma membrane could be due to increased vesicular trafficking, we examined membrane dynamics with the fluorescent membrane dye FM1-43. Hyposmotic stimulation rapidly increased the rate of exocytosis, which, along with ICl,swell, was inhibited by the phosphoinositide-3-kinase inhibitor wortmannin and the microtubule disrupting agent, nocodazole. These findings suggest that ClC-3 channels contribute to I(Cl,swell) following hyposmotic stimulation through increased trafficking of channels to the plasma membrane.
Collapse
Affiliation(s)
- John P Vessey
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS B3H 4H7, Canada
| | | | | | | | | | | | | |
Collapse
|
20
|
Do CW, Civan MM. Basis of chloride transport in ciliary epithelium. J Membr Biol 2005; 200:1-13. [PMID: 15386155 DOI: 10.1007/s00232-004-0688-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2004] [Revised: 05/10/2004] [Indexed: 01/07/2023]
Abstract
The aqueous humor is formed by the bilayered ciliary epithelium. The pigmented ciliary epithelium (PE) faces the stroma and the nonpigmented ciliary epithelium (NPE) contacts the aqueous humor. Cl(-) secretion likely limits the rate of aqueous humor formation. Many transport components underlying Cl(-) secretion are known. Cl(-) is taken up from the stroma into PE cells by electroneutral transporters, diffuses to the NPE cells through gap junctions and is released largely through Cl(-) channels. Recent work suggests that significant Cl(-) recycling occurs at both surfaces of the ciliary epithelium, providing the basis for modulation of net secretion. The PE-NPE cell couplet likely forms the fundamental unit of secretion; gap junctions within the PE and NPE cell layers are inadequate to maintain constancy of ionic composition throughout the epithelium under certain conditions. Although many hormones, drugs and signaling cascades are known to have effects, a persuasive model of the regulation of aqueous humor formation has not yet been developed. cAMP likely plays a central role, potentially both enhancing and reducing secretion by actions at both surfaces of the ciliary epithelium. Among other hormone receptors, A(3) adenosine receptors likely alter intraocular pressure by regulating NPE-cell Cl(-) channel activity. Recently, functional evidence for the regional variation in ciliary epithelial secretion has been demonstrated; the physiologic and pathophysiologic implications of this regional variation remain to be addressed.
Collapse
Affiliation(s)
- C W Do
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6085, USA
| | | |
Collapse
|
21
|
Orce G, Castillo G, Chanampa Y, Bellomio A. Permeability to water in a tight epithelium: possible modulating action of gap junctions. Can J Physiol Pharmacol 2005; 82:417-21. [PMID: 15381966 DOI: 10.1139/y04-037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Osmotic water flow (Jw) across tight distal nephron epithelial membranes increases upon exposure to vasopressin: following binding of the hormone to its receptors, intracellular cyclic AMP concentration increases, leading to insertion of aquaporins in the apical membrane. The involvement of intercellular communication in the process, however, has not been adequately explored. Octanol, 1.2 x 10(-3) M, a gap junction inhibitor, significantly reduced Jw (expressed as mg.20 min(-1)) in isolated toad urinary bladders (a model of the distal nephron) subjected to a transepithelial osmotic gradient and exposed to agents mimicking the vasopressin-triggered mechanism: oxytocin, 50 mIU.mL(-1) (from 185.3 +/- 28.0, P < 0.001, to 69.0 +/- 23.6, P < 0.05; Pdiff < 0.01, n = 6), and cyclic AMP, 2.5 x 10(-3) M (from 98.0 +/- 32.6, P < 0.02, to 31.0 +/- 13.9, NS; Pdiff < 0.05, n = 12), without altering the effect of nystatin, 450 U.mL(-1), which increases Jw via a mechanism unrelated to apical aquaporin insertion (163.2 +/- 16.3, P < 0.001, in controls vs. 150.3 +/- 10.4, P < 0.001, in octanol-treated bladders; Pdiff: NS, n = 6). Another gap junction blocker, carbenoxolone, 2.0 x 10(-4) M (CBX), exerted similar effects on the responses to oxytocin, 100 mIU.mL(-1), reducing the response from 256.7 +/- 33.6, P < 0.001, to 102.7 +/- 10.4, P < 0.001; Pdiff < 0.01, n = 6) and nystatin, which was unaffected (95.0 +/- 20.9, P < 0.01, vs. 132.0 +/- 27.0, P < 0.01; Pdiff: NS, n = 6). Our results suggest that either gap junctions or, alternatively, unopposed gap junction hemichannels, may be important in the regulation of Jw in the isolated toad bladder, by modulating a step in the physiological process leading to increased apical membrane permeability.
Collapse
Affiliation(s)
- Gabriel Orce
- Departamento de Fisiología y Neurociencia, INSIBIO (UNT-CONICET), Instituto de Fisiología-Facultad de Medicina, Tucumán, Argentina.
| | | | | | | |
Collapse
|
22
|
|
23
|
Abstract
The intraocular pressure (IOP) reflects a balance between inflow and outflow of aqueous humour. A major strategy in the medical treatment of glaucoma is to reduce inflow and thereby IOP. Understanding the mechanisms and regulation of inflow is thus of clear clinical relevance. Many mechanisms underlying inflow have been identified. The integration and regulation of these mechanisms is less clear. Aqueous humour is secreted across the ciliary epithelium by transferring solute, chiefly NaCl, from the stroma to the posterior chamber of the eye, with water passively following. The epithelium consists of two layers: the pigmented ciliary epithelial (PE) cells abutting the stroma, and the non-pigmented ciliary epithelial (NPE) cells facing the aqueous humour. Gap junctions link adjacent cells within and between these layers. Secretion proceeds in three steps: (1) uptake of NaCl from stroma to PE cells by electroneutral transporters, (2) passage of NaCl from PE to NPE cells through gap junctions, and (3) release of Na+ and Cl- through Na+,K+-activated ATPase and Cl- channels, respectively. Most of our understanding of inflow mechanisms has been obtained by studying in vitro preparations at subcellular, cellular and tissue levels. A particularly productive approach has been the electron probe X-ray microanalysis (EPMA) of the elemental composition of excised ciliary epithelium. This technique permits analysis of adjacent cells within different regions of the ciliary epithelium. EPMA of rabbit preparations has supported the idea that paired activity of Na+/H+ and Cl-/HCO3- antiports can be the dominant mechanism underlying the first step in secretion, stromal NaCl uptake by PE cells. EPMA also indicates that Cl- turnover is faster in the anterior than the posterior region of the epithelium. At the opposite epithelial surface, release of Na+ through Na+,K+-activated ATPase of NPE cells is also greater anteriorly than posteriorly. The accompanying release of Cl- through ion channels is enhanced by agonists of A3 adenosine receptors (ARs). The concepts that paired antiport activity is important in stromal NaCl uptake and that A3ARs modulate NaCl release into the aqueous humour were based on in vitro studies. The potential relevance of these conclusions to in vivo conditions has been tested by measurements of IOP in the living mouse. The results have confirmed the predictions that inhibitors of Na+/H+ antiports lower IOP, and that A3AR agonists and antagonists raise and lower IOP, respectively.
