1
|
Raqeeb A, Sheng J, Ao N, Braun AP. Purinergic P2Y2 receptors mediate rapid Ca(2+) mobilization, membrane hyperpolarization and nitric oxide production in human vascular endothelial cells. Cell Calcium 2011; 49:240-8. [PMID: 21414662 DOI: 10.1016/j.ceca.2011.02.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 02/15/2011] [Accepted: 02/18/2011] [Indexed: 11/29/2022]
Abstract
In blood vessels, stimulation of the vascular endothelium by the Ca(2+)-mobilizing agonist ATP initiates a number of cellular events that cause relaxation of the adjacent smooth muscle layer. Although vascular endothelial cells are reported to express several subtypes of purinergic P2Y and P2X receptors, the major isoform(s) responsible for the ATP-induced generation of vasorelaxant signals in human endothelium has not been well characterized. To address this issue, ATP-evoked changes in cytosolic Ca(2+), membrane potential and acute nitric oxide production were measured in isolated human umbilical vein endothelial cells (HUVECs) and profiled using established P2X and P2Y receptor probes. Whereas selective P2X agonist (i.e. α,β-methyl ATP) and antagonists (i.e. TNP-ATP and PPADS) could neither mimic nor block the observed ATP-evoked cellular responses, the specific P2Y receptor agonist UTP functionally reproduced all the ATP-stimulated effects. Furthermore, both ATP and UTP induced intracellular Ca(2+) mobilization with comparable EC(50) values (i.e. 1-3μM). Collectively, these functional and pharmacological profiles strongly suggest that ATP acts primarily via a P2Y2 receptor sub-type in human endothelial cells. In support, P2Y2 receptor mRNA and protein were readily detected in isolated HUVECs, and siRNA-mediated knockdown of endogenous P2Y2 receptor protein significantly blunted the cytosolic Ca(2+) elevations in response to ATP and UTP, but did not affect the histamine-evoked response. In summary, these results identify the P2Y2 isoform as the major purinergic receptor in human vascular endothelial cells that mediates the cellular actions of ATP linked to vasorelaxation.
Collapse
Affiliation(s)
- Abdul Raqeeb
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary and Smooth Muscle Research Group, Libin Cardiovascular Institute, Calgary, Alberta, Canada T2N 4N1
| | | | | | | |
Collapse
|
2
|
Agca C, Seye C, Kashuba Benson CM, Rikka S, Chan AWS, Weisman GA, Agca Y. Development of a novel transgenic rat overexpressing the P2Y(2) nucleotide receptor using a lentiviral vector. J Vasc Res 2009; 46:447-58. [PMID: 19155635 DOI: 10.1159/000194274] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 09/14/2008] [Indexed: 11/19/2022] Open
Abstract
The G protein-coupled P2Y(2) nucleotide receptor (P2Y(2)R) is upregulated in response to stress and tissue injury and has been postulated to play a role in chronic inflammation seen in atherosclerosis, Alzheimer's disease and Sjogren's syndrome. The role of P2Y(2)R upregulation in vivo is poorly understood, in part due to the lack of a P2Y(2)R overexpressing animal model. The P2Y(2)R overexpressing transgenic rat was generated using a lentiviral vector. Rats overexpressing P2Y(2)R showed a significant increase in P2Y(2)R mRNA levels in all tissues screened as compared to nontransgenic rats. Fura 2 imaging of smooth muscle cells (SMCs) isolated from aorta indicated that the percentage of cells exhibiting increases in the intracellular free calcium concentration in response to P2Y(2)R agonists was significantly greater in freshly isolated SMCs from transgenic rats than wild-type controls. Histopathological examination of tissues revealed that P2Y(2)R overexpressing rats develop lymphocytic infiltration in lacrimal glands and kidneys as early as at 3 months of age. These rats show similarities to patients with Sjogren's syndrome who display lymphocyte-mediated tissue damage. This transgenic rat model of P2Y(2)R overexpression may prove useful for linking P2Y(2)R upregulation with chronic inflammatory diseases, neurodegenerative diseases and Sjogren's syndrome.
