1
|
Renden RB, Institoris A, Sharma K, Tran CHT. Modulatory effects of noradrenergic and serotonergic signaling pathway on neurovascular coupling. Commun Biol 2024; 7:287. [PMID: 38459113 PMCID: PMC10923894 DOI: 10.1038/s42003-024-05996-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 02/28/2024] [Indexed: 03/10/2024] Open
Abstract
Dynamic changes in astrocyte Ca2+ are recognized as contributors to functional hyperemia, a critical response to increased neuronal activity mediated by a process known as neurovascular coupling (NVC). Although the critical role of glutamatergic signaling in this process has been extensively investigated, the impact of behavioral state, and the release of behavior-associated neurotransmitters, such as norepinephrine and serotonin, on astrocyte Ca2+ dynamics and functional hyperemia have received less attention. We used two-photon imaging of the barrel cortex in awake mice to examine the role of noradrenergic and serotonergic projections in NVC. We found that both neurotransmitters facilitated sensory stimulation-induced increases in astrocyte Ca2+. Interestingly, while ablation of serotonergic neurons reduced sensory stimulation-induced functional hyperemia, ablation of noradrenergic neurons caused both attenuation and potentiation of functional hyperemia. Our study demonstrates that norepinephrine and serotonin are involved in modulating sensory stimulation-induced astrocyte Ca2+ elevations and identifies their differential effects in regulating functional hyperemia.
Collapse
Affiliation(s)
- Robert B Renden
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada Reno, Reno, NV, USA
| | - Adam Institoris
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kushal Sharma
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada Reno, Reno, NV, USA
| | - Cam Ha T Tran
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada Reno, Reno, NV, USA.
| |
Collapse
|
2
|
Ahn SJ, Anfray A, Anrather J, Iadecola C. Calcium transients in nNOS neurons underlie distinct phases of the neurovascular response to barrel cortex activation in awake mice. J Cereb Blood Flow Metab 2023; 43:1633-1647. [PMID: 37149758 PMCID: PMC10581240 DOI: 10.1177/0271678x231173175] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/14/2023] [Accepted: 04/02/2023] [Indexed: 05/08/2023]
Abstract
Neuronal nitric oxide (NO) synthase (nNOS), a Ca2+ dependent enzyme, is expressed by distinct populations of neocortical neurons. Although neuronal NO is well known to contribute to the blood flow increase evoked by neural activity, the relationships between nNOS neurons activity and vascular responses in the awake state remain unclear. We imaged the barrel cortex in awake, head-fixed mice through a chronically implanted cranial window. The Ca2+ indicator GCaMP7f was expressed selectively in nNOS neurons using adenoviral gene transfer in nNOScre mice. Air-puffs directed at the contralateral whiskers or spontaneous motion induced Ca2+ transients in 30.2 ± 2.2% or 51.6 ± 3.3% of nNOS neurons, respectively, and evoked local arteriolar dilation. The greatest dilatation (14.8 ± 1.1%) occurred when whisking and motion occurred simultaneously. Ca2+ transients in individual nNOS neurons and local arteriolar dilation showed various degrees of correlation, which was strongest when the activity of whole nNOS neuron ensemble was examined. We also found that some nNOS neurons became active immediately prior to arteriolar dilation, while others were activated gradually after arteriolar dilatation. Discrete nNOS neuron subsets may contribute either to the initiation or to the maintenance of the vascular response, suggesting a previously unappreciated temporal specificity to the role of NO in neurovascular coupling.
Collapse
Affiliation(s)
- Sung Ji Ahn
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Antoine Anfray
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Josef Anrather
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
3
|
Baharara H, Kesharwani P, Johnston TP, Sahebkar A. Therapeutic potential of phytochemicals for cystic fibrosis. Biofactors 2023; 49:984-1009. [PMID: 37191383 DOI: 10.1002/biof.1960] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 05/01/2023] [Indexed: 05/17/2023]
Abstract
The aim of this review was to review and discuss various phytochemicals that exhibit beneficial effects on mutated membrane channels, and hence, improve transmembrane conductance. These therapeutic phytochemicals may have the potential to decrease mortality and morbidity of CF patients. Four databases were searched using keywords. Relevant studies were identified, and related articles were separated. Google Scholar, as well as gray literature (i.e., information that is not produced by commercial publishers), were also checked for related articles to locate/identify additional studies. The relevant databases were searched a second time to ensure that recent studies were included. In conclusion, while curcumin, genistein, and resveratrol have demonstrated effectiveness in this regard, it should be emphasized that coumarins, quercetin, and other herbal medicines also have beneficial effects on transporter function, transmembrane conductivity, and overall channel activity. Additional in vitro and in vivo studies should be conducted on mutant CFTR to unequivocally define the mechanism by which phytochemicals alter transmembrane channel function/activity, since the results of the studies evaluated in this review have a high degree of heterogenicity and discrepancy. Finally, continued research be undertaken to clearly define the mechanism(s) of action and the therapeutic effects that therapeutic phytochemicals have on the symptoms observed in CF patients in an effort to reduce mortality and morbidity.
Collapse
Affiliation(s)
- Hamed Baharara
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - AmirHossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
The importance of kidney calcium handling in the homeostasis of extracellular fluid calcium. Pflugers Arch 2022; 474:885-900. [PMID: 35842482 DOI: 10.1007/s00424-022-02725-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/09/2022] [Accepted: 06/30/2022] [Indexed: 12/13/2022]
Abstract
Extracellular fluid calcium concentration must be maintained within a narrow range in order to sustain many biological functions, encompassing muscle contraction, blood coagulation, and bone and tooth mineralization. Blood calcium value is critically dependent on the ability of the renal tubule to reabsorb the adequate amount of filtered calcium. Tubular calcium reabsorption is carried out by various and complex mechanisms in 3 distinct segments: the proximal tubule, the cortical thick ascending limb of the loop of Henle, and the late distal convoluted/connecting tubule. In addition, calcium reabsorption is tightly controlled by many endocrine, paracrine, and autocrine factors, as well as by non-hormonal factors, in order to adapt the tubular handling of calcium to the metabolic requirements. The present review summarizes the current knowledge of the mechanisms and factors involved in calcium handling by the kidney and, ultimately, in extracellular calcium homeostasis. The review also highlights some of our gaps in understanding that need to be addressed in the future.
Collapse
|
5
|
Tan RSG, Lee CHL, Dimke H, Todd Alexander R. The role of calcium-sensing receptor signaling in regulating transepithelial calcium transport. Exp Biol Med (Maywood) 2021; 246:2407-2419. [PMID: 33926258 DOI: 10.1177/15353702211010415] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The calcium-sensing receptor (CaSR) plays a critical role in sensing extracellular calcium (Ca2+) and signaling to maintain Ca2+ homeostasis. In the parathyroid, the CaSR regulates secretion of parathyroid hormone, which functions to increase extracellular Ca2+ levels. The CaSR is also located in other organs imperative to Ca2+ homeostasis including the kidney and intestine, where it modulates Ca2+ reabsorption and absorption, respectively. In this review, we describe CaSR expression and its function in transepithelial Ca2+ transport in the kidney and intestine. Activation of the CaSR leads to G protein dependent and independent signaling cascades. The known CaSR signal transduction pathways involved in modulating paracellular and transcellular epithelial Ca2+ transport are discussed. Mutations in the CaSR cause a range of diseases that manifest in altered serum Ca2+ levels. Gain-of-function mutations in the CaSR result in autosomal dominant hypocalcemia type 1, while loss-of-function mutations cause familial hypocalciuric hypercalcemia. Additionally, the putative serine protease, FAM111A, is discussed as a potential regulator of the CaSR because mutations in FAM111A cause Kenny Caffey syndrome type 2, gracile bone dysplasia, and osteocraniostenosis, diseases that are characterized by hypocalcemia, hypoparathyroidism, and bony abnormalities, i.e. share phenotypic features of autosomal dominant hypocalcemia. Recent work has helped to elucidate the effect of CaSR signaling cascades on downstream proteins involved in Ca2+ transport across renal and intestinal epithelia; however, much remains to be discovered.
Collapse
Affiliation(s)
- Rebecca Siu Ga Tan
- Department of Physiology, University of Alberta, Edmonton T6G 1C9, Canada.,Membrane Protein Disease Research Group, University of Alberta, Edmonton T6G 1C9, Canada
| | | | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense 5000, Denmark.,Department of Nephrology, Odense University Hospital, Odense 5000, Denmark
| | - R Todd Alexander
- Department of Physiology, University of Alberta, Edmonton T6G 1C9, Canada.,Membrane Protein Disease Research Group, University of Alberta, Edmonton T6G 1C9, Canada.,Department of Pediatrics, University of Alberta, Edmonton T6G 1C9, Canada
| |
Collapse
|
6
|
Kovacs-Oller T, Ivanova E, Bianchimano P, Sagdullaev BT. The pericyte connectome: spatial precision of neurovascular coupling is driven by selective connectivity maps of pericytes and endothelial cells and is disrupted in diabetes. Cell Discov 2020; 6:39. [PMID: 32566247 PMCID: PMC7296038 DOI: 10.1038/s41421-020-0180-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/13/2020] [Indexed: 01/01/2023] Open
Abstract
Functional hyperemia, or the matching of blood flow with activity, directs oxygen and nutrients to regionally firing neurons. The mechanisms responsible for this spatial accuracy remain unclear but are critical for brain function and establish the diagnostic resolution of BOLD-fMRI. Here, we described a mosaic of pericytes, the vasomotor capillary cells in the living retina. We then tested whether this net of pericytes and surrounding neuroglia predicted a connectivity map in response to sensory stimuli. Surprisingly, we found that these connections were not only selective across cell types, but also highly asymmetric spatially. First, pericytes connected predominantly to other neighboring pericytes and endothelial cells, and less to arteriolar smooth muscle cells, and not to surrounding neurons or glia. Second, focal, but not global stimulation evoked a directional vasomotor response by strengthening connections along the feeding vascular branch. This activity required local NO signaling and occurred by means of direct coupling via gap junctions. By contrast, bath application of NO or diabetes, a common microvascular pathology, not only weakened the vascular signaling but also abolished its directionality. We conclude that the exclusivity of neurovascular interactions may thus establish spatial accuracy of blood delivery with the precision of the neuronal receptive field size, and is disrupted early in diabetes.
Collapse
Affiliation(s)
- Tamas Kovacs-Oller
- Burke Neurological Institute, White Plains, NY 10605 USA
- Szentagothai Research Centre, University of Pécs, Pécs, H-7624 Hungary
| | - Elena Ivanova
- Burke Neurological Institute, White Plains, NY 10605 USA
| | | | - Botir T. Sagdullaev
- Burke Neurological Institute, White Plains, NY 10605 USA
- Department of Ophthalmology, Weill Cornell Medicine, New York, NY 10065 USA
| |
Collapse
|
7
|
Kurtul N, Bakan E, Aksoy H, Baykal O. Leukocyte Lipid Peroxidation, Superoxide Dismutase and Catalase Activities of Type 2 Diabetic Patients with Retinopathy. ACTA MEDICA (HRADEC KRÁLOVÉ) 2018. [DOI: 10.14712/18059694.2018.26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Increased oxidative stress might play an important role in the initiation and progression of diabetic complications. The present study has been undertaken to investigate whether there is any relationship between retinopathy degree and leukocyte superoxide dismutase (SOD) and catalase (CAT) activities and lipid peroxidation (LPO) in diabetic individuals with type 2 diabetic retinopathy. Patients were groupped with respect to the degree of retinopathy. Leukocyte malondialdehyde (MDA) levels, and SOD and CAT activities were measured in patients with type 2 diabetes mellitus (n=41) and nondiabetic healthy controls (n=23). Leukocyte LPO of the type 2 diabetic patients with retinopathy was significantly increased (p< 0.001), whereas SOD and CAT activities were decreased (p<0.001 and p<0.001, respectively) compared to those of controls. MDA concentrations rose while SOD and CAT activities fell with increasing severity of diabetic retinopathy, altough there was no significant difference in comprasion of the parameters mentioned above between the diabetic patients with and without retinopathy. Our results show that leukocytes in patients with type 2 diabetic retinopathy are affected by oxidative stress which might be contribute to pathogenesis of diabetic retinopathy. Prospective studies are needed to evaulate the relationship between the leukocyte antioxidants status and DR.