Collapse
Affiliation(s)
- Mortimer M Civan
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
| | | |
Collapse
|
24
|
McLaughlin CW, Zellhuber-McMillan S, Macknight ADC, Civan MM. Electron microprobe analysis of ouabain-exposed ciliary epithelium: PE-NPE cell couplets form the functional units. Am J Physiol Cell Physiol 2004; 286:C1376-89. [PMID: 14761890 DOI: 10.1152/ajpcell.00248.2003] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aqueous humor is secreted by the bilayered ciliary epithelium. Solutes and water enter the pigmented ciliary epithelial (PE) cell layer, cross gap junctions into the nonpigmented ciliary epithelial (NPE) cell layer, and are released into the aqueous humor. Electrical measurements suggest that heptanol reduces transepithelial ion movement by interrupting PE-NPE communication and that gap junctions may be a regulatory site of aqueous humor formation. Several lines of evidence also suggest that net ciliary epithelial transport is strongly region dependent. Divided rabbit iris-ciliary bodies were incubated in chambers under control and experimental conditions, quick-frozen, cryosectioned, and freeze-dried. Elemental intracellular contents of NPE and PE cells were determined by electron probe X-ray microanalysis. With or without heptanol, ouabain produced concentration- and time-dependent changes more markedly in anterior than in posterior epithelium. Without heptanol, there were considerable cell-to-cell variations in Na gain and K loss. However, contiguous NPE and PE cells displayed similar changes, even when nearby cell pairs were little changed by ouabain in aqueous, stromal, or both reservoirs. In contrast, with heptanol present, ouabain added to aqueous or both reservoirs produced much larger changes in NPE than in PE cells. The results indicate that 1) heptanol indeed interrupts PE-NPE junctions, providing an opportunity for electron microprobe analysis of the sidedness of modification of ciliary epithelial secretion; 2) Na and K undergo faster turnover in anterior than in posterior epithelium; and 3) PE-NPE gap junctions differ from PE-PE and NPE-NPE junctions in permitting ionic equilibration between adjoining ouabain-stressed cells.
Collapse
Affiliation(s)
- Charles W McLaughlin
- Department of Physiology, University of Otago Medical School, Dunedin, New Zealand
| | | | | | | |
Collapse
|
25
|
Civan MM. The fall and rise of active chloride transport: implications for regulation of intraocular pressure. ACTA ACUST UNITED AC 2004; 300:5-13. [PMID: 14598380 DOI: 10.1002/jez.a.10303] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Early study of transepithelial salt transfer focused on Cl(-) and not Na(+), partly because Cl(-) was readily measureable. The advent of flame photometry and tracer techniques brought Na(+) to the fore, especially since short-circuited frog skin (Rana temporaria) produces baseline net movement of Na(+) and not of Cl(-). Zadunaisky was among the first to describe what is currently termed secondary active Cl(-) transport, helping stimulate interest in Cl(-) handling by other tissues, notably the thick ascending limb of the loop of Henle important in renal counter-current multiplication. More recently, molecules responsible for electroneutral and electrogenic Cl(-) transfer have been cloned, and specific diseases resulting from their faulty expression have been identified. The clinical importance of transepithelial Cl(-) transfer is illustrated by studies of aqueous humor formation by the eye's bilayered ciliary epithelium. NaCl is taken up from the stroma by the pigmented ciliary epithelial (PE) layer, diffuses through gap junctions into the nonpigmented ciliary epithelial (NPE) layer, and is released into the aqueous humor largely through Na(+) pumps and Cl(-) channels. ATP released by NPE cells can be ecto-enzymatically metabolized to adenosine. Adenosine can mediate paracrine/autocrine stimulation of Cl(-) channels and aqueous humor secretion by occupying A(3) adenosine receptors (ARs). A(3)AR agonists indeed elevate, and A(3)AR antagonists lower, intraocular pressure (IOP) in wild-type mice. A(3)AR knockout mice have low IOP and their responses to A(3)AR agonists and antagonists are blunted; this suggests that reducing Cl(-)-channel activity with A(3)AR antagonists may provide a novel approach for treating glaucoma.
Collapse
Affiliation(s)
- Mortimer M Civan
- Departments of Physiology and Medicine, University of Pennsylvania, The School of Medicine, A303 Richards Building, 3700 Hamilton Walk, Philadelphia, Pennsylvania 19104-6085, USA.
| |
Collapse
|
26
|
Abstract
The four major sites for ocular water transport, the corneal epithelium and endothelium, the ciliary epithelium, and the retinal pigment epithelium, are reviewed. The cornea has an inherent tendency to swell, which is counteracted by its two surface cell layers, the corneal epithelium and endothelium. The bilayered ciliary epithelium secretes the aqueous humor into the posterior chamber, and the retinal pigment epithelium transports water from the retinal to the choroidal site. For each epithelium, ion transport mechanisms are associated with fluid transport, but the exact molecular coupling sites between ion and water transport remain undefined. In the retinal pigment epithelium, a H+-lactate cotransporter transports water. This protein could be the site of coupling between salt and water in this epithelium. The distribution of aquaporins does not suggest a role for these proteins in a general model for water transport in ocular epithelia. Some water-transporting membranes contain aquaporins, others do not. The ultrastructure is also variable among the cell layers and cannot be fitted into a general model. On the other hand, the direction of cotransport in symporters complies with the direction of fluid transport in both the corneal epi- and endothelium, as well as the ciliary epithelium and retinal pigment epithelium.
Collapse
Affiliation(s)
- Steffen Hamann
- Department of Medical Physiology, The Panum Institute, University of Copenhagen, Denmark
| |
Collapse
|
27
|
Coffey KL, Krushinsky A, Green CR, Donaldson PJ. Molecular profiling and cellular localization of connexin isoforms in the rat ciliary epithelium. Exp Eye Res 2002; 75:9-21. [PMID: 12123633 DOI: 10.1006/exer.2002.1187] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The functionally distinct epithelial layers of the ciliary body act as a syncitium to produce the aqueous humour. Ultrastructural studies have shown that the pigmented (PE) and non-pigmented (NPE) cell layers of the ciliary epithelium are connected by gap junctions. However the molecular composition of gap junctions both between and within the two cell layers has not been comprehensively studied. To address this issue the authors have performed an extensive molecular screening of connexin (Cx) expression patterns in ciliary epithelium of the rat. Initially, mRNA was extracted from rat ciliary bodies, reverse-transcribed, and subjected to two rounds of PCR using primer sets designed against each of the 14 Cx isoforms known to be expressed in the rat. This initial screening protocol amplified eight candidate Cx isoforms (Cxs 26, 31, 33, 37, 40, 43, 45 and 46). The Cx isoforms identified in this initial screen were then first assigned to the ciliary epithelium itself (Cxs 26, 31, 40 and 43) or structures outside the epithelium (Cxs 37, 40, and 45) using immunohistochemistry performed on ciliary body whole mounts. No convincing evidence for either Cx 33 or 46 labelling was found in the ciliary body. Then the four Cx isoforms localized to the epithelium were further localized to specific membrane domains within the epithelial cell layers by performing high resolution imaging of the antibody labeling patterns obtained in cryosections. This enabled Cx26 and 31 to be specifically localized to spatially different gap junctions between NPE cells. Cx31 labeled gap junctions associated with an extensive network of membrane interdigitations found between NPE cells at their basal surfaces. In contrast Cx26 labeling in NPE cells was restricted to the basolateral membranes of adjacent NPE cells. Cx40 and Cx43 were both localized to the PE-NPE interface where they formed discrete homomeric/homotypic gap junction plaques. No convincing evidence was found for antibody labeling between PE cells. Thus it appears that intercellular communication, both within the NPE layer and between the PE and NPE cell layers, is mediated by gap junction channels that have distinctive permeability properties. In particular the results raise the possibility that the permeability of PE-NPE gap junctions can be modulated by changing the Cx43 : Cx40 expression ratio. Whether such a change in Cx expression ratios occurs and what effect it has on aqueous humour production and composition remains to be determined.