Collapse
Affiliation(s)
- Cansu Agca
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Mo. 65211, USA
| | | | | | | | | | | | | |
Collapse
|
3
|
Rayment SJ, Latif ML, Ralevic V, Alexander SPH. Evidence for the expression of multiple uracil nucleotide-stimulated P2 receptors coupled to smooth muscle contraction in porcine isolated arteries. Br J Pharmacol 2007; 150:604-12. [PMID: 17262017 PMCID: PMC2189772 DOI: 10.1038/sj.bjp.0707120] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE The uracil nucleotides UDP and UTP have been reported to activate P2Y2, P2Y4 and P2Y6 receptors to cause vasoconstriction. We have performed a comparative analysis of these receptors in endothelium-denuded smooth muscle from porcine isolated coronary and ear arteries, using pharmacological and molecular tools. EXPERIMENTAL APPROACH Tissue segments were used to construct non-cumulative concentration response curves for UTP and UDP, in the absence and presence of the P2 receptor antagonists PPADS or suramin. RT-PCR and immunoblot analyses were employed to define gene expression and immunoreactivity for P2Y2, P2Y4 and P2Y6 receptors. KEY RESULTS In the coronary artery, UTP-evoked contractile responses were reduced in the presence of suramin, but not PPADS, while the smaller responses to UDP were unaffected by either antagonist. In the ear artery, contractile responses to UDP were much smaller than those to UTP; responses to UTP were inhibited by both PPADS and suramin. RT-PCR suggested predominant expression of P2Y2 receptors in the coronary artery, while P2Y4 and P2Y6 receptor gene expression appeared equivalent in both tissues. Immunoblot analyses provided evidence for P2Y6 receptors in both tissues, with equivocal evidence of P2Y2 and P2Y4 receptor immunoreactivities. CONCLUSIONS AND IMPLICATIONS We conclude that UTP-evoked contraction of porcine coronary artery smooth muscle appears to be predominantly P2Y2-mediated, while the ear artery appears to express a uracil nucleotide-sensitive P2 receptor(s) which fails to fit readily into the current classification.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Coronary Vessels/metabolism
- Dose-Response Relationship, Drug
- Ear/blood supply
- Gene Expression
- In Vitro Techniques
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Purinergic P2 Receptor Agonists
- Pyridoxal Phosphate/analogs & derivatives
- Pyridoxal Phosphate/pharmacology
- RNA, Messenger/analysis
- Receptors, Purinergic P2/genetics
- Receptors, Purinergic P2/metabolism
- Receptors, Purinergic P2Y2
- Reverse Transcriptase Polymerase Chain Reaction
- Suramin/pharmacology
- Swine
- Uracil Nucleotides/metabolism
- Uracil Nucleotides/pharmacology
- Uridine Diphosphate/metabolism
- Uridine Triphosphate/metabolism
- Vasoconstriction/drug effects
Collapse
Affiliation(s)
- S J Rayment
- School of Biomedical Sciences, University of Nottingham Medical School, Queen's Medical Centre Nottingham, UK
| | - M L Latif
- School of Biomedical Sciences, University of Nottingham Medical School, Queen's Medical Centre Nottingham, UK
| | - V Ralevic
- School of Biomedical Sciences, University of Nottingham Medical School, Queen's Medical Centre Nottingham, UK
| | - S P H Alexander
- School of Biomedical Sciences, University of Nottingham Medical School, Queen's Medical Centre Nottingham, UK
- Author for correspondence:
| |
Collapse
|
4
|
Abbracchio MP, Burnstock G, Boeynaems JM, Barnard EA, Boyer JL, Kennedy C, Knight GE, Fumagalli M, Gachet C, Jacobson KA, Weisman GA. International Union of Pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol Rev 2006; 58:281-341. [PMID: 16968944 PMCID: PMC3471216 DOI: 10.1124/pr.58.3.3] [Citation(s) in RCA: 998] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
There have been many advances in our knowledge about different aspects of P2Y receptor signaling since the last review published by our International Union of Pharmacology subcommittee. More receptor subtypes have been cloned and characterized and most orphan receptors de-orphanized, so that it is now possible to provide a basis for a future subdivision of P2Y receptor subtypes. More is known about the functional elements of the P2Y receptor molecules and the signaling pathways involved, including interactions with ion channels. There have been substantial developments in the design of selective agonists and antagonists to some of the P2Y receptor subtypes. There are new findings about the mechanisms underlying nucleotide release and ectoenzymatic nucleotide breakdown. Interactions between P2Y receptors and receptors to other signaling molecules have been explored as well as P2Y-mediated control of gene transcription. The distribution and roles of P2Y receptor subtypes in many different cell types are better understood and P2Y receptor-related compounds are being explored for therapeutic purposes. These and other advances are discussed in the present review.
Collapse
Affiliation(s)
- Maria P Abbracchio
- Department of Pharmacological Sciences, University of Milan, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Erb L, Liao Z, Seye CI, Weisman GA. P2 receptors: intracellular signaling. Pflugers Arch 2006; 452:552-62. [PMID: 16586093 DOI: 10.1007/s00424-006-0069-2] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2006] [Accepted: 03/06/2006] [Indexed: 10/24/2022]
Abstract
P2 receptors for extracellular nucleotides are divided into two categories: the ion channel receptors (P2X) and the G-protein-coupled receptors (P2Y). For the P2X receptors, signal transduction appears to be relatively simple. Upon activation by extracellular ATP, a channel comprised of P2X receptor subunits opens and allows cations to move across the plasma membrane, resulting in changes in the electrical potential of the cell that, in turn, propagates a signal. This regulated flux of ions across the plasma membrane has important signaling functions, especially in impulse propagation in the nervous system and in muscle contractility. In addition, P2X receptor activation causes the accumulation of calcium ions in the cytoplasm, which is responsible for activating numerous signaling molecules. For the P2Y receptors, signal transduction is more complex. Intracellular signaling cascades are the main routes of communication between G-protein-coupled receptors and regulatory targets within the cell. These signaling cascades operate mainly by the sequential activation or deactivation of heterotrimeric and monomeric G proteins, phospholipases, protein kinases, adenylyl and guanylyl cyclases, and phosphodiesterases that regulate many cellular processes, including proliferation, differentiation, apoptosis, metabolism, secretion, and cell migration. In addition, there are numerous ion channels, cell adhesion molecules and receptor tyrosine kinases that are modulated by P2Y receptors and operate to transmit an extracellular signal to an intracellular response. These intracellular signaling pathways and their regulation by P2 receptors are discussed in this review.
