1
|
Blazer-Yost BL. Following Ussing's legacy: from amphibian models to mammalian kidney and brain. Am J Physiol Cell Physiol 2022; 323:C1061-C1069. [PMID: 36036449 PMCID: PMC9529261 DOI: 10.1152/ajpcell.00303.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/22/2022]
Abstract
Professor Hans H. Ussing (1911-2000) was one of the founding members of the field of epithelial cell biology. He is most famous for the electrophysiological technique that he developed to measure electrogenic ion flux across epithelial tissues. Ussing-style electrophysiology has been applied to multiple tissues and has informed fields as diverse as amphibian biology and medicine. In the latter, this technique has contributed to a basic understanding of maladies such as hypertension, polycystic kidney disease, cystic fibrosis, and diarrheal diseases to mention but a few. In addition to this valuable contribution to biological methods, Prof. Ussing also provided strong evidence for the concept of active transport several years before the elucidation of Na+K+ATPase. In addition, he provided cell biologists with the important concept of polarized epithelia with specific and different transporters found in the apical and basolateral membranes, thus providing these cells with the ability to conduct directional, active and passive transepithelial transport. My studies have used Ussing chamber electrophysiology to study the toad urinary bladder, an amphibian cell line, renal cell lines, and, most recently, choroid plexus cell lines. This technique has formed the basis of our in vitro mechanistic studies that are used in an iterative manner with animal models to better understand disease progress and treatment. I was honored to be invited to deliver the 2022 Hans Ussing Lecture sponsored by the Epithelial Transport Group of the American Physiological Society. This manuscript is a version of the material presented in that lecture.
Collapse
Affiliation(s)
- Bonnie L Blazer-Yost
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana
| |
Collapse
|
2
|
Effects of Genistein on Common Kidney Diseases. Nutrients 2022; 14:nu14183768. [PMID: 36145144 PMCID: PMC9506319 DOI: 10.3390/nu14183768] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 12/16/2022] Open
Abstract
Genistein is a naturally occurring phytoestrogen (soy or soybean products) that is classified as an isoflavone, and its structure is similar to that of endogenous estrogens; therefore, genistein can exert an estrogen-like effect via estrogen receptors. Additionally, genistein is a tyrosine kinase inhibitor, which enables it to block abnormal cell growth and proliferation signals through the inhibition of tyrosine kinase. Genistein is also an angiogenesis inhibitor and an antioxidant. Genistein has effects on kidney cells, some of the kidney’s physiological functions, and a variety of kidney diseases. First, genistein exerts a protective effect on normal cells by reducing the inflammatory response, inhibiting apoptosis, inhibiting oxidative stress, inhibiting remodeling, etc., but after cell injury, the protective effect of genistein decreases or even has the opposite effect. Second, genistein can regulate renin intake to maintain blood pressure balance, regulate calcium uptake to regulate Ca2+ and Pi balances, and reduce vasodilation to promote diuresis. Third, genistein has beneficial effects on a variety of kidney diseases (including acute kidney disease, kidney cancer, and different chronic kidney diseases), such as reducing symptoms, delaying disease progression, and improving prognosis. Therefore, this paper reviews animal and human studies on the protective effects of genistein on the kidney in vivo and in vitro to provide a reference for clinical research in the future.
Collapse
|
3
|
Abstract
The Epithelial Na+ Channel, ENaC, comprised of 3 subunits (αβγ, or sometimes δβγENaC), plays a critical role in regulating salt and fluid homeostasis in the body. It regulates fluid reabsorption into the blood stream from the kidney to control blood volume and pressure, fluid absorption in the lung to control alveolar fluid clearance at birth and maintenance of normal airway surface liquid throughout life, and fluid absorption in the distal colon and other epithelial tissues. Moreover, recent studies have also revealed a role for sodium movement via ENaC in nonepithelial cells/tissues, such as endothelial cells in blood vessels and neurons. Over the past 25 years, major advances have been made in our understanding of ENaC structure, function, regulation, and role in human disease. These include the recently solved three-dimensional structure of ENaC, ENaC function in various tissues, and mutations in ENaC that cause a hereditary form of hypertension (Liddle syndrome), salt-wasting hypotension (PHA1), or polymorphism in ENaC that contributes to other diseases (such as cystic fibrosis). Moreover, great strides have been made in deciphering the regulation of ENaC by hormones (e.g., the mineralocorticoid aldosterone, glucocorticoids, vasopressin), ions (e.g., Na+ ), proteins (e.g., the ubiquitin-protein ligase NEDD4-2, the kinases SGK1, AKT, AMPK, WNKs & mTORC2, and proteases), and posttranslational modifications [e.g., (de)ubiquitylation, glycosylation, phosphorylation, acetylation, palmitoylation]. Characterization of ENaC structure, function, regulation, and role in human disease, including using animal models, are described in this article, with a special emphasis on recent advances in the field. © 2021 American Physiological Society. Compr Physiol 11:1-29, 2021.
Collapse
Affiliation(s)
- Daniela Rotin
- The Hospital for Sick Children, and The University of Toronto, Toronto, Canada
| | - Olivier Staub
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
4
|
Hill MA, Yang Y, Zhang L, Sun Z, Jia G, Parrish AR, Sowers JR. Insulin resistance, cardiovascular stiffening and cardiovascular disease. Metabolism 2021; 119:154766. [PMID: 33766485 DOI: 10.1016/j.metabol.2021.154766] [Citation(s) in RCA: 348] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/10/2021] [Accepted: 03/17/2021] [Indexed: 12/18/2022]
Abstract
The cardiometabolic syndrome (CMS) and obesity are typically characterized by a state of metabolic insulin resistance. As global and US rates of obesity increase there is an acceleration of the incidence and prevalence of insulin resistance along with associated cardiovascular disease (CVD). Under physiological conditions insulin regulates glucose homeostasis by enhancing glucose disposal in insulin sensitive tissues while also regulating delivery of nutrients through its vasodilation actions on small feed arteries. Specifically, insulin-mediated production of nitric oxide (NO) from the vascular endothelium leads to increased blood flow enhancing disposal of glucose. Typically, insulin resistance is considered as a decrease in sensitivity or responsiveness to the metabolic actions of insulin including insulin-mediated glucose disposal. However, a decreased sensitivity to the normal vascular actions of insulin, especially diminished nitric oxide production, plays an additional important role in the development of CVD in states of insulin resistance. One mechanism by which insulin resistance and attendant hyperinsulinemia promote CVD is via increases in vascular stiffness. Although obesity and insulin resistance are known to be associated with substantial increases in the prevalence of vascular fibrosis and stiffness the mechanisms and mediators that underlie vascular stiffening in insulin resistant states are complex and have only recently begun to be addressed. Current evidence supports the role of increased plasma levels of aldosterone and insulin and attendant reductions in bioavailable NO in the pathogenesis of impaired vascular relaxation and vascular stiffness in the CMS and obesity. Aldosterone and insulin both increase the activity of serum and glucocorticoid kinase 1 (SGK-1) which in turn is a major regulator of vascular and renal sodium (Na+) channel activity.The importance of SGK-1 in the pathogenesis of the CMS is highlighted by observations that gain of function mutations in SGK-1 in humans promotes hypertension, insulin resistance and obesity. In endothelial cells, an increase in Na+ flux contributes to remodeling of the cytoskeleton, reduced NO bioavailability and vascular stiffening. Thus, endothelial SGK-1 may represent a point of convergence for insulin and aldosterone signaling in arterial stiffness associated with obesity and the CMS. This review examines our contemporary understanding of the link between insulin resistance and increased vascular stiffness with emphasis placed on a role for enhanced SGK-1 signaling as a key node in this pathological process.