Collapse
Affiliation(s)
- Kirsten L Coffey
- Disciplines of Physiology, School of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | | | |
Collapse
|
28
|
Wiechmann AF, Wirsig-Wiechmann CR. Melatonin receptor mRNA and protein expression in Xenopus laevis nonpigmented ciliary epithelial cells. Exp Eye Res 2001; 73:617-23. [PMID: 11747362 DOI: 10.1006/exer.2001.1073] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Melatonin is an output signal of the circadian clock, and may regulate diurnal rhythms in ocular tissues. A role for melatonin has been suggested in the circadian changes in intraocular pressure (IOP). Changes in IOP may be due partially to changes in the rate of aqueous humor secretion, which is produced by the nonpigmented epithelium of the ciliary body. To examine the mechanism by which melatonin may influence ciliary epithelium function and perhaps the IOP diurnal rhythm, immunocytochemistry with an antibody directed against the Mel(1c) melatonin receptor subtype was performed on sections of Xenopus eyes. Melatonin receptor immunoreactivity was observed in the basolateral regions of the nonpigmented epithelial cells of the ciliary body. Receptor immunoreactivity was also observed in cells of the retina, as has been previously reported. Specific immunoreactivity was not observed in the epithelium of the iris or pigmented ciliary epithelium. In situ hybridization of the Xenopus eye revealed expression of Mel(1c) but not Mel(1b) receptor mRNA in the nonpigmented ciliary epithelium. These results provide evidence that the nonpigmented epithelia of the ciliary body are direct targets for melatonin, and supports previous work that melatonin may influence the rate of aqueous humor secretion by ciliary epithelium, and perhaps the circadian rhythm of IOP.
Collapse
Affiliation(s)
- A F Wiechmann
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA.
| | | |
Collapse
|
29
|
McLaughlin CW, Peart D, Purves RD, Carré DA, Peterson-Yantorno K, Mitchell CH, Macknight AD, Civan MM. Timolol may inhibit aqueous humor secretion by cAMP-independent action on ciliary epithelial cells. Am J Physiol Cell Physiol 2001; 281:C865-75. [PMID: 11502564 DOI: 10.1152/ajpcell.2001.281.3.c865] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The beta-adrenergic antagonist timolol reduces ciliary epithelial secretion in glaucomatous patients. Whether inhibition is mediated by reducing cAMP is unknown. Elemental composition of rabbit ciliary epithelium was studied by electron probe X-ray microanalysis. Volume of cultured bovine pigmented ciliary epithelial (PE) cells was measured by electronic cell sizing; Ca(2+) activity and pH were monitored with fura 2 and 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein, respectively. Timolol (10 microM) produced similar K and Cl losses from ciliary epithelia in HCO/CO(2) solution but had no effect in HCO/CO(2)-free solution or in HCO/CO(2) solution containing the carbonic anhydrase inhibitor acetazolamide. Inhibition of Na(+)/H(+) exchange by dimethylamiloride in HCO/CO(2) solution reduced Cl and K comparably to timolol. cAMP did not reverse timolol's effects. Timolol (100 nM, 10 microM) and levobunolol (10 microM) produced cAMP-independent inhibition of the regulatory volume increase (RVI) in PE cells and increased intracellular Ca(2+) and pH. Increasing Ca(2+) with ionomycin also blocked the RVI. The results document a previously unrecognized cAMP-independent transport effect of timolol. Inhibition of Cl(-)/HCO exchange may mediate timolol's inhibition of aqueous humor formation.
Collapse
Affiliation(s)
- C W McLaughlin
- Department of Physiology, University of Otago Medical School, Dunedin, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
30
|
To CH, Do CW, Zamudio AC, Candia OA. Model of ionic transport for bovine ciliary epithelium: effects of acetazolamide and HCO. Am J Physiol Cell Physiol 2001; 280:C1521-30. [PMID: 11350747 DOI: 10.1152/ajpcell.2001.280.6.c1521] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The possible existence of transepithelial bicarbonate transport across the isolated bovine ciliary body was investigated by employing a chamber that allows for the measurement of unidirectional, radiolabeled fluxes of CO2 + HCO. No net flux of HCO was detected. However, acetazolamide (0.1 mM) reduced the simultaneously measured short-circuit current (I(sc)). In other experiments in which (36)Cl- was used, a net Cl- flux of 1.12 microeq. h(-1). cm(-2) (30 microA/cm(2)) in the blood-to-aqueous direction was detected. Acetazolamide, as well as removal of HCO from the aqueous bathing solution, inhibited the net Cl- flux and I(sc). Because such removal should increase HCO diffusion toward the aqueous compartment and increase the I(sc), this paradoxical effect could result from cell acidification and partial closure of Cl- channels. The acetazolamide effect on Cl- fluxes can be explained by a reduction of cellular H+ and HCO (generated from metabolic CO2 production), which exchange with Na+ and Cl- via Na+/H+ and Cl-/HCO exchangers, contributing to the net Cl- transport. The fact that the net Cl- flux is about three times larger than the I(sc) is explained with a vectorial model in which there is a secretion of Na+ and K+ into the aqueous humor that partially subtracts from the net Cl- flux. These transport characteristics of the bovine ciliary epithelium suggest how acetazolamide reduces intraocular pressure in the absence of HCO transport as a driving force for fluid secretion.
Collapse
Affiliation(s)
- C H To
- Laboratory of Ocular Physiology and Biochemistry, Department of Optometry and Radiography, Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | | | | | | |
Collapse
|
31
|
Layne J, Yip S, Crook RB. Down-regulation of Na-K-Cl cotransport by protein kinase C is mediated by protein phosphatase 1 in pigmented ciliary epithelial cells. Exp Eye Res 2001; 72:371-9. [PMID: 11273665 DOI: 10.1006/exer.2000.0966] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of protein phosphatases in the regulation of Na-K-Cl cotransport was examined in human pigmented ciliary epithelial (PE) cells. Both a 37 kDa form and a 72 kDa form of protein phosphatase 1 (PP1) could be immunologically detected. The protein phosphatase inhibitor calyculin A stimulated Na-K-Cl cotransport by 89 +/- 12% at 10 n M, whereas okadaic acid had no effect at concentrations less than 100 n M. Calyculin A had no significant effect on either Na-K ATPase or ouabain-insensitive, bumetanide-insensitive 86Rb+uptake. These data suggest that PP1 plays a role in the inhibition of Na-K-Cl cotransport in PE cells. Treatment of cells with phorbol 12-myristate, 13-acetate (PMA), a protein kinase C (PKC) activator caused an 82% inhibition of Na-K-Cl cotransport. When cells were first treated for 5 min with PMA, 10 n M calyculin A stimulated Na-K-Cl cotransport by 53% compared to 101% by calyculin A alone. Treatment of cells with PMA after stimulation of Na-K-Cl cotransport by calyculin A resulted in a prompt 56% drop in cotransport activity. These data suggest that maximal inhibition of Na-K-Cl cotransport by PKC requires PP1 activity, but that a part of PKCs inhibitory effect is independent of PP1. The effect of PKC activation on PP1 was further examined by determining PP1 activity in cells pretreated with PMA. PP1 activity increased 38+/-8% in cells exposed to 1 microM PMA for 5 min. This stimulation was blocked by 100 n M staurosporine or 1 microM bisindolylmaleimide, two PKC inhibitors. An isomer which does not activate PKC (4 alpha phorbol didecanoate), did not stimulate PP1 activity. Thus PKC activation leads to an increase in PP1 activity in PE cells. Pretreatment of cells with the protein kinase A (PKA) inhibitor PHI 14-22 resulted in a partial reduction in calyculin A stimulation of cotransport, suggesting that PP1 and PKA function in a kinase-phosphatase regulatory loop. To determine whether other protein kinases might also be involved, several protein kinase inhibitors were tested, including KT5823 (protein kinase G, type II-specific), KN62 (calmodulin activated kinase-specific) and ML7 (myosin light chain kinase-specific). None prevented activation of Na-K-Cl cotransport by calyculin A, suggesting that these kinases are not involved in the activation of Na-K-Cl cotransport.