Collapse
Affiliation(s)
- Laurie Erb
- Department of Biochemistry, University of Missouri-Columbia, Life Sciences Center, 1201 Rollins Rd., Columbia, MO 65211, USA.
| | | | | | | |
Collapse
|
6
|
Molecular and Biological Properties of P2Y Receptors. CURRENT TOPICS IN MEMBRANES 2003. [DOI: 10.1016/s1063-5823(03)01003-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
7
|
Rost S, Daniel C, Schulze-Lohoff E, Bäumert HG, Lambrecht G, Hugo C. P2 receptor antagonist PPADS inhibits mesangial cell proliferation in experimental mesangial proliferative glomerulonephritis. Kidney Int 2002; 62:1659-71. [PMID: 12371966 DOI: 10.1046/j.1523-1755.2002.00621.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Although extracellular nucleotides have been shown to confer mitogenic effects in cultured rat mesangial cells through activation of purinergic P2 receptors (P2Y receptors), thus far the in vivo relevance of these findings is unclear. Virtually all cells and in particular the dense granules of platelets contain high levels of nucleotides that are released upon cell injury or platelet aggregation. In experimental mesangial proliferative glomerulonephritis in the rat (anti-Thy1 model), mesangiolysis and glomerular platelet aggregation are followed by a pronounced mesangial cell (MC) proliferative response leading to glomerular hypercellularity. Therefore, we examined the role of extracellular nucleotides and their corresponding receptors in nucleotide-stimulated cultured mesangial cells and in inflammatory glomerular disease using the P2 receptor antagonist PPADS. METHODS The effects of PPADS on nucleotide- or fetal calf serum (FCS)-stimulated proliferation of cultured MC were measured by cell counting and [3H]thymidine incorporation assay. After induction of the anti-Thy1 model, rats received injections of the P2-receptor antagonist PPADS at different doses (15, 30, 60 mg/kg BW). Proliferating mesangial and non-mesangial cells, mesangial cell activation, matrix accumulation, influx of inflammatory cells, mesangiolysis, microaneurysm formation, and renal functional parameters were assessed during anti-Thy1 disease. P2Y-mRNA and protein expression was assessed using RT-PCR and real time PCR, Northern blot analysis, in situ hybridization, and immunohistochemistry. RESULTS In cultured mesangial cells, PPADS inhibited nucleotide, but not FCS-stimulated proliferation in a dose-dependent manner. In the anti-Thy1 model, PPADS specifically and dose-dependently reduced early (day 3), but not late (day 8), glomerular mesangial cell proliferation as well as phenotypic activation of the mesangium and slightly matrix expansion. While no consistent effect was obtained in regard to the degree of mesangiolysis, influx of inflammatory cells, proteinuria or blood pressure, PPADS treatment increased serum creatinine and urea in anti-Thy1 rats. P2Y receptor expression (P2Y2 and P2Y6) was detected in cultured MC and isolated glomeruli, and demonstrated a transient marked increase during anti-Thy1 disease. CONCLUSION These data strongly suggest an in vivo role for extracellular nucleotides in mediating early MC proliferation after MC injury.
Collapse
Affiliation(s)
- Sylvia Rost
- Division of Nephrology, University of Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
8
|
Jacobson KA, Jarvis MF, Williams M. Purine and pyrimidine (P2) receptors as drug targets. J Med Chem 2002; 45:4057-93. [PMID: 12213051 DOI: 10.1021/jm020046y] [Citation(s) in RCA: 229] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes, Digestive and Kidney Diseases/NIH, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
9
|
Liu R, Bell PD, Peti-Peterdi J, Kovacs G, Johansson A, Persson AEG. Purinergic receptor signaling at the basolateral membrane of macula densa cells. J Am Soc Nephrol 2002; 13:1145-51. [PMID: 11961001 DOI: 10.1097/01.asn.0000014827.71910.39] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Purinergic receptors are important in the regulation of renal hemodynamics; therefore, this study sought to determine if such receptors influence macula densa cell function. Isolated glomeruli containing macula densa cells, with and without the cortical thick ascending limb, were loaded with the Ca(2+) sensitive indicators, Fura Red (confocal microscopy) or fura 2 (conventional video image analysis). Studies were performed on an inverted microscope in a chamber with a flow-through perfusion system. Changes in cytosolic calcium concentration ([Ca(2+)](i)) from exposed macula densa plaques were assessed upon addition of adenosine, ATP, UTP, ADP, or 2-methylthio-ATP (2- MeS-ATP) for 2 min added to the bathing solution. There was no change in [Ca(2+)](i) with addition of adenosine (10(-7) to 10(-3) M). UTP and ATP (10(-4) M) caused [Ca(2+)](i) to increase by 268 +/- 40 nM (n = 21) and 295 +/- 53 nM (n = 21), respectively, whereas in response to 2MesATP and ADP, [Ca(2+)](i) increased by only 67 +/- 13 nM (n = 8) and 93 +/- 36 nM (n = 14), respectively. Dose response curve for ATP (10(-7) to 10(-3) M) added in bath showed an EC(50) of 15 microM. No effect on macula densa [Ca(2+)](i) was seen when ATP was added from the lumen. ATP caused similar increases in macula densa [Ca(2+)](i) in the presence or absence of bath Ca(2+) and addition of 5 mM ethyleneglycotetraacetic acid (EGTA). Suramin (an antagonist of P2X and P2Y receptors) completely inhibited ATP-induced [Ca(2+)](i) dynamics. Also, ATP-Ca(2+) responsiveness was prevented by the phospholipase C inhibitor, U-73122, but not by its inactive analog, U-73343. These results suggest that macula densa cells possess P2Y(2) purinergic receptors on basolateral but not apical membranes and that activation of these receptors results in the mobilization of Ca(2+).