Collapse
|
8
|
Blood pressure regulation by the angiotensin type 1 receptor in the proximal tubule. Curr Opin Nephrol Hypertens 2018; 27:1-7. [PMID: 29045337 DOI: 10.1097/mnh.0000000000000373] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE OF REVIEW The renin-angiotensin system (RAS) plays a critical role in the pathogenesis of hypertension. Homeostatic actions of the RAS, such as increasing blood pressure (BP) and vasoconstriction, are mediated via type 1 (AT1) receptors for angiotensin II. All components of the RAS are present in the renal proximal tubule, which reabsorbs the bulk of the glomerular filtrate, making this segment of the nephron a location of great interest for solute handling under RAS influence. This review highlights recent studies that illustrate the key role of renal proximal tubule AT1 receptors in BP regulation. RECENT FINDINGS A variety of investigative approaches have demonstrated that angiotensin II signaling via AT1a receptors, specifically in the renal proximal tubule, is a major regulator of BP and sodium homeostasis. Reduction of proximal tubule AT1a receptors led to lower BPs, whereas overexpression generally caused increased BPs. SUMMARY AT1a receptors in the proximal tubule are critical to the regulation of BP by the kidney and the RAS. The pattern of BP modulation is associated with alterations in sodium transporters. As a key site for sodium homeostasis, the renal proximal tubule could hence be a potential target in the treatment of hypertension.
Collapse
|
9
|
Abstract
Neuronal activity within the brain evokes local increases in blood flow, a response termed functional hyperemia. This response ensures that active neurons receive sufficient oxygen and nutrients to maintain tissue function and health. In this review, we discuss the functions of functional hyperemia, the types of vessels that generate the response, and the signaling mechanisms that mediate neurovascular coupling, the communication between neurons and blood vessels. Neurovascular coupling signaling is mediated primarily by the vasoactive metabolites of arachidonic acid (AA), by nitric oxide, and by K+. While much is known about these pathways, many contentious issues remain. We highlight two controversies, the role of glial cell Ca2+ signaling in mediating neurovascular coupling and the importance of capillaries in generating functional hyperemia. We propose signaling pathways that resolve these controversies. In this scheme, capillary dilations are generated by Ca2+ increases in astrocyte endfeet, leading to production of AA metabolites. In contrast, arteriole dilations are generated by Ca2+ increases in neurons, resulting in production of nitric oxide and AA metabolites. Arachidonic acid from neurons also diffuses into astrocyte endfeet where it is converted into additional vasoactive metabolites. While this scheme resolves several discrepancies in the field, many unresolved challenges remain and are discussed in the final section of the review.
Collapse
Affiliation(s)
- Amy R Nippert
- 1 Department of Neuroscience, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Kyle R Biesecker
- 1 Department of Neuroscience, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Eric A Newman
- 1 Department of Neuroscience, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| |
Collapse
|
10
|
|
11
|
Abstract
Diabetic embryopathy is a theoretical enigma and a clinical challenge. Both type 1 and type 2 diabetic pregnancy carry a significant risk for fetal maldevelopment, and the precise reasons for the diabetes-induced teratogenicity are not clearly identified. The experimental work in this field has revealed a partial, however complex, answer to the teratological question, and we will review some of the latest suggestions.
Collapse
Affiliation(s)
- Ulf J. Eriksson
- CONTACT Ulf J. Eriksson Department of Medical Cell Biology, Uppsala University, Biomedical Center, PO Box 571, SE-751 23 Uppsala, Sweden
| | | |
Collapse
|
12
|
Longden TA, Hill-Eubanks DC, Nelson MT. Ion channel networks in the control of cerebral blood flow. J Cereb Blood Flow Metab 2016; 36:492-512. [PMID: 26661232 PMCID: PMC4794103 DOI: 10.1177/0271678x15616138] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 09/17/2015] [Accepted: 10/14/2015] [Indexed: 12/26/2022]
Abstract
One hundred and twenty five years ago, Roy and Sherrington made the seminal observation that neuronal stimulation evokes an increase in cerebral blood flow.(1) Since this discovery, researchers have attempted to uncover how the cells of the neurovascular unit-neurons, astrocytes, vascular smooth muscle cells, vascular endothelial cells and pericytes-coordinate their activity to control this phenomenon. Recent work has revealed that ionic fluxes through a diverse array of ion channel species allow the cells of the neurovascular unit to engage in multicellular signaling processes that dictate local hemodynamics.In this review we center our discussion on two major themes: (1) the roles of ion channels in the dynamic modulation of parenchymal arteriole smooth muscle membrane potential, which is central to the control of arteriolar diameter and therefore must be harnessed to permit changes in downstream cerebral blood flow, and (2) the striking similarities in the ion channel complements employed in astrocytic endfeet and endothelial cells, enabling dual control of smooth muscle from either side of the blood-brain barrier. We conclude with a discussion of the emerging roles of pericyte and capillary endothelial cell ion channels in neurovascular coupling, which will provide fertile ground for future breakthroughs in the field.
Collapse
Affiliation(s)
- Thomas A Longden
- Department of Pharmacology, University of Vermont, Burlington, VT, USA
| | | | - Mark T Nelson
- Department of Pharmacology, University of Vermont, Burlington, VT, USA Institute of Cardiovascular Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
13
|
Cao L, Tan C, Meng F, Liu P, Reece EA, Zhao Z. Amelioration of intracellular stress and reduction of neural tube defects in embryos of diabetic mice by phytochemical quercetin. Sci Rep 2016; 6:21491. [PMID: 26887929 PMCID: PMC4757833 DOI: 10.1038/srep21491] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 01/25/2016] [Indexed: 02/03/2023] Open
Abstract
Diabetes mellitus in early pregnancy causes birth defects, including neural tube defects (NTDs). Hyperglycemia increases production of nitric oxide (NO) through NO synthase 2 (Nos2) and reactive oxygen species (ROS), generating nitrosative and oxidative stress conditions in the embryo. The present study aimed to target nitrosative stress using a naturally occurring Nos2 inhibitor, quercetin, to prevent NTDs in the embryos of diabetic mice. Daily administration of quercetin to diabetic pregnant mice during the hyperglycemia-susceptible period of organogenesis significantly reduced NTDs and cell apoptosis in the embryos, compared with those of vehicle-treated diabetic pregnant mice. Using HPLC-coupled ESI-MS/MS, quercetin metabolites, including methylated and sulfonylated derivatives, were detected in the conceptuses. The methylated metabolite, 3-O-methylquercetin, was shown to reduce ROS level in embryonic stem cells cultured in high glucose. Quercetin treatment decreased the levels of Nos2 expression, protein nitrosylation, and protein nitration, alleviating nitrosative stress. Quercetin increased the expression of superoxide dismutase 1 and 2, and reduced the levels of oxidative stress markers. Expression of genes of redox regulating enzymes and DNA damage repair factors was upregulated. Our study demonstrates that quercetin ameliorates intracellular stresses, regulates gene expression, and reduces embryonic malformations in diabetic pregnancy.
Collapse
Affiliation(s)
- Lixue Cao
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Chengyu Tan
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA.,College of Marine Technology and Environment, Dalian Ocean University, Dalian, China
| | - Fantong Meng
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, China
| | - Peiyan Liu
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - E Albert Reece
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Zhiyong Zhao
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Abstract
The recent FDA approval of two drugs to treat the basic defect in cystic fibrosis has given hope to patients and their families battling this devastating disease. Over many years, with heavy financial investment from Vertex Pharmaceuticals and the Cystic Fibrosis Foundation, pre-clinical evaluation of thousands of synthetic drugs resulted in the production of Kalydeco and Orkambi. Yet, despite the success of this endeavor, many other compounds have been proposed as therapeutic agents in the treatment of CF. Of note, several of these compounds are naturally occurring, and are present in spices from the grocery store and over the counter preparations in health food stores. In this short review, we look at three such compounds, genistein, curcumin, and resveratrol, and evaluate the scientific support for their use as therapeutic agents in the treatment of patients with CF.
Collapse
Affiliation(s)
- Isha Dey
- Department of Physiology and Biophysics, Chicago Medical School, North Chicago, Illinois, USA
| | - Kalpit Shah
- Department of Physiology and Biophysics, Chicago Medical School, North Chicago, Illinois, USA
| | - Neil A Bradbury
- Department of Physiology and Biophysics, Chicago Medical School, North Chicago, Illinois, USA
| |
Collapse
|
15
|
Wang G, Huang WQ, Cui SD, Li S, Wang XY, Li Y, Chuai M, Cao L, Li JC, Lu DX, Yang X. Autophagy is involved in high glucose-induced heart tube malformation. Cell Cycle 2015; 14:772-83. [PMID: 25738919 DOI: 10.1080/15384101.2014.1000170] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Both pre-gestational and gestational diabetes have an adverse impact on heart development, but little is known about the influence on the early stage of heart tube formation. Using early gastrulating chick embryos, we investigated the influence of high glucose on the process of heart tube formation, specifically during the primary heart field phase. We demonstrated that high-glucose exposure resulted in 3 types of heart tube malformation: 1) ventricular hypertrophy, 2) ventricular hypertrophy with dextrocardia and 3) ventricular hypertrophy and dextrocardia with the fusion anomaly of a bilateral primary heart tube. Next, we found that these malformation phenotypes of heart tubes might mainly originate from the migratory anomaly of gastrulating precardiac mesoderm cells rather than cell proliferation in the developmental process of bilateral primary heart field primordia. The treatment of rapamycin (RAPA), an autophagy inducer, led to a similar heart tube malformation phenotype as high glucose. Additionally, high-glucose exposure promoted the expression of the key autophagy protein LC3B in early chick tissue. Atg7 is strongly expressed in the fusion site of bilateral primary heart tubes. All of these data imply that autophagy could be involved in the process of high-glucose-induced malformation of the heart tube.
Collapse
Affiliation(s)
- Guang Wang
- a Division of Histology and Embryology ; Key Laboratory for Regenerative Medicine of the Ministry of Education ; Medical College ; Jinan University ; Guangzhou , China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Yasuoka Y, Sato Y, Healy JM, Nonoguchi H, Kawahara K. pH-sensitive expression of calcium-sensing receptor (CaSR) in type-B intercalated cells of the cortical collecting ducts (CCD) in mouse kidney. Clin Exp Nephrol 2014; 19:771-82. [PMID: 25500736 DOI: 10.1007/s10157-014-1063-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 11/22/2014] [Indexed: 12/18/2022]
Abstract
BACKGROUND The localization and role of the calcium-sensing receptor (CaSR) along the nephron including the collecting ducts is still open to debate. METHODS Using the quantitative, highly sensitive in situ hybridization technique and a double-staining immunohistochemistry technique, we investigated the axial distribution and expression of CaSR along the nephron in mice (C57B/6J) treated for 6 days with acid or alkali diets. RESULTS Under control condition, CaSR was specifically localized in the cortical and medullary thick ascending limb of Henle's loop (CTAL and MTAL), macula densa (MD), distal convoluted tubule (DCT), and CCD (TALs, MD > DCT, CCD). Along the CCD, CaSR was co-localized with an anion exchanger type 4 (AE4), a marker of the basolateral membrane of type-B intercalated cell (IC-B) in mice. On the contrary, CaSR was not detected either in principal cells (PC) or in type-A intercalated cell (IC-A). CaSR expression levels in IC-B significantly (P < 0.005) decreased when mice were fed NH4Cl (acid) diets and increased when animals were given NaHCO3 (alkali) diets. As expected, cell heights of IC-A and IC-B significantly (P < 0.005) increased in the above experimental conditions. Surprisingly, single infusion (ip) of neomycin, an agonist of CaSR, significantly (P < 0.005) increased urinary Ca excretion without further increasing the hourly urine volume and significantly (P < 0.05) decreased urine pH. CONCLUSION CaSR, cloned from rat kidney, was localized in the basolateral membrane of IC-B and was more expressed during alkali-loading. Its alkali-sensitive expression may promote urinary alkali secretion for body acid-base balance.
Collapse
Affiliation(s)
- Yukiko Yasuoka
- Department of Physiology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0374, Japan.,Department of Cellular and Molecular Physiology, Kitasato University Graduate School of Medical Sciences, Sagamihara, 252-0374, Japan
| | - Yuichi Sato
- Department of Molecular Diagnostics, Kitasato University School of Allied Health Sciences, Sagamihara, 252-0374, Japan
| | - Jillian M Healy
- ALESS Program, Komaba Organizational for Educational Excellence, College of Art and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Hiroshi Nonoguchi
- Division of Internal Medicine, Kitasato University Medical Center, 6-100 Arai, Kitamoto, 364-8501, Japan
| | - Katsumasa Kawahara
- Department of Physiology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0374, Japan. .,Department of Cellular and Molecular Physiology, Kitasato University Graduate School of Medical Sciences, Sagamihara, 252-0374, Japan.
| |
Collapse
|
17
|
Liu X, Dawson DC. Cystic fibrosis transmembrane conductance regulator (CFTR) potentiators protect G551D but not ΔF508 CFTR from thermal instability. Biochemistry 2014; 53:5613-8. [PMID: 25148434 PMCID: PMC4159205 DOI: 10.1021/bi501007v] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
![]()
The G551D cystic fibrosis transmembrane
conductance regulator (CFTR)
mutation is associated with severe disease in ∼5% of cystic
fibrosis patients worldwide. This amino acid substitution in NBD1
results in a CFTR chloride channel characterized by a severe gating
defect that can be at least partially overcome in vitro by exposure to a CFTR potentiator. In contrast, the more common
ΔF508 mutation is associated with a severe protein trafficking
defect, as well as impaired channel function. Recent clinical trials
demonstrated a beneficial effect of the CFTR potentiator, Ivacaftor
(VX-770), on lung function of patients bearing at least one copy of
G551D CFTR, but no comparable effect on ΔF508 homozygotes. This
difference in efficacy was not surprising in view of the established
difference in the molecular phenotypes of the two mutant channels.