Collapse
Affiliation(s)
- Michael A Hill
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA; Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65212, USA.
| | - Yan Yang
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
| | - Liping Zhang
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA; Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Zhe Sun
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA; Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Guanghong Jia
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA; Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, MO 65212, USA; Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Alan R Parrish
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - James R Sowers
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA; Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, MO 65212, USA; Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65212, USA; Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA.
| |
Collapse
|
5
|
Hill MA, Jaisser F, Sowers JR. Role of the vascular endothelial sodium channel activation in the genesis of pathologically increased cardiovascular stiffness. Cardiovasc Res 2020; 118:130-140. [PMID: 33188592 DOI: 10.1093/cvr/cvaa326] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/10/2020] [Accepted: 10/26/2020] [Indexed: 12/24/2022] Open
Abstract
Cardiovascular (CV) stiffening represents a complex series of events evolving from pathological changes in individual cells of the vasculature and heart which leads to overt tissue fibrosis. While vascular stiffening occurs naturally with ageing it is accelerated in states of insulin (INS) resistance, such as obesity and type 2 diabetes. CV stiffening is clinically manifested as increased arterial pulse wave velocity and myocardial fibrosis-induced diastolic dysfunction. A key question that remains is how are these events mechanistically linked. In this regard, heightened activation of vascular mineralocorticoid receptors (MR) and hyperinsulinaemia occur in obesity and INS resistance states. Further, a downstream mediator of MR and INS receptor activation, the endothelial cell Na+ channel (EnNaC), has recently been identified as a key molecular determinant of endothelial dysfunction and CV fibrosis and stiffening. Increased activity of the EnNaC results in a number of negative consequences including stiffening of the cortical actin cytoskeleton in endothelial cells, impaired endothelial NO release, increased oxidative stress-meditated NO destruction, increased vascular permeability, and stimulation of an inflammatory environment. Such endothelial alterations impact vascular function and stiffening through regulation of vascular tone and stimulation of tissue remodelling including fibrosis. In the case of the heart, obesity and INS resistance are associated with coronary vascular endothelial stiffening and associated reductions in bioavailable NO leading to heart failure with preserved systolic function (HFpEF). After a brief discussion on mechanisms leading to vascular stiffness per se, this review then focuses on recent findings regarding the role of INS and aldosterone to enhance EnNaC activity and associated CV stiffness in obesity/INS resistance states. Finally, we discuss how coronary artery-mediated EnNaC activation may lead to cardiac fibrosis and HFpEF, a condition that is especially pronounced in obese and diabetic females.
Collapse
Affiliation(s)
- Michael A Hill
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA.,Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, 134 Research Park Drive, Columbia, MO 65212, USA
| | - Frederic Jaisser
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, F-75006 Paris, France
| | - James R Sowers
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA.,Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, 134 Research Park Drive, Columbia, MO 65212, USA.,Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, MO 65212, USA.,Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| |
Collapse
|
6
|
Meinel S, Gekle M, Grossmann C. Mineralocorticoid receptor signaling: crosstalk with membrane receptors and other modulators. Steroids 2014; 91:3-10. [PMID: 24928729 DOI: 10.1016/j.steroids.2014.05.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 05/16/2014] [Accepted: 05/28/2014] [Indexed: 12/30/2022]
Abstract
The mineralocorticoid receptor (MR) belongs to the steroid receptor superfamily. Classically, it acts as a ligand-bound transcription factor in epithelial tissues, where it regulates water and electrolyte homeostasis and controls blood pressure. Additionally, the MR has been shown to elicit pathophysiological effects including inflammation, fibrosis and remodeling processes in the cardiovascular system and the kidneys and MR antagonists have proven beneficial for patients with certain cardiovascular and renal disease. The underlying molecular mechanisms that mediate MR effects have not been fully elucidated but very likely rely on interactions with other signaling pathways in addition to genomic actions at hormone response elements. In this review we will focus on interactions of MR signaling with different membrane receptors, namely receptor tyrosine kinases and the angiotensin II receptor because of their potential relevance for disease. In addition, GPR30 is discussed as a new aldosterone receptor. To gain insights into the problem why the MR only seems to mediate pathophysiological effects in the presence of additional permissive factors we will also briefly discuss factors that lead to modulation of MR activity as well. Overall, MR signaling is part of an intricate network that still needs to be investigated further.
Collapse
Affiliation(s)
- S Meinel
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Germany
| | - M Gekle
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Germany
| | - C Grossmann
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Germany.
| |
Collapse
|
7
|
Pavlov TS, Ilatovskaya DV, Levchenko V, Li L, Ecelbarger CM, Staruschenko A. Regulation of ENaC in mice lacking renal insulin receptors in the collecting duct. FASEB J 2013; 27:2723-32. [PMID: 23558339 DOI: 10.1096/fj.12-223792] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The epithelial sodium channel (ENaC) is one of the central effectors involved in regulation of salt and water homeostasis in the kidney. To study mechanisms of ENaC regulation, we generated knockout mice lacking the insulin receptor (InsR KO) specifically in the collecting duct principal cells. Single-channel analysis in freshly isolated split-open tubules demonstrated that the InsR-KO mice have significantly lower ENaC activity compared to their wild-type (C57BL/6J) littermates when animals were fed either normal or sodium-deficient diets. Immunohistochemical and Western blot assays demonstrated no significant changes in expression of ENaC subunits in InsR-KO mice compared to wild-type littermates. Insulin treatment caused greater ENaC activity in split-open tubules isolated from wild-type mice but did not have this effect in the InsR-KO mice. Thus, these results suggest that insulin increases ENaC activity via its own receptor affecting the channel open probability. To further determine the mechanism of the action of insulin on ENaC, we used mouse mpkCCDc14 principal cells. Insulin significantly augmented amiloride-sensitive transepithelial flux in these cells. Pretreatment of the mpkCCDc14 cells with phosphatidylinositol 3-kinase (LY294002; 10 μM) or mTOR (PP242; 100 nM) inhibitors precluded this effect. This study provides new information about the importance of insulin receptors expressed in collecting duct principal cells for ENaC activity.