Collapse
Affiliation(s)
- Ruisheng Liu
- Department of Physiology, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
10
|
Guile SD, Ince F, Ingall AH, Kindon ND, Meghani P, Mortimore MP. The medicinal chemistry of the P2 receptor family. PROGRESS IN MEDICINAL CHEMISTRY 2002; 38:115-87. [PMID: 11774794 DOI: 10.1016/s0079-6468(08)70093-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- S D Guile
- Department of Medicinal Chemistry, AstraZeneca R&D Charnwood, Bakewell Road, Loughborough, Leicestershire, LE11 5RH, UK
| | | | | | | | | | | |
Collapse
|
11
|
Sak K, Webb TE. A retrospective of recombinant P2Y receptor subtypes and their pharmacology. Arch Biochem Biophys 2002; 397:131-6. [PMID: 11747319 DOI: 10.1006/abbi.2001.2616] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Since the first cloning of P2Y receptor sequences in 1993 it has become apparent that this family of G-protein-coupled receptors is omnipresent. At least 25 individual sequences entered in the GenBank sequence database encode P2Y receptors from a variety of species ranging from the little skate Raja erinacea to man. In man, six receptor subtypes have been cloned and found to be functionally active (P2Y(1), P2Y(2), P2Y(4), P2Y(6), P2Y(11), and P2Y(12)). In this article a review of the P2Y receptor subtypes is presented considering both their sequences and the pharmacological profiles of the encoded receptors expressed in heterologous expression systems.
Collapse
Affiliation(s)
- Katrin Sak
- Hematology-Oncology Clinic, Tartu University, Ulikooli 18, Tartu 50090, Estonia
| | | |
Collapse
|
12
|
Moccia F, Baruffi S, Spaggiari S, Coltrini D, Berra-Romani R, Signorelli S, Castelli L, Taglietti V, Tanzi F. P2y1 and P2y2 receptor-operated Ca2+ signals in primary cultures of cardiac microvascular endothelial cells. Microvasc Res 2001; 61:240-52. [PMID: 11336535 DOI: 10.1006/mvre.2001.2306] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intracellular Ca2+ signals elicited by nucleotide agonists were investigated in primary cultures of rat cardiac microvascular endothelial cells using the fura-2 technique. UTP increased the intracellular [Ca2+] in 94% of the cells, whereas 2MeSATP was active in 32%. The rank order of potency was ATP = UTP > 2MeSATP and the maximal response to 2MeSATP was lower compared to UTP and ATP. ATP and UTP showed strong homologous and heterologous desensitization. ATP fully inhibited the 2MeSATP response, while UTP abolished 2MeSATP-elicited transients in 25% of cells. 2MeSATP did not desensitize the UTP or ATP response. Adenosine 2',5'-diphosphate inhibited the response to 2MeSATP, while it did not modify the response to ATP and UTP. 2MeSATP was more sensitive to suramin than UTP and ATP. These results indicate that P(2Y1) and P(2Y2) receptors may be coexpressed in CMEC. Nucleotide-induced Ca2+ signals lacked a sustained plateau and were almost independent from extracellular Ca2+. ATP and UTP elicited Ca2+ transients longer than 2MeSATP-evoked transients. The kinetics of Ca2+ responses was not affected by bath solution stirring or ectonucleotidase inhibition. Furthermore, the nonhydrolyzable ATP analogue AMP-PNP induced Ca2+ signals similar to those elicited by ATP and UTP. These results suggest that the distinct kinetics of nucleotide-evoked Ca2+ responses do not depend on the activity of ectonucleotidases or ATP autocrine stimulation. The possibility that Ca2+ signals with different time courses may modulate different cellular responses is discussed.
