1
|
Patel V, Klootwijk E, Whiting G, Bockenhauer D, Siew K, Walsh S, Bleich M, Himmerkus N, Jaureguiberry G, Issler N, Godovac‐Zimmermann J, Kleta R, Wheeler J. Quantification of FAM20A in human milk and identification of calcium metabolism proteins. Physiol Rep 2021; 9:e15150. [PMID: 34957696 PMCID: PMC8711012 DOI: 10.14814/phy2.15150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 11/18/2021] [Accepted: 11/30/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND FAM20A, a recently discovered protein, is thought to have a fundamental role in inhibiting ectopic calcification. Several studies have demonstrated that variants of FAM20A are causative for the rare autosomal recessive disorder, enamel-renal syndrome (ERS). ERS is characterized by defective mineralization of dental enamel and nephrocalcinosis suggesting that FAM20A is an extracellular matrix protein, dysfunction of which causes calcification of the secretory epithelial tissues. FAM20A is a low-abundant protein that is difficult to detect in biofluids such as blood, saliva, and urine. Thus, we speculated the abundance of FAM20A to be high in human milk, since the secretory epithelium of lactating mammary tissue is involved in the secretion of highly concentrated calcium. Therefore, the primary aim of this research is to describe the processes/methodology taken to quantify FAM20A in human milk and identify other proteins involved in calcium metabolism. METHOD This study used mass spectrometry-driven quantitative proteomics: (1) to quantify FAM20A in human milk of three women and (2) to identify proteins associated with calcium regulation by bioinformatic analyses on whole and milk fat globule membrane fractions. RESULTS Shotgun MS/MS driven proteomics identified FAM20A in whole milk, and subsequent analysis using targeted proteomics also successfully quantified FAM20A in all samples. Combination of sample preparation, fractionation, and LC-MS/MS proteomics analysis generated 136 proteins previously undiscovered in human milk; 21 of these appear to be associated with calcium metabolism. CONCLUSION Using mass spectrometry-driven proteomics, we successfully quantified FAM20A from transitional to mature milk and obtained a list of proteins involved in calcium metabolism. Furthermore, we show the value of using a combination of both shotgun and targeted driven proteomics for the identification of this low abundant protein in human milk.
Collapse
Affiliation(s)
- Vaksha Patel
- Department of Renal MedicineUniversity College LondonLondonUK
| | | | - Gail Whiting
- National Institute for Biological Standards and Control, Medicine and Healthcare Products Regulatory AgencyHertfordshireUK
| | | | - Keith Siew
- Department of Renal MedicineUniversity College LondonLondonUK
| | - Stephen Walsh
- Department of Renal MedicineUniversity College LondonLondonUK
| | - Markus Bleich
- Institute of PhysiologyUniversity of KielKielGermany
| | | | | | - Naomi Issler
- Department of Renal MedicineUniversity College LondonLondonUK
| | | | - Robert Kleta
- Department of Renal MedicineUniversity College LondonLondonUK
| | - Jun Wheeler
- National Institute for Biological Standards and Control, Medicine and Healthcare Products Regulatory AgencyHertfordshireUK
| |
Collapse
|
2
|
Wiebe SA, Plain A, Pan W, O’Neill D, Braam B, Alexander RT. NHE8 attenuates Ca2+ influx into NRK cells and the proximal tubule epithelium. Am J Physiol Renal Physiol 2019; 317:F240-F253. [DOI: 10.1152/ajprenal.00329.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
To garner insights into the renal regulation of Ca2+ homeostasis, we performed an mRNA microarray on kidneys from mice treated with the Ca2+-sensing receptor (CaSR) agonist cinacalcet. This revealed decreased gene expression of Na+/H+ exchanger isoform 8 (NHE8) in response to CaSR activation. These results were confirmed by quantitative real-time PCR. Moreover, administration of vitamin D also decreased NHE8 mRNA expression. In contrast, renal NHE8 protein expression from the same samples was increased. To examine the role of NHE8 in transmembrane Ca2+ fluxes, we used the normal rat kidney (NRK) cell line. Cell surface biotinylation and confocal immunofluorescence microscopy demonstrated NHE8 apical expression. Functional experiments found 5-( N-ethyl- N-isopropyl)amiloride (EIPA)-inhibitable NHE activity in NRK cells at concentrations minimally attenuating NHE1 activity in AP-1 cells. To determine how NHE8 might regulate Ca2+ balance, we measured changes in intracellular Ca2+ uptake by live cell Ca2+ imaging with the fluorophore Fura-2 AM. Inhibition of NHE8 with EIPA or by removing extracellular Na+-enhanced Ca2+ influx into NRK cells. Ca2+ influx was mediated by a voltage-dependent Ca2+ channel rather than directly via NHE8. NRK cells express Cav1.3 and display verapamil-sensitive Ca2+ influx and NHE8 inhibition-augmented Ca2+ influx via a voltage-dependent Ca2+ channel. Finally, proximal tubules perused ex vivo demonstrated increased Ca2+ influx in the presence of luminal EIPA at a concentration that would inhibit NHE8. The results of the present study are consistent with NHE8 regulating Ca2+ uptake into the proximal tubule epithelium.
Collapse
Affiliation(s)
- Shane A. Wiebe
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Allein Plain
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Wanling Pan
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Debbie O’Neill
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Branko Braam
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- Division of Nephrology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - R. Todd Alexander
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
- The Women’s & Children’s Health Research Institute, Edmonton, Alberta, Canada
| |
Collapse
|
3
|
Edwards A, Bonny O. A model of calcium transport and regulation in the proximal tubule. Am J Physiol Renal Physiol 2018; 315:F942-F953. [PMID: 29846115 PMCID: PMC6230728 DOI: 10.1152/ajprenal.00129.2018] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The objective of this study was to examine theoretically how Ca2+ reabsorption in the proximal tubule (PT) is modulated by Na+ and water fluxes, parathyroid hormone (PTH), Na+-glucose cotransporter (SGLT2) inhibitors, and acetazolamide. We expanded a previously published mathematical model of water and solute transport in the rat PT (Layton AT, Vallon V, Edwards A. Am J Physiol Renal Physiol 308: F1343–F1357, 2015) that did not include Ca2+. Our results indicate that Ca2+ reabsorption in the PT is primarily driven by the transepithelial Ca2+ concentration gradient that stems from water reabsorption, which is itself coupled to Na+ reabsorption. Simulated variations in permeability or transporter activity elicit opposite changes in paracellular and transcellular Ca2+ fluxes, whereas a simulated decrease in filtration rate lowers both fluxes. The model predicts that PTH-mediated inhibition of the apical Na+/H+ exchanger NHE3 reduces Na+ and Ca2+ transport to a similar extent. It also suggests that acetazolamide- and SGLT2 inhibitor-induced calciuria at least partly stems from reduced Ca2+ reabsorption in the PT. In addition, backleak of phosphate (PO4) across tight junctions is predicted to reduce net PO4 reabsorption by ~20% under normal conditions. When transcellular PO4 transport is substantially reduced by PTH, paracellular PO4 flux is reversed and contributes significantly to PO4 reabsorption. Furthermore, PTH is predicted to exert an indirect impact on PO4 reabsorption via its inhibitory action on NHE3. This model thus provides greater insight into the mechanisms that modulate Ca2+ and PO4 reabsorption in the PT.