Collapse
Affiliation(s)
- Tengis S Pavlov
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
| | | | | | | | | | | |
Collapse
|
8
|
Brands MW, Manhiani MM. Sodium-retaining effect of insulin in diabetes. Am J Physiol Regul Integr Comp Physiol 2012; 303:R1101-9. [PMID: 23034715 DOI: 10.1152/ajpregu.00390.2012] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Insulin has long been hypothesized to cause sodium retention, potentially of enough magnitude to contribute to hypertension in obesity, metabolic syndrome, and Type II diabetes. There is an abundance of supportive evidence from correlational analyses in humans, acute insulin infusion studies in humans and animals, and chronic insulin infusion studies in rats. However, the absence of hypertension in human insulinoma patients, and negative results for sodium-retaining or blood pressure effects of chronic insulin infusion in a whole series of dog studies, strongly refute the insulin hypothesis. We recently questioned whether the euglycemic, hyperinsulinemia model used for most insulin infusion studies, including the previous chronic dog studies, was the most appropriate model to test the renal actions of insulin in obesity, metabolic syndrome, and Type II diabetes. In those circumstances, hyperinsulinemia coexists with hyperglycemia. Therefore, we tested the sodium-retaining effect of insulin in chronically instrumented, alloxan-treated diabetic dogs. We used 24 h/day intravenous insulin infusion to regulate plasma insulin concentration. Induction of diabetes (∼400 mg/dl) caused sustained natriuresis and diuresis. However, if we clamped insulin at baseline, control levels, i.e., prevented it from decreasing, then the sustained natriuresis and diuresis were completely reversed, despite the same level of hyperglycemia. We also found that 24 h/day intrarenal insulin infusion had the same effect in diabetic dogs but had no sodium-retaining action in normal dogs. This new evidence that insulin has a sodium-retaining effect during hyperglycemia may have implications for maintaining sodium balance in uncontrolled Type II diabetes.
Collapse
Affiliation(s)
- Michael W Brands
- Dept. of Physiology, Medical College of Georgia, Georgia Health Sciences Univ., Augusta, GA 30912, USA.
| | | |
Collapse
|
9
|
Li L, Garikepati RM, Tsukerman S, Tiwari S, Ecelbarger CM. Salt sensitivity of nitric oxide generation and blood pressure in mice with targeted knockout of the insulin receptor from the renal tubule. Am J Physiol Regul Integr Comp Physiol 2012; 303:R505-12. [PMID: 22814664 DOI: 10.1152/ajpregu.00033.2012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
To elucidate the role of the insulin receptor (IR) on kidney nitric oxide generation and blood pressure (BP) control, we generated mice with targeted deletion of renal tubule IR using loxP recombination driven by a Ksp-cadherin promoter. Male knockout (KO) and wild-type (WT) littermates (~4 mo old) were transitioned through three 1-wk treatments: 1) low-NaCl diet (0.085%); 2) high-NaCl diet (HS; 5%); and 3) HS diet plus 3 mM tempol, a superoxide dismutase mimetic, in the drinking water. Mice were then switched to medium-NaCl (0.5%) diet for 5 days and kidneys harvested under pentobarbital anesthesia. Twenty-four-hour urinary nitrates plus nitrites were significantly higher in the WT mice under HS (2,067 ± 280 vs. 1,550 ± 230 nmol/day in WT and KO, respectively, P < 0.05). Tempol attenuated genotype differences in urinary nitrates plus nitrites. A rise in BP with HS was observed only in KO mice and not affected by tempol (mean arterial pressure, dark period, HS, 106 ± 5 vs. 119 ± 4 mmHg, for WT and KO, respectively, P < 0.05). Renal outer medullary protein levels of nitric oxide synthase (NOS) isoforms by Western blot (NOS1-3 and phosphorylated-S1177-NOS3) revealed significantly lower band density for NOS1 (130-kDa isoform) in the KO mice. A second study, when mice were euthanized under HS conditions, confirmed significantly lower NOS1 (130 kDa) in the KO, with an even more substantial (>50%) reduction of the 160-kDa NOS1 isoform. These studies suggest that the loss of renal IR signaling impairs renal nitric oxide production. This may be important in BP control, especially in insulin-resistant states, such as the metabolic syndrome.
Collapse
Affiliation(s)
- Lijun Li
- Department of Medicine, Georgetown University, Washington, DC 20007, USA
| | | | | | | | | |
Collapse
|
10
|
The role of the phosphoinositide pathway in hormonal regulation of the epithelial sodium channel. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 559:359-68. [PMID: 18727255 DOI: 10.1007/0-387-23752-6_33] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
In summary, insulin and aldosterone stimulate phosphatidylinositol phosphorylation, thus indicating the existence of a regulated protein at or before the PI3-kinase step. Aldosterone induces the synthesis of sgk, a downstream element of the PI pathway. Sgk is necessary, but not rate-limiting, for aldosterone- and insulin-stimulated Na+ transport. However, the enzyme appears to be rate-limiting for the natriferic action of ADH. Insulin-stimulated Na+ transport, an acute response, is dependent on PI3-kinase activity but the magnitude of the response is not altered by a cellular excess of sgk. ADH-stimulated transport is not dependent on PI3-kinase but is potentiated by an excess of sgk. The foregoing data indicate that the PI pathway is involved in several steps of the natriferic action of hormones and intersects with other pathways which regulate ENaC. Furthermore, the data are consistent with the hypothesis that activation of PI3-kinase may ultimately stimulate channel insertion as well as regulate channel endocytosis. Both of these phenomena can result in an increase of ENaC-mediated Na+ transport.
Collapse
|
11
|
Lee IH, Dinudom A, Sanchez-Perez A, Kumar S, Cook DI. Akt mediates the effect of insulin on epithelial sodium channels by inhibiting Nedd4-2. J Biol Chem 2007; 282:29866-73. [PMID: 17715136 DOI: 10.1074/jbc.m701923200] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The epithelial sodium channel (ENaC) plays an important role in transepithelial Na(+) absorption; hence its function is essential for maintaining Na(+) and fluid homeostasis and regulating blood pressure. Insulin is one of the hormones that regulates activity of ENaC. In this study, we investigated the contribution of two related protein kinases, Akt (also known as protein kinase B) and the serum- and glucocorticoid-dependent kinase (Sgk), on insulin-induced ENaC activity in Fisher rat thyroid cells expressing ENaC. Overexpression of Akt1 or Sgk1 significantly increased ENaC activity, whereas expression of a dominant-negative construct of Akt1, Akt1(K179M), decreased basal activity of ENaC. Inhibition of the endogenous expression of Akt1 and Sgk1 by short interfering RNA not only inhibited ENaC but also disrupted the stimulatory effect on ENaC of insulin and of the downstream effectors of insulin, phosphatidylinositol 3-kinase and PDK1. Conversely, overexpression of Akt1 or Sgk1 increased expression of ENaC at the cell membrane and overcame the inhibitory effect of Nedd4-2 on ENaC. Furthermore, mutation of consensus phosphorylation sites on Nedd4-2 for Akt1 and Sgk1, Ser(342) and Ser(428), completely abolished the inhibitory effect of Sgk1 and Akt1 on Nedd4-2 action. Together these data suggest that both Akt and Sgk are components of an insulin signaling pathway that increases Na(+) absorption by up-regulating membrane expression of ENaC via a regulatory system that involves inhibition of Nedd4-2.