Collapse
Affiliation(s)
- F Moccia
- Department of Physiological and Pharmacological Sciences, University of Pavia, Pavia, 27100, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Effect of uridine derivatives on myocardial stunning during postischemic reperfusion of rat heart. Bull Exp Biol Med 2000. [DOI: 10.1007/bf02682039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Malmsjö M, Adner M, Harden TK, Pendergast W, Edvinsson L, Erlinge D. The stable pyrimidines UDPbetaS and UTPgammaS discriminate between the P2 receptors that mediate vascular contraction and relaxation of the rat mesenteric artery. Br J Pharmacol 2000; 131:51-6. [PMID: 10960068 PMCID: PMC1572295 DOI: 10.1038/sj.bjp.0703536] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The contractile and relaxant effects of the different P2 receptors were characterized in the rat isolated mesenteric artery by use of extracellular nucleotides, including the stable pyrimidines uridine 5'-O-thiodiphosphate (UDPbetaS) and uridine 5'-O-3-thiotriphosphate (UTPgammaS). The selective P2X receptor agonist, alphabeta-methylene-adenosine triphosphate (alphabeta-MeATP) stimulated a potent (pEC(50)=6.0) but relatively weak contraction (E:(max)=57% of 60 mM K(+)). The contractile concentration-response curve of adenosine triphosphate (ATP) was biphasic when added in single concentrations. The first part of the response could be desensitized by alphabeta-MeATP, indicating involvement of P2X receptors, while the second part might be mediated by P2Y receptors. The contractile P2Y receptors were further characterized after P2X receptor desensitization with 10 microM alphabeta-MeATP. Uridine diphosphate (UDP), uridine triphosphate (UTP) and ATP stimulated contraction only in high concentrations (1 - 10 mM). The selective P2Y(6) agonist, UDPbetaS, and the P2Y(2)/P2Y(4)-receptor agonists UTPgammaS and adenosine 5'-O-3-thiotriphosphate (ATPgammaS) were considerably more potent and efficacious (E:(max) approximately 250% of 60 mM K(+)). Adenosine 5'-O-thiodiphosphate (ADPbetaS) was inactive, excluding contractile P2Y(1) receptors. After precontraction with 1 microM noradrenaline, UTP, ADP and ATP induced relaxations with similar potencies (pEC(50) approximately 5.0). UTPgammaS, ADPbetaS and ATPgammaS were approximately one log unit more potent indicating the presence of endothelial P2Y(1) and P2Y(2)/P2Y(4) receptors. The P2Y(6) receptor agonist, UDPbetaS, had no effect. UDPbetaS and UTPgammaS are useful tools when studying P2 receptors in tissue preparations with ectonucleotidase activity. Contractile responses can be elicited by stimulation of P2Y(6) and, slightly less potently, P2Y(2)/P2Y(4) receptors. The P2X response was relatively weak, and there was no P2Y(1) response. Stimulation of P2Y(1) and P2Y(2)/P2Y(4) receptors elicited relaxation, while P2Y(6) did not contribute.
Collapse
Affiliation(s)
- M Malmsjö
- Division of Experimental Vascular Research, Department of Medicine, Lund University Hospital, Lund, Sweden.
| | | | | | | | | | | |
Collapse
|
15
|
Erga KS, Seubert CN, Liang HX, Wu L, Shryock JC, Belardinelli L. Role of A(2A)-adenosine receptor activation for ATP-mediated coronary vasodilation in guinea-pig isolated heart. Br J Pharmacol 2000; 130:1065-75. [PMID: 10882391 PMCID: PMC1572153 DOI: 10.1038/sj.bjp.0703386] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Adenosine-5'-triphosphate (ATP) and adenosine are potent coronary vasodilators. ATP is rapidly converted to adenosine by ectonucleotidases. We examined whether coronary vasodilation caused by exogenous ATP is mediated by P(2) receptor activation or by A(2A)-adenosine receptor activation. 2. Effects of interventions on coronary conductance were determined by measuring coronary perfusion pressure in guinea-pig isolated hearts perfused at a constant flow of 10 ml min(-1). 3. ATP and adenosine both caused sustained, concentration-dependent increases of coronary conductance. Maximal responses to both agonists were equivalent. The values of pD(2) (+/-s.e.mean) for ATP and adenosine were 6.68+/-0.04 and 7.06+/-0.05, respectively. Adenosine was significantly more potent than ATP (P<0. 0001, n=10). 4. The values of pIC(50) for the selective A(2A)-adenosine receptor antagonist SCH58261 to antagonize equivalent responses to ATP and adenosine were 8.28+/-0.08 and 8.28+/-0.06 (P=0.99, n=6), respectively. 5. The non-selective adenosine receptor antagonists xanthine amine congener (XAC) and CGS15943 antagonized similarly the equivalent vasodilations caused by ATP (pIC(50) values 7.48+/-0.04 and 7.45+/-0.06, respectively) and adenosine (pIC(50) values 7. 37+/-0.13 and 7.56+/-0.11). 6. In contrast to ATP and adenosine, the two P(2) agonists 2-methylthio-ATP and uridine-5'-triphosphate failed to cause stable increases of coronary conductance, caused desensitization of vasodilator responses, and were not antagonized by SCH 58261, 8-parasulphophenyltheophylline, or XAC. 7. Glibenclamide attenuated coronary vasodilations caused by ATP and adenosine by 88 and 89%, respectively, but failed to attenuate those caused by 2-methylthio-ATP. 8. These results strongly suggest that sustained, submaximal coronary vasodilation caused by exogenous ATP is entirely mediated by adenosine acting upon A(2A)-adenosine receptors.