Collapse
Affiliation(s)
- Aurélie Edwards
- Department of Biomedical Engineering, Boston University , Boston, Massachusetts
| | - Olivier Bonny
- Department of Pharmacology and Toxicology, University of Lausanne, and Service of Nephrology, Lausanne University Hospital , Lausanne , Switzerland
| |
Collapse
|
4
|
Lee JJ, Plain A, Beggs MR, Dimke H, Alexander RT. Effects of phospho- and calciotropic hormones on electrolyte transport in the proximal tubule. F1000Res 2017; 6:1797. [PMID: 29043081 PMCID: PMC5627579 DOI: 10.12688/f1000research.12097.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/04/2017] [Indexed: 12/17/2022] Open
Abstract
Calcium and phosphate are critical for a myriad of physiological and cellular processes within the organism. Consequently, plasma levels of calcium and phosphate are tightly regulated. This occurs through the combined effects of the phospho- and calciotropic hormones, parathyroid hormone (PTH), active vitamin D
3, and fibroblast growth factor 23 (FGF23). The organs central to this are the kidneys, intestine, and bone. In the kidney, the proximal tubule reabsorbs the majority of filtered calcium and phosphate, which amounts to more than 60% and 90%, respectively. The basic molecular mechanisms responsible for phosphate reclamation are well described, and emerging work is delineating the molecular identity of the paracellular shunt wherein calcium permeates the proximal tubular epithelium. Significant experimental work has delineated the molecular effects of PTH and FGF23 on these processes as well as their regulation of active vitamin D
3 synthesis in this nephron segment. The integrative effects of both phospho- and calciotropic hormones on proximal tubular solute transport and subsequently whole body calcium-phosphate balance thus have been further complicated. Here, we first review the molecular mechanisms of calcium and phosphate reabsorption from the proximal tubule and how they are influenced by the phospho- and calciotropic hormones acting on this segment and then consider the implications on both renal calcium and phosphate handling as well as whole body mineral balance.
Collapse
Affiliation(s)
- Justin J Lee
- Department of Physiology, University of Alberta, Edmonton, Canada.,The Women and Children's Health Research Institute, Edmonton, Canada
| | - Allein Plain
- Department of Physiology, University of Alberta, Edmonton, Canada.,The Women and Children's Health Research Institute, Edmonton, Canada
| | - Megan R Beggs
- Department of Physiology, University of Alberta, Edmonton, Canada.,The Women and Children's Health Research Institute, Edmonton, Canada
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - R Todd Alexander
- Department of Physiology, University of Alberta, Edmonton, Canada.,The Women and Children's Health Research Institute, Edmonton, Canada.,Department of Pediatrics, Edmonton Clinic Health Academy, University of Alberta, Edmonton, Canada
| |
Collapse
|
5
|
Moor MB, Bonny O. Ways of calcium reabsorption in the kidney. Am J Physiol Renal Physiol 2016; 310:F1337-50. [PMID: 27009338 DOI: 10.1152/ajprenal.00273.2015] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 03/17/2016] [Indexed: 11/22/2022] Open
Abstract
The role of the kidney in calcium homeostasis has been reshaped from a classic view in which the kidney was regulated by systemic calcitropic hormones such as vitamin D3 or parathyroid hormone to an organ actively taking part in the regulation of calcium handling. With the identification of the intrinsic renal calcium-sensing receptor feedback system, the regulation of paracellular calcium transport involving claudins, and new paracrine regulators such as klotho, the kidney has emerged as a crucial modulator not only of calciuria but also of calcium homeostasis. This review summarizes recent molecular and endocrine contributors to renal calcium handling and highlights the tight link between calcium and sodium reabsorption in the kidney.
Collapse
Affiliation(s)
- Matthias B Moor
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland; and
| | - Olivier Bonny
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland; and Service of Nephrology, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
6
|
Mitobe M, Yoshida T, Sugiura H, Shiohira S, Shimada K, Nitta K, Tsuchiya K. Clinical effects of calcium channel blockers and renin-angiotensin-aldosterone system inhibitors on changes in the estimated glomerular filtration rate in patients with polycystic kidney disease. Clin Exp Nephrol 2010; 14:573-7. [PMID: 20700620 DOI: 10.1007/s10157-010-0329-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 07/06/2010] [Indexed: 01/15/2023]
Abstract
BACKGROUND In the tubular cells of patients with polycystic kidney disease (PKD), a reduced intracellular Ca(2+) level accelerates cell proliferation, resulting in cyst formation. Thus, whether calcium channel blockers (CCB) are useful for the treatment of hypertension in patients with PKD is questionable. METHODS Thirty-two outpatients with autosomal dominant PKD (ADPKD) were treated at Tokyo Women's Medical University between 2003 and 2008; these patients were studied retrospectively. Periods during which the antihypertensive drug prescriptions for CCB and/or renin-angiotensin-aldosterone system inhibitors (RAAS-I; including angiotensin converting enzyme inhibitor and angiotensin II receptor blocker) had not been changed for at least 1 year and during which time a diuretic agent had not been prescribed were selected from among the clinical histories of the 32 outpatients. Consequently, 31 periods of 31 patients were analyzed, and mean treatment duration was 2.4 years in this study. The estimated glomerular filtration rate (eGFR) was used to evaluate renal function. To evaluate the influence of CCB and RAAS-I with respect to the decrease of the eGFR, analysis of covariance (ANCOVA), including confounding factors [baseline eGFR, mean systolic blood pressure (SBP), mean diastolic blood pressure (DBP)], was used. Only CCB significantly contributed to a reduction in ∆eGFR in both a univariable ANCOVA and a multivariable ANCOVA. None of the confounding factors, RAAS-I, the baseline eGFR, or blood pressure, contributed to reductions in ∆eGFR. CONCLUSION These results suggest that from a renoprotective perspective, CCB should possibly be avoided in patients with PKD unless treatment for resistant hypertension is necessary.