Collapse
Affiliation(s)
- Il-Ha Lee
- Discipline of Physiology, School of Medical Science, Faculty of Medicine, University of Sydney, Sydney, New South Wales 2006, Australia
| | | | | | | | | |
Collapse
|
12
|
Bens M, Chassin C, Vandewalle A. Regulation of NaCl transport in the renal collecting duct: lessons from cultured cells. Pflugers Arch 2006; 453:133-46. [PMID: 16937117 DOI: 10.1007/s00424-006-0123-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Revised: 06/14/2006] [Accepted: 06/19/2006] [Indexed: 11/29/2022]
Abstract
The fine control of NaCl absorption regulated by hormones takes place in the distal nephron of the kidney. In collecting duct principal cells, the epithelial sodium channel (ENaC) mediates the apical entry of Na(+), which is extruded by the basolateral Na(+),K(+)-ATPase. Simian virus 40-transformed and "transimmortalized" collecting duct cell lines, derived from transgenic mice carrying a constitutive, conditionally, or tissue-specific promoter-regulated large T antigen, have been proven to be valuable tools for studying the mechanisms controlling the cell surface expression and trafficking of ENaC and Na(+),K(+)-ATPase. These cell lines have made it possible to identify sets of aldosterone- and vasopressin-stimulated proteins, and have provided new insights into the concerted mechanism of action of serum- and glucocorticoid-inducible kinase 1 (Sgk1), ubiquitin ligase Nedd4-2 (neural precursor cell-expressed, developmentally down-regulated protein 4-2), and 14-3-3 regulatory proteins in modulating ENaC-mediated Na(+) currents. Epidermal growth factor and induced leucine zipper protein have also been shown to repress and stimulate ENaC-dependent Na(+) absorption, respectively, by activating or repressing the mitogen-activated protein kinase externally regulated kinase(1/2). Overall, these findings have provided evidence suggesting that multiple pathways are involved in regulating NaCl absorption in the distal nephron.
Collapse
Affiliation(s)
- M Bens
- INSERM, U773, Centre de Recherche Biomédicale Bichat-Beaujon, Faculté de Médecine Xavier Bichat, 16 rue Henri Huchard, BP 416, 75870 Paris, France
| | | | | |
Collapse
|
13
|
Shane MA, Nofziger C, Blazer-Yost BL. Hormonal regulation of the epithelial Na+ channel: from amphibians to mammals. Gen Comp Endocrinol 2006; 147:85-92. [PMID: 16405890 DOI: 10.1016/j.ygcen.2005.11.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2005] [Revised: 11/15/2005] [Accepted: 11/21/2005] [Indexed: 11/15/2022]
Abstract
High-resistance epithelia derived from amphibian sources such as frog skin, toad urinary bladder, and the A6 Xenopus laevis kidney cell line have been widely used to elucidate the underlying mechanisms involved in the regulation of vectorial ion transport. More recently, the isolation of high-resistance mammalian cell lines has provided model systems in which to study differences and similarities between the regulation of ion transporter function in amphibian and mammalian renal epithelia. In the present study, we have compared the natriferic (Na+ retaining) responses to aldosterone, insulin, and vasotocin/vasopressin in the A6 and mpkCCDcl4 (mouse principal cells of the kidney cortical collecting duct) cell lines. The functional responses of the epithelial Na+ channel (ENaC) to hormonal stimulation were remarkably similar in both the amphibian and mammalian lines. In addition, insulin- and aldosterone-stimulated, reabsorptive Na+ transport in both cell lines requires the presence of functional PI3-kinase.
Collapse
Affiliation(s)
- Michael Anne Shane
- Department of Biology, Indiana University-Purdue University at Indianapolis, USA
| | | | | |
Collapse
|
14
|
Blazer-Yost BL, Nofziger C. Phosphoinositide lipid second messengers: new paradigms for transepithelial signal transduction. Pflugers Arch 2004; 450:75-82. [PMID: 15614575 DOI: 10.1007/s00424-004-1371-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Accepted: 11/01/2004] [Indexed: 10/26/2022]
Abstract
Multiple forms of phosphatidylinositol are generated by differential phosphorylation of the inositol headgroup. These phosphoinositides, specifically PI(4,5)P2, have been implicated as modulators in a variety of transport processes. The data indicate that phosphoinositides can modulate transporters directly or via the activation of down-stream signaling components. The phosphoinositide pathway has been linked to changes in transporter kinetics, intracellular signaling, membrane targeting and membrane stability. Recent results obtained for several of the well-characterized transport systems suggest the need to reassess the role of PI(4,5)P2 and question whether lower abundance forms of the phosphoinositides, notably PI(3,4,5)P3 (PIP3) and PI(3,4)P2, are the pertinent transport regulators. In contrast to PI(4,5)P2, these latter forms represent a dynamic, regulated pool, the characteristics of which are more compatible with the nature of signaling intermediates. A recently described, novel transepithelial signaling pathway has been demonstrated for PIP3 in which a signal initiated on the basolateral membrane is transduced to the apical membrane entirely within the planar face of the inner leaflet of the plasma membrane. The new paradigms emerging from recent studies may be widely applicable to transporter regulation in other cell types and are particularly relevant for signaling in polarized cells.
Collapse
Affiliation(s)
- Bonnie L Blazer-Yost
- Department of Biology, Indiana University-Purdue University at Indianapolis, 723 West Michigan St., Indianapolis, IN, 46202, USA.
| | | |
Collapse
|
15
|
Abstract
Perturbations of cell hydration as provoked by changes in ambient osmolarity or under isoosmotic conditions by hormones, second messengers, intracellular substrate accumulation, or reactive oxygen intermediates critically contribute to the physiological regulation of cell function. In general an increase in cell hydration stimulates anabolic metabolism and proliferation and provides cytoprotection, whereas cellular dehydration leads to a catabolic situation and sensitizes cells to apoptotic stimuli. Insulin produces cell swelling by inducing a net K+ and Na+ accumulation inside the cell, which results from a concerted activation of Na+/H+ exchange, Na+/K+/2Cl- symport, and the Na+/K(+)-ATPase. In the liver, insulin-induced cell swelling is critical for stimulation of glycogen and protein synthesis as well as inhibition of autophagic proteolysis. These insulin effects can largely be mimicked by hypoosmotic cell swelling, pointing to a role of cell swelling as a trigger of signal transduction. This article discusses insulin-induced signal transduction upstream of swelling and introduces the hypothesis that cell swelling as a signal amplifyer represents an essential component in insulin signaling, which contributes to the full response to insulin at the level of signal transduction and function. Cellular dehydration impairs insulin signaling and may be a major cause of insulin resistance, which develops in systemic hyperosmolarity, nutrient deprivation, uremia, oxidative challenges, and unbalanced production of insulin-counteracting hormones. Hydration changes affect cell functions at multiple levels (such as transcriptom, proteom, phosphoproteom, and the metabolom) and a system biological approach may allow us to develop a more holistic view on the hydration dependence of insulin signaling in the future.