Collapse
Affiliation(s)
- K S Erga
- Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | | | | | | | | | | |
Collapse
|
16
|
Korchazhkina O, Wright G, Exley C. Intravascular ATP and coronary vasodilation in the isolated working rat heart. Br J Pharmacol 1999; 127:701-8. [PMID: 10401561 PMCID: PMC1566071 DOI: 10.1038/sj.bjp.0702610] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Adenosine-5'-triphosphate (ATP) is a potent coronary vasodilator. Because of the efficient hydrolysis of ATP, adenosine-5'-diphosphate (ADP) and adenosine-5'-monophosphate (AMP) by ectonucleotidases located in the coronary endothelium ATP-induced vasodilation may be mediated via both P1 (AMP and adenosine) and P2Y (ATP and ADP) receptors. We have used the change in total coronary resistance (TCR) induced by intravascular ATP in the isolated working rat heart to determine both the component of the vasodilation mediated via P2Y receptors and the identity of the subclass of receptor involved. 2. The dose response for ATP revealed a half maximal effect at an apparent ATP concentration of 0.08 +/- 0.009 microM. The response was saturated at apparent ATP concentrations greater than 0.23 microM. Contrary to much of the current literature, the perfusion of a 0.25 microM concentration of adenosine resulted in the identical response to an equimolar concentration of ATP suggesting a significant role for adenosine in coronary vasodilation. 3. The non-selective P1 receptor antagonist 8-(p-Sulfophenyl)theophylline (8-SPT) was used to show that the response to ATP was mediated via both P1 and P2Y receptors. Whilst 8-SPT abolished the effect of adenosine it reduced the effect of ATP by only 50%. Thus, at a saturating concentration of ATP, P1 and P2Y receptors were shown to contribute equally to the observed vasodilation. 4. Uridine-5'-triphosphate (UTP), ADP and adenosine-5'-O-thiotriphosphate (ATP gamma S) were used to characterize the component of coronary vasodilation that was mediated via P2Y receptors. UTP at 0.25 microM was ineffective and did not induce vasodilation. Perfusion with 0.25 microM ADP resulted in a vasodilation that was identical to 0.25 microM ATP. In the absence of 8-SPT the perfusion of 0.25 microM ATP gamma S produced a vasodilation that was significantly (P < 0.05) less than ATP. However, the vasodilation due to ATP gamma S, like that of adenosine, but unlike that of both ATP and ADP, was abolished in the presence of 8-SPT. The ability of ADP to induce vasodilation combined with both the lack of response to UTP and the ability of 8-SPT to abolish the vasodilation induced by ATP gamma S suggested very strongly that the component of ATP-induced coronary vasodilation in the isolated working rat heart that was mediated via P2Y receptors was achieved by the action of ADP (and not ATP) at P2Y1 receptors. 5. These results suggest that the vasodilatory action of intravascular ATP in the coronary circulation should be attributed to the dual and equal activities of adenosine and ADP acting at P1 and P2Y1 receptors respectively.
Collapse
Affiliation(s)
- Olga Korchazhkina
- Birchall Centre for Inorganic Chemistry and Materials Science, Department of Chemistry, Keele University, Keele, Staffordshire ST5 5BG
- Author for correspondence:
| | - Gordon Wright
- Centre for Science and Technology in Medicine, Keele University, Keele, Staffordshire ST5 5BG
| | - Christopher Exley
- Birchall Centre for Inorganic Chemistry and Materials Science, Department of Chemistry, Keele University, Keele, Staffordshire ST5 5BG
| |
Collapse
|
17
|
Bogdanov Y, Rubino A, Burnstock G. Characterisation of subtypes of the P2X and P2Y families of ATP receptors in the foetal human heart. Life Sci 1998; 62:697-703. [PMID: 9489506 DOI: 10.1016/s0024-3205(97)01168-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
ATP exerts a variety of actions within the myocardium, including the regulation of coronary vascular tone and modulation of the autonomic control of the heart. In order to characterise the ATP receptor subtypes involved in these effects, degenerate oligonucleotides were used to clone receptors of both P2X and P2Y families from the human foetal heart. About 1 ng of "Quick-Clone cDNA" from foetal human heart was subjected to amplification with two pairs of degenerate oligonucleotides designed to amplify subtypes of the P2X and P2Y receptor families by means of PCR reactions. The sequence analysis of 34 and 29 clones of the P2X and P2Y receptor families, respectively, demonstrated that P2X1, P2X3 and P2X4 subtypes are present in the human foetal heart together with P2Y6, P2Y2 and P2Y4 receptors. P2X1 and P2Y4 receptor subtypes were here characterised for the first time in the human foetal heart. The present study provides the first molecular characterisation of ATP receptors in the foetal human heart. The results show that many P2 receptor subtypes are expressed in the foetal human heart, perhaps contributing to developmental processes as well as to the activity of the foetal heart.
Collapse
Affiliation(s)
- Y Bogdanov
- Department of Anatomy and Developmental Biology, University College London, UK
| | | | | |
Collapse
|
18
|
Abstract
ATP is an important extracellular messenger in the coronary vasculature of the heart. To be effective its extracellular concentration must be tightly controlled and this is achieved via ectonucleotidases located in the luminal surface of the coronary endothelium. Al-ATP is a potent inhibitor of the hydrolysis of ATP and we speculated that Al-ATP released by cells into the blood would disrupt the signalling function of extracellular ATP. We tested this hypothesis by perfusing isolated working Wistar rat hearts with buffers containing either ATP or Al-ATP. The functional parameters measured were, coronary flow, heart rate and pulsatile power. A number of control perfusions including adenosine, ATP-gamma-S and Al were used to identify those effects which might be specific to ATP and Al-ATP. Al-ATP did not appear to inhibit the function of the endothelial ectonucleotidases. Both ATP and Al-ATP produced a significant increase in coronary flow and this could be attributed to a coronary vasodilation. Interestingly, whilst the effect of ATP was reversible that of Al-ATP was not. ATP caused a reduction in heart rate which was potentiated by aluminium. The negatively chronotropic effect of Al-ATP was mediated via a mechanism which was either distinct from or in addition to the similar response known to be caused by adenosine. We have demonstrated for the first time an influence of Al-ATP on heart function. Perhaps more pertinently we present the first evidence that Al-ATP may influence the function of ATP-specific receptors.