Collapse
Affiliation(s)
- Michihiro Mitobe
- Department of Medicine IV, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | | | | | | | | | | | | |
Collapse
|
7
|
Potential mechanisms involved in the absorptive transport of cadmium in isolated perfused rabbit renal proximal tubules. Toxicol Lett 2009; 193:61-8. [PMID: 20018233 DOI: 10.1016/j.toxlet.2009.12.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 12/03/2009] [Accepted: 12/08/2009] [Indexed: 12/13/2022]
Abstract
UNLABELLED Lumen-to-cell transport, cellular accumulation, and toxicity of cadmium as ionic cadmium (Cd(2+)) or as the L-cysteine (Cys) or D,L-homocysteine (Hcy) S-conjugate of cadmium (Cys-S-Cd-S-Cys, Hcy-S-Cd-S-Hcy) were studied in isolated, perfused rabbit proximal tubular segments. When Cd(2+) (0.73 microM) or Cys-S-Cd-S-Cys (0.73 microM) was perfused through the lumen of S(2) segments of the proximal tubule, no visual evidence of cellular pathological changes was detected during 30 min of study. Cd(2+)-transport was temperature-dependent and was inhibited by Fe(2+), Zn(2+), and elevated concentrations of Ca(2+). Luminal uptake of Cys-S-Cd-S-Cys was also temperature-dependent and was inhibited by the amino acids L-cystine and L-arginine, while stimulated by L-methionine. Neither L-aspartate, L-glutamate, the synthetic dipeptide, Gly-Sar nor Zn(2+) had any effect on the rate of Cys-S-Cd-S-Cys transport. CONCLUSIONS When delivered to the luminal compartment, Cd(2+) appears to be capable of utilizing certain transporter(s) of Zn(2+) and some transport systems sensitive to Ca(2+) and Fe(2+). In addition, Cys-S-Cd-S-Cys and Hcy-S-Cd-S-Hcy appear to be transportable substrates of one or more amino acid transporters participating in luminal absorption of the amino acid L-cystine (such as system b(0,+)). These findings indicate that multiple mechanisms could be involved in the luminal absorption of cadmium (Cd) in proximal tubular segments depending on its form. These findings provide a focus for future studies of Cd absorption in the proximal tubule.
Collapse
|
8
|
Calcium channel inhibition accelerates polycystic kidney disease progression in the Cy/+ rat. Kidney Int 2007; 73:269-77. [PMID: 17943077 DOI: 10.1038/sj.ki.5002629] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In polycystic kidney disease, abnormal epithelial cell proliferation is the main factor leading to cyst formation and kidney enlargement. Cyclic AMP (cAMP) is mitogenic in cystic but antimitogenic in normal human kidney cells, which is due to reduced steady-state intracellular calcium levels in cystic compared to the normal cells. Inhibition of intracellular calcium entry with channel blockers, such as verapamil, induced cAMP-dependent cell proliferation in normal renal cells. To determine if calcium channel blockers have a similar effect on cell proliferation in vivo, Cy/+ rats, a model of dominant polycystic kidney disease, were treated with verapamil. Kidney weight and cyst index were elevated in verapamil-treated Cy/+ rats. This was associated with increased cell proliferation and apoptosis, elevated expression, and phosphorylation of B-Raf with stimulation of the mitogen-activated protein kinase MEK/ERK (mitogen-activated protein kinase kinase/extracellular-regulated kinase) pathway. Verapamil had no effect on kidney morphology or B-Raf stimulation in wild-type rats. We conclude that treatment of Cy/+ rats with calcium channel blockers increases activity of the B-Raf/MEK/ERK pathway accelerating cyst growth in the presence of endogenous cAMP, thus exacerbating renal cystic disease.
Collapse
|
9
|
Han JY, Heo JS, Lee YJ, Lee JH, Taub M, Han HJ. Dopamine stimulates 45Ca2+ uptake through cAMP, PLC/PKC, and MAPKs in renal proximal tubule cells. J Cell Physiol 2007; 211:486-94. [PMID: 17167784 DOI: 10.1002/jcp.20956] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have examined the effect of dopamine on Ca(2+) uptake and its related signaling pathways in primary renal proximal tubule cells (PTCs). Dopamine increased Ca(2+) uptake in a concentration (>10(-10) M) and time- (>8 h) dependent manner. Dopamine-induced increase in Ca(2+) uptake was prevented by SCH 23390 (a DA(1) antagonist) rather than spiperone (a DA(2) antagonist). SKF 38393 (a DA(1) agonist) increased Ca(2+) uptake unlike the case with quinpirole (a DA(2) agonist). Dopamine-induced increase in Ca(2+) uptake was blocked by nifedipine and methoxyverapamil (L-type Ca(2+) channel blockers). Moreover, dopamine-induced increase in Ca(2+) uptake was blocked by pertussis toxin (a G(i) protein inhibitor), protein kinase A (PKA) inhibitor amide 14/22 (a PKA inhibitor), and SQ 22536 (an adenylate cyclase inhibitor). Subsequently, dopamine increased cAMP level. The PLC inhibitors (U 73122 and neomycin), the PKC inhibitors (staurosporine and bisindolylmaleimide I) suppressed the dopamine-induced increase of Ca(2+) uptake. SB 203580 (a p38 MAPK inhibitor) and PD 98059 (a MAPKK inhibitor) also inhibited the dopamine-induced increase of Ca(2+) uptake. Dopamine-induced p38 and p42/44 MAPK phosphorylation was blocked by SQ 22536, neomycin, and staurosporine. The stimulatory effect of dopamine on Ca(2+) uptake was significantly inhibited by the NF-kappaB inhibitors SN50, TLCK, and Bay 11-7082. In addition, dopamine significantly increased the level of NF-kappaB p65, which was prevented by either SQ 22536, neomycin, staurosporine, PD 98059, or SB 203580. Thus, dopamine stimulates Ca(2+) uptake in PTCs, initially through by G(s) coupled dopamine receptors, PLC/PKC, followed by MAPK, and ultimately by NF-kappaB activation.