Collapse
Affiliation(s)
- Freimut Schliess
- Clinic for Gastroenterology, Hepatology and Infectiology, Heinrich-Heine-University, Düsseldorf, Germany
| | | |
Collapse
|
16
|
Macala LJ, Hayslett JP. Basolateral and apical A1 adenosine receptors mediate sodium transport in cultured renal epithelial (A6) cells. Am J Physiol Renal Physiol 2002; 283:F1216-25. [PMID: 12388417 DOI: 10.1152/ajprenal.00085.2002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
There are conflicting reports in the literature regarding the adenosine receptor that mediates the increase in sodium transport in the A6 cell. In this study we used specific A1 and A2 adenosine receptor agonists and antagonists, as well as two different subclones of the A6 cell, to determine which adenosine receptor mediates the increase in sodium transport. In the A6S2 subclone, basolateral and apical N6-cyclohexyladenosine (CHA), a selective A1 receptor agonist, stimulated sodium transport at a threshold concentration <10(-7) M, whereas CGS-21680, a selective A2 receptor agonist, had a threshold concentration that was at least 10(-5) M. The A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) was found to have a nonspecific effect on CHA-stimulated sodium transport, whereas the A2 receptor antagonist 8-(3-chlorostyryl)caffeine (CSC) had no effect. As with the A6S2 subclone, basolateral and apical CHA stimulated sodium transport at a nanomolar concentration in the A6C1 subclone and the threshold concentration for CGS-21680 was in the high micromolar range. Concurrent with the increase in 1 receptor in different subclones of the A6 cell, including a subclone capable of anion secretion.
Collapse
Affiliation(s)
- Lawrence J Macala
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8029, USA
| | | |
Collapse
|
17
|
Tallini NY, Stoner LC. Amiloride-sensitive sodium current in everted Ambystoma initial collecting tubule: short-term insulin effects. Am J Physiol Cell Physiol 2002; 283:C1171-81. [PMID: 12225981 DOI: 10.1152/ajpcell.00606.2001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Whole cell patch-clamp techniques were used to investigate amiloride-sensitive sodium conductance (G(Na)) in the everted initial collecting tubule of Ambystoma. Accessibility to both the apical and basolateral membranes made this preparation ideal for studying the regulation of sodium transport by insulin. G(Na) accounted for 20% of total cell conductance (G(T)) under control conditions. A resting membrane potential of -75 +/- 2 mV (n = 7) together with the fact that G(T) is stable with time suggested that the cells studied were viable. Measurements of capacitance and use of a known uncoupling agent, heptanol, suggested that cells were not electrically coupled. Thus the values of G(T) and G(Na) represented individual principal cells. Exposure of the basolateral membrane to insulin (1 mU/ml) for 10-60 min significantly (P < 0.05) increased the normalized G(Na) [1.2 +/- 0.3 nS (n = 6) vs. 2.0 +/- 0.4 nS (n = 6)]. Cell-attached patch-clamp techniques were used to further elucidate the mechanism by which insulin increases amiloride-sensitive epithelial sodium channel (ENaC) activity. In the presence of insulin there was no apparent change in either the number of active levels/patch or the conductance of ENaC. The open probability increased significantly (P < 0.01) from 0.21 +/- 0.04 (n = 6) to 0.46 +/- 0.07 (n = 6). Thus application of insulin enhanced sodium reabsorption by increasing the fraction of time the channel spent in the open state.
Collapse
Affiliation(s)
- N Yvonne Tallini
- Department of Neuroscience and Physiology, State University of New York, Upstate Medical University, 766 Irving Avenue, Syracuse, NY 13210, USA.
| | | |
Collapse
|
18
|
Kamynina E, Staub O. Concerted action of ENaC, Nedd4-2, and Sgk1 in transepithelial Na(+) transport. Am J Physiol Renal Physiol 2002; 283:F377-87. [PMID: 12167587 DOI: 10.1152/ajprenal.00143.2002] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The epithelial Na(+) channel (ENaC), located in the apical membrane of renal aldosterone-responsive epithelia, plays an essential role in controlling the Na(+) balance of extracellular fluids and hence blood pressure. As of now, ENaC is the only Na(+) transport protein for which genetic evidence exists for its involvement in the genesis of both hypertension (Liddle's syndrome) and hypotension (pseudohypoaldosteronism type 1). The regulation of ENaC involves a variety of hormonal signals (aldosterone, vasopressin, insulin), but the molecular mechanisms behind this regulation are mostly unknown. Two regulatory proteins have gained interest in recent years: the ubiquitin-protein ligase neural precursor cell-expressed, developmentally downregulated gene 4 isoform Nedd4-2, which negatively controls ENaC cell surface expression, and serum glucocorticoid-inducible kinase 1 (Sgk1), which is an aldosterone- and insulin-dependent, positive regulator of ENaC density at the plasma membrane. Here, we summarize present ideas about Sgk1 and Nedd4-2 and the lines of experimental evidence, suggesting that they act sequentially in the regulatory pathways governed by aldosterone and insulin and regulate ENaC number at the plasma membrane.
Collapse
Affiliation(s)
- Elena Kamynina
- Institute of Pharmacology and Toxicology, University of Lausanne, CH-1005 Lausanne, Switzerland
| | | |
Collapse
|
19
|
Suaud L, Li J, Jiang Q, Rubenstein RC, Kleyman TR. Genistein restores functional interactions between Delta F508-CFTR and ENaC in Xenopus oocytes. J Biol Chem 2002; 277:8928-33. [PMID: 11773060 DOI: 10.1074/jbc.m111482200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR), in addition to its Cl(-) channel properties, has regulatory interactions with other epithelial ion channels including the epithelial Na(+) channel (ENaC). Both the open probability and surface expression of wild type CFTR Cl(-) channels are increased significantly when CFTR is co-expressed in Xenopus oocytes with alphabetagamma-ENaC, and conversely, the activity of ENaC is inhibited following wild type CFTR activation. Using the Xenopus oocyte expression system, a lack of functional regulatory interactions between DeltaF508-CFTR and ENaC was observed following activation of DeltaF508-CFTR by forskolin and isobutylmethylxanthine (IBMX). Whole cell currents in oocytes expressing ENaC alone decreased in response to genistein but increased in response to a combination of forskolin and IBMX followed by genistein. In contrast, ENaC currents in oocytes co-expressing ENaC and DeltaF508-CFTR remained stable following stimulation with forskolin/IBMX/genistein. Furthermore, co-expression of DeltaF508-CFTR with ENaC enhanced the forskolin/IBMX/genistein-mediated activation of DeltaF508-CFTR. Our data suggest that genistein restores regulatory interactions between DeltaF508-CFTR and ENaC and that combinations of protein repair agents, such as 4-phenylbutyrate and genistein, may be necessary to restore DeltaF508-CFTR function in vivo.