Collapse
Affiliation(s)
- O Korchazhkina
- Birchall Centre for Inorganic Chemistry and Materials Science, Department of Chemistry, Keele University, Staffordshire, UK.
| | | | | |
Collapse
|
19
|
Communi D, Govaerts C, Parmentier M, Boeynaems JM. Cloning of a human purinergic P2Y receptor coupled to phospholipase C and adenylyl cyclase. J Biol Chem 1997; 272:31969-73. [PMID: 9405388 DOI: 10.1074/jbc.272.51.31969] [Citation(s) in RCA: 274] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Clones encoding a new human P2Y receptor, provisionally called P2Y11, have been isolated from human placenta complementary DNA and genomic DNA libraries. The 1113-base pair open reading frame is interrupted by one intron. The P2Y11 receptor is characterized by considerably larger second and third extracellular loops than the subtypes described so far. The deduced amino acid sequence exhibits 33% amino acid identity with the P2Y1 receptor, its closest homolog. Northern blot analysis detected human P2Y11 receptor messenger RNA in spleen and HL-60 cells. The level of P2Y11 transcripts was strongly increased in these cells after granulocyte differentiation induced by retinoic acid or dimethyl sulfoxide. The new receptor was stably expressed in 1321N1 astrocytoma and CHO-K1 cells, where it couples to the stimulation of both the phosphoinositide and adenylyl cyclase pathways, a unique feature among the P2Y family. The rank order of agonists potency was: ATP > 2-methylthio-ATP >>> ADP, whereas UTP and UDP were inactive, indicating that it behaves as a selective purinoceptor.
Collapse
Affiliation(s)
- D Communi
- Institute of Interdisciplinary Research, School of Medicine, Erasme Hospital, Université Libre de Bruxelles, 1070 Brussels, Belgium.
| | | | | | | |
Collapse
|
20
|
Seye CI, Gadeau AP, Daret D, Dupuch F, Alzieu P, Capron L, Desgranges C. Overexpression of P2Y2 purinoceptor in intimal lesions of the rat aorta. Arterioscler Thromb Vasc Biol 1997; 17:3602-10. [PMID: 9437211 DOI: 10.1161/01.atv.17.12.3602] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Extracellular nucleotides, particularly ATP, are involved in the modulation of arterial vasomotricity via P2 purinoceptors present on smooth muscle and endothelial cells. These nucleotides could also be implicated in the smooth muscle cell hyperplasia observed in intimal lesions. In this study, we tried to define the potential role of the P2Y2 (P2u) purinoceptor by studying its expression in normal and balloon-injured rat aortas. The cloning of a rat P2Y2 cDNA from a rat smooth muscle cell cDNA library made it possible to study P2Y2 expression both by Northern blot and in situ hybridization. Northern blot experiments indicated that P2Y2 mRNA was present in rat medial aortic smooth muscle and in cultured rat aortic smooth muscle cells. In situ hybridization indicated that P2Y2 mRNA was present in endothelial cells of the intima and in some smooth muscle cells scattered throughout the media of adult rat aortas, while almost all medial smooth muscle cells of rat embryo aorta expressed this receptor. In contrast with adult aortic media, the majority of neointimal smooth muscle cells found in aortic intimal lesions either 8 or 20 days after balloon injury were positive for P2Y2 mRNA. Moreover, a subpopulation of neointimal cells localized at the luminal surface could be identified by a higher P2Y2 expression than the underlying neointimal smooth muscle cells. These data showing a strong expression of the P2Y2 purinoceptor in the neointima of injured arteries suggest that extracellular nucleotides may be involved, via this receptor, in the intimal hyperplasia and/or chronic constriction observed at the lesion site, and consequently in the restenotic process.