Collapse
Affiliation(s)
- Ji Yeon Han
- Department of Veterinary Physiology, Biotherapy Human Resources Center, College of Veterinary Medicine, Chonnam National University, Gwangju, Korea
| | | | | | | | | | | |
Collapse
|
10
|
Lee YJ, Han HJ. Role of ATP in DNA synthesis of renal proximal tubule cells: involvement of calcium, MAPKs, and CDKs. Am J Physiol Renal Physiol 2006; 291:F98-106. [PMID: 16418299 DOI: 10.1152/ajprenal.00486.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although ATP has been shown to act as a modulator in various kidney functions, its effect on renal proximal tubule cell (PTC) proliferation has not been elucidated. This study investigated the effect of ATP on cell proliferation and the effect of its related signal pathways on primary cultured PTCs. Treatment with >10(-5) M ATP for 1 h stimulated incorporation of thymidine and bromodeoxyuridine. ATP (10(-4) M)-induced stimulation of thymidine incorporation was blocked by suramin (a P2X and P2Y receptor antagonist), reactive blue 2 (a P2Y receptor antagonist), MRS-2159 (a P2X1 receptor antagonist), and MRS-2179 (a P2Y1 receptor antagonist). ATP increased intracellular Ca2+ concentration, which was blocked by suramin, methoxyverapamil, and EGTA. ATP-induced stimulation of cell proliferation was also blocked by EGTA (an extracellular Ca2+ chelator), methoxyverapamil (a Ca2+ antagonist), and nifedipine (an L-type Ca2+ channel blocker), suggesting a role for Ca2+ influx. ATP-induced phosphorylation of p38 and p44/42 MAPKs was blocked by nifedipine. ATP increased expression levels of cyclin-dependent kinase (CDK)-2, CDK-4, and cyclin E, which were blocked by suramin, reactive blue 2, MRS-2179, MRS-2159, and nifedipine. However, ATP decreased expression levels of p21WAF1/Cip1 and p27kip1. ATP-induced stimulation of thymidine incorporation and increase of CDK-2 and CDK-4 expression were blocked by SB-203580 (a p38 MAPK inhibitor) and PD-98059 (an MEK inhibitor), but not by SP-600125 (a JNK inhibitor). In conclusion, ATP stimulates proliferation by increasing intracellular Ca2+ concentration and activating p38, p44/42 MAPKs, and CDKs in PTCs.
Collapse
Affiliation(s)
- Yun Jung Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, Korea
| | | |
Collapse
|
11
|
O'Neil RG, Brown RC. The vanilloid receptor family of calcium-permeable channels: molecular integrators of microenvironmental stimuli. Physiology (Bethesda) 2004; 18:226-31. [PMID: 14614154 DOI: 10.1152/nips.01468.2003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The TRPV subfamily of calcium-permeable channels is widely distributed in sensory and nonsensory cells from nematodes to mammals. These channels can be variably activated by a diverse range of stimuli (osmotic/mechanical stress, noxious chemicals and heat, endogenous mediators) that often converge on the same channel. Evidence is presented that TRPV channels function as novel "molecular integrators" of diverse microenvironmental stimuli.
Collapse
Affiliation(s)
- Roger G O'Neil
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | | |
Collapse
|
12
|
Jae Han H, Yeong Park J, Jung Lee Y, Taub M. Epidermal growth factor inhibits14C-?-methyl-d-glucopyranoside uptake in renal proximal tubule cells: Involvement of PLC/PKC, p44/42 MAPK, and cPLA2. J Cell Physiol 2004; 199:206-16. [PMID: 15040003 DOI: 10.1002/jcp.10438] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The effect of EGF on (14)C-alpha-methyl-D-glucopyranoside (alpha-MG) uptake and its related signaling pathways were examined in primary cultured rabbit renal proximal tubule cells (PTCs). Epidermal growth factor (EGF) (50 ng/ml) was found to inhibit alpha-MG uptake, a distinctive proximal tubule marker. The EGF effect was blocked by AG1478 (an EGF receptor antagonist) or genistein and herbimycin (tyrosine kinase inhibitors), respectively. In addition, the EGF-induced inhibition of alpha-MG uptake was blocked by neomycin and U73122 (phospholipase C inhibitors) as well as staurosporine, H-7, and bisindolylmaleimide I (protein kinase C inhibitors). EGF was also observed to increase inositol phosphate formation. Furthermore, both the EGF-induced inhibition of alpha-MG uptake and increase of arachidonic acid (AA) release were blocked by AACOCF(3) (a cytosolic phospholipase A(2) inhibitor), indomethacin (a cyclooxygenase inhibitor), and econazole (a cytochrome P-450 epoxygenase inhibitor). We examined the involvement of mitogen-activated protein kinases (MAPKs) in mediating the effect of EGF on alpha-MG uptake. Indeed, EGF increased phosphorylation of p44/p42 MAPK and the EGF-induced inhibition of alpha-MG uptake as well as the stimulatory effect of EGF on AA release was blocked by PD 98059 (a p44/42 MAPK inhibitor), suggesting a causal relationship. However, inhibitors of PKC also prevented the EGF-induced increase of AA release. In conclusion, EGF partially inhibited alpha-MG uptake via PLC/PKC, p44/42 MAPK, and PLA(2) signaling pathways.
Collapse
Affiliation(s)
- Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Hormone Research Center, Chonnam National University, Gwangju, Korea.
| | | | | | | |
Collapse
|
13
|
Brunette MG, Leclerc M, Couchourel D, Mailloux J, Bourgeois Y. Characterization of three types of calcium channel in the luminal membrane of the distal nephron. Can J Physiol Pharmacol 2004; 82:30-7. [PMID: 15052303 DOI: 10.1139/y03-127] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We previously reported a dual kinetics of Ca2+transport by the distal tubule luminal membrane of the kidney, suggesting the presence of several types of channels. To better characterize these channels, we examined the effects of specific inhibitors (i.e., diltiazem, an L-type channel; ω-conotoxin MVIIC, a P/Q-type channel; and mibefradil, a T-type channel antagonist) on 0.1 and 0.5 mM Ca2+uptake by rabbit nephron luminal membranes. None of these inhibitors influenced Ca2+uptake by the proximal tubule membranes. In contrast, in the absence of sodium (Na+), the three channel antagonists decreased Ca2+transport by the distal membranes, and their action depended on the substrate concentrations: 50 µM diltiazem decreased 0.1 mM Ca2+uptake from 0.65 ± 0.07 to 0.48 ± 0.06 pmol·µg–1·10 s–1(P < 0.05) without influencing 0.5 mM Ca2+transport, whereas 100 nM ω-conotoxin MVIIC decreased 0.5 mM Ca2+uptake from 1.02 ± 0.05 to 0.90 ± 0.05 pmol·µg–1·10 s–1(P < 0.02) and 1 µM mibefradil decreased it from 1.13 ± 0.09 to 0.94 ± 0.09 pmol·µg–1·10 s–1(P < 0.05); the latter two inhibitors left 0.1 mM Ca2+transport unchanged. Diltiazem decreased the Vmaxof the high-affinity channels, whereas ω-conotoxin MVIIC and mibefradil influenced exclusively the Vmaxof the low-affinity channels. These results not only confirm that the distal luminal membrane is the site of Ca2+channels, but they suggest that these channels belong to the L, P/Q, and T types.Key words: renal calcium transport, calcium channels, diltiazem, mibefradil, ω-conotoxin.