Collapse
Affiliation(s)
- J Layne
- Beckman Vision Center, Box 0730, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | |
Collapse
|
32
|
Hochgesand DH, Dunn JJ, Crook RB. Catecholaminergic regulation of Na-K-Cl cotransport in pigmented ciliary epithelium: differences between PE and NPE. Exp Eye Res 2001; 72:1-12. [PMID: 11133177 DOI: 10.1006/exer.2000.0927] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Pigmented (PE) and nonpigmented (NPE) ciliary epithelial cells comprise the ciliary epithelium, the site of aqueous humor formation in the eye. In man, catecholamines increase the rate of aqueous humor formation, but the mechanism underlying these effects is not understood. Recent evidence suggests that Na-K-Cl cotransport plays a central role in blood-to-aqueous chloride transport across ciliary epithelium in cow and rabbit. We therefore investigated whether catecholamines stimulate Na-K-Cl cotransport in human PE cells. Na-K-Cl cotransporter protein was detected as a 170 kDa protein band on immunoblots. Immunofluorescence microscopy detected cotransporter on the basolateral membranes of the PE layer of ciliary epithelium from a human donor. Cotransporter immunofluorescence was also detected in cultured PE cells. Na-K-Cl cotransport activity measured as ouabain-insensitive bumetanide-sensitive(86)Rb uptake was stimulated by isoproterenol 1.6-fold, with an EC(50) = 28 n M and maximal stimulation at 1 microM. Other transport mechanisms involved in(86)Rb uptake were not affected. Stimulation by 1 microM isoproterenol was blocked by 10 n M ICI 118,551, a beta(2)-specific receptor antagonist, whereas the receptor subtype-specific antagonists yohimbine (alpha(2)), prazosin (alpha(1)) and atenolol (beta(1)) were ineffective. Norepinephrine stimulation (EC(50) = 280 n M) was also blocked by ICI 118,551. Dopamine stimulated Na-K-Cl cotransport 1.6-fold with an EC(50) = 14 microM. The dopamine effect could not be blocked by 10 microM SCH 23390, a D1-antagonist, but was abolished by ICI 118,551. Forskolin and CPT-cAMP stimulated Na-K-Cl cotransport 1.79- and 1.71-fold, respectively, whereas the inactive forskolin analogue 1,9-dideoxyforskolin had no effect. However, high concentrations of the PKA inhibitors PKI amide 14-22 and KT 5720 were needed to inhibit both PKA activity in cell lysates and isoproterenol stimulation of cotransport. This finding may indicate the presence of a novel PKA isoform in PE cells. Inhibitors of other protein kinases, including myosin light chain kinase, protein kinase G, calmodulin-dependent kinase and tyrosine kinase, were without effect on stimulated Na-K-Cl cotransport. When EC(50)s for catecholaminergic stimulations of Na-K-Cl cotransport in PE were compared to those in NPE, values within five-fold of one another were seen for isoproterenol and norepinephrine. In contrast, dopamine was 28-fold more potent in NPE than in PE. The data suggest that both PE and NPE possess beta(2)adrenergic receptors, but only NPE cells possess dopamine D1 receptors linked to Na-K-Cl cotransport.
Collapse
Affiliation(s)
- D H Hochgesand
- Beckman Vision Center, Department of Ophthalmology, University of California, San Francisco, CA 94143, USA
| | | | | |
Collapse
|
33
|
Carré DA, Mitchell CH, Peterson-Yantorno K, Coca-Prados M, Civan MM. Similarity of A(3)-adenosine and swelling-activated Cl(-) channels in nonpigmented ciliary epithelial cells. Am J Physiol Cell Physiol 2000; 279:C440-51. [PMID: 10913011 DOI: 10.1152/ajpcell.2000.279.2.c440] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chloride release from nonpigmented ciliary epithelial (NPE) cells is a final step in forming aqueous humor, and adenosine stimulates Cl(-) transport by these cells. Whole cell patch clamping of cultured human NPE cells indicated that the A(3)-selective agonist 1-deoxy-1-(6-[([3-iodophenyl]methyl)amino]-9H-purin-9-yl)-N-methyl-be ta-D-ribofuranuronamide (IB-MECA) stimulated currents (I(IB-MECA)) by approximately 90% at +80 mV. Partial replacement of external Cl(-) with aspartate reduced outward currents and shifted the reversal potential (V(rev)) from -23 +/- 2 mV to -0.0 +/- 0.7 mV. Nitrate substitution had little effect. Perfusion with the Cl(-) channel blockers 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) and niflumic acid inhibited the currents. Partial Cl(-) replacement with aspartate and NO(3)(-), and perfusion with NPPB, had similar effects on the swelling-activated whole cell currents (I(Swell)). Partial cyclamate substitution for external Cl(-) inhibited inward and outward currents of both I(IB-MECA) and I(Swell). Both sets of currents also showed outward rectification and inactivation at large depolarizing potentials. The results are consistent with the concept that A(3)-subtype adenosine agonists and swelling activate a common population of Cl(-) channels.
Collapse
Affiliation(s)
- D A Carré
- Department of Physiology, School of Medicine, University of Pennsylvania, Philadelphia 19104, USA
| | | | | | | | | |
Collapse
|
34
|
Mitchell CH, Peterson-Yantorno K, Coca-Prados M, Civan MM. Tamoxifen and ATP synergistically activate Cl- release by cultured bovine pigmented ciliary epithelial cells. J Physiol 2000; 525 Pt 1:183-93. [PMID: 10811736 PMCID: PMC2269939 DOI: 10.1111/j.1469-7793.2000.00183.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Purines alter aqueous humour secretion by the bilayered ciliary epithelium. Adenosine but not ATP shrinks non-pigmented ciliary epithelial (NPE) cells by activating Cl- channels. We now report effects of ATP on pigmented ciliary epithelial (PE) cells. Cultured bovine PE cells were studied volumetrically by electronic cell sorting. ATP and tamoxifen acted synergistically to shrink PE cells. Neither ATP nor tamoxifen alone had a consistent effect on cell volume. The tamoxifen, ATP-activated shrinkage required Cl- release since the response was blocked by removing Cl- and was inhibited by the Cl- channel blockers 5-nitro-2-(3-phenylpropylamino)-benzoate and 4,4'-diisothiocyano-2,2'-disulfonic acid. The modulating effect of tamoxifen could have reflected many actions of tamoxifen. Our data do not support the suggestion that tamoxifen inhibits protein kinase C (PKC) or calcium-calmodulin, or that it acts on histamine or carbachol receptors. The shrinkage produced by ATP and tamoxifen was blocked by 17beta-oestradiol, but not 17alpha-oestradiol. The cooperative interaction between tamoxifen and ATP was not mediated by an enhanced rise in [Ca2+]i. The results indicate that tamoxifen interacts synergistically with ATP to activate Cl- release by the PE cells.