Collapse
Affiliation(s)
- C I Seye
- Unité 441 d'Athérosclérose de l'Institut National de la Santé et de la Recherche Médicale, Pessac, France
| | | | | | | | | | | | | |
Collapse
|
21
|
Martin KA, Kertesy SB, Dubyak GR. Down-regulation of P2U-purinergic nucleotide receptor messenger RNA expression during in vitro differentiation of human myeloid leukocytes by phorbol esters or inflammatory activators. Mol Pharmacol 1997; 51:97-108. [PMID: 9016351 DOI: 10.1124/mol.51.1.97] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
HL-60 human promyelocytic leukocytes express G protein-coupled P2U-purinergic nucleotide receptors (P2UR or P2Y2R) that activate inositol phospholipid hydrolysis and Ca24 mobilization in response to ATP or UTP. We examined the expression of functional P2UR and P2UR mRNA levels during in vitro differentiation of HL-60 cells by dibutyryl-cAMP (Bt2cAMP), which induces a granulocyte/neutrophil phenotype, or by phorbol-12-myristate-13-acetate (PMA), which induces a monocyte/macrophage phenotype. Both P2UR function and P2UR mRNA levels were only modestly attenuated during granulocytic differentiation by Bt2cAMP. In contrast, P2UR function, as assayed by either Ca2+ mobilization or inositol trisphosphate generation, was greatly reduced in PMA-differentiated cells. This inhibition of P2UR function was strongly correlated with PMA-induced decreases in P2UR mRNA levels, as assayed by Northern blot analysis or reverse transcription-polymerase chain reaction-based quantification. Although PMA induced an early, transient up-regulation of P2UR mRNA, this was rapidly followed by a sustained decrease in P2UR mRNA to a level 5-10-fold lower than that in undifferentiated HL-60 cells. The half-life of the P2UR transcript in HL-60 cells was approximately 60 min, and this was not affected by acute exposure (< or = 4 hr) to Bt2cAMP or PMA. PMA down-regulated P2UR mRNA in THP-1 monocytes and HL-60 granulocytes but not in A431 human epithelial cells or human keratinocytes. P2UR mRNA was also down-regulated in THP-1 monocytes differentiated into inflammatory macrophages by gamma-interferon and endotoxin. These data indicate that myeloid leukocytes possess tissue-specific mechanisms for the rapid modulation of P2UR expression and function during differentiation and inflammatory activation.
Collapse
Affiliation(s)
- K A Martin
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4970, USA
| | | | | |
Collapse
|
22
|
Pirotton S, Communi D, Motte S, Janssens R, Boeynaems JM. Endothelial P2-purinoceptors: subtypes and signal transduction. JOURNAL OF AUTONOMIC PHARMACOLOGY 1996; 16:353-6. [PMID: 9131415 DOI: 10.1111/j.1474-8673.1996.tb00052.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
1. Adenine nucleotides stimulate the synthesis and release of prostacyclin and nitric oxide (two potent platelet aggregation inhibitors) by endothelial cells from different origins. These responses are mediated by P2 purinergic receptors, coupled to the production of inositol (1,4,5)trisphosphate (InsP3) and to the increase of intracytoplasmic calcium concentration. 2. In bovine aortic endothelial cells (BAEC), both 2-MeSATP and UTP stimulate the production of InsP3. By experiments of additivity and cross desensitization, we have confirmed the expression of both P2Y/P2Y1 and P2U/P2Y2 receptors on these cells. Moreover, these receptors are not segregated on different subpopulations but are co-localized on the same cells. 3. The action of UTP on InsP3 production was inhibited by pertussis toxin and was unaffected by a pretreatment with phorbol 12-myristate, 13-acetate (PMA). On the other hand, the response induced by 2-MeSATP was inhibited by PMA but insensitive to pertussis toxin. These results suggest that P2Y/P2Y1 and P2U/P2Y2 receptors are respectively coupled to Gq/G11 and G1 proteins. 4. Northern blotting experiments revealed the expression of the P2Y1 (doublet of 2 and 2.2 kb) and of the P2Y2 (2.4 kb) receptor messengers in BAEC. A signal corresponding to the P2Y2 mRNA was also detectable in human umbilical vein endothelial cells. 5. These various results thus demonstrate the expression of the P2Y1 and P2Y2 receptors in vascular endothelial cells.
Collapse
Affiliation(s)
- S Pirotton
- Institute of Interdisciplinary Research, Faculte de Médecine, Brussels, Belgium
| | | | | | | | | |
Collapse
|
23
|
Webb TE, Boluyt MO, Barnard EA. Molecular biology of P2Y purinoceptors: expression in rat heart. JOURNAL OF AUTONOMIC PHARMACOLOGY 1996; 16:303-7. [PMID: 9131403 DOI: 10.1111/j.1474-8673.1996.tb00040.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
1. Application of molecular biology to the study of P2Y purinoceptors has led to the identification of seven such receptors. Here we briefly review their properties and investigate qualitatively the expression of four rat receptor transcripts in heart. 2. The reverse transcriptase-polymerase chain reaction was used to ascertain whether the rat P2Y1, P2Y2, P2Y4 and P2Y6 receptor transcripts were expressed in whole heart, neonatal cardiac fibroblasts, neonatal cardiac myocytes and adult cardiac myocytes. 3. All receptor sequences could be amplified from neonatal rat whole heart, with P2Y6 appearing the most abundant transcript of the four. P2Y1 is expressed at higher levels in comparison to P2Y2, P2Y4 and P2Y6 in the neonatal myocyte. In the adult myocyte P2Y1, P2Y2 and P2Y6 could be amplified but P2Y4 could not be detected. In the neonatal fibroblast, P2Y1 and P2Y6 appear to be expressed at higher levels than P2Y2 and P2Y4. 4. In summary, it is concluded that multiple P2Y receptor subtypes are expressed in heart and that the expression in myocytes changes from the neonate to the adult.
Collapse
Affiliation(s)
- T E Webb
- Molecular Neurobiology Unit, Royal Free Hospital School of Medicine, London, UK
| | | | | |
Collapse
|