Collapse
Affiliation(s)
- M G Brunette
- Maisonneuve-Rosemont Hospital, 5415 Boulevard l'Assomption, Montreal, Quebec H1T 2M4, Canada
| | | | | | | | | |
Collapse
|
14
|
Gao X, Wu L, O'Neil RG. Temperature-modulated diversity of TRPV4 channel gating: activation by physical stresses and phorbol ester derivatives through protein kinase C-dependent and -independent pathways. J Biol Chem 2003; 278:27129-37. [PMID: 12738791 DOI: 10.1074/jbc.m302517200] [Citation(s) in RCA: 252] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The TRPV4 calcium-permeable channel was cloned from mouse kidney M-1 cells, and the effect of temperature modulation on channel gating/activation by physical and chemical signals was evaluated. A TRPV4 cDNA construct with a C-terminal V5 epitope was stably transfected into human embryonic kidney (HEK) 293 and Chinese hamster ovary cells resulting in high levels of expression at the plasma membrane. Channel activation was assessed from changes in calcium influx (fura-2 fluorescence measurements) or whole cell currents (patch clamp analysis). At room temperature (22-24 degrees C), exposure of TRPV4-transfected cells to hypotonic medium (225 mOsm/liter) or a non-protein kinase C (PKC)-activating phorbol ester derivative, 4alpha-phorbol 12,13-decanoate (100 nm), induces modest channel activation, whereas phorbol 12-myristate 13-acetate (100 nm), a PKC-activating phorbol ester, and shear stress (3-20 dyne/cm2) had minimal or no effect on channel activation. In contrast, at elevated temperatures (37 degrees C) the channel was rapidly activated by all stimuli. Inhibition of PKC by calphostin C (50 nm) or staurosporine (500 nm) abolished phorbol 12-myristate 13-acetate-induced activation of the channel without affecting the response to other stimuli. Ruthenium red (1 microm) effectively blocked the channel activity by all stimuli. It is concluded that temperature is a critical modulator of TRPV4 channel gating, leading to activation of the channel by a diverse range of microenvironmental chemical and physical signals utilizing a least two transduction pathways, one PKC-dependent and one PKC-independent. The convergence of multiple signals and transduction pathways on the same channel indicate that the channel functions as a molecular integrator of microenvironmental chemical and physical signals.
Collapse
Affiliation(s)
- Xiaochong Gao
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | | | | |
Collapse
|
15
|
Dow JT, Davies SA. Integrative physiology and functional genomics of epithelial function in a genetic model organism. Physiol Rev 2003; 83:687-729. [PMID: 12843407 DOI: 10.1152/physrev.00035.2002] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Classically, biologists try to understand their complex systems by simplifying them to a level where the problem is tractable, typically moving from whole animal and organ-level biology to the immensely powerful "cellular" and "molecular" approaches. However, the limitations of this reductionist approach are becoming apparent, leading to calls for a new, "integrative" physiology. Rather than use the term as a rallying cry for classical organismal physiology, we have defined it as the study of how gene products integrate into the function of whole tissues and intact organisms. From this viewpoint, the convergence between integrative physiology and functional genomics becomes clear; both seek to understand gene function in an organismal context, and both draw heavily on transgenics and genetics in genetic models to achieve their goal. This convergence between historically divergent fields provides powerful leverage to those physiologists who can phrase their research questions in a particular way. In particular, the use of appropriate genetic model organisms provides a wealth of technologies (of which microarrays and knock-outs are but two) that allow a new precision in physiological analysis. We illustrate this approach with an epithelial model system, the Malpighian (renal) tubule of Drosophila melanogaster. With the use of the beautiful genetic tools and extensive genomic resources characteristic of this genetic model, it has been possible to gain unique insights into the structure, function, and control of epithelia.
Collapse
Affiliation(s)
- Julian T Dow
- Division of Molecular Genetics, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G11 6NU, UK.
| | | |
Collapse
|
16
|
Liu X, Zhang MIN, Peterson LB, O'Neil RG. Osmomechanical stress selectively regulates translocation of protein kinase C isoforms. FEBS Lett 2003; 538:101-6. [PMID: 12633861 DOI: 10.1016/s0014-5793(03)00150-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Osmomechanical stress, resulting in cell swelling and activation/regulation of numerous cellular processes, may play a critical role in cell signaling by selectively regulating translocation of protein kinase C (PKC) isoforms from cytosol to membrane compartments. Western blotting of renal epithelial cell fractions demonstrated the expression of five PKC isoforms. Three of these isoforms (PKCalpha, PKCepsilon, PKCzeta) translocated to the membrane fraction upon exposure of cells to osmomechanical stress (hypotonic medium). Immunohistochemical staining of cells using isoform-specific antibodies further demonstrated translocation of the phorbol ester-sensitive isoforms, PKCalpha and PKCepsilon, to both the plasma membrane and perinuclear sites, reflecting potential initial steps in regulation of specific effector pathways. Indeed, selective inhibition of PKCs indicates a potential role for PKCalpha in modulating a calcium influx channel. It is concluded that osmomechanical stress induces selective translocation of specific PKC isoforms, demonstrating a key role of osmomechanical stress in selectively regulating PKC-dependent signaling pathways.
Collapse
Affiliation(s)
- X Liu
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, 6431 Fannin Street, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
17
|
Wang W, Kwon TH, Li C, Flyvbjerg A, Knepper MA, Frøkiaer J, Nielsen S. Altered expression of renal aquaporins and Na+ transporters in rats treated with L-type calcium blocker. Am J Physiol Regul Integr Comp Physiol 2001; 280:R1632-41. [PMID: 11353665 DOI: 10.1152/ajpregu.2001.280.6.r1632] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nifedipine, a calcium antagonist, has diuretic and natriuretic properties. However, the molecular mechanisms by which these effects are produced are poorly understood. We examined kidney abundance of aquaporins (AQP1, AQP2, and AQP3) and major sodium transporters [type 3 Na/H exchanger (NHE-3); type 2 Na-Pi cotransporter (NaPi-2); Na-K-ATPase; type 1 bumetanide-sensitive cotransporter (BSC-1); and thiazide-sensitive Na-Cl cotransporter (TSC)] as well as inner medullary abundance of AQP2, phosphorylated-AQP2 (p-AQP2), AQP3, and calcium-sensing receptor (CaR). Rats treated with nifedipine orally (700 mg/kg) for 19 days had a significant increase in urine output, whereas urinary osmolality and solute-free water reabsorption were markedly reduced. Consistent with this, immunoblotting revealed a significant decrease in the abundance of whole kidney AQP2 (47 ± 7% of control rats, P< 0.05) and in inner medullary AQP2 (60 ± 7%) as well as in p-AQP2 abundance (17 ± 6%) in nifedipine-treated rats. In contrast, whole kidney AQP3 abundance was significantly increased (219 ± 28%). Of potential importance in modulating AQP2 levels, the abundance of CaR in the inner medulla was significantly increased (295 ± 25%) in nifedipine-treated rats. Nifedipine treatment was also associated with increased urinary sodium excretion. Consistent with this, semiquantitative immunoblotting revealed significant reductions in the abundance of proximal tubule Na+ transporters: NHE-3 (3 ± 1%), NaPi-2 (53 ± 12%), and Na-K-ATPase (74 ± 5%). In contrast, the abundance of the distal tubule Na-Cl cotransporter (TSC) was markedly increased (240 ± 29%), whereas BSC-1 in the thick ascending limb was not altered. In conclusion, 1) increased urine output and reduced urinary concentration in nifedipine-treated-rats may, in part, be due to downregulation of AQP2 and p-AQP2 levels; 2) CaR might be involved in the regulation of water reabsorption in the inner medulla collecting duct; 3) reduced expression of proximal tubule Na+ transporters (NHE-3, NaPi-2, and Na, K-ATPase) may be involved in the increased urinary sodium excretion; and 4) increase in TSC expression may occur as a compensatory mechanism.