Collapse
Affiliation(s)
- C H Mitchell
- Departments of Physiology and Medicine, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|
35
|
Fleisher LN, McGAHAN MC, Ferrell JB. Rabbit pigmented ciliary epithelium produces interleukin-6 in response to inflammatory cytokines. Exp Eye Res 2000; 70:271-9. [PMID: 10712813 DOI: 10.1006/exer.1999.0787] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interleukin-6 is a multifunctional cytokine that is found in high concentrations in intraocular fluids during the uveitic response. Although monocytic cells are a major source of interleukin-6, resident intraocular cells may also contribute to its accumulation in intraocular fluids during uveitis. The purpose of this study was to determine whether interleukin-6 is produced by pigmented ciliary epithelial cells and whether agents known to stimulate interleukin-6 production, such as interleukin-1beta, tumor necrosis factor-alpha, bacterial endotoxin, and stimulators of the adenylyl cyclase/adenosine 3',5'-cyclic monophosphate system, increase interleukin-6 production by these cells. Primary and first-passage cultures of nontransformed rabbit pigmented ciliary epithelial cells were incubated with the test agents for varying periods of time in serum-free medium and interleukin-6 levels in the cell-conditioned medium were measured by bioassay.Little, if any interleukin-6 was released from pigmented ciliary epithelial cells incubated for up to 18 hr in serum-free medium. Interleukin-1betastimulated interleukin-6 release in a time- and concentration-dependent manner. Tumor necrosis factor-alpha, although ineffective alone, increased interleukin-1beta-induced interleukin-6 release in a concentration-dependent manner when co-incubated with interleukin-1betafor 18 hr. However, tumor necrosis factor-alphadid not enhance interleukin-1beta-induced interleukin-6 release if co-incubated with interleukin-1betafor a shorter time (6 hr). A 6 hr exposure to bacterial endotoxin did not stimulate interleukin-6 release from pigmented ciliary epithelial cells. Co-incubation of pigmented ciliary epithelial cells with interleukin-1betaand agents that stimulate the adenyl cyclase/adenosine 3',5'-cyclic monophosphate system through cell surface G-protein transduced receptors, i.e. isoproterenol, vasoactive intestinal peptide or prostaglandin E(2), significantly enhanced the ability of interleukin-1betato stimulate interleukin-6 release. However, neither the adenyl cyclase activator, forskolin or the adenosine 3', 5'-cyclic monophosphate-mimetic, dibutyryl 3',5'-cyclic monophosphate enhanced interleukin-1beta-induced release of interleukin-6. These results indicate that the pigmented ciliary epithelium is one potential source of interleukin-6 and may contribute to the elevation in intraocular fluid interleukin-6 levels observed during various intraocular inflammatory episodes. Although agents that activate the adenyl cyclase/adenosine 3', 5'-cyclic monophosphate system through cell surface G-protein transduced receptors increased interleukin-1beta-induced release of interleukin-6, the ineffectiveness of forskolin and dibutryl 3', 5'-cyclic monophosphate suggest that simply increasing intracellular 3',5'-cyclic monophosphate is not sufficient to augment interleukin-1beta-induced release of interleukin-6. The significance of interleukin-6 in the intraocular inflammatory response is discussed in terms of its proposed role in an endogenous antiinflammatory system acting through induction of interleukin-1 receptor antagonist, soluble tumor necrosis factor receptor, acute-phase proteins and corticosteroids.
Collapse
Affiliation(s)
- L N Fleisher
- Department of Anatomy, Physiological Sciences and Radiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | | | | |
Collapse
|
36
|
Abstract
Obligatory, coupled cotransport of Na(+), K(+), and Cl(-) by cell membranes has been reported in nearly every animal cell type. This review examines the current status of our knowledge about this ion transport mechanism. Two isoforms of the Na(+)-K(+)-Cl(-) cotransporter (NKCC) protein (approximately 120-130 kDa, unglycosylated) are currently known. One isoform (NKCC2) has at least three alternatively spliced variants and is found exclusively in the kidney. The other (NKCC1) is found in nearly all cell types. The NKCC maintains intracellular Cl(-) concentration ([Cl(-)](i)) at levels above the predicted electrochemical equilibrium. The high [Cl(-)](i) is used by epithelial tissues to promote net salt transport and by neural cells to set synaptic potentials; its function in other cells is unknown. There is substantial evidence in some cells that the NKCC functions to offset osmotically induced cell shrinkage by mediating the net influx of osmotically active ions. Whether it serves to maintain cell volume under euvolemic conditons is less clear. The NKCC may play an important role in the cell cycle. Evidence that each cotransport cycle of the NKCC is electrically silent is discussed along with evidence for the electrically neutral stoichiometries of 1 Na(+):1 K(+):2 Cl- (for most cells) and 2 Na(+):1 K(+):3 Cl(-) (in squid axon). Evidence that the absolute dependence on ATP of the NKCC is the result of regulatory phosphorylation/dephosphorylation mechanisms is decribed. Interestingly, the presumed protein kinase(s) responsible has not been identified. An unusual form of NKCC regulation is by [Cl(-)](i). [Cl(-)](i) in the physiological range and above strongly inhibits the NKCC. This effect may be mediated by a decrease of protein phosphorylation. Although the NKCC has been studied for approximately 20 years, we are only beginning to frame the broad outlines of the structure, function, and regulation of this ubiquitous ion transport mechanism.
Collapse
Affiliation(s)
- J M Russell
- Department of Biology, Biological Research Laboratories, Syracuse, New York, USA. .,edu
| |
Collapse
|
37
|
Shi C, Ryan JS, French AS, Coca-Prados M, Kelly ME. Hyposmotically activated chloride channels in cultured rabbit non-pigmented ciliary epithelial cells. J Physiol 1999; 521 Pt 1:57-67. [PMID: 10562334 PMCID: PMC2269649 DOI: 10.1111/j.1469-7793.1999.00057.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
1. We used whole-cell patch-clamp recording techniques and noise analysis of whole-cell current to investigate the properties of hyposmotic shock (HOS)-activated Cl- channels in SV40-transformed rabbit non-pigmented ciliary epithelial (NPCE) cells. 2. Under conditions designed to isolate Cl- currents, exposure of cells to hyposmotic external solution reversibly increased the whole-cell conductance. 3. The whole-cell current activated with a slow time course (> 15 min), exhibited outward rectification and was Cl- selective. 4. The disulphonic stilbene derivatives 4, 4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS, 0.5 mM), 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid (SITS, 0. 5 mM) and 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS, 0.5 mM) produced a voltage-sensitive block of HOS-activated Cl- current at depolarized potentials, whereas niflumic acid produced a voltage-independent block of the current. 5. Under Ca2+-free conditions, HOS stimulation still reversibly activated the Cl- current, but the amplitude of current was reduced and the time course of current activation was slower compared with control (P < 0. 05). 6. The non-specific kinase inhibitor H-7 (100 microM), upregulated HOS-activated Cl- current amplitude in all cells tested (P < 0.05). 7. Noise analysis of whole-cell Cl- current indicated that cell swelling activated a high density of small conductance Cl- channels (< 1 pS). 8. We conclude that HOS primarily activates a high density of volume-sensitive small conductance Cl- channels in rabbit NPCE cells, and that Ca2+ and phosphorylation are involved in channel regulation.