Recently, however, it was shown that the structural defect introduced
by the deletion of F508 is associated with the thermal instability
of ΔF508 CFTR channel function in vitro. This
additional mutant phenotype raised the possibility that the differences
in the behavior of ΔF508 and G551D CFTR, as well as the disparate
efficacy of Ivacaftor, might be a reflection of the differing thermal
stabilities of the two channels at 37 °C. We compared the thermal
stability of G551D and ΔF508 CFTR in Xenopus oocytes in the presence and absence of CTFR potentiators. G551D
CFTR exhibited a thermal instability that was comparable to that of
ΔF508 CFTR. G551D CFTR, however, was protected from thermal
instability by CFTR potentiators, whereas ΔF508 CFTR was not.
These results suggest that the efficacy of VX-770 in patients bearing
the G551D mutation is due, at least in part, to the ability of the
small molecule to protect the mutant channel from thermal instability
at human body temperature.
Collapse
Affiliation(s)
- Xuehong Liu
- Department of Physiology & Pharmacology, Oregon Health & Science University , Portland, Oregon 97239, United States
| | | |
Collapse
|
18
|
Yosypiv IV. Renin-angiotensin system in ureteric bud branching morphogenesis: implications for kidney disease. Pediatr Nephrol 2014; 29:609-20. [PMID: 24061643 DOI: 10.1007/s00467-013-2616-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/20/2013] [Accepted: 08/21/2013] [Indexed: 12/26/2022]
Abstract
Failure of normal branching morphogenesis of the ureteric bud (UB), a key ontogenic process that controls organogenesis of the metanephric kidney, leads to congenital anomalies of the kidney and urinary tract (CAKUT), the leading cause of end-stage kidney disease in children. Recent studies have revealed a central role of the renin-angiotensin system (RAS), the cardinal regulator of blood pressure and fluid/electrolyte homeostasis, in the control of normal kidney development. Mice or humans with mutations in the RAS genes exhibit a spectrum of CAKUT which includes renal medullary hypoplasia, hydronephrosis, renal hypodysplasia, duplicated renal collecting system and renal tubular dysgenesis. Emerging evidence indicates that severe hypoplasia of the inner medulla and papilla observed in angiotensinogen (Agt)- or angiotensin (Ang) II AT 1 receptor (AT 1 R)-deficient mice is due to aberrant UB branching morphogenesis resulting from disrupted RAS signaling. Lack of the prorenin receptor (PRR) in the UB in mice causes reduced UB branching, resulting in decreased nephron endowment, marked kidney hypoplasia, urinary concentrating and acidification defects. This review provides a mechanistic rational supporting the hypothesis that aberrant signaling of the intrarenal RAS during distinct stages of metanephric kidney development contributes to the pathogenesis of the broad phenotypic spectrum of CAKUT. As aberrant RAS signaling impairs normal renal development, these findings advocate caution for the use of RAS inhibitors in early infancy and further underscore a need to avoid their use during pregnancy and to identify the types of molecular processes that can be targeted for clinical intervention.
Collapse
Affiliation(s)
- Ihor V Yosypiv
- Section of Pediatric Nephrology, Department of Pediatrics, Hypertension and Renal Center of Excellence, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA, 70112, USA,
| |
Collapse
|
19
|
Prolonged acetylsalicylic-acid-supplementation-induced gastritis affects the chemical coding of the stomach innervating vagal efferent neurons in the porcine dorsal motor vagal nucleus (DMX). J Mol Neurosci 2014; 54:188-98. [PMID: 24643520 PMCID: PMC4156783 DOI: 10.1007/s12031-014-0274-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 02/25/2014] [Indexed: 02/07/2023]
Abstract
The main goal of our research was to study the possible alterations of the chemical coding of the dorsal motor vagal nucleus (DMX) neurons projecting to the porcine stomach prepyloric region following prolonged acetylsalicylic acid supplementation. Fast Blue (FB) was injected into the studied area of the stomach. Since the seventh day following the FB injection, acetylsalicylic acid (ASA) was given orally to the experimental gilts. All animals were euthanized on the 28th day after FB injection. Medulla oblongata sections were then processed for double-labeling immunofluorescence for choline acetyltransferase (ChAT), pituitary adenylate cyclase-activating peptide (PACAP), vasoactive intestinal polypeptide (VIP), nitric oxide synthase (NOS), galanin (GAL), substance P (SP), leu enkephalin (LENK), and cocaine- and amphetamine-regulated transcript (CART). In the control DMX, only PACAP was observed in 30.08 ± 1.97 % of the FB-positive neurons, while VIP, NOS, GAL, SP, LENK, and CART were found exclusively in neuronal processes running between FB-labeled perikarya. In the ASA DMX, PACAP was revealed in 49.53 ± 5.73 % of traced vagal perikarya. Moreover, we found de novo expression of VIP in 40.32 ± 7.84 %, NOS in 25.02 ± 6.08 %, and GAL in 3.37 ± 0.85 % of the FB-labeled neurons. Our results suggest that neuronal PACAP, VIP, NOS, and GAL are mediators of neural response to aspirin-induced stomach inflammatory state.
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Changes in extracellular calcium concentration affect several functions of the renal tubule. The calcium-sensing receptor (CaSR), initially identified in the parathyroid gland cells, is also expressed in the kidney and was assumed to mediate all effects of extracellular calcium on the renal tubule. The purpose of this review is to critically review the evidence supporting this assumption. RECENT FINDINGS Recent results confirm that, in the kidney, the CaSR is mainly expressed in the thick ascending limb of the loop of Henle. There, it is involved in the control of calcium reabsorption, independently of its action on parathyroid hormone secretion, through an effect on the paracellular pathway permeability. Although extracellular calcium affects transports other than that of calcium, the direct evidence that CaSR is involved in these effects is still lacking in many instances. SUMMARY As the CaSR in the kidney controls calcium reabsorption and excretion and subsequently affects blood calcium concentration, agonists and antagonists of the CaSR could be used to control blood calcium concentration in patients who have lost their ability to regulate parathyroid hormone secretion. In addition, more work is needed to further decipher the molecular mechanisms through which CaSR determines calcium transport in the loop of Henle.
Collapse
|
21
|
Localization and chemical coding of the dorsal motor vagal nucleus (DMX) neurons projecting to the porcine stomach prepyloric area in the physiological state and after stomach partial resection. J Mol Neurosci 2013; 52:90-100. [PMID: 24458741 DOI: 10.1007/s12031-013-0102-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 08/21/2013] [Indexed: 02/06/2023]
Abstract
The aim of our study was to localize and define immunocytochemical characteristic of the dorsal motor nucleus of the vagus (DMX) neurons projecting to the porcine stomach prepyloric region in the physiological state and after gastric partial resection. To identify the stomach-projecting perikarya, the neuronal retrograde tracer--Fast Blue (FB) was injected into the studied region of control and resection group (RES). In the RES group, on 22nd day after FB injection, the partial resection of the stomach region previously injected with FB was performed. Sections were immunostained with ChAT, pituitary adenylate cyclase-activating peptide (PACAP), vasoactive intestinal polypeptide (VIP), nitric oxide synthase (NOS), galanin (GAL), substance P (SP), leu-enkephalin (LENK), and cocaine- and amphetamine-regulated transcript (CART). In the DMX of control and RES group, the stomach-projecting perikarya were found in the entire extent of the nucleus bilaterally. Within control animals, 30.08 ± 1.97 % of the gastric DMX perikarya expressed PACAP, while other substances were found only in the neuronal fibers. In the RES group DMX, PACAP was found in 45.58 ± 2.2 %, VIP in 28.83 ± 3.63 %, NOS in 21.22 ± 3.32 %, and GAL in 5.67 ± 1.49 % of the FB-labeled gastric perikarya. Our data implicate PACAP, VIP, NOS, and GAL as neuronal survival promoting substances and the CART-, LENK-, SP- NOS-, and GAL-immunoreactive processes in control of the gastric vagal neurons in the pig.
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Although the existence of a complete intrarenal renin-angiotensin system is now well established, its role in modulating tubule sodium transport and blood pressure is incompletely understood. Several recent studies have shed light on one component of the system, proximal tubule-derived angiotensinogen (AGT). This review discusses the synthesis, regulation and function of AGT in the proximal tubule. RECENT FINDINGS Under normal sodium intake, AGT within the S1 and S2 segments of the proximal tubule may derive from the systemic circulation, whereas the S3 segment synthesizes AGT. Urinary AGT likely primarily reflects proximal tubule-derived AGT. Proximal tubule AGT synthesis is regulated by high Na intake, angiotensin-II and inflammatory cytokines. Transgenic expression of mouse AGT in the proximal tubule causes hypertension. Overexpression of rat AGT in the proximal tubule leads to hypertension, enhanced reactive oxygen species generation via NADPH oxidase, tubular apoptosis and tubulointerstitial fibrosis; these effects can be mitigated by catalase overexpression. SUMMARY Proximal tubule-derived AGT has the potential to modulate blood pressure and sodium balance, and promote renal injury. Interactions with the systemic renin-angiotensin system may influence the role of proximal tubule-derived AGT in the kidney.
Collapse
|
23
|
Loupy A, Ramakrishnan SK, Wootla B, Chambrey R, de la Faille R, Bourgeois S, Bruneval P, Mandet C, Christensen EI, Faure H, Cheval L, Laghmani K, Collet C, Eladari D, Dodd RH, Ruat M, Houillier P. PTH-independent regulation of blood calcium concentration by the calcium-sensing receptor. J Clin Invest 2012; 122:3355-3367. [PMID: 22886306 PMCID: PMC3428075 DOI: 10.1172/jci57407] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 06/28/2012] [Indexed: 12/27/2022] Open
Abstract
Tight regulation of calcium levels is required for many critical biological functions. The Ca2+-sensing receptor (CaSR) expressed by parathyroid cells controls blood calcium concentration by regulating parathyroid hormone (PTH) secretion. However, CaSR is also expressed in other organs, such as the kidney, but the importance of extraparathyroid CaSR in calcium metabolism remains unknown. Here, we investigated the role of extraparathyroid CaSR using thyroparathyroidectomized, PTH-supplemented rats. Chronic inhibition of CaSR selectively increased renal tubular calcium absorption and blood calcium concentration independent of PTH secretion change and without altering intestinal calcium absorption. CaSR inhibition increased blood calcium concentration in animals pretreated with a bisphosphonate, indicating that the increase did not result from release of bone calcium. Kidney CaSR was expressed primarily in the thick ascending limb of the loop of Henle (TAL). As measured by in vitro microperfusion of cortical TAL, CaSR inhibitors increased calcium reabsorption and paracellular pathway permeability but did not change NaCl reabsorption. We conclude that CaSR is a direct determinant of blood calcium concentration, independent of PTH, and modulates renal tubular calcium transport in the TAL via the permeability of the paracellular pathway. These findings suggest that CaSR inhibitors may provide a new specific treatment for disorders related to impaired PTH secretion, such as primary hypoparathyroidism.
Collapse
Affiliation(s)
- Alexandre Loupy
- INSERM UMRS 872, Centre de Recherche des Cordeliers, Paris, France.
Université Pierre et Marie Curie, Paris, France.
CNRS ERL7226, Paris, France.
Université Paris Descartes and Necker Hospital Kidney Transplant Department, Assistance Publique–Hôpitaux de Paris, Paris, France.
Hôpital Européen Georges Pompidou, Département de Physiologie, Assistance Publique–Hôpitaux de Paris, Paris, France.
University of Zürich, Institute of Physiology, Zurich, Switzerland.
Hôpital Européen Georges Pompidou, Département de Pathologie, Assistance Publique–Hôpitaux de Paris, Paris, France.
Department of Anatomy, University of Århus, Århus, Denmark.
Signal Transduction and Developmental Neuropharmacology group, CNRS, UPR-3294, N&D Laboratory, Institut Albert Fessard, Gif-sur-Yvette, France.
Hôpital Lariboisière, Biochimie et Biologie Moleculaire, Assistance Publique–Hôpitaux de Paris, Paris, France.
Institut de Chimie des Substances Naturelles, CNRS, Gif-sur-Yvette, France
| | - Suresh Krishna Ramakrishnan
- INSERM UMRS 872, Centre de Recherche des Cordeliers, Paris, France.
Université Pierre et Marie Curie, Paris, France.
CNRS ERL7226, Paris, France.
Université Paris Descartes and Necker Hospital Kidney Transplant Department, Assistance Publique–Hôpitaux de Paris, Paris, France.
Hôpital Européen Georges Pompidou, Département de Physiologie, Assistance Publique–Hôpitaux de Paris, Paris, France.
University of Zürich, Institute of Physiology, Zurich, Switzerland.
Hôpital Européen Georges Pompidou, Département de Pathologie, Assistance Publique–Hôpitaux de Paris, Paris, France.
Department of Anatomy, University of Århus, Århus, Denmark.
Signal Transduction and Developmental Neuropharmacology group, CNRS, UPR-3294, N&D Laboratory, Institut Albert Fessard, Gif-sur-Yvette, France.
Hôpital Lariboisière, Biochimie et Biologie Moleculaire, Assistance Publique–Hôpitaux de Paris, Paris, France.
Institut de Chimie des Substances Naturelles, CNRS, Gif-sur-Yvette, France
| | - Bharath Wootla
- INSERM UMRS 872, Centre de Recherche des Cordeliers, Paris, France.
Université Pierre et Marie Curie, Paris, France.
CNRS ERL7226, Paris, France.
Université Paris Descartes and Necker Hospital Kidney Transplant Department, Assistance Publique–Hôpitaux de Paris, Paris, France.
Hôpital Européen Georges Pompidou, Département de Physiologie, Assistance Publique–Hôpitaux de Paris, Paris, France.
University of Zürich, Institute of Physiology, Zurich, Switzerland.
Hôpital Européen Georges Pompidou, Département de Pathologie, Assistance Publique–Hôpitaux de Paris, Paris, France.
Department of Anatomy, University of Århus, Århus, Denmark.
Signal Transduction and Developmental Neuropharmacology group, CNRS, UPR-3294, N&D Laboratory, Institut Albert Fessard, Gif-sur-Yvette, France.
Hôpital Lariboisière, Biochimie et Biologie Moleculaire, Assistance Publique–Hôpitaux de Paris, Paris, France.
Institut de Chimie des Substances Naturelles, CNRS, Gif-sur-Yvette, France
| | - Régine Chambrey
- INSERM UMRS 872, Centre de Recherche des Cordeliers, Paris, France.
Université Pierre et Marie Curie, Paris, France.
CNRS ERL7226, Paris, France.
Université Paris Descartes and Necker Hospital Kidney Transplant Department, Assistance Publique–Hôpitaux de Paris, Paris, France.
Hôpital Européen Georges Pompidou, Département de Physiologie, Assistance Publique–Hôpitaux de Paris, Paris, France.
University of Zürich, Institute of Physiology, Zurich, Switzerland.
Hôpital Européen Georges Pompidou, Département de Pathologie, Assistance Publique–Hôpitaux de Paris, Paris, France.
Department of Anatomy, University of Århus, Århus, Denmark.
Signal Transduction and Developmental Neuropharmacology group, CNRS, UPR-3294, N&D Laboratory, Institut Albert Fessard, Gif-sur-Yvette, France.
Hôpital Lariboisière, Biochimie et Biologie Moleculaire, Assistance Publique–Hôpitaux de Paris, Paris, France.
Institut de Chimie des Substances Naturelles, CNRS, Gif-sur-Yvette, France
| | - Renaud de la Faille
- INSERM UMRS 872, Centre de Recherche des Cordeliers, Paris, France.
Université Pierre et Marie Curie, Paris, France.
CNRS ERL7226, Paris, France.
Université Paris Descartes and Necker Hospital Kidney Transplant Department, Assistance Publique–Hôpitaux de Paris, Paris, France.
Hôpital Européen Georges Pompidou, Département de Physiologie, Assistance Publique–Hôpitaux de Paris, Paris, France.
University of Zürich, Institute of Physiology, Zurich, Switzerland.
Hôpital Européen Georges Pompidou, Département de Pathologie, Assistance Publique–Hôpitaux de Paris, Paris, France.
Department of Anatomy, University of Århus, Århus, Denmark.
Signal Transduction and Developmental Neuropharmacology group, CNRS, UPR-3294, N&D Laboratory, Institut Albert Fessard, Gif-sur-Yvette, France.
Hôpital Lariboisière, Biochimie et Biologie Moleculaire, Assistance Publique–Hôpitaux de Paris, Paris, France.
Institut de Chimie des Substances Naturelles, CNRS, Gif-sur-Yvette, France
| | - Soline Bourgeois
- INSERM UMRS 872, Centre de Recherche des Cordeliers, Paris, France.
Université Pierre et Marie Curie, Paris, France.
CNRS ERL7226, Paris, France.
Université Paris Descartes and Necker Hospital Kidney Transplant Department, Assistance Publique–Hôpitaux de Paris, Paris, France.
Hôpital Européen Georges Pompidou, Département de Physiologie, Assistance Publique–Hôpitaux de Paris, Paris, France.
University of Zürich, Institute of Physiology, Zurich, Switzerland.
Hôpital Européen Georges Pompidou, Département de Pathologie, Assistance Publique–Hôpitaux de Paris, Paris, France.
Department of Anatomy, University of Århus, Århus, Denmark.
Signal Transduction and Developmental Neuropharmacology group, CNRS, UPR-3294, N&D Laboratory, Institut Albert Fessard, Gif-sur-Yvette, France.
Hôpital Lariboisière, Biochimie et Biologie Moleculaire, Assistance Publique–Hôpitaux de Paris, Paris, France.
Institut de Chimie des Substances Naturelles, CNRS, Gif-sur-Yvette, France
| | - Patrick Bruneval
- INSERM UMRS 872, Centre de Recherche des Cordeliers, Paris, France.
Université Pierre et Marie Curie, Paris, France.
CNRS ERL7226, Paris, France.
Université Paris Descartes and Necker Hospital Kidney Transplant Department, Assistance Publique–Hôpitaux de Paris, Paris, France.
Hôpital Européen Georges Pompidou, Département de Physiologie, Assistance Publique–Hôpitaux de Paris, Paris, France.
University of Zürich, Institute of Physiology, Zurich, Switzerland.
Hôpital Européen Georges Pompidou, Département de Pathologie, Assistance Publique–Hôpitaux de Paris, Paris, France.
Department of Anatomy, University of Århus, Århus, Denmark.
Signal Transduction and Developmental Neuropharmacology group, CNRS, UPR-3294, N&D Laboratory, Institut Albert Fessard, Gif-sur-Yvette, France.
Hôpital Lariboisière, Biochimie et Biologie Moleculaire, Assistance Publique–Hôpitaux de Paris, Paris, France.
Institut de Chimie des Substances Naturelles, CNRS, Gif-sur-Yvette, France
| | - Chantal Mandet
- INSERM UMRS 872, Centre de Recherche des Cordeliers, Paris, France.
Université Pierre et Marie Curie, Paris, France.
CNRS ERL7226, Paris, France.
Université Paris Descartes and Necker Hospital Kidney Transplant Department, Assistance Publique–Hôpitaux de Paris, Paris, France.
Hôpital Européen Georges Pompidou, Département de Physiologie, Assistance Publique–Hôpitaux de Paris, Paris, France.
University of Zürich, Institute of Physiology, Zurich, Switzerland.
Hôpital Européen Georges Pompidou, Département de Pathologie, Assistance Publique–Hôpitaux de Paris, Paris, France.
Department of Anatomy, University of Århus, Århus, Denmark.
Signal Transduction and Developmental Neuropharmacology group, CNRS, UPR-3294, N&D Laboratory, Institut Albert Fessard, Gif-sur-Yvette, France.
Hôpital Lariboisière, Biochimie et Biologie Moleculaire, Assistance Publique–Hôpitaux de Paris, Paris, France.
Institut de Chimie des Substances Naturelles, CNRS, Gif-sur-Yvette, France
| | - Erik Ilso Christensen
- INSERM UMRS 872, Centre de Recherche des Cordeliers, Paris, France.
Université Pierre et Marie Curie, Paris, France.
CNRS ERL7226, Paris, France.
Université Paris Descartes and Necker Hospital Kidney Transplant Department, Assistance Publique–Hôpitaux de Paris, Paris, France.
Hôpital Européen Georges Pompidou, Département de Physiologie, Assistance Publique–Hôpitaux de Paris, Paris, France.
University of Zürich, Institute of Physiology, Zurich, Switzerland.
Hôpital Européen Georges Pompidou, Département de Pathologie, Assistance Publique–Hôpitaux de Paris, Paris, France.
Department of Anatomy, University of Århus, Århus, Denmark.
Signal Transduction and Developmental Neuropharmacology group, CNRS, UPR-3294, N&D Laboratory, Institut Albert Fessard, Gif-sur-Yvette, France.
Hôpital Lariboisière, Biochimie et Biologie Moleculaire, Assistance Publique–Hôpitaux de Paris, Paris, France.
Institut de Chimie des Substances Naturelles, CNRS, Gif-sur-Yvette, France
| | - Hélène Faure
- INSERM UMRS 872, Centre de Recherche des Cordeliers, Paris, France.
Université Pierre et Marie Curie, Paris, France.
CNRS ERL7226, Paris, France.
Université Paris Descartes and Necker Hospital Kidney Transplant Department, Assistance Publique–Hôpitaux de Paris, Paris, France.
Hôpital Européen Georges Pompidou, Département de Physiologie, Assistance Publique–Hôpitaux de Paris, Paris, France.
University of Zürich, Institute of Physiology, Zurich, Switzerland.
Hôpital Européen Georges Pompidou, Département de Pathologie, Assistance Publique–Hôpitaux de Paris, Paris, France.
Department of Anatomy, University of Århus, Århus, Denmark.
Signal Transduction and Developmental Neuropharmacology group, CNRS, UPR-3294, N&D Laboratory, Institut Albert Fessard, Gif-sur-Yvette, France.
Hôpital Lariboisière, Biochimie et Biologie Moleculaire, Assistance Publique–Hôpitaux de Paris, Paris, France.
Institut de Chimie des Substances Naturelles, CNRS, Gif-sur-Yvette, France
| | - Lydie Cheval
- INSERM UMRS 872, Centre de Recherche des Cordeliers, Paris, France.
Université Pierre et Marie Curie, Paris, France.
CNRS ERL7226, Paris, France.
Université Paris Descartes and Necker Hospital Kidney Transplant Department, Assistance Publique–Hôpitaux de Paris, Paris, France.
Hôpital Européen Georges Pompidou, Département de Physiologie, Assistance Publique–Hôpitaux de Paris, Paris, France.
University of Zürich, Institute of Physiology, Zurich, Switzerland.
Hôpital Européen Georges Pompidou, Département de Pathologie, Assistance Publique–Hôpitaux de Paris, Paris, France.
Department of Anatomy, University of Århus, Århus, Denmark.
Signal Transduction and Developmental Neuropharmacology group, CNRS, UPR-3294, N&D Laboratory, Institut Albert Fessard, Gif-sur-Yvette, France.
Hôpital Lariboisière, Biochimie et Biologie Moleculaire, Assistance Publique–Hôpitaux de Paris, Paris, France.
Institut de Chimie des Substances Naturelles, CNRS, Gif-sur-Yvette, France
| | - Kamel Laghmani
- INSERM UMRS 872, Centre de Recherche des Cordeliers, Paris, France.
Université Pierre et Marie Curie, Paris, France.
CNRS ERL7226, Paris, France.
Université Paris Descartes and Necker Hospital Kidney Transplant Department, Assistance Publique–Hôpitaux de Paris, Paris, France.
Hôpital Européen Georges Pompidou, Département de Physiologie, Assistance Publique–Hôpitaux de Paris, Paris, France.
University of Zürich, Institute of Physiology, Zurich, Switzerland.
Hôpital Européen Georges Pompidou, Département de Pathologie, Assistance Publique–Hôpitaux de Paris, Paris, France.
Department of Anatomy, University of Århus, Århus, Denmark.
Signal Transduction and Developmental Neuropharmacology group, CNRS, UPR-3294, N&D Laboratory, Institut Albert Fessard, Gif-sur-Yvette, France.
Hôpital Lariboisière, Biochimie et Biologie Moleculaire, Assistance Publique–Hôpitaux de Paris, Paris, France.
Institut de Chimie des Substances Naturelles, CNRS, Gif-sur-Yvette, France
| | - Corinne Collet
- INSERM UMRS 872, Centre de Recherche des Cordeliers, Paris, France.
Université Pierre et Marie Curie, Paris, France.
CNRS ERL7226, Paris, France.
Université Paris Descartes and Necker Hospital Kidney Transplant Department, Assistance Publique–Hôpitaux de Paris, Paris, France.
Hôpital Européen Georges Pompidou, Département de Physiologie, Assistance Publique–Hôpitaux de Paris, Paris, France.
University of Zürich, Institute of Physiology, Zurich, Switzerland.
Hôpital Européen Georges Pompidou, Département de Pathologie, Assistance Publique–Hôpitaux de Paris, Paris, France.
Department of Anatomy, University of Århus, Århus, Denmark.
Signal Transduction and Developmental Neuropharmacology group, CNRS, UPR-3294, N&D Laboratory, Institut Albert Fessard, Gif-sur-Yvette, France.
Hôpital Lariboisière, Biochimie et Biologie Moleculaire, Assistance Publique–Hôpitaux de Paris, Paris, France.
Institut de Chimie des Substances Naturelles, CNRS, Gif-sur-Yvette, France
| | - Dominique Eladari
- INSERM UMRS 872, Centre de Recherche des Cordeliers, Paris, France.
Université Pierre et Marie Curie, Paris, France.
CNRS ERL7226, Paris, France.
Université Paris Descartes and Necker Hospital Kidney Transplant Department, Assistance Publique–Hôpitaux de Paris, Paris, France.
Hôpital Européen Georges Pompidou, Département de Physiologie, Assistance Publique–Hôpitaux de Paris, Paris, France.
University of Zürich, Institute of Physiology, Zurich, Switzerland.
Hôpital Européen Georges Pompidou, Département de Pathologie, Assistance Publique–Hôpitaux de Paris, Paris, France.
Department of Anatomy, University of Århus, Århus, Denmark.
Signal Transduction and Developmental Neuropharmacology group, CNRS, UPR-3294, N&D Laboratory, Institut Albert Fessard, Gif-sur-Yvette, France.
Hôpital Lariboisière, Biochimie et Biologie Moleculaire, Assistance Publique–Hôpitaux de Paris, Paris, France.
Institut de Chimie des Substances Naturelles, CNRS, Gif-sur-Yvette, France
| | - Robert H. Dodd
- INSERM UMRS 872, Centre de Recherche des Cordeliers, Paris, France.
Université Pierre et Marie Curie, Paris, France.
CNRS ERL7226, Paris, France.
Université Paris Descartes and Necker Hospital Kidney Transplant Department, Assistance Publique–Hôpitaux de Paris, Paris, France.
Hôpital Européen Georges Pompidou, Département de Physiologie, Assistance Publique–Hôpitaux de Paris, Paris, France.
University of Zürich, Institute of Physiology, Zurich, Switzerland.
Hôpital Européen Georges Pompidou, Département de Pathologie, Assistance Publique–Hôpitaux de Paris, Paris, France.
Department of Anatomy, University of Århus, Århus, Denmark.
Signal Transduction and Developmental Neuropharmacology group, CNRS, UPR-3294, N&D Laboratory, Institut Albert Fessard, Gif-sur-Yvette, France.
Hôpital Lariboisière, Biochimie et Biologie Moleculaire, Assistance Publique–Hôpitaux de Paris, Paris, France.
Institut de Chimie des Substances Naturelles, CNRS, Gif-sur-Yvette, France
| | - Martial Ruat
- INSERM UMRS 872, Centre de Recherche des Cordeliers, Paris, France.
Université Pierre et Marie Curie, Paris, France.
CNRS ERL7226, Paris, France.
Université Paris Descartes and Necker Hospital Kidney Transplant Department, Assistance Publique–Hôpitaux de Paris, Paris, France.
Hôpital Européen Georges Pompidou, Département de Physiologie, Assistance Publique–Hôpitaux de Paris, Paris, France.
University of Zürich, Institute of Physiology, Zurich, Switzerland.
Hôpital Européen Georges Pompidou, Département de Pathologie, Assistance Publique–Hôpitaux de Paris, Paris, France.
Department of Anatomy, University of Århus, Århus, Denmark.
Signal Transduction and Developmental Neuropharmacology group, CNRS, UPR-3294, N&D Laboratory, Institut Albert Fessard, Gif-sur-Yvette, France.
Hôpital Lariboisière, Biochimie et Biologie Moleculaire, Assistance Publique–Hôpitaux de Paris, Paris, France.
Institut de Chimie des Substances Naturelles, CNRS, Gif-sur-Yvette, France
| | - Pascal Houillier
- INSERM UMRS 872, Centre de Recherche des Cordeliers, Paris, France.
Université Pierre et Marie Curie, Paris, France.
CNRS ERL7226, Paris, France.
Université Paris Descartes and Necker Hospital Kidney Transplant Department, Assistance Publique–Hôpitaux de Paris, Paris, France.
Hôpital Européen Georges Pompidou, Département de Physiologie, Assistance Publique–Hôpitaux de Paris, Paris, France.
University of Zürich, Institute of Physiology, Zurich, Switzerland.
Hôpital Européen Georges Pompidou, Département de Pathologie, Assistance Publique–Hôpitaux de Paris, Paris, France.
Department of Anatomy, University of Århus, Århus, Denmark.
Signal Transduction and Developmental Neuropharmacology group, CNRS, UPR-3294, N&D Laboratory, Institut Albert Fessard, Gif-sur-Yvette, France.
Hôpital Lariboisière, Biochimie et Biologie Moleculaire, Assistance Publique–Hôpitaux de Paris, Paris, France.
Institut de Chimie des Substances Naturelles, CNRS, Gif-sur-Yvette, France
| |
Collapse
|
24
|
Roomans GM. Pharmacological Approaches to Correcting the Ion Transport Defect in Cystic Fibrosis. ACTA ACUST UNITED AC 2012; 2:413-31. [PMID: 14719993 DOI: 10.1007/bf03256668] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cystic fibrosis (CF) is a lethal genetic disease caused by a mutation in a membrane protein, the cystic fibrosis transmembrane conductance regulator (CFTR), which mainly (but not exclusively) functions as a chloride channel. The main clinical symptoms are chronic obstructive lung disease, which is responsible for most of the morbidity and mortality associated with CF, and pancreatic insufficiency. About 1000 mutations of the gene coding for CFTR are currently known; the most common of these, present in the great majority of the patients (Delta508) results in the deletion of a phenylalanine at position 508. In this mutation, the aberrant CFTR is not transported to the membrane but degraded in the ubiquitin-proteasome pathway. The aim of this review is to give an overview of the pharmacologic strategies currently used in attempts to overcome the ion transport defect in CF. One strategy to develop pharmacologic treatment for CF is to inhibit the breakdown of DeltaF508-CFTR by interfering with the chaperones involved in the folding of CFTR. At least in in vitro systems, this can be accomplished by sodium phenylbutyrate, or S-nitrosoglutathione (GSNO), and also by genistein or benzo[c]quinolizinium compounds. It is also possible to stimulate CFTR or its mutated forms, when present in the plasma membrane, using xanthines, genistein, and various other compounds, such as benzamidizoles and benzoxazoles, benzo[c]quinolizinium compounds or phenantrolines. Experimental results are not always unambiguous, and adverse effects have been incompletely tested. Some clinical tests have been done on sodium phenyl butyrate, GSNO and genistein, mostly in respect to other diseases, and the results demonstrate that these drugs are reasonably well tolerated. Their efficiency in the treatment of CF has not yet been demonstrated, however. An alternative strategy is to compensate for the defective chloride transport by CFTR by stimulation of other chloride channels. This can be done via purinergic receptors. A phase I study using a stable uridine triphosphate analog has recently been completed. A second alternative strategy is to attempt to maintain hydration of the airway mucus by inhibiting Na(+) uptake by the epithelial Na(+) channel using amiloride or stable analogs of amiloride. Clinical tests so far have been inconclusive. A number of other suggestions are currently being explored. The minority of patients with CF who have a stop mutation may benefit from treatment with gentamicin. The difficulties in finding a pharmacologic treatment for CF may be due to the fact that CFTR has additional functions besides chloride transport, and interfering with CFTR biosynthesis or activation implies interference with central cellular processes, which may have undesirable adverse effects.
Collapse
Affiliation(s)
- Godfried M Roomans
- Department of Medical Cell Biology, University of Uppsala, Uppsala, Sweden.
| |
Collapse
|
25
|
Abstract
Diabetic embryopathy reflects a scientific enigma--how does a seemingly rich intrauterine environment manage to disturb the development of the embryo? Which compounds in that environment may be teratogenic--and how shall we find them? How can we investigate a putative dose-response nature of the teratogen, i.e., how can we monitor the effects of varied severity of the diabetic state (which can be varied in a number of metabolic ways) on the embryonic development? Here, the whole embryo culture (WEC) technique provides an excellent tool for such studies. WEC is thus currently used to investigate the effect of graded levels of diabetes (e.g., hyperglycemia, hyperketonemia, increased branched chain amino acid (BCAA) levels), and putative antiteratogenic agents (antioxidants, folic acid, arachidonic acid, inositol), as well as the effect of different embryonic genotypes on diabetes-induced (mal)development. WEC is the only method, which is able to couple specific embryonic maldevelopment to precise changes in substrate levels or the (epi)genotype of the embryo. Using this method, we have been able to demonstrate that a diabetic environment--culture of embryos in serum from diabetic animals or in serum with increased levels of glucose, β-hydroxybutyrate or α-ketoisocaproic acid (KIC)--causes increased embryonic maldevelopment, and that this dysmorphogenesis is blocked by the addition of ROS scavenging agents to the culture medium. Genetically, others and we have demonstrated that Pax-3 downregulation predisposes for diabetes-induced dysmorphogenesis.
Collapse
|
26
|
Yosypiv IV. Renin-angiotensin system in ureteric bud branching morphogenesis: insights into the mechanisms. Pediatr Nephrol 2011; 26:1499-512. [PMID: 21359618 DOI: 10.1007/s00467-011-1820-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 01/24/2011] [Accepted: 02/01/2011] [Indexed: 12/31/2022]
Abstract
Branching morphogenesis of the ureteric bud (UB) is a key developmental process that controls organogenesis of the entire metanephros. Notably, aberrant UB branching may result in a spectrum of congenital anomalies of the kidney and urinary tract (CAKUT). Genetic, biochemical and physiological studies have demonstrated that the renin-angiotensin system (RAS), a key regulator of the blood pressure and fluid/electrolyte homeostasis, also plays a critical role in kidney development. All the components of the RAS are expressed in the metanephros. Moreover, mutations in the genes encoding components of the RAS in mice or humans cause diverse types of CAKUT which include renal papillary hypoplasia, hydronephrosis, duplicated collecting system, renal tubular dysgenesis, renal vascular abnormalities, abnormal glomerulogenesis and urinary concentrating defect. Despite widely accepted role of the RAS in metanephric kidney and renal collecting system (ureter, pelvis, calyces and collecting ducts) development, the mechanisms by which an intact RAS exerts its morphogenetic actions are incompletely defined. Emerging evidence indicates that defects in UB branching morphogenesis may be causally linked to the pathogenesis of renal collecting system anomalies observed under conditions of aberrant RAS signaling. This review describes the role of the RAS in UB branching morphogenesis and highlights emerging insights into the cellular and molecular mechanisms whereby RAS regulates this critical morphogenetic process.
Collapse
Affiliation(s)
- Ihor V Yosypiv
- Section of Pediatric Nephrology, Department of Pediatrics, SL-37 Hypertension and Renal Center of Excellence, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA.
| |
Collapse
|
27
|
Abstract
Mutations in cancer cells affecting subunits of the respiratory chain (RC) indicate a central role of oxidative phosphorylation for tumourigenesis. Recent studies have suggested that such mutations of RC complexes impact apoptosis induction. We review here the evidence for this hypothesis, which in particular emerged from work on how complex I and II mediate signals for apoptosis. Both protein aggregates are specifically inhibited for apoptosis induction through different means by exploiting with protease activation and pH change, two widespread but independent features of dying cells. Nevertheless, both converge on forming reactive oxygen species for the demise of the cell. Investigations into these mitochondrial processes will remain a rewarding area for unravelling the causes of tumourigenesis and for discovering interference options.
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW Parathyroid hormone (PTH) maintains a physiological balance of calcium and phosphate concentrations by binding to its receptor on the plasma membrane of cells in bone and kidney. It signals through multiple pathways, including protein kinase A and protein kinase C, although a preference for certain pathways is apparent in each organ and function. Here, we will review the recent advancements regarding PTH signaling in bone and kidney. RECENT FINDINGS Wnt proteins have been reported as important regulators of bone metabolism in both PTH-dependent and independent pathways. Recent studies emphasize its role as a mediator of PTH signaling, as PTH treatment increased the expression of wnt4 and sfrp4 and decreased the expression of Wnt inhibitors such as Sost and sclerostin, leading to an increase in Wnt signaling. In kidney, sodium-hydrogen exchanger regulatory factor 1, originally known for its role in the retention of NaPi-IIa at the apical membrane, was shown to have multiple roles in PTH signaling, both as a mediator and regulator. SUMMARY PTH activates a number of different signaling pathways by binding to a single receptor in bone and kidney. Recent studies demonstrate the involvement of novel factors as well as additional roles for previously identified downstream factors of PTH.
Collapse
|
29
|
Hegedus T, Aleksandrov A, Mengos A, Cui L, Jensen TJ, Riordan JR. Role of individual R domain phosphorylation sites in CFTR regulation by protein kinase A. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1341-9. [PMID: 19328185 DOI: 10.1016/j.bbamem.2009.03.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 02/25/2009] [Accepted: 03/19/2009] [Indexed: 12/16/2022]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) plays a critical role in transcellular ion transport and when defective, results in the genetic disease cystic fibrosis. CFTR is novel in the ATP-binding cassette superfamily as an ion channel that is enabled by a unique unstructured regulatory domain. This R domain contains multiple protein kinase A sites, which when phosphorylated allow channel gating. Most of the sites have been indicated to stimulate channel activity, while two of them have been suggested to be inhibitory. It is unknown whether individual sites act coordinately or distinctly. To address this issue, we raised monoclonal antibodies recognizing the unphosphorylated, but not the phosphorylated states of four functionally relevant sites (700, 737, 768, and 813). This enabled simultaneous monitoring of their phosphorylation and dephosphorylation and revealed that both processes occurred rapidly at the first three sites, but more slowly at the fourth. The parallel phosphorylation rates of the stimulatory 700 and the putative inhibitory 737 and 768 sites prompted us to reexamine the role of the latter two. With serines 737 and 768 reintroduced individually into a PKA insensitive variant, in which serines at 15 sites had been replaced by alanines, a level of channel activation by PKA was restored, showing that these sites can mediate stimulation. Thus, we have provided new tools to study the CFTR regulation by phosphorylation and found that sites proposed to inhibit channel activity can also participate in stimulation.
Collapse
Affiliation(s)
- Tamás Hegedus
- Department of Biochemistry, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
30
|
Ko EA, Park WS, Son YK, Kim DH, Kim N, Kim HK, Choi TH, Jung ID, Park YM, Han J. The effect of tyrosine kinase inhibitor genistein on voltage-dependent K+ channels in rabbit coronary arterial smooth muscle cells. Vascul Pharmacol 2008; 50:51-6. [PMID: 18952004 DOI: 10.1016/j.vph.2008.09.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 09/04/2008] [Accepted: 09/25/2008] [Indexed: 11/15/2022]
Abstract
We examined the effect of the protein tyrosine kinase (PTK) inhibitor, genistein on voltage-dependent K+ (Kv) channels in freshly isolated rabbit coronary arterial smooth muscle cells, using whole-cell patch clamp techniques. The amplitude of the Kv current was inhibited by genistein in a dose-dependent manner, with a Kd value of 7.51 microM. Genistein had no effect on the steady-state activation or inactivation of Kv channels. The applications of trains of pulses at 1 or 2 Hz caused a progressive increase in the genistein-blockade. Genistein produced use-dependent inhibition of the Kv currents, consistent with a slow recovery from inactivation in the presence of genistein. Daidzein and genistin, two inactive analogs of genistein, showed an inhibitory effect similar to that of genistein on Kv channels. Moreover, the absence of ATP inside the pipette did not influence the blocking effect of genistein. We suggest that genistein directly inhibited the Kv current, independently of PTK inhibition.
Collapse
Affiliation(s)
- Eun A Ko
- National Research Laboratory for Mitochondrial Signaling, FIRST Mitochondria Research Group, Department of Physiology and Biophysics, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
CF is an inherited autosomal recessive disease whose lethality arises from malfunction of CFTR, a single chloride (Cl-) ion channel protein. CF patients harbor mutations in the CFTR gene that lead to misfolding of the resulting CFTR protein, rendering it inactive and mislocalized. Hundreds of CF-related mutations have been identified, many of which abrogate CFTR folding in the endoplasmic reticulum (ER). More than 70% of patients harbor the ΔF508 CFTR mutation that causes misfolding of the CFTR proteins. Consequently, mutant CFTR is unable to reach the apical plasma membrane of epithelial cells that line the lungs and gut, and is instead targeted for degradation by the UPS. Proteins located in both the cytoplasm and ER membrane are believed to identify misfolded CFTR for UPS-mediated degradation. The aberrantly folded CFTR protein then undergoes polyubiquitylation, carried out by an E1-E2-E3 ubiquitin ligase system, leading to degradation by the 26S proteasome. This ubiquitin-dependent loss of misfolded CFTR protein can be inhibited by the application of ‘corrector’ drugs that aid CFTR folding, shielding it from the UPS machinery. Corrector molecules elevate cellular CFTR protein levels by protecting the protein from degradation and aiding folding, promoting its maturation and localization to the apical plasma membrane. Combinatory application of corrector drugs with activator molecules that enhance CFTR Cl- ion channel activity offers significant potential for treatment of CF patients. Publication history: Republished from Current BioData's Targeted Proteins database (TPdb; ).
Collapse
Affiliation(s)
- Emma L Turnbull
- Department of Cell and Developmental Biology, 526 Taylor Hall, Mason Farm Road, UNC-Chapel Hill School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | | | | |
Collapse
|
32
|
Fu J, Tay SSW, Ling EA, Dheen ST. Aldose reductase is implicated in high glucose-induced oxidative stress in mouse embryonic neural stem cells. J Neurochem 2007; 103:1654-65. [PMID: 17727625 DOI: 10.1111/j.1471-4159.2007.04880.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oxidative stress caused by hyperglycemia is one of the key factors responsible for maternal diabetes-induced congenital malformations, including neural tube defects in embryos. However, mechanisms by which maternal diabetes induces oxidative stress during neurulation are not clear. The present study was aimed to investigate whether high glucose induces oxidative stress in neural stem cells (NSCs), which compose the neural tube during development. We also investigated the mechanism by which high glucose disturbs the growth and survival of NSCs in vitro. NSCs were exposed to physiological d-glucose concentration (PG, 5 mmol/L), PG with l-glucose (25 mmol/L), or high d-glucose concentration (HG, 30 or 45 mmol/l). HG induced reactive oxygen species production and mRNA expression of aldose reductase (AR), which catalyzes the glucose reduction through polyol pathway, in NSCs. Expression of glucose transporter 1 (Glut1) mRNA and protein which regulates glucose uptake in NSCs was increased at early stage (24 h) and became down-regulated at late stage (72 h) of exposure to HG. Inhibition of AR by fidarestat, an AR inhibitor, decreased the oxidative stress, restored the cell viability and proliferation, and reduced apoptotic cell death in NSCs exposed to HG. Moreover, inhibition of AR attenuated the down-regulation of Glut1 expression in NSCs exposed to HG for 72 h. These results suggest that the activation of polyol pathway plays a role in the induction of oxidative stress which alters Glut1 expression and cell cycle in NSCs exposed to HG, thereby resulting in abnormal patterning of the neural tube in embryos of diabetic pregnancy.
Collapse
Affiliation(s)
- Jiang Fu
- Molecular Neurobiology Laboratory, Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
33
|
Huan J, Martuseviciene G, Olgaard K, Lewin E. Calcium-sensing receptor and recovery from hypocalcaemia in thyroparathyroidectomized rats. Eur J Clin Invest 2007; 37:214-21. [PMID: 17359489 DOI: 10.1111/j.1365-2362.2007.01770.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Plasma ionized calcium (p-Ca(2+)) is kept within a very narrow range and deviations are rapidly corrected by flux of Ca(2+) between extracellular fluid and the labile calcium pool at the quiescent bone surface. The calcium sensing at the bone surface represents a physiological interesting model for the rapid minute-to-minute regulation of p-Ca(2+). Our aim was to study whether the calcium-sensing receptor (CaR) has a role in the rapid recovery of p-Ca(2+) from acute induced hypocalcaemia. MATERIAL AND METHODS Male Wistar rats were thyroparathyroidectomized (TPTX). Acute hypocalcaemia in the animals was induced by infusion of EGTA (40-50 mM EGTA, 3.0 mL h(-1) for 30 min). Thereafter the recovery of p-Ca(2+) was followed. Vehicle or the CaR activators, R-568 (2 mg as a bolus twice) or gentamycin were administrated intravenously. RESULTS EGTA infusion resulted in significantly lower nadir of hypocalcaemia in R-568- or gentamycin-treated rats compared to vehicle-treated rats (P < 0.01). During recovery phase p-Ca(2+) remained significantly lower in R-568 rats (P < 0.001). As such p-Ca(2+) levels recovered to basal levels in the vehicle group within 70 min after stopping EGTA, while R-568 or gentamycin rats remained significantly hypocalcaemic. CONCLUSIONS The CaR activators R-568 and gentamycin, both significantly delayed the recovery of p-Ca(2+) from acute EGTA-induced hypocalcaemia in TPTX rats. This novel finding suggests the existence of calcium sensing by bone of importance for the rapid minute-to-minute regulation of p-Ca(2+).
Collapse
Affiliation(s)
- J Huan
- Nephrological Department P, Rigshospitalet and Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
34
|
van de Graaf SFJ, Bindels RJM, Hoenderop JGJ. Physiology of epithelial Ca2+ and Mg2+ transport. Rev Physiol Biochem Pharmacol 2007; 158:77-160. [PMID: 17729442 DOI: 10.1007/112_2006_0607] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ca2+ and Mg2+ are essential ions in a wide variety of cellular processes and form a major constituent of bone. It is, therefore, essential that the balance of these ions is strictly maintained. In the last decade, major breakthrough discoveries have vastly expanded our knowledge of the mechanisms underlying epithelial Ca2+ and Mg2+ transport. The genetic defects underlying various disorders with altered Ca2+ and/or Mg2+ handling have been determined. Recently, this yielded the molecular identification of TRPM6 as the gatekeeper of epithelial Mg2+ transport. Furthermore, expression cloning strategies have elucidated two novel members of the transient receptor potential family, TRPV5 and TRPV6, as pivotal ion channels determining transcellular Ca2+ transport. These two channels are regulated by a variety of factors, some historically strongly linked to Ca2+ homeostasis, others identified in a more serendipitous manner. Herein we review the processes of epithelial Ca2+ and Mg2+ transport, the molecular mechanisms involved, and the various forms of regulation.
Collapse
Affiliation(s)
- S F J van de Graaf
- Radboud University Nijmegen Medical Centre, 286 Cell Physiology, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | |
Collapse
|
35
|
Patlas N, Avgil M, Ziv E, Ornoy A, Shafrir E. Pregnancy Outcome in the Psammomys obesus Gerbil on Low- and High-Energy Diets. Neonatology 2006; 90:58-65. [PMID: 16534187 DOI: 10.1159/000091913] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Accepted: 09/26/2005] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Diabetes mellitus (DM) during pregnancy is associated with an increased risk for poor reproduction and a high rate of congenital malformations. The gerbil Psammomys obesus is a unique model for nutritionally induced Type 2 DM (T2DM) that enabled us to study the outcome of uncontrolled T2DM during pregnancy. METHODS Female Psammomys on low-energy (LE) or high energy (HE) diet were studied. The blood glucose levels and weights of pregnant animals were determined. The offspring from the different groups were followed-up to weaning. RESULTS Most of the HE-diet animals were diabetic (77%). There were no differences in the pregnancy rates in animals on both diets (32.7% in HE vs. 38.3% in LE). Pregnancy of the HE-diet group was longer than the LE-diet group (26.7 vs. 26.1 days), and litter average was reduced (2.7 vs. 3.0). At birth, the offspring of the HE-diet dams weighed less (5.2 vs. 7.2 g) and had smaller crown rump length (4.0 vs. 4.6 cm) These offspring also presented a 1-3 days delay in neuro-developmental parameters (first turn over, hair appearance, eye-opening and response to noise). However, from the fourth week of life they became diabetic, and from the third week they weighed more than the LE offspring. CONCLUSION HE-diet caused diabetes, maternal complications and altered reproduction in Psammomys animals. The offspring of diabetic Psammomys presented birth weight and length changes as well as developmental delay.
Collapse
Affiliation(s)
- Natan Patlas
- Department of Anatomy and Cell Biology The Hebrew University, Laboratory of Teratology, Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
36
|
Valero MS, Garay RP, Gros P, Alda JO. Cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel and Na-K-Cl cotransporter NKCC1 isoform mediate the vasorelaxant action of genistein in isolated rat aorta. Eur J Pharmacol 2006; 544:126-31. [PMID: 16859673 DOI: 10.1016/j.ejphar.2006.06.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2006] [Revised: 06/20/2006] [Accepted: 06/22/2006] [Indexed: 11/20/2022]
Abstract
The soy phytoestrogen genistein is a potent vasorelaxant, but its mechanism of action is poorly understood. Here, we used endothelium-denuded rat aorta to investigate the role of the cyclic AMP(cAMP)-activated, cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel, and its associated Na-K-Cl cotransporter NKCC1. Isolated, endothelium-denuded rat aorta was contracted with phenylephrine 1 microM, and the vasorelaxant responses to genistein were investigated under conditions where CFTR was inhibited by DPC (diphenylamine-2-carboxylic acid) or glibenclamide (n=6 for compound). Both compounds fully antagonized the vasorelaxant responses to genistein, with IC50=57+/-18 microM and 42+/-11 microM for DPC and glibenclamide respectively. H-89, a selective protein kinase A (PKA) inhibitor, blocked the vasorelaxant responses to genistein. Finally, the NKCC1 inhibitor, bumetanide fully antagonized the vasorelaxant responses to genistein against phenylephrine- or KCl-induced contractions, with IC50=2.0+/-0.2 microM and 1.6+/-0.5 microM, respectively (n=6 for condition). These results strongly suggest that CFTR opening is involved in the vasorelaxant action of genistein, and that cAMP-dependent CFTR phosphorylation and chloride entry via the NKCC1 cotransporter are required for genistein action.
Collapse
Affiliation(s)
- Marta S Valero
- Department of Physiology and Pharmacology, School of Medicine, University of Zaragoza, Spain
| | | | | | | |
Collapse
|
37
|
Abstract
A constant extracellular Ca2+ concentration is required for numerous physiological functions at tissue and cellular levels. This suggests that minor changes in Ca2+ will be corrected by appropriate homeostatic systems. The system regulating Ca2+ homeostasis involves several organs and hormones. The former are mainly the kidneys, skeleton, intestine and the parathyroid glands. The latter comprise, amongst others, the parathyroid hormone, vitamin D and calcitonin. Progress has recently been made in the identification and characterisation of Ca2+ transport proteins CaT1 and ECaC and this has provided new insights into the molecular mechanisms of Ca2+ transport in cells. The G-protein coupled calcium-sensing receptor, responsible for the exquisite ability of the parathyroid gland to respond to small changes in serum Ca2+ concentration was discovered about a decade ago. Research has focussed on the molecular mechanisms determining the serum levels of 1,25(OH)2D3, and on the transcriptional activity of the vitamin D receptor. The aim of recent work has been to elucidate the mechanisms and the intracellular signalling pathways by which parathyroid hormone, vitamin D and calcitonin affect Ca2+ homeostasis. This article summarises recent advances in the understanding and the molecular basis of physiological Ca2+ homeostasis.
Collapse
Affiliation(s)
- Indra Ramasamy
- Department of Chemical Pathology, Newham University Hospital, London, UK.
| |
Collapse
|
38
|
Zhao Z, Reece EA. Experimental mechanisms of diabetic embryopathy and strategies for developing therapeutic interventions. ACTA ACUST UNITED AC 2006; 12:549-57. [PMID: 16325743 DOI: 10.1016/j.jsgi.2005.07.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Revised: 07/06/2005] [Accepted: 07/13/2005] [Indexed: 01/23/2023]
Abstract
A high frequency of birth defects is seen in infants born to diabetic mothers. The mechanisms by which maternal hyperglycemia, the major teratogenic factor, induces embryonic malformations remain to be addressed. It has been shown that increases in programmed cell death are one of the factors causing embryonic malformations. Hyperglycemia-induced apoptosis is associated with oxidative stress, lipid peroxidation, and decreased antioxidant defense capacity in the embryos. Recent studies have revealed that mitogen-activated protein kinases as intracellular signaling factors are involved in hyperglycemia-induced embryopathy. Based on the findings, interventions to prevent embryonic malformations have been explored. Strategies include supplementation of molecules that are deficient in the embryos under hyperglycemic conditions and antioxidants to alleviate the adverse effects of oxidative stress. The ultimate goal is to develop multi-nutrient dietary supplements to eliminate embryonic abnormalities induced by maternal diabetes.
Collapse
Affiliation(s)
- Zhiyong Zhao
- Department of Obstetrics and Gynecology, The Arkansas Center for Birth Defects Research and Prevention, Little Rock, Arkansas, USA
| | | |
Collapse
|
39
|
Zangen SW, Ryu S, Ornoy A. Alterations in the expression of antioxidant genes and the levels of transcription factor NF-Kappa B in relation to diabetic embryopathy in the cohen diabetic rat model. ACTA ACUST UNITED AC 2006; 76:107-14. [PMID: 16470537 DOI: 10.1002/bdra.20227] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND We have previously shown that oxidative stress is important in the pathogenesis of diabetes-induced anomalies in Cohen Diabetic sensitive (CDs) rat embryos and seems to interplay with genetic factors. We investigated the role of genetic factors related to the antioxidant defense mechanism in CDs rat embryos. METHODS We studied 11.5- and 12.5-day embryos of Cohen Diabetic resistant (CDr) and CDs rats that were fed a regular diet (RD), and hence not diabetic, compared to rats fed a high-sucrose low-copper diet (HSD) where only the CDs animals became diabetic. Embryos were monitored for growth and congenital anomalies. mRNA of catalase (CAT), glutathione peroxidase (GSHpx), CuZn-SOD (SOD-superoxide dismutase), and Mn-SOD and the extent of nuclear factor kappa B (NF-kappaB) activation were assessed. RESULTS Embryos of CDs dams fed RD were significantly smaller and had an increased rate of NTDs compared to embryos of CDr dams fed RD. When CDs dams were fed HSD, >50% of the CDs embryos were dead and 44% of the live embryos had NTDs. Live 11.5-day old embryos of CDs dams fed RD had a statistically significant increase in CAT, CuZn-SOD, and GSHpx mRNA levels compared with the levels in the CDr embryos from dams fed RD. CDs embryos from dams fed HSD showed significant overactivation of NF-kappaB compared with CDr embryos from dams fed HSD (in which activation was decreased), without any increase in the expression of SOD, CAT, and GSHpx. CONCLUSIONS This study demonstrates that one of the genetic differences between the CDr and CDs strains fed RD is an increased expression of genes encoding for antioxidant enzymes in the CDs but inability for upregulation in diabetes. In addition, while activation of NF-kappaB is decreased in CDr on HSD, it is increased in the CDs. These differences may play a role in the increased sensitivity of the CDs embryos to diabetic-induced teratogenicity.
Collapse
Affiliation(s)
- Sarah W Zangen
- Laboratory of Teratology, Department of Anatomy and Cell Biology, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | |
Collapse
|
40
|
Thelin WR, Kesimer M, Tarran R, Kreda SM, Grubb BR, Sheehan JK, Stutts MJ, Milgram SL. The Cystic Fibrosis Transmembrane Conductance Regulator Is Regulated by a Direct Interaction with the Protein Phosphatase 2A. J Biol Chem 2005; 280:41512-20. [PMID: 16239222 DOI: 10.1074/jbc.m507308200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-activated chloride channel expressed at the apical surface of epithelia. Although the regulation of CFTR by protein kinases is well documented, channel deactivation by phosphatases is not well understood. We find that the serine/threonine phosphatase PP2A can physically associate with the CFTR COOH terminus. PP2A is a heterotrimeric phosphatase composed of a catalytic subunit and two divergent regulatory subunits (A and B). The cellular localization and substrate specificity of PP2A is determined by the unique combination of A and B regulatory subunits, which can give rise to at least 75 different enzymes. By mass spectrometry, we identified the exact PP2A regulatory subunits associated with CFTR as Aalpha and B'epsilon and find that the B'epsilon subunit binds CFTR directly. PP2A subunits localize to the apical surface of airway epithelia and PP2A phosphatase activity co-purifies with CFTR in Calu-3 cells. In functional assays, inhibitors of PP2A block rundown of basal CFTR currents and increase channel activity in excised patches of airway epithelia and in intact mouse jejunum. Moreover, PP2A inhibition in well differentiated human bronchial epithelial cells results in a CFTR-dependent increase in the airway surface liquid. Our data demonstrate that PP2A is a relevant CFTR phosphatase in epithelial tissues. Our results may help reconcile differences in phosphatase-mediated channel regulation observed for different tissues and cells. Furthermore, PP2A may be a clinically relevant drug target for CF, which should be considered in future studies.
Collapse
Affiliation(s)
- William R Thelin
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Ai T, Bompadre SG, Sohma Y, Wang X, Li M, Hwang TC. Direct effects of 9-anthracene compounds on cystic fibrosis transmembrane conductance regulator gating. Pflugers Arch 2005; 449:88-95. [PMID: 15290302 PMCID: PMC1201469 DOI: 10.1007/s00424-004-1317-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Anthracene-9-carboxylic acid (9-AC) has been reported to show both potentiation and inhibitory effects on guinea-pig cardiac cAMP-activated chloride channels via two different binding sites, and inhibition of Mg(2+)-sensitive protein phosphatases has been proposed for the mechanism of 9-AC potentiation effect. In this study, we examined the effects of 9-AC on wild-type and mutant human cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels expressed in NIH3T3 or CHO cells. 9-AC inhibits whole-cell CFTR current in a voltage-dependent manner, whereas the potentiation effect is not affected by membrane potentials. Anthracene-9-methanol, an electro-neutral 9-AC analog, fails to block CFTR, but shows a nearly identical potentiation effect, corroborating the idea that two chemically distinct sites are responsible, respectively, for potentiation and inhibitory actions of 9-AC. 9-AC also enhances the activity of deltaR-CFTR, a constitutively active CFTR mutant whose R-domain is removed. In excised inside-out patches, 9-AC increases Po by prolonging the mean burst durations and shortening the interburst durations. We therefore conclude that two different 9-AC binding sites for potentiation and inhibitory effects on CFTR channels are located outside of the R-domain. We also speculate that 9-AC potentiates CFTR activity by directly affecting CFTR gating.
Collapse
Affiliation(s)
- Tomohiko Ai
- Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri-Columbia, MO 65211, USA
| | | | | | | | | | | |
Collapse
|
42
|
Kanwar YS, Nayak B, Lin S, Akagi S, Xie P, Wada J, Chugh SS, Danesh FR. Hyperglycemia: its imminent effects on mammalian nephrogenesis. Pediatr Nephrol 2005; 20:858-66. [PMID: 15875217 DOI: 10.1007/s00467-005-1888-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Revised: 01/26/2005] [Accepted: 01/31/2005] [Indexed: 01/25/2023]
Abstract
A sustained exposure of the mammalian embryo to very high glucose ambience is associated with a multitude of congenital birth defects, including those of the cardiovascular, CNS, skeletal and urogenital systems during the first 6-8 weeks of gestation in humans. These urogenital abnormalities may be associated with "caudal regression syndrome" or may occur alone in the form of partial or total renal agenesis. Similarly, an increase in the incidence of morphogenetic defects is observed in the offspring of streptozotocin-induced diabetic rats and mice, and also in non-obese diabetic mice. In certain cases, failure during the growth of the lower parts of embryos or newborn mice involving the genitourinary system has been observed in animals with severe diabetes. Investigators have utilized whole organ culture systems to delineate the mechanisms relevant to dysmorphogenesis of the embryonic metanephros. A marked dysmorphogenesis of the metanephros is observed upon treatment with a high concentration of D: -glucose. Associated with it are changes that include branching dysmorphogenesis of the ureteric bud iterations, reduced population of nascent nephrons, decreased expression of basement membrane proteoglycans, depletion of ATP stores, and fulminant apoptosis of the cells at the interface of mesenchyme and ureteric bud epithelium. The latter findings suggest that disruption of epithelial:mesenchymal interactions may be the major event responsible for the metanephric dysmorphogenesis induced by high glucose ambience.
Collapse
Affiliation(s)
- Yashpal S Kanwar
- Department of Pathology, Northwestern University Medical School, Chicago, IL, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Vastiau A, Cao L, Jaspers M, Owsianik G, Janssens V, Cuppens H, Goris J, Nilius B, Cassiman JJ. Interaction of the protein phosphatase 2A with the regulatory domain of the cystic fibrosis transmembrane conductance regulator channel. FEBS Lett 2005; 579:3392-6. [PMID: 15936019 DOI: 10.1016/j.febslet.2005.04.079] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2005] [Revised: 04/24/2005] [Accepted: 04/25/2005] [Indexed: 12/01/2022]
Abstract
A direct interaction of the regulatory domain (R domain) of the cystic fibrosis transmembrane conductance regulator protein (CFTR) with PR65, a regulatory subunit of the protein phosphatase 2A (PP2A), was shown in yeast two hybrid, pull-down and co-immunoprecipitation experiments. The R domain could be dephosphorylated by PP2A in vitro. Overexpression of the interacting domain of PR65 in Caco-2 cells, as well as treatment with okadaic acid, showed a prolonged deactivation of the chloride channel. Taken together our results show a direct and functional interaction between CFTR and PP2A.
Collapse
Affiliation(s)
- Annick Vastiau
- Department of Human Genetics, Division of Human Mutations and Polymorphisms, KULeuven, Herestraat 49, Postbus 602, 3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Bompadre SG, Ai T, Cho JH, Wang X, Sohma Y, Li M, Hwang TC. CFTR gating I: Characterization of the ATP-dependent gating of a phosphorylation-independent CFTR channel (DeltaR-CFTR). ACTA ACUST UNITED AC 2005; 125:361-75. [PMID: 15767295 PMCID: PMC1382195 DOI: 10.1085/jgp.200409227] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The CFTR chloride channel is activated by phosphorylation of serine residues in the regulatory (R) domain and then gated by ATP binding and hydrolysis at the nucleotide binding domains (NBDs). Studies of the ATP-dependent gating process in excised inside-out patches are very often hampered by channel rundown partly caused by membrane-associated phosphatases. Since the severed ΔR-CFTR, whose R domain is completely removed, can bypass the phosphorylation-dependent regulation, this mutant channel might be a useful tool to explore the gating mechanisms of CFTR. To this end, we investigated the regulation and gating of the ΔR-CFTR expressed in Chinese hamster ovary cells. In the cell-attached mode, basal ΔR-CFTR currents were always obtained in the absence of cAMP agonists. Application of cAMP agonists or PMA, a PKC activator, failed to affect the activity, indicating that the activity of ΔR-CFTR channels is indeed phosphorylation independent. Consistent with this conclusion, in excised inside-out patches, application of the catalytic subunit of PKA did not affect ATP-induced currents. Similarities of ATP-dependent gating between wild type and ΔR-CFTR make this phosphorylation-independent mutant a useful system to explore more extensively the gating mechanisms of CFTR. Using the ΔR-CFTR construct, we studied the inhibitory effect of ADP on CFTR gating. The Ki for ADP increases as the [ATP] is increased, suggesting a competitive mechanism of inhibition. Single channel kinetic analysis reveals a new closed state in the presence of ADP, consistent with a kinetic mechanism by which ADP binds at the same site as ATP for channel opening. Moreover, we found that the open time of the channel is shortened by as much as 54% in the presence of ADP. This unexpected result suggests another ADP binding site that modulates channel closing.
Collapse
Affiliation(s)
- Silvia G Bompadre
- Department of Medical Pharmacology and Physiology, University of Missouri-Columbia 65211, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Choi BM, Yoo KH, Bae IS, Oh MH, Hong YS, Lee JW, Kim SK. Angiotensin-converting enzyme inhibition modulates mitogen-activated protein kinase family expressions in the neonatal rat kidney. Pediatr Res 2005; 57:115-23. [PMID: 15531746 DOI: 10.1203/01.pdr.0000148064.27632.1d] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Among the mitogen-activated protein kinase (MAPK) family members, extracellular signal-regulated kinase (ERK) promotes cell proliferation or differentiation, whereas c-jun N terminal kinase (JNK) and p38 MAPK are thought to inhibit cell growth and induce apoptosis. The MAPK family may plays some role during kidney development, when large-scale proliferation and apoptosis have been observed to occur. Also, in this period, the renin-angiotensin system is markedly activated. We have demonstrated that angiotensin-converting enzyme inhibition in the developing rat kidney increases apoptosis and decreases cell proliferation, which may account for renal growth impairment. The aim of this study, therefore, was to examine the relationship between the MAPK family and renin-angiotensin system during neonatal renal development. Newborn rat pups were treated with enalapril (30 mg . kg(-1) . d(-1)) or normal saline for 7 d. Right kidneys of both groups were selected for immunohistochemical stains of MAPKs and activating transcription factor-2 (ATF-2), and left kidneys were selected for reverse transcriptase-PCR and immunoblot analysis of MAPKs, phospho-MAPKs, and ATF-2. To determine whether apoptosis is involved in the same tubules that highly expressed JNK and p38, we performed terminal deoxynucleotide transferase-mediated nick-end labeling stain for apoptotic cells and immunohistochemical stains for JNK-2, p38, and ATF-2 expression in the serial sections from the same kidney of the enalapril-treated group. In the enalapril-treated group, JNK-2, p38, phospho-JNK-2, phospho-p38, and ATF-2 protein expressions were significantly increased, and their immunoactivities were strongly detected in the proximal tubular epithelial cells in the cortex, compared with the control group. Especially JNK-2 and p38 expressions were highly activated and were spatially in accordance with the occurrence of apoptosis. ERK1/2 and phospho-ERK expressions were not changed by enalapril. These results suggest that the expressions of the MAPK family are modulated by angiotensin-converting enzyme inhibition in the developing kidney. JNK and p38 may be implicated to participate in angiotensin II-related intracellular signaling pathways of renal apoptosis in the developing kidney.
Collapse
Affiliation(s)
- Byung Min Choi
- Department of Pediatrics, Korea University, 152-703, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
46
|
Baker MJ, Hamilton KL. Genistein stimulates electrogenic Cl−secretion in mouse jejunum. Am J Physiol Cell Physiol 2004; 287:C1636-45. [PMID: 15306545 DOI: 10.1152/ajpcell.00236.2003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We used the short-circuit current ( Isc) technique to investigate the effects of the isoflavone genistein on the electrogenic Cl−secretion of the mouse jejunum. Genistein stimulated a sustained increase in Iscthat was dose dependent. Bumetanide inhibited 76 ± 5% of the genistein-stimulated Iscconsistent with activation of Cl−secretion. Genistein failed to stimulate Iscfollowing maximal activation of the cAMP pathway by forskolin. In addition, forskolin had a reduced effect on Iscof the mouse jejunum in the presence of genistein. Glibenclamide, a blocker of CFTR, eliminated the genistein-stimulated increase of Iscand reduced the forskolin-activated Isc. Clotrimazole, a Ca2+-activated K+channel blocker, failed to reduce the genistein-stimulated Isc. Vanadate, a blocker of tyrosine-dependent phosphatases, reduced the genistein-activated Isc. Tyrphostin A23, a tyrosine kinase inhibitor, reduced basal Isc, after which genistein failed to stimulate Isc. These data suggest that genistein activated a sustained Cl−secretory response of the mouse jejunum and that the effect of genistein was via a tyrosine-dependent phosphorylation pathway.
Collapse
Affiliation(s)
- Michael J Baker
- Department of Physiology, School of Medical Sciences, University of Otago, PO Box 913, Dunedin, New Zealand
| | | |
Collapse
|
47
|
King GL, Loeken MR. Hyperglycemia-induced oxidative stress in diabetic complications. Histochem Cell Biol 2004; 122:333-8. [PMID: 15257460 DOI: 10.1007/s00418-004-0678-9] [Citation(s) in RCA: 350] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2004] [Indexed: 02/02/2023]
Abstract
Reactive oxygen species are increased by hyperglycemia. Hyperglycemia, which occurs during diabetes (both type 1 and type 2) and, to a lesser extent, during insulin resistance, causes oxidative stress. Free fatty acids, which may be elevated during inadequate glycemic control, may also be contributory. In this review, we will discuss the role of oxidative stress in diabetic complications. Oxidative stress may be important in diabetes, not just because of its role in the development of complications, but because persistent hyperglycemia, secondary to insulin resistance, may induce oxidative stress and contribute to beta cell destruction in type 2 diabetes. The focus of this review will be on the role of oxidative stress in the etiology of diabetic complications.
Collapse
Affiliation(s)
- George L King
- Section on Vascular Cell Biology and Complications, Joslin Diabetes Center, Boston, Massachusetts, USA
| | | |
Collapse
|
48
|
Ai T, Bompadre SG, Wang X, Hu S, Li M, Hwang TC. Capsaicin potentiates wild-type and mutant cystic fibrosis transmembrane conductance regulator chloride-channel currents. Mol Pharmacol 2004; 65:1415-26. [PMID: 15155835 DOI: 10.1124/mol.65.6.1415] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To examine the effects of capsaicin on cystic fibrosis transmembrane conductance regulator (CFTR), we recorded wild-type and mutant CFTR chloride-channel currents using patch-clamp methods. The effects of capsaicin were compared with those of genistein, a well-characterized CFTR activator. In whole-cell experiments, capsaicin potentiates cAMP-stimulated wild-type CFTR currents expressed in NIH 3T3 cells or Chinese hamster ovary cells in a dose-dependent manner with a maximal response approximately 60% of that with genistein and an apparent Kd of 48.4 +/- 6.8 microM. In cell-attached recordings, capsaicin alone fails to activate CFTR in cells that show negligible basal CFTR activity, indicating that capsaicin does not stimulate the cAMP cascade. The magnitude of potentiation with capsaicin depends on the channel activity before drug application; the lower the prestimulated Po, the higher the potentiation. Single-channel kinetic analysis shows that capsaicin potentiates CFTR by increasing the opening rate and decreasing the closing rate of the channel. Capsaicin may act as a partial agonist of genistein because the maximally enhanced wild-type CFTR currents with genistein are partially inhibited by capsaicin. Capsaicin increases DeltaR-CFTR, a protein kinase A (PKA)-independent, constitutively active channel, in cell-attached patches. In excised inside-out patches, capsaicin potentiates the PKA-phosphorylated, ATP-dependent CFTR activity. Both capsaicin and genistein potentiate the cAMP-stimulated G551D-CFTR, DeltaF508-CFTR, and 8SA mutant channel currents. The binding site for capsaicin is probably located at the cytoplasmic domain of CFTR, because pipette application of capsaicin fails to potentiate CFTR activity. In conclusion, capsaicin is a partial agonist of genistein in activation of the CFTR chloride channel. Both compounds affect ATP-dependent gating of CFTR.
Collapse
Affiliation(s)
- Tomohiko Ai
- Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri-Columbia School of Medicine, Columbia, Missouri 65211, USA
| | | | | | | | | | | |
Collapse
|
49
|
Puglisi A, Tabbì G, Vecchio G. Bioconjugates of cyclodextrins of manganese salen-type ligand with superoxide dismutase activity. J Inorg Biochem 2004; 98:969-76. [PMID: 15149803 DOI: 10.1016/j.jinorgbio.2004.02.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2003] [Revised: 02/17/2004] [Accepted: 02/18/2004] [Indexed: 01/08/2023]
Abstract
6A,6B-Dideoxy-6A,6B-di[(N-salicylidene)amino]-beta-cyclodextrin was synthesized and characterized by NMR, UV and CD spectroscopy in order to prepare a N,N(')-bis-(salicylidene)ethane-1,2-diamine (SalenH(2)) type ligand. The manganese(III) complex was synthesized and characterized by UV and cyclic voltammetry and compared to EUK-8. The superoxide dismutase (SOD)-like and catalase-like activities were tested by indirect assay. The cyclodextrin complex shows a larger solubility than EUK-8 and good SOD-like activity. Catalase activity is also shown.
Collapse
Affiliation(s)
- Antonino Puglisi
- Dipartimento di Scienze Chimiche, Università di Catania, viale A. Doria 8, 95125 Catania, Italy
| | | | | |
Collapse
|
50
|
Andersson C, Servetnyk Z, Roomans GM. Activation of CFTR by genistein in human airway epithelial cell lines. Biochem Biophys Res Commun 2003; 308:518-22. [PMID: 12914781 DOI: 10.1016/s0006-291x(03)01436-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cystic fibrosis (CF) is caused by a mutation in the cystic fibrosis transmembrane conductance regulator (CFTR), a chloride channel expressed in epithelial cells. The effects of genistein and 4-phenylbutyrate (PBA) on CFTR were studied in three human airway epithelial cell lines expressing wild-type or DeltaF508 CFTR: Calu-3, CFSMEo-, and CFBE41o- cells. The cells were loaded with the fluorescent dye N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide (MQAE) and chloride efflux was studied. Forskolin and 3-isobutyl-1-methylxanthine (IBMX) induced chloride efflux in Calu-3 cells but not in CF lines. Genistein (2.5-50 microM) alone was able to induce chloride efflux in all cell lines. Genistein did not enhance the effect of forskolin and IBMX. PBA had little or no effect on genistein-induced chloride efflux. The effect of genistein seen at low concentrations makes genistein interesting for possible pharmacological treatment of CF, since it is known that similar concentrations can be obtained in plasma by a soy-rich diet.
Collapse
|