Collapse
Affiliation(s)
- W Wang
- Department of Cell Biology, Institute of Anatomy, University of Aarhus, DK-8000 Aarhus, Denmark
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
The kinetics of calcium entry through regulated calcium channels in cultured renal proximal tubule cells was studied with Fura-2 fluorescence ratio imaging in single cells. The calcium entry was activated by 1-oleoyl-2-acetyl-sn-glycerol (OAG) and phorbol-12-myristat-13-acetate (PMA), similar to that observed for activation by osmo-mechanical stress. OAG (2.5 microM) or PMA (0.5 microM) activated calcium entry is characterized by a significant latency between agonist application and the response, whereas the effect of osmo-mechanical stress was immediate. This pre-response latency was 260 +/- 70s with OAG stimulation and 79.2 +/- 17.3s with PMA stimulation. Once a cell responds, the intracellular calcium level reaches a peak value within seconds. The cell response to agonist is independent of the response of neighboring cells. The response kinetics resembles those of the calcium sparks in excitable cells, except the response is much slower. In all cases, the response appears to be an all-or-none event, that is characteristics of an elementary binary switch. It is suggested that the binary response and the lack of coordinated response of calcium entry in single cells results from limited availability of the calcium channels and/or PKC that activates the channel. The experimental data could be fit to a single binary response mathematical model assuming each response reflected an elementary event of a single channel opening or a co-ordinated opening of a cluster of several channels.
Collapse
Affiliation(s)
- M I Zhang
- Department of Integrative Biology, Pharmacology & Physiology, The University of Texas, Houston Health Science Center, Houston 77030, USA.
| | | |
Collapse
|
19
|
MacPherson MR, Pollock VP, Broderick KE, Kean L, O'Connell FC, Dow JA, Davies SA. Model organisms: new insights into ion channel and transporter function. L-type calcium channels regulate epithelial fluid transport in Drosophila melanogaster. Am J Physiol Cell Physiol 2001; 280:C394-407. [PMID: 11208535 DOI: 10.1152/ajpcell.2001.280.2.c394] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The neuropeptide CAP2b stimulates fluid transport obligatorily via calcium entry, nitric oxide, and cGMP in Drosophila melanogaster Malpighian (renal) tubules. We have shown by RT-PCR that the Drosophila L-type calcium channel alpha1-subunit genes Dmca1D and Dmca1A (nbA) are both expressed in tubules. CAP2b-stimulated fluid transport and cytosolic calcium concentration ([Ca2+]i) increases are inhibited by the L-type calcium channel blockers verapamil and nifedipine. cGMP-stimulated fluid transport is verapamil and nifedipine sensitive. Furthermore, cGMP induces a slow [Ca2+]i increase in tubule principal cells via verapamil- and nifedipine-sensitive calcium entry; RT-PCR shows that tubules express Drosophila cyclic nucleotide-gated channel (cng). Additionally, thapsigargin-induced [Ca2+]i increase is verapamil sensitive. Phenylalkylamines bind with differing affinities to the basolateral and apical surfaces of principal cells in the main segment; however, dihydropyridine binds apically in the tubule initial segment. Immunocytochemical evidence suggests localization of alpha1-subunits to both basolateral and apical surfaces of principal cells in the tubule main segment. We suggest roles for L-type calcium channels and cGMP-mediated calcium influx in both calcium signaling and fluid transport mechanisms in Drosophila.
Collapse
Affiliation(s)
- M R MacPherson
- Institute of Biomedical and Life Sciences, Division of Molecular Genetics, University of Glasgow, Glasgow G11 6NU, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
20
|
Zhang MI, O'Neil RG. Molecular characterization of rabbit renal epithelial calcium channel. Biochem Biophys Res Commun 2001; 280:435-9. [PMID: 11162535 DOI: 10.1006/bbrc.2000.4136] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
PCR and antisense oligodeoxy-nucleotide (ODN) blocking were used to identify a calcium (Ca) channel in rabbit proximal tubule (PT) cells. The subcloned Ca channel is identical to the rabbit cardiac Ca channel (alpha(1)) except a 33 base deletion at the fourth S3-S4 linker in PT cells. Anti-sense ODN treatment (18 h) inhibited 73 and 44% of Ca influxes induced by hypoosmotic stress (220 Osm) and by 1-oleoyl-2-acetyl-sn-glycerol (5 microM), respectively. The results indicate that the subcloned channel is a spliced variant of the cardiac Ca channel and that it plays a critical role in regulation of Ca signaling in these cells.
Collapse
MESH Headings
- Alternative Splicing/genetics
- Amino Acid Sequence
- Animals
- Avian Proteins
- Calcium/metabolism
- Calcium Channels/biosynthesis
- Calcium Channels/chemistry
- Calcium Channels/genetics
- Calcium Channels/metabolism
- Calcium Channels, L-Type/genetics
- Calcium Channels, L-Type/metabolism
- Calcium Signaling/drug effects
- Cells, Cultured
- Cloning, Molecular
- Diglycerides/pharmacology
- Epithelium/chemistry
- Epithelium/drug effects
- Epithelium/metabolism
- Ion Channel Gating/drug effects
- Kidney Tubules, Proximal/chemistry
- Kidney Tubules, Proximal/cytology
- Kidney Tubules, Proximal/drug effects
- Kidney Tubules, Proximal/metabolism
- Membrane Proteins/antagonists & inhibitors
- Membrane Proteins/biosynthesis
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Molecular Sequence Data
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/pharmacology
- Osmotic Pressure
- Protein Conformation
- Protein Isoforms/biosynthesis
- Protein Isoforms/chemistry
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Rabbits
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Alignment
- Sequence Deletion/genetics
- Tetradecanoylphorbol Acetate/pharmacology
Collapse
Affiliation(s)
- M I Zhang
- Department of Integrative Biology, Physiology, and Pharmacology, Houston Medical School, University of Texas, 6431 Fannin, Houston, Texas, 77030, USA.