Collapse
Affiliation(s)
- C Shi
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7
| | | | | | | | | |
Collapse
|
38
|
Walker VE, Stelling JW, Miley HE, Jacob TJ. Effect of coupling on volume-regulatory response of ciliary epithelial cells suggests mechanism for secretion. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:C1432-8. [PMID: 10362607 DOI: 10.1152/ajpcell.1999.276.6.c1432] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ciliary epithelium of the eye secretes the aqueous humor. It is a double epithelium arranged so that the apical surfaces of the nonpigmented ciliary epithelial (NPCE) and pigmented ciliary epithelial (PCE) cells face each other and the basolateral membranes face the inside of the eye and the blood, respectively. We have investigated the volume responses of both single cells and coupled pairs from this tissue to osmotic challenge. Both NPCE and PCE cells undergo regulatory volume increase (RVI) and decrease (RVD) when exposed to hyper- and hyposmotic solution, respectively. In hyposmotic solution single cells swell and return to their original volumes within approximately 3 min. In nonpigmented cells RVD could be inhibited by blockers of volume-activated Cl- channels [tamoxifen (100%) > quinidine (87%) > DIDS (84%) > 5-nitro-2-(3-phenylpropylamino)benzoic acid (80%) > SITS (58%)] and K+ channels [Ba2+ (31%)]. However, in PCE cells these inhibitors and additionally tetraethylammonium and Gd3+ were without effect. Only bumetanide, an inhibitor of Na+-K+-2Cl- cotransport, was found to have any effect on RVD in PCE cells. NPCE-PCE cell coupled pairs also underwent RVD, but with altered kinetics. The onset of RVD of the PCE cell in a pair occurred approximately 80 s before that of the NPCE cell, and the peak swell was reduced. This is consistent with fluid movement from the PCE to the NPCE cell. The effect of the volume-activated Cl- channel inhibitor tamoxifen was to eliminate this difference in the times of onset of RVD in coupled cell pairs and to inhibit RVD in both the NPCE and PCE cells partially. On the basis of these observations we suggest that fluid is transferred from the PCE to the NPCE cell in coupled pairs during cell swelling and the subsequent RVD. Furthermore, we speculate that reciprocal RVI-RVD could underlie aqueous humor secretion.
Collapse
Affiliation(s)
- V E Walker
- School of Molecular and Medical Biosciences, University of Wales, Cardiff CF1 3US, United Kingdom
| | | | | | | |
Collapse
|
39
|
Santafé J, Martínez de Ibarreta MJ, Segarra J, Melena J. The effect of topical diltiazem on ocular hypertension induced by water loading in rabbits. GENERAL PHARMACOLOGY 1999; 32:201-5. [PMID: 10188620 DOI: 10.1016/s0306-3623(98)00196-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The aim of this work was to assess the effect of topical diltiazem on the ocular hypertension induced by water loading in rabbits. The effect of three different concentrations of diltiazem on the intraocular pressure rise produced by oral administration of tap water (60 ml/kg) was tested in groups of nine or ten rabbits each. When applied at the lowest concentration studied, topical diltiazem was found to enhance the intraocular pressure rise after water loading. In contrast, when applied at the highest concentration, diltiazem counteracted the ocular hypertension caused by water loading. Although diltiazem, and probably other calcium channel blockers, may be useful in the management of ocular hypertension, the data obtained suggest that these drugs may have complex actions on aqueous humor dynamics; therefore further studies in animal models for glaucoma should be carried out before their clinical evaluation in humans.
Collapse
Affiliation(s)
- J Santafé
- Departamento de Farmacología, Facultad de Farmacia, Universidad del País Vasco, Vitoria, Spain
| | | | | | | |
Collapse
|
40
|
Rizzolo LJ. Polarization of the Na+, K(+)-ATPase in epithelia derived from the neuroepithelium. INTERNATIONAL REVIEW OF CYTOLOGY 1998; 185:195-235. [PMID: 9750268 DOI: 10.1016/s0074-7696(08)60152-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The neuroepithelium generates a fascinating group of epithelia. One of their intriguing properties is how they polarize the distribution of the Na+, K(+)-ATPase. Typically, this ion pump is concentrated in the basolateral membrane, but it is concentrated in the apical membranes of the retinal pigment epithelium and the epithelium of the choroid plexus. A comparison of their development with that of systemic epithelia yields insights into how cells polarize the distribution of this and other membrane proteins. The polarization of the Na+, K(+)-ATPase depends upon the interplay between different sorting signals and different types of polarity mechanisms. These include intracellular targeting signals that direct the delivery of newly synthesized proteins, and maintenance signals that stabilize proteins in the proper membrane domain. Conflicting signals appear to be arranged in a hierarchy that can be rearranged as cells respond to certain environmental stimuli. Part of this response is mediated by changes in the distribution and composition of the cortical cytoskeleton.
Collapse
Affiliation(s)
- L J Rizzolo
- Department of Surgery, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| |
Collapse
|
41
|
Ryan JS, Tao QP, Kelly ME. Adrenergic regulation of calcium-activated potassium current in cultured rabbit pigmented ciliary epithelial cells. J Physiol 1998; 511 ( Pt 1):145-57. [PMID: 9679170 PMCID: PMC2231117 DOI: 10.1111/j.1469-7793.1998.145bi.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
1. The effects of adrenergic agonists on K+ currents were studied in cultured rabbit pigmented ciliary epithelial (PCE) cells. 2. Outward K+ current (IK) was reduced by tetraethylammonium chloride, the Ca2+-activated K+ (K(Ca)) channel blocker iberiotoxin (IbTX), or Ca2+-free external Ringer solution. The calcium ionophore ionomycin increased an IbTX-sensitive IK in PCE cells. 3. The adrenergic agonists adrenaline and phenylephrine increased IK in PCE cells. The induced current was blocked by IbTX and the alpha1-antagonist prazosin, suggesting that adrenergic agonists activate IK(Ca) via alpha1-adrenoreceptors. 4. Internal dialysis of D-myo-inositol 1,4, 5-trisphosphate (IP3) increased IK, whilst pre-incubation of PCE cells with thapsigargin or the phospholipase C (PLC) inhibitor U-73122 reduced phenylephrine-induced increases in IK(Ca). Adrenergic increases in IK(Ca) were mediated by a pertussis toxin-insensitive G protein. 5. These results demonstrate that IK(Ca) channels in rabbit PCE cells are coupled to alpha1-adrenergic receptors and a PLC/IP3 signalling pathway. Activation of these channels may modulate fluid secretion by the ciliary epithelium.
Collapse
Affiliation(s)
- J S Ryan
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7
| | | | | |
Collapse
|
42
|
Chen S, Wan XL, Sears M. pICln can regulate swelling-induced Cl- currents in either layer of rabbit ciliary epithelium. Biochem Biophys Res Commun 1998; 246:59-63. [PMID: 9600068 DOI: 10.1006/bbrc.1998.8571] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Swelling-induced Cl- currents were investigated in freshly prepared non-pigmented epithelial (NPE) and pigmented epithelial (PE) cells of the rabbit ciliary body using the whole-cell patch clamp technique. Exposure of both NPE and PE cells to hypotonic stress induced Cl- currents that exhibited outward rectification and were insensitive to Ca+2. We found that swelling-induced Cl- currents in PE cell are observed shortly after isolation. The swelling-induced Cl- current showed little or no inactivation at positive membrane voltages and was sensitive to 100 microM NPPB and 100 microM DIDS. Injection of cRNA encoded rabbit pICln into Xenopus oocytes produced an outwardly rectifying Cl- current displaying features consistent with the swelling-induced Cl- current in epithelium. pICln is ubiquitous in the ciliary epithelium. It participates in the equilibration of short term tonicity alterations, a phenomenon underlying mechanisms with larger and slower amplitudes for aqueous secretion by these cells.