Collapse
Affiliation(s)
- Laurence Suaud
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, 19104, USA
| | | | | | | | | |
Collapse
|
20
|
Faletti CJ, Perrotti N, Taylor SI, Blazer-Yost BL. sgk: an essential convergence point for peptide and steroid hormone regulation of ENaC-mediated Na+ transport. Am J Physiol Cell Physiol 2002; 282:C494-500. [PMID: 11832334 DOI: 10.1152/ajpcell.00408.2001] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To study the role of sgk (serum, glucocorticoid-induced kinase) in hormonal regulation of Na+ transport mediated by the epithelial Na+ channel (ENaC), clonal cell lines stably expressing human sgk, an S422A sgk mutant, or a D222A sgk mutant were created in the background of the A6 model renal epithelial cell line. Expression of normal sgk results in a 3.5-fold enhancement of basal transport and potentiation of the natriferic response to antidiuretic hormone (ADH). Transfection of a S422A mutant form of sgk, which cannot be phosphorylated by phosphatidylinositol-dependent kinase (PDK)-2, results in a cell line that is indistinguishable from the parent line in basal and hormone-stimulated Na+ transport. The D222A sgk mutant, which lacks kinase activity, functions as a dominant-negative mutant inhibiting basal as well as peptide- and steroid hormone-stimulated Na+ transport. Thus sgk activity is necessary for ENaC-mediated Na+ transport. Phosphorylation and activation by PDK-2 are necessary for sgk stimulation of ENaC. Expression of normal sgk over endogenous levels results in a potentiated natriferic response to ADH, suggesting that the enzyme is a rate-limiting step for the hormone response. In contrast, sgk does not appear to be the rate-limiting step for the cellular response to aldosterone or insulin.
Collapse
Affiliation(s)
- Carla J Faletti
- Biology Department, Indiana University-Purdue University at Indianapolis, 723 W. Michigan Street, Indianapolis, IN 46202, USA
| | | | | | | |
Collapse
|
21
|
Abstract
Ion transport in epithelia is regulated by a variety of hormonal and nonhormonal factors, including mineralocorticoids, insulin, shear stress and osmotic pressure. In mammals, the mineralocorticoid aldosterone is the principal regulator of sodium homeostasis and hence is central to the control of extracellular fluid volume and blood pressure. Aldosterone acts through a member of the nuclear receptor superfamily, the mineralocorticoid receptor (MR), to control the transcriptional activity of specific target genes. Recently, a serine/threonine kinase, SGK1 (serum and glucocorticoid-regulated kinase isoform 1) was identified as a candidate mediator of aldosterone action in the colon and distal nephron. The aldosterone-activated MR increases SGK1 gene transcription and SGK1, in turn, strongly stimulates the activity of the epithelial sodium channel (ENaC). Interestingly, other factors appear to regulate SGK1 gene expression and kinase activity. Insulin, for example, stimulates SGK1 activity (but not gene transcription) through its effects on phosphatidylinositol-3-kinase and osmotic shock appears to stimulate both SGK1 activity and gene transcription. Hence, SGK1 might integrate the effects of multiple hormonal and nonhormonal regulators of Na(+) transport in tight epithelia and thereby play a key role in volume homeostasis. It is interesting to speculate that SGK1 might be implicated in medical conditions, such as the insulin resistance syndrome, hypertension and congestive heart failure.
Collapse
Affiliation(s)
- D Pearce
- Division of Nephrology, Dept of Medicine, Box 0532, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
22
|
Blazer-Yost BL, Butterworth M, Hartman AD, Parker GE, Faletti CJ, Els WJ, Rhodes SJ. Characterization and imaging of A6 epithelial cell clones expressing fluorescently labeled ENaC subunits. Am J Physiol Cell Physiol 2001; 281:C624-32. [PMID: 11443062 DOI: 10.1152/ajpcell.2001.281.2.c624] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A6 model renal epithelial cells were stably transfected with enhanced green fluorescent protein (EGFP)-tagged alpha- or beta-subunits of the epithelial Na(+) channel (ENaC). Transfected RNA and proteins were both expressed in low abundance, similar to the endogenous levels of ENaC in native cells. In living cells, laser scanning confocal microscopy revealed a predominantly subapical distribution of EGFP-labeled subunits, suggesting a readily accessible pool of subunits available to participate in Na(+) transport. The basal level of Na(+) transport in the clonal lines was enhanced two- to fourfold relative to the parent line. Natriferic responses to insulin or aldosterone were similar in magnitude to the parent line, while forskolin-stimulated Na(+) transport was 64% greater than control in both the alpha- and beta-transfected lines. In response to forskolin, EGFP-labeled channel subunits traffic to the apical membrane. These data suggest that channel regulators, not the channel per se, form the rate-limiting step in response to insulin or aldosterone stimulation, while the number of channel subunits is important for basal as well as cAMP-stimulated Na(+) transport.
Collapse
Affiliation(s)
- B L Blazer-Yost
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Wang J, Barbry P, Maiyar AC, Rozansky DJ, Bhargava A, Leong M, Firestone GL, Pearce D. SGK integrates insulin and mineralocorticoid regulation of epithelial sodium transport. Am J Physiol Renal Physiol 2001; 280:F303-13. [PMID: 11208606 DOI: 10.1152/ajprenal.2001.280.2.f303] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The epithelial Na+ channel (ENaC) constitutes the rate-limiting step for Na+ transport across tight epithelia and is the principal target of hormonal regulation, particularly by insulin and mineralocorticoids. Recently, the serine-threonine kinase (SGK) was identified as a rapidly mineralocorticoid-responsive gene, the product of which stimulates ENaC-mediated Na+ transport. Like its close relative, protein kinase B (also called Akt), SGK's kinase activity is dependent on phosphatidylinositol 3-kinase (PI3K), a key mediator of insulin signaling. In our study we show that PI3K is required for SGK-dependent stimulation of ENaC-mediated Na+ transport as well as for the production of the phosphorylated form of SGK. In A6 kidney cells, mineralocorticoid induction of the phosphorylated form of SGK preceded the increase in Na+ transport, and specific inhibition of PI3K inhibited both phosphorylation of SGK and mineralocorticoid-induced Na+ transport. Insulin both augmented SGK phosphorylation and synergized with mineralocorticoids in stimulating Na+ transport. In a Xenopus laevis oocyte coexpression assay, SGK-stimulated ENaC activity was also markedly reduced by PI3K inhibition. Finally, in vitro-translated SGK specifically interacted with the ENaC subunits expressed in Escherichia coli as glutathione S-transferase fusion proteins. These data suggest that SGK is a PI3K-dependent integrator of insulin and mineralocorticoid actions that interacts with ENaC subunits to control Na+ entry into kidney collecting duct cells.
Collapse
Affiliation(s)
- J Wang
- Division of Nephrology, Department of Medicine, and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco 94143, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Dai LJ, Ritchie G, Kerstan D, Kang HS, Cole DE, Quamme GA. Magnesium transport in the renal distal convoluted tubule. Physiol Rev 2001; 81:51-84. [PMID: 11152754 DOI: 10.1152/physrev.2001.81.1.51] [Citation(s) in RCA: 196] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The distal tubule reabsorbs approximately 10% of the filtered Mg(2+), but this is 70-80% of that delivered from the loop of Henle. Because there is little Mg(2+) reabsorption beyond the distal tubule, this segment plays an important role in determining the final urinary excretion. The distal convoluted segment (DCT) is characterized by a negative luminal voltage and high intercellular resistance so that Mg(2+) reabsorption is transcellular and active. This review discusses recent evidence for selective and sensitive control of Mg(2+) transport in the DCT and emphasizes the importance of this control in normal and abnormal renal Mg(2+) conservation. Normally, Mg(2+) absorption is load dependent in the distal tubule, whether delivery is altered by increasing luminal Mg(2+) concentration or increasing the flow rate into the DCT. With the use of microfluorescent studies with an established mouse distal convoluted tubule (MDCT) cell line, it was shown that Mg(2+) uptake was concentration and voltage dependent. Peptide hormones such as parathyroid hormone, calcitonin, glucagon, and arginine vasopressin enhance Mg(2+) absorption in the distal tubule and stimulate Mg(2+) uptake into MDCT cells. Prostaglandin E(2) and isoproterenol increase Mg(2+) entry into MDCT cells. The current evidence indicates that cAMP-dependent protein kinase A, phospholipase C, and protein kinase C signaling pathways are involved in these responses. Steroid hormones have significant effects on distal Mg(2+) transport. Aldosterone does not alter basal Mg(2+) uptake but potentiates hormone-stimulated Mg(2+) entry in MDCT cells by increasing hormone-mediated cAMP formation. 1,25-Dihydroxyvitamin D(3), on the other hand, stimulates basal Mg(2+) uptake. Elevation of plasma Mg(2+) or Ca(2+) inhibits hormone-stimulated cAMP accumulation and Mg(2+) uptake in MDCT cells through activation of extracellular Ca(2+)/Mg(2+)-sensing mechanisms. Mg(2+) restriction selectively increases Mg(2+) uptake with no effect on Ca(2+) absorption. This intrinsic cellular adaptation provides the sensitive and selective control of distal Mg(2+) transport. The distally acting diuretics amiloride and chlorothiazide stimulate Mg(2+) uptake in MDCT cells acting through changes in membrane voltage. A number of familial and acquired disorders have been described that emphasize the diversity of cellular controls affecting renal Mg(2+) balance. Although it is clear that many influences affect Mg(2+) transport within the DCT, the transport processes have not been identified.
Collapse
Affiliation(s)
- L J Dai
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
25
|
Young DB, McCabe RD. Endocrine Control of Potassium Balance. Compr Physiol 2000. [DOI: 10.1002/cphy.cp070308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
26
|
Dai LJ, Ritchie G, Bapty BW, Kerstan D, Quamme GA. Insulin stimulates Mg2+ uptake in mouse distal convoluted tubule cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:F907-13. [PMID: 10600938 DOI: 10.1152/ajprenal.1999.277.6.f907] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Insulin has been shown to be a magnesium-conserving hormone acting, in part, through stimulation of magnesium absorption within the thick ascending limb. Although the distal convoluted tubule possesses the most insulin receptors, it is unclear what, if any, actions insulin has in the distal tubule. The effects of insulin were studied on immortalized mouse distal convoluted tubule (MDCT) cells by measuring cellular cAMP formation with radioimmunoassays and Mg2+ uptake with fluorescence techniques using mag-fura 2. To assess Mg2+ uptake, MDCT cells were first Mg(2+) depleted to 0.22 +/- 0.01 mM by culturing in Mg2+-free media for 16 h and then placed in 1.5 mM MgCl2, and the changes in intracellular Mg2+ concentration ([Mg2+]i) were measured with microfluorescence. [Mg2+]i returned to basal levels, 0.53 +/- 0.02 mM, with a mean refill rate, d([Mg2+]i)/dt, of 164 +/- 5 nM/s. Insulin stimulated Mg2+ entry in a concentration-dependent manner with maximal response of 214 +/- 12 nM/s, which represented a 30 +/- 5% increase in the mean uptake rate above control values. This was associated with a 2.5-fold increase in insulin-mediated cAMP generation (52 +/- 3 pmol. mg protein(-1). 5 min(-1)). Genistein, a tyrosine kinase inhibitor, diminished insulin-stimulated Mg2+ uptake (169 +/- 11 nM/s), but did not change insulin-mediated cAMP formation (47 +/- 5 pmol. mg protein(-1). 5 min(-1)). PTH stimulates Mg2+ entry, in part, through increases in cAMP formation. Insulin and PTH increase Mg2+ uptake in an additive fashion. In conclusion, insulin mediates Mg2+ entry, in part, by a genistein-sensitive mechanism and by modifying hormone-responsive transport. These studies demonstrate that insulin stimulates Mg2+ uptake in MDCT cells and suggest that insulin acts in concert with other peptide and steroid hormones to control magnesium conservation in the distal convoluted tubule.
Collapse
Affiliation(s)
- L J Dai
- Department of Medicine, University of British Columbia, Vancouver Hospital and Health Sciences Centre, Koerner Pavilion, Vancouver, British Columbia, Canada V6T 1Z3
| | | | | | | | | |
Collapse
|
27
|
Deachapunya C, Palmer-Densmore M, O'Grady SM. Insulin stimulates transepithelial sodium transport by activation of a protein phosphatase that increases Na-K ATPase activity in endometrial epithelial cells. J Gen Physiol 1999; 114:561-74. [PMID: 10498674 PMCID: PMC2229463 DOI: 10.1085/jgp.114.4.561] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The objective of this study was to investigate the effects of insulin and insulin-like growth factor I on transepithelial Na(+) transport across porcine glandular endometrial epithelial cells grown in primary culture. Insulin and insulin-like growth factor I acutely stimulated Na(+) transport two- to threefold by increasing Na(+)-K(+) ATPase transport activity and basolateral membrane K(+) conductance without increasing the apical membrane amiloride-sensitive Na(+) conductance. Long-term exposure to insulin for 4 d resulted in enhanced Na(+) absorption with a further increase in Na(+)-K(+) ATPase transport activity and an increase in apical membrane amiloride-sensitive Na(+) conductance. The effect of insulin on the Na(+)-K(+) ATPase was the result of an increase in V(max) for extracellular K(+) and intracellular Na(+), and an increase in affinity of the pump for Na(+). Immunohistochemical localization along with Western blot analysis of cultured porcine endometrial epithelial cells revealed the presence of alpha-1 and alpha-2 isoforms, but not the alpha-3 isoform of Na(+)-K(+) ATPase, which did not change in the presence of insulin. Insulin-stimulated Na(+) transport was inhibited by hydroxy-2-naphthalenylmethylphosphonic acid tris-acetoxymethyl ester [HNMPA-(AM)(3)], a specific inhibitor of insulin receptor tyrosine kinase activity, suggesting that the regulation of Na(+) transport by insulin involves receptor autophosphorylation. Pretreatment with wortmannin, a specific inhibitor of phosphatidylinositol 3-kinase as well as okadaic acid and calyculin A, inhibitors of protein phosphatase activity, also blocked the insulin-stimulated increase in short circuit and pump currents, suggesting that activation of phosphatidylinositol 3-kinase and subsequent stimulation of a protein phosphatase mediates the action of insulin on Na(+)-K(+) ATPase activation.
Collapse
Affiliation(s)
- Chatsri Deachapunya
- From the Departments of Physiology and Animal Science, University of Minnesota, St. Paul, Minnesota 55108
| | - Melissa Palmer-Densmore
- From the Departments of Physiology and Animal Science, University of Minnesota, St. Paul, Minnesota 55108
| | - Scott M. O'Grady
- From the Departments of Physiology and Animal Science, University of Minnesota, St. Paul, Minnesota 55108
| |
Collapse
|
28
|
Blazer-Yost BL, Păunescu TG, Helman SI, Lee KD, Vlahos CJ. Phosphoinositide 3-kinase is required for aldosterone-regulated sodium reabsorption. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:C531-6. [PMID: 10484339 DOI: 10.1152/ajpcell.1999.277.3.c531] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aldosterone, a steroid hormone, regulates renal Na+ reabsorption and, therefore, plays an important role in the maintenance of salt and water balance. In a model renal epithelial cell line (A6) we have found that phosphoinositide 3-kinase (PI 3-kinase) activity is required for aldosterone-stimulated Na+ reabsorption. Inhibition of PI 3-kinase by the specific inhibitor LY-294002 markedly reduces both basal and aldosterone-stimulated Na+ transport. Further, one of the products of PI 3-kinase, phosphatidylinositol 3,4,5-trisphosphate, is increased in response to aldosterone in intact A6 monolayers. This increase occurs just before the manifestation of the functional effect of the hormone and is also inhibited by LY-294002. With the use of blocker-induced noise analysis, it has been demonstrated that inhibition of phosphoinositide formation causes an inhibition of Na+ entry in both control and aldosterone-pretreated cultures by reducing the number of open functional epithelial Na+ channels (ENaCs) in the apical membrane of the A6 cells. These novel observations indicate that phosphoinositides are required for ENaC expression and suggest a mechanism for aldosterone regulation of channel function.
Collapse
Affiliation(s)
- B L Blazer-Yost
- Biology Department, Indiana University, Purdue University at Indianapolis, Indianapolis 46202, Indiana, USA.
| | | | | | | | | |
Collapse
|
29
|
Blazer-Yost BL, Liu X, Helman SI. Hormonal regulation of ENaCs: insulin and aldosterone. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:C1373-9. [PMID: 9612225 DOI: 10.1152/ajpcell.1998.274.5.c1373] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although a variety of hormones and other agents modulate renal Na+ transport acting by way of the epithelial Na+ channel (ENaC), the mode(s), pathways, and their interrelationships in regulation of the channel remain largely unknown. It is likely that several hormones may be present concurrently in vivo, and it is, therefore, important to understand potential interactions among the various regulatory factors as they interact with the Na+ transport pathway to effect modulation of Na+ reabsorption in distal tubules and other native tissues. This study represents specifically a determination of the interaction between two hormones, namely, aldosterone and insulin, which stimulate Na+ transport by entirely different mechanisms. We have used a noninvasive pulse protocol of blocker-induced noise analysis to determine changes in single-channel current (iNa), channel open probability (Po), and functional channel density (NT) of amiloride-sensitive ENaCs at various time points following treatment with insulin for 3 h of unstimulated control and aldosterone-pretreated A6 epithelia. Independent of threefold differences of baseline values of transport caused by aldosterone, 20 nM insulin increased by threefold and within 10-30 min the density of the pool of apical membrane ENaCs (NT) involved in transport. The very early (10 min) increases of channel density were accompanied by relatively small decreases of iNa (10-20%) and decreases of p.o. (28%) in the aldosterone-pretreated tissues but not the control unstimulated tissues. The early changes of iNa, p.o., and NT were transient, returning very slowly over 3 h toward their respective control values at the time of addition of insulin. We conclude that aldosterone and insulin act independently to stimulate apical Na+ entry into the cells of A6 epithelia by increase of channel density.
Collapse
Affiliation(s)
- B L Blazer-Yost
- Biology Department, Indiana University-Purdue University at Indianapolis 46202, USA
| | | | | |
Collapse
|
30
|
Record RD, Froelich LL, Vlahos CJ, Blazer-Yost BL. Phosphatidylinositol 3-kinase activation is required for insulin-stimulated sodium transport in A6 cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:E611-7. [PMID: 9575821 DOI: 10.1152/ajpendo.1998.274.4.e611] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Insulin stimulates amiloride-sensitive sodium transport in models of the distal nephron. Here we demonstrate that, in the A6 cell line, this action is mediated by the insulin receptor tyrosine kinase and that activation of phosphatidylinositol 3-kinase (PI 3-kinase) lies downstream of the receptor tyrosine kinase. Functionally, a specific inhibitor of PI 3-kinase, LY-294002, blocks basal as well as insulin-stimulated sodium transport in a dose-dependent manner (IC50 approximately 6 microM). Biochemically, PI 3-kinase is present in A6 cells and is inhibited both in vivo and in vitro by LY-294002. Furthermore, a subsequent potential downstream signaling element, pp70 S6 kinase, is activated in response to insulin but does not appear to be part of the pathway involved in insulin-stimulated sodium transport. Together with previous reports, these results suggest that insulin may induce the exocytotic insertion of sodium channels into the apical membrane of A6 cells in a PI 3-kinase-mediated manner.
Collapse
Affiliation(s)
- R D Record
- Roudebush Veterans Medical Center, Indianapolis, Indianapolis, USA
| | | | | | | |
Collapse
|