| | | |
Collapse
|
21
|
Reid JM, O'Neil RG. Osmomechanical regulation of membrane trafficking in polarized cells. Biochem Biophys Res Commun 2000; 271:429-34. [PMID: 10799314 DOI: 10.1006/bbrc.2000.2638] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The regulation of membrane trafficking is thought to be predominantly under the control of agonist-receptor transduction pathways. In the present study, osmomechanical stress due to swelling, a condition often accompanying cell activation, was shown to induce multiple membrane trafficking pathways in polarized absorptive epithelial cells in the absence of agonists. Osmomechanical stress activated rapidly (seconds) pathways of calcium-dependent membrane insertion into the basolateral domain, pathways of calcium-independent membrane retrieval from the basolateral domain, and a novel pathway of transcytosis (transcellular) between basolateral and apical cell domains. These pathways appear to underlie the transfer and regulation of transport proteins amongst cell compartments. This broad affect of osmomechanical stress on trafficking pathways may reflect a global mechanism for redistribution of transport proteins and other membrane components amongst cell compartments during states of mechanical stress.
Collapse
Affiliation(s)
- J M Reid
- Department of Integrative Biology and Pharmacology, The University of Texas-Houston Health Science Center, Houston, Texas, 77030, USA
| | | |
Collapse
|
22
|
Han HJ, Lee YH, Park SH. Estradiol-17beta-BSA stimulates Ca(2+) uptake through nongenomic pathways in primary rabbit kidney proximal tubule cells: involvement of cAMP and PKC. J Cell Physiol 2000; 183:37-44. [PMID: 10699964 DOI: 10.1002/(sici)1097-4652(200004)183:1<37::aid-jcp5>3.0.co;2-n] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The effect of estradiol-17beta-BSA (E(2)-BSA) on Ca(2+) uptake and its related signal pathways were examined in the primary cultured rabbit kidney proximal tubule cells. E(2)-BSA (10(-9) M) significantly stimulated Ca(2+) uptake from 2 h by 13% and at 8 h by 35% as compared to control, respectively. This stimulatory effect of E(2)-BSA was not inhibited by tamoxifen (10(-8) M, an intracellular estrogen receptor antagonist), actinomycin D (10(-7) M, a transcription inhibitor), and cycloheximide (4 x 10(-5) M, a protein synthesis inhibitor). However, E(2)-BSA-induced stimulation of Ca(2+) uptake was blocked by methoxyverapamil (10(-6) M, an L-type calcium channel blocker) and 5-(N-ethyl-N-isopropyl)-amiloride (10(-5) M, a Na(+)/H(+) antiporter blocker). These results suggest that E(2)-BSA stimulates Ca(2+) uptake through nongenomic pathways. Thus, we investigated which signal pathways were related to E(2)-BSA-induced stimulation of Ca(2+) uptake. 8-Br-cAMP (10(-6) M) alone increased Ca(2+) uptake by 22% compared to control. When E(2)-BSA combined with 8-Br-cAMP, Ca(2+) uptake was not significantly stimulated compared to E(2)-BSA. SQ 22536 (10(-6) M, an adenylate cyclase inhibitor) and myristoylated protein kinase A inhibitor amide 14-22 (10(-6) M, a protein kinase A inhibitor) blocked E(2)-BSA-induced stimulation of Ca(2+) uptake and E(2)-BSA also increased cAMP generation by 26% of that of control. In addition, TPA (0.02 ng/ml, an artificial PKC promoter) stimulated the Ca(2+) uptake by 14%, and the cotreatment of TPA and E(2)-BSA did not significantly stimulate Ca(2+) uptake compared to E(2)-BSA. E(2)-BSA-induced stimulation of Ca(2+) uptake was blocked by U 73122 (10(-6) M, a phospholipase C inhibitor) or bisindolylmaleimide I (10(-6) M, a protein kinase C inhibitor). Indeed, E(2)-BSA stimulated PKC activity by 26%. In conclusion, E(2)-BSA (10(-9) M) stimulated Ca(2+) uptake by nongenomic action, which is mediated by cAMP and PKC pathways.
Collapse
Affiliation(s)
- H J Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Hormone Research Center, Chonnam National University, Kwangju, Korea.
| | | | | |
Collapse
|
23
|
Han HJ, Kim DH, Park SH, Lee YS, Lee JH, Yang SI. Regulatory mechanism of polarized membrane transport by glucocorticoid in renal proximal tubule cells: involvement of [Ca2+]i. J Vet Med Sci 1999; 61:1197-202. [PMID: 10593576 DOI: 10.1292/jvms.61.1197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined the effect of glucocorticoids on brush border membrane transporters and, furthermore, the involvement of Ca2+ in its action in the primary cultured rabbit renal proximal tubule cells (PTCs). Dexamethasone (DEX, 10(-9) M) decreased Pi uptake by 17%; whereas DEX affected neither alpha-methyl-glucopyranoside (alpha-MG) uptake nor Na+ uptake. The DEX-induced inhibition of Pi uptake was due to a decrease of V(max). In contrast, other steroid hormones such as progesterone, testosterone, and 17beta-estradiol (10(-9) M) did not induce inhibition of Pi uptake. In order to examine the involvement of Ca2+ in DEX-induced inhibition of Pi uptake, PTCs were treated with A 23187 (10(-6) M, Ca2+ ionophore). A 23187 also inhibited Pi uptake, mimicking DEX action in Pi uptake. Treatments with W-7 (10(-4) M, calmodulin dependent kinase inhibitor), KN-62 (10(-6) M, Ca2+/calmodulin-dependent protein kinase II inhibitor), and BAPTA/AM (10(-6) M) or TMB-8 (10(-4) M) (intracellular Ca2+ mobilization blockers) blocked the DEX-induced inhibition of Pi uptake. However, nifedifine, methoxyverapamil (10(-6) M, L-type Ca2+ channel blockers), and EGTA (1 mM, extracellular Ca2+ chelator) did not block it. In conclusion, DEX inhibited Pi uptake via, in part, Ca2+/calmodulin pathway mediated by intracellular Ca2+ mobilization in the PTCs.
Collapse
Affiliation(s)
- H J Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Hormone Research Center, Chonnam National University, Kwangju, Korea
| | | | | | | | | | | |
Collapse
|
24
|
Zhang MI, O'Neil RG. The diversity of calcium channels and their regulation in epithelial cells. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1999; 46:43-83. [PMID: 10332501 DOI: 10.1016/s1054-3589(08)60469-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- M I Zhang
- Department of Integrative Biology, Pharmacology, and Physiology, University of Texas-Houston Health Science Center 77030, USA
| | | |
Collapse
|
25
|
Abstract
Estimating gastrointestinal absorption remains a significant challenge in the risk assessment of metals. This presentation reviews our current understanding of the gastrointestinal absorption of lead (Pb) to illustrate physiological mechanisms involved in metal absorption, new approaches that are being applied to the problem of estimating metal absorption in humans, and issues related to integrating this information into risk assessment. Absorption of metals can be highly variable in human populations because it is influenced by a variety of factors that include the chemical form of the metal, environmental matrix in which the ingested metal is contained, gastrointestinal tract contents, diet, nutritional status, age, and, in some cases, genotype. Thus, in risk assessment models, gastrointestinal absorption is best described as a variable whose distribution is determined in part by the above multiple influences. Although we cannot expect to evaluate empirically each of the above factors in human populations, we can expect to achieve a sufficiently detailed understanding of absorption mechanisms to develop conceptual and, eventually, quantitative models of absorption that account for some aspects of individual variability. A conceptual model is presented of the physiological processes involved in the transfer of ingested metals from the lumen of the gastrointestinal tract to the blood circulation. Components of the model include delivery to the site(s) of absorption; distribution among intracellular and extracellular ligands and transcellular and paracellular pathways of transfer across the gastrointestinal tract epithelium. The gastrointestinal absorption of Pb is discussed in the context of this model.
Collapse
Affiliation(s)
- G L Diamond
- Syracuse Research Corporation, North Syracuse, NY 13212-2510, USA.
| | | | | | | |
Collapse
|
26
|
Peters SM, Tijsen MJ, van Os CH, Wetzels JF, Bindels RJ. Hypoxia decreases calcium influx into rat proximal tubules. Kidney Int 1998; 53:703-8. [PMID: 9507217 DOI: 10.1046/j.1523-1755.1998.00816.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Renal ischemia results in adenosine triphosphate (ATP) depletion, particularly in cells of the proximal tubule (PT), which rely heavily on oxidative phosphorylation for energy supply. Lack of ATP leads to a disturbance in intracellular homeostasis of Na+, K+ and Cl-. Also, cytosolic Ca2+ levels in renal PTs may increase during hypoxia [1], presumably by a combination of impaired extrusion and enhanced influx [2]. However, Ca2+ influx was previously measured using radiolabeled Ca2+ and at varying partial oxygen tension [2]. We have now used to Mn2(+)-induced quenching of fura-2 fluorescence to study Ca2+ influx in individual rat PTs during normoxic and hypoxic superfusion. Normoxic Ca2+ influx was indeed reflected by the Mn2+ quenching of fura-2 fluorescence and this influx could be inhibited by the calcium entry blocker methoxyverapamil (D600; inhibition 50 +/- 2% and 35 +/- 3% for 10 and 100 mumol, respectively). La3+ completely blocked normoxic Ca2+ influx. Hypoxic superfusion or rat PTs did not induce an increase in Ca2+ influx, but reduced this influx to 79 +/- 3% of the normoxic control. We hypothesize that reducing Ca2+ influx during hypoxia provides the cell with a means to prevent cellular Ca2+ overload during ATP-depletion, where Ca2+ extrusion is limited.
Collapse
Affiliation(s)
- S M Peters
- Department of Cell Physiology, University of Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
27
|
Abstract
Estimating gastrointestinal absorption remains a significant challenge in the risk assessment of metals. This presentation reviews our current understanding of the gastrointestinal absorption of lead (Pb) to illustrate physiological mechanisms involved in metal absorption, new approaches that are being applied to the problem of estimating metal absorption in humans, and issues related to integrating this information into risk assessment. Absorption of metals can be highly variable in human populations because it is influenced by a variety of factors that include the chemical form of the metal, environmental matrix in which the ingested metal is contained, gastrointestinal tract contents, diet, nutritional status, age, and, in some cases, genotype. Thus, in risk assessment models, gastrointestinal absorption is best described as a variable whose distribution is determined in part by the above multiple influences. Although we cannot expect to evaluate empirically each of the above factors in human populations, we can expect to achieve a sufficiently detailed understanding of absorption mechanisms to develop conceptual and, eventually, quantitative models of absorption that account for some aspects of individual variability. A conceptual model is presented of the physiological processes involved in the transfer of ingested metals from the lumen of the gastrointestinal tract to the blood circulation. Components of the model include delivery of the metal to the site(s) of absorption; distribution of metal among intracellular and extracellular ligands and transcellular and paracellular pathways of transfer across the gastrointestinal tract epithelium. The gastrointestinal absorption of Pb is discussed in the context of this model.
Collapse
Affiliation(s)
- G L Diamond
- Syracuse Research Corporation, North Syracuse, NY 13212-2510, USA.
| | | | | | | |
Collapse
|
28
|
O'Neil RG, Reid JM, Williams RL, Karin NJ. Expression of dihydropyridine binding sites in renal epithelial cells. Biochem Biophys Res Commun 1997; 237:41-5. [PMID: 9266826 DOI: 10.1006/bbrc.1997.7071] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
It has recently been shown that rabbit kidney epithelial cells (proximal tubule) possess two dihydropyridine (DHP)-sensitive calcium entry channels (1, 2). To evaluate the properties of the DHP binding sites, the binding of the DHP, [3H]PN200-110, was studied in epithelial cell membrane fractions (proximal tubule) of rabbit kidney cortex. High-affinity binding sites for the DHP were observed in both basolateral and apical membranes and in a membrane microsomal preparation from rabbit primary cultures of proximal tubule cells (cultured PT). In an extended analysis of the basolateral membrane preparation, two high-affinity binding sites were evident with binding dissociation constants, Kd, of 0.005 and 0.75 nM. The Kd values are similar to that observed for L-type calcium channel alpha1-subunits. Using a homology-based cloning strategy, a 388-base fragment of an alpha1-subunit was cloned from RNA isolated from rabbit cultured PT cells and freshly isolated proximal tubules and found to encode a protein identical to the cardiac form of the L-type alpha1-subunit (alpha1C-subunit). It is concluded that renal epithelial cells express high-affinity dihydropyridine receptors and that the receptors may be components of plasma membrane calcium channels, including L-type calcium channels, that control calcium entry in these cells.
Collapse
Affiliation(s)
- R G O'Neil
- Department of Integrative Biology, Pharmacology, and Physiology, University of Texas-Houston Health Science Center, 77030, USA
| | | | | | | |
Collapse
|