Collapse
Affiliation(s)
- S Chen
- Department of Ophthalmology and Visual Science, Yale School of Medicine, New Haven, Connecticut 06520-8061, USA
| | | | | |
Collapse
|
43
|
Lang F, Busch GL, Ritter M, Völkl H, Waldegger S, Gulbins E, Häussinger D. Functional significance of cell volume regulatory mechanisms. Physiol Rev 1998; 78:247-306. [PMID: 9457175 DOI: 10.1152/physrev.1998.78.1.247] [Citation(s) in RCA: 1275] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
To survive, cells have to avoid excessive alterations of cell volume that jeopardize structural integrity and constancy of intracellular milieu. The function of cellular proteins seems specifically sensitive to dilution and concentration, determining the extent of macromolecular crowding. Even at constant extracellular osmolarity, volume constancy of any mammalian cell is permanently challenged by transport of osmotically active substances across the cell membrane and formation or disappearance of cellular osmolarity by metabolism. Thus cell volume constancy requires the continued operation of cell volume regulatory mechanisms, including ion transport across the cell membrane as well as accumulation or disposal of organic osmolytes and metabolites. The various cell volume regulatory mechanisms are triggered by a multitude of intracellular signaling events including alterations of cell membrane potential and of intracellular ion composition, various second messenger cascades, phosphorylation of diverse target proteins, and altered gene expression. Hormones and mediators have been shown to exploit the volume regulatory machinery to exert their effects. Thus cell volume may be considered a second message in the transmission of hormonal signals. Accordingly, alterations of cell volume and volume regulatory mechanisms participate in a wide variety of cellular functions including epithelial transport, metabolism, excitation, hormone release, migration, cell proliferation, and cell death.
Collapse
Affiliation(s)
- F Lang
- Institute of Physiology, University of Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
44
|
Civan MM, Peterson-Yantorno K, Sánchez-Torres J, Coca-Prados M. Potential contribution of epithelial Na+ channel to net secretion of aqueous humor. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 1997; 279:498-503. [PMID: 9392872 DOI: 10.1002/(sici)1097-010x(19971201)279:5<498::aid-jez13>3.0.co;2-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The aqueous humor of the eye is secreted by the bilayered ciliary epithelium, consisting of the pigmented (PE) cell layer facing the stroma and the nonpigmented (NPE) cell layer facing the aqueous humor. Cells within each layer and between the two layers are linked by gap junctions, forming a ciliary epithelial syncytium. Unidirectional secretion from the stroma to the aqueous proceeds both through the cells (the transcellular pathway) and between the cells (the paracellular pathway). Net formation of aqueous humor must, however, be the algebraic sum of unidirectional secretion and unidirectional reabsorption from the aqueous humor back into the stoma. The mechanisms potentially underlying reabsorption of aqueous humor by the NPE cells have recently been addressed by studying the regulatory response (RVI) of anisosmotically shrunken NPE cells. The results indicated that epithelial Na+ channels with a high affinity to amiloride likely contribute to reabsorption of solute from the aqueous humor. We have substantiated this possibility by using Northern analysis to identify in human ciliary body RNA a 3.7-kb transcript corresponding to the alpha-subunit of the amiloride-sensitive, alpha beta gamma-ENaC epithelial sodium channel. We have also found that the Na(+)-channel inhibitor benzamil inhibits the RVI without affecting the cell volume of isotonic cell suspensions. This observation supports the hypothesis that the low conductance, highly selective epithelial Na+ channel is activated by shrinkage and contributes to unidirectional reabsorption as aqueous humor. Examples are provided of how the integrative regulation of aqueous humor formation can involve conjugate actions on both unidirectional secretion and reabsorption.
Collapse
Affiliation(s)
- M M Civan
- Department of Physiology, University of Pennsylvania, School of Medicine, Philadelphia 19104-6085, USA
| | | | | | | |
Collapse
|
45
|
Stelling JW, Jacob TJ. Functional coupling in bovine ciliary epithelial cells is modulated by carbachol. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:C1876-81. [PMID: 9435492 DOI: 10.1152/ajpcell.1997.273.6.c1876] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The functional coupling of the ciliary epithelium was studied in isolated pairs (couplets) of pigmented ciliary epithelial (PCE) and nonpigmented ciliary epithelial (NPCE) cells using the whole cell patch clamp and the fluorescent dye lucifer yellow. One cell of the pair (usually the NPCE cell of a NPCE-PCE cell couplet) was accessed with a 2-5 M omega electrode, containing 1-2 mM lucifer yellow, in the whole cell configuration of the patch clamp. After voltage-clamp experiments were completed, cells were viewed under a fluorescent microscope to confirm that the cells were coupled. The electrical coupling of the cells was also studied by calculating the capacitance (using the time-domain technique), assuming a "supercell" model for coupled cells. The mean capacitance of coupled pairs was 79.8 +/- 4.3 (SE) pF (n = 47) compared with single cell capacitances of 36.8 +/- 3.4 pF (n = 10) for PCE cells and 38.1 +/- 3.1 pF (n = 15) for NPCE cells. Octanol, carbachol (CCh), and raised extracellular Ca2+ concentration ([Ca2+]o) all caused uncoupling in pairs (couplets) of coupled NPCE and PCE cells. At room temperature (22-24 degrees C), the capacitance of the couplets decreased from 70.5 +/- 8.0 to 48.0 +/- 5.2 pF (n = 5) when exposed to octanol (1 mM), from 73.8 +/- 9.2 to 43.2 +/- 9.5 pF (n = 4) when exposed to CCh (100 microM), and from 80.5 +/- 6.7 to 49.9 +/- 7.8 pF (n = 4) when exposed to 10 mM [Ca2+]o. The response to CCh was dose dependent; at higher temperatures of 34-37 degrees C, 10 microM CCh caused a 38% reduction in capacitance, from 53.7 +/- 9.7 to 33.5 +/- 3.3 pF (n = 7) with a half-time of 249 s, and 100 microM CCh caused a 49% reduction in capacitance, from 51.3 +/- 5.6 to 26.0 +/- 2.4 pF (n = 7) with a half-time of 124 s. After pairs uncoupled and the uncoupling agent was washed out, the cell pairs often exhibited an increase in capacitance that we interpreted as "recoupling" or a reopening of the gap junctional communication pathway; the half-time for this process was 729 s after uncoupling with 100 microM CCh and 211 s after uncoupling with 10 microM CCh. This interpretation was confirmed optically by the spread of lucifer yellow into both cells of an uncoupled pair with a time course corresponding to the increase in electrical coupling. The controllable coupling of ciliary epithelial cells extends the idea of a functional syncytium involved in active transport. PCE cells take up solute and water from the blood, which then cross to NPCE cells via gap junctions and from there are secreted into the posterior chamber of the eye. Modulation of the coupling between NPCE and PCE cells may provide a mechanism to control secretion.
Collapse
Affiliation(s)
- J W Stelling
- Physiology Unit, University of Wales, Cardiff, United Kingdom
| | | |
Collapse
|
46
|
Wan XL, Chen S, Sears M. Cloning and functional expression of a swelling-induced chloride conductance regulatory protein, plCln, from rabbit ocular ciliary epithelium. Biochem Biophys Res Commun 1997; 239:692-6. [PMID: 9367830 DOI: 10.1006/bbrc.1997.7523] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The cDNA encoding a swelling-induced chloride conductance regulatory protein, plcln, was cloned from rabbit ciliary epithelium by using a polymerase chain reaction (PCR)-based approach. The open reading frame encoding 236 amino acids possesses high amino acid identity (93/%) with the previously cloned plcln from human ciliary epithelium. Outwardly rectifying currents were recorded in Xenopus oocytes injected with plcln cRNA, a result consistent with plcln expression in ciliary epithelium. A widespread distribution and marked expression of plcln mRNA in both nonpigmented ciliary epithelial (NPE) cells and pigmented ciliary epithelial (PE) cells was found for the first time. In situ hybridization analysis showed that plcln expression is more abundant in NPE than PE. These findings are consistent with the idea that plcln may be an important regulatory element in these secretory cells.
Collapse
Affiliation(s)
- X L Wan
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, Connecticut 06520-8061, USA
| | | | | |
Collapse
|
47
|
Adorante JS, Edelman JL. The role of Cl- channels in volume regulation in bovine pigmented epithelial cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:C1435-7. [PMID: 9357790 DOI: 10.1152/ajpcell.1997.273.4.c1435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The following is the abstract of the article discussed in the subsequent letter: Mitchell, Claire H., Jin Jun Zhang, Liwei Wang, and Tim J. C. Jacob. Volume-sensitive chloride current in pigmented ciliary epithelial cells: role of phospholipases. Am. J. Physiol. 272 ( Cell Physiol. 41): C212–C222, 1997.—The whole cell recording technique was used to examine an outwardly rectifying chloride current activated by hypotonic shock in bovine pigmented ciliary epithelial (PCE) cells. Removal of internal and external Ca2+ did not affect the activation of these currents, but they were abolished by the phospholipase C inhibitor neomycin. The current was blocked by 5-nitro-2-(3-phenylpropylamino)benzoic acid, 4-acetamido-4′-isothiocyanostilbene-2,2′-disulfonic acid, and 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid (DIDS) in a voltage-dependent manner, but tamoxifen, dideoxyforskolin, and quinidine did not affect it. This blocking profile differs from that of the volume-sensitive chloride channel in neighboring nonpigmented ciliary epithelial cells (Wu, J., J. J. Zhang, H. Koppel, and T. J. C. Jacob. J. Physiol. Lond. 491: 743–755, 1996), and this difference implies that the volume responses of the two cell types are mediated by different chloride channels (Jacob, T. J. C., and J. J. Zhang. J. Physiol. Lond. In press). Intracellular administration of guanosine 5′- O-(3-thiotriphosphate) (GTPγS) to PCE cells induced a transient, time-independent, outwardly rectifying chloride current that closely resembled the current activated by hypotonic shock. DIDS produced a voltage-dependent block of the GTPγS-activated current similar to the block of the hypotonically activated current. Intracellular neomycin completely prevented activation of this current as did incubation of the cells in calphostin C, an inhibitor of protein kinase C (PKC). Removal of Ca2+ did not affect activation of the current by GTPγS but extended the duration of the response. Inhibition of phospholipase A2 (PLA2) with p-bromophenacyl bromide prevented the activation of the hypotonically induced current and also inhibited the current once activated by hypotonic solution. The findings imply that the hypotonic response in PCE cells is mediated by both phospholipase C (PLC) and PLA2. Both phospholipases generate arachidonic acid, and, in addition, the PLC pathway regulates the PLA2 pathway via a PKC-dependent phosphorylation of PLA2.
Collapse
|
48
|
Wax MB, Saito I, Tenkova T, Krupin T, Becker B, Nelson N, Brown D, Gluck SL. Vacuolar H+-ATPase in ocular ciliary epithelium. Proc Natl Acad Sci U S A 1997; 94:6752-7. [PMID: 9192637 PMCID: PMC21230 DOI: 10.1073/pnas.94.13.6752] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The mechanisms controlling the production of aqueous humor and the regulation of intraocular pressure are poorly understood. Here, we provide evidence that a vacuolar H+-ATPase (V-ATPase) in the ocular ciliary epithelium is a key component of this process. In intracellular pH (pHi) measurements of isolated ciliary epithelium performed with 2',7-biscarboxyethyl-5(6)-carboxyfluorescein (BCECF), the selective V-ATPase inhibitor bafilomycin A1 slowed the recovery of pHi in response to acute intracellular acidification, demonstrating the presence of V-ATPase in the plasma membrane. In isolated rabbit ciliary body preparations examined under voltage-clamped conditions, bafilomycin A1 produced a concentration-dependent decrease in short-circuit current, and topical application of bafilomycin A1 reduced intraocular pressure in rabbits, indicating an essential role of the V-ATPase in ciliary epithelial ion transport. Immunocytochemistry utilizing antibodies specific for the B1 isoform of the V-ATPase 56-kDa subunit revealed localization of V-ATPase in both the plasma membrane and cytoplasm of the native ciliary epithelium in both rabbit and rat eye. The regional and subcellular distribution of V-ATPase in specific regions of the ciliary process was altered profoundly by isoproterenol and phorbol esters, suggesting that change in the intracellular distribution of the enzyme is a mechanism by which drugs, hormones, and neurotransmitters modify aqueous humor production.
Collapse
Affiliation(s)
- M B Wax
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Wolosin JM, Candia OA, Peterson-Yantorno K, Civan MM, Shi XP. Effect of heptanol on the short circuit currents of cornea and ciliary body demonstrates rate limiting role of heterocellular gap junctions in active ciliary body transport. Exp Eye Res 1997; 64:945-52. [PMID: 9301475 DOI: 10.1006/exer.1997.0291] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Rabbit ciliary body and cornea were mounted in Ussing-type chambers in Tyrode's under voltage clamp and the effects of heptanol, a gap junction inhibitor, on the short circuit current generated by each of the respective epithelia were determined. Studies were carried out either in control conditions or following amphotericin B permeabilization of either the basolateral membrane of the nonpigmented epithelium of the ciliary body or the apical membrane of the corneal epithelium, respectively. Previous studies have shown that, following these permeabilizations, short circuit currents are established, reflecting aqueous (or tear)-to-serosa Na+ fluxes, and that Na+ translocation through gap junctions connecting the individual layers of these tissues constitutes the major rate limiting step. Heptanol inhibited most of the short circuit current of the amphotericin B-modified ciliary body and cornea and of the unmodified ciliary body epithelium (control). In all these cases, the apparent IC50 was about 0.8 M. In the unmodified corneal epithelium, where ion translocation across the apical membrane constitutes the main rate limiting step for active secretion, 0.4 or 0.8 mM heptanol induced short circuit current increases; partial inhibition was observed only at high concentrations known to cause maximal inhibition of junctional permeability. Heptanol also enhanced the volume regulatory decrease of cultured human NPE cells, a process dependent on cell swelling-induced stimulation of Cl- and K+ permeabilities. Combined with our previous results demonstrating the lack of heptanol effects on other epithelial functions, these data suggest that the effect of heptanol on the active ciliary body transepithelial transport is primarily due to inhibition of the nonpigmented-pigmented junctional path and that this path is a potential site of rate limitation for the secretory process.
Collapse
Affiliation(s)
- J M Wolosin
- Department of Ophthalmology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | |
Collapse
|
50
|
Coca-Prados M, Sánchez-Torres J. Chapter 2 Molecular Approaches to the Study of the Na+,K+ -ATPase and Chloride Channels in the Ocular Ciliary Epithelium. CURRENT TOPICS IN MEMBRANES 1997. [DOI: 10.1016/s0070-2161(08)60